AD-R172 343 EVALUATION AND VALIDATION (E4Y) TERM PUBLIC REPORT
OLUHE 2¢U) RIR FORCE MRIGHT AERONAUTICAL LABS
HRIGHT-PATTERSON AFB OH R SZYMRNSK] 3@ NOV 835

UNCLASSIFIED AFWAL-TR-835-1816-VOL-2 F/G 1472

ALARACARAGAL t b L Sr & 2o 8 L gs

N
i
T S

kR

g2

L
w
———m
E
=
[
[
[

EEEE

Im 1k f22 ,
= e
Ji23 Jlie e

s

AFWAL-TR-35-1016
VOL II
EVALUATION AND VALIDATION
(E&V)
. TEAM PUBLIC REPORT
Volume Il
o ELECTE
< SEP 2 3 1088
(47] RAYMOND SZYMANSKI
N E&V TEAM CHAIRPERSON D
N~ AVIONICS LABORATORY
‘&' AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
| WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6543 2
) A
< 2
30 NOVEMBER 1985 E§
.
Interim Technical Report for Period
1 October 1984 - 30 September 1985
).-,_
[
3
Y APPROVED FOR PUBLIC RELEASE, =
= DISTRIBUTION UNLIMITED 3
‘ C it =
L - PREPARED FOR:
- ADA* JOINT PROGRAM OFFICE ¥
3D139 (FERN ST/C107) PENTAGON
WASHINGTON, D.C. 20301 5
AVIONICS LABORATORY :£¢
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES ;
AIR FORCE SYSTEMS COMMAND s
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6543 fom
N L

. % ’ T R e,V T LN LT e e tTe e et B LI IS N >
-‘.f 234 “» ! A AT A RN '..". .) '_‘. 8 I_‘f,-‘...’ c". i T

4

NOTICE

ey

wWhen Government drawings, specifications, or other data are used for any purpose

N
other than in connection with a definitely related Government procurement operation,
the United States Government thereby incurs no responsibility nor any obligation g
whatsoever; and the fact that the government may have formulated, furnished, or in
any way supplied the said drawings, specifications, or other data, is not to be re- $
garded by implication or otherwise as in any manner licensing the holder or any :»
other person or corporation, or conveying any rights or permission to manufacture
use, or sell any patented invention that may in any way be related thereto. a)
N
This report has been reviewed by the Office of Public Affairs (ASD/PA) and is ' t
releasable to the National Technical Information Service (NTIS). At NTIS, it will L
be available to the general public, including foreign nations. -
WY
This technical report has been reviewed and is approved for publication. .
:1
by
\
M/%m._ £ Hag pé e
/"’— mond Szymanski Date ~
Project Engineer X
FOR THE COMMANDER -
s
"
o~ K. & §¢ :
. - — - & - ;
FRATVLIN C GERCEN, Lt £0', USAF Date)
Dot io O 4
Soour r»*“"xon v
ANICNLS LunCraluly
v,
M,
. o~
2
)
If your address has changed, if you wish to be removed from our mailing list, or ‘.
if the addressee is no longer employed by your organization please notify AFWAL/AAAF, ¢
W-PAFB, OH 45433 to help us maintain a current mailing list. w
N
v
Copies of this report should not be returned unless return is required by security -
considerations, contractual obligations, or notice on a specific document. X
(.‘:1
N
(I

& s N v

- » -
BENCR LRI MK & -\‘5\‘.‘“-"‘h"‘l\)_".‘

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

1s. REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

i % - SNLS UL -
BRI TN s S T I i I iy Ry R SRS
MRV IR A ﬂ%x"'&.”:x":\"\. <P e ‘."'.;".b".- e '-’}-‘ R R

AD-A172 343

2 O O s

2s. SECURLITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for Public Release;

2D. DECLASSIFICATION/DOWNGRADING SCHEDULE

Distribution Unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
AFWAL-TR-85-1016, Vol II

8. MONITORING ORGANIZATION REPORT NUMBER(S)

Air Force Wright {11 appliceble)

6a. NAME OF PERFORMING QRGANIZATION . OFFICE SYMBOL
Aeronautical Laboratories AFWAL/AAAF-2

7s. NAME OF MONITORING ORGANIZATION

8c. ADDRESS (City, State and ZIP Code)

7o. ADDRESS (City, State end ZIP Code)

Wright-Patterson Air Force Base, OH 45433-654]3

8s. NAME OF FUNDING/SPONSORING 8. OFFICE SYMBOL |8. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION {1t applicebdie)
Ada*JOINT PROGRAM OFFICE

8¢c. ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS.

3D139 (Fern Street/Cl107) Pentagon PROGRAM PROJECT TASK WORK UNIT
Washington, D.C. 20301 ELEMENT NO. NO. NO. NO.
11. TATAE {Inciude Security Classificstion) Evaluati and Valid-

) vatuaton an y| 63226 AJPO 28 53

12. PERSONAL AUTHOR(S)

Raymond Szymanski, E&V Team Chairman
13s. TYPE OF REPORT 13b. TIME COVERED 16. OATE OF REPORT (Yr, Mo., Day)
Interim Technical sroml Oct 84 y030 Sep 45 1985 November 30

18. SUPPLEMENTARY NOTATION
*Ada is a Registered Trademark of the U.S. Government (Ada Joint Program Office)

15. PAGE COUNT
419

COSAT! CODES

18 SUBJECT TERMS (Continue on reverse if necessary and identify by(éeri gsmbcn

FIELD GROUP SUB. GR. Ada¥* Common APSE Interface Set
q a2 Evaluation Ada Programming Support Environment (APSE)
Validation

19. ABSTRACT (Continue on reverse if necessary end identify by block number)

Activities and accomplishments of the Evaluation and Validation (E&V) Team are reported
for FY1985. The purpose of the E&V Task, which is sponsored by the Ada Joint Program
Office (AJPO), is to develop techniques and tools that will provide a capability to
perform assessment of Ada Programming Support Environments (AJSEs) and to determine
conformance of APSEs to the Common APSE Interface Set (CAIS). As this technology is
developed, it is being made available to DoD components, industry, and academia.

,.._..
AN
pesS

Y

AL PLILPOE h aH

.
I.l.'.
XA

NN

y

’, ,n 4 .

20. DISTRAIBUTION/AVAILABILITY OF ABSTRACT 2Y. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED
22b. TELEPHONE NUMBER
(Include Area Code)

(513) 255-2446

EDITION OF 1 JAN 73 1S OBSOLETE.

UNCLASSIFIED/UNLIMITED & same as ret. O oric usens (1

: l,. o %

22s. NAME OF RESPONSIBLE INDIVIDUAL 22¢c. OFFICE SYMBOL

AFWAL/AAAF-2

Raymond Szymanski
DD FORM 1473, 83 APR

o,

&
»

UNCLASSIFIED

SECUALITY CLASSIFICATION QF THIS PAGE

e e e m e ca m e L L . moLm e am m L e om o W

SECTION I

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

APPENDIX G

APPENDIX H

APPENDIX I

TABLE OF CONTENTS

Project Technical Summary 1-1
Evaluation and Validation Technical Coordination

Strategy Document, Version 2.0 . o e s e o s s .+ « A-1
Evaluation and Validation Public Coordination

Strategy Document, Version 2.0 . « B-1
Minutes of the Evaluation & Validation (E&V)

Meeting December 1984 . . . O s |
Minutes of the Evaluation & Validation {E&V)

Meeting March 1985 . . . e « « .+« . D21
Minutes of the Evaluation & Validation (E&V)

Meeting June 1985 BE-1
Minutes of the Evaluation & Validation (E&V)

Meeting September 1985 . e e e F-1
CAIS Operational Definition Project Status G=1
Using Ada in the Real-Time Avionics Environmen*:

Issues and Conclusions (Master's Thesis) by

Donald J. Witt, M.A., B.S., Captain, USA¥ H-l
Position Papers Presented in June, 1985 I-2

1) Single Project/Multiple APSEs - Jerry Brooxshlre
2) Ada Program Library Systems - Thomas Leavitt

3) Security in APSE -~ M.B. Sury and

iii

N .
E.W. Martin

Accesion For

NTIS CRA&I
oTiIC TAB 0
VUi.annou..ced]
Justthcaton

By .
Ds: tlbutk‘) f

AVd“deWy C.ode:,

E——— - - |
Drst . Avald 4 v or
$

dpceml

g |

. o . - . -t g i ek’ h L't ishtate fin: - g . .
> i s 3 b R Ry SaiC i 0 g oAb SR P A FC gt g L A g J s e W L e Vi ua i n e L Tm Cal

LIST OF FIGURES

Figure H-1 Extreme Architecture/Distribution Combinations H-26

Figure H-2 Typical Ada Life Cycles: One Parent and Two Children . . . H-39

Figure H-3 Source Code for ADDSA# . . « « « o « = « « « « + o « « « « . H=-58
Figure G-1 Representation of a Compilation G=8
Figure G-2 An Editing Session . . . « + ¢ ¢ ¢« 4 ¢ ¢ 4 e 4 e s e o .« « . G=10
Figure G-3 Group Relationships . . . + « ¢« + ¢« + ¢ v ¢ ¢« « « o « « « . G=33
Figure G-k Access Relationships . « . « + ¢ « « o ¢« v v « o « o« « « + « G=36
Figure G=5 Access Relationships « « « ¢« ¢« ¢« v ¢« ¢ o ¢ « « « . G=37
Figure G-6 Mandatory Access Labeling . « « « « o « &+ « « « o« « + « « . G=l0O
Figure G-1lA A Directed Graph . . +« . « ¢ o o ¢« o o « « o o o « = + « « + G-83
Figure G-2A An Adjacency List Representation of a Directed Graph G-8i4
Figure G-3A A Node Model Example . + « + « « o o o o« o s+ o o o o « « « o« G=86
Figure G-UA A Representation of the Node Model Example G-87
Figure G-5A A Representation Using an Access Control Table (=90

iv

Table G-1
Table G-2

Table G-3

Lo S Sk O S A Ar Ll Gl g g e - a o g S el gt int g

L1GT OF 'PARLICS

Account and Quota Attributes+ . . .
GRANT attribute BNF . . . ¢ ¢ & ¢ ¢ ¢ ¢ o o o o o &

Predefined Access Rights « ¢ ¢ ¢« ¢« + ¢« & &

T rTwrerTvTeY W

L 2L Sl a4

N
h
L.
>
\
.
o
.
]

2R 2 _J

* abaut ol s

SFCTION 1
PROJECT TECHNICAL SUMMARY

1.1 Introduction

This report is the second in a series of annual technical reports
to be published by the Evaluation and Validation (E&V) Team. The
purpose of the E&V Public Report is to provide an overview of the many
technical accomplishments of the E&V Team durina the preceding fiscal
year. This second report contains information resulting from E&V
activities during fiscal year 1985 (Cctober 1984 - September 1985) which
is being made available for public review and comment. Contents of this
report reflect an observation of the E&V Team progress during the fiscal
year and should not be viewed as final representations of the technoloay
being developed.

1.2 BRackground

In June 1983 the Ada Joint Program Office (AJPO) proposed the
formation of the E&V Task and a tri-service E&V Team, with the Air Force
designated as lead service. The purpose of the E&V Task is to develop
the techniques and tools which will provide a capability to perform
assessment of Ada Programming Support Environments (APSEs) and to
determine conformance of APSEs to the Common APSF Interface Set (CAIS).
As the E&V technology is developed, it will be made available to the
community for use by DoD components, industry, and academia as deemed
appropriate by the respective organizations. In QOctober 1983, the Air
Force officially accepted responsibility as lead service and designated
the Air Force Wright Aeronautical Laboratories (AFWAL) at Wright-Patterson
Air Force Base as lead organization. By November 1983, a comprehensive
E&V Plan was developed, and by December 1983 an E&V Team had been
established, with the first meeting held at Wright-Patterson Air Force
BRase. In April 1984, an E&V Workshop was held at Airlie, Virginia. The
purpose of the Workshop was to solicit the participation of industry
representatives in the E&V Task. Many of the participants in the E&V
Workshop have chosen to remain involved in the E&V Task as Distinguished
Reviewers, and have contributed significantly to the accomplishments of
the E&V Team.

1.3 E&V Meetinags

E&V Team meetings are held on a guarterly basis. The 5-7 December
1984, 5-7 June 1985, and 4-6 September 1985 meetings were held at the
Wright-Patterson Air Force Base. The 6-8 March 1985 meeting was held in
San Niego, California. The F&YV Workshop was not held in 1985 due to the
low response to the call for papers. As a substitute, the E&V Team
hosted a Birds of a Feather session at the February 1986 SIGAda meeting
in Los Angeles, California. Communication among F&V Team members
throughout the year is accomplished primarily via the MILNET,

v s 2 4P

1.4 E&V Team Organization

1.5

The E&V Team is organized into the following four working groups:
a. Requirements Working Group (REQWG)

The REQWG is responsible for reviewing life-cycle methodology
materials to determine life-cycle issues which should be addressed
by the E&V Team; developing an E&V Requirements Document; providing
analysis of E&V requirements to determine completeness,
traceability, testability, consistency, and feasibility;
identifying issues which may impact the development of E&V
technology but which do net necessarily correlate to APSE
components; and providing recommendations for development/
acquisition of E&V tools/aids.

b. Ccordination Working Group (COORDWG)

The COORDWG is responsible for performing a literature search for
efforts relevant to the E&V Task; developing a Technical
Coordination Strategy Document which documents the relationship of
these efforts to the E&V Task; and preofiding technical
presentations to the E&V Team on these related efforts. They are
also responsible for identifying professional organizations which
are technically related to the E&V Task; developing a Public
Coordination Strategy Document; preparing E&V Status Reports; and
developing and maintaining an F&V project reference list.

c. APSE Working Group (APSEWG)

The APSEWG is responsible for providing expertise on DoD and
commercial APSEs available within the DoD; preoviding presentations
to the E&V Team on these APSEs; identifying existing capabilities/
tests/tools associated with each APSE; and developing a Dol APSE
Analysis Document.

d. Standards Evaluation and Validation Working Group (SEVHG)

The SEVWG is responsible for providing a forum for the development
of methodologies for evaluating and validating current, proposed or
future standards relating to APSEs; identifying issues affecting
the evaluation or validation of standards; suggestinc vaiidation
approaches or evaluation criteria; providing inputs to any
supported efforts developing evaluators or validators for
standards: and developing an APSF Validation Procedures Document
and a CAIS Analysis Document.

Conclusion

This E&V Public Report is being made available by the E&V Team in

order to solicit comments from those individuals who are not actively

involved in the E&V Task. A1l comments should be addressed to:

Raymond Szymanski

AFWAL /AAAF
Wright-Patterson AFB, Ohio 45433-6%543
(RSZYMANSKI@ADA20)
1-2
R N RS SRS R

?
[a " a 2 52 BER & F P £ 8 S SR N B P —

LI e b g

APPENDIX A

EVALUATION and VALIDATION
TECHNICAL COORDINATION STRATEGY DOCUMENT
VERSION 2.0

29 AUGUST 1985

s Ty "e v v

AP LA Sk S Sl i e i AR AR ARSI

Erevutive Sumuary

The purpose of the Evaluation and Validation (E&V) Task, which is sponsored bv
the Ada Joint Program Office (AJPO), is to develop the technology Dby which
Ada Programming Support Environments (APSEs) will be evaluated and validated.
As the E&V technology is developed, it will be made available to the user
community for implementation by DoD components, industry, an academia as
appropriate, The purpose of this document is to provide lines of communication
between the E&V Task and other technically related DoD and industry efforts .
and organizations. With respect to identifying and interfacing with other
efforts/organizations, the following areas have been addressed : 1) the name
of the technically related effort/organization; 2) purpose; 3) relationship to ‘
the ESV Task; 4) benefits to the E&V Task; 5) benefits to the related effort
or organjzation; 6) impact on E&V Task schedules; 7) impact on related effort
!I or organization task schedule; 8) required level of coordination;
9) resolution of issues; and 10) focal point. .~ S

»; :
I=.
.
.)
Bl

—

-

I

e Tt AT et T e N e e e e T T e
DN RGN P TR RL P SO

-

» T WSO TwL W
PRl I A

Y L e L e R A R R R e S T VI W I N VT U T % N W TV T

-

Tabie of Contents

I. INTRODUCTION A=t
l.1 Objective of the Technical Coordination Strategy Document A=
1.2 Background A-E
2. SCOPE s
3. APPROACH A=10
3.1 Invited Briefings A=20
3.2 Technical Coordination Statements/COORDWG Briefings A-1
4. IDENTIFICATION/ELABORATION OF RELATED TECHNICAL EFFORTS A-11
4.1 Ada C31 Test and Evaluation A-11
4.1.1 Purpose A-21
4.1.2 Relationship to the E&V Task A-11
4.1.3 Benefits to the E&V Task A-11
4.1.4 Benefits to the Related Effort/Organization A-11
4.1.5 Impact on E&V Task Schedules A-11
4.1.6 Impact on Related Effort/Organization Schedules A-12
4.1.7 Required Level of Coordination A-12
4.1.8 Resolution of Issues A-10
4.1.9 Focal Point A-1C
4.2 Ada Integrated Environment A=12
4.2.]1 Purpose h=12
4.2.2 Relationship to the E&V Task A=L3
4.2.3 Benefi*- to the E&V Task A-13
4.2.4 Benefits to the Related Effort/Organization A=13
4,2.5 Impact on E&V Task Schedules f=1.3
4.2.6 Impact on Related Effort/Organization Schedules A=13
4.2.7 Required Level of Coordination A-12
4.2.8 Resolution of Issues A=ll
4.2.9 Focal Point A=lk
4.3 Ada Joint Program Office fim e
4.3.1 Purpose A=lh
4.3.2 Relationship to the E&V Task Amln
4.3.3 Benefits to the E&V Task A-l4
4.3.4 Benefits to the Related Effort/Organization A=l%
4,3.5 Impact on E&V Task Schedules A=lD
4.3.6 Impact on Related Effort/Organization Schedules A=iD
4.3.7 Required Level of Coordination A=15
4.3.8 Resolution of Issues A=15
4.3.9 Focal Point A—l;
4.4 Ada Language Systenm A-16
4.4,]1 Purpose fi=16
4.4.2 Relationship to the E&V Task A=1b
4.4.3 Bencfits to the E&V Task A-lu
4.4.4 Benefits to the Related Effort/Organization A=ln
4.4.5 lmpact on E&V Task Schedules A-lv

e g Aadh Bd Baf Bl Sk Tant A ‘Sdl Malh i . WLTWEEWR e e A N W dhiie b b g Ria e e hie A i A e - o g

|
)
; 4.4.6 lmpact on Related Effort/Organizarion Scheduies A=26
i 4.4,7 Required Level of Coordination A=l
L 4.4.8 Resolution of Issues A=17
| 4.4.9 Focal Point A-1T
V 4,5 Ada Program Design Language Evaluation Guidelines A=17
4.5.1 Purpose A=2T
E 4.5.2 Relationship to the E&V Task A=l
4.5.3 Benefits to the E&V Task A=l
4.5.4 Benefits to the Related Effort/Organization L=l
‘ 4.5.5 Impact on E&V Task Schedules Tl ‘
’ 4.5.6 lmpact on Related Effort/Organization Schedules el
. 4.5.7 Required Level of Coordination Aol
r 4.5.8 Resolution of Issues A-2
X 4.5.9 Focal Point =l
R 4.6 Ada Test and Verification System -l
i 4.6.1 Purpose F-15
. 4.6.2 Relationship to the E&V Task A=15
. 4.6.3 Benefits to the E&V Task A=19
N 4.6.4 Benefits to the Related Effort/Organization A=C0
, 4.6.5 Impact on E&V Task Schedules A=ZU
4.6.6 Impact on Related Effort/Organization Schedules A=20
4.6.7 Required Level of Coordination A=C0
r 4.6.8 Resolution of Issues A=20
b 4.6.9 Focal Point A-cC
4.7 Ada Validation Organization A=C1
4.7.1 Purpose A=2D
4.7.2 Relationship to the E&V Task A-Cl
4.7.3 Benefits to the E&V Task h-2l
4.7.4 Benefits to the Related Effort/Organization A=22 i
4.7.5 Impact on E&V Task Schedules A=l
4.7.6 Impact on Related Effort/Organization Schedules 5':}
4.7.7 Required Level of Coordination 2:
4.7.8 Resolution of Issues
4.7.9 Focal Point -
4.8 Air Force Computer Resource Management Technology nTe
4.8.1 Purpose nTes
4.8.2 Relationship to the E&V Task nTes
4.8.3 Benefits to the E&V Task N
4.8.4 Benefits to the Related Effort/Organization Amoo
4.8.5 Impact on E&V Task Schedules T2
4.8.6 Impact on Related Effort/Organization Schedules nTes
4.8.7 Required Level of Coordination A
4.8.8 Resolution of Issues A
4.8.9 Focal Point nmes
4.9 Common Ada Missile Packages ?‘*?
4.9.1 Purpose j‘:f '
4.9.2 Relationship to the E&V Task Az
4.9,.3 Benefits to the E&V Task nel
4.9.4 Benefits to the Related Effort/Organization A=
4.9.5 lmpact on E&V Task Schedules “';j
4.9.6 Impact on Related Effort/Organization Schedules 5'::
4.9.7 Required Level of Coordination =200 ’ﬁ
.
%
A=L “;"
o
=
-
-\'

1y A WA

> "‘ R

4'12

4.13

T A T L B L T
" O LG SRR C PR YR U, 8. P PTG VLR PP P P

4.9.0 kesolution of lssucs A-25
4.9.9 Focal Point A-25
Johnson Space Center Ada Project A-26
4.10.1 Purpose A-26
4,10.2 Relationship to the E&V Task A-26
4.10.3 Benefits to the E&V Task A-26
4.10.4 Benefits to the Related Effort/Organization A-26
4.10.5 lmpact on E&V Task Schedules A=27
4.10.6 Impact on Related Effort/Organization Schedules A-27
4.10.7 Required Level of Coordination A-27
4.10.8 Resolution of Issues A-27
4.10.9 Focal Point A-27
KAPSE Interface Team/KAPSE Interface Team from Industry and Academia A-25
4.11.1 Purpose A-28
4.11.2 Relationship to the E&V Task A-28
4.11.3 Benefits to the E&V Task A-26
4.11.4 Benefits to the Related Effort/Organization A-28
4.11.5 lmpact on E&V Task Schedules A-29
4.11.6 1mpact on Related Effort/Organization Schedules A=29
4.11.7 Required Level of Coordination A-29
4.11.8 Resolution of Issues h=29
4.11.9 Focal Point A-30
Prototype Advanced Ada Programming Support Environment A=30
4.12.1 Purpose A-30
4.12.2 Relationship to the E&V Task A-30
4.12.3 Benefits to the E&V Task A~30
4.12.4 Benefits to the Related Effort/Organization A-30
4.12.5 lmpact on E&V Task Schedules A-31
4,12.6 Impact on Related Effort/Organization Schedules A=31
4.12.7 Required Level of Coordination A=31
4.12.8 Resolution of Issues A=51
4.12.9 Focal Point A=31
Software Engineering Automation for Tactical Embedded Computer Systems A~37
4.13.1 Purpose A=30
4.13.2 Relationship to the E&V Task h~32
4.13.3 Benefits to the E&V Task A~3c
4.13.4 Benefits to the Related Effort/Organization A-32
4.13.5 Impact on E&V Task Schedules A-32
4.13.6 Impact on Related Effort/Organization Schedules A~32
4.13.7 Required Level of Coordination A-33
4.13.8 Resolution of Issues A-33
4.13.9 Focal Point A-33
STARS - Application Thrust Area A=33
4.14.1 Purpose A-33
4,14.2 Relationship to the E&V Task A-3kL
4.14.3 Benefits to the E&V Task A~3k
4.14.4 Benefits to the Related Effort/Organization A‘éh
4,14.5 Impact on E&V Task Schedules A-3k
4.14.6 Impact on Related Effort/Organization Schedules A~3k
4,14.7 Required Level of Coordination A‘?P
4.14.8 Resolution of Issues A-3s
4,14.9 Focal Point A~35

A-5
.‘_"--‘~ .-._.-..':‘..:._-.*w N e e e e e "‘._. _______________
. SatatiatanatenlatataYas Cadas

.......

‘-\'-\

A"i"lL“ "l'-ﬁ' ".!'.x (.u:h'--:'; s

4.15

4.16

4.18

4.19

4.20

STARS - Business Practices Thrust Area

4.15.1 Purpose

4.15.2 Relationship to the E&V Task

4.15.3 Benefits to the E&V Task

4.15.4 Benefits to the Related Effort/Organization
4.15.5 lmpact on E&V Task Schedules

4.15.6 lmpact on Related Effort/Organization Schedules
4.15.7 Required lLevel of Coordination

4.15.8 Resolution of Issues

4.15.9 Focal Point

STARS -~ Human Resources Thrust Area

4.16.1 Purpose

4.16.2 Relationship to the E&V Task

4.16.3 Benefits to the E&V Task

4.16.4 Benefits to the Related Effort/Organization
4.16.5 lmpact on E&V Task Schedules

4.16.6 Impact on Related Effort/Organization Schedules
4.16.7 Required Level of Coordination

4.16.8 Resolution of Issues

4,16.9 Focal Point

STARS - Measurement Thrust Area

4.17.1 Purpose

4.17.2 Relationship to the E&V Task

4.17.3 Benefits to the E§V Task

4.17.4 Benefits to the Related Effort/Organization
4.17.5 Impact on E&V Task Schedules

4.17.6 Impact on Related Effort/Organization Schedules
4.17.7 Required Level of Coordination

4.17.8 Resolution of Issues

4.17.9 Focal Point

STARS -~ Methodology Thrust Area

4.18.1 Purpose

4.18.2 Relationship to the E&V Task

4.18.3 Benefits to the E&V Task

4.18.4 Benefits to the Related Effort/Organization
4.18.5 Impact on E&V Task Schedules

4.18.6 Impact on Related Effort/Organization Schedules
4.18.7 Required level of Coordination

4.18.8 Resolution of Issues

4.18.9 Focal Point

STARS ~ Software Engineering Enviromment Thrust Area
4.19.1 Purpose

4.19.2 Relationship to the E&V Task

4.19.3 Benefits to the E&V Task

4.19.4 Benefits to the Related Effort/Organization
4,19.5 1mpact on E&V Task Schedules

4.19.6 Impact on Related Effort/Organization Schedules
4.19.7 Required Level of Coordination

4.19.8 Resolution of 1ssues

4.19.9 Focal Point

STEP

4.20.]1 Purpose

RS- AU B U

=35
£=35
A=35
A-36
A-36
A-36
A=30
A-36
A-36
A-36
A=3T7
A=37
A-3T
A-3T
A-38
A-36
A-38
A-38
A-38
A-38
A-39
A~39
A-39
A-3G
A-39
A-39
A-LO
A-U0
A-LO
A-LO
A-LO
A-LD
A-L1
A-41
A-L1
A-L1
A-41
A-L2Y
A-L1
A-L2
."\--h 2
A-L2
A-L2
A-L3
A-43
A-L3
A-L3
A-k3
A-LY
A-Ll
A-LL
A—bh

Lt b ol

CRER BN Ba B

vy vy

OOV Wt

.
o

.
NONRNNONRODNONNY VNN

4.2]1 Tactica

X NN WN -

P X W NN RPN I R R R

Pt Gut Pt Pt Gt Pt et s

6.21.

naationship to the E&YV Tase

Benefits to the E&V Task

Benefits to the Related Effort/Organization
lmpact on E&V Task Schedules

lmpact on Related Effort/Organization Schedules
Required Level of Coordination

Resolution of Issues

Focal Point

1 Ada Guidance

Purpose

Relationship to the E&V Task

Benefits to the E&V Task

Benefits to the Related Effort/Organization
Impact on E&V Task Schedules

Impact on Related Effort/Organization Schedules
Required Level of Coordination

Resolution of Issues

Focal Point

4.22 Virginia Polytechnic Institute APSE Validation Effort

4.22.1

* o o e o
[AS BN SN S BN SN SR N)
" o e

n.

WWwWwwuwwwwwwaoahrproe N
L]
WOV W= WUMWOONSNOUVE

4.23

2

« e o @
NNNNODNNNNDNDN
e o o o

N N N S I N A N N N N
L[] . L]
L] []

I. Appendix

1.1 Acronyms

Purpose

Relationship to the E&V Task

Benefits to the E&V Task

Benefits to the Related Effort/Organization
Impact on E&V Task Schedules

Impact on Related Effort/Organization Schedules
Required Level of Coordination

Resolution of Issues

Focal Point

Information System

Purpose

Relationship to the E&V Task

Benefits to the E&V Task

Benefits to the Related Effort/Organization
Impact on E&V Task Schedules

Impact on Related Effort/Organization Schedules
Required Level of Coordination

Resolution of Issues

Focal Point

A

II. Appendix B

I1.1 COORDWG Members

1I11. Appendi

x C

111.1 Related Technical Efforts Matrix

QF hab. ¢

A-L5
A-LS
A-L5
A-L5
A-L6
A-LE
A-U6
A-L6
A=LT
A-LT
A-LT
A-4T
A-47
A-LT
A=UT
A=LE
A-L8
A-L8
A-LE
A-LE
A-L9
A-49
A-L9
A-L9
A-Lg
A-50
A-50
A-50
A-51
A-51
A-51
A-51
A-51
A-51
A-52
A-52
A=52
A-52

T A

v oy w_ e o

v ..

1. INTRODUCTION

1.1 Objective of the Technical Coordination Strategy Document

The objective of the Technical Coordination Strategy Document (TCSD) is ro
provide a mechenism whereby both Department of Defense (DoD) and contractor
technical efforts/organizations which are potentially related to the Evaluation
and Validation (E&V) of Ada Programming Support Environments (APSEs) Task, may
be 1identified. Specifically, the TCSD will identify : a) related technical
efforts; b) relationships between the E&V Task and each related effort; c) areas
of mutual benefit; d) impact of schedules; e) the level of coordination required
between the E&V Task and each related effort; and f) 1issues which require
resolution with respect to the mutual benefit of both the E&V Task and the
particular related effort involved.

1.2 Background

The purpose of the E&V Task, which is sponsored by the Ada Joint Program
Office (AJPO), is to develop the technology by which APSEs will be evaluated and
validated. The term "evaluation”™ represents a qualitative assessment of an APSE
component for which no objective standard exists. The term “"validation”
represents a quantitative measurement of an APSE component for which both a
standard and metrics exist. Techniques and tools will be developed which wiil
provide a capability to perform assessment of APSEs and to determine conformance
of APSFs to the Common APSE Interface Set (CAIS), which is being developed bv
the Keinel Ada Programming Support Environment (KAPSE) Interface Team (KIT) and
their companion organization, the KAPSE Interface Team from Industry and
Academia (KITIA).

As the E&V technology 1is developed, it will be made available to the user

comnunity for implementation by the DoD components, industry, and academia as
appropriate.

s e e 8 € M8

aatatata A S

s a a & A

W N N e e

PG

L B SN A S Sl Tl Sl S S B R P N P R S A T - (I AR R

2. SJuri

The overall goal of the TCSD is to establish lines of communication betw -

the E&V Task and other related DoD and industry efforts/organizations. 1t
essential to the success and effectiveness of the E&V Task as a whole ¢
coordinate with other related efforts. This type of coordination as -

communication will keep other organizations and efforts abreast of the E&V Tac.
and its resulting technology and will identify those areas of evaluation an:
validation which are of mutual benefit.

During the December 1984 E&V Team meeting, the decision was made to combine
two of the five working groups, specifically, the Public Coordination Workin;
Group (PUBWG) and the Technical Coordination Working Group (TECWG). This
combination resulted in the establishment of the Coordination Working Groo:
(COORDWG), whose scope encompasses both communicating/interfacing with the
public in terms of disseminating E&V information, as well ac
establishing/maintaining a technical interface between the E&V Task and other
technically related efforts. It is the responsibility of the COURDWG to : 1
develop the TCSD; 2) provide technical presentations to the E&V Team on related
technical efforts identified; and 3) provide position papers throughour the
duration of the E&V Task which address particular aspects of the E&V Task with
related tasks/efforts. The COORDWG 1s responsible for both providing and
updating the status of these technically related efforts to the Team, as well acs
enhancing this document in future revisfons with the identification of
additional tasks/efforts and updated information on currently identified
efforts. In addition to these tasks, the COORDWG is responsible for tne
information contained in the Public Coordination Strategy Document.

This version of the TCSD was developed by combining the various Technical
Coordination Statements which were prepared by members of the E&V Tean, who are
presently involved or associated with the identified task/effort. The followin:

represents the Technical Coordination Statement template used by each EaVv Tea-
member

1. Name of the technically related effort
2. Purpose

3. Relationship to the E&V Task
4. Benefits to the E&V Task
5. Benefits to the related effort/organization
6. Impact on E&V Task schedules
7. 1mpact on related effort/organization schedules
8. Required level of coordination
9. Resolution of issues
10. Focal point

A-9

S T Ry S - Ny LMt e et L. T T e e et St e e e
o f.-..'(.'w' -'.\'-.w'.-f_v', o e Tt . e ’-{v_,-"'l IRIIRTIA AT 3) LS N N e %,

o B ¥ v v v -

« 2 V. 9 &

PRI

S« AV 0ATH

Currently, two primary mcthods to establish and promote coordination bitw -
the E&V Task and other related technical efforts/organizatrions have buee:
identified and are outlined below.

3.1 Invited Briefings

Invitations will be extended to particular individuals to attend the quarterlvw
E&V Team meetings as appropriate, for the purpose of briefing specific relatec
efforts. These briefings will provide interactive communication and dialogue
between the E&V Team members and the particular briefer with respect to exchange
of technical information.

3.2 Technical Coordination Statements/COORDWG Briefings

Technical Coordination Statements will be used in conjunction with the method
indicated in paragraph 3.1. The purpose of these statements i{s to {identify a
related effort (or organization), and elaborate upon various aspects of this
relationship. Currently, ten specific relational aspects are identified on the

Technical Coordination Statement, as {ndicated above.
In addition, the COORDWG Chairperson (or Vice-Chairperson) will update the E&"

Team on the status of various related technical efforts at the quarterly E&%
veetings. These briefings will adhere to the following format :

NAME OF RELATED EFFORT/ORGANIZATION
PROGRAM MANAGER (ADDRESS/PHONE)

PROGRESS STATEMENT (SIGNIFICANT EVENTS/MILESTONES) SINCE LAST UPDATE

DATE

4. IDENTIFiCATION/ELABORATION OF RELATED TECHNICAL ErPORTS

The following technical efforts/organizations have been identified as bhcins
related to the E&V Task and are elaborated in the following paragraphs.

4.1 Ada C3I Test and Evaluation

4.1.1 Purpose

The purpose of this effort is to test and evaluate the effectiveness of using
an integrated Ada programming environment in an Air Force command, control,
communication and intelligence (C31) system software development project. Areas
to be evaluated include the use of Ada as a programming design languape,
documentation, the quality and quantity of the code produced, and compiler
performance and productivity. 1In order to determine the effectiveness of Ada,
the software for a selected Air Force system acquisition will be implemented in
Ada as a parallel effort.

4.1.2 Relationship to the E&V Task

The results of this effort will be a technical report describing the results
of the test and evaluation. The results of this effort may aid in the
development of requirements and criteria for the evaluation and validation of
APSEs.
4.1.3 Benefits to the E&V Task

The information gained as a result of this effort may assist the E&4V Tasw in
the development of APSE evaluation and validation requirements and criteria.
4.1.4 Benefits to the Related Effort/Organization

Any requirements and criteria for the evaluation of compilers developed before

this contract is awarded will afd in the evaluation of the Ada 1Integrated
Environment (AIE) Ada compiler.

4.1.5 Impact opn B&V Task Schedules

No schedule impacts are currently identified.

A-11

I L S L W Tt S
i'- . -.r’*" '.\ u ~fl. AW

. N . TG T S R SR N T T D I VI R I T IO "t et
DTSN NS o e N L AN o N e

’.o ek GRS

Py b s s el

¢

"G “on i "ty 3

-

ASCHEREREGE

“.1.6 lmpact on Related Effort/Organization Schedules

No schedule impacts are currently identified.

4.1.7 Required Level of Coordination

At present, Elizabeth Kean is an active member of the E&V Team and will assist
in the coordination of this effort and the E&V Task.

4.1.8 Resolution of Issues

Issues identified within the E&V Task will be handled within the E&V Tasr.
Issues identified within the Ada C31 Test and Evaluation effort will be resolve?
through the Rome Air Development Center (RADC) chain of command, up to ant
including the AJPO.

4.1.9 Focal Point

The focal point is indicated below :

Elizabeth Kean
Rome Air Development Center
Commercial : (315) 330-4325

Autovon : 587-4325

4.2 Ada Integrated Enviromment

4.2.1 Purpose

The purpose of this Air Force-directed effort is to design and develop &
Minimal Ada Programming Support Environment (MAPSE) including a state-of-tne-ar:
Ada compiler. The Ada compiler will be developed for rehosting and retargeting
to a number of computers. The MAPSE will also consist of software tools an?
aids to assist programmers and project managers in the development of Ads
software. Procedures for rehosting/retargeting the compiler and the MAPSE will
be developed under this effort.

A-12

.;\' .' el A

R T N TR TS AT S R T S T I IR I T LA SR SRR TR S I iy S0 A SR e
B JAUING LT AU S AN AT AEAE A P RAE
A4 ,\.(S.".\{.‘s’.’-.:‘. I Ny S T T AN -_.\,.'!433\.'.-_.‘.'_.'.\..'&. P_:P“P:n e 0yt T g QY l‘:‘i" A SSICAIC

4.2.2 Keiatioushi; to the LoV Task

The product of this effort, a MAPSE, may eventually be evaluated and vaiisated
using the requirements and criteria developed under the E&V Task.
4.2.3 Benefits to the E&V Task

The AIE is the Air Force's implementation of a MAPSE. The AIE can be used as

an aid {n determining the requirements and criteria for evaluating and
validating future APSEs.

4.2.4 Benefits to the Related Effort/Organization

The E&V technology developed under the E&V Task will aid in the assessment of
future software tools to be incorporated in the AIE. The CAIS will eventually
be implemented on the AIE. The CAIS and the CAIS validation capabiliry will
provide standardization of interfaces and a method for validating the
implemented interfaces.

4.2.5 Impact on E&V Task Schedules

No schedule impacts are currently identified.

4.2.6 Impact on Related Effort/Organization Schedule

The CAIS will eventually be implemented on the AIE, therefore, the CAIS
validation schedule may impact the AIE effort.
4.2.7 Required Level of Coordination

At present, Elizabeth Kean is an active member of the E&V Team and a technical
evaluator on the AIE effort and will p.ovide coordination between this effort
and the E&V Task.
4.2.8 Resolution of Issues

Issues 1dentified within the E&V Task will be handled within the E&V Task.

Issues identified within the AIE effort will be resolved through the Rome ir
Development Center (RADC) chain of command, up to and including the AJPO.

A-13

.................

\mmm) 'dk&.@“}d&hkm‘&:fi -jd')-.:'; S ACRA SRS - YAy -“ ')" o e 0 Nt

Lw e 20 e 3 e A it d Sld-ad S a il i S iur S oty MR W T‘..'.'?'." Dt o T'.’_

4.2.9 Focal Point

The focal point is indicated below :

Donald Mark
Rome Air Development Center
Commercial : (315) 330-3398

Autovon : 587-3398

4.3 Ada Joint Program Office

4.3.1 Purpose

The purpose of the AJPO, which was established on 12 December 1980 by the
Under Secretary of Defense for Research and Engineering, is to manage the DoD's
effort to implement, introduce and provide life-cycle support for Ada. The AJP.
must ensure the implementation and maintenance of Ada as a consistent,
unambiguous standard recognized by the DoD and also by the widest possible

community. The AJPO must ensure the smooth introduction and acceptance of Ace
in the DoD as early as possible, consistent with the needs of individuz.
components. The AJPO must ensure the provision of life-cycle support for Ale

through the development of a robust Ada Programming Support Enviromment (APSE,
to improve productivity both in development and in continued evolution.
4.3.2 Relationship to the E&V Task

The AJPO 1is the sponsor of the E&V Task. The status of the E&V Task is
briefed to the AJPO at the quarterly Tri-Service review meetings.

4.3.3 Benefits to the E&V Task

The AJPO oversees all of the E&V Task activities and provides manageria.
direction and funding to the E&V Task as necessary.

TN TN W

- g, gy e T ¥ ¥V ¥ e W v 5 % 7T v

U W a & § 3 F

v b FEERIN SR TN ST 8T ST TE e N

'*-'..-’ ~'.' .\"'.;’...'-;_',‘.\‘_'_‘..\' RTS AL YU e '4’-‘4'-‘-‘ N S '-‘ Ve ""’.'

[gl 9

4.3.4 Benefits to the Relatel Effort/Organization
The development of the E&V technology by the E&V Task supports the Air

objective of improving the productivity in deveiopment and continued cvolutic..
of APSEs.

4.3.5 Impuct on E&V Task Schedules

No schedule impacts are currently identified.

4.3.6 Impact on Related Effort/Organization Schedules

No schedule impacts are currently identified.

4.3.7 Required Level of Coordination

The AJPO focal point (LCDR Philip Myers) attends E&V Team meetings and is on
the distribution list for all E&V Team MILNET communication. In addition, the
E&V Team Chairperson (Raymond Szymanski) is required to brief the AJPO on the
status of the E&V Task at quarterly Ada Tri-Service Reviews.
4.3.8 Resolution of Issues

All such issues should be brought to the attention of the AJPO by the ZiV Tea-

Chairperson. The AJPO has final authority in the resolution of such issues,

4.3.9 Focal Point

The focal point is indicated below :

LCDR Philip Myers

Ada Joint Program Office
1211 South Fern St

RM C107

Arlington, VA 22202
Commercial : (202) 694-0208
Autovon : 224-0208

MILNET : MYERSR?ECLB

A-15

OANSOR) . Lo . L LS SRS R \-.‘- B --..5-_‘.

..:‘... R ‘...".&" o _,

-t

Pl SRR -

4.4 Ada language System

&.4.1 Purpose

The Ada Language System (ALS) is under the direction of the U.S. Army. Tre
purpose of this effort is to develop an APSE on the VAX/VMS 11/780 with &
MIL-STD-1815A host compiler targeted to the VAX. Other targets include tne
Military Computer Family (MCF) Nebula instruction set architecture (ISA), anc
the Intel 8086.

cuv.e,

4.4.2 Relationship to the E&V Task

The technology developed through the E&V Task can be applied to the ALS
development.

4.4.3 Benefits to the E&V Task

The ALS represents the Army's implementation of an APSE. The ALS can be use?
as an example in determining the criteria for performing evaluation and
validation on future APSEs.

4.4.4 Benefits to the Related Effort/Organization
The technology which is developed by the E&V Team will provide input to the

development of the ALS. Also, the CAIS, which is currently being developed b~
the KIT/KITIA, will be used with the ALS at a future time.

4.4.5 Impact on E&V Task Schedules

No schedule impacts are currently fdentified.

4.4.6 Impact on Related Bffort/Organization Schedules

No schedule impacts are currently identified.

A-16

» " . - - C e " - T R - L | . - v = E L - - L .« " s " . a " - = - R T S S ST - = " Q@ & --..
e T e e e T R N ST T O SR S AT VOO S R

I I A

[T |

4.4.7 Required Level oi Coordination

Coordination will be with the Army's ALS maintenance personnel. 1In additior,
Mr James Williamson is currently participating as the Air Force represcatative
on the Tri-Service ALS testing team.
4.4.8 Resolution of Issues

All such issues should be brought to the attention of the AJPO by the E&V Teax
Chairperson. The AJPO shall be responsible for informing the appropriate Army
personnel and seeking resolution of these issues.

4.4.9 Focal Point

The focal point is indicated below :

Dennis Turner

DRSEL-TCS-Ada

U.S. Army/CECOM, Ft. Monmouth, New Jersey 07703
Commercial : (210) 544-4149

Autovon : 995-4149

4.5 Ada Program Design Language Evaluation Guidelines

4.5.1 Purpose

As part of a general plan to use the best available technology for software
development and maintenance, the Facilities Engineering and Systems Development
(FESD) branch of Transport Canada requires contractors to use an Ada prograc
design language (PDL). The Ada PDL evaluation guidelines will be used bv
project managers to assess the compliance of software development proposais with
the requirement to use an Ada PDL. The Ada PDL evaluation guidelines are alsn
intended to provide industry with an outline of the requirements for an Ada PDL
capability relevant to the needs of Transport Canada.

A-17

S R aE o-h

I

4.5.2 Relationshiip to the Eov Task

The evaluation guidelines produced will be publically avaflable 1n carlv 1959,
The E&V Team may acquire this document at that time.
4.5.3 Benefits to the E&V Task

The Transport Canada Ada PDL evaluation guidelines will contribute to the
guidelines being prepared by the E&V Team for evaluating PDL capabilities.
4.5.4 Benefits to the Related Effort/Organization

The Transport Canada Ada PDL guidelines will be enhanced by any constructive
criticism made by the E&V Team.
4.5.5 Impact on E&V Task Schedules

No schedule impacts are currently identified.

4.5.6 Impact on Related Effort/Organization Schedules

No 1impact is anticipated. The Transport Canada Ada PDL evaluation guidelinec
will be produced as a first version early in 1985. The production of an updated
second version will depend on the feedback resulting from the first version. A
second version is not currently anticipated in the near term.

4.5.7 Required Level of Coordination

At present, Randal Leavitt is an active member of the E&V Team representing
Canadian interests and activities. He will provide any needed coordinatio-
between the E&V Team and Transport Canada.

4.5.8 Resolution of Issues
Both Transport Canada and the E&V Team will resolve issues related to Ada PDL

evaluation guidelines independently. Transport Canada is interested, however,
in any constructive criticism that the E&4&V Team members may care to offer.

A-18

el daddais ilat thnd il Nhes AL &l e dte die A% Saaby o) L . LA S ALSE ARG AL SE AR T Gk Ak of]

! 4.5.9 Focal Point

The focal point i{s indicated below :

) Randal Leatitt

PRIOR Data Sciences, Ltd.

39 Highway 7, Bell Mews Plaza

. Nepean, Ontario
. K2H 8R2
s Commercial : (613) 820-7235

MILNET : MAGLIER1@ECLB

4.6 Ada Test and Verification System

4.6.1 Purpose

The purpose of this effort is to design an Ada Test and Verification Svste~
(ATVS) which can be implemented as a set of computer-based software tools to

. improve the reliability and maintainability of Ada software systems. It is
) intended that this system will be applied during the coding, testing,
. verification, and error detection/correction phases of software developzent.
X This effort will begin with a studv to determine the most advanced techniques

and capabilities to be included in the design. The ATVS will then be designed
as an integral component of an APSE. As a minimum, the ATVS shall be designed
for use with both the Air Force's AIE and the Army's ALS.
4.6,2 Relationship to the B&V Task

The ATVS will be a portable software tool residing on an APSE. Thus, the
technology developed by the E&V Task can be applied.

4.6.3 Benefits to the E&V Task

1 If the CAIS {s available at the time of fmplementation, it will be used as the
3 interface.
é
A-19
> ',-;.,. ., -y e -;‘,_--,.‘. -..‘-’._:,.;.. e ~..'; 'b.'.\"\ ;_. - '_.‘;'.'-_. - ";*.‘- DI I .'w\." ‘-;~'.'_~.."'_..‘-_. .. ~' S e e e N e s .‘.\.\'.

X
o
"
=
W)

sfeta Tl

.
s %a v

PN

RS

«.f.4 Benefite to the Relatecd Effort/{rganization

The requirements and criteria for the evaluation and validation of APSEs ma.
result from the initial analysis study and the resulting implementation.

4.6.5 Impact on E&V Task Schedules

No schedule impacts are currently identified.

4.6.6 Impact on Related Effort/Organization Schedules

The development of the CAIS may impact the schedules of this effort.

4.6.7 Required Level of Coordination

At present, Elizabeth Kean will relay any information to and from the RaADC
focal point.

4.6.8 Resolution of 1lssues

Issues 1dentified within the E&V Task will be handled within the E&V Task.

Issues identified within the ATVS effort will be resolved through the RADC chain
of command.

4.6.9 Focal Point

The focal point is indicated below :

Richard Evans

Rome Air Development Center

Commercial : (315) 330-3398

Autovon : 587-3398

(LSRR

4.7 Adn Vaiidation Organization

4.7.1 Purpose

The Ada Validation Organization (AVO) is sponsored by the AJPU. 1Its purposc
is to ensure that developers of Ada compilers have correctly implemented the
standard Ada language (ANSI/MIL-STD-1815A-1983).

o)

4.7.2 Relationship to the E&V Task

The AVO has been responsible for the development and implemertation of an Ada
Compiler Validation Capability (ACVC) in order to deterwine conformance of Ada
compilers to the standard Ada language. The ACVC provides a capability to N
validate one particular tool within an APSE and, as such, will be 1incorporated
within the E&V technology developed by the E&V Team.

v e v _»

4.7.3 Benefits to the E&V Task

. v

The AVO has established formal procedures for validating Ada compilers and
mechanisms by which the validation procedures are executed. The expertise .
gained through the development and implementation of these procedures will be X
beneficial to the E&V Team as it begins to establish recommendations for formal
procedures for the implementation of E&V technology.

4.7.4 Benefits to the Related Effort/Organization

The E&V Task is responsible for developing evaluation capabilities, as well as
validation capabilities. The determination of evaluation criteria for the
assessment of complilers is but one of the many activities being performed by the

E&V Task. The Ada compiler evaluation capability will be of particular benefit
to the AVO.

R "2 2 2%

4.7.5 Impact on E&V Task Schedules

No schedule {mpacts are currently identified.

4.7.6 Impact on Related Effort/Organization Schedules

No schedule impacts are currently identified.

A-21

AT AR O I SR AU L P L I T I T W, - L R T A T
"’..'.'l’oJ‘- . R - e, -t .. \ - » ok . o L'd’

g Y

oAaaa,

e ' e ..‘.._ .._;‘, TR .‘_;"-. T AT T

4.7.7 Reguired Level of Coordination
At present, Capt Albert Deese of the Language Control Facility at Whais

(ASD/ADOL) is an active member of the E&V Team, and roordination will be throu,:
him.

4.7.8 Resolution of Issues

Issues of concern should be raised to the AJPO level {f necessary for
resolution.

4.7.9 Focal Point

The focal point is indicated below :

Thomas Probert

Institute for Defense Analyses
1801 N. Beauregard St.
Alexandria, Virginia 22311
Commercial : (703) 845-2517

Autovon : 289-1948 (ext. 2517)

4.8 Air Force Computer Resource Management Technology

4.8.1 Purpose

The over-all objective of the Air Force Computer Resource Managenen:
Technology Program Element (64740F) effort is to apply advances 1in computer
resoutce management technology to the development and acquisition of Air Force
and other military systems.

4.8.2 Relationship to the E&V Task

This program element (PE) supports the development and application of
techniques to increase the performance and reduce the costs of mission-critical
computer resources. It 1includes proposed programs from several Air Force
Systems Command Product Divisions to develop criteria for evaluating Ada
compilers. 1In addition, this PE includes programs which plan for and suppor:
the introduction of the Ada programming language.

NN SO
[L. 2.4

Qe e

4.8.3 Benefits to the E&V Task
Various 64740F-sponsored programs may result in evaluation criteria for Ada

compilers and other Ada tools that may be useful to the E&V Task. Alsn, new
software tools developed under 64740F may expand the APSE functionality

definition.
4.8.4 Benefits to the Related Effort/Organization

One project within the PE is concerned with software acquisition standards and
mechanisms to improve the acquisition and support of computer resources. The

E&V criteria developed by the E&V Task will directly contribute to the goal of
this project.

4.8.5 Impact on E&V Task Schedules

No schedule impacts are currently identified.

4.8.6 Impact on Related Bffort/Organization Schedules

No schedule impacts are currently identified.

4.8.7 Required Level of Coordination

At present, Debra Harto is an active member of the E&V Team and coordination
will be accomplished through her.

4.8.8 Resolution of Issues

The focal point for coordination will assist in resolving any issues that
arise which may adversely affect either effort.

4.8.9 Focal Point

The focal point is indicated below :

William Letendre

ESD/ALEE
Hanscom Air Force Base, Massachusetts 01731

Autovon : 478-5113

A-23

......

R N e e L T e Th T e e et R T LN R e L L
N A AR A AN N e Gt 2 25 T 2000 N A S It U, TG (TG, O SROAE SO S oy

2\

v e _u_ o =

[

RO =

A &

..' .‘:‘-.' o

4.9 Common Ada Missile Packages

4.9.1 Purpose

The objective of the Common Ada Missile Packages (CAMP) program is to explore
the feasibility of developing reusable software in Ada for armament
applications, and an associated parts composition system. CAMP is sponsored by
the Air Force Armament Laboratory (AFATL), the Air Force Munition and Ordnance
Program Element (64602F), the Software Technology for Adaptable Reliable Systems
(STARS) program, and the AJPO.

4.9.2 Relationship to the E&V Task
The product of this effort, APSE 1library components and associated parts

composition system, may eventually be evaluated wusing the requirements an?
criteria developed under the E&V Task.

4.9.3 Benefits to the E&V Task

The reusable software components and associated parts composition syste:z
developed under the CAMP program, will result in new technology which may expand
the requirements and criteria for evaluating future APSEs. In addition, the
common armament functions identified by the CAMP program may serve as a basis

for developing armament-specific compiler benchmarks for Ada compiler
evaluation.

4.9.4 Benefits to the Related Effort/Organization

The CAIS and CAIS Validation Capability (CVC) will provide standard interfaces
for future APSE libraries and supporting parts composition systems, such as are
being developed by the CAMP effort.

4.9.5 Impact on E&V Task Schedules

No schedule impacts are currently identified.

A-2L

e M et ottt e etaaa - G e e
I A R N L R T R G L L ¥ R Sy W S Gy, O

.
o

'#

T
RCATSERL SRS
hi

4.9.6 lunpact on Related Effort/Organization Schedules

The following E&V Task schedules may impact the schedules of the CAMP effort.

CAlS Validation Capability contract gstart - 2nd Quarter FY85

Draft CVC - lst Quarter FY86

Version 1 CVC - lst Quarter FY86

4.9.7 Required Level of Coordination
At present, Debra Harto is an active member of the E&V Team and coordination

will be accomplished through her.

4.9.8 Resolution of Issues

Issues identified related to the E&V Task will be addressed within the E&V
Task. Issues 1identified related to the CAMP program will be handled by the

AFATL CAMP Program Manager.
4.9.9 Focal Point

The focal point is indicated below :

Chris Anderson

AFATL/DLCM

Eglin Air Force Base, Florida 32542
Commercial : (904) 882-2961

Autovon : 872-2961

B e S
L]

TRV

- K . o - « } » .v _‘- "- ‘.. ..n - '.' » ..‘ * . ‘.‘ = '-. ..- '.. .‘- '.~ .~ .l ..O L] - .. .- .0 l‘A . '.~ ..-
T S G D N s L, AL AR

-, =y <y v v »

- %
LS

A

NG

[}
.

IR

S

RE

'_:"

e e g gt T T e T e e S
AT N A PO OO PO AR f O O TS

4.10 Johnson Space Center Ada Project

4.10.1 Purpose

The Johnson Space Center (JSC) Testing and Analysis of DoD Ada Languagc
Products for NASA (JSC Ada Project) effort is sponsored by National Aeronautics
and Space Administration (NASA) Headquarters. The purpose of this effort is tc
perform testing and analyses of Ada software technology products being produced
by the DoD, evaluate their applicability to future NASA projects (such as the
Space Station) and develop a plan for their implementation in future NASA flight
systems as a standard. The JSC Ada Project was established as a result of the
Memorandum of Agreement (MOA) signed in June 1983 by Dr. Edith Martin, Deputy
Under Secretary of Defense for Research and Development Technology, and Dr. Jack
Kerrebrock, NASA Associate Administrator for Aeronautics and Space Technologv.
This agreement establishes NASA/DoD cooperation in the DoD STARS Program, an?
recognizes APSE Beta Testing at the JSC and the University of Houston (at Clear
Lake City) as part of that cooperation.

4.10.2 Relationship to the E&V Task

Both tasks have a common goal of developing technology for use in evaluating
APSEs. But in addition to using technology provided by the E&V Task, the JSC
Ada Project will also develop specific evaluation criteria and tests based upo-
technology and tools used in current NASA spaceflight systems (e.g., the HAL/S
programming support system currently used as a NASA standard).

4.10.3 Benefits to the E&V Task

The JSC Ada Project will primarily focus on use of APSEs in the developzent of
prototype applications. Data and information from this activity will be used tc
develop standards and criteria later used in evaluating APSEs for NASA. This
work, in conjunction with other studies and analyses at JSC, will identify
additional APSE features and tools needed for support of NASA spaceflight
applications projects. Information provided by the JSC Ada project shoulé

assist the E&V Task 1in {ts development of standards and criteria for use i=n
evaluation of APSEs.

4.10.4 Benefits to the Related Effort/Organization

The technology developed by the E&V Task will be wutilized {in the JSC Ad:z
Project to assist in evaluating APSEs for NASA.

A-26

4.10.5 Impact on E&V Task Schedules

No schedule impacts are currently identified.

4.10.6 Impact on Related Effort/Organization Schedules

An impact to the APSE evaluation criteria may occur.

4.10.7 Required Level of Coordination

At present, Mr. Terry D. Humphrey is an active member of the L&V Team, and is
also the Steering Group Subcommittee Chairman for prototype applications
development within the JSC Ada Project.
4.10.8 Resolution of Issues

Such 1issues should initially be addressed within the respective task in which
they arise (i.e., the E&V Task or JSC Ada Project). Recommendations should then
be developed within that task to resolve such issues. The issues and associatec
recomnendations should then be presented to the other task leader. Task leaders
should work together to obtain resolution. If resolution 1s wunattainable at

that level, both task leaders should elevate the issues for review by STARS
personnel.

4.10.9 Focal Point

The focal point is indicated below :

Jack Garman
Johnson Space Center
Mail Code : FD

Houston, Texas 77058

(713) 483-4788

.................................. e e e e e e
PSR IO P T NN G SO AP

-

=, e

o - e e -
aa"2'4"

Pt

]

el

]

NN

B ARY '..Q'n.t

4.1l KAPSE Interface Tean/KAPSL Interface Teawr from Industry and Acadezia

4.11.1 Purpose

The Kernel Ada Programming Support Enviromnment (KAPSE) Interface Team (KIT) i
a Navy-~led organization sponsored by the Ada Joint Program Office (AJPU). Bot:
the KIT and its companion Industry~Academia Team (KITIA), were formed by a Miz
signed by the Assistant Secretary of each of the Services, and the Under

Secretary of Defense 1in early 1982, The KITIA consists of volunteer
representatives from 1industry and universities who provide technical expertise
to the KIT. Their purpose 1is to contribute to the achievement of

interoperability of applications databases and transportability of software
development tools ("1&T"). In order to accomplish this objective, the KIT/KITIA
is defining a Common APSE Interface Set (CAIS) to which all Ada-related toocls

can be written, thus assuring the ability to share tools and databases betweer-
conforming APSEs.

4.11.2 Relationship to the E&V Task

The CAIS is now a draft MIL-STD and is expected to become a full MIL-STD {i-n
the near future. As such, a CAIS Validation Capability (CVC) must be developec
to enable determination of conformance to the MIL-STD by APSEs which implemen:
the CAIS. One of the goals of the E&V Task is to develop the CVC.

4.11.3 Benefits to the E&V Task

In addition to the definition of the CAIS, the KIT/KITIA activities of
developing requirements and criteria, improving upon the STONEMAN definition of
an APSE, providing APSE-related terminology and definitions, examining the issu:
of determining compliance of the CAIS to the original requirements, etc., will
provide useful inputs and obviate the need for repetitive activities by the E&V
Task. In addition, E&V Tools developed in the future should be portable across
CAIS implementations.

4.11.4 Benefits to the Related Effort/Organization

The process of developing a CVC in parallel with the definition of the Call
will provide to the KIT/KITIA information related to problems encountered by the
E&V Task in understanding CAIS semantics, such as ambiguities and
inconsistencies, thus enabling the KIT/KITIA to modif the CAIS definfitiorn
accordingly. The E&V Task will also help guide the KIT/KITIA in their choice of
how to express the semantics and the specifications themselves, based upo-
experience with what can be validated best.

A-28

B O o S Ly el ey S PR et SR RY e T T T N

S ctatnctadonk

b

4.11.5 Impact on E&V Task Schedulies

The following KIT/KITIA schedules may potentially d{impact the E&V Tas:
schedules.

CAIS Draft Version 2 - January 1986

CAIS MIL-STD Version 2 - January 1987

4.11.6 Impact on Related Effort/Organization Schedules

The following E&V Task schedules may impact the schedules of the KIT/KITIA.

CVC contract start - lst Quarter of FY86
CV~ Version 1 - lst Quarter of FY87
CVC Version 2 - 4th Quarter of FY87
CVC Version 3 - 3rd Quarter of FY88

CVC Version 4 - 2nd Quarter of FY89

4.11.7 Required Level of Coordination

There are several E&V Team members who are also members of the KIT/KITIA.
Areas of common interest are coordinated through these common representatives.
The representatives are Virginia Castor, Elizabeth Kean, Timothy Lindgquist,
Patricia Oberndorf, Paul Reilly, and Guy Taylor.

4.11.8 Resolution of lssues

Issues of concern should be coordinated through the common E&V-KIT/KITIA

representatives and raised to the level of team leaders if necessary for
resolution.

L

»

A-29

i

4.11.9% Focal Point

The focal point for the KIT/KITIA {s indicated below :

Patricia Oberndorf

Naval Ocean Systems Center (NOSC)
Code 8322

San Diego, California 92152
Commercial (619) 225-6682

Autovon 933-6682

4.12 Prototype Advanced Ada Programming Support Enviromment

4.12.1 Purpose

The purpose of the Prototype Advanced Ada Prograzming Support Environmen:
(PA-APSE) project is to combine research into advanced APSE features, wit’
support for the KIT.

4,12.2 Relationship to the E&V Task

The E&V Task is concerned with developing criteria for judging the quality and

value of APSEs. The PA-APSE project investigates potential APSE features whickh

may be found to be required or desirable, and so included in the feature:
considered by E&V.

4.12.3 Benefits to the E&V Task

The PA-APSE project will identify APSE features of potential interest to the
E&V Task, and the qualities of those features which are desirable.

4.12.4 Benefits to the Related Effort/Organization

The E&V Task may identify potential APSE features which should be further
investigated by the PA-APSE project.

A-30

e e et s e R P -
B T e e e .
&.f.;‘. IS WA AN SIS S RN P

DR

-

il S il

AN

+

4.1¢.5 lmpact on E&V Task Schedules

{-
No st hedule impacts are currently identified. ?
4.12.6 Impact on Related Effort/Organization Schedules g
No schedule impacts are currently identified. E.

k
i 4.12.7 Required Level of Coordination :
Mutual information flow 1is recommended. This can be provided via the ;
communication paths already established between the KIT and the E&V Teaxz. G

‘&

4.12.8 Resolution of Issues .
Such issues should be brought to the attention of the E&V Chairperson, and the if
PA-APSE contract monitor. g
8

4.12.9 Focal Point X
The focal points are indicated below : i.

Frank Belz (Project Manager at TRW) g

TRW DSG S
One Space Park '1

R2/1127 -

Redondo Beach, California 92078 ;
Commercial : (213) 535-1623 %

Patricia Oberndorf (Contract Monitor) l

Code 8322 ff

. NOSC .
San Diego, California 92152 E:
Commercial : (619) 225-6682/7401 E

A-31

R .._'...’.._ KR -..>“_-.._"._'..~'..~ - '.Ab'..A"._“\'..'
I TN A, E W S T S

4.13 Software Engineering Automation for Tactical Exbedded Computer Systez:

4.13.1 Purpose

The Software Engineering Automation for Tactical Embedded Computer Systems
(SEATECS) project is an internal Naval Ocean Systems Center (NOSC) effort which

conducts research into enviromment construction issues. A set of Top Level
Requirements has been developed, and a proposed environment architecture will
soon be published. The project also includes an experimental environment which
is used to conduct investigations into various proposed environment features.
Although SEATECS 4s not exclusively concerned with APSEs, all of the SEATECS
work is applicable to APSEs.

4.13.2 Relationship to the E&V Task

SEATECS is involved in establishing and investigating potential environment
features. Such features could be of interest to the E&V Task. 1In addition,
SEATECS seeks to resolve various issues in environment construction which «could
be of importance to the E&V Task.

4.13.3 Benefits to the E&V Task
SEATECS will identify various aspects of environments which are important to a

potential wuser, but which are often over-looked in current approaches to
environment construction.

4.13.4 Benefits to the Related Effort/Organization

The E&V Task may identify issues which are appropriate for investigation using
the SEATECS approach.

4.13.5 Impact on E&V Task Schedules

No schedule impacts are currently identified.

4.13.6 Impact on Related Effort/Organization Schedules

No schedule impacts are currently identified.

4.13.7 Kequired Level of Coordination
Mutual information flow 1s recommended. This can be provided via the

comnmunication paths already established between NOSC and the E&V Team.

4.13.8 Resolution of Issues

Such issues should be brought to the attention of the E&V Chairperson, and the
. SEATECS project manager, Howard Harvey. The KIT Chairperson, Patricia
3 Oberndorf, will act as liaison as required.

4.13.9 Focal Point

The focal point is indicated below :

Howard Harvey

Code 8322

NOSC

San Diego, California 92152

Commercial : (619) 225-6682/7401

Y 4.14 STARS - Application Thrust Area
=
4.14.1 Purpose
1 The STARS Application Thrust Area {s three-phased 1in nature and can be

- summarized as follows : Phase 1 - Learning/Collection. Because of the need to
get some early visability, this phase aims at accelerating the use of improved
software tools and methods on DoD systems developments without «creating undue
start-up costs or schedule risks. While longer term competitive procurement
activity will be initiated 1in this phase, selective application-specific
prototyping will be initiated immediately where results and concepts can be
applied for high immediate payoff for technology transition; Phase II - Major
Development and Refinement. Some Phase 1 tasks will continue but the major
thrust is in the development contracting 1initiative begun 1in Phase 1 to

. concentrate in acquisition of component repositories and insertion of components
into system building harnesses and prototyping scenarios for a few important
application areas; and Phase 111 - Completion and Transition to Services. Some
of the basic technology work will continue but the main focus will be in

technology transition of results into services and industry.

A-33

TN T e e T T e Tt -‘.-_. L3N L
N -\‘-'-'\.N'.“\"("\'\' °

5, - - - . . r K3 - o - 7 i fandie gl i S S Al A N S St YL SNt SN Aol A ahie anbl i N il o -
“ YW . » PN L I A L Y MR S T e . v i . e T ST - -
i\~

ri 4.14.2 Relationship to the E&V Task
-,
? Like the E&V Task, the STARS Application Thrust Area is concerned wit'
e ensuring that quality software tools are acquired and/or developed, an?
implemented 1in mission critical software development efforts. Both tasks (a-
, complement each other in this respect. Further, both tasks are concerncd witr.
Y transitioning their respective technologies to the user community in a timelw
A manner
[3 []
R
%, 4.14.3 Benefits to the E&V Task
j The STARS Application Thrust Area can benefit the E&V Task .n terms of
.4 providing 1insight 1into the application of reusable software components (e.g.,
o reusable libraries), as well as providing a perspective on software componen:
2 composition, access methods, etc., and matching findings against Ade
. capabilities with respect to establishing guidelines for future developmen:
- efforts.
. 4.14.4 Benefits to the Related Effort/Organization
" The E&V Task can benefit the STARS Application Thrust Area by providing inpu-
_ into the required functionality of various software tools and resources which
o would ensure the development of quality components.
. 4.14,5 Impact on E&V Task Schedules
,é No schedule impacts are currently identified.
N
" 4.14.6 Impact on Related Effort/Organization Schedules
% No schedule impacts are currently ideutified.
N 4.14.7 Required Level of Coordination
. At present, lines of communications in terms of an E&V/STARS liaison are bein;
- investigated.
-3
. 4.14.8 Resolution of Issues)
" Once such issues are identified, they should initially be addressed within the .
) specific task 1in which the 1issue arose (i.e., E&V or STARS Application).
Y Recommendations should then be developed within that task to resolve such
W~ issues. The issues and associated recommendations should then be presented tc
» the other task leader. Task leaders should work together to obtain resolution.
, If resolution 1is unattainable at that level, both task leaders should elevarte
the issues for review by AJPO and STARS personnel.
% ;
Cd
- 1
< s
1
- A=3k 4
i |
: |
o et

4.14.9 Focal Point

The focal point is indicated below :

Robert D. Kolacki

Naval Electronic System Command
Elex 8141B NC #1

Room 5E40

Washington D.C. 20363
Commercial : (202) 692~8484

MILNET : KOLACKI@NRL

4.15 STARS - Business Practices Thrust Area

4.15.1 Purpose

The purpose of this effort is to improve the acquisition management of mission
critical computer resources by the development of acquisition practice guidance
based on past experience and by the integration and development of automated
tools to facilitate acquisition/project tracking, monitoring, estimation, and
interface with the development process. These improvements will be developed to
be consistent and compatible with the defense system acquisition structure.
Subgoals to improve business practices include : 1) identify and encourage the
use of current effective practices which have not been institutionalized; 2)
define Dbetter contracting mechanisms and 1incentives for defense systens
software; 3) develop an {integrated set of tools to facilitate software
acquisition; 4) 1incentivise reuse of software; 5) apply expert systens
technology to automate and facilitate software acquisition; and 6) interface the
software acquisition tools to the software development enviromment.

4.15.2 Relationship to the E&V Task

One of the goals of the E&V Task is to develop evaluation criteria for APSE
components with respect to the defined functionality of each tool. Since the
objective of the STARS Business Practices Thrust Area is to develop and improve
acquisition practices for mission critical computer resources, the E&V Task can
provide useful iaput in terms of determining functional adequacy of various
mission critical tools and resources which will be developed or acquired.

A-35

4.15.3 Beueflts to the E&V Task

; This effort can benefit the E&V Task by providing input in terms of projer:
tracking, monitoring, estimation, etc., with respect to potential software toul:

! and aids development efforts which may be required in order to perfor:
evaluation and validation of APSE components.

4.15.4 Benefits to the Related Effort/Organization

input with respect to determining the appropriateness of various mission
critical computer resources in terms of component functionality urior to a
particular tool/resource development acquisition.

|
\
\
|
l
’ The E&V Task can benefit the STARS Business Practices Thrust Area by providing
|
|

|
|
’ 4.15.5 Impact on E&V Task Schedules

No schedule impacts are currently identified.

4.15.6 Impact on Related Effort/Organization Schedules

No schedule impacts are currently identified.

4.15.7 Required Level of Coordination

At present, lines of communications in terms of an E&V/STARS Busines:
Practices liaison are being investigated.

4.15.8 Resolution of Issues

Once such issues are identified, they should initially be addressed within the
specific task in which the issue arose (i.e., E&V or STARS Business Practices).
Recommendations should then be developed within that task to resolve such
issues. The issues and associated recommendations should then be presented tc
the other task leader. Task leaders should work together to obtain resolution.
If resolution is unattainable at that level, both task leaders should elevate
the issues for review by AJPO and STARS personnel.

4.15.9 Focal Point

The focal point is indicated below :

Philip S. Babel

7
N
1
.\)
N
;.'
N

ASD/EN (CRFP)

}

AR

A-36

LI P N T ST S Tl T L I R I AP R T TR Tl S Sl LGP S S G P e T R P o T T e A S T PR S
G LS A N S O ___'.\\.'.'r,..r_ _.-.\. B R PO O ST

| SR J it e o il R ERA S e gt S e gl S Dt gl A Y B S b LA AL AT) A0 ' SN Rl e Rig fus e Sh Nig (i HU

Wright-Patterson AFB, OH 45433-6543
Commercial ¢ (513) 255-3656

Autovon : 785-3656

MILNET : BABELP@WPAFB-JALCF

4.16 STARS - Human Resources Thrust Area

4.16.1 Purpose

The objective of this effort is to provide the DoD by 1991 with established
3 programs in career planning, training, and education which will provide and
; maintain the personnel resources needed to satisfy the STARS's goal. To meet

this objective, the Human Resources Working Group (HRWG) recognizes the need for

concurrent implementations of efforts in research, development, and insertion.

Although the details of a Human Resources Program Plan have not been completed,
4 the HRWG has definitized specific activities required to meet the thrust area
§ objective. A wmajor task of the HRWG is to determine what is presently being
1 done in these areas and how this work can be adopted or redirected to support
the STARS's goal. i

4.16.2 Relationship to the E&V Task

One of the characteristics to be evaluated by the E&V Task is APSE usability.
One of the major concerns of the Human Resources Thrust Area is the design of
highly usable systems.

4.16.3 Benefits to the E&V Task

The Human Resources Thrust Area 1is focusing on steps that can be taken to
improve the usability of future environments, while the E&V Task is focusing on
developing the technology necessary to evaluate current and future environments.
As a consequence of the STARS work, a greater understanding of the
characteristics leading to the design of highly usable systems should be gained.
This should, in turn, support an approach to evaluating usability which is based
on an analysis of these characteristics (as compared to an approach which is
purely empirical).

...........
. .

4.lb.« beneilte te the Related Effort/Organizetion

Progress within the Human Resources Thrust Area depends on an infrea::
understanding of the characteristics leading to hiphly usable systems (includi-,
APSEs). 1t 1s anticipated that the E&V Task will lead to the «ollertion
empirical data that will be useful in identifying th. “e characteristics.

4.16.5 Impact on E&V Task Schedules

No schedule impacts are currently identiffed.

4.16.6 Impact on Related Effort/Organization Schedules

No schedule impacts are currently identified.

4.16.7 Required Level of Coordination

It 1is intended that a technical liaison be established between the E&V Tasr
and the STARS Human Resources Thrust Area in the near future.
4.16.8 Resolution of Issues

Issues should be addressed via coordination between the STARS Joint Progra-

Office and the E&V Team.

4.16.9 Focal Point

The focal point is indicated below :

Joseph Kernan
Commander
US Army Communications-Electronics Command

AMSEL~ICS-ED

Ft Monmouth, New Jersey 07703

4,17 STARS = Mcasure.unt Thrust Area

4.17.1 Purpose

This task, which 1is sponsored by the STARS program, is concerned with the
development and use of measures to support evaluations and comparisons of
software products, and of the processes associated with software development and
Support. The strategy for the Measurement Thrust Area includes establishing
success criteria for the other task areas, performing cost/benefit analyses of
various opportunities, collecting baseline data against which to measure
progress, instrumenting automated support environments for data collection, and
developing techniques for testing hypotheses and models re’ated to software
development and in-service support. Thus, this area is important not only for
improving DoD programs, but also for assessing how well the STARS program is
meeting its objectives.

4.17.2 Relationship to the E&V Task

The development of quantitative indicies to support comparision 1s key fro both
efforts. The Measurement Thrust Area of STARS 1s concerned with a broader area
than the E&V Task.

4.17.3 Benefits to the E&V Task

One concern of the Measurement Thrust Area 1s the instrumentation of automatel

enviromuents for data collection. Progress in this area will directly benefir
the E&V Task.

4.17.4 Benefits to the Related Effort/Organization

The E&V Task is confronted with many of the same {issues stemming from the
effort to measure APSE characteristics of {mportance to potential users.
Success in the E&V Task will require the development of objective, reliable
procedures for measuring these characteristics, some of which (e.g.,
“usabi{lity”) are difficult to pin down precisely. Many of the lessons learned,
and measurement procedures Tresulting from the E&V Task will have direct
relevance to the Measurement Thrust Area.

4.17.5 Impact on E&V Task Schedules

No schedule impacts are currently identified.

A=39

'''''''' ..
. .
ot

* ..-"- .. l’ I' "."..“q-'_‘.' ‘-V ...A.~ s ‘..'.‘ .
i ALV W T SEAPE AL L R P i a N AL YA o

o e

hd "l 2o 4

4.17.6 lmpact oo Related Effort/Organization Schedules

No schedule impacts are currently identified.

4.17.7 Required Level of Coordination

Plans are currently underway to establi{sh a technical liaison between the E&
Task and the STARS Measurement Thrust Area.
4.17.8 Resolution of Issues

Issues should be addressed via coordinatfon between the STARS Joint Progra-
Office and the E&V Team.

4.17.9 Focal Point

The focal point is indicated below :

Joe Cavano
RADC/COEE
Griffis AFB, New York 13441

MILNET : CAVANO@RADC-MULTICS

4.18 STARS - Methodology Thrust Area

4.18.1 Purpose

The purpose of the STARS Methodology Thrust Area is to identify (specify) a
set of methodologies from which a program manager can 1intelligently select a
methodology for wuse {in his/her project. To accomplish this objective, the
specified set of methodologies can contain existing methodologies, new
methodologles, or some combination of methodologies that, when integrated withir
a software engineering enviromment, satisfy the project manager's requirements.
In other words, the Methodology Thrust Area will not define and develop a whole
new set of methodologies for use on DoD programs; it will retain and apply ac
much as possible from those that already exist.

A-kO

“ye .D’.. .1‘ ‘!‘ 'y '.(. AL -'..'(' e "\‘." '11‘41.' :'\. "“.‘u' AN ';.'. S -."‘ Ry o oo -‘.‘ .“‘ PO s o .'-\

“ “"\’E)\.‘

r s v 9

[4

¢ S

-

-~ GEEERT . e » & =&

+ Tt % RN w T

. ‘l. -
o et

SER VAN

afe ® " PR et N LR
A IR IR Il I L IR S S " -
L tp e, PR O PPN PR n.“'nf‘y e

4.18.2 Relationship to the E&V Task

As technology 1is developed to evaluate life-cycle software methodoloyies, {t
should indicate which methodologies are better than others, and encourage tool
set developers to implement those methodologies. At some point, the evaluation
of the APSE should determine what methodologies are supported, evaluate then,
and indicate to what extent the tool set supports them.

4.18.3 Benefits to the E&V Task

The E&V Task will benefit from the definition of technology to evaluate
methodologies implemented on an APSE. Measures could possilly be developed
which could be used on E&V tools and tool sets.

4.18.4 Benefits to the Related Effort/Organization

Even though a methodology is evaluated abstractly as good, bad, or somewhere

in between, the tool set implementing that methodology can severely impact {ts
usefulness. The E&V technology to evaluate tools and tool sets, should help in
determining this aspect of the problem. Also, the E&V technology should assist
in characterizing, evaluating, and selecting methodologies, and provide measures
to accomplish this,

4.18.5 Impact on E&V Task Schedules

No schedule impacts are currently identified.

4.18.6 Impact on Related Effort/Organization Schedules

No schedule impacts are currently identified.

4.18.7 Required Level of Coordination

Plans are currently underway to establish a technical liaison between the E&V
Task and the STARS Methodology Thrust Area.

4.18.8 Regolution of Issues

Issues should be identified, properly specified, and discussed within the teanm
in which the issue originated. The issue should then be forwarded via the

MILNET to the chairperson of the other team. The two chairpersons should
determine how to address and resolve the issue.

A-kL1

L T [S P T

» I

4.18.9 Focal Point

The focal point is indicated below :

Peter Fonash
Army Material Command

AMCDE-SB

5001 Eisenhower Avenue
Alexandria, Virginia 22333-0001
Commercial : (202) 274-9318

MILNET : FONASH@ECLB

4.19 STARS - Software Engineering Enviromment Thrust Area

4.19.1 Purpose

The Software Engineering Environment (SEE) 1is sponsored by the Software
Technology for Adaptable Reliable Systems (STARS) Progranm. A software
engineering environment 1is an integrated system that supports mission-critical
computer software over the entire life~cycle, from the initial statement of the
requirements of the software to the support of the operational software. The
three major objectives of the SEE Thrust Area are : 1) to define, design, ang
develop a production-quality SEE which can be used by all the Services; 2) to
lay a solid foundation for the continuing evolution and technical advance of
software engineering environments (beyond the STARS timeframe); and 3) to
transition the 1990's environment to the services and to the Software
Engineering Institute (SEI) for actual use by the services.

4.19.2 Relationship to the E&V Task

One of the goals of the SEE Thrust Area is to produce a high quality Join?
Service SEE (JSSEE). As such, principles which will guide this thrust are:z
include emphasis on production quality tools which reflect human engineering
features, and which encourage good software engineering practices. The SEE and
E&V Tasks will address common areas of interest and can benefit from one another
in the research/technology common to both.

A-k42

«.19.3 Benefits to the E&V Task

The SEE Task will result in the definition and preliminary design of a J3%:-,
based upon careful review of 1life-cycle methodologies, tool functionalities,
etc, The rationale which is used by the SEE Team to design the JSSEZ, will

provide useful requirements criteria to be addressed by the E&V Team.

4.19.4 Benefits to the Related Effort/Organization

The evaluation technology developed via the E&V Task will enable the JSSEE
Team to assess the tools being incorporated within the JSSEE. The validation
technology developed via the E&V Task will enable the JSSEE Team to detercine
JSSEE compliance with the CAIS , which is currently under development by the

KIT/KITIA.

4.19.5 Impact on E&V Task Schedules

No schedule impacts are currently identified.

4.19.6 Impact on Related Effort/Organization Schedules

The following E&V Task schedules, with respect to the CAIS Validation

Capability (CVC), may impact the JSSEE schedules.

Contract start - lst Quarter FY86

CVC Version 1

CVC Version 2

CVC Version 3

CVC Version 4

1st Quarter FY87
4th Quarter FY87
4th Quarter rY88

4th Quarter FYB89

4.19.7 Required Level of Coordination
At present, Ms. Ronnie Martin is an active member of both the E&V Team and the

JSSEE Team. 1In addition, the E&V Team Chairperson, Raymond Szymanski, is on the
distribution list for all JSSEE MILNET communications.

A-L3

e L e N e
MRS P PR AN T O R AL S A

g
o
¢
g
I-‘
N
v}
"
.

TSR R LR Ay S

ST e

<o s’ ,- - DT R U TP I ST
-{Aﬁl e (' ’ ’4 :-.i;‘.‘\..f‘i_l“‘[‘ ks o ,‘-‘:’-'-\{

4..%.% hesolution of lssues

Once such issues are identified, they should initfally be addressed within t:.
specific task in which the 1ssue arose (i.e., E&V or SEE). Recommzzndatior
should then be developed within that task to resolve such issues. Tne dissu.«,
and associated recommendations, should then be presented to the other tas.
leader. Task leaders should work together to obtain resolution. If resoclutior
is unattainable at that level, both task leaders should elevate the issues f¢c.
review by STARS and AJPO personnel.

4.19.9 Focal Point

The focal point is indicated below :

Phil J. Andrews

Naval Sea Systems Command
SEA 61R2

Washington DC 20362
Commercial : (202) 692-9761

Autovon : 222-9761

MILNET : PANDREWS@ECLB

4.20 STEP

4.20.1 Purpose

The Software Test and Evaluation Project (STEP), Phases 1I1I1 and IV, is
sponsored by the Director Defense Test and Evaluation (DDT&E) and the STARS
program. The purpose of STEP is to aid in the development and implementation of
new DoD guidance and policy for the test and evaluation of computer software for
mission critical applications. Principal subgoals include the stimulation of
tool development, the support of policy development, and the identification of
research issues and directions in the area of software testing. Principal
recommendations from the previous STEP phases are intended to establish a chain
of test planning, documentation, and evaluation criteria which starts at the
most general planning document (the Test and Evaluation Master Plan, or TEMP)
and proceeds through the plans and procedures implemented by the project
offices, development organizations, and independent test organizations. Phases
111 and IV of STEP, which are currently underway, are designed to define the
technology and provide implementation support for these recommendations.

A=LY

i g G . g e Sl g

- -~

4.2..2 helationshilp tou the E&V Task

There are at least three areas in which STEP and the E&V Task are related : a
STEF 1s tasked to develop new guidance statements, as needed, for software te.:
and evaluation (TE), as well as the necessary implementation methods. Worr 1=
this area 1is intended to address the policy-related issues so that thie
technology receives the support that is needed to put it into practice. This
would include any modifications to DoDD 5000.3 and attendant Service
regulations, etc., which would require TEMPs to report the results of the
evaluation and validation of support software; b) STEP is tasked to produre T&E
management and operating plans, and demonstration and qualification procedures.
The procedures for inclusion of qualified tools in TEMP specifications and
lower-level test plans will also be defined. These t:sks address the
technology-related problems involved 1in the qualification of software testing
tools for DoD use. This is, in many ways, a subset of the work to develop the
E&V technology; and c¢) STEP is tasked to provide functional requirements for

APSE test enviromments. The requirements produced will need to be supported by
the E&V technology.

4.20.3 Benefits to the E&V Task

The E&V Task will benefit from STEP's efforts in at least two ways. First of
all, the E&V technology will receive the policy support needed which will
accelerate its use. Secondly, efforts to develop E&V technology for application

to testing tools should benefit from the qualification procedures developed bv
STEP.

4.20.4 Benefits to the Related Effort/Organization

The efforts of the E&V Task will allow the insertion of demonstrated risx

reduction technology into the acquisition cycle. The qualification procedures
developed by STEP will be elaborated and inserted into an enviromment where the
standard operating procedures include the evaluation and validation of support
software. Furthermore, the functional requirements for APSE test environments
to be developed by STEP will be supported by a technology which ensures their
implementation.

4.20.5 Impact on E&V Task Schedules

No schedule impacts are currently identified.

4.20.6 Impact on Related Effort/Organization Schedules

No schedule impacts are currently identified.

4.20.7 Required Level of Coordination

At present, Ms. Ronnie J. Martin is serving as STEP's liaison to the E&V Task.
However, 1if both tasks are to capitalize upon the obvious opportunities for ¢
mutual benefit, additional mechanisms for increased coordination and support
should be explored.
4.20.8 Resolution of Issues

Once such issues are identified, they should initially be addressed within the
specific task in which the issues arose (i.e., STEP or E&V). Recommendations
should then be developed within that task to resolve such issues. The issues,
and associated recommendations, should then be presented to the other task.

Task leaders should work together to obtain resolution. If resolution 1is

unattainable at that 1level, both task leaders should elevate the issues for
review by DDT&E, STARS, and AJPO personnel, as appropriate.

4.20.9 Focal Point

The DDT&E and STARS focal points, respectively, are indicated below

Charles K. Watt

Director Defense Test and Evaluation
Room 3E (1060)

The Pentagon

Washington D.C. 20301

Commercial : (202) 695-7171

Joseph C. Batz

Acting Director, STARS Joint Program Office

Room 3D 139 (Fern St/C107)

The Pentagon, Washington D.C. 20301

Commercial : (202) 694-0z08

A-L6

-~"- ‘.- ~.- .“’
RTINS SN |

. . . . » . '. - . - - - . - -’ K L - » - . o o * - .Q) o T . ~.' RN '.b . -.- . .-h b .-- ot At AN
FUR R T C LT SO RO IS, VL, U W K A P S O VO T v A T Py i e T R R

| AR AR AR S R L At el s L R DA ML R RN N gt 4 ot i Salptui bl Sl Sy o ng B Andl S BCMME Al i B A S i 0l il Bl SR 07 It 0 0B AR 24 20% e 1

Autovon : 224~0208

v

4.2]1 Tactical Ada Guidance

TN T LS

. 4.21.1 Purpose

The purpose of the Tactical Ada Guidance (TAG) program, which is sponsored by
the Air Force Armament Laboratory (AFATL) and the Air Force C.mputer Resource
Management Technology Program Element (64740F), is to demonstrate the use of Ada
in a real-time armament system. Specifically, the software in the Medium Range
Alr-to-Surface Missile (MRASM) Test Instrumentation Controller (TIC) computer is
being redesigned and implemented in Ada.

T ¢ Y X

4.2]1.2 Relationship to the E&V Task

One of the by-products of this effort is the identification of Ada compiler
implementation-dependent features that are particularly desirable for armament
applications. These features may be useful 1in defining application-specifir

metrics for Ada compilers.

4.21.3 Benefits to the E&V Task

The TAG program will result in recommendations for application-specific (i.e.,
armament) evaluation criteria for Ada compilers.

4.21.4 Benefits to the Related Effort/Organization

No benefits are identified. The TAG program concluded in May 1985, prior to
any E&V technology transition.

4.21.5 Impact on E&V Task Schedules

No schedule impacts are currently identified.

4.21.6 Impact on Related Effort/Organization Schedules

No schedule impacts are currently identified.

A-LT

T T =T Tl e e e R N SR 4T T T R A ALY, s RS

~~~~~~~~

.......................................
......................
.......

A LGRS PO O G RY



4.2..7 heuired Level of Couordinatior

At  present, Debra Harto is an active member of the E&V Tear and coordinatic-
will be through her.

4.21.8 Resolution of lssues

Issues identified which relate to the E&V Task will be handled within the E&\
Task. Issues identified which relate to the TAG progran will be resolved by the
AFATL TAG Program Manager.

4.21.9 Focal Point

The focal point 1s indicated below :

Chris Anderson

AFATL/DLCM
Eglin Air Force Base, Florida 32542
Commercial : (904) 882-2961

Autovon : 872-2961

4,22 Virginia Polytechnic Institute APSE Validation Effort

4.22.1 Purpose

The Virginia Polytechnic Institute (VP1) and State University APSE Validatio-
Effort is a research project conducted by the VPI Department of Computer Science
for the AJPO through the Office of Naval Research. The purpose of the effort is
to identify and address research 1issues related to, and supporting APSE
validation. Based on a position paper and proposal delivered to the KITIt
meeting in June of 1982 by Tim Lindquist, an 4initial effort addressinu;
validation needs in an APSE was conducted during the summer of 1982. This studx
raised issues indicating the need for an APSE model able to accommodate
distributed and secure APSEs. It further indicated a need to address validatio-
of a kernel set of APSE facilities to achieve transportability of APSE tools.
Subsequent efforts on this project have detailed an APSE model based on the Ope:-
Systems Interconnection (0SI) model, and have developed an Abstract Machine
approach to specifying the CAIS and a technique for developing a validatio-
suite from the specifications. The project is in the process of developins
specifications for the CAIS Node Model and Process Management sections, and wii.
undertake an operational definition of CAIS Version 1.4.

A-L8

-e -

o’

e




.

r:z T L N N T U Iy S W W W L T o U Ty T Y S e W T T W] oW e

4.00.0 ke lationship to the E&V Task

The KIT/KITlA-designed CAIS will become a MIL-STu in 1985. Further, o Cain
Validation Capability (CVC) will be developed throuugh the E&V Task to deterzine
conformance to the CAIS. The specification and validarion techniques developl
by the VP1 APSE Validation Effort relate to both of these activities.

4.22.3 Benefits to the E&V Task

The VPI APSE Validation project specifications for the CAlS Node Model and
Process Management sections, will serve as inputs to the development of a CVC.
Whether the specifications generated are used for the CAIS, they isolate 1issues
that must be addressed by the CVC. The Abstract Machine descriptions and the
technique for generating test cases from the Abstract descriptions, can be wused
to 1dentify areas the CVC wmust address. The operational definition of CAIS

Version 1.4 will benefit the E&V Task by providing input to the CAIS Validation
Capability (CVC) effort in constructing validation tests.

4.22.4 Benefits to the Related Effort/Organization
This project uses the E&V Team and the KIT/KITIA for review and feedback on
its results.

4.,22.5 Impact on E&V Task Schedules

The following VP1 APSE Validation Effort schedules are of interest to the ZI&V
Task :

September 1, 1984 ~— Preliminary Abstract Description of CAIS Node Model

November 1, 1984 -~ Preliminary Abstract Description of CAIS Process
Management

6.22.6 Impact on Related Effort/Organization Schedules

The E&V Task schedules regarding the CVC impact this effort.

A-49




4.22.7 Required Level of Coordination

The Principal Investigator of the VP1 APSE Validation Effort (Tim Lindquist),
is a technical consultant to the E&V Task, and the E&V Team Chairperson (Kaymon:
Szymanski), is the Project Monitor.
4.22.8 Resolution of Issues

The focal point for coordination will assist in resolving any 1issues that
arise which may adversely affect either effort.
4.22.9 Focal Point

The focal point is indicated below :

*

Dr. Timothy E. Lindquist

Department of Computer Science

Virginia Polytechnic Institute and State University
Blacksburg, Virginia 2406l

Commercial : (703) 961-7537 (961-6931 messages)

MILNET : LINDQUISTXVPI@RAND-RELAY

Note : Dr. lindquist has recently taken a position at Arizona State
University. His new address is as follows:

Dr. Timothy E. Lindquist

Department of Computer Science

Arizona State University
Tempe, Arizona 85287

Commercial : (602) 965-2783

MILNET : LINDQUISZASUCGCSNET-RELAY

A-50

AR I



3 WWMICZS Inforcetiorn Systex

4.23.1 Purpose

The World Wide Military Command and Control System (WWMCCS) Information System
(W1S) effort is a Joint Service Program with the goal of modernizing the
existing WWMCCS automatic data processing (ADP) and upgrading that system with
new capabilities to satisfy developing requirements. The WIS program intends to
use an Ada designed and implemented software first approach to the upgrade in
order to make it portable to other hardware whenever it becomes necessary.

4.23.2 Relationship to the E&V Task

WIS is generating a very broad systems development and maintenance environment
(SDME). This is to be active on multiple machines over a network. It will have
control of code, data, and documentation at several applications levels. It {s
not a simple APSE, but may contain APSEs. The enviromment will be developed in
Ada, starting from an existing program control and support system. A number of
machine-independent tools are being assembled to provide an initial programming
capability. Compilers will be evaluated and used as appropriate.

4,23.3 Benefits to the RB&V Task

The WIS program will need to evaluate early in the program various tools and
tool sets, as well as the tools they develop themselves. This will provide two
opportunities for the E&V Team., First, the E&V Task should be able to adopt or
learn from any technology for specific evaluations that WIS develops. Second,

WIS can possibly be an early user of any E&V technology developed. Present WIS

work 1includes compiler criteria and benchmarks to measure performance against
those criteria.

4.23.4 Benefits to the Related Effort/Organization

The WIS program should be able to take advantage of any E&V technology that is
developed.

4,23.5 Impact on E&V Task Schedules

The following WIS schedule may impact the E&V Task schedules.

Jan 86 - Internal delivery of SDME enviromment

A-51

e e . o P
. — - . - c e e’ LSV P S .- T Tt Y e e
AL P M R e A A AR A T



4.23.6 Impact on Kelate? Eftr:t/Organfzation Schedules

No schedule impacts are currently identified.

2 rr PP PR S

4.23.7 Required Level of Coordination

The E&V Team should keep current electronic status from the WIS Joint Prograz

Management Office (JPMO) on their plans and schedules. At present, Lt Patrick
Sheridan 1s an active member of the E&V Team and will be responsible for

coordination.
¢
‘&vl
S 4.23.8 Resolution of Issues
>,
Issues shall be addressed within the respective tasks (WIS or E&V).
Recommendations should be developed within that task on how to resolve the issue
X and should be forwarded to the other team for consideration.

4.23.9 Focal Point

The focal point is indicated below :

Col William A. Whitaker

W1S JPMO/TE

Washington DC 20330
Commercial : (703) 285-5065
Autovon : 365-5065

MILNET : WWHITAKERGECLB



rv'h TSR AATAR AT TR AU RLNTRUE VLT LNV WT OO ORI OV Y W T T WY W T T W N U P T I T T DR T o
- v - & Pl y Caall G P A Bl S |
K|

1. Appendix A

1.1 Acroayms

ACVC ¢ceeeevsecsssascessess Ada Compiler Validation

Capability
f * ADP  ceetcsecscrssseeessesss Automatic Data Processing
E AFATL .c¢eeveesccsssscsssees Alr Force Armament Laboratory
i AFB .ecsevvceresonssesesese Alr Force Base
! AIE ceceeeeccccssonacsesess Ada Integrated Environment
; AJPO  ..icceverecsscnscssess Ada Joint Program Office
‘ ALS civevceacsrsccesssesssos Ada Language System
ANST «..ceectevsncescesssese American National Standards
Institute
APSE  +.ivieveceeenscscasses Ada Programming Support
Environment
ATVS  teviiveseacersvensessee Ada Test and Verification
System
AVO  cisevsecesscsnnenssvese Ada Validation Organization
CAIS +¢ sev¢etseccnssecssses Common APSE Interface Set
CAMP ..c.cecoeeseveeeseassss Common Ada Missile Packages
C3l siveeeeecrsessesssseses Command Control Communication
and Intelligence
COORDWG  seveeecesssssssssss Coordination Working Group
CVC ceevsveeseenseessaesses CAIS Validation Capability
DDTS&E .ueieccecsccccesecsess Director Defense Test and
- Evaluation

DOD eeveeveceescsvoseess.es Department of Defense
DODD  teteececccaceesnssecsess Department of Defense Directive

E&V  teceevonesesssnsssesaes Evaluation and Validation

A~53

e e e
R I P R L



HRiw (5

1DA

1DAS

1E&V

ISA

I&T

JPMO

JsC

JSSEE

KAPSE

KIT

KITIA

MAPSE

MCF

MIL

MOA

MRASM

NASA

NOSC

0s1

PA-APSE

CRC IR B R A A A I A A S A I A A I Y

00 s s0 000000 ELETS

e s 0 0800000000000 S

SeoccesvscsesnsesessRssO S

® o0 sP0s st e OBROEOEROOIESLS

S0 s 0c 0000000000000 000

o o0vessenesssossnRere

LR R S S I RN Y B I S B Y

80 escesss e nsreoe

e 000000000 s0000000000

s 00000 v 000 rss00s00n0e

e oesnssorssPOBPRIESROETGDS

®e0e 0800080000000 0000000

0 000600008000 0000000000

00 0ess00avcsss0sr e

v X
[A™aR i A oA A SR e e ik 2ol A TEE o Aataliar Jt et o

Huran Resourcer Working Group
Institute for Defense Analyses

Integrated Design Automation
System

Independent Evaluation and
Validation

Instruction Set Architecture

Interoperability and
Transportability

Joint Program Management Office
Johnson Space Center

Joint Service Software
Engineering Environment

Kernel Ada Programming Support
Enviromment

KAPSE Interface Team

KAPSE Interface Tean from
Industry and Academia

Minimal Ada Programming Support
Enviromment

Military Computer Family
Military
Memorandum of Agreement

Medium Range Air-to-Surface
Missile

National Aeronautics and Space
Administration

Naval Ocean Systems Center
Open Systems Interconnection

Prototype Advanced Ada
Programming Support Environment

- W €5

Lot s0

ey ..J'

L 2
o 4

Py

.
.




PUOL  eeveenseereesersnnseses Program Design Language

PE  ceceeetncecesnsscssseses Project Element

PPG sevseteesscscsccsceasss Program Planning Group

PUBWG cecveeevsasassssssass Public Coordination Working Group

RADC  +sveeseeesosesssseoesss Rome Air Development Center

SEATECS .ccvecessnssssesesse Software Engineering Automation
for Tactical Embedded Computer y
Systems i

SEE t.ceeveecescncsccsssess Software Engineering Environment

SEIl seevescsescnssecssessss Software Engineering Institute

STARS «iteceeececcesesseess Software Technology for X
Adaptable Reliable Systems -

STD s e sveenssosencsnR e Standard

STEP +eeeevcocaccccoesscass Software Test and Evaluation
Project

TAG ® 0 6 ¢ 8 20800t B WS EeN e TaCtiCal Ada Guidance

TCSD seeceecessccessossssse Technical Coordination Strategy
Document

WLy gl ML)

TECWG +eeceecsesssccseoeess Technical Coordination Working
Group

TE&E oceeeeeestccecssccenssasss Test and Evaluation
TEMP  teieevscecssecnesssesesse Test and Evaluation Master Plan
TIC ceeeecescessecscscssass Test Instrumentation Controller

USDRE evevesceescenoecsssnes Under Secretary of Defense for
Research and Engineering

VAX esevcsscsnrssossvesesvee Virtual Address Extension

VHSIC eceevescesssnssscesncoe Vety High Speed Integrated
Circuits

WS ® 6 0 08 Qe OO0 PO E NSNS NE N0 virtual Memory System

VP1 Gescsessssscsvsssvsence Virglnia Polytechni( Institure

A-55 .

-

R

"~ e -:‘ ‘.- - ":- ‘n'.';- = ~\- }‘ '.s . " S .‘..‘..;‘-‘_.- < e .\‘. . IR Y W _n'-' ’-“4‘h



PR e

w

4 &
- WA IIA

XXXAAA

RILPEILILR

;f':‘

AN

e

)

B

-
[P N

[y

L

Ly

KGEN

v

wis

WWMCCS

CRCECIE B R A A I NI IR A S B A S

WWMCCS Informarion System

World Wide Military Command and
Control System




11. Appendix B

I1.1 COORDWG Members

Don Jennings, Chairperson
OC-ALC/MMECO

Tinker AFB, OK 73145-5990 g

James S. Williamson, Vice-Chairman

Air Force Wright Aeronautical Laboratories
WPAFB, OH 45433-6543

Debra Harto
AFATL/DLCM
Eglin AFB, FL

Patrick Maher (Distinguished Reviewer) N
Magnavox Electronics Systems Co. -
1313 Production Rd.

TC-10-C3 .
Fort Wayne, IN 46808

Jane Shirley
SYSTRAN Corp.
4126 Linden Ave.

Dayton, OH 45432 -
Betty Wills R
CCS0/ SKXD -
Tinker AFB, OK .
\

N

“

)

s

A-57 K

b . .- a s e e tm B I J T T P T S S I S At SN
DA A Y e s i T O Bt I N B A R P TR s
AP A 4 ) 2 % .

-




a'n & &

III. Appendix C

I117.1 Related Technical Efforts Matrix

EVALUATION and VALIDATION
RELATED TECHNICAL EFFORTS MATRIX
(RTEM)

The following represents the Evaluation and Validation (E&V) Related
Technical Efforts Matrix (RTEM), 1ndicat1n§ menbers of the E&V Tean,
alonﬁ with potentially related technical efforts/organizations with
whic each indicated member is involved. This matrix will reside in
{EV-INFORMATION> and be continuallg updated as appropriate by the
Coordination Working Group (COORDWG).

R TR PR SR/



T MATRIY

(RTEM)

<

RELATED TECHNICAL EFFORT/ORGANIZATION

R T L g e vt e

O

!

1

i adt

EEEEEEEE
EEEEEEEE
&
Vv
LA A
VvV W
VvV
\7
TEAM
MEMBER

v

.7.”!!!!!!!! o St e
—~lxNR<XONEu HRDXED0NEHE <K< MHX.
O x *x x O |
—~ X NHCXNNTOERNCZ XN T ARﬂMl_
V% - X & W)
—~lENHHCXENSMADON g I AREAuMl_
| « x|
~ 1 XN~ <Qa BFPIEDVNEH Cm< HMI_
-~ - X x|
— NIKICHKOW M .." —
o~y ® & N
—~f At <A@ x ¥ — |
e B Gt B0 ey Tt Gt O Gt PO Bl et S e S Bmd e d Wt Bt Bt Gt s St @es mesae P K oo
~1 ® K~ |
— | Al a4 T ST HMI_
O * x O
- SN0 <€<TO AXONROK MM.I..
1 ) xx |
Nl O<En, X x O\
!!!!!!!!!!!!!! P D Iy T =k I ST
] ® x i
[se ] G LOKOM OO0 XA Mmwn MANMMB.
| - x & ]
~ 1 €TV >LAHQALCHHOZ OXO Mﬂ7.
1 x % 1
N1 COUO HRINEFH <ZAa >hid n>n X %O )
@1 Pt @ms are s B Ee e Wme B0 Bt e o e By et WS Bt oot e == s e ws K K e
] * & }
Nt «<oOC QY WD GUIDELINEMMS_
] * X ]
| COV0 ACZODCOR > VKD MMA.
] * x ]
™| COVO HOHZI OO CE Ol X ¥m)

e Bt e Bt B Bt Wt s B B Gep WA s b Pt Gt B G4 e Gme B8 Seme Bes e ome Y K
| * X I
N < W ~HZHOKCHRMA ENVRMNT.MMZ_
| * % ]
~ | €OW ON HEWk <Z0 m>< Mul.

oo - — XX

x X

x &

x X

* X

x

x X

« «

* K

X %

* %

*x X

x X

x ¥

i
1
1
]
!
!
'
1
!
'
1
1
1
1
1
1
i
1
1
!
1
1
1
1
i
!
i

X!

!

!
e P

tHARTO

'DEESE, A CAPT!
| S

!
!

!
!

!
!

!
1

e el L B B B B B R Lt RS LS Y PO P

!
!

!
!

X

!

JERRY U DG [POH DRy NS U U QU DR DU DU DU Uy o
X !

e e e e R b e e e R e e b e El
!

!
.

X

t
!

!
!

!

!

T * |
A JE P

!'KIRKPATRIC LT!

D *
e e e

!'HUMPHREY

! -——— -

R R T S TR SO SR O ' S B B
e Ll L B e B B e R B e e e e P

!

L
APUPIFEVIVIPHPIY VI i

| T = ==
H

!KEAN

—— .-
] ]

i )
R
] !

1 !
————— -
! |
| !

- e =
| |
! !
—— -
| |
! !
—— -
| |
1 I
———
| |

> 1
— -
| ]

[ '
——— -
| ]

[ !
—— -
] \
| [
—— et
i |
U |
——— .
[} |

>\ 1
—— . —
| |
I |
—— o
] [}
| |
— et . -
] |
| |

|

> |

—— ey -
]

» !

- -

1 __--!
'LINDQUIST, T #!

!

!
!
!
!
Bt Sl i S Sl et et el el el St

i
!
!
!
!

e e L E e e B e e e E C S R EE B

!
!
!
|
!

!
!
el il D T P P By B Ry B R B R R B
!
1
e Lo CE T e B P P o O T B RO PO P

!
!
1
!
!

!
1X
!
!
!

!
!
!
!

1X X
1X

!

]
!

!
!
e Gl S L R By B B B B B el B e B
i
!
!

]
!
!
!
!

!
!
!
!
!

!
!
!
]
]

!
!
!
!
!

!
!
!
!
!

!
!
!
!

ol el el e B B B e B B B R e P P

!
!
!
!
!

!
!
!

P
R

*
e S

P o el

! TAYLOR

S L R L Pt

,P LT*!
! SZYMANSKI

R

SPPNGIRY PR P
G

b}
, P LCDR !
L_____--!__!--

B iy T B

 OBERNDORF
%SHERIDAN
| S

oo

'MYERS

!MARTIN

A A D I

!

!

!

!
Rt L e B B e B B B B E e B Py P P B P

1X

—— S B B . G s g Gy Bt b B @l B¢ B L G Gt B Gy Wt Se Gme Es 4o Sro e

J 1

!WILLIAMSON

SEE RTEM (CONTINUED)
E&V TEAM POINT OF CONTACT TO BE DETERMINED

*®
* &




RTEM (CONTINCLL)
<> RELATED TECHNICAL EFFORT/ORGANIZATION <>

R et LR eSS .

'

- —— T —— = — — " " . - —— - . - —— — - - -

!

i « KT | | | | ] |

™ x & ™| ] | ] [} | [

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! * Gl et s g e Bt S0 ans et B e

™| x & M| | ] ] 1 ] ]

™l x X ™M) | | | } 1 1

O e Bt Gt Wt Wt S0 Grg Bt Bt B G g B0 Mg St Gt S et Bt et oSt St Gre ff f{ TPt Sl e B S Bt et O e By

o~ « % N | ] ] ] 1 ] |

™| L& Sl | | [} | 1 [}

-y B Gt e Bt GO Gip GG e Bt M Bml s Cmt Gt Wt B Gt W Eg At G e o K T Tt TS B ey S S s e

- « K —~ | | ! ] 1 ] ]

el X x| | | | 1 ) |

4 O o e Gt e W e Gat -t B Wm S B W e Bt Bmt S g Wt B C ot et et 0 L S0 et B4 T B0 s Gt B0 Bl e - ot s

(o] x % O\ ] t 1 | ] !

™1 XK M| ! | [} [} ! [

B0 WO et Gt W Bt Gee W v Gt Bt g WP Gt Y Gd BBt St Eee e Tt Gne ame ol o e e T S M e S G- -

o x &K O ] ) ] ) 1 !

o XKk N L] [} 1 [} [} [}

e S Bd Gt Gy Pnp B ey Wes Bl B @es G e PO Gy B !!!!!!!** e e W Gt TS Gt Gy B S B b ey o Bl e

Lo « % QO | ] | \ ] ] ]

o~ x| | } | t ) [}

!!!!!!!!!!!!!!!!!!!!! e msmns wes oo S 0 e s me @ h T Bt aeg Gt B el ens e Bt D

~1 x %~ | | | | | ] | M

o~ « % N I | | [} ) |

!!!!!!!!!!!!!!!!!!!! ot ame st amt e K St Bt e o T S B s SO o B Bt B0 o IS

O | x % O | | ] ] | ] ] b

o~ * % N 1 | [ 1 ] | of

oo Tt mg e B0 SR g Bt Wl TS g B s PO By Eee Bt et G Bt e et s o ol TP Gmr s SO e B 0 e s W6 e [€%] ()

Vol x & N} | L \ \ \ [ f— DO

o~ x % N 1 ] ) ] } ) 23] |

!!!!!!!!!!!!!!!!!!!!!!!!! s @sems dfl Y St e ST W G OSSO e B¢ W e D A

AL x K ~T | | | | ] 1 ]

o) * % N ] ! t ] ! ) my

.t Wy Gt Ghe St G4 G B B Gme Gt s SO Gy TS Ens Gnd Gt G Ens Gt eme o { T et S E I G e Gl Sl G e A e [=¢]

X! x & M) ] 1 | ] [} |

o~ s 1217 « K N [} [} | t 1 >< | o

e e s e e Bt Gme B0 Bt Bt s W e B¢ Gt e ame ans s e dms Sns me ol L B e S B s s 0 o Bt e s - (=

o~ x % O} 1 ] ] ] ] ]

N o CAaE L IHNAQCEHHOZ £ % N ] | [ t ) [

!!!!!!!!!! e Bt @t art W Se Bra Bnp Ee G Wt G tt Gt e Y Y e G Gt an = T @t S Wl o Wms Tt e (&)

— | X K~ | | | ] | 1 | <

ot COFH-HOCI <T@ GUIDANCEMHZ_X. | | | 1 | m

. Gre 0 g Gre Gus T GRe Gs Eg Wt Gep Gt Grg Bt Qo Tt Wes G0 Eng o Gy Sd Gu-p e e B G @GO G0 B W W e T W A G

Ot xx O | | ] ] | | ] o

NI nEma, x % N ] | ) 1< | (&)

e G we o G B Tt Gt Wma Wt GO ey Wt Gg s Gms Pt ns S Tt s @t Bes B f{ i Ao @ Oy T T 0 Ame B0 Wt G0 Wy W

[« WK FE NN ] 1 ] | ) ] 9

—~ | NEHLCENNNLPD HOEDVER < HMI.. [} ! [ 1> ] o

@ | &« 4% 0O | ] ) | ] | 1 m

— NEHCENSNTEWHT HITXEDNE <€l XX —~ | [ [} | [} !

e s S Gt g Be G0 g e W=t S= G Gt s s Bt S s Bmo St s e G ame W me L Pl POl Mt B s L eSS et S0 s 0 ey Se —t
x X 1 | | | B o
* & | ' [} ] [N By
* X ] I [N ] |

> * X ] (NN ] 1At

3] 23] > > - x ¥ 1 ] [ ] 1 W

[53] ) > M ) X X l | el B al ;

m W WV 0 * X alrEni>xini 2z =

tal W ] > X x % 1 1= el <€

fd W > [ m x & al sl XIDIZIAl >

W W > x % [« RENNE- AR AN NNN 3

[2] ) d G2 (1) == x K HIAITA T [

b W > X X R.N.N.k.P.M. x
* K G ' [
* K fo SN < SR i 3 U B B Do IR 72 0




)
: The fcllowing provicdes a:
)
)
)
RTEM
APP ® ® 09000 GP S ELOESSEDPIOEDS
APSE ® 800 0000 PSSO OSSENEES
AR ® 9 000 OB e OO OLOSSPRDS
'Y BUS ®s 0 s ecesse0edssveeSe
CA}{P ® 90600002 POsOeODOS SN
» cOMP Sseevesvcssssvssne
: C3I 600 000 L2E N BN BN BN K BN Y N )
7 ENVRMNT eveeevesocennnns
3 E\VAL ®ow 00 ® SO0 00e 00PN
Jsc ® 600000 OO OSPOOPIOIESIEITN
KIT ® 800 "0 O" O PeO OO NIESEDS
KITIA 9O 00 0P OCOSLOOPLIESIDS

MAN oo es 000000000000
MEA LI I I I I R B B I N I Y
METH LI S A B B I I A N Y
OFF LN N NN NN NN NN ENNE NN NN
ORC Sssscsecosossonssssre
PA ®Psvsecessssnssrtesre
PDL o-;o-.o.-.-.-t..-...
PRA ®sencsscssersnssesesseo
RE ®sese OO0 0s GNP

SEATECS ®s e 0000 scsc0vssse

SEE Sveessssencssssesses

STARS ceev 000800000
STEP ®es e 0000000

SYS s svsces 000 0sePCOO OO
THR ®sesssevoereesesPens
VER ®Sses 00 0ssscssPEtssR
VPI s evcessss ot
WIS Sees v 000N GEOENOGERBOIEETS

L Gt R R R R T R LR R
E‘flm:Mf .}.‘.‘.-.!..-A '!:JA .':A.‘(.a.ﬂ_‘. u".ﬂ’.ﬂ';"h(ﬂf 'y ,.'.

- ' .t
LW Y A SN S O A WA W T

v of acronvms and atirevistions at

uscd in the above Related ié%hﬁical Etforts Matrix (RTE4) :

APPENDIX

ACRONYMS/ABBREVIATIONS

Application
Ada Programming Support Enviromment
Area
Business
Common Ada Missile Packages
Computer
Command Control Communication and
Intelligence
Environment
Evaluation
Johnson Space Center
KAPSE Interface Team
KAPSE Interface Team from Industry and
Academia
Management
Measurement
Methodology
Office
Organization
Prototype Advanced
Program Design Language
Practices
Resource
Software Engineeriné Automation for
Tactical Embedded Computer Systems
Software Engineering Enviromment
ngtware Technology for Adaptable Reliable
ystems
Softwsre Test and Evaluation Project
System
rust
Verification
Virginia Polytechnic Institute
WWMCCS Information System (Note :
"WWMCCS” stands for Worldwide Military
Command and Control System.)

A-61

e A et e e
) SR I o

PO RN AP, g

- - P
R LI B e e
Ve La Tavasadon a0 T

L UM

L PR

o’ !



F“q‘)‘"t"){' ‘W\"i ‘i‘ _J,-‘-‘;.v'r \m“ :

------

|
I

APPENDIX B
EVALUATION AND VALIDATION
PUBLIC COORDINATION STRATEGY
VERSION 2.0
1 JULY 1985
B-1
P I T -.‘..\ oy e Lt A T U S N U N ‘... < ‘:,
y W v MXLLJ_M‘LJJ‘_LLQA PO



B s Bt B Re A s At R T R e AN et e DA Rt et e AR R AR A AN A ..
4
TABLE OF CONTENTS X
PAGE >
EXECUTIVE SUMMARY B-3 E
1.  INTRODUCTION B4 ':'._
1.1 Objective B-b .-
1.2 Background B-4 1.
2.  SCOPE B4 '
3.  APPROACH Bos
3.1 Briefings B-5
3.2 Papers B-5 ‘
3.3 E& Workshop Bos =X
3.4 Quarterly E&V Team Meeting Minutes B-6
3.5 EXV Status Report BE
3.6 Project Reference List B-6 ‘
3.7 BV Public Report B-6
3.8 MIINET B&V Directory Bt 3
APPENDIX A Acronyms B-8 ¢
APPENDIX B Members Bg
APPENDIX C Organizations 510 "
APPENDIX D Publications 513 =
APPENDIX E COORDWG Forms B_16
APPENDIX F E4V Minutes Format B17 -
APPENDIX G Document Format 19 g
%
e




RYAREASA AR A Sl Al AR LA S A S AN S L st A A A e Bt e B ake 2t A A BACE Sl 2wl i s & S%e ie A tne Are aue B D A Ot

EXECUTIVE SUMMARY

The overall Evaluation and Validation(E&V) Task objective
is to develop the technology for the evaluation and validation
of APSEs. As the EXV technology is developed, it will be made
available to the community for use by DOD components, industry,
and academia as deemed appropriate by the respective
organizations. In order %o accomplish the open channel of
comnunication to +the public, the EXV Coordination Working Group
(COORDWG) was established. This document describes the strategy
for accomplishing the communications need for public awareness.
The mechanisms for communication with the Public include:

(1) Briefing; (2) Papers; (3) E&V Workshops; (4) Quarterly EXV
Team Meeting minutes; (5) E&V Status Rep S; (6) Project
Reference List; (7) E& Public Report; aad (8) Milnet E&V :
Directory. ?




1. INTRODUCTION

1.1 Objective

The purpose of the Evaluation and Validation (E&V) Task is to
develop the techniques and tools which will provide a capability
to perform assessment of Ada Programming Support BEnvironments
(APSEs) and to determine conformance of APSEs to the Common APSE
Interface Set (CAIS). "Evaluation" represents a method of
assessing the performance of APSE camponents. "Validation"
represents a method of determining conformance to a standard which
a method of determining conformance +to a standard which is .
is applicable to an APSE(e.g., MIL-STD-1815A, CAIS, etc.) As the
| B4V technology is developed, it will be made available to the
community for use by DoD components, industry, and academia as
deemed appropriate by the respective organizations. The objective
of the E&%V Coordination Working Group (COORDWG) is to facilitate
the transition of this technology to the public as it becames
available. This document describes the strategy for accomplishing
] this transition.

1.2 Background

Currently there is 1little data available on correlating
specific APSE capabilities with project requirements. As stated
in section 1.1, one of the goals of the E&V Task is to provide an
evaluation capability for APSE components for which there exists
neither a standard nor a method of determining conformance to that
standard (e.g., Ada compiler implementation dependent features,
run-time system characteristics, etc.) Since tnis information is
critical to the success of the software development process, it is
essential that emerging evaluation techniques resulting from the
E&V Task be provided to the public as soon as they become
available.

Similarly, in order to ascertain whether data and tools from
one APSE will be able to be transported to another APSE, a metrics
capability must be developed to enable the determination of
conformance to the CAIS, which is expected to become a Military
Standard in 1985. Again, this information is vital to software
program managers and designers who plan to achieve wmaximum
software portability and should be made available to the public as
it emerges.

2. SCOPE

In order to accomplish the objectives described in section
1.1, it is essential that the EXV Team maintain open channels of .
communication to the public.  The public coordination strategy
outlined in this document primarily focuses on communication
originating from the E%V Team to the public and associated
feedback from this communication. Technical information related
to the E&V Task originating outside the team will be monitored by
the BE&V Coordination Working Group (COORDWG) and transmitted to
the appropriate E&V working groups. The mechanisms supporting the
outflow of information from the team to the public are described
in section 3 and appendices C-G.




T'; TRV LE T aaq @OV WA N AT RT IR R RARLN S U M A S O NS, it dota i aal Sl Ml Ak N A A A i e oA ey i DAL sk Sl Bun it M il ol -aata il e ) 8-

3. APPROACH g

Several mechanisms for communication with the public have
been identified to assist team members in the public exchange
process. These wmechanisms are outlined in the following
subsections.

3.1 Briefings

It may bYe appropriate for *team members 4o occasionally
present briefings to the public. A current set of "official"™ E&V
vugraphs will be maintained by the COORDWG for use by any team

* member. Briefing from a standard set of vugraphs will ensure that
each briefer will be presenting the E&V Task in an appropriate,
consistent and accurate manner. However, following a presentation
sumission of the "Public Exchange Record" +to +the Chairperson,

] with a copy to the team is required. The format for this is

‘ listed in Appendix E and on MIINET USC-ECLB directory

<EV-INFORMATION>.

Briefings may be resented to DoD organizations, committees
and conferences as well as to industry and academia. A 1list of
candidate organizations is presented in Appendix C, along with the
primary mission and peint of contact.

Y

An E&V update will be presented by +he Chairperson or
designated alternate at the AdaJUG Government Corner and the ;
SIGAda Environment/Standards subcommittee session, as warranted by -
the emergence Of E&V technology. -

3.2 Papers

, Various team members may wish +to sumit E&V Task related

D papers ‘o professional journals. The paper must be submitted to

. the E&V Chairperson for review and approval prior to publication.
Since these papers will be subject to Government public release
approval, substantial lead time should be allowed (4-6 weeks). A

P copy of +the approved paper should be forwarded to the E&V Team
Chairperson for inclusion in the annual BEXV Team Public Report. A
list of candidate publications is given in Appendix D, along with
procedures for document submittal.

Also the author of the paper should complete the COORDWG form

listed in Appendix E for inclusion in the E&V Project Reference n

List maintained by the COORDWG on the MILNET USC-ECLB directory y
<EV-INFORMATION>. ;

!

. 3.3 E&V Workshop ’

An B&% Workshop will be conducted on an annual basis

throughout the duration of the E&V Task. The purpose of the E&V

Workshop is to encourage industry/academia participation in the

E&V effort, and participation will be limited. Those selected to

participate will be extended an invitation to join the team as E&V

| Distinguished reviewers. Information on the proposed E%V Workshop :
' will be made publicly available and participants will be selected
on the basis of position papers which are written relevant to the
technical aspects of the ExV Tasxk. ‘




:::: 3.4 Quarterly E&V Team Meeting Minutes
)

A\ The minutes of each quarterly E&V Team meeting will be
% recorded by +the COORDWG and subtmitted for team comment and
approval prior to entry in the <EV-INFORMATION> directory under
file names "MINUTES-MONTH-YEAR" with MONTH being ¢three 1letters,

" YEAR being two digits beginning in "DEC-83" and continuing at
A three month intervals. A hardcopy of the mimutes will also be
e incorporated in the annual E&V Team Public Report. The format for
':.o' the minutes is presented in Appendix F.

3.5 E&V Status Report

< The COORDWG will prepare a brief E&V Status Report base’ on
b the E&V Minutes. After being reviewed by the team and approved by
o the E&V Chairperson, the report will be published in the
Ada Information Clearinghouse Newsletter, the ICF Newsletter,
put an the MIINET USC-ECLB <EV-INFORMATION directory and be

T;: available for publication or for "handouts" at appropriate
~ conferences.
:; 3.6 Project Reference List

A 1list of E&V related documents will be kept in the Project

S Reference List on the MILNET USC-ECLB <EV-INFORMATION> directory.
X This 1list will be maintained by the COORDWG. Team members should
contribute to the list by filling out the template listed in
. Appendix E and sending it to the Chairperson with a copy to the
team. The list will not only inform the public about various E&V
related studies, but also keep the team up to date on any related
e technology.
iy
*. 3.7 E&V Public Report
3 An E%V Team Public Report will be published annually in order
] to provide the public with information on the activities of the
e E%V Team. The E&V Team Public Report will contain the minutes
L of all EXV Team meetings as well as all position papers prepared
' by E&V Team members. The E&V Team Public Report will also contain
b position papers written by industry/academia participants in the

annual E&V Workshop, as well as all documentation which results
from the E&V Workshop.

25 7’2, B

[ S Ny §

3.8 MIINET E&V Directory

Another mechanism for communication with the public is via ’
the MILNET USC-ECLB <EV-INFORMATION>directory. Use of this
directory (with password "EV") is available to anyone with Milnet
access. Included in this directory are the minutes fram the
quarterly E&V Team meetings, and abbreviated E&V Quarterly Report,
the E&V Project Reference List, EXV Team member listing, and
other pertinent E&V related information.

- \,:

L S O N

arars, st t g

B-6




| il

o AN AN S g et et i S A Al S i b s b B AR G bt

Files which are referenced through the <EV-INFORMATION>
directory are actually stored in another directory, <EV-INFO>, to
which access is not available. All files in <EV-INFO> have an
extension of ".HLP". The public may access files by one of the
following methods: (1) loggin into the <EV-INFCRMATION> directory
and using the HELP facility to read the files; and (2) copying
the HELP facility to read the <files; or (25 copying files
(specifying the ".HLP" extension) using the TYPE or FTP facilities
directly from the <EV-INFO> directory without actually logging
into the directory.

B-7
CE .'.-'..-t'.-'.l‘-'..f-u’ -“?.‘-'.f..( ............................ I T T e T e Y S N T U SN T ST S N
A R b N L N AR e T TR A A S S A N v SR GG, 2 A A NN




SN

LMENL NN

A by Nyl

ats

-

ACM seecescsssrs e

AdaIC
AdaJuG

AFSC cecrns

CAIS  ..e.es

meG s 6000

IEEE ceeans

NTIS LRI I )

SIGAda ......

seeseeossr

APPENDIX A

Association for Computing Machinery

Ada Information Clearinghouse

Ada Jovial Users Group

Air PForce Logistic Command

Air Force Systems Command

American Institute of Aeronsutics and Astrcnautics
Ada Joint Program Office

Ada Programming Support Environments

Common APSE Interface Set

. E & V Coordination Working Group

Embedded Computer Resource
Electronics Industries Association
Institute of Electrical and Electronics Engineers

Language Control Facility
National Security Industrial Accociation

National Technical Information Service

. Special Interest Group Ada

B-8

. = e .

-----



f et i i il R ek Rt A R bl A B A i b el b St N N A A i i A S A AN Sl Seh Bl S il i SARLL Il Rl g It G A ARl B4 At aab Bod 88 A6

APPENDIX B
MEMBERS

Dan Jennings Chairperson
OC-ALC/MMECO
Tinker AFB, OK 73145-5990

Jimmy Williamson Vice-Chairperson
AFWAL/AAF-2
Wright-Patterson AFB, OH 45433

Debra Harto
AFATL/DICM
¢ Fglin AFB, FL

Betty Wills
CCSO/SKXD
Tirker AFB, OK 73145

Patrick Maher

Magnovox Electronics Systems Co.
1313 Production Rd

™ Wayne, IN 46808

v

Jane Shirley
Systran Corporation
Dayton, OH




T ENEN.

DOLONOEZ

'.‘l‘"'“‘_e, alx

W0

“\

s A A SS

APPENDIX C

Organizations

The following organizations have been identified as possible
candidates for E&V related presentations. DoD and
industry/academia organizations are listed separately.

DoD Organizations and Conferences

Air Force Systems Command (AFSC) Embedded Computer Resource (ECR)

Focal Group

This group consists of representatives from the AFSC
laboratories and product divisions associated with embedded
computer resources. Meetings are held approximately three times
yearly. Attendance is usually limited to members. To present a
special briefing of interest contact your AFSC ECR focal point or
Maj Chuck Lillie, AFSC/AIR, Wright-Patterson AFB, CQH, AV 785-6%41,
(513) 255-6941.

AFSC Software Technology Coordinating Group

This group consists of representatives associated with
software technology from the AFSC laboratories. Meetings are held
approximately four times per year. Only official members may
attend. To present a special briefi contact your AFSC
representative or Capt. Sunny Riley, AFSC/DLA, Andrews AFB, DC
20334, AV 858-2482, (301) 981-2482.

Armament/Avionics Standardization Conference

This annual conference (usually in Sept) is jointly sponsored

by AFSC and AFIC. Candidate presentations should conform %o panel

issues. The chairperson of the Standardization Panel is Robert
Earnest ASD-AFAIC/AXTS, Wright-Patterson AFB, AV 785-5345.

Ada Information Clearinghouse (AdaIC)

Under the direction of the AJPO, the AdaIC was established to .
facilitate the transfer of information to the Ada user community.
The Clearinghouse is expected +to serve as the focal point for 1
collecting and disseminating information. The Information )
Clearinghouse announces activities including upcoming conferences,
Seminars, classes, and general information on Ada via
<{ADA-INFCRMATION> an on-line file accessible through ARPANET or
TELENET. The IC also offers reference services via Net mail,
telephone, or postal mail. Pofessional information scientists,
knowledgeable of Ada activities, update +the <ADA-INFORMATION>
files an respond %0 inquiries. AJPO invites inquiries through
one of the following channels:

B-10

i
P
1
«
A
i
h|
4
4




v

LAt aat et AR an o us b

Net Mail: <ADA-INFORMATION>
Postal Mail: Ada Information Clearinghouse
P.0. Box 849
Rome, NY 13440
Telephone: (315) 336-2359

Postal Mail: Ada Information Clearinghouse
1211 S Fern RMC107
Arrli n, VA 22202
3d139 (400 AN)
Telephone: (202) 634-0210 (703) 685-14T7
AV 224-0210

Industry/Academia Organizations and Conferences

SIGAda

This professional association meets three *times yearly.
Technical topics associated with the use or implementation of Ada
are welcome. For more information concerning the appropriate
session in which to present a briefing, contact Jean Whitaker,
Hughes Aircraft Co , (T14) T32-9231,

AdaJuG

This professional organization brings together
representatives from industry, academia and the Government,
interested in standardization and language control activities,
compilers and  tools; applications and development efforts
associated with JOVIAL and Ada. The Government Corner is an
appropriate session to brief short presentations (15-20 min)
concerning Government sponsored Ada activities. The Chairperson
of this session is It Col Joseph W. Dangerfield, ASD/AXT,
erght-Patterson AFB, OH 45433, AV 785-5941, (513) 255-5941. For

ngergzgzggggtations contact the AdaJUG Chairperson Donna Gant at

National Security Industrial Association (NSIA)

Members of +the association are defense contractors. Open
national conferences focusing on special topics are held several
times a year. For further information contact W. M. McMurray,
General Dynamics, at (314) 851-8910.

=11

R A A



Institute of Electrical and Electronics Engineers (IEEE)

This professional organization has over 210,000 engineers and
scientist members. There are numerous meetings and special
technical conferences held annually. For more information contact
Bric Herz, Executive Director, at (212) 705-7900, or write 345
East 47th Street, New York, NY 10017.

Association for Computing Machinery (ACM)

This professional organization has over 53,000 memhers
associated with computing and data processing.. There are over 31
special interest groups. National conferences are held annually
(usually in October). For more information contact Sidney
Weingtein, Executive Director, at (212) 863-7440 or write 11 West
42nd Street, 3rd Floor, New York, NY 10036.

Electronics Industries Association (ETA)

Azerican Institute of Aeronmautics and Astronautics (AIAA)




WAL E Sl £ i A A0 Nac st s it AP RN A0 Al Ak A S ek i i ol ails - aosl 200 o 40y udia Lafiieaca st Lol -~ - %
ISR Y e, Al Rl AL A ) ."-".bw-_r_*{ (R AR ki i \77,7,-_-7‘9"‘? by w0 afia ol .f~"'~ﬂ:_v'{".n)".,¢'.’"-"."\?':3

APPENDIX D

Publications

|
!

The following publications have been identified as candidates
for publishing EXV related papers. Procedures for document
sutmittal are also included.

Camputer Magazine (IEEE)

TR e o - s —

Articles that cover all aspects of computer science are
welcome. Articles are usually survey Oor %utorial in nature.
Submit six copies of the manuscript including illustrations,
references, and authors' biographies to the Editor-in-Chief:

Stephen S. Yau

Dept. of EE and Camputer Science
Northwestern University )
Evanston, IL 60201 -
Telephone: (312) 492-3641

v S s v A_w_ .-

-

Defense Electronics

Articles covering aspects of computer science that are
relevant to the DoD community are welcome. Send to:

LI S S R SN WS Y L g

EW Communications, Inc.
1170 East Meadow Drive
Palo Alto, CA 943034275
Telephone: (415) 494-2800

Ada Letters (ACM)

Information dealing with all aspects of Ada are welcome.
"Short Notices" amnounce meetings or publications. "letters to
the Editor" raise issues or answer them. Articles typically deal
with indepth technical topics related to the use of Ada. "Ada
Events" announce significant events of major interest to the Ada
community.

a"a"a%a s MEEECxTRTWA as ¢ EEERI

t_e.*

-

.
s MR v v v 7 .

A R

a"a"a"a

B-13

2 8 JIEER S Y _F_",

. . e e et a e e e RS
e N T L L e e T e TN TN e e e e e et e e et N e e e e e e et e et
[WOR AT B TR TN, PRI, E iy K AR DR CRAITOT TOr P, 4 WSS VIRATNE, SRS, W PRy N AL NN T IR '-'.‘-.‘\"‘i‘-"*‘i‘:“c". ".':"‘:“"’




A e at R T ROUTAE S

........

LRe At Laata o o o As- ol piadiaudigie tardiaafaididtdieifinh
. P

Short Notices
Letters to the Editor

Dr. Kaye Grau

Harris Corporation (GISD)
150 Wickham Road
Melbourne, FL 32901
Telephone: (305) 676-6446

Articles Ronzld F. Brender
DEC
110 Spit Brook Rd
ZKO2 - 3/N30
Nashua, New Hampshire 03062
Telephone: (603) 881-2088

Ada Events Robert I. EBachus
Honeywell SSPD
300 Concord Road
Billerica, MA 01821
Telephone: (617) 671-2907

Submissions should be single-spaced with no page numbers, and may
be printed two-up. Submission deadlines Aug 31, Oct 31, Dec 3%,
Feb 28/29, Apr 38 and Jun 30.

Communications of the ACM

This publication serves as a newsletter %0 members about
activities of the Association of Camputing Machinery and as a
publication medium for contributed technical papers and other
material of interest. Papers on all aspects related to computing
science are solicited. In particular, research contributions in
all areas are welcomed. Manuscript format is provided in the July
1982 issue, pages 507 - 508. Submit to:

Nicolas Mokhoff

ACM Headquarters

11 West 42nd Street

New York, NY 10036
Telephone: (212) 869-7440

JOVTAL Language Control Facility Newsletter

Brief articles or announcements related to Ada activities are
welcome. Submit to:

ASD/ADOL

Wright-Patterson AFB, OH 45433
(513) 255-4472/4473

AV 785-4472

ICF at WPAFB-JAICF.

B-14

..........
...........

...........




Ada Joint Program Office Newsletter

-
-

Brief articles or announcements related to Ada activities are
welcame. Submit to:

Technical Research Institute

c/o Ada IC

P.0. Box 849 v
Rome, New York 13440

M ot g ee

L.
[

ety

B-15

1y L

Pl e - " -
~ - * '\ . »! 'l o o Cairs S =
F W ) ‘J.. WA, -L\.J .r ".f v ié\ ..}.u PIARY A*A“h MJAEAQ“A.L‘_lih‘u s)..;_A- .L.X.\ R \‘ N

NS




%
N Appendix E
: e e———
K There are three forms for the subtmission of data to the team:
the Public Exchange Record, the Project Reference List Submittal
Form, and the E&V Working Group Status Report.
‘. Public Exchange Record*
w TYPE OF EXCHANGE: (briefing, paper, etc.)
D)
SPECIFIC TOPIC:
- DATE:
PLACE (R PUBLICATION:
" ATTENDEES::
" PRESENTER:
o MATERIAL PRESENTED: (Brief synopsis of technical content of
- presentation)
- FEEDBACK :
*This form shall be completed within one week of the presentation.
Send a copy to the entire E&V Team for informa*ion purposes.
Project Reference List Submission Form*
i TITLE:
DATE:
: AUTHOR(S) :
AFFILIATE:
SPONSOR:
4 ABSTRACT:

RELATIONSHIP TO E&V:
TO ORDER:
*This form should be submitted by individual who has found the

relevant material and desires +to have it included in the list.
Cc to the EXV Team membership.

B-16

...................




e, IS L S S 2 G B RO it -2 00 e R RAMRL e e e A A LA D Al Y & AUl avic i aici i e e I A DA AR aA R B ™ a/A I S arii S i o e o e

‘‘‘‘‘

APPENDIX F

E&V Minutes Format

The minutes of E&V quarterly .-tings are presented on the
MILNET USC-ECLB <EV-INFORMATION> directory in files
"MINUTES-MONTH-YEAR" with MONTH being three letters, YEAR being
‘pwg diﬁts, beginning in "DEC-83" and continuing at three month
intervals.

Minutes
of the
EVALUATION & Validation (BE%V) MEETING

Date

1. Date

1.1 Topic 1
1.2 Topic 2
1.N Topic N
2. Date

2.1 Topic 1
2.2 Topic 2
2.N Topic N

3. Action Items
Appendix A Acronyms
Appendix B BXV Meeting Attendance

B-17

. -
-

LI R Y

Bttt

. .
------



.- s L LA

CRSAEMAANA AR A DS

E&V WORKING GROUP STATUS REPORT

This report shall be submitted by working group chairs to the
EXV Chairperson at the quarterly E&V meeting. This report will
be incorporated as part of the EXV Team minutes.

WORKING GROUP:

DATE:

PERSONNEL: (List Chair, Vice Chair, and members. Note changes.)
DELIVERABLES DUE THIS QUARTER:

ACCOMPLISHMENTS THIS QUARTER:

KEY ISSUES ADDRESSED DURING THIS QUARTER:

UNRESOLVED PROBLEMS OR ACTION ITEMS:

PROJECTED WORK FOR NEXT QUARTER:

DELIVERABLES DUE NEXT QUARTER:

PRESENTATIONS PLANNED FOR NEXT MEETING:

OTHER SIGNIFICANT INFORMATION:

B-18

.............................

' -
.’ e "y

.
.......



..... W WA VA Y VaetEs ¢ <hadia ¥

;echnical aspects of the ﬁv Task.

‘.

Appendix G 4

Document Format .

This is the format to be used in all documents produced by the E&V :

feen. BE&V Title Sheet by
Version X.X ;

Date :‘l:,

WORKING PAPER _ NOT APPROVED ;‘;
This is an umapproved draft and subject to change. Do not specify or
claim conformance to this document. N
The Task for the Evaluation & Validation of Ada* Programming Support '-::
Enviromnments (APSEs) is sponsored by the Ada Joint Program Office(AJPO) 3
(This version is for disatribution to E&V Team members only) ;
*Ada is a Registered Trademark of the US Government (Ada Joint -
Program Office). kx
Table of Contents
EXECUTIVE SUMMARY R

1. INTRODUGTTON 5

1.1 Objective

1.2 Background ,
2. Scope

3. Approach
: 3.1 -
Appendix A Acronyms ,;,
Appendix B Members f
Appendix C References "
B-19 X




APPENDIX C

MINUTES

of the

EVALUATION & VALIDATION (E&V) MEETING

5-7 December 1984

PR
vl
. e v 1

O

[

RAALLL

Ay Ay Ay 2y

e

o v s v .
USRI

Ryt

e L

-
.
.
L)
A
)




TABLE OF CONTENTS

[
L]

Wednesday, 5 December 1984

Welcome and General Business

STARS - Software Technology For Adaptable, Reliable Systems
STARS Objective

Software Standards
Organization of STARS

.1 Measurement and Metrics
.2 Business Practices

3 Methodology

4 Human Resources

5

6

S

oi

Software Engineering Environments

Applications

TARS Support

nt Services Software Engineering Environment OCD
DoD-STD-SDS
JSSEE
.1 JSSEE Goals
OCD-JSSEE
1 Scope
.2 Mission
.3 Installation Organization
4 Characteristics
a Language System / Navy (ALS/N)
Status of ALS/N
Basis of ALS/N on the ALS
The Structure of the ALS/N
1
2
D
Cc
1
.2
.3
4

Programming Support Environment
Run-time Environment
esign Goals of the ALS/N
haracteristics of the ALS/N
Multi-lingual Support
Multi-level Security (MLS)
Extensibility

Run-time Support

Friday, 7 December, 1984

Working Group Status Reports
1 REQOWG Status Report

2 APSEWG Status Report

3 COORDWG Status Report

4 CAISWG Status Report
Individual Presentations
General Discussion

1 ECLB Disk Space

2 Distinguished Reviewers
Action Items




R R RN M R AN N e S M 2 1 B Slciiing hanie, Jaie b i Al St iad ha

-

1.0 Wednesday, 5 December 1984

l.1 Welcome and General Business

The E&V meeting began with a welcome by the Chairperson, Jinny

Castor. Her new supporting secretary, Ms. Rilla Pezzopane, was
introduced, followed by self-introductions of all E&V Team Members.

A list of files on the <ev~-information> directory was
discussed. The newest addition to the directory is the file <AIMS-
PHASE-I> which describes 3 aspects of Ada's application to real-time
avionics software.

It was announced that Systran Corporation, a local Dayton
company is performing documentation and administrative tasks in
support of the E&V Team. Systran is helping to organize the 1985 Es&V
Workshop, and they are consolidating all of the E&V deliverable
documents in order to compile the E&V Public Report.

The 1985 E&V Workshop will be held in Airlie, Virginia from
8-12 July. An announcement soliciting position papers from industry
will appear in the Commerce Business Daily sometime in March.

1.2 STARS - Software Technology For Adaptable, Reliable Systems

Major Charles W. Lillie from Headquarters Air Force Systems
Command gave a presentation concerning Software For Adaptable,
Reliable Systems (STARS). STARS is an OSD program directed by Dr.
Robert Mathis. STARS is supported by all three Services as well as
by other government agencies such as NASA.

Major Lillie began by discussing the need for the STARS
program. He outlined the following topics to be discussed during the
remainder of his presentation: (1) the development of software
system standards, (2) the organization of the STARS committee, (3)
the support STARS will provide for related projects.

1.2.1 STARS Objective

The objective of the STARS organization is to establish the
development and transition of mission critical software technology
in order to increase defense system software productivity. STARS is
interested in the total system development including requirements
analysis, design, implementation, and maintenance. It 1is also
interested in 1improving the software acquisition process and
software program management.

STARS is striving to correct the problems of inefficient cost
estimates, low software reliability and low software productivity.
Its goal 1is to achieve an increase in productivity of 10 to 1 in
mission critical computer software. STARS proposes to define a set
of software standards to increase software productivity, system
reliability and adaptability.

Cc-3

...... R . te e
LN A Ca

a R ~."..\‘.‘
AU LIY Y Y PN DO LN .



s a0 0 b

e e e e e e e et
sl '(.l ‘.'."! ’-’-" L A P P S PR S L RS

1.2.2 Software Standards

Since it has been proven that it is less costly and less
timely to make a change in the software than to manipulate the
hardware to achieve the same result, it is imperative that high
quality software is produced. In order to improve the quality of
software, one needs to apply standards to the requirements analysis
and design phases of software development. If more time was spent in
the front-end development of software systems (such as requirements
analysis and design) the development time would be reduced.
Therefore, the need exists to develop standards for software
systems. Standards will decrease development time, improve
productivity, and reduce maintenance costs. Standards will also aid
in transporting software packages across various systems and
programs. The results achieved by developing standards will help to
attain the projected order of magnitude increase in productivity.

1.2.3 Organization of STARS

The STARS program 1is headed by Dr. Robert Mathis. The Air
Force STARS Program Manager is Col. K. Nidiffer; the Army STARS
Program Manager 1is Col. R. Stanley; the Navy STARS Program Manager
is Ms. C. Morgan. Each Service has two thrust areas that it
supervises. The six thrust areas or area coordinating teams are as
follows: Measurement and Metrics, Business Practices, Methodology,
Human Resources, Software Engineering Environments, and
Applications.

1.2.3.1 Measurement and Metrics

One of the Air Force thrust areas, the Measurement and
Metrics area coordinating team is chaired by Joe Cavano. This
team’'s task is to develop the techniques for measuring software. The
team investigates software production methods, and methods for
measuring software quality and software reliability. Another area of
interest is the productivity of the STARS program. The team follows
the STARS program to determine if it attains its projected goals,
and to determine if the 10 to 1 increase in productivity is reached.

1.2.3.2 Business Practices

The second Air Force thrust area is the Business Practices

area coordinating team. The chairperson of this team is Phil Babel.
The task for this team 1is to define methods to manage software.
Areas of concern 1include software acquisition, software program
management, and automated work stations. The team 1is also
investigating tools to automate acquisition management.

C-h

R I A Iy
. e

R RAL . s

[



! 1.2.3.3 Methodology

The methodology area coordinating team is supervised by the
Army and is chaired by Pete Fonash. This team's objective 1is to
investigate the development methods for software. They are
researching software 1life cycle models to improve existing
development methods. '

1.2.3.4 Human Resources

h The second thrust area for the Army is the Human Resources
area coordinating team. The chairperson of this team is Joe Kernan.
! The team's objective 1is to investigate the methods employed to
9 educate people in software engineering, and the career paths for
military and civil service personnel involved with mission critical
computer systems. This team investigates the military's definition
of software engineering and the methods used to categorize a
software engineer.

1.2.3.5 Software Engineering Environments

The Software Engineering Environments area coordinating
team is supervised by the Navy. The chairperson is Phil Andrews. The
objective of this group 1is to investigate the development of
software engineering environments. The team is involved mainly with
the Joint Services Software Engineering Environment (JSSEE),
although they follow other environment development efforts also.

1.2.3.6 Applications

The second thrust area for the Navy is the Applications
area coordinating team which is chaired by Bob Kolacki. Thc team 1is
interested in the development and management of generic software.
They are studying the concept of generic libraries, the methods for
documenting generic software, and the problem of tracking the
changes made to a generic software package.

1.2.4 STARS Support

STARS will provide support and funding to projects that can
show that they are satisfying the objectives of one of the thrust
areas., STARS 1is interested in projects that can be used across the
DoD and are likely to be submitted for competitive bids. If one has
a proposal to be submitted, they can send it to HQ AFSC/ALR, or send
it to Major Lillie at the following address:

Major Charles Lillie
HQ AFSC/ALR
Andrews AFB, MD 20335-5000

If anyone has questions about STARS or requires further information
they can contact Major Lillie at Av 858-6941, commercial (301)
981-6941, or on the Net at LILLIESRAFSC-HOQ.

C-5

T e T T T e . P R
(J_A,l‘i'.,i.ﬁz‘d‘.&"x‘. . -.»(q-i.i.A-n_s‘-L.(-n’-.-{_.'_‘..._l.. 3 e l.g,.-_‘.-_.n_ -\.'\

-'-‘-‘.
,

e N -
% N B "_uAJ‘_.J_._A),.



L e aes i o a0 o ‘V—v“""? " " MAMANASRNA By sog mad o JM gl iute e it d ot R B B At it AN A S S S A et AR A el S el Sl Aol At A id "

1.3 Joint Services Software Engineering Environment (JSSEE)
Operational Concept Document (OCD)

Mr. Daniel Green from the Naval Surface Weapons Center (NSWC)
in Dahlgren, Virginia, discussed the Joint Services Software
Engineering Environment (JSSEE) Operational Concept Document (OCD).
JSSEE is the major product of the STARS Software Engineering
Environment task area.

The topics Mr. Green outlined for his presentation are the
following: (1) describe the DoD-STD-SDS, (2) define JSSEE, and (3)
discuss OCD-JSSEE.

1.3.1 DoD-STD-SDS

JSSEE is heavily based on the DoD Standard on Defense System
Software Development (DoD-STD-SDS). DoD-STD-SDS establishes a
uniform software development process which is applicable throughout
the system life cycle. The DoD-STD-SDS covers the total system
iy lifecycle starting with concept exploration, through demonstration
" and validation, and including full-scale development followed by
' production and deployment. DoD-STD-SDS provides the overall
o) methodology that JSSEE is designed to support.

- 1.3.2 JSSEE

JSSEE is defined as an integrated set of methods, procedures,

and supporting computer programs that are needed to develop and

~. support mission critical computer resources (MCCR) software. JSSEE
(- methods for carrying out software development and support process
o designed to allow the Services to add methods that are unique to
their projects. The JSSEE methods are provided as standard/default
for each particular activity. JSSEE's procedures refer to the

documentation that describes the implementation model. The
¥ supporting computer programs are the software that automates or
- supports a particular method. JSSEE is designed to support any piece
- of software which is critical to the primary missions of the three

Services and of the other supporting agencies.

1.3.2.1 JSSEE Goals

N JSSEE goals are closely integrated into the goals of the
. STARS project. The goals of the implementation of JSSEE are to
- improve personnel productivity, to improve software quality, and to
decrease the development/change time. JSSEE is also expected to help
increase the predictability of cost and schedule. .




1.3.3 OCD-~JSSEE

The OCD is one of three major documents that are required for
the full-scale development of JSSEE. The OCD describes the
conceptual operation of the system. The second document, the System
Segment Specification (SSS), defines the specifications to which
JSSEE will be built. The last major document 1is the Computer
Resources Life Cycle Management Plan (CRLCMP). The CRLCMP 1indicates
how the government plans to provide support over the life cycle of
the system.

The OCD takes the place of the formal mission s'atement for
J55EE. It was developed as a user-oriented document. It provides a
description of JSSEE as it appears to users and a description of how
users will interact with JSSEE. It also presents the assumptions for
the operation of tasks.

1.3.3.1 Scope

The scope of the OCD is to express the software engineering
environment as it will be required for large projects. Particular
attention is being focused on defining functions that need to be
formed and deciding the extent to which those functions can be
automated. Once the feasibility of automating functions 1is
determined, JSSEE will attempt to provide the tools required to
perform the automation.

1.3.3.2 Mission

The JSSEE mission is divided into two segments. The primary
mission is to support the MIL-STD-SDS development approach, all
software development activities, and post deployment wuse and
development. Software management and the production of all software
products are also included 1in the primary mission. The secondary
design goals are to support the following: (1) selected system
design activities, (2) selected system management activities, and
(3) part of the system test and integration.

1.3.3.3 Installation Organization

In order for JSSEE to operate, it presumes that it is built
upon a set of computers, probably a distributed system. These
- computers have their own operating systems with terminals connected
by a communication network.

PR VAN L T e T

N P L D T T U T TR L
L WSRO R S e e e e e T e T v I P AP (R PR
A . P PR S N N A R A A AR A A AN AR IEAPAE S I U A ST SLAT AT




JSSEE provides a set of methods that it supports (such as
the Harness method), the documentation describing the methods, and a
set of tools with associated documentation describing how to use the
tools to implement the models in that particular work area. JSSEE
tools will include a word processor, database management system, and
an Ada compiler. JSSEE was developed with the idea that installation
managers could add methods unique to their installation. Therefore,
although JSSEE provides an Ada compiler, if another compiler was
more fitted to a particular installation, the manager could
substitute one for the other without restructuring the entire

system.

1.3.3.4 Characteristics

JSSEE has some unique system characteristics. It is based
on Ada, but since many larger systems were developed 1in other
languages such as CMS-2, JOVIAL or Fortran, JSSEE has multilingual
capabilities. Since JSSEE was designed for multiple hosts and
multiple target computers, many JSSEE installations will develop
each tailored to specific Services. Another JSSEE characteristic 1is
that it was designed to support 1 to 50 projects and 10 - 1000 users
per installation.

1.4 Ada Language System / Navy (ALS/N)

Mr. Tom Conrad from the Naval Underwater Systems Center (NUSC)
presented an overview of the Ada Language System / Navy (ALS/N). The
ALS/N is a minimal programming support environment based on the
Army's Ada Language System (ALS). The ALS/N goal 1is to provide a
full Ada capability for the Navy standard target computers, the
AN/UYK-43, AN/UYK-44, and AN/AYK-14. This full capability includes
support for both program development activities and run time
activities. The topics Mr. Conrad outlined for his presentation are
the following: (1) the status of the ALS/N, (2) the basis of ALS/N
on the ALS, (3) the structure of the ALS/N, (4) the ALS/N design
goals, and (5) the characteristics of the ALS/N.

1.4.1 Status of ALS/N

The system specification for the ALS/N is complete. A draft
dated September 1983 is available. The program performance
specifications (PPS) are in final review, and the ALS/N is currently
undergoing a FY85 competitive procurement. In addition, an effort is
underway to develop a pilot production capability for the UYK-44
which includes certain of the ALS/N ccmponents. This information was
based upon currently public status (i.e., 9/83 public disclosure).




AD-A172 343 EVALUATION AND VALIDATION C(E&Y)> TEAM PUBLIC REPORT 2/3
VOLUME 2CU> RIR FORCE HRIGHT ﬂEROIﬁUTICﬂL LMS
NRIGHT-PATTERSON AFB OH R SZYMANSKI 3@ N

UNCLASSIFIED RFHAL-TR-85-1016-VOL-2 /0 1472




wa A
2

hh...w“s.. RN

e v ] n ~ ¢
I TN L ia LN

P - - e — - —_— — -

! o ol ©
K.) Nl o~ o~
_ : = =

18

I

Es unl off o
o~ o] of <
m 14
£ EEFEFII bl
— —— 2 5
i _— e = y
‘
4
!
..“




ha® g™l B gl aAdi aful e siih davdh IR e g et el anulh e o L e G e aui v L Pl ara o) - - T~
SRAACA A AN AACAA A LA LSSARR S A MO LEME AL A A EAAMD ACAC SAEAD SANMEA R Ad i A EA S A i A A ALl M\

1.4.2 Basis of ALS/N on the ALS

The ALS/N is built upon the basic ideas and components of the
ALS. The ALS/N includes the same database structure, the same user
interface with some extensions and the same KAPSE with additional
extensions. The ALS/N will capture 7 ALS functions intact and will
include another 10 ALS functions that will need some modifications.

1.4.3 The Structure of the ALS/N

The ALS/N consists of a programming support environment

(MAPSE) on the host computer, and a run time environment (RTE) that
resides on the target computer.

1.4.3.1 Programming Support Environment

The MAPSE user interacts with the wuser access support
system. This system consists of the command language processor, the
file administrator, the HELP facility, and the environment data
manager. The user access support system interacts with four other
support systems via the command language processor interface. The
four support systems are the following: (1) 1language processor
support, (2) separate compilation support, (3) code manipulation
support, and (4) MTASS interface support. These four systems
communicate with the MAPSE run time environment (RTE) via a KAPSE
interface, and the MAPSE RTE communicates directly to the host
operating system. A third communication interface is the Container
Data Manager which connects the language processor system to the
separate compilation system, and the separate compilation system to
the code manipulation system.

1.4.3.2 Run-time Environment

The run-time environment has three parts. One section is the
user-written Ada programs. The second part is the run-time
application support which consists of the run-time performance
measurement aids, the run-time debugger, and the run-time 1loader.
The third part of the environment is the run-time operating system.
This system consists of the run-time support library and the run-
time executive.

1.4.4 Design Goals of the ALS/N

One of the design goals of the ALS/N is to provide a built-in
capability to transmit an application program from the MAPSE
environment on a host computer to the RTE on a target computer for
the purposes of execution or debugging. This will be accomplished by
using the text_io package to achieve communication via the embedded
target computer interface. This will be used to support single and
multiple target environments based on UYK-44, UYK-43, and AYK-14.

=9

T

e,
A Y ST



- he A AL AL Mui e b e S AN Al B i At e Sl st T

DR S R g PO N T R A Y

A second design goal is to provide a built-in capability for
direct exchange of environment database components with remote sites
by also employing ALS/N. This will be accomplished with an interhost

telecommunications interface that will support transmit and receive
Ea commands of the file administrator. It will also support direct
5 host-to-host links for ARPANET and DECNET file transfer protocols.

)

1.4.5 Characteristics of the ALS/N

Some distinguishing characteristics of the ALS/N are its

approach to multi-lingual support, multi-level security,
extensibility, and run-time support.

1.4.5.1 Multi-lingual Support

The ALS/N provides full support for Ada program
- development, and it 1includes partial support for -earlier Navy
languages such as CMS-2. This was built-in to provide some
transition capability from currently used languages to Ada. The
_ ALS/N supports separate CMS-2 code development wusing existing
N MTASS/L tools within the ALS/N MAPSE. It also permits importation of
MACRO/L and MACRO/M code, developed according to certain interface
specifications, to be linked with Ada code.

1.4.5.2 Multi-level Security (MLS)

MEMONP D 2,

Due to the cost, the expected performance impact, and the

technical risk assessment, the decision was to defer MLS. Therefore,
ALS/N does not support multi-level security.

1.4.5.3 Extensibility

v 4 G, 0 %y 4 8,

Since the ALS/N is heavily based on the ALS, if the ALS/N
succeeds then it proves the extensibility of the ALS core elements
such as the database structure, and the chief interfaces to the user
system and to the operating system. The notion of "Project
Interface” is incorporated into the ALS/N such that project-specific
tools and command scripts for enforcing project-specific
methodologies are expected to be overlaid on the basic ALS/N tool
set. The practical limits on extensibility may be the ability of the
. host computer system to provide enough processing power and storage
‘. capacity to support particular methodologies.

3 1.4.5.4 Run-time Support

The ALS/N run-time support is considered as critical to the .
system as the compile time support. The ALS/N must support all
configurations of the Navy standard target computers and must
provide a user-configurable run-time environment. It must include
provisions for wuser programs to directly access some run-time
executive services. The ALS/N run-time support is also required to
provide a direct link between the host and target systems to permit
loading and debugqging.

A

e o ¢ a8

C-io0




W T T Ve e

Py
I'f~

o 0

X,

-
LY

The general session of the E&V meeting was adjourned so
that working groups could meet separately. Working qroups met
separately through Thursday.

2.0 Friday, 7 December, 1984
2.1 Working Group Status Reports
2.1.1 REQWG Status Report

The REQWG Status Report was given by Dr. Tim Lindquist,
chairperson of the group. No personnel changes were noted. No
deliverables were due this quarter. Work is proceeding on Version
2.0 of the Requirements Document. The major change in the document
is that wversion 2.0 will deal with a functionality-based taxonomy
rather than the tool-oriented taxonomy presented in version 1.0. A
draft version 2.0 of ¢the Requirements Document 1is planned for
release during the E&V meeting in June 1985. The group also started
work on the Tools and Aids Requirements Document. Key issues
addressed were the audience and purpose of the document. Suggestions
for the purpose and contents of the document were discussed.

2.1.2 APSEWG Status Report

The APSEWG Status Report was presented by Liz Kean, the
chairperson. No personnel changes were noted. No deliverables were
due this quarter. Projected work includes evaluating the ALS, ALS/N
and the AIE environments against the SEE taxonomy. The APSEWG will
use the REQWG attributes to determine the strengths and weaknesses
of the three environments. Due to the relationship between the SEE
taxonomy and the REQWG attributes, Liz expects the APSEWG and REQWG
will be working closely during the next quarter. It was decided that
during the review of the three environments no comments will be
publicly released. A complete report of the conclusions reached will
be publicly released when the review process is completed.

2.1.3 COORDWG Status Report

The personnel from the PUBWG and TECWG were combined to form
a new working group, the COORDWG. Chairperson and Vice-chairperson
of the group are Don Jennings and Jimmy Williamson, respectively.
The team members include Paul Dobbs, Debra Harto, Don Jennings,
Randal Leavitt, Patrick Maher, Mark Mears, Capt. John Taylor, Jimmy
Williamson, and Betty Wills. This gqroup 1is responsible for all
public and technical coordination efforts. The deliverables due this
quarter were the minutes of the last E&V meeting, and the E&V Status
Report. Work was accomplished on updating the Technical Coordination
Strategy Document. It was announced that there will no longer be any
condensed minutes. There will be only two forms of minutes

available, the status report and the full minutes. Randal Leavitt is
consolidating a list of tools and techniques for software

evaluation. These tools can be for any language, not only Ada. He
requests that any helpful information be sent to him.

Cc-11

.

AT O, QL G PN A A 2GS S A AU 0 (X A o 2 N R A B PG PN N N

f" *

YRAA



2.1.4 CAISWG Status Report

The CAISWG Status Report was given by Lt. Darleen Sobota, the
chairperson. No personnel changes were noted. However, Tim Lindquist
sat in on part of the working session and provided valuable
comments. Darleen encouraged him to continue to offer any helpful
ideas he has. The group is working on the updated draft version 1.0
of the APSE Validation Procedures Document. The group 1is spending
many hours reading and trying to understand version 1.4 of the CAIS
Draft Military Specification. In order to help overcome the
complexities of the CAIS Mil Spec, the group 1is working on a
dependencies graph for CAIS models/nodes. A presentation is planned

for the next E&V meeting to discuss either the CAIS 1.4 document or
the APSE Validation Procedures Document.

2.2 Individual Presentations

Due to the large turnover of E&V team members, each member was
encouraged to present a short briefing on himself. From these
presentations, it 1is hoped that team members will become better
acquainted and that the Team will become more united.

2.2.1 Christine M. Anderson (Reported by Debra Harto)

Chris Anderson was the representative from the Air Force
Armament Laboratory (AFATL) at Eglin AFB. She was chairperson of the
PUBWG and was responsible for writing the E&V meeting minutes. Chris
participated in the E&V Workshop by acting as the chairperson of the
E&V Workshop Recommendations Working Group. Chris consolidated the
information exchanged at the Workshop and produced the Workshop
Recommendations Document.

2.2.2 Michael Bridges / Jim Parlier

Michael Bridges 1is a distinguished reviewer representing
General Dynamics (GD). He is the alternate for Jim Parlier who is a
member of the REQWG. Michael's section of GD is the Ada focal point,
and his participation in the E&V team allows him to provide better
consulting services on Ada environments to other GD organizations.

2.2.3 Bard S. Crawford

Bard Crawford is a distinguished reviewer representing TASC.
At the E&V Workshop, Bard participated 1in the REQWG and helped
produce the E&V Workshop Requirement Document. Currently, Bard is an
active member of the APSEWG. At TASC, Bard is the focal point for
Ada and STARS activities.

R 5 e P LA S



P el Eai ety

G S0 YR A

2.2.4 Capt. Albert Deese, Jr.

Capt. Deese 1is from the Language Control Facility (LCF) at
WPAFB where he has been involved in wvalidating Jovial and Ada
compilers. He is currently a member of the APSEWG and is helping to
evaluate the ALS against the JSSEE taxonomy. From his past
experience in the software development and performance analysis of
WWMCCS (World Wide Military Command and Control System), Capt. Deese
has an excellent background to provide helpful inputs to the APSEWG.

2.2.5 Nelson Estes

Mr. Estes 1is a past CAISWG chairperson. His current E&V
interest is on Ada compiler performance evaluation as well as
participating on the CAISWG. His normal job function is program
manager for the Phase II Ada-1750A production quality compiler. He
has additionally spent time on Ada transportability moving the
Mathlib packages to the Data General APSE and encouraging
independent Ada-1750 compilation systems. Additional future work
will include changing MIL-STD-1750 so that it better supports Ada.

2.2.6 Richard Fleming

Richard Fleming 1is from the Space Division/ALR, a product
division involved in the acquisition and development of space
systems. As a member of the REQWG, Richard contributed the Command
Language Interpreter Section of the Requirements Document. Since his
work at Space Division includes analyzing the real-time performance
of Ada compilers, Richard provides useful feedback to acquisition
and development issues,

2.2.7 Kathleen A. Gilroy

Kathleen Gilroy is a representative of Software Productivity
Solutions, Inc. (SPS), active in the areas of software engineering,
Ada, and support environments. Planned products include a
proprietary environment supporting Ada projects, and Ada software
components for a variety of application domains. As a distinguished
reviewer and member of the REQWG, Kathy contributed to the
development of the E&V Requirements Document. From her participation
on the E&V Team, Kathy is able to provide guidance on in-house and
customer selection of environments, and guidance on development of
proprietary products.

2.2.8 Bud Hammons

Bud Hammons 1is a distinguished reviewer representing Texas
Instruments. Bud is a member of the CAISWG, and his major
contribution to the group was the organization of the E&V Reference
Manual. Bud's future work will involve studying the CAIS. He feels
that his interaction with the E&V team helps to promote the transfer
of technology within his home organization.

C-13

Y




2.2.9 W. W. Happ / John Miller

N Bill Happ 1is the alternate for John Miller who represents
McClellan AFB. As a member of the REQWG, Bill has received
information that is helpful to his efforts at McClellan. Bill and

S John organized and taught a 40 hour course in Ada for embedded

;q computer systems. Bill also acts as a coordinator between activities

o at McClellan and the E&V team.

‘ 2.2.10 Marlene Hazle *

J Marlene Hazle is a representative of the MITRE Corporation,

e a Federal Contract Research Center (FCRC). Marlene is a member of '

~ the REQWG and was responsible for the Configuration Management and

: Acronym Sections of the Requirements Document. As a result of her
participation in the E&V team, Marlene disseminates information

: obtained at the meetings and E&V products to her home organization,

. where she is involved in Ada technology work and SPO support, and to

" ESD/ALS. Some of the products distributed were compiler

) questionaires, documents, and benchmark tests.

4 2.2.11 Marlow Henne

a

. Marlow Henne is a distinguished reviewer representing Harris

" Corporation. He is a member of the APSEWG. Marlow acts as an

- interface point between the NATO Working Group on Ada Environments
for Guidance & Control, and he can assist the E&V team in collecting

" information on commercial APSEs. Marlow feels that his participation

" in the E&V team assists Harris's in-house APSE Evaluation Task.

f 2.2.12 Don Jennings

s

Don Jennings 1is from the Embhedded Computer Systems Support

N Section of the Oklahoma City Air Logistics Center at Tinker AFB. Don

\ is the chairperson of the COORDWG, and he 1is responsible for

- producing and distributing the E&V Status Report. At his home

Q organization, Don is the Ada focal point.

] 2.2.13 Elizabeth S. Kean

N Liz Kean 1is a representative from the Rome Air Development

N Center (RADC). She is a principal evaluator of the Air Force's Ada

- Integrated Environment (AIE) effort. As the chairperson of the

A APSEWG, Liz contributed the AIE and ALS write-ups to the ATSE
Analysis Document. She developed the Compiler Criteria Document. .

; Through her participation in the E&V team Liz has available

’ technology that she uses to evaluate the AIE Ada Compiler.

/)

]

C-14

~;r~: IO A A B O I S I R B A A T R T b T SR L SRS,
L] N -




e

L e o

A it

B Y N Cel .

. 2P " T
Lo ln B T

2.2.14 Randal Leavitt

Randal Leavitt 1is a distinguished reviewer representing a
Canadian Company, Prior Data Sciences, Ltd. Randal is the
chairperson of the Ada Working Group (AWG) for the Canadian
Standards Association. He 1is a member of the COORDWG and is
conducting a survey of current software evaluation methods.

2.2.15 Dr. Tim Lindquist

Dr. Tim Lindquist is a professor at the Virginia Polytechnic
Institute Department of Computer Science. He is a memher of the
KIT/KITIA, and he 1is the chairperson of the REQWG. From his
participation in the E&V team, Tim has acquired information on the
following: research topics for students, software interface
specifications, and an operational semantic definition of the CAIS.
Tim emphasized the idea that the requirements defined by E&V are an
excellent focus for research projects.

2.2.16 Patrick J. Maher

Pat Maher 1is from the F-1¢ Avionics Integration Support
Facility at Hill AFB. He 1is a member of the COORDWG and is
responsible for publishing the E&V meeting minutes. Pat also
assisted in the publication of the Public Coordination Strategy
(PCS) and Project Reference List (PRL) Documents. At his home
organization, Pat is the Ada focal point.

2.2.17 Ronnie J. Martin

Ronnie Martin 1is a representative of the Georgia Institute
of Technology School of Information and Computer Science. She |is
working on the Software Test and Evaluation Project (STEP) whose
mission is to improve the practice of DoD software test and
evaluation (DDT&E). While participating in the REQWG, Ronnie
contributed to the Requirements Document and has served as a
coordination point between the FE&V team and the STEr/CDT&E
activities. Ronnie also participated in the E&V Workshop.

2.2.18 Gary McKee

Gary McKee 1is a distinguished reviewer representing Martin
Marietta. Gary is a member of the CAISWG. Gary's participation 1in
the E&V team provides 1input to Martin Marietta's in-house
Comprehensive Software Development Environment to aid the
environment design. His participation also provides a source for the
state-of-the-art E&V information relative to Ada technology to
disseminate to Martin Marietta's Ada training program.

..... -
€Al e e a
‘-'I'J'\'J'

R,




- - PRt Bttt A Y St BN Tl Nhe/t "l "Bk S S S Bl T Mt it B T i A i
A P RS P

\
N 2.2.19 Mike Meirink
3

Mike Meirink is a distinguished reviewer representing the
Sperry Corporation. Mike is a member of the REQWG. He 1led the
>, subgroup that drafted the outline for the Tools and Aids Document
and has made the Sperry tool taxonomy data available to the group.
Due to his participation in the E&V team, Mike has gained insight
into building and evaluating environments. The coordination between
EsV and Sperry Corporation helps to sustain harmony with the DoD
environment efforts and those efforts supported by Sperry.

oy

2.2.20 Mike Mills

W e

Mike Mills 1is a representative of the ECSPO at WPAFB. He
currently is maintaining their Jovial compiler and is participating
in the Ada/l1750A compiler project. Mike feels that his experience
: with compilers is beneficial to his working group, the CAISWG. The
X information he has collected as a member of the E&V team has aided
. the development of the Ada/1750A compiler project at WPAFB.

2.2.21 Lt. Douglas M. Olson

Lt. Olson represents Hq AFCMD/SID from Kirtland AFB. At his
home organization, Doug oversees, manages and administers contractor
performance. As a member of the APSEWG, Doug has taken an active
role in the second draft of the APSE Validation Procedures Document.
Due to his participation in the E&V team, Doug feels that he brings
increased Ada knowledge to his home organization.

aTs e & B

2.2.22 Paul Reilly

Paul Reilly 1is a distinguished reviewer representing the
Data General Corp. He is involved in ADE development and software
support. Paul is a member of the APSEWG and feels that one of the
major benefits of being a part of the E&V team is the access to the
" ARPANET and all the information that it holds.

2.2.23 Ray Sandborgh

Ray Sandborgh 1is a distinguished reviewer representing the
Sperry Corporation. Ray is a member of the REQWG and has been
working on the Reference Manual Guidebook. He is interested in
providing contractor perspective on measurement theory, experimental
design, «clinical evaluation models, and software testing. As a
ber~fit from his participation in the E&V team, Ray has learned
about evaluation efforts which may help the development of ¢+o
Sperry 1100 series compiler and has obtained inforanation on th.
development status of the AIE, ALS, and the ALS/N.

Cc-16

..'A- n-..'i‘.'- - ','..". "‘ ". '.,' 0 - ‘.- * e '.'..'.‘_.'.."'- -'. . - ‘~ '-.'.- . '-. o ‘.. . '.- ". o '-n ‘-- T . - . - . '_ '- R
S S N R A L AN S R P R I P S S SR T ATAVEIROA TR IR W,




2.2.24 Lt. Darleen Avery Sobota

Lt. Sobota is a representative of AFWAL at WPAFB. She is the
chairperson of the CAISWG and has made significant contributions to
her group's validation documents. Through her participation in the
EsV team, Darleen keeps abreast of new technology and research
advances., She 1is currently involved in the installation of an Ada
compiler for her home organization.

2.2.25 Jimmy Williamson

Jimmy Williamson 1is a representative of AFW' L at WPAFB.
Jimmy is the Vice-chairper.»n of the COORDWG and is responsible for
maintaining an up-to-date list of technical coordination activities.
Through his participation in the E&V team, Jimmy provides AFWAL with
relevant information regarding the relationship of the E&V Task with
other related efforts. Jimmy is a member of the Tri-Service ALS test
team and is the Avionics Laboratory focal point for the ALS.

2.2.26 Betty Wills

Betty Wills represents the Command and Control Systems
Office (CCSO) at Tinker AFB. Betty is a member of the COORDWG and
was responsible for the reorganization of the Project Reference
List. Betty feels that her participation in the E&V team allows her
home organization to keep abreast of the changes in the Aila
environment.

2.2.27 Doug Yarborough

Doug Yarborough 1is from GTE representing WIS. WIS is the
WWMCCS Information System. WWMCCS 1is an acronym for World Wwide
Military Command and Control System. As a member of the APSEWG, Doug
coordinates the activities of the GTE-sponsored APSE with the
activities of tlie APSEVG.

2.3 Soeneral Discussion
2.3.1 ECLB Disk Space

Too many team members are running out of disk space. To save
some of your messages, you can put them in a file and store the file
on tape. 1In order to do this: (1) save the messages in a file, (2)
execute the command ARCHIVE filename. Once a file 1is archived it
will no longer appear in your directory. In order to recover the
file from the tape, execute the command RETRIEVE filename. It takes
overnight for a file to be retrieved. Since archived files do not
appear in the directory, it is the team member's responsibility to
remember the files he/she has archived.




2.3.2 Distinguished Reviewers

If you presented a position paper at the 1984 E&V Workshop,
then you are considered a distinguished reviewer (DR). As a DR, you
are 1invited to join the E&V team and to participate 1in its
activities.

If you are a DR and you have left the organization that
supported you at the 1984 E&V Workshop, but your new organization is
willing to support you as a DR, then you can remain on the E&V team.
You can stay on the Team for as long as your new company is willing
to support you. The original company also has the right to continue

to send a representative because they supported the 1984 Ea&V
Workshop.

If you are a DR, but you do not take an active part in the
Team and its activities then you will be dropped as a DR. Your name
will be removed from the list of distinguished reviewers, and your
ARPANET account will be deleted.

If you are presently a DR as a result of the 1984 EgV
Workshop, you are not required to participate in the 1985 E&V
Workshop. If you wish to submit a position paper, that is fine. If
you choose ant ko participate, then you will still keep your DR
status.

It should be understood that those people whose papers do get
accepted for the 1985 E&V Workshop will be extended the opportunity
tc L'ctome a DR and will have all of the benefits and
responsibilities that it involves.

2.3.3 March 1985 Meeting
If Jinny can find a host, the next E&V meeting will be held

in California from 4-6 March. Otherwise, the meeting will default to
March 6-8 at WPAFB in Dayton, Ohio.

The E&V meeting was then adjourned.

c-18

“' -"_‘.'. .‘A.. ‘.‘ .~

el as .
. <, %y A a s 8, v,

P v
fv" ‘.".'~'

AL

ol ]
LY

v
s s %

.
4

~
N




2.4 Action Items

The format for the action items is the following:
AT-date-number: name of person responsible, topic of AI, date due.
The date due will be left off if no date was provided.

AI-12-5-84-1: Jinny Castor. Complete revised E&V Plan. 31 Dec 84.

AI-12-5-84-2: Jinny Castor. Request MILNET accounts for Kathleen
Gilroy and Debra Harto. 14 Dec 84.

AI-12-5-84-3: Jinny Castor. Request STARS list of point of contacts

. for area coordinating teams from Major C. Lillie. 14
’ Dec 84.
3
AI-12-7-84-1: Jinny Castor. Request information regarding the E&V
CAISWG participation at the KIT/KITIA meeting 1in
X January 1985. 14 Dec 84.

AI-12-7-84-2: Jinny Castor. Establish meeting dates and location
for the March 1985 E&V meeting.

AI-12-7-84-3: Jinny Castor. Provide copies of presentation slides
to E&V members.

AI-12-7-84-4: Jinny Castor. Update the EV~-TEAM-INFO file and the
EV-TEAM-MAIL file.

AI-12-7-84-5: Jinny Castor. Send copies of the ALS & ALS/N

documents to Bard Crawford, and a copy of the AIE
document to Paul Riley.

AI~-12-7-84-6: Don Jennings. Get information on the Asilomar
Conference Center as a possible site for the 1986 Es&V
Workshop.

AI-12-7-84-7: Don Jennings. Investigate the requirements for the
public release of the E&V Status Report to
publications such as IEEE.

AI-12-7-84-8: Gary McKee. Send a NET message to Trish Oberndorf to
discuss questions on CAIS 1.4.

AI-12-7-84-9: Gary McKee. Develop the General Node Management
breakdown for the CAIS, section 5.1.

. AI-12-7-84-10: Nelson Estes and Mike Mills. Develop the breakdown of
the CAIS Process Nodes, section 5.2.

AI-12-7-84-11: Bud Hammons and Doug Olson. Develop the breakdown of
the CAIS I/0 Facilities, section 5.3.

AI-12-7-84-12: Darlere Sobota. Develop the breakdown of the CAIS
utilities, section 5.4.

c-19

et Wt T T et I N T e e NN T T R T e e T e e N

CEDMIL S A P N it i o B i A adier s SRR A sl o/ide

..

h"'h'"- IR R 4 . e e .
G L i N T R R R R T T L T S T O I T N R A T A R



LSRN Y

'
3
d
i

AI-12-7-84-13:

AI-12-7-84-14:

AI-12-7-84-15:

AI-12-7-84~-16:

AI-12-7-84-17:

AI-12-7-84-18:

AI-12-7-84-19:

AI-12-7-84-20:

.......................

Marlene Hazle. Map Configuration Management Section
into a functional taxonomy. Jan 85.

Rich Fleming. Map Command Language Interpreter
Section into the functional taxonomy. Jan 85.

Kathy Gilroy. Map the Compiler Section into the
functional taxonomy. Jan 85.

Ronnie ¢t .rtin. Consolidate the ideas on Product
quality guidance. 31 Dec 84.

Ray Sandborgh. Generate a decision model for tool
support. Feb 85.

Mike Meirink. Develop a refined outline of the Tools/
Aids Document. Mar 85.

REQWG. Consider Liz Kean's definitions and how they
will fit into the functional taxonomy. Jan 85.

REQWG. Consider outstanding comments. Mar 8S5.

C-20




......

ATTENDANCE LIST
Es&V Team Meeting, 5-7 December,

Michael Bridges
General Dynamics/DSD
San Diego, California

Jinny Castor
AFWAL/AAAF
Wright-Patterson AFB OH

Bard Crawford
TASC

Reading, Massachusetts

Richard Fleming

Space Division/ALR

c/o The Aerospace Corporation
Los Angeles, California

Daniel Greaen
NSWC
Dahlgren, Virginia

wW. W. Happ
SM~-ALC/MMEHP
McClellan AFB CA

Marlene Hazle
MITRE Corporation
Redford MA

Don Jennings
OC~-ALC/MMECE
Tinker AFB OK

Randal Leavitt

PRTOR Data Sci/P.N.D. Canada
39 Highway 7?7

Nepean, Ontario

K2H BR6

Tim Lindquist
VYirginia Polytechnic Institute
Alazxshary, Virginia

Ronnie J. Martin

Georgia Institute of Technology

Atlanta, Genrgia

c-21

-,
o

m T et
LS SN

1984

Jeff Brunson, Jr.

AFALC/PTEC
Wright-Patterson AFB OH

Thomas Conrad
NUSC
Newport, Rhode Island

Capt. Albert Dec¢se, Jr.

ASK/ADOL
Wright-Patterson AFB OH

Kathleen A. Gilroy
Software Productivitiy

Solutions, Inc.
Melbourne, Florida

Charles Hammons
Texas Instrumments

North Texas State University

McKinney, Texas

Debra Harto
AFATL/DLCM
Eglin AFB FL

Marlow Henne
Harris Corporation
Melbourne FL

Elizaheth Kean
RADC/COES
Griffiss AFB NY

Maj. Charles Lillie
HQ AFSC/ALR
Andrews AFB MD

Patrick Maher
00-ALC/MMECF
Hill AFB UT

Gary McKee

Martin Marietta
Denver, Colorado

- -l

[ S

DN A

C g Y ¥ °



K X

-l e

- o o ol

£ 2 ¢t & & A al

« a6 8 & K3

Mike Meirink
Sperry Corporation
St. Paul, Minnesota

Lt. NDouglas M, Olson
HQ AFCMD/SID
Kirtland AFB NM

Ray Sandborg
Sperry Corporation
St. Paul, Minnesota

Lt. Darleen Avery Sobota
AFWAL/FIGR
Wright-Patterson AFR OH

Jimmy Williamson
AFWAL/AAAF-2
Wright-Patterson AFB OH

Doug Yarborough
GTR Government Systems
3illerica, Massachusetts

e et v AT -\',-_'V.. RISOAXN
AN ICVOTOPC A SR PG Y

C-22

Mike Mills
ASD-AFALC/AXTS
Wright-Patterson AFB OH

Paul Reilly
Data General Corporation

4400 Computer Drive
Westboro, Massachusetts

Jane Shirley

Systran Corporation
Dayton, OH

Lori Walton
Systran Corporation
Dayton, OH

Betty Wills
CCSO/SKXD
Tinker AFB OK




A Cob 2% » ¥, 3 i o A B, A e r T e ot e —
L
;o APPENDIX D
MINUTES
of the
. EVALUATION & VALIDATION (E&V) MEETING
3,
4-7 March 1985 K
)
r .
: |
¢ :
' X
[} b
1)
. 1)

D-1




TABLE OF CONTENTS
Monday, 4 March 1985

Welcome
General Business/Action Items
Evaluation of APSES
E&V Workshop
Action Items From December Meeting
Real-Time Programming With Ada
Objective
Run-Time Executive
Run-Time Support Environment
Results
Implementation-Dependent Features
Order Of Elaboration
2 Synchronized Entry Points
onclusions
WIS Software Development And Maintenance Environment
Overview of SDME
Requirements For SDME
Design Requirements
History Of SDME
WIS Precursors
NOSC Tools
Functional Model
Compiler Guidelines
Strategies
SDME Program
Procured Component Evaluation
Proof Of Concept And Prototyping
SDME Design Specification
Design, Development, And Integration
Test And Evaluation
Installation
Maintenance
Compiler Acquisition
Site Integration
Architecture
SDME Core
PAIS
Object Library
Tool Interface
User Interface
User View
Summary
Open Discussion
E&V Information
Deliverables

L) * L ] L] L ]
WO AU & WK = e W -

ANV O D DB bbb WWWWWWN N
L] L] L ] L 3 .
N WwN -~

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1




N

.0 Tuesday, 5 March 1985

Interface Standardization

Background

KIT/KITIA Goal

KIT/KITIA Progress And Plans
1 CAIS Documents And Comment Reviews
2 ALS/CAIS Comparison Study

3 Interoperability And Transportability
4 MIL-STD-CAIS

Work Products

Requirements and Design Criteria (RAC)
Common APSE Interface Set

1 CAIS Document

2 CAIS Utilities

3 Important Observations
AIS Prototype

NNNND NN
L . e o
¢ e o

TN U bbb DWW Ww N =
.

H e o o

1 Prototype Definition

2 Kinds of Prototypes

3 1Identified Prototypes
he TRW Software Productivity System
Background

.1 Productivity Assessment

.1.1 1Internal Assessment
.1.2 Quantitative Assessment
.2 TRW Productivity Goals

.3 Strategies
.4 Chronology

The SPS

1 Operational Concept

2 Objectives

3 SPS Software
4 SPS Hardware

Lessons Learned

1 Software
2 Hardware
3 Technology Transfer

4 Measurement

4.1 Tool Utilization

4.2 System Resources Utilization
4.3 User Function Data
onclusions

NONNNNODNONNDONNNNNNONNNNONNNDONDNDONNONODDNODNONDNDNONDN

.0 Wednesday, 6 March 1985

Working Group Status Reports

1 APSEWG Status Report

2 CAISWG Status Report

3 COORDWG Status Report

4 REQWG Status Report

Life Cycle Software Engineering Environment Taxonomy
.1 Background

.2 NBS/ICST Taxonomy

.3 SEE Taxonomy

WWww Wiwiwww W W

TS

o«

5e

» 0w

RN




e s,

- g |

e

() 3.2.4 Future Plans

) 3.3 General Discussion

> 3.3.1 Stars Representatives From The E&V Team

; 3.3.2 Policy For Working Group Chairpersons

X 3.3.3 Requests For A Copy Of The ALS R
3.3.4 E&V Glossary
3.4 Action Items From E&V Meeting 5-7 December B84 Not

> Accomplished

N 3.5 Action Items From E&V Meeting 4-7 March 1985 '

\

)




1.1 Welcome

The E&V meeting began with a welcome by the chairperson, Jinny
Castor. Before the introduction of Mr. W. M. Murray, each Team
. member introduced himself.

Mr. W. M. Murray, director of technical software for Data
Systems Division of General Dynamics (GD), welcomed the E&V Tram to .
GD's San Diego site. He stressed that GD is committed to Ada
development. GD is active in many Ada projects including the
following: the use of Ada in mission c¢ritical systems, the
development of an Ada/1750 compiler system, and the amount of
training required by systems and software engineers to become
proficient in Ada.

1.2 General Business/Action Items
1.2.1 Evaluation of APSEs .

Jinny emphasized that it appears to other DoD organizations
that the E&V Team is investigating only whole APSEs and not the
individual components that make up an APSE. She encouraged the Team
to make it understood that the E&V Team is analyzing each component
of an APSE individually as well as evaluating an APSE as an entire
entity.

3 1.2.2 E&V Workshop {

The E&V Workshop will be 8-12 July 1985 at Airlie, Virginia.

Unfortunately, this is the same week as the KIT/KITIA meeting. The

main thrust of the workshop is to enumerate the evaluation criteria

of APSEs associated with a particular application software

development. Any interested industry representative is invited to

o submit a position paper in response to the Workshop's Commerce
Business Daily announcement.

P Rl B IPCI

1.2.3 Action Items From December Meeting '

The action items (AI) generated at the December 1984 EsV :
meeting were reviewed. The AI that were not completed will be
. included in the minutes of the next meeting and will be carried

forward until they are fulfilled. Approximately 7 out of 20 AI from
the December 1984 meeting were not completed.

1.3 Real-Time Programming With Ada

Mr. John DaGraca from General Dynamics presented a briefing on
the current status of Real-Time Programming with Ada. Mr. DaGraca
presented a description of some Ada compiler implementation-
dependent features of the run-time support environment in order to

"o \ .../‘..-,'...,. -

e el e e e e e e e e - . e e e

e ~ - a8 et A .t PRI . T et e T EE R S

S AR e A A g F S L N e T e .
] . ; NN K . . L 8




~~~~~~

. Cate At RIS . R RIS O I I TN e AN N ORI .J- .
" ‘ HH\I‘L‘L % 7% 8) “&Li-‘)‘!‘lﬂ._‘m y o o~ > >

support Ada tasking. The topics that outline Mr. DaGraca's
presentation are the following: (1) objective, (2) run-time
executive, and (3) conclusions.

1.3.1 Objective

The objective of this GD program was to apprly software
engineering principles to obtain an efficient system with respect to
timing and memory utilization. The project was constructed in such a
way that one team of people would design the system, then another
team would maintain it. This allowed for an evaluation of the
maintainability of the Ada code produced by the design team.

They designed and implemented a real~time executive whose
basic function was to serve as a process scheduler. Telesoft, Rolm,
NYU and DEC compilers were used to obtain comparison data for run-
time systems.

It was determined that a strong development methodology is
essential in order for the maintenance personnel to have a model
with which to work. A second conclusion 1is that thorough
understanding of the run-time support environment is crucial.

1.3.2 Run-Time Executive

The team used Ada tasking features to implement the run-time
executive. They found that it 1is important to have a thorough
understanding of the run-time support environment and the run-time
implementation-dependent features.

1.3.2.1 Run-Time Support Environment

The o0ld method used to design a run-time executive was to
design an interrupt-driven scheduler. It was written 1in assembly
code and was driven by each process's priority. This design method
allowed the programmer to decide when an interrupt would occur, how
it would be handled, and what priority each process would be
assigned. The programmer knew that any process would be in one of
the following three states: active, suspended, or queued.

The new method used to design a run-time executive is to
use Ada tasking. Ada's tasking feature is difficult to wunderstand
because one can use a task to implement a pure process, a monitor, a
buffer, a semaphore, a message, or an interface unit. The run-time
support environment decides when an interrupt will occur, how it
will be handled, and what priority each process will be assigned. It
is important that the programmer understands how the run-time
support environment is implemented because the tasking results
depend on the programmer's interpretation of this environment.

D-6

.....

K
\\\\.\1

1.3.2.1.1 Results

It was determined that some Ada compilers implemented
tasking using time slicing and some used run/until blocks. When the
Ada tasking program was re-hosted on other machines, these various
run-time implementations caused the program to obtain different
results.

It was suggested that since the Ada Compiler Validation
Capability (ACVC) cannot determine how run-time systems are
implemented, a standard run-time model for compilers should be
developed. However, when a run-time system is implemented, it should
be thoroughly documented especially the implementation-dependent
features of tasking.

1.3.2.2 Implementation-Dependent Features

The two implementation-dependent features that gave the
team the most trouble were order of elaboration, and synchronized
entry points.

1.3.2.2.1 Order of Elaboration

The order that data is initialized in Ada tasking is not
specified. It is important for a programmer to know when and in what
order data is initialized.

The Language Reference Manual (LRM) does not specify in
what order one can assume that tasks will be initiated. Yet, it is
important for a programmer to be able to predict in what order tasks
will execute. It is important because when something is designed,
the programmer wants operations to occur in the order that is
expected and not in an arbitrary manner. This was a problem for the
people programming the run-time executive.

1.3.2.2.,2 Synchronized Entry Points

It is difficult to program tasks when rendezvous are
performed at unspecified times during execution. In one case where a
critical section was required, one compiler implemented it using a
signal /wait scheme, and the other compiler used tasking. These
variations in implementations cause a programmer problems when he is
concerned with timing and memory constraints.

1.3.3 Conclusions

It was concluded that run-time specifications and
implamentations need to be standardized. Without standards, portable
software can be generated, but memory and timing faults will be a
problem,

OV 3.

8%

[Sl S 3

A second conclusion is that there are constructs which are
not fully explained in the LRM and are sometinmes left as
implementation-dependent features. Programmers who are unaware of
these implementation-dependent features could encounter numerous
problems with real-time programming with Ada.

A third conclusion is that a strong methodology is required
when programming in Ada because it provides the people tasked to
maintain the software with a path to trace back to the design level.

1.4 WIS Software Development And Maintenance Environment

Captain Percy Saunders from Hanscom AFB, Massachusetts
discussed the development of the all-Services software development
and maintenance environment (SDME). SDME is a program targeted to
updating the computer programming capabilities using the Ada
language for the World Wide Military Command and Control System
(WWMCCS) Information System, or WIS. Captain Saunders’ presentation
was divided into the following sections: (1) overview of SDME, (2)
requirements for SI'ME, (3) history of SDME, (4) SDME program, (5)
architecture, (6) user view, and (7) summary.

1.4.1 Overview Of SDME

The SDME is a software system resident on standard WIS
hardware such as the WIS workstation, Common User Processor, and
Joint Mission Hardware. Its purpose is to enhance the effectiveness
of WIS personnel whose mission is the development and maintenance of
WIS systems. The SDME accomplishes this through an evolvable set of
tools, embedded in a portable environment, with a common user
interface to all SDME functionality.

1.4.2 Requirements For SDME

SDME aims to provide powerful Ada programming tools to WIS
sites for support of software development activities. It is designed
to manage programs from 20 to 20 million lines of code and to
respond to the changing conditions of a software development
process. SDME is also responsible for providing the individual user
with access to a WIS workstation 1in order for him to develop
software without degrading the entire system's performance.

1.4.2.1 Design Requirements

SDME will be designed and implemented in Ada. It will be
portable over a variety of hardware and will be capable of operating
in a distributed environment. SDME provides evolutionary growth
capabilities and supports reusable software components.

D-o

- - ST 5 NI L I A SO SO - Fowr. ~ EPa Y BN AN ot i - - alla®
P d C e R T N T A A T T N TS Lt T ST T T =~ . T e N T Ca ¥y AN W W W

1.4.3.1 WIS Precursors

WIS 1is based on the Distributed Software Engineering and
Control Process (DCP). DCP demonstrated the capabiltiy to develop
software in a distributed environment and the use of an Ada command
language interpreter. This effort was active from June 1983 to
December 1984,

1.4.3.2 NOSC Tools

The WIS Joint Program Management Office (JPMO) authorized
the Naval Ocean Systems Center (NOSC) to contract to approximately 25
vendors to require existing software tools in Ada. These tools will
provide the foundation of the SDME; they include reusable software
packages such as mathematical functions and larger individual tools
such as editors and data base managers. These tools were delivered
in the first quarter of FY85 and are currently being beta-tested by
GTE, the support contractor for the WIS SDME effort.

1.4.3.3 Functional Model

A functional model description that provides an
architectural basis for the SDME was delivered in January 1985. This
document identifies the content of the major components of the SDME,
especially the data base.

1.4.3.4 Compiler Guidelines

The WIS JPMO has received a document that details WIS's
need for Ada compilers. The document covers the entire compilation
system from the compiler to the run-time support environment. This
document will be wused to communicate to industry WIS's unique needs
for Ada compilers and associated support tools.

1.4.3.5 Strategies

WIS intends to develop an evolvable, portable system that
meets the needs of the WIS user community. This will be accomplished
by integrating WIS precursor efforts into the mainline WIS program

. and by incorporating feasible environmental and Ada technological
advances of industry and government. A dialogue with WIS site
personnel will be established in order to inform them of SDME and to
integrate their feedback into the SDME design.

1.4.4 SDME Program

The SDME program includes the following task areas: (1)
procured component evaluation, (2) proof of concept and prototyping,
(3) SDME design specification, (4) design, development, and

L a R N N Y

DRI T A
» et
S A S I A O

integration, (5) test and evaluation, (6) installation, (7)
maintenance, (8) compiler acquisition, and (9) site integration.

1.4.4.1 Procured Component Evaluation

This area 1is managed by NOSC, and its aim is to analyze
industry and government Ada tools. These tools will be evaluated as
to each tool's usefulness in the SDME.

1.4.4.2 Proof Of Concept And Prototyping

The purpose of this task is to research and prototype the
outstanding design issues for the SDME. Areas of special interest
are Ada design, data base design, user interfaces, and requirements
tracking. A document, the Complete Conceptual Manual (CCM), will be
a result of this phase of the program.

1.4.4.3 SDME Design Specification

This task area will specify the required functionality of
tools, tool interfaces, and the user interface.

l1.4.4.4 Design, Development, And Integration

This area will 1involve the design of the environment's
systemic components such as the interfaces and data base objects,
the development necessary to integrate all specific components, and
the interaction with the WIS user community in order to evaluate and
tune the design.

1.4.4.5 Test And Evaluation

This task will include rigorously stressing the system in
order to uncover errors prior to deployment. This testing will take
place at GTE's software development installation.

1.4.4.6 Installation

The purpose of this task 1is to install SDME in WIS

operational support facilities and to conduct acceptance testing.
This task also includes the training of WIS site personnel.

1.4.4.7 Maintenance

This process will involve on-site support for the SDME,
including error correction and interim enhancements. A staff from
GTE will be provided at the site to handle maintenance issues.

1.4.4.8 Compiler Acquisition

This area includes development of compiler benchmark
programs for performance and functionality testing. An evaluation of

D-10

b compilers will be conducted, and appropriate compilers for use in
. SDME will be recommended to the government.

1.4.4.9 Site Integration

. The purpose of this task area is to insure the utility of .
SDME to site personnel. It involves hands-on training, consolidating
and evaluating user feedback, and providing input to t"e SDME design
group.

1.4.5 Architecture

The architecture of the SDME is based on layered levels of
increasing abstraction which provide portability, evolvability, and
maintainability. The main components of the SDME are the following:

A (1) SDME core, (2) Portable APSE Interface Set (PAIS), (3) object
library, (4) tool interface, and (5) user interface.

1.4.5.1 SDME Core

The SDME core 1is machine dependent and includes the

operating system, network interface, and relational data base
management system.

. 1.4.5.2 PAIS

The PAIS insulates the rest of the SDME from the core. It
is compatable with the Common APSE Interface Set (CAIS), and other
interface standards such as the graphic kernel system. The PAIS is
designed to permit Ada package specifications to remain stable as
package bodies are reimplemented for rehosting.

.

Y OO

1.4.5.3 Object Library

The object 1library is designed as a user view of objects.
The 1library includes an encyclopedia that contains object
information, 1libraries that contain collections of objects, and a
director that handles the logical to physical distributed mapping.

1.4.5.4 Tool Interface

. The tool interface serves to isolate each tool from the
- SDME data organization. This interface permits different
3 implementations of similar tools while preserving a stable user

£ interface.

1.4,5.5 User Interface

The wuser interface is separated from the SDME core by the

N PAIS and is separated from the tools by the tool interface. The user
N interface provides a stable boundary when the SDME is rehosted, the
D-11

- o7 4% ‘ e 7o \r.'r..-‘\.‘ "f\,-.-/" ""\":'l';{'-':;’.': -“,..-‘. .;.‘\'.-‘:-“.- S

YL e
o . -
A AN

DR Bl N N A PR

core component changes, or the tools change. The wuser interface

implements the full Ada command language with menus, graphic systems
and windows.

1.4.6 User View

The wuser interface permits access to SDME functions and
controlled objects which reflect the user's work. This provides the
user with only the information that is relevant to his program. .

The user view of the system is adaptable to different project
phases and work domains. It provides support for joint software
maintenance and site-unique software development. The user view of
the SDME is consistent from host-to-host, and site-to-site; it 1is
designed in such a way as to remain constant while remaining
flexible enough to incorporate new tool technology in the future.

1.4.7 Summary

The SDME focuses industry technology on WIS support needs and
was designed to be evolvable through use of externally developed
components. Although WIS is explicitely oriented toward a
distributed network environment, requirements of the WIS user
community are an important design issue. A significant design factor
of the SDME is that it was designed to be able to respond to a
changing environment, and to evolve as technology advances.

1.5 Open Discussion
1.5.1 E&V Information

Jinny Castor reminded the E&V Team that information made
available to the Team is primarily considered "for the E&V Team
only"”, unless explicitely stated otherwise. It should be reiterated
that information sent to the Team should be kept to the Team and not
distributed further,

1.5.2 Deliverables

1

A schedule of deliverables due for the remainder of FY85 was
reviewed. Each working group has deliverables due sometime during
the year and should keep working toward completing these documents. !

.
-
-
.
~

The general session of the E&V meeting was adjourned so that :
working groups could meet separately. Working groups met separately ~
for the remainder of the day. 5

L e

N N S N T N s N G T T T T I R e T o I~y

2.0 Tuesday, 5 March 1985
2.1 1Interface Standardization

Ms. Tricia Oberndorf, chairperson of the Kernel Ada Programming
Support Environment (KAPSE) Interface Team (KIT)/KAPSE Interface
Team from Industry and Academia (KITIA) presented a briefing on
KAPSE interface standardization. The objective of the Common Ada
Interface Set (CAIS) is to provide a standard interface to a KAPSE,
and the KIT/KITIA is responsible for the development of the CAIS.
The topics Ms. Oberndorf outlined for her presentation are the
following: (1) describe the background for the CAIS, (2) discuss the
KIT/KITIA goal, (3) discuss the KIT/KITIA progress and plans, (4)
list work products, and (5) discuss CAIS prototyping.

2.1.1 Background

The two basic motivations for common interfaces at the KAPSE
level are the following: (1) to reduce the cost of maintenance by
having fewer tools to accept and use, and (2) to reduce the cost of
development by having a common set of tools which everyone can use.
Basically, we want to be able to share tools and databases between
APSEs.

2.1.2 KIT/KITIA Goal

The goal of the KIT/KITIA is to develop a set of common
interfaces which will form a boundary between the tailored
implementation of the wunderlying host computer and the tools
developed to be common to APSEs. This set of common interfaces is
the CAIS, and it is planned that the CAIS will become the interface
level of the KAPSE itself and not an extra 1layer on top of the
KAPSE.

Since tools will be written to satisfy the common interface
(the CAIS) and not to satisfy the host computer's implementation
dependencies, the development of the CAIS will encourage a sharing
of resources throughout the industry/government community. This
sharing could take place through channels such as DoD-industry
information exchanges, 1IEEE or ACM conferences, and project
interchanges. The sharing of tools will result in CAIS-compatible
tool libraries. Since this software can be reused, government
projects will cost less than if this software had to be rewritten.

2.1.3 KIT/KITIA Progress and Plans

2.1.3.1 CAIS Documents and Comment Reviews

The KIT/KITIA has proposed a KAPSE interface set; this set
is documented in CAIS Document versions 1.2, 1.3, and 1.4. The draft
CAIS versions 1.3 and 1.4 were distributed to over 500 reviewers in

D-13

Py the United States and Europe. Two CAIS public reviews were

;: conducted, one in August 1984, and the second in November 1984. The
KIT/KITIA continues to review comments from these activities, and
! answers will appear soon on the MILNET.

2.1.3.2 ALS/CAIS Comparison Study .

A An ALS/CAIS comparison study was conducted, ¢nd a report
- containing the conclusions of this investigation is available. The
- study considered the work required to transition the ALS to the CAIS
and dealt with the topics of how one would approach such a task, and
what are the similarities and differences between the ALS and the
A CA1lS.

SaONC

2.1.3.3 1Interoperability and Transportability

WA

Interoperability (I) 1is the ability to share databases;
transportability (T) is the ability to move tools. The KIT/KITIA
recently reached concurrence on the requirements and design criteria
for interface sets which achieve I&T. This set of requirements will
be imposed on the CAIS Version 2.0 contractor who will design a set
of interfaces which meet this set of requirements and design
criteria, and which are upward compatible with CAIS Version 1.0. The
CAIS Version 2.0 contract will be awarded in May 1985.

NYYYES

A

2.1.3.4 MIL-STD-CAIS

The KIT/KITIA delivered a MIL-STD-CAIS to the AJPO. The
MIL-STD-CAIS will be distributed for review to the three Services,
to other DoD organizations, and to major industry associations. A
public review of the comments on MIL-STD-CAIS will be conducted, and
MIL-STD-CAIS will be revised to reflect these comments.

L ";‘;&;‘

A LUNY

2.1.4 Work Products
2.1.4.1 Requirements and Design Criteria (RAC)

[- The RAC were designed in the context of STONEMAN and with)
) the idea that it would be implemented in approximately five vyears. y
- The RAC Document is directed toward any interface set which wiil

achieve transportability of tools and interecperability of databases.

The five main sections of the RAC Document are the following: (1) -
General Design Objectives, (2) General Syntax and Semantics, (3)

Entity Management, (4) Program Management Facilities, and (5) Input

and Output.

A e, e, B, 0

2.1.4.2 Common APSE Interface Set X

2.1.4.2.1 CAIS Document

Founded on the ALS and AIE, the CAIS was written for

CaehL %

D-1k

213 A gol '3 - Ve v - P - 5 (0 i St - ' . ; g
- - A T T S Y A o~ e R L N L AT S e, Low e L .. e VAN L™ - v % e -

YRR

. life-cycle environments for the support of mission critical computer
. systems. It was designed for Ada support and was not designed for
use on target machines. The CAIS document describes the interfaces
of the CAIS; the document's main section provides the interfaces
described as Ada package specifications. For each interface the
following details are addressed: purpose, parameters, exception
handling, and additional interfaces. The document also includes four
appendices - predefined entities in the CAIS, comp’lable package
specifications, compilable package bodies, and an overview of the
interfaces by package and function.

2,1.4.2.2 CAIS Utilities

The CAIS standardizes those aspects of writing tools
which commonly cause problems when moving tools between hosts. The
CAIS provides the following: (1) naming conventions for users,
files, processes, and devices, (2) a hierarchical structure to
retain information about processes and files, (3) interfaces to
start processes and tools, (4) capability to create background
processes, (5) support for creating, deleting, opening, closing,
reading, and writing files, and (6) support for 3 kinds of terminals
and support for magnetic tape drives. Some topics deferred until the
initial CAIS is implemented are the following: (1) configuration
management, (2) explicit controls for distributed environments, and
(3) inter-tool interfaces.

2.1.4.2.3 Important Observations

Achievements noted during the development of the CAIS
are: (1) the CAIS remained as true to Ada as possible. In many
instances this included trying to cope with decisions which Ada did
not make because of the difficulties of making them in a
transportable way; (2) the CAIS was designed to operate with a wide
range of existing operating systems; (3) the CAIS had to accommodate
new ideas about what is required to support a software engineering
environment; and (4) the CAIS was developed in an extremely public
forum, and therefore represents a commitment to achieve concensus
from the Ada community.

2.1.5 CAIS Prototype
. 2.1.5.1 Prototype Definition

A CAIS prototype will be developed to prove whether the
CAIS design 1is implementable. The prototype will include a
combination of experimental implementations, experiments designed to
produce information using those implementations (including criteria
for measurement), and reports evaluating the performance of the

-

X implementations with respect to the criteria. Besides justifying the

N CAIS design, the CAIS prototype will provide some insight as to

N whether useful tools can be implemented using the CAIS, and whether

) the CAIS will achieve its transportability objective.
D-15

]

4“"-._-_-...-\.v\.-~.!-.;,-.;-";.'.;,- ‘.-\‘_»\'_..:.. ;_.\'_.‘:.. ;‘-\~ .\'.._-'.{.. -‘_‘.:., e .‘,;.’:.'.-_...‘ :".:_. -_.--. _-_1‘-,.:‘".\ ‘-‘}\ AT N A ;_“‘.
R . WSS RN TR A

PN AR At S L S)

2.1.5.2 Kinds of Prototypes

The four basic kinds of prototype implementations are the
following: "quick and dirty", tuned, full or partial implementation
of 1individual tools, and full implementation of toolsets. A "quick
and dirty" implementation is designed to be completed as quickly as
possible. This prototype is useful for proving implementability and
provides a base for tool experiments. A tuned implemcntation is
designed to be as efficient as possible; it provides useful insights
into tailorability and the overall tool potential for efficiency. A
full or partial implementation of individual tools is useful for
insights into tool usability and applicability. The last type of
prototype, a full implementation of toolsets, is designed to provide
a full APSE content for experiments. Full implementations are also
useful for determining the ability of the CAIS to satisfy the CAIS
design requirements.

2,1.5.3 1Identified Prototypes

There are nine prototypes currently in development. TRW is
developing a full CAIS Version 1.0 implementation under a KIT-
support contract. TRW's implementation 1is based on UNIX/ARCTURUS
hosted on a VAX. The MITRE effort is currently in the design phase.
The only totally in-house effort to prototype a CAIS is sponsored by
Gould. Other CAIS prototype work is being conducted by Texas
Instruments, Virginia Polytechnic Institute, a government-sponsored
WIS project, the RADC-sponsored AIE effort, a STARS-sponsored Los
Alamos project, and a VHSIC- and AJPO-sponsored very high order
development language (VHDL) program.

2.2 The TRW Software Productivity System

Mr. Imad Bitar from TRW's Redondo Beach, California facility
gave a presentation on TRW's Software Productivity System (SPS). The
SPS has been an ongoing project at TRW for four years, and its aim ;
is to increase the productivity of software engineers. The topics
that outline Mr. Bitar's presentation are the following: (1)
background, () the SPS, (3) lessons learned, (4) measurement data,
and (5) conclusions. -

2.2.1 Background
2.2.1.1 Productivity Assessment

In 1980, TRW conducted a study to determine how the company
could increase its software productivity. The study involved an

internal assessment of the industry’'s shift to better software
productivity.

D-16

el IR S w A & A s+ 4 o+ e & & = A m . o s & e & e

PPN

“yugp)

.....

2.2.1.1.1 Internal Assessment

TRW's internal assessment consisted of a questionnaire
that inquired "If there were only two or three things you could get
TRW to do to improve software productivity, what would they be?" The
four areas of improvement cited most often were management actions,
work environment and compensation, education, and software tools. An
interesting result of the survey was that while most wupper and
middle management personnel felt that improved management actions
would improve productivity, the software engineers and programmers
emphasized the need for more software tools.

2.2.1.1.2 Quantitative Assessment

TRW studied some companies to determine what actions they
were taking to improve software productivity. Two of the companies
TRW investigated were IBM and Bell Labs. TRW received input from
some educational institutions such as Harvard and Carnegie Mellon,
and they received ideas from Dr. Barry Boehm's book "Software
Engineering Economics.” One of the results of these studies was that
if one had nominal software tools in a project and only the software
tools were improved, then a 150 percent increase in productivity
could be expected. Another result was that if one improved the
quality of personnel on a software project then a 400 percent
increase in productivity could be expected.

2.2.1.3 TRW Productivity Goals

TRW's near~term goal (1985) is to increase the 1980 average
productivity by a factor of two; TRW's long-term goal (1990) 1is to
increase the 1980 average productivity by a factor of four. These
goals imply that in 1985 (1990) TRW software projects will bid 1/2
(1/4) the number of 1labor months in the 1980 time frame for the
development of similar applications software while maintaining the
required quality.

2.2.1.4 Chronology

The SPS was established in 1981, and its goal was to build
a software development environment (SDE).

The 1initial facility was system operational in 1982. It
supported one project, had nominal tool integration, and the
software tools were basically those provided with UNIX.

In 1983, the first SPS VAX was installed, and the number of
users was expanded to 190. TRW found that the users requested more
documentation and management aids than were currently available on
the system.

yxy

4
¥
~.
o
~l
\
N
‘ . In 1984, two VAXs and two Pyramid computers were added to
’5 the system. The system supported 400 users, and the wuser support
/ program was expanded by implementing additional software tools.
s The goals for 1985 are to add five more computers and to
- increase the number of users to 1000.
:;Z: 2.2.2 The SPS
;: 2.2.2.1 Operational Concept

The operational environment consists of source computers,
. to support the development environment, and target computers, to
o host the final product. The system is connected by a LAN, and any
v source computer can be reached from any terminal/workstation.
C4

2.2.2.2 Objectives

TRW wanted to automate all of the activities of a project
life cycle. These activities include requirements and design,
coding, testing, and document preparation. TRW planned to implement
an environment that would automate one or more methodology. The
result of not forcing all projects to use a single methodology is
that software methodologies will support technical methods and
management procedures. TRW's environment was designed to support all
users, from managers and programmers to secretaries. The company
implemented a method of storing and relating data so that all data
pertinent to a project could be accessed.

2.2.2.3 SPS Software

N
E: Some design tools available on the SPS are a program
- design language, and a requirements traceability tool. Development
:4 software includes compilers for Ada, Fortran, C, and Pascal,
=~ debuggers, and an automated unit development folder. Management
- tools 1include an electronic spread sheet containing functions for
- cost-to-completion and proposal pricing, and a capability for
K milestone charts. SPS software also includes automated office tools,
- user interface utilities, general purpose utilities, and software to -
f: accomplish file transfers.
2.2.2.4 SPS Hardware .
- The SPS LAN contains 9 central processing units (CPU's),
- 262 terminals (with 132 more on order), and 160 bus interface units.
- The SPS also includes two IDM 500 Data Base Machines, 6 Imagen laser
printers, and numerous portable terminals.
a; 2.2.3 Lessons Learned
N
<,
>,
”1
. D-18
\\. '~‘.\\ .._.;_.._ ‘.‘\‘-'."(".".",r' N ..'.._ ._.... ._._ o * PO el

2.2.3.1 Software

TRW found that selecting UNIX as the basis for SPS was an
excellent choice. UNIX 1is available on a variety of different
computers, and this proved beneficial because TRW is not tied to a
. single manufacturer. TRW discovered that one should exercise caution
not to obtain a hybrid version of UNIX because porting problems will
! result.,

“» Y e v T "R

TRW learned that evolutionary SPS development has been
beneficial. User feedback and tool wutilization measurement data
provided wuseful input to the project as it has developed over the
past four years.

TRW found that ¢the core of an automated SDE 1is an
integrated project master data base. This data base avoids retaining
redundant data, promotes data flow between tools, and provides a
consistent means of storing data.

2.2.3.2 Hardware

TRW found that LANs are very beneficial; they are reliable
and cost effective. Through the LAN, performance has been measured
as high as 19.2K baud.

TRW concluded that a centralized environment is not an
ultimate solution to user support problems. It was discovered that R
20 percent of the users consume 70 percent of CPU resources. TRW
plans to off-locad the "heavy" resource users to personal
workstations in order to make the system more cost effective.

Another interesting conclusion is that user acceptance of
the SPS was enhanced through access to modern technology, such as ,
laser printers, graphics facilities, and data base machines. It was 3
noted that some users learned the system faster because of their
enthusiasm to use these high technology devices.

2.2.3.3 Technology Transfer

TRW learned that user support functions were consuming 50
percent of SPS resources. In order to provide better user training .
and consulting, TRW created a User Support Organization. This
organization is responsible for a reference 1library, and hardware
maintenance support, as well as user consulting and training.

2.2.3.4 Measurement 4

Measurement data was collected on tool utilization, system
resources utilization, and user/system interfaces. Whenever
possible, subjective measurement was validated with real data.

D-19 .

-

MM AN

P

‘_.‘. 2

N Ve la?a e

2NN R N NN

2.2.3.4.1 Tool Utilization

The measurement data indicated that twice as much CPU
time was spent for documentation services as was spent for software
development. Documentation services include preparing viewgraphs and
presentations, and updating requirements and design documents.

2.2.3.4,2 System Resources Utilization

Tools were analyzed based on the frequency of invocation.
This data is useful for determining which tools should be moved ¢to
workstations in order to remove the load from the system. The ten
tools that most heavily tasked the CPU are the following: (1) vi -
screen editor, (2) csh - command interpreter, (3) ipr - formatter

for printer, (4) ips - printer status monitoring, (5) troff - text
formatter, (6) emacs - screen editor, (7) scribe - text formatter,
(8) query - forms manager, (9) viewcomp - electronic spreadsheet,

and (10) ada pdl - program design language.

2.2.3.4.3 User Function Data

Data was collected to determine which group of company
personnel used the system most often. It was concluded that the
software engineers and programmers occupied 65 percent of the CPU
for development, and secretaries used 11 percent of the CPU for data
entry. The personnel who used the system the least were managers and
senior staff. Personnel who were surveyed felt that their
productivity increased almost 40 percent due to the SPS.

2.2.4 Conclusions

TRW found that software development environments should be
extensible, uniform, and customizable. The environment should
support friendly interactive facilities, rapid prototyping, and
reuse of internal components. It is also important to include a data
base for use as a central information repository.

TRW believes that a software development environment can
increase the productivity of project personnel, but a SDE is a large
system and requires corporate commitments. Mature support tools are
very important, and the man-machine interface must accommodate all
classes of users and must be consistent across all tools. The final
point that Mr. Bitar presented was that user involvement and
acceptance of SPS was crucial to the success of the SDE.

The general session of the E&V meeting was adjourned so that
working groups could meet separately. Working groups met separately
for the remainder of the day.

3.0 Wednesday, 6 March 1985

D-20

3.1 Working Group Status Reports]
) 3.1.1 APSEWG Status Report

The APSEWG status report was presented by Liz Kean, the
. chairperson. One personnel change was noted: Lt. Jim Kiskpatrick,
Gina Burt’'s replacement to the E&V Team, moved from the APSEWG to
the CAISWG. No deliverables were due this quarter. Accomplishments
this quarter include establishing the format to describe the
functions of the ALS, AIE, and ALS/N; the tool breakdown of these
environments has bequn. Projected work for next quarter includes
listing the tools in the ALS, AIE, and ALS/N, and providing 1inputs,
processing, and outputs for each tool. This work is an effort to map
the environments into the SEE taxonomy. No deliverables are due next
quarter.,

3.1.2 CAISWG Status Report

The CAISWG status report was presented by the chairperson
bDarleen Sobota. Personnel changes noted include a new member, Lt.
Jim Kirkpatrick, who will be transitioned into the position of
CAISWG chairperson. The new vice-chairperson is Gary McKee, and the
transitioning chairperson is Lt. Doug Olson. Having Trisha Oberndorf
attend the CAISWG working group sessions helped them resolve many
CAIS-related questions that the CAISWG had generated. The
deliverables due this quarter 1is the APSE Validation Procedures
Document. Accomplishments this quarter include incorporating the
comments on the APSE Validation Procedures Document, reviewing the
draft CAIS~-MIL-STD version 1.4, and providing input to the CAIS
working group of the KIT/KITIA. Projected work for next quarter is
to continue the development for the breakdown of sections 5.1, 5.2,
5.3, and 5.4 of the CAIS document. No deliverables are due next
quarter. .

3.1.3 COORDWG Status Report

The COORDWG status report was presented by the chairperson
Don Jennings. One personnel change was noted; Randal Leavitt moved
from the COORDWG to the REQWG. No deliverables were due this
quarter. Accomplishments this quarter include the E&V meeting
minutes and status report, & draft Public Coordination Strateqy
Document version 2.0, and proposed changes to the Technical
Coordination Strategy Document. A format for all E&V documents was
prepared at the meeting and will be reviewed by the Team. Projected
work for next quarter includes Public Coordination Strategy Document
version 2.0, the E&V meeting minutes and status report, and the
draft Technical Coordination Strategy ©vDocument version 2.0. The
Public Coordination Strategy Document version 2.0 1is the COORDWG
deliverable for next quarter.

D-21 *

R SR LTI I

1._.\-'.‘. o ..H e, e Wt S ST B N S ORI et
4. {. l.‘ . . 1. { . - q’ - ,’ - -.. l'_ o v‘ P'.~ -. -. L “ " " 1’ " ’. - !.. ., . .~~ -‘. <« 1. B v“ :
L S &-‘ MM v .

3.1.4 REQWG Status Report

The REQWG status report was presented by the chairperson Tim
Lindquist. Personnel changes noted were the following: (1) Pat
Lawlis will become REQWG chairperson, and (2) Marlene Hazle will
fill the position of vice-chairperson. No deliverables were due this
quarter. Accomplishments this quarter include the move to the SEE
taxonomy, the outline for the Tools and Aids Reguirements Jocument,
and resolving the comments on the Requirements Document version 1.0.
Deliverables due next quarter are the draft Requirements Document

version 2.0, the draft Tools and Aids Requirements Document version
1.0.

3.2 Life Cycle Software Engineering Environment Taxonomy

Liz Kean from Rome Air Development Center (RADC) gave a
presentation on the Life Cycle Software Engineering Environment
(SEE) taxonomy. Liz covered the following topics: (1) background,
(2) NBS/ICST taxonomy, (3) SEE taxonomy, and (4) future plans.

3.2.1 Background

The E&V Team and the Software Technology for Adaptable,
Reliable Software (STARS) Joint Service Software Engineering
Environment (JSSEE) task needed a SEE taxonomy. Analysis of the
National Bureau of Standards Institute for Computer Sciences and
Technology (NBS/ICST) taxonomy determined that a major fault of the
NBS/ICST taxonomy is that it does not cover all of the tools
required for a life cycle; it includes tools for the coding and unit
test phases only. It was decided that the E&V Team and the JSSEE
task needed to develop a generic taxonomy of functions for a SEE
that included all phases of the life cycle. Three people from RADC,
Richard Evans, Elizabeth Kean, and Frank LaMonica, were tasked to
develop this taxonomy.

3.2.2 NBS/ICST Taxonomy

The NBS/ICST taxonomy 1is a basis for the SEE taxonomy. The
NBS/ICST taxonomy is a hierarchical arrangement of software tool
features; the taxonomy covers the basic processes of a tool: input,
function, and output. There are three categories of tool functions;
they are the following: transformation, management, and analysis. A
transformation tool is defined to be any tool whose input 1is 1in a
different form than its output. An example of a transformation tool
is a compiler; the input is source code, and the output 1is object
code. A management tool is identified by the control of data; a data
base is a management tool. Analysis tools are categorized as static
or dynamic. An example of a static analysis tool is a consistency
checker which is a tool that determines whether or not an entity |is
internally consistent in the sense that it contains uniform notation

D=-22

.t . - -

2 8 8 @ €« &

" W e et
0 S\ e " e

.............

and terminology. A dynamic analysis tool i. an assertion checker

which is a tool that tests the validity of assertions as the program
is executing.

3.2.3 SEE Taxonomy

The SEE taxonomy is a functionally-based, expanded version of
the NBBS/ICST taxonomy. Each of the tool categories are subdivided
into the following sections: (1) global, (2) system/software
requirement, (3) preliminary design, (4) det»iled design, (5)
code/unit testing, (6) software integrati . 1 testing, (7) software
performance testing, and (8) post-deployment support. This breakdown
is based on the NBS/ICST and on MIL-STD-SDS, and each of the eight
subsections is further divided into tool features.

3.2.4 Future Plans

Minimal feedback on the SEE taxonomy has been received by the
SEE design team at RADC; all constructive comments are appreciated.
Future work planned for the taxonomy is to condense as much of the
repetition as is possible. RADC plans to publish the SEE taxonomy as
a technical report in the near future.

3.3 General Discussion
3.3.1 Stars Representatives From The E&V Team

Any E&V Team member interested in being the E&V
representative to a STARS task area should contact Jinny Castor.
Distinguished reviewers will be allowed to participate if their
support organization agrees to pay travel expenses, and if the STARS
working group agrees to permit an industry representative to attend

its sessions. Government personnel who are interested in
representing the E&V Team will have their expenses paid by the E&V
Team budget. The E&V Team is most interested in sending

representatives to the STARS Metrics and Measurement, and the STARS
Applications task areas. The main responsibility of the E&V
representative is to serve as a liason between the STARS task area
and the E&V Team; each representative will report issues that impact
the E&V Team and 1issues that the E&V Team could impact for his
particular task area.

3.3.2 Policy For Working Group Chairpersons

Distinguished reviewers may hold the vice-chairperson
position in working groups; this position was previously reserved
for government personnel only. Each working group chairperson is
still required to be a government representative.

o v v o

3.3.3 Requests For A Copy Of The Als

Any government E&V Team member who wants a copy of the ALS

must submit a written request to Jinny Castor. The letter must state
the following points: (1) the person requesting the ALS is an E&V
Team member, (2) the ALS will be used 1in support of E&V activities
&3 only, and (3) the ALS will not be released to a third party. This
ﬁ letter must be accompanied by three blank magnetic tapes which will
: be used to mail the software.

A

3.3.4 E&V Glossary

A need has arisen for an E&V glossary of terms. The COORDWG
will adopt the KIT/KITIA glossary and add to it terms that are
" related to the E&V task. This glossary will be updated and
- maintained by the COORDWG.

The E&V Team meeting was then adjourned.

3.4 Action Items From E&V Meeting 5-7 December 84 Not Accomplished

AI-12-7-84-1: Don Jennings. Get 1information on the Asilomar
Conference Center as a possible site for the 1986 E&V
Workshop.

AI-12-7-84-2: Don Jennings. Investigate the requirements for the
public release of the E&V Status Report to
publications such as IEEE.

AI-12-7-84-3: Gary McKee. Develop the General Node Management
breakdown for the CAIS, section 5.1.

- AI-12~7-84-4: Nelson Estes and Jim Kirkpatrick. Develop the
breakdown of the CAIS Process Nodes, section 5. 2.

AI-12-7-84-5: Bud Hammons and Doug Olson. Develop the breakdown of
the CAIS 1/0 Facilities, section 5.3.

AI-12-7-84-6: Ray Sandborgh. Generate a decision model for tool
support.

AI-12-7-84-7: REQWG. Consider outstanding comments on draft 1 of
the Requirements Document.

3.5 Action Items From E&V Meeting 4-7 March 1985

AI-3-7-85-1: Jinny Castor. Obtain WIS Compiler Guidelines from
Capt. Percy Saunders and put them on the EV-INFO
directory.

AI-3-7-85-2: Jinny Castor. Send message to E&V Team indicating how
to edit the HERMES template to allow CC:.

AI-3-7-85-3: Jinny Castor. Update EV-TEAM.INFO.HLP file.

AI-3-7-85-4: Jinny Castor. Update EV-TEAM-MAIL.HLP file.

AI-3-7-85-5; Jinny Castor. Prepare public exchange records for E&V
briefing - SIGAda in San Diego, CA, and E&V briefing
- Local SIGAda San Diego, CA.

AI-3-7-85-6: Jinny Castor. Modify EV-INFORMATION login file to
send comments to EV-INFO.

AI-3-7-85-7: Jinny Castor. Contact ECLB administrator to request
that mail sent to EV-INFORMATION be redirected to EV-
INFO.

..........................
...........

...............

e e T A e T a4

AI-3-7-85-8:

AI-3-7-85-9:

AI-3-7-85-10:

AI-3-7-85-11:

AI-3-7-85-12:

AI-3-7-85-13:

AI-3-7-85-14:

AI-3-7-85-15:

AI-3-7-85-16:
AI-3-7-85-17:

AI-3-7-85-18:

AI-3-7-85-19:

AI-3-7-85-20:

AI-3-7-85-21:

AI-3-7-85-22:

AI-3-7-85-23:

Jinny Castor. Send copy of E&V Plan to Ronnie Martin.

Jinny Castor. Modify master copy of E&V Plan to

reflect: 1. Tools/Aids Requirements Document is draft
in FY85 and version 1.0 in FY86.
2. Changes to definition of E&V:
E - performance measurement
V - conformance measurement

Jinny Castor. Modify E&V viewgraph to reflect above
E&V definitions.

Jinny Castor. Send travel voucher/cost form to E&V
members.

Jinny Castor. Coordinate with Jimmy Williamson to
develop 6 STARS Task Area descriptions for Tech Coord
Strategy Document.

Jinny Castor. Notify E&V Team when Public Report is
available through DTIC.

Jinny Castor. Change E&V Plan schedule to reflect
that the draft Tools and Aids Requirements Document
version 1.0 is due next quarter.

Greg Gicca. Confirm availability for presentation at
June E&V meeting.

Greqg Gicca. Draft of SDME into SEE taxonomy.
Al Deese. Draft of ALS into SEE taxonomy.

Bard Crawford and Marlow Henne. Draft of ALS/N into
SEE taxonomy.

Paul Reilly and Stacy Reddan. Draft AIE into SEE
taxonomy.

Liz Kean. Update the project reference list for those
documents referenced in the APSEWG Document.

Marlene Hazle. Draft attribute definitions for
Requirements Document.

Ronnie Martin. Draft Q/A section of Requirements
Document.

Mike Meirink, Rick Contreras, and Bob Fritz. Draft
the Tools & Aids Requirements Document.

el 4

AI-3-7-85-24:

AI-3-7-85-25:

AI-3-7-85-26:

AI-3-7-85-27:

AI-3-7-85-28:

AI-3-7-85-29:

AI-3-7-85-30:

AI-3-7-85-31:

AI-3-7-85-32:

AI-3-7-85-33:

AI-3-7-85-34:

AI-3-7-85-35:

AI-3-7-85-36:

AI-3-7-85-37:

AI-3-7-85-38:

AI-3-7-85-39:

AI-3-7-85-40:

Al-3-7-85-41:

Rich Fleming. Review issues & prepare a draft rewrite
of section 4.0 of the Requirements Document.

Pat Lawlis. Ensure Requirements Document conforms to
document format set up by COORDWG.

Gary McKee. Provide overview/introduction of CAIS-
MIL-STD comments by 20 March 85.

Gary McKee. Maintain all team members' comments of
the CAIS-MIL-STD.

Darlene Sobota. Send Tricia a copy of APSE Validation
Procedures Document version 1.0.

Darlene Sobota. Draft a letter for Gary McKee to be
new CAISWG chairperson.

John Reddan. Send article on simulation of Ada
processes to Tricia.

John Reddan. Develop the breakdown of the CAIS
utilities, section 5.4.

E&V Team. Provide inputs to COORDWG for Project
Reference List.

COORDWG. Obtain the KIT/KITIA glossary of terms and
use it to create an E&V glossary.

COORDWG. Forward Tools/Aids questionnaire and obtain
responses.

Don Jennings. Prepare boilerplate for working groups
document's section 1.2 (background).

Don Jennings. Put a copy of the E&V document format
on the NET.

Kathy Gilroy. Draft the requirements questionnaire
for NET distribution.

Kathy Gilroy. Draft the compiler implementation
dependencies for the Requirements Document.

Helen Romanowsky. Human/computer interfaces of
Requirements Document.

Betty Wills. Update the E&V Project Reference List.

Rick Contreras. Put on the NET a message soliciting

input for a software evaluator for computer resources
of a delivered Air Force system.

D-27

..

Ky

ATTENDANCE LIST
E&V Team Meeting, 4-6 March,

-~

1985

Stowe Boyd

GTE Gov't Systems

1 Federal St.
Billerica, Ma 01821

Jinny Castor
AFWAL/AAAF
Wright-Patterson AFB, Oh 45433-6543

Bard Crawford

TASC
One Jacob Way
Reading, Ma 01867

Nelson Estes
ASD-AFALC/AXTS
Wright-Patterson AFB, Oh 45433-6543

Capt. Ken Frankovich

Gregory Gicca

GTE Gov't Systems

1 Federal St.
Billerica, Ma 01821

Debra Harto
AFATL/DLCM
Eglin AFB, F1 32542-5000

Marlene Hazle
MITRE Corp.
Burlington Rd.
Bedford, Ma 01730

Don Jennings
OC-ALC/MMECE
Tinker AFB, Ok 73145-5990

D-28

Michael Bridges
General Dynamics
Data Systems Division

PO Box 85808, M2 VP 5300
San Diego, Ca 92138

Capt. Ricardo Contreras
Hq AFOTEC/LG5S

Kirtland AFB, NM 87117

Capt. Al Deese
ASD/SIOL

Wright-Patterson AFB, Oh
45433-6543

Richard Fleming
Aerospace Corp.
M1/112

P.0. Box 92957

Los Angeles, Ca 90009

Robert Fritz

CscC

4045 Hancock St.
San Diego, Ca 92110

Kathleen Gilroy

SPS

P.O. Box 361697
Melbourne, Fl1 32936

Howard Harvey

Marlow Henne

Harris Corp.

GISD

505 John Rhodes Blvd.
Bldg. 1

Melbourne, Fl1 32901

James Johnson

- - ey -~

P AR

.‘...-o'

-

pf W N

Ve “a s &

N

e

At s, et e

Elizabeth Kean
RADC/COES
Griffiss AFB, NY 13441

Maj. Allan Kopp

AJPO

Rm 3D139

(Fern St/C107)

The Pentaqon

Washington, DC 20301-3081

Randal Leavitt
PRIOR Data Sciences
39 Highway 7
Nepean, Ontario

K2H 8R6

Patrick Maher
OO-ALC/MMECF
Hill AFB, Ut 84056

Gary McKee

Martin Marietta Aerospace
M/S 0423, P.O. Box 179
Denver, Co 80201

John Miller
SM-ALC/MMEHD
McClellan AFB, Ca 95652

Lt. Douglas Olson
HQ AFCMD/SI
Kirtland AFB, NM 87117

Stacy Reddan

Lt. Darlene Sabota
AFWAL/FIGRB
Wright-Patterson AFB, Oh 45433

Lt. James Kirkpatrick
AFALC/PTEC
Wright-Patterson AFB, Oh
45433

Capt. Patricia Lawles
AFIT/ENC
Wright-Patterson AFB, Oh
45433

Tim Lindquist

VPI and State Univ.
562 McBryde Hall
Blacksburg, Va 24061

Ronnie Martin
Georgia Institute of Tech.
Atlanta, Ga 30332

Michael Meirink
Sperry Corp.

DPG

P.O. Box 64525

St. Paul, Mn 55164

Trisha Oberndorf

NOSC

Code 423

San Diego, Ca 92152-5000

John Reddon

Syscon Corp.

3990 Sherman Way
San Diego, Ca 92110

Helen Romanowsky
Rockwell International
400 Collins Rd NE
Cedar Rapids, To 52498

Ray Sandborgh

Sperry Corp.

Knowledge System Ctr.

3001 Metro Parkway, Suite 223
Bloomington, Mn 55420

-

Capt. Percy Saunders

" e

Jimmy Williamson
AFWAL/AAAF-2
\ Wright-Patterson AFB,

2 »

e # 28

.....

Oh 45433

D-30

- o WY > D Son ga g Ty
. W (et hal_Sat et S et I S g s

Lt. Patrick Sheridan
WIS Program Office
Hanscom AFB, Ma 01731

Betty Wills .
CCSO/SKXD
TINKER AFB, OK 73145

*y s “w

vy ki~ o Bt ol pltarte YAt Jianbate Rae Jed it ALk b Rad Y v WO N i VHLUWLUY U 48 il S e Ll Rl el Sk ol toll Al A o)

APPENDIX E

MINUTES

of the

EVALUATION & VALIDATION (E&V) NMEFTTRS

-7 June 1985

FTysy o

g TABLE OF CONTENTS

' SECTION PACGE
1.0 Wednesday, 5 June 1985 ‘}j
1.1 Welcome, Introductions and General Business 23
1.2 Functional Capabilities Required to Support Software Test and o)
Evaluation
1.3 VHSIC Hardware Description Language (VHDL) Program -6
1.4 Distinguished Reviewers =T
l.4.1 Single Project/Multiple APSE's E-7 N
1.4.2 Ada Program Library System 5-7
1.4.3 Security in APSE Bl
1.5 Open Discussion -5 .
2.0 Thursday, 6 June 1985 E-10
2.1 Announcenments =10
2.2 Component Evaluation Criteria 5-10
2.3 Ada Validation Policy "Policeman™ =11
2.4 ARTEWG Status Report B-1l
3.0 Friday, 7 June 1985 e

3.1 CAIS Operational Definition Status Report
3.2 STARS Status Report E-

5
3.2.1 STARS RADC Quality Metrics . 10
3.3 Working Group Status Reports 1B-10
3.3.1 Requirements Working Group (REQWG) Status Report i-16
3.3.2 APSE Working Group (APSEWG) Status Report w16
3.3.3 Standards Evaluation and Validation Working E-17
Group (SEVWG) Status Report
3.3.4 Coordination Working Group (COORDWG) Status Report et
3.4 Action Itens -1
3.5 Discussion Items BE=17
List of Attendees B-20
1
E=-2

.
‘
1
|
'

N e
R P LI oS, L R et L R N I A T A AL Py
SR R IR IR (‘;.‘:,{_'.'; e e e e !_\'~\'_{>‘::‘_-:.._\"‘\ e e a ety tatat A PV S C PO TS PO VS FEPR V- PR o

PO LN At PR 4 it el el ar & gt aei SR A CE AE oS N A

9
1.0 Wednesday, 5 June 1985 ‘
1.1 Welcome, Introductions and Gencral Business ﬂ
The E&V Team meeting opened with welcoming remarks by Virginta Castor,
chairperson. Introduced to the team were Maj. Allen Kopp, AJPO; Maj. Kenncth N
Schoonover, HQ Systems Command; Jerry Brookshire, distinguished reviewer from N
Texas Instruments; Manda Suri, distinguished reviewer from Lockheed; Tnomas
Leavitt, distinguished reviewer from Boeing.
4
. It was announced that:
- The E&V Technical Support Contract has not yet been awarded. o
- The CAIS Validation Capability contract is in Procurement. .
~ The Ada Ccmpiler Evaluation Capability announcement of request for _
proposal is scheduled to appear in the Commerce Business Daily (CBD) on <
30 May. The original of the announcement will be available over
ARPANET.
= Minutes of the March meeting are available on the NET under 'T
<DHARTO>MIN.TEXT. j
Action items carried over from the December and March meetings were N
reviewed. -
General Business included the following items: -
- A list of E&V Team members was distributed and updates/corrections were 5
requested. N
- It was requested that all mail messages go to all team members. H
- The schedule of future meetings was reviewed. iy
- KIT/KITIA review was discussed. Ny
- It was announced that Jinny Castor has taken a position with the AJPO .
and will be moving to Washington D.C. The new E&V chairperson will be
Raymond Szymanski.
- The STARS glossary reflects conflict in terms of Evaluation and o
Validation. The E&V Requirements Document is to be used as a baseline .
for the definition of these terms. 5

- The E&V Status Report is due for the Language Control Facility (LCF)

Newsletter the week of 9 June. The COORDWG will address this during f
its working group sessions. -

=~ The Schedule of Deliverables was reviewed.

F-3

..... . ..

»

C e T m e Y.ttt
L R SO A
AP S SR S} AR

Pia "B % Nt D A R T Al ¢ S

1.2 Functional Capabilities Required to Support Software Test and Evaluation
in Ada Programming Support Environments (APSEs)
Dr. Richard DeMillo, Project Director of STEP, Georgia Institute of
Technology

The Software Test and Evaluation Project (STEP) was 1initiated by the
Director Defense Test and Evaluation (DDT&E) in 1981, and is administered by the
Under Secretary of Defense for Research and Engineering, whose office is
responsible for large weapon system acquisitions.

The major goal of STEP is to improve the practice of software test and
evaluation. The approach used, which is top down in nature, is to make policy
changes and implement the changes, moving down to the technology -hat supports
software test and evaluation.

A study that began in 1981 at the request of DDT&E provided an overview of
the state-of-the—art 1in software testing and reported the current view in the
practice of software testing. Recommendations prompted by the study were:

- Upgrade the automated technology available

= Insert the technology into APSEs

The STEP program was tasked by STARS (Software Technology for Adaptable,
Reliable Systems) to identify the functional requirements for technology to be
inserted in Ada development work. Requirements were identified as:

- Capabilities to remove barriers which prevent adequate testing

= Capabilities to facilitate improved testing

-~ Implementation of the defined capabilities, facilitating interface with
STARS efforts, assuring a two way flow of information.

The STEP view of the environment for testing operational software
recognizes that:

- Testers use software differently from other users
- Programmers view testers negatively
~ Testing may delay delivery of software

- The testing life cycle is not identical to the developnent life cycle

- Testing needs cut across needs of the rest of the development
community.

Requirements for test and evaluation include identification of and response
to constraints placed on design environments that support the testing community.
These requirements are either general or specific in nature.

E-L

AYAS Ak N Mol s Aud fnte il NA LANEL MR A b e A N (e el St Bt YA VY

General requirements are those 1imposed on the tester by external

requirements. They are not always technical in nature and have little impact on
specific software design. General requirements state that:

l. Test and evaluation capabilities should be available at all points 1in
the software life cycle where test and evaluation is needed, should be
a component of existing decision support systems, and should feed 1into
a life cycle-based information repository.

2. The system should be acressable via multiple interfaces to meet the “
. variety of needs that exist among the various users. Different modes
of operation are needed by different classes of users, including users

who are not testers.

3. Integration of tools is needed in order to eliminate duplication of
capabilities and allow the building of tools. Integration also
promotes uniformity of interfaces and efficient context switching.

4. Isolation of testers 1is necessary because there 1s a necd for

! integrity, reliablility, security and efficiency in the test process.
. In addition, isolation will prevent the software failures that occur N
during testing from affecting the rest of the user community.

5. Stability of evolution must coincide with what is important to the test
community.

6. Host/target selection must be specified.

7. Testing applications are customized in the areas of life cycle phases,
project-specific management, application-specific technology, classes

of users, applicable policy, and applicable contracts, regulations and
standards.

(il

8. Evolution of test capabilities includes easy inclusion of new tools and .
methodologies.

Specific requirements may take the form of a wish list. They are set forth
to insure technical feasibility, and may include the comment, "it will not work
the way 1t should unless...” The wish list requires:

1. Classification of capabilities by function and Joint Services Software

3 Engineering Environment (JSSEE) structural features. This

. classification is accomplished with respect to 1life cycle, 1level of
information required, and level of services required.

2. Types of development functions provided. A tool building capability is

, better than providing specific tools and increases the possibility of

y compatibility. A test building capability {s more flexible than !

) providing specific tests. Other services include test .
description/preparation, test analysis, and degree of summarization py

, services.)

Cohadh At S Ak A S Sedh b sl el Jend

Rk S ek dall St Aed Nan antl St Aol Guif it st Sath S-S arit SEIA At gl S dr st g AN SR AT S 4 e v bl b - o gy A v e & an dien a8 v e gy 4
)
)

3. Ability to control test related processes.

4. Human Factors that make the test process more pleasant, thereby
increasing productivity and effectiveness of the testers.

A final draft of the report describing requirements and rationale for tests

is available this summer. Copies can be obtained bv contacting Dr. DeMillo at
Georgia Institute of Technology.

1.3 VHSIC Hardware Description Language (VHDL) Program
Dr. John Hines, Very High Speed Integrated Circuits (VHSIC)
Program Office

VHDL 1is the government effort to produce a good standard hardware
description language. There are currently fifty seven different non-standard
hardware description languages 1in wuse. VHDL 1is to hardware documentation
language what Ada is to software documentation language.

The VHDL contract was awarded in August 1983. Intermetrics 1is the prime
contractor with IBM and Texas Instruments as subcontractors. Intermetrics,
together with IBM is responsible for language definition. Intermetrics {is
solely responsible for 1implementation of the compiler parts of the language
system, and Texas Instruments is responsible for the simulator.

Phase A, the definition phase of the project, produced a series of language
definition documents. This phase ended in July 1984 with version five of the
language definition. This document underwent major industry review and tool
analysis, which resulted in version seven. This document will be the baseline
for the implementation of the VHDL. A final document, which will incorporate
minor changes to version seven, 1s due December 1985. Phase B, the
implementation phase, has been in progress since October 1984.

The VHDL project, a part of the VHSIC program within the Department of
Defense, is required to have close Ada ties. The VHDL implemented language
structure is very similar to Ada to the extent that VHDL could be considered an
extended subset of Ada, extended in the sense that some user defined procedures,
functions and packages have been added. It uses Intermediate Design Language
(IDL) to define the form of the language, which is somewhat like a data base
schema. CAIS Version 1.3 was used in the design library.

Hardware design deals with an object-oriented philosophy, structure and
behavior. VHDL attempts to provide the 1levels of abstraction necessary to
depict high level design and maintain the structural aspects of the designer's
viewpoint. Entity models allow the designer to decompose to any level of the
design hierarchy. The system allows the designer to configure things as
desired, and a smart linker performs efficient simulation.

The compilation takes place in an analyzer which produces an {ntermediate
file similar to Diana. This file 1s dumped into a design library. A simulation
can then be performed to verify the description.

The simulator generates a simulation model, called the simulation kernel,
which 1s analogous to a run-time system on a computer. Intermediate VHDL
Annotated Notation (IVAN) generates an Ada program which 1s compiled and

cxecuted.

In addition to components mentioned above, the Virtual Memory Management
(VMM) system has been developed, and the final version delivered.

1.4 Distinguished Reviewers

1.4.1 Single Project/Multiple APSE's
Jerry Brookshire, Texas Instruments
(subject assigned to Requirements Working Group)

The fundamental underlying concern in this area is in regard to distributed
APSEs and their communication mechanisms. Large scale system development
includes components of mission critical software requiring concurrent design and
development, potentially 1involving a variety of target computers. Overall
system operational requirements could dictate a 1large volume of mnulti-way
concurrent communications between functional nodes.

Approaches to addressing the problems inherent in a single project wusing
multiple APSEs are:

- Begin with a single large central development APSE and move toward the
development of smaller remote versions. In this instance, it is
possible to insure compatibility by designing it in.

- Multiple APSEs are required at the beginning of many projects. This
situation requires that incompatibilities be addressed as they are
identified.

Issues that need to be resolved include host/development station
compatibility, database handling, and multilevel software development.

Considerations in addressing these issues could include: providing similar
facilities across different targets, initially developing all software at a
large central faclility to avoid database problems, and working with a project
database not resident at smaller remote facilities. Host-to-host compilation
for debugging and early testing during development is a possible requirenment.
Host-to-target code generation may require a simulator to do target debugging in

the beginning phases of a project when all development is confined to the host
machine.

1.4.2 Ada Program Library System
Thomas Leavitt, Boeing
(Subject assigned to Requirements Working Group)

The library system is the structure in which program development occurs and

is an 1important factor 1in wusability. It 1is overlooked in some evaluation
taxonomies.

In selecting a library system from those available, evaluation criteria
must be established. These tend to be subjective in nature and include ease of
use, parsimony, and elegance. Modifiable aspects of systems must be related to
the context of the whole programming system. A very important aspect of the

PR R A,

library system 1s support of controlled sharing of units in the library.

A means of evaluating library systems under consideration for a proposed
Ada system 18 to require each supplier to describe how his system will perform
each of the following scenarios:

1. Create a local executable file from a new main program unit which
incorporates preexisting library units.

2. Create a new library unit.

3. Create a local executable file from a modified 1library wunit without
impacting existing files.

4. Replace a shared library unit with a new version.
5. Test the currency of a unit in a program without recompiling.

6. List all units which depend on a specified unit and all the units which
a specified unit depends on in the context of a named program.

7. Delete a unit.

8. List the units in a library.

9. Given a target machine address, determine the corresponding Ada unit.
10. Copy units between libraries on different APSEs at different sites.
l1l. What version support is provided?

12. 1Identify the source text files, by version and date, which were linked
together to form a specified executable program.

13. Estimate the learning time to know how to do all the above operations
from the documentation provided.

1.4.3 Security in APSE
Manda Sury, Lockheed Missiles and Space Company
(Subject assigned to CAIS Working Group)

Software security is an essential feature of mission critical applications.
Therefore the E&V task should include security considerations in evaluating APSE
components and interfaces.

Security affects all the software attributes defined in E&V documentation:
robustness, reliability, integrity, correctness and completeness. Security can
be defined as:

- Protection of valuable assets

- Prevention, protection and correction of vulnerabilities.

In determining what to protect, the value of the item under consideration
should be compared to the cost of protecting it. Not everything warrants
security. Items (assets) to be protected include information, objects, and :
programs.

Techniques for providing security include isolation and mediation.
Isolation keeps threat of security breaches away from the {item being protected,
whereas a mediator acts as a go between for the object and would-be users.
Basic components of a protection mechanism are:

- organizational policy stating who can access each iten
- person or process that implements the policy

- monitoring capability

The National Bureau of Standards defines a hierarchy of users as ownership
rights, delegation rights, and access rights. Security is in conflict with
user—-friendliness and interoperability, particularly when users are allowed to
act in different role options. A balance between these entities must be
achieved.

A recommendation is that E&V consider that the access control mechanism X
described in the proposed CAIS document (version l.4) serve as a preliminary .
standard for evaluating the security of software in APSE components and =
interface sets.

1.5 Open Discussion

The open discussion was lead by Major Allan Kopp and took the form of a -
question and answer session.

The first question concerned the personnel makeup of AJPO. It was
explained that the director, technical director, and secretary are
representatives of the Department of Defense. The new Technical Director {is
Paul Cohen. Deputy program directors represent the Army, Navy and Air Force.

A series of questions were asked concerning the status of Ada compiler
validation standards. Answers to these questions and related issues were
covered in a briefing presented Thursday, 6 June 1985 during the general session
of the E&V Team meeting.

Discussion ensued concerning milestones and goals of the AJPO. Issues of

. particular interest are the insertion of CAIS into the STARS program, the Ada A
insertion policy, and Ada education. An education working group 1s organized
) (Software Engineering Education Working Group = SEEDWG) that focuses on

education in the area of transitioning technology.

Following the open discussion and a lunch break, working groups met for the 4
remainder of the day.

E-9

i aab i ek b et i Ak et et fd Sk Bad et et Sl Jaic i B et e SNt 1 AN 4 At At Al abe At Aacs s ke A nhe BAs Sl e e San S hie Bt S 2o ate ste Jhen)
ST P . . P e S S

2.0 Thursday, 6 June 1985
2.1 Announcements

l. The E&V Team INFO-HELP file 1listing was again distributed for
corrections.

2. The E&V Team Public Report will be mailed to the distinguished
reviewers.

3. The agenda for Thursday morning was modified to include a briefing by .
Major Allan Kopp and the ARTEWG Status Report.

4. Virginia Castor announced that she would be availabl2 to conduct
training sessions on the ARPANET during the lunch hour.

5. The draft Technical Coordination Strategy Document, Version 2.0 {s
completed and copies are available for team members.

2.2 Component Evaluation Criteria

Greg Gicca, G.T.E Government Systems
WIS Program

One of the major effort of the Software Development and Maintenance
Enviroment (SDME) project at GTE will be to build an environment using existing
Ada technologies. The objective of the evaluation criteria 1is to deternine
which software products currently available are acceptable.

Components are evaluated according to an established 1list of criteria.
Information 1is gathered through a four phawse review process that determines
whether or not the component should be procured.

General categories of evaluation criteria include functional applicability,
understandability, testability, evolvability, efficiency, portability, and human
engineering. In evaluating functional applicability, 1ssues of wusability,
methodology independence, procurement cost, data rights, and correctness of N
output are considered. N

In evaluating understandability, source features such as source code
modularity, granularity, descriptiveness of documentation, traceability,
programming methodology, and completeness of documentation are considered.

In evaluating testability (ease of verification), descriptiveness,
modularity, and instrumentation are examined.

Evolvability (the potential of modifying or expanding a component) 1is

evaluated in terms of flexibility, reusability of source code modules, .
interoperability, descriptiveness, granularity, machine independence, and system
independence.

Efficiency of a component is rated in regard to data storage and system
responsee.

Portability is determined by the programming language used and the degree :
of machine independence and system independence inherent in the component. K

Evaluation in terms of human engineering considers the 1issues of user
interaction, error recovery, error messages, on—line help facilities,
completeness of documentation, system response, integrity, and the degree of :
training required. v

The evaluation process that gathers the information takes place 1in four ’
phases: a high level initial component review, an initial component evaluation,
. a more detailed component evaluation, and a specific component evaluation. The
Initial Component Review evaluates initial information at a high level regarding K
functional applicability, evolvability, portability and human engineering. ’
Reviewers' comments and basic component/vendor information is input at this
time. The 1initial component evaluation decomposes these four areas of
evaluation, then evaluates the component in these areas with further comments
and recommendations from reviewers' specialized perspectives. The first two
phases of evaluation are top-down in nature. The third stage of review further .
decomposes the functions and characteristics to be evaluated and produces more
detailed comments and recommendations from reviewers, who evaluate only from
their area of expertise. The final phase, specific component evaluation, rates
the component as acceptable, unacceptable, or comments that there is not
sufficient information upon which to make a determination. Components are
] compared, so that the most acceptable item will be procured.

Current requirements and evaluation criteria address technology that ({is -
available now, but may not address technology available a few years into the “
future. The fourth phase of evaluation has been designed to allow for the
addition, subtraction, and changing of present evaluation categories. =

2.3 Ada Validation Policy "Policeman” by
Major Allan H. Kopp 3
Air Force Deputy Director, Ada Program \

Although the Ada community needs a writtenm policy, at the present time
there is no formal validation policy in effect. The current unwritten policy
addresses only part of the problem that exists. At present, a yearly
revalidation of compilers is specified.

AP N T

A DoD Ad Hoc committee has been formed to draft a policy statement for
validation. The committee includes Maj. Allan Kopp and Paul Cohen of the AJPO,
Pete Fonash of the Army, Bill Wilder of the Navy, and Ken Schoonover of the Air

Force. Policy formation 1is envisioned as taking place on three levels. The g
policy will be maintained at the OSD (AJPO) level. Procedures will be developed -
at the DoD component and AVO level. Validations are to be conducted, reported "

and administered at the AVF level.

The draft Validation Policy defines responsibilities, identifies the scope
of validation, and addresses validation schedules, revalidation, domain of
" validation, validation reporting, and compiler maintenance.

The scope of validation includes reporting conformance to standards of the
tested compiler, but does not {ndicate the suitability of a compiler for a
particular purpose, nor does it replace a set of application-specific

E-11 “

ot e e ta e . D T, L. . . R X N . .- -
e e T e e e e, - - . o Te Ny A, et e . . .

PN PRI T R T Sy A S A R T e e N iy

RoA_ & s

Pt b R)

«Te an B %

VP B Y

requirements. Validation activities do not measure performance or capacity of a
compiler, but do include preparation, maintenance, and distribution of the
validation test suite.

Validation schedules allow for periodic validation. Initially, wvalidation
of a compiler has been for a one year period; however, validation periods may be
extended for the convenience of the governmant. Revalidatfon has been required
yearly or when major software upgrades are made. A problem occurs when
validation certificates expire before revalidation can take place. New policy
considers that a validated compiler remains validated for a given mission
critical project.

The item being validated is the compiler in its executable form. The host
machine 18 termed a virtual machine. This allows the recognit.on of derived
validations of equivalents to the virtual machine. The "equivalent™ definition
is the responsibility of the vendor. These derived validations expire at the
same time that the original validation expires.

Validation reporting addresses not only the tracking and approval of
Validation Summary Reports (VSR) but also publication of VSR results and of
reasonable challenges. No policy has been established concerning the rescinding
of challenged validations; however, placing a deadline on vendor corrections to
the stated problem 1s being considered as a possible solution. Several issues
in the area of revalidation are in need of resolution.

At the present time, the old Ada Compiler Validation Certification (ACVC)
system 1is being used. The new policy is in the process of being "sold” to the
validation community. It has been presented in briefings, but the printed form
is being witheld, pending Tri-Service review.

2.4 ARTEWG Status Report
Kathleen A. Gilroy, SPS, Inc.

The Ada Run Time Environments Working Group (ARTEWG) is a merger of the
Run-Time Planning Group established by KIT/KITIA, the Common Run Time Interfaces
Working Group of the user subcommittee, and the Distributed Systems Working
Group of the user subcommittee. The purpose of this group is to develop
products and services for the Ada community. Goals and objectives stated in the
ARTEWG charter are:

- Establish conventions, criteria, and guidelines that promote
reusability of Ada components, improve the performance of Ada
components, and provide for the evaluation and selection of RTEs.

- Provide interface mechanisms between members of the community that will

promote quality RTE implementations and identify/resolve Ada RTE
issues.

A plan of action for achieving the stated goals involves these tasks:

- Elaborate Ada implementation dependencies

A Al LB Ty " SRACEMA Sl s M SR S B S A iSRSl S

- Examine approaches used in building RTEs and categorize Ada
implementation approaches

- Categorize applications and their RTE requirements
= Map the requirements onto implementations

= Derive commonality of RTE interfaces

A 1ist of products to be used in implementing the identified tasks 1include
a catalogue of implementation dependencies designed for use by application
programmers, a catalogue of-implementation approaches for RTEs, classification
of application requirements, guidelines for use of Ada RTE. for application
programmers, and a catalogue of RTE interface options. The 1ist of products
reflects needs that exist in the Ada community. These needs generally address
cross—target compilers and military applications.

It is anticipated that by-products to be generated will include a file of
Ada RTE 1issues, Appendix F documentation requirements, a dictionary of RTE
terminology, guidelines for evaluating RTEs and possibly an Ada run-time
"Transportability Handbook."

The ARTEWG 1s spoasored by SIGAda and endorsed by AdaJUG and the AJPO. The
group consists of twenty principal members and a larger number of advisory
members who contribute their time on specific issues that are in line with their
areas of expertise. Within the ARTEWG, there are three working groups that deal
with implementation dependencies and approaches, application requirements, and
common RTE interfaces.

Areas of interest to ARTEWG that are not currently being addressed include:

A feasibility demo of "minimal RTE"

- Programming support environment/RTE relationship
= Definition of pragmas for RTE configurability

= RTE extensions

= Data transfer protocols

= Planning and/or conducting classes on fundamentals of the Ada RTE for
program managers or other novices

= Forums and workshops

- Formulating training/education guidelines

The principal link between ARTEWG and the E&V Team is one of communication.

At the comclusion of the above presentations, working groups convened.

| R AE I

!

LI RIS '

T Ay

By 4y

ata e B & 0.

» ¥ ¥

Pl S " el

v

3.0 Friday, 7 June 1985

3.1 CAIS Operational Definition Status Report
Dr. Timothy Lindquist, Virginia Polytechnic Institute

The project objective 18 to create an operational semantic definition of
CAIS written primarily 1in Ada. The operational definition will provide for
design refinements for the current version of CAIS and serve as input to version
2 of CAIS. It will provide a vehicle for tool transportability studies, for the
examination of CAIS functionality, and for tool retargetability studies. In
addition, it will provide 4input to the development of the CAIS validation
capability by developing validation tests, identifying and resolving
specification gaps, and by operationally testing validacion tests.
Theoretically, the operational definition will be the next step in a sequence of
nore formal specifications.

A progress report stated that preliminary versions of CAIS List Utilities,
CAIS Node Management, and CAIS Process Control should be available in August
1985. At the present time, the Dynamic String Package is 90 percent complete,
CAIS private routines to support node management and process management are 80
percent complete. Node management done in MIL-STD CAIS is 33 percent complete,
and 1is totally completed in non-compilable code. List Utilities are 80 percent
complete, and Process Management, updated to the proposed MIL-STD, is 25 percent
complete.

Some CAIS/Ada issues in need of resolution have been identified. When
using the node management routines to manipulate attributes, one finds that the
value of the attribute has to be a 1list type. Therefore the tool wmust use
TO LIST to convert a string to a list before creating an attribute, and TO TEXT
to convert a value back to a string after a "get". It is recommended that
overloads should be defined for attribute routines. A second issue involves
LIST UTILITIES. Compiling the specifications introduced an 1inconsistency
Text explaining LIST UTILITIES defines NAME STRING, but the appendix does not.
The package NODE_DEFINITIONS does not constrain NAME STRING. A problenm
arises becaugse NAME STRING 1is returned as the value of a function, causing
difficulties for the CAIS wuser and the 1implementer. Therefore, either the
tool must invoke functions returning NAME STRING in a cumbersome manner, or
implementation must constrain NAME STRING. The latter solution violates the
specification. Steps will be taken to insure adherence to the specification.
Solutions to the problem are being evaluated.

Work is being done in the area of generating validation tests from abstract
machine descriptions. The tests are to be administered in a black box manner
using a white box technique to develop the tests. An Ada-based abstract machine
description of the CAIS is used as input to the technique. Paths are isolated
by using symbolic execution to identify the number of paths to test in a
validation suite and to isolate input/output pairs that would cause those paths
to execute. The input/output pairs are then converted 1into validation tests.
The ultimate result of using the technique presented will be a more complete set
of validation tests.

Preliminary work is being done in the area of establishing a definition of

CAIS 1input/output. Efforts are being made to distinguish between input/output
that can be written in Ada only and those portions that are machine dependent.

E-1L

B I I VI T et e PR P A LI . .« - T v e "™ et LT mt, . .
R N O S S T T S T ey A TR S T i S T o ey IR S T N T i T St VTGN

alC A Al A IR A R AN N gt S AR P N A S g S S A A A gl g ot NI I B I U Sl A O M St S i i e S At b el R At Sl el eud Anil Aall Al st

v s =
c

Al.

The final effort to be reported concerns Ada packages for encapsulating .
CAIS elements. A problem regarding "conflict of interest” exists in that an
appendix to an earlier version describes two approaches to defining packages for
the CAIS in a compilable way

D-""

= Access to the tool using CAIS 1s limited

= Access to the CAIS implementation packages is unlimited.

LA

No resolution on this issue has been reached.

3.2 STARS Status Report
Lt. James Kirkpatrick, AFALC/PTEC

The report presented highlights of the STARS Application Workshop which was
held 9 - 12 April 1985 at the Naval Research Laboratory, Washington, D.C. Focus .
of the workshop was software reusability. Working groups addressed the 1issues
of taxonomy, incentives, libraries, design/integration, and metrics. 5

The taxonomy working group concentrated on the issues of common ter-inology :
and defining levels of reusability of software. N

The working group on incentives identified problems in the proposal (bid)
evaluation process that discourage the use and development of reusable software.
Proposals that involve reuse of software are eliminated because they seen N
unrealistically low, whereas proposals 1incorporating development of reusable *

software seem unrealistically high. Possible resolutions to this problem were N
outlined. Discussions regarding the testing of reusable software brought forth R
reference to MIL-STD 2167 (Tri-Service), MIL~STD 1679 (Navy) and MIL-STD 1679A -
(DOD) .

The library working group addressed issues of Configuration Management (CM) '
and maintenance of reusable software. The library is critical to reusability. Ny

The design/integration working group dealt with assessing the current
status of, and determining future approaches to, the design and integration of .
reusable software. Two areas examined were the designing of reusable parts, and .
the development of designs using reusable parts. Two dimensions of reuse are
vertical (reusing software associated with a specific application) and :
horizontal (reusing software across application areas). It was noted that .
sociological problems exist with software reuse.

The working group on metrics highlighted methodology and measurements to be
used in the development of reusable parts. RADC methodology, RADC metric work
sheets, and Software Evaluation Reports of STARS Measurement DIDs were .
recommended. In using reusable parts, information concerning development, .
quality levels, functionality, operational history, and interface should be
obtained for all parts under consideration by the user.

e
I

E-15

-'..-' \.'_ o

Ceta R e S A T TL S P S R S R R A A . EIRIE S SR
N T T L S O S A T S e R A T, (R NN O

atatala A A

3.2.1 STARS RADC Quality Metrics
Marlow Henne

The STARS Quality Metrics represents a process one can use to evaluate a
program. Thirteen entities are evaluated, such as transportability, modularity,
etc. A contract with Defense Mapping Agency (DMA) funding was awarded a year
ago. This contract will automate the tools used in this process. STARS has

expanded this effort to include Ada software. The result 1s anticipated 1in
1986.

3.3 Working Group Status Reports
3.3.1 Requirements Working Group (REQWG) Status Report

The Requirements Working Group Report was presented by chairperson, Pat
Lawlis. Three new members of the working group were announced: Karyl Adams,
Jerry Brookshire, and Tom Leavitt. Deliverables due included a draft Version
2.0 of the Requirements Document and a draft Version 1.0 of the Tools and Aids
Requirements Document. Accomplishments reported included completion of wupdates
to the Requirements Document in the areas of Attributes Definitions, Required
APSE Evaluations and Validations, and Quality Guidance. Other accomplishments
were the conducting of a Tools and Aids Survey, drafting of a Tools and Aids
Requirements Document, and the writing of a document on assessment of
Availability of Tools and Aids. Key 1issues addressed concerned a need for
public awareness of the availability of tools and aids, prioritization of tools
and aids needed, and consideration of "Whole APSE" issues. Unresolved problens
or action items are: sending the glossary from the Requirements Document to
IDA, constructing a decision matrix for the Tools and Aids Document, obtaining
CAIS input to Tools and Aids Document, sending a draft copy of the Tools and
Aids Document to team members, development of rationales for requirements, and
developing a strategy for acquisition of tools and aids. Projected work for the
next quarter 1includes distribution of a revised draft of the Availability
Assessment Document to team members, first try at developing an availability
matrix, distribution for comment of a 1list of "Whole APSE” issues to tean
members, review of relevant material to expand and elaborate whole APSE 1issues,
allocation of whole APSE issue items to working group members, and preparation
of a short description for allocated whole APSE items.

3.3.2 APSE Working Group (APSEWG) Status Report

Personnel changes included the return of Guy Taylor and the replacement by
Christine Stacey of Stowe Boyd. No deliverables were due this quarter.
Accomplishments this quarter included the finalization of taxonomy mappings, the
beginning of writeups, and the evaluation of "Boiler-Plate™ portions of the
document. Action Items presented include completion of the first draft of the
ALS Decomposition and the forwarding of review comments to Guy Taylor,
documentation to be done in the areas of evaluation, evaluation of ALS/N, and
AlE., Projected work for next quarter includes completion of documentation in
the area of environment and completion of SEE taxonomy mappings. The APSEWG
taxonomy will include comments on ALS, ALS/N and AIE. No deliverables are due
next quarter; however, a draft of the Analysis document 1s planned to be
available for initial team review.

E-16

D S

R T e N Y o o TN T A T Y U ¥ o~~~

3.3.3 Standards Evaluation and Validation Working Group (SEVWG) Status
Report

Jim Kirkpatrick, SEVWG chairperson presented the report of the SEVWG.

Announcement was made that the name of the group has been changed from CAISWG to

SEVWG, since the group will be dealing with evaluation and validation issues of

other standards 1in addition to CAIS. New members of the group include Tim

Lindquist, Kathleen Gilroy and Manda Sury. Darleen Sobota has been transferred

to AFIT. SEVWG concerns included the evaluation of the task before the group

and the planning of a single evolvable document dealing with issues relating to

. standards development. Work planned for next quarter includes the concentration

A on evaluation criteria while deemphasizing dependencies, planning of services to
: be performed by the E and V support contractor, and meeting with REQWG to
discuss CAIS concerns which are applicable to both group . Deliverables

included the APSE Components Validation Procedures Document (ACVPD).
Accomplishments i1included the completion of version 2.0 of the ACVPD

incorporating team comments and working on CAIS dependencies tests. Unresolved

- items include completion of dependency tests on MIL/STD CAIS sectlons.
, Projected work includes planning a new deliverable document concerning CAIS
. analysis and including sections on dependencies and evaluation criteria. A
3 strawman of this document has been built. Deliverables due next quarter include

y an updated version of the ACVPD and a draft of the proposed document.
3.3.4 Coordination Working Group (COORDWG) Status Report

Don Jennings, COORDWG chairperson presented the status report.
Accomplishments this quarter included the writing of the March minutes, the E&V
Team Status Report, completion of an updated Project Reference List, and
completion of a draft E&V Public Coordination Strategy Document, Version 2.0.
Deliverables due included the draft E&V Public Coordination Strategy Document,

X which 1s ready to go out for comments. The Public Coordination Strategy

Document, Version 2.0 has been completed ahead of schedule. Unresolved 1items
3 include a need for team members to provide updates to project reference lists
; and a need for i1inputs to the Technical Coordination Strategy Document.

Projected work for next quarter includes producing a status report, producing
minutes of the June meeting, finalization of the Public Coordination Strategy
Document, and updating the draft TCSD to include comments received over the net.
Deliverables due next quarter include Version 2.0 of the Technicai Coordination
Strategy Document

3.4 Action Items

AI-6-7-85-1: J. Castor. Send the E&V Status Report to the LCF Newsletter

. AI-6-7-85-2: J. Castor. Put the March minutes on MILNET <DHYARTODMIN.TXT

AI-6-7-85-3: J. Castor. Send Project Reference List item on the E&V
Public Report to B. Wills

Al-6-7-85-4: J. Castor. Put Project Reference List on MILNET

, AI-6-7-85-5: J. Castor. Put E&V meeting schedule on MILNET

3 AI-6-7-85-6: J. Castor. Send list of CAIS Validation Issues to E&V Team
E-17
R AR L A G S U e O S A B SR

e s e A v A A At e i are At assas acaacie JACuy SAshACML M IR R L S St B DR ITRARA R R E RS 56 SE A
Ml e i s T T ey —— ACIS SASIA T,
-

.

“~

! AI-6-7-85-7: J. Castor. Send E&V Status Report to D. Jennings for

) publication

(4

o AI-6-7-85-8: J. Castor. Obtain MILNET accounts for Karyl Adams, Ray

i Szymanski, Amos Rohrer, Greg Gicca

N Al-6-7-85-9: J. Castor. Update <EV-INFO>EV-TEAM-INFO.HLP file (note new
A name of SEVWG)

)

AI-6-7-85~10: J. Castor. Update <EV-INFO>EV-TEAM-MAIL.HLP file

AI-6-7-85-11: J. Castor. Call Lt. Pat Sheridan concerning copy of WIS SDME
B CPOP Annex

AI-6-7-85-12: J. Castor. Call Lt. Persons (AV 478-5980, ex 2694) for
WIS compiler guidelines

4

Al-6-7-85-13: J. Castor. Send message clarifying CBD article on ACEC

Al-6-7-85-14: J. Castor. Send message notifying all that the E and V
Public Report is available from DTIC.

AI-6-7-85~15: J. Castor. Send message telling how to set protection codes
on files

Al-6-7-85-16: J. Castor. Send message to team limiting distribution of
documents.

Al-6-7-85-17: J. Williamson. Contact K. Gilroy concerning input to TCSD
about the ARTEWG

AI-6-7-85-18: T. Lindquist. Send a copy of CAIS requirements package to
team members

AI-6-7-85-19: J. Brookshire. Call J. Castor for the guest MILNET access
information (after 17 June: (202)694-0209 or AV 224-0209)

Al~-6-7-85-20: COORDWG and WG Chairmen. Update Document boilerplate with
statement concerning limited distribution to team only.

3.5 Discussion Items

1. It was announced that VPI papers are available for distribution to tean
members, thanks to the efforts of Tim Lindquist.

2, Liason status reports are valuable to team members; however, the time
element at meetings 1s critical. Consensus seemed to be that a time limit
should be set and enforced.

3. The Public Coordination Strategy Document indicates that all briefings on
E&V by team members need to be reported. Reports were requested from Guy
Taylor, who had briefed the Navy and Marlow Henne, who had briefed NATO.

4., It was noted that mapping of contractual efforts as related to E and V
activicies should be done.

MRS T |
L3 LY

TP I B e
ADANE IR WA Py

5. It was noted that a briefing should be provided at each E and V meeting
concerning status of work being done by the support contractor. Inputs by
working groups concerning how the contractor can be of support should be
drafted.

6. It was announced that funding for E and V related travel 1is available to
goverment personnel only.

7. It was announced that NASA has shown interest in E and V activities, as have
several European countries, notably the English government and the German Navy.

8. It was announced that a presentation on IDA-Ada Prototype Compiler
Benchmarks has tentatively been scheduled for the next meeting.

9. Liasons were asked to check the Technical Coordination Strategy Document to
be sure that information concerning their areas is correct.

10 New chairman, Raymond Szymanski, was introduced to the group. His first

executive decision was to decree, after considering input from team members,
that the next meeting will be held 4 - 6 September as scheduled.

b <o Be - B AAanue i -4 tatg S e Tein i Ak N Sed A il e A A

ATTENDANCE LIST
E and V Team Meeting, 5 — 7 June 1985

" o ih i e

WLy v &y Wy

Adams, Karyl A.
AFWAL/F1GD
WPAFB, OH 45433

Brookshire, Jerry
Texas Instruments
Dallas, TX

Castor, Virginia
AFWAL /AAAF=-2
WPAFB, OH 45433

Deese, Capt. Al
ASD/SIOL
WPAFB, OH 45433

Fleming, Richard

The Aerospace Corp.
M1/112

P. 0. Box 92957

Los Angeles, CA 90009

Gicca, Greg

GTE Govermment Systems
1 Federal St.
Billerica, MA 01821

Hammons, Charles

Texas Instruments

P. 0. Box 801, M/S 8007
McKinney, TX

Hazel, Marlene
Mitre Corp.
Burlington Rd.
Bedford, MA 01730

Jennings, Don
0C-ALC/MMECE
Tinker AFB, OK 73145-5990

Kean, Elizabeth
RADC/COEE
Griffiss AFB, NY 13441

E-20

Bridges, Michael

General Dynamics

Data Systems Division

P. 0. Box 85808, MZ VP 5300
San Diego, CA 92138

Burlakoff, Mike
Southwest Missouri State Univ.

Crawford, Bard
TASC

One Jacodb Way
Reading, MA 01867

De Millo, Richard
Georgia Institute of Technology
Atlanta, GA 30332

Fritz, Robert

CsC

4045 Hancock St.
San Diego, CA 92110

Gilroy, Kathleen
SPS, Inc.

P. 0. Box 361697
Melbourne, FL 32936

Harto, Debra L.
AFATL/DLCM
Elgin AFB, FL 32542-5000

Henne, Marlow

Harris Corp. GISD
505 John Rhodes Blvd.
Bldg. 1

Melbourne, FL 32901

Johnson, J.
AFWAL/AAAF
WPAFB, OH 45433

Kirkpatrick, James
AFALC/PTEC

WPAFB, OH 45433

B-as s a K

" "l e il

A

Yol &7 27

e’ n:n.'f.

' ale v

XX XXX

NLAPA S BNE N S

~ ChaA h
R T T N e

Kopp, Maj. Allan

AJPO

Rm. 3D139 (Fern St/C107)
The Pentagon

Washington, D.C. 20301-3081

Leavitt, Thomas
Boeing Military Airplane Co.
Wichita, KS

Maher, Patrick
Magnavox
Fort Wayne, IN

Mahew, David
VPI and State University
Blacksburg, VA 24061

Miller, John
SM~-ALC/MMEHD
McClellan AFB, CA 95652-5609

Reilly, Paul
Data General
Westboro, MA

Romanowsky, Helen
Rockwell International
400 Collins Road NE
Cedar Rapids, IA 52498

Shirley, Jane
SYSTRAN Corp.
4126 Linden Ave.
Dayton, OH 45432

Sury, Manda
Lockheed Austin Div.
M/S T2-32, 30E

21" E, St. Elmo
Austin, TX 78744

Williamson, James
AFWAL /AAAF-2
WPAFB, OH 45433

E-21

&
PO AN A R L I

Lawlis, Patricia K.
AFIT/ENC
WPAFB, OH 45433

Lindquist, Tim

VPI and State University

562 McBryde Hall
Blacksburg, VA 24061

Martin, Ronnie

v g™ W™ rw T = - w o

Georgia Institute of Technology

Atlanta, GA 30332

McKee, Gary

Martin Marietta Aerospace
M/S 0423, P. 0. Box 179

Deover, CO 80201

Reddan, John
SYSCON Corp.

3990 Sherman St.
San Diego, CA92110

Rohrer, Amos
EGG
Manassas, VA

Schoonover, Kenneth
HQ AFSC/PLRT
Andrews AFB, MD

Stacey, Christine
GTE Gov't Systems
Billerica, MD

Taylor, Guy
FCDSSA

Code 822

Dam Neck

Virginia Beach, VA

Wills, Betty
CCSO/SKXD
Tinker AFB, OK 73145

APPENDIX F

MINUTES
of the

EVALUATION & VALIDATION (E&V) MEETING

4-6 September 1985

-

b Y

LS
-

Fox ’-g-r.'.r',r . r

WO SO Y o 4
’ L}

s 0,
»
. L3

2 T

IR PR g A PR

£e e,

A6 % 50

e v e
1) -

.

TABLE OF CONTENTS

SECTION PAGE
1.0 Wednesday, 4 September 1985 F-3
l.1 Welcome, Introductions, and General Business F-3
1.2 Operational Definition of CAIS - Task Status F-3
1.3 Prototype Ada Compiler Evaluation Capability (ACEC) F-6
1.4 E&V Classification Schema F-8 .
2.0 Thursday, 5 September 1985 F-11
2.1 The APSE Interactive Monitor (AIM) F-11
2.2 Announcements F-13
3.0 Friday, 6 September 1985 F-1k
3.1 Classification Schema, Revisited F-14
3.2 Working Group Status Reports F-15
3.2.1 Coordination Working Group (COORDWG) Status Report F-15
3.2.2 Standards Evaluation and Validation Working Group F-15
(SEVWG) Status Report F-15
3.2.3 APSE Working Group (APSEWG) Status Report F-15
3.2.4 Requirements Working (REQWG) Status Report F-16
3.3 Announcements F-16
3.4 Open Discussion F-17
3.5 Action Items F-17
List of Documents Distributed F-18
List of Attendees F-19
’.;‘j
=
F-2 .

OIS

R S

1.0 WEDNESDAY, 4 SEPTEMBER 1985

1.1 WELCOME, INTRODUCTIONS, AND GENERAL BUSINESS

The Evaluation and Validation (E&V) Team meeting opened with welcoming
remarks by chairperson Raymond Szymanski. Speakers for the morning session, Dr.
Timothy Lindquist of Arizona State University, Audrey Hook of the Institute for
Defense Analysis, Dr. Greg Riccardi of Florida State University, and Dr. Bard
Crawford and Peter Clark of The Analytic Sciences Corporation, were introduced.

It was announced that:

- Virginia Castor has become the Acting Director of the Ada Joint Program
Office (AJPO).

~ Lt. Commander Phillip Myers has joined the AJPO and is the liaison for
the E&V Team. His MILNET address is {PMYERS@Ada20>.

=~ Marlow Henne has brochures on accommodations and maps of Harris Corp.

avallable for those who plan to attend the December meeting. Brochures
can also be obtained by contacting Debra Harto.

Action items listed in the June minutes were reviewed. All outstanding
action items were resolved.

1.2 OPERATIONAL DEFINITION OF CAIS - TASK STATUS
Dr. Timothy Lindquist
Arizona State University

The Common APSE Interface Set (CAIS) is a set of kernel-level interfaces
for building APSE tools. The CAIS 1s intended to be a single set of tool/system
interfaces founded on the ALS/ACS, and is incrementally developed. The CAIS,
which 1is to be DoD maintained, will provide a validation capability.

The CAIS scope, which is typical of operating systems, includes facilities
for structures and files, processes, and devices.

The CAIS has evolved to a level of maturity that allows it to be considered
a Draft Military Standard.

The need for an Operational Definition of CAIS (CAIS OD) was identified,
which would allow execution of the interfaces.

The CAIS OD technical objectives were to operationally define the CAIS 1in

as semantically complete a version as possible, written almost entirely in Ada,
and based on the Draft Standard CAIS.

Results of the first phase of the project are preliminary definitions of
List Utilities, Node Model, and Process Control and the production of associated
documentation. In addition, an examination report of the input/output (I1/0)
section of the CAIS is being formulated. This report will define the components
of the I/0 section that can profitably be written in a high order language such
as Ada, and which portions must be left to the underlying system.

F-3

. .. .t > - « -
P P L N
(P IS P I I PSP ST

VLt T e

Work remaining in the area of LIST UTILITIES includes resolution of
problems concerning the use of dynamic strings as tokens, and tweaking the float
items and integer items that have been written.

Work remaining in NODE_MODEL includes completing some copy routines,
completing ACCESS MODEL, and addressing some management routines.

Work remaining in PROCESS_CONTROL includes completing the SUSPEND and
RESUME routines, devising hooks to the underlying system, and finalizing status
reporting routines for machine time, I/0 units, and three other areas.

A total of approximately 9,000 lines of code are included in -he sixteen
major packages that make up these three sections of the CAIS OD.

Problems are being addressed in the areas of the CAIS specification itself,
as well as the three areas of work addressed by the Operational Definition.

In the CAIS specification, Appendices B aund C present package
specifications and package bodies in compilable form. However, the use of
private types and limited private types prevent compilation when real statements
are added to the package bodies. A specific example is the use of NODE_TYPE
within NODE DEFINITION, which is limited private. Various packages, such as
NODE_MANAGEMENT and PROCESS_CONTROL use NODE TYPE, but because it is limited
private, these packages cannot function adequately. The classification
prohibits users of NODE DEFINITION from altering node types. At the same
time, routines in NODE MANAGEMENT are unable to set or alter the value of a
handle. A possible solution is for NODE MANAGEMENT to call routines existing

within NODE DEFINITIONS to cause modifications to take place, adding a level of
indirection. Reorganization 1s another solution that has not been tested for
usability.

Problems in the area of LIST UTILITIES center around constrained strings
that are returned by routines. An example 1s the routine TO TEXT, whose input
is a 1ist and whose output is a text string. The length of the resulting
constrained string must be the length of the identifier into which it will go.

This requires using an aggregate assignment "T:=" which allows the changing or
setting of string length.

The CAIS specification requires that you have a declaration block within
each tool 1in order to call the tool. Ideally, a CAIS implementation should
define the string type; for example, one could define the type string to be a
dynamic string, which would solve the problem. The current specification does
not allow this, because in several instances strings are used to 1initialize
operations. Ada needs to be extended to a more flexible orientation for strings
which would allow more dynamic structures for applications such as CAIS.

Implementing the Operational Definition has identified several areas in the
CAIS that need refinement. Examples include the procedures required to create
node attributes, and the overloads (DELETE, SET EXTRACT, and EXTRACT) that one
has to consider in order to remove elements from a list.

Node management problems within NODE MODEL are being addressed. The
implementation approach is that nodes are used as carriers for entities (device
file and process entities) and structures.

There are primary and secondary node relationships within the CAIS.
Primary relationships enforce a hierarchical structure within the CAIS, whereas
secondary relationships allow for a directed graph structure that may be cyclic.
Each node has one primary relationship but may have several secondary
relationships with other nodes. CAIS node management is defined in such a way
as to delete the primary relationship when you delete a given node. However,
the secondary relationships still remain. CAIS implementation needs to remember
the secondary relationships so that they can be referred to later, even though
the node itself can't be. The least undesirable way of handling the situation
is by wuse of a capability table, active node table, or binary tree which would
allow the user to determine whether the object referred to by the relationship
is still an active entity in the storage system. Each node would be assigned a
unique 64-bit sequence number which would be used throughout the system. The
table or tree would reference only currently active nodes. If a node is
referenced by a dangling relationship, its sequence number will not occur in the
structure, and the implementation will know that it is not an active node.

Problems in the area of access control focused on a subset of discretionary
access mechanisms. Subjects (processes) are given access to objects by adopting
roles. The type of access given to the subject 1is determined by a grant
attribute pertaining to the relationship between the subject and the object.
This relationship involves granting the subject necessary rights. There 1is
currently a problem regarding the determination of rights provided to a subject
granted by roles adopted. The discretionary access mechanism specified in the
CAIS 1s felt to be more complex than 1s necessary. Work done to date includes
implementation of discretionary access through to only one level of 1indirection
without allowing necessary rights to be on the resulting rights list.

The implementation approach used in PROCESS_CONTROL has been to wuse Ada
entirely. Each process node contains two tasks: the execution of the Ada
program and the synchronization with the spawning process. Process
synchronization 1is handled through these tasks. In order to be a real CAIS
enviromment, it 1s necessary to 1link to an underlying system to provide for
process initiation. Dynamic linking 1s not possible with Ada. The current Ada
implementation requires that all programs that are spawned or 1invoked mmust be
compiled with the CAIS, omitting dynamic linking. To date, it has not been

possible to suspend and resume 1in Ada. These two operations must rely on
underlying primitives.

The CAIS Operational Definition 1s perceived as being a vehicle for
exercising transportability studies, and rehosting studies onto the CAIS. The
Operational Definition can play an 1important part in generating a CAIS
validation capability by excercising the validation suite and offering a
rigorous approach to constructing validation tests. The CAIS OD will provide an
excellent prototyping basis for any extensions to the CAIS. Candidates for CAIS

extensions are a distributed environment and a modified access control
mechanism.

The area most critical to the CAIS program is tool studies. Since many
software engineering tools are perceived as undergoing minimal change in the
next ten to fifteen years, the CAIS's success depends upon the ease with which
tools c¢an be transported to the CAIS. Automated testing and test generation
tools, and configuration management are examples of tools that should be
examined 1in terms of CAIS functionality. CAIS adoption would be greatly
advanced by transporting well known tools, written in Ada, onto the CAIS.

F-5

<

L)

oL
4

» ¥

[RAAAARATY

.....

The current goal is to have the CAIS OD on the NET by late October 1985,
together with documentation and a disclaimer.

1.3 PROTOTYPE ADA COMPILER EVALUATION CAPABILITY (ACEC)
Audrey Hook, Institute for Defense Analyses (IDA)
Dr. Greg Riccardi, Florida State University (FSU)

The scope of this task was to create a test suite using existing tests 1in
the public domain, develop a report writer similar to the Ada Compiler
Validation Capability (ACVC), write a user's manual for executing the test(s),
and prepare a final report to be used as input to future ACEC work.

The approach chosen for accomplishing this task was to use development
teams made up of people with expertise 1in various areas, such as compiler
builders, data base designers, and benchmark experts. This synergism, the
coming together of individuals from differing disciplines to address a common
problem, has proved effective and has resulted in the availability of a
diversity of hardware and compilers for use in the evaluation.

Work was organized into two areas. The first area of effort was the
development of a test suite. This involved gathering and analyzing tests, and
organizing the tests into a test suite. The second task was to develop an
architecture that would support the test suite, a report writer being a major
component of this package.

Four teams addressed the effort. The teams and their areas of
responsibility were:

- Team A (IDA) addressed project management, benchmark construction,
validation, and Ada language usage.

- Team B (General Systems Group) addressed benchmark construction,
architecture, database design, and Ada language usage.

= Team C (Florida State University) addressed compiler developument,
instrumentation, and Ada language usage.

- Team D (SIGAda) addressed Beta testing.

A diversity of hardware and software was used as the development base for
instrumenting the tests. The development base at IDA consisted of a Data
General mainframe running the ADE compiler, and a VAX running the DEC compiler.
The development base at FSU consisted of a VAX with a DDC compiler, a Cyber
170/760 executing the AFATL Ada Compiler, and a SUN development station using
the VERDIX compiler. Beta testing involved a variety of compilers including the
Data General (DG) ADE compiler, VAX machines using TELESOFT, VERDIX, DEC, SD-ADA
System Designers Limited, and SofTech's ALS compiler, and IBM with the
Intermetrics ACS compiler.

F-6

B A i i s e B SO Bt AArE el i e Sl ol Sk

Contributors to the test suite included IBM, SRI, Harris, Ada Fair '84, and
SIGAda. Six hundred tests were collected; 136 were selected to be retained.
Tests were selected that would measure Ada language feature performance rather
than conformance or compiler architecture. The purpose of this task was to
develop a very basic prototype for compiler evaluation capability, tests that
were developed to 1investigate specific compilers were eliminated. All tests
selected had to be unique and had to compile correctly. Tests were written 1in
Ada only.

Generally speaking, benchmarks are programs that represent a specific
workload and are used to demonstrate relative measures of capacity and
efficiency for different computer systems or configuratious. For this task,
compiler benchmarks are programs that demonstrate the effect of specific
language feature usage on the capacity of a computer system, and programs that

demonstrate the limitations that would be imposed by the compiler on application
development.

The test suite was organized into two categories. The normative part of
the test suite dealt with language granularity, language constructs which must
be implemented in a conforming compiler, and addressed performance and capacity.
The optional part addressed compiler features and algorithms.

Tests were instrumented to determine where each would fit into the
benchmark architecture. E&V Team criteria for evaluating benchmarks were used.
The language feature tested by each test had to be determined, and the best
version of each test had to be selected. Test objectives were described, and
the type of statistics rendered (addressing compilation, execution, or both) was
noted. It was decided that a single test instrumentation strategy would be
implemented. In view of the fact that each test provides compilation and
execution statistics, host/target dependent capabilities of the various tests
had to be identified. All that can be done to make a given test portable is to
define interfaces for using available statistics.

For each test, a control version of the program 1is run. The control
version does not contain the language feature being tested. The difference in
the execution time between the two versions shows the cost of the language
feature. The goal of this procedure is to measure both CPU time and real time.

The test suite is designed so that the user can run a single test or use
all the tests to obtain data. Test results can be weighted to provide data on
the particular feature being scrutinized.

The purpose of this task was not to create large synthetic benchmarks or to
rate language features. This effort can provide the user with an incomplete
sampling of tests that allows him to select applicable tests and create his own
synthetic benchmarks. Intended users of the test suite are programmers who are
familiar with their Ada compiler, the host/target operating system, and resource
accounting packages.

Work remaining 1ncludes evaluating Beta Test results and developing
enhancements for Version O (Beta Test). Tapes of Version 1 of the ACEC test
suite and the User's Manual are planned for delivery by the end of September
1985. A technical report will be written that documents the work done, lists
tasks that could not be undertaken because of the time constraints imposed, and
identifies areas that require research and data. The report is planned for

F-7

R P

PP

release in late December. Point of distribution for the software developed will
be the Language Control Facility (LCF) at WPAFB. The LCF Newsletter will
announce the availability of this package in its October or November edition.
Access by MILNET/ARPANET will not be provided.

1.4 E&V CLASSIFICATION SCHEMA
Dr. Bard Crawford, Mr. Peter Clark
The Analytic Sciences Corporation (TASC)

The two-fold purpose of this briefing was to present a progress report from
the E&V Technical Support Contractor and to present the statas of the
development of the E&V Classification Schemna.

The three major tasks of the support contractor are to develop
documentation, to provide the E&V Team with technical support, and to provide
configuration management. Documentation to be produced in performing the first
task 1ncludes an E&V Classification Schema document, an E&V Reference Manual,
and an E&V Guidebook. The Reference Manual and Guidebook are to be wupdated
yearly, and the feasibility of automating the Reference Manual and Schema is to
be studied. The second task addresses providing the E&V Team and its working
groups and workshops with technical support. This does not 1include
administrative support or report preparation. Task three includes the
development of a Configuration Management Plan for tracking and controlling
documentation, and the implementation of the Plan.

In general terms, the job of the E&V support contractor is to support the
development of E&V technology, publicize it, and make it available to the rest
of the Ada community. Tool builders form the underlying base of this
technology, and users of tools and APSEs are the ones whose needs should be
addressed in the development of tools and reports.

A summary of E&V technology is to appear in the form of the Reference
Manual and Guidebook, preliminary versions of which are scheduled to be released
in early 1986. The Reference Manual is envisioned as a functional 1index that
would contain single page summaries of each E&V technology and refers to the
Guidebook. The Guidebook is envisioned as containing detailed explanations of
each E&V technology and providing guidance in application of these technologies.

The Classification Schema, a draft of which is due in October 1985, will
provide a framework for the Reference Manual and will determine the design of
the Guidebook.

Alternatives are being considered for the development of the Classification
Schema. As a starting point, the E&V Plan was analyzed. This plan, which
pictures a taxonomy showing components, four interface classes, and the five E&V
categories, states that components should be ifdentified and classified in terms
of a well-defined classification schema. The original concept is good, in that
although this 1s a fairly complex axis requiring a hierarchy of components,
other elements are simple, direct and relevant to the task.

F-8

........

AP TR RS N

g ". P R R T .-.‘_

- - h“—' . -

An alternative would be to use functions rather than components as an axis.
Functions tend to be more stable than components. Also, users and builders of
tools are more concerned with what the tool does than with what components
comprise the tool. Another alternative would be to use attributes as an axis in
place of interface classes. E&V categories are important, in that users need to
be guided to consider these characteristics. However, they may be ultimately
onitted from the Schema, depending on the terminology developed.

It is proposed that the Classification Schema be defined as a mnultiple
dimension taxonomy or set of axes to classify items that are subject to E&V.
Items can be individual tools, tool sets, or entire software engineering
enviromments such as minimal APSEs (MAPSEs) and APSEs. The Schema is used to
establish a framework of reference indices which provide a structure for E&V
record keeping.

A major objective is to make the Schema easy to wuse by 1incorporating
terminology that is familiar to the user, who 1is then directed to the

appropriate technology via the Schema. The following are attributes of the
Schema that the support contractor perceives as desirable:

= Stability. The Schema should be comprised of information that will not
quickly become obsolete.

- Open-endedness. The Schema should be able to accommodate new
combinations of functions, new attributes, and other new developments.

- Comprehensiveness. The Schema should be applicable to all phases of
the software development life cycle.

- Comciseness. The Schema should provide a framework that 1s easily
understood by a broad range of users.

- User~friendliness. The Schema should be oriented toward the concerns
of potential users.

The terminology used in the Schema should coincide with any unique
terminology used in MIL-STDs and DoD-STDs.

In defining the Schema, the evolution of the definition of APSEs is being
considered. The 1980 "Stoneman” document defines an APSE as a data base, user
interface, system interface, and tool sets. This evolved into the 1983 National
Bureau of Standards (NBS) definition of an APSE as a collection of input
functions and output, with the data base being absorbed into both input and
output, and interfaces and tool sets being absorbed into various functions.
Another definition of an APSE might be the collection of input and output into a
set of objects and functions executing in a host environment. Although many
tools are hardware independent, various host environments influence tool
performance.

Based on this theory, and using the Software Engineering Environment (SEE)
Taxonomy as a point of departure, a taxonomy using an object axis is considered.
In this taxonomy, input and output are combined. It 1s felt that the SEE
Taxonomy approach to handling input and output {s unclear. Another departure
from the SEF Taxonomy would be the use of a functional taxonomy as an axis with

i RN il S " G ‘a i Ry e Yt ARat S iy S i Sl S 3 At

5,

oS0

L

U AN

!

St e

L

=
«us

s * l'Ll'l_

the removal of the life cycle, but retaining the top three levels of detail used
in the SEE Taxonomy. The life cycle might then become a separate axis. (The
third axis might be host enviromment.)

Attributes that shape requirements and their definitions need to conform to
E&V objectives. Because of the obvious importance of attributes, a taxonomy for
attributes would have perhaps six to ten categories, and lower 1levels of the
taxonomy would contain more specific definitions. Users would have the
capability of weighting attributes.

E&V categories determine methodologies used to assess elements. The
category of an element derived from the object/function/host environment
taxonomy is undefined; only the category for an element/attribute pair 1is
defined. This 1s subject to change as the technology matures; thus, E&V
categories as an axis seems improbable.

In selecting the axes to be incorporated in the Schema, the developer must
consider concerns of potential users, and provide support the users' application
areas. Possible combinations of axes include function vs. object, function vs.
lifecycle, function vs. attribute, function vs. host environment, function vs.
E&V category, and function vs. application area.

COMMENTS FROM THE E&V TEAM CONCERNING THE SCHEMA ARE REQUESTED.

1.5 The general session of the E&V Team Meeting was adjourned. Working groups
met for the remainder of the day.

F-10

R IX]

2.0 THURSDAY, 5 SEPTEMBER 1985

2.1 THE APSE INTERACTIVE MONITOR (AIM)
Tim Harrison
Texas Instruments

[This report is a summary of a presentation that was given to KIT/KITIA in
July.]

The goal of the Naval Ocean Systems Center (NOSC) sponsored APSE
Interactive Monitor (AIM) project, was to evaluate interfaces available in the
ALS and AIE, the two government APSEs being developed. The AIM project was to
design a tool that would be tested on both the ALS and AIE. The project's
purpose was not to develop tool(s) that would run on both systems, but to gain
experience 1in design and use of Ada, and to evaluate the interfaces provided by
the ALS and AIE. Another objective was to produce reports documenting
discrepancies between the two sets of interfaces and the problems inherent in
those interfaces that would impact tool development.

AIM is a tool that acts as an interface between the APSE user and APSE
processes. AIM coordinates the 1input and output from APSE processes, and
provides a device-independent computer terminal interface. The AIM provides a
multi-window image on the terminal screen which allows the user to monitor
several processes simultaneously, and allows him to edit one process while
observing another. The AIM command language interpreter is constantly available
to receive commands, build images, start processes, arrange windows, and halt
completed processes. The AIM requires the following interfaces: terminal
control and communication; data base; and process control and communication.
Process control and communication allows creation and deletion of processes, the

suspension and resumption of process execution, and interprocess communication.

The AIM consists of a total of 22,000 lines of code which make up 240
compilation units. Reusable software components include a virtual terminal, a
help package, system dependencies, LALR parser support which serves as a table
reader and Ada driver, and general support packages such as queue, stack, etc.

Because the ALS and AIE did not become available for AIM implementation,
alternatives had to be selected. The Data General ADE validated conmpiler was
available and therefore was implemented. From this initial implementation, the
AIM was transported to VAX/VMS. All modifications to the AIM required for this
rehost were accomplished in one month.

The two enviromments differ in nature. On the DG, the APSE 1is entered from
the AOS/VS command language interpreter, and it extends the command set from
AO0S/VS. On the VAX, the APSE is the VMS Ada Compilation System (ACS), which {is
entered from the VAX/VMS command language interpreter (DCL). The Ada command is
available directly from DCL, and all other ACS commands are executed from within

ACS. Both compilers were validated Ada compilers. The same operations were
performed on both:

- Parse the entire Ada source file. If any syntax errors are
encountered, compilation is terminated.

F-11

- Assuming no syntactic errors were detected, semantically check each by
compilation wunit. If any semantic errors are detected, compilation '
terminates for that unit, but continues for the remaining units.

- Generate relocatable binary machine code for each correct unit, and !
update the program library accordingly.

The Ada compiler can be invoked from the command line or executed iIn a batch d
stream. .

Functional capabilities that emerged for the two systems differ. Both -~
systems have the capabilities of generating assembly language, generating debug
information, specifying a different program library, suppressing all run-time
checks, and compiling multiple files at one time. The differences between the
two lists of capabilities did not cause major problems.

Differences between the linker functional capabilities of the two systems
were more marked. The VAX linker allows the user to link in other languages,
which allows a routine in any language VAX supports to call subprograms written
in any other VAX supported language. Other sophisticated features are available .
on the VAX.

RS IACA

With the interactive source 1level debuggers on both systems, 1t was <
possible to separate points on exceptions and identify the statements containing
errors. Both tools were easy to use, but both were relatively new, untried
tools with some capability limitations. The VAX tool offers automatic N
recompilation.

The files generated by the compilers and linkers of both systems do not :
differ gieatly in number, but do vary in file content. The DG system gives the
user all files available, but the VAX provides the option of turning some files
off. The VAX also allows the user to specify a maximum number of revisions
retained.

Capabilities of the program librarian and of the configuration management
tools are similar. The VAX is somewhat easier to use.

N ", ". '.- N

The text editors provided on the the two systems were not used because of
requirements 1imposed by the Local Area Network (LAN) at Texas Instruments (TI),
and because implementors preferred to use other editors. The editor used on the
VAX provided more capabilities than did the one on the DG.

The electronic mail system on the VAX provides more capabilities than do Y
the MACROs written on the DG. .

Conclusions are that the two environments contain very similar tools. The o
VAX ACS 1s integrated into the VAX system more completely than 1s the ADE into r.
the DG. The DEC compiler/linker generates more helpful error messages. o

Problems encountered when implementing the AIM on the DG AOS included
problems with system dependencies 1in the areas of terminal communication,
process control, and process communication. A significant problem encountered
with the DG compiler concerned storage allocation. This is particularly true
when one is dealing with dynamic allocation and aggregates. Documentation was
very inadequate 1in these areas. Other problems encountered related to syntax

l'l".

..
M)
'

o

F-12

e
o s A

E T R A N LG L R

2 a4

error detectlon, linker/library search 1list closure, and package “ndy
dependency.

The rehost of AIM to the VAX required 2.4 man—months. Some of this time
was used in dealing with system dependencies. On VMS, access is provided to all
system services in Ada. All system services are contained in six packages. The
dependency 1linking among them caused problems. For the sake of timeliness,
system-dependent parts of the AIM were written in assembler for the rehost.

Details of the project are reported in a three volume Interface Report
which will be available from DTIC. Information included in the report details
the AIM project work, including lessons learned in Ada programming in such areas
as constructs, tasking problems, problems with object-oriented design, and how
this project maps to other life cycle projections.

AIM is available through the Ada Software Repository on MILNET and ARPANET.
To receive information concerning tools available from this source, send NET
mail to: ADA-SW-REQUEST@SIMTEL20, or contact Rick Conn at Texas Instruments,
MS/8007, P. 0. Box 801, McKinney, TX 75069, telephone 214/952-2139.

2.2 ANNOUNCEMENTS

1. Team members are asked to review "Definition of a Production Quality
Compiler.” This 1is a prototype requirement for the AJPO to levy on
compilers and is complete with guidelines for applying the
requirenments. A questionnaire concerning capacity and performance
accompanies the document. Five or six copies are available to those
who wish to participate in the review.

2. Copies of the Technical Coordination Strategy Document, Version 2.0 are
available to team members.

3. Review comments are requested from team members on the June minutes,
copies of which are available.

4. Copies of viewgraphs used in the TI presentation on the AIM will be
available.

2.3 The general session of the E&V Team meeting was ad journed. Working groups
met for the remainder of the day.

F-13

P R P

IO

FAAR

3.0 FRIDAY, 6 SEPTEMBER 1985

2 o o

3.1 CLASSIFICATION SCHEMA REVISITED
Dr. Bard Crawford, TASC

This presentation took the form of an open discussion. The first topic of
discussion was a clarification of 4items to be classified by means of the

framework or schema. These ftems were 1identified as individual tools, tool
sets, and APSEs.

L L LA

3 Concern was expressed regarding the best way to evaluate a tool. A

question was raised as to whether it 1is better to classify b tool or by
K function. It was decided that items should be classified by function.

The SEE Taxonomy was cited as a good example of a working taxonomy. It was
stated that the soon-to-be-released Schema should use this taxonomy as it is, or
X clearly document those areas that differ from the SEE and explain the rationale
4 for these differences. It 18 proposed that the Schema would remove the life
2_ cycle and use a strictly functional axis. The second and third axes have not
. been definitely selected yet. Candidates include object, phase, and attribute.
The SEVWG had discussed the possibility of putting life-cycle phase into a data

base and 1localizing it to a particular viewpoint if it is removed from the
schema.

additional indices for the benefit of users with interest in a specific phase.
A user wanting to evaluate a single tool would be guided toward a single
intersection of function vs. object. The document or automated system would
then point toward an appropriate set of single function attributes, which would
point toward the category and the E&V technology to be used in evaluating the
tool. Other users may want to classify an entire APSE or a tool set. In these
instances, the user would be led to cluster attributes or other attributes that
would appear elsewhere in the document or automated system.

-
{ The taxonomy used is envisioned as being three dimensional but having

AN
*N N

It was suggested that some of the functions in this taxonomy could include
the three categories mentioned in the NBS taxonomy and the SEE taxonomy:
transformation, management, and analysis. The comment was made that the
categories mentioned 1in the NBS and SEE taxonomies should not clutter the list
of functions, but are actually points of view, and can be separated into an
index, as with life cycle phases.

o

N

e A5

{2

et I S N

To assist the user, the Reference Manual might include an index of common
component names and another index of commercial names. The purpose of such .

indices would be to reference a set of functional code numbers to assist 1in
finding one's way into the maze

|

Clusters and cluster attributes and how they could be addressed via the
schema were discussed. The need for top-down analysis was identiffed. It was

noted that schemas identify characteristics, but don't always tell how they fit
togethere.

XA END

.
[y
«te

e
ChCi

F-14

¥

Al gah sia mil aae-an M R T T T T T,

3.2 WORKING GROUP STATUS REPORTS

3.2.1 Coordination Working Group (COORDWG) Status Report

COORDWG Chairperson, Don Jennings, stated that there were mno personnel
changes. Accomplishments this quarter included the review of June minutes, the
writing of the E&V Team Status Report, delivery of the Public Coordination
Strategy Document, Version 2.0, and delivery of the Technical Coordination
Strategy Document, Version 2.0. Deliverables due this quarter included the
Technical Coordination Strategy Document, Version 2.0. The Public Coordination
Strategy Document, which was due last quarter, was delivered in July. Key
issues addressed included the E&V Status Report and the Technical Coordination
Strategy Document, Version 2.0. There were no unresolved problems or action
items. Projected work for next quarter includes producing the Status Report and
the minutese No deliverables are due next quarter. No presentations are
planned next quarter. Inputs are needed for the Project Reference List. Those
who have given briefings on E&V are urged to provide information for the Public
Exchange Record.

3.2.2 Standards Evaluation and Validation Working Group (SEVWG) Status Report

One personnel change occurred on the SEVWG; Jeff Facemire replaces Bud
Hammons. Deliverables due this quarter were the APSE Components Validation
Procedures Document, Version 1.3 (ACVPD) and the CAIS Analysis Document Version
1.0, which will address all aspects of CAIS including evaluation, validation,
scope, description, use, and evolution. Accomplishments this quarter included
the collection of comments on the ACVPD from Virginia Castor and Patricia
Oberndorf. Work is being done to integrate their comments into the next version
of the document. Other work accomplished included establishing a strawman of
the CAIS Analysis Document Version 1.0. Unresolved action items are the
integration of final comments to the ACVPD that will move it from Version 1.2 to
Version 1.3, and the development of dependency tests for CAIS Sections 5.2 and
5.3. Projected work for next quarter includes the closing of past action items
and further development of the CAIS Analysis Document. No deliverables are due
next quarter, but plans are being made to include the CAIS Analysis Document in
the E&V Plan, with revisions planned every six months. A presentation is
planned for the next meeting on the CAIS Analysis Document. The possibility of
repeating this presentation at the January KIT/KITIA meeting will be explored.
Possible research topics for the technical support contractor to Investigate
include conducting a survey of existing CAIS implementation efforts, and
reporting on the purpose, problems encountered, and 1issues discovered in
implementations. Possible transport of the CAIS OD from the DG system to
another system such as the VAX was explored.

3.2.3 APSE Working Group (APSEWG) Status Report

One personnel change occurred on the APSEWG; Greg Burns replaces C.
Stacey. Accomplishments this quarter 1included resolving the 1issue of AIE
analysis by removing the AIE analysis from the APSE Analysis Document. The form
and a major part of the content of the APSE Analysis Document were finalized.
Version 2 of this document nears completion with some work still needed on
appendices. Appendix E will map the ALS and ALS/N onto the SEE Taxonomy. No
deliverables were due this quarter. Key issues addressed were the removal of

the AIE from the APSE Analysis Document and the consideration of conducting a
survey of commercial environments. This is a possible project 1f it {s found to

F-15

be legal. Unresolved problems or action items concern investigating the
legality of surveying commercial enviromments. Projected work for next quarter
includes completing the APSE Analysis Document Version 2.0 and the planning of a
survey format. The only deliverable due next quarter 1is the APSE Analysis
Document.

3.2.4 Requirements Working Group (REQWG) Status Report

Three new people joined the REQWG: Peter Clark (TASC), Sandi Mulholland
(General Dynamics), and Nelson Weiderman (Software Engineering Institute). No
deliverables were due this quarter. Accomplishments this quarter included
updating Section 4 of the Requirements Document, updating the To ls and Aids
Requirements Document, completing the Availability Assessment Document ,
beginning work on whole APSE requirements issues, providing input to the STARS
glossary, and coordinating with the SEVWG concerning requirements for standards.
Key 1issues addressed during this quarter included the examining of the focus of
the REQWG and formulating requirements aund recommendations. Recommendations
are:

- Establish a repository for APSE tool evaluator, and methodology
information.

= Include in the Configuration Management activity the capability to
manage working group drafts/documents that are not necessarily Team
products.

-~ Prepare a short document outlining the concept of Team operations,
organization of working groups, and team focus.

— Establish a liaison with Ada Europe.
= Archive all NET mail to the EV-TEAM in EV-INFO

- Request a presentation for the next meeting from the STARS Methodology
Coordinating Team outlining their tasks, particularly the Methodology
Classification, Evaluation, and Selection Tasks.

Unresolved problems or action items include putting the Draft Tools and Aids
Requirements Document and the Draft Version 2.1 Requirements Document on the NET
and providing follow up to STARS glossary input.

3.3 ANNOUNCEMENTS

1. A presentation by the Software Engineering Institute is planned for the
December meeting.

2. Selected products will be presented to SIGAda at their February meeting
in Los Angeles. Presentations and deliverables for next quarter need
to be very high quality so they will reflect the excellence of the E&V
Team.

F-16

v

SYY Y e VYW

—acg=x-F- & & 3
l-.'.l.'l l‘

.

3.4 OPEN DISCUSSION

Questions were asked concerning the proper procedure for maiking software
available to the public. The standard procedure is to send a letter to the
Federal Software Exchange and submit the software to them for distribution.

The Team was informed that the sole source of ACVC tests 1is through
ASD/SIOL and their contractor, SofTech.

It was noted that only legal users of the NET can use tools available
through SIMTEL20.

A question was raised concerning whether the evaluation of methodologies is
within the scope of the E&V Team. The technology for evaluating APSEs will, to
some extent, involve methodology, but won't evaluate methodologies. Input from
STARS 1s needed to make a determination. Consensus was that it is probably not
a part of the charter, but if this is not being done by STARS, perhaps the task
should be considered as a possible addition.

3.5 ACTION ITEM LIST

AI-9-6-85-1 SYSTRAN. Compile a 1list of all documentation distributed at
the September meeting and include it in the minutes.

AI-9-6-85-2 SYSTRAN. Implement CM on the documents distributed at the
meeting.

Al-9-6-85-3 Szymanski. Archive the Team mail.

AI-9-6-85-4 Szymanski. Locate and make available E&V Team viewgraphs.

AI-9-6-85-5 Szymanski. Open NET accounts for Nelson Weiderman, SEI and
Peter Clark, TASC. Change P. Dobbs account to S.L. Mulholland,
and Bud Hammonds account to Jeff Facemire.

AI-9-6-85-6 Szymanski. Investigate meeting with Ada Europe.

A1-9-6-85-7 Szymanski. Investigate the legality of the survey proposed
by REQWG on commercial environments.

AI-9-6-85-8 Szymanski. Arrange for the STARS Methodology Team to give
a presentation at the December meeting.

AI-9-6-85-9 Szymanski. Consult with ITARS and J. Castor on the Public
Review problem.

AI-9-6-85-10 Szymanski. Consult with STARS to see if methodology should
be included in the E&V charter.

A1-9-6-85~-11 Harto. Send a message on the NET telling where to send
visit requests for the December meeting.

A1-9-6-85-12 Jennings. Send the E&V Status Report to R. Szymanski at
the KIT/KITIA meeting.

F-17

A Al e

AT .
Y B DL L

. e el le
e, g
C ol s A) e,

INE T N P

AI-9-6-85-13 Fritz. Put the Draft Tools and Aids Requirements Document
on the NET.

AI-9-6-85-14 Fleming, Lawlis. Put the Draft Requirements Document, Version
2.0 on the NET.

LIST OF DOCUMENTS DISTRIBUTED AT THE SEPTEMBER E&V TEAM MEETING

The PAMELA Methodology - A Process-Oriented Software Development Method
for Ada - DRAFT

DRAFT Minutes of the June E&V Team Meeting

Presentation Materials used in "A Technical Briefing: CAIS Operational
Definition”

Presentation Materials used in "Prototype Ada Compiler Evaluation
Capability (ACEC)”

Presentation Materials used in "The APSE Interactive Monitor”
Attendance List

Technical Coordination Strategy Document, Version 2.0

Definition of a Production Quality Compiler (5 - 6 copies only)

i

.- .™

Adams, Karyl A.
AFWAL/FIGD
WPAFB, OH 45433

Burns, Greg

GTE/W1S

1 Federal Street
Billerica, MA 01821

Crawford, Bard
TASC

One Jacob Way
Reading, MA 01867

Estes, Nelson
ASD/AXT
WPAFB, OH 45433

Fleming, Richard

The Aerospace Corp.
M1/112

P. O. Box 92957

Los Angeles, CA 90009

Gicca, Greg

GTE Govermment Systems
1 Federal St.
Billerica, MA 01821

Hazel, Marlene
Mitre Corp.
Burlington Rd.
Bedford, MA 01730

Jennings, Don
0C~-ALC/MMECE

Tinker AFB, OK 73145-5990

Kirkpatrick, James
AFALC/PTEC
WPAFB, OH 45433

Lindquist, Tim

Computer Science Department
Arizona State University
Tempe, AZ 85287

‘t{‘:f--(‘-(\".\ “»

LIST OF ATTENDEES

Brookshire, Jerry

Texas Instruments

M/S 3114, P. 0. Box 660246
Dallas, TX 75266

Clark, Peter

TASC

1 Jacob Way
Reading, MA 01867

Deese, Capt. Al
ASD/SIOL
WPAFB, OH 454433

Facemire, Jeff

Texas Instruments

M/Ss 8007, P. 0. Box 801
McKinney, TX 75069

Gargaro, Anthony
Computer Science Corp.
4045 SLB/810

304 West Route 38
Moorestown, NJ 08057

Harto, Debra L.
AFATL /DLCM
Eglin, AFB, FL 32542-5000

Henne, Marlow

Harris Corp. GISD
505 John Rhodes Blvd.
Melbourne, FL 32901

Kean, Elizabeth
RADC/COEE

Griffis AFB., NY 13441

Lawlis, Patricia K.
AFIT/ENC
WPAFB, OH 45433

Maher, Pat

Magnavox

TC~10-C3, Dept. 542
1010 Production Road
Fort Wayne, IN 46808

F-19

g e Y

MU PO,

el IR

va ¥ At e) L AR A A Tl Tl

) McKee, Gary Meirink, Mike
! Martin Marietta Aerospace Sperry/DPG
i M/S 0423, P. 0. Box 179 3333 Pilot Knob Road

P10 A, A

Denver, CO 80201

Miller, John
SM~ALC/MMEHD

McClellan AFB, CA 95652-5609

Reddan, John
SYSCON Corp.

3990 Sherman St.
San Diego, CA92110

Romanowsky, Helen
Rockwell International
400 Collins Road NE
Cedar Rapids, IA 52498

Shirley, Jaune
SYSTRAN Corp.
4126 Linden Ave.
Dayton, OH 45432

Taylor, Guy
FCDSSA
Code 822
Dam Neck

Virginia Beach, VA 23461

Williamson, James
AFWAL/AAAF=-2

WPAFB, OH 45433

witt, Donald J.
AFIT/EN
WPAFB, OH 45433

St. Paul, MN 55164

Mulholland, S. L.
General Dynamics
Suite 735

6100 Western Place
Ft. Worth, TX 76107

Riccardi, Gregory A.
Florida State University
Dept. of Computer Science
Tallahassee, FL 32306

Sandborg, Ray

Sperry Knowledge System Center
Suite 223

3001 Metro Parkway
Bloomington, MN 55420

Szymanski, Ray
AFWAL/AAAF=-2
WPAFB, OH 45433

Weiderman, Nelson
SE1

Carnegie Mellon University
Pittsburg, PA 15238

Wills, Betty
CCSO/SKXD

Tinker AFB, OK 73145

£ s r s e QO

F-20 k

G T A R RSt A LY RS AR e TN o e T e YA o Y LA A

PO AT

to o

.
\

i)

APPENDIX G

CAIS OPERATIONAL DEFINITION PROJECT STATUS
G-1
..'.,‘ .o .,'- XSRS CTRS; _J\-‘ w0 .‘..\1‘..-\."'._. . .q q\l , e ‘-‘"\-"\“ '-"'."\'."..";-_3.:-/',:(:~',;~'.'q"; T e el

e et ave®
- » -
W .

Y

LR

SRR Y ™

~

PESEARCH DESCRIPTION

2. Description. The Ada program has made the evolution of a
single set of kernel facilities to support Ada Programming Support
Environment (APSE) tools a clear objective. As one avenue toward
the objective the KIT/KITIA (Kernel APSE Interface Team/Industry
and Academic) has developed an initial set of facilities to support
APSE tools, which is called CAIS (Common APSE Interface Set,
pronounced as case). A preliminary study has developed a
specification technique for CAIS that enables a more complete
validation capability to be constructed. Using an Ada-bas.d
abstract machine, a specification of CAIS Node Model and Process
Control has been generated. This research contract has addressed
converting the abstract machine definiticn of CAIS Process Control,
Node Model and List Utilities into operational Ada.

b. Significant Results. The project has developed an
operational version of CAIS Process Control, Node Model, and List
Utilities. In this definition, Process Control has been defined
using the tasking facilities of the language. Thus, independent
CAIS processes have been defined using Ada tasks. CAIS operations
on processes and interactions with the operating environment are
constructed through both a concurrent and a sequential form of
program invocation. The Operational Definition implements the
process hierarchy and imposes a hierarchical task structure on each
process. A CAIS process and its interactions with the operating
environment are defined as a tree of Ada tasks.

Of further significance in the definition is our treatment of
discretionary access mechanisms. CAIS proposed a generalized set
of dynamic access controls which define how a subject may view an
object. This set of facilities has become controversial from the
perspectives of utility to tools, ability to be demonstrated secure
and efficiency of implementation. Our definition is the basis for
analysis of these issues.

Another result of the project is continued refinement of a
technique for converting the operational definition of CAIS into a
set of validation tests. Our goal is to provide a rigorous
technique to generate a nearly compliete set of test programs that
may be used to exercise a CAIS implementation to assure its
conformity to the specification. Two masters students have been
funded throuah this project to develop the technique, and one of
the papers presented during the reporting period describes the
technique.

c. Plans for Mext Year's Research. A continuation proposal
is currently being reviewed by the Ada Joint Program Office and the
Evaluation and Validation Team. The proposal would provide
resources to complete the operational definition. Our plans are to
finish the definitiors of Node Model and Process Control, and to
construct an operational definition of the Input/Output section of
CAIS. Supporting this work is continued work on the technique for
developing validation tests from the operational definition.

Yy Y YT

BT,

o N L
P A

-
M)

Py,

TV Y Y s a]

aTalaa s A A

Pl i

I1.

ACCESS CONTROL FOR THE COMMON APSE INTERFACE SET

This section contains a portion of a Master's Thesis by

Douglas J. Bower. It describes the design of the Operational
Definition of CAIS discretionary access mechanisms.

PP TTwTT T, v
: P Ottt By A R DL

LRI |

S o Yo,

o

-0 NTRODUCTIO &

*) One of the major objectives of the Ada program is to reduce By

software costs by increasing the transportability of Ada

software. To meet this objective for Ada Programming Support
Environment (APSE) tools, a common set of kernel facilities
have been developed called CAIS (Common APSE Interface Set).
Transportability of APSE tools will be greatly enhanced if ;
tools are developed to rely only on the Ada language and CAIS B

interface. By providing implementations of CAIS as the basis

of an APSE, tools will be more transportable.

In this paper a design for an operational definition of the

access control mechanisms of the CAIS is presented. Before ,‘-'
doing that a general overview of the CAIS, as proposed for
Department of Defense Standardization [Ada JPO.MIL-STD_CAIS]

is presented.

The CAIS provides interfaces to administer entities relevant R

5 v

to an APSE such as files, directories, processes, and de- 4
vices. Each entity has various properties and may be inter-
related with other entities. Within the CAIS a node serves
as a carrier of information about an entity. A relationship :
represents an interconnection between two entities. An at-

tribute represents a property of an entity or of an inter-

..................................
.....................

.....

Adia’ et Rt A S A e B S Sl R R

connection. The structure represented by CAIS nodes and
relationshipé is that of a directed graph. The nodes form the
vertices of the j raph and relationships form the directed

edges of the graph.

1.1 CAIS NODE MODEL

Three different kinds of nodes are identified within the
CAIS: structural nodes, file nodes, and process nodes. A node
may have contents and attributes and may be the source or
target of relationships. The contents of a node depends on
the kind of the node. A file node contains an Ada external
file. A process node contains a representation of the exe-
cution of an Ada program. A structural node has noc contents
and serves as a holder of relationships and attributes. Nodes
may be created, deleted, renamed, and accessed through CAIS

operations.

A node may be the source or target of many relationships re-
presenting many different classes of connections. In order
to distinguish among these different classes, the concept of
a relation is introduced. A relation is a catagory which
identifies the nature of a relationship. For example a re-
lation called PARENT connects a newly created node back to
its parent. The CAIS predefines certain relations and a_lows

the user to define other relations. Some basic predefined

) - L3 R -

relations are USER, DﬁVICE, JOB, CURRENT_JOB, CURRENT_USER, 'q
and CURRENT_NODE. According to this concept, each relation- .5
ship is identified by a relation name and a relationship key. ﬁ
The relation name identifies the class of the relationship, t:
and the relationship key distinguishes the relationship from
other relationships of the same class emanating from the same >
node. Nodes can be obtained by traversing relationships, that

is, following a relationship from its source to its target
node. An example of a typical set of CAIS nodes and attri-

butes is shown in Figure 1. .

There are two kinds of relationship: primary and secondary.
A primary relationship is established with a newly created

node. Primary relationships are restricted to maintain a hi-

erarchical structure of nodes. An example of a primary re-
lationship is the predefined relation USER which emanates
from the system-level node to a user top-level node. Primary
relationships form a tree, in which there exists only one
sequence of primary relationships from the root to each other
node in the tree. A secondary relationship may be established)

between any two existing nodes. An example of a secondary

relationship would be the connection between a source file :
and the ~zorresponding object file which is created by com-)
>
piling. The set of secondary relationships may form an ar- b
bitrary directed graph. E
Y
N
I\ ’
LS

A B Rydrh 4]

Dol ¥ e ot g).1
) i

CURFENT.
SHITH I STRTUS:

FERCY

COMFILE

CUFFENT. —~. CUFRENT.

NFUT .. OUTFUT
o ~

FEFREZENTRTION OF R COMPILATION

'~ 4 .
.........

A path is a sequence of relation name, relationship key
pairs. A péth starts at a known node (not necessarily top-
level) and terminates at a desired node. Every accessible
node may be reached by following some path from a system-
level node to the given node which involves only the trav-
ersal of primary relationships. A node may be identified by
a pathname. An example of a pathname is
'USER(JONES)TEXT_EDITOR(APPEND)TFILE which represents a path
from user JONES to the node representing the file being ed-

ited (see Figure 2).

The properties describing nodes and relationships are main-
tained in attributes. Each attribute is represented by a
named list which consists of an attribute name and a list of
values. The CAIS predefines certain attributes which usually
may not be manipulated by users. A user, however, may create
and manipulate user defined attributes. Examples of attri-

butes are found in Table 1.

»

e

L T

MR RN

.
-
-
-

JOHES

TEAT_EDIT

TFIL

R ECITTING

- -,

ol o

10M

g arte s il St i & ARl N A hadich gl B N i M\ S S N SO A e g Aia e dhae aie e Alhe 4 o A 4t ol Dun ale aie |

Table G-1. Account and Quota Attributes

« a4 b A X €

account_attribute_value ::= account_number =>

user_list
; user_list 1= user_item |
. (user_item ,user_item)
N user_item ::= user_name, password

user_name ::= identifier

password ::= string_literal

Mt ’

quota_attribute_value ::= account_number =>
user_list

quota_list 1= quota_item |
2 (gquota_item ,quota_item

RIS

user_name ::= identifier

guota ::= integer_number

Notation:

. Words - syntactic catagories
. [] - optional items
EL - an item repeated zero or more times

1
2
., 3.
4. | - seperates alternatives

AN S AT

P M i 4

G-11

AD-A172 343 EVALURTION AND VALIDATION CE&Y) TEAM PUBLIC REPORT
YOLUNE 2¢U) AIR FORCE HRIGIIT AERONAUTI I. L
RIGHT-PRTTERSO OH R SZYMANSKI Zl
UNCLASSIFIED AFWAL-TR-83- 1016-VOL-2

5 i B g7 . aTICaRE i giaf oS aTiiat g in PRt it

Ny AL S AT G T

o

I
I

FFEEEER

EEEE
EE

=
s
o

rrr
£
te

i
[l e

N
»

[[adevy
e T AT _ S AT S S
-‘ J'."‘ Por " " "\'\"'\f-. -.' AN

‘.n.-a': *y

1.2 CAIS PACKAGE STRUCTURE

The CAIS consists of several seperate, but related, Ada
packages. The packages are grouped into four major areas
(node management, list utilities, process management, and

input/output). Each contain several supporting operations.

2. General Node Managem

Node management consists of interfaces for the manipulation
of structural nodes, relationships, and attributes. These
interfaces are separated into five packages:
NCDE_DEFINITIONS, NODE_MANAGEMENT, ATTRIBUTES,
ACCESS_CONTROL, and STRUCTURAL_NODES. An Ada type NODE_TYPZ

is defined for values that represent a node handle.

The package NODE_DEFINITIONS defines the Ada type NODE_TYPE.
Handles are created from a pathname by the open operation.
Open is performed to indicate that a node will be used in
future operations. NODE_DEFINITIONS defines cer%tain string
and enumeration types and exceptions that are used for node

manipulation. Tools would use this package to acquire visi-

bility of types defined within the package so that objects

of these types may be created for use with node managemen

interfaces.

a

The package NODE_MANAGEMENT defines the general primitives
for manipulafing, copying, renaming, and deleting nodes and
their relationships. These operations are generally applica-
ble to all nodes, relationships, and attributes. Interfaces
are provided for the manipulation of node handles and the
performance of access synchronization. A tool could use rou-
tines from this package to open nodes, to obtain information
about nodes and their relationships, and to modify the re-

lationships among the nodes.

The package ATTRIBUTES supports the definition and manipu-
lation of node attributes and relationships. The operations
defined in this package are generally applicable to user de-
fined attributes and not to attributes predefined by the
CAIS. A tool could use routines from this package to define
and modify information describing certain nodes and re-

lationships.

The CAIS specifies two types of access control mechanisms:
discretionary and mandatory. Discretionary access control
involves dynamically granting to processes the right to per-
form certain operations on given objects. An example of dis-
cretionary access control would be to allow the current user
to execute a given program file. Mandatory control is a
static form of access control which involves restricting ac-

cess to objects based on the sensitivity of the object and

G-13

the clearance or authorization of the regquesting process. For

example an obﬁect with a secret clearance designated as a’

mail user could read any mail classified at the secret level
or below. Within certain constraints, the user may manipulate
discretionary access control information, however the user

may not manipulate mandatory access control information.

The package ACCESS_CONTROL provides primatives for the ma-
nipulation of discretionary access control information €for
CAIS nodes. Routines are provided to establish, delete, and
modify the necessary relationships. A routine is provided
to determine if access rights have been granted. A tool
could use routines from this package to grant or restrict

access to objects under its control.

The package STRUCTURAL_NODES provides the ability to create
nodes that do not have contents. A structural node only car-
ries common information about other nodes related to it. A
tool could use the interfaces of this package to create di-

rectories or configuration objects.

Process management consists of interfaces for initiating and
controlling the execution of Ada programs as represented by

CAIS processes. The execution of a program including all of

R SRS LS RN AS O

saratarboiaty at Bie Arad atid s AL BN LS 20 st T T Y U LW O A NN N

its tasks is represented by a process node. Predefined at-
tributes of the process nodes maintain information about the
process, such as CURRENT_STATUS, PARAMETERS, and RESULTS.
Predefined relationships link a process node to its input,
output, and error files. Process management is seperated int

two packages: PROCESS_DETINITIONS and PRCCESS_CONTROL.

The package PROCESS_DEFINITIONS defines the types and ex-
ceptions associated with process nodes. Tools would use this
package to acquire visibility of types defined within the
package so that objects of these types may be created for use

with process management interfaces.

The package PROCESS_CONTROL consists of interfaces for the
creation and termination of processes and the creation and
termination of process node attributes. Newly created process
nodes have several secondary relationships established for
them such as the predefined relation CURRENT_INPUT. The pre-
defined relationships are initialized from input parameters
to the invoking operation. Newly created nodes inherit se-
veral secondary relationships from the creating process such
as all secondary relationships of the predefined relation

CURRENT_USER. A tool could use the interfaces of this package

to spawn several parallel processes.

TR O - O b P Bab gob hii Bl g0 & _hgl e 9, gk ~at Bat By LI b By® Bat- et B _Spts St SRR w TS - b o pte al e bl Py oo

fo o uet

, 3 A nput and_Ou

) Input and output management consists of interfaces for the
K control of the flow of data to and from four kinds of files:

secondary storage, queue files, terminal files and macnetic
¥ tape drive files. Ada external files are represented by CAIS

file nodes. Predefined attributes of a file node, suzh as

N ACCESS_METHOD, FILE_KIND, QUEUE_KIND, AND TERMINAL_KIND,
A maintain information about its contents and access method.

There are ten input and output management packages:
; IO_DEFINITIONS, DIRECT_IO, SEQUENTIAL_IO, TEXZ_IO,
: IQ_CONTRCL, SCROLL_TERMINAL, PAGE_TERMINAL, FORM_TERMINAL,

MAGNETIC_TAPE, and FILE_IMPORT_EXPORT.

Package IO_DEFINITIONS defines the types and exceptions as-
\ sociated with file nodes. Tools would use this package to
) acquire visibility of types defined within the package so
; that objects of these types may be created for use with input

and output interfaces.

Packages DIRECT_IO, SEQUENTIAL_IO, and TEXT_IO provide
interfaces for input and output to their respective types of
files comparable with those specified in the Ada Language
! Reference Manual. Files created using package DIRECT_IO are
rezdable using package SEQUENTIAL_IO, if the two packages are

instantiated with the same generic data type. A tool could .

) G-16

< s gl ;g tiai Bt gl

use these packages to create, open, or delete Ada external

files of the above types.

Package IO_CONTROL provides facilities to modify or query the
) functionality of CAIS files. Specialized facilities provide
. for: associating text files with output logging files, forc-

ing data frem an internal file to its associated external
! file, manipulating function keys and prompt strings, and
creating mimic and copy queues. Tools could use the facili-
ties of this package to set up a desirable input and output

environment.

Three packages provide interfaces for terminal input and
output: SCROLL_TERMINAL, PAGE_TERMINAL, and FORM_TERMINAL.
Each package provides the functionality of the respective
type of terminal listed here in order of increasing complex-
ity. Tools can be constructed which handle input and output
from a terminal at a higher level using the primitive rou-

tines of these packages.

Package MAGNETIC_TAPE provides interfaces for the support of

- input and output operations on both labeled and unlabeled

; magnetic tapes. The routines within this package provide .
! | specialized tape related functions such as: mounting, ini-

tializing, loading, unloading, and dismounting. After a tape R

is loaded the information from the tape is eXxtracted using

G=-1T7

I
7
N

1
..1

PR R SN NI AT

package TEXT_IO routines. A tool could use routines from

PR

package MAGNETIC_TAPE in conjunction with routines <from

package TEXT_IO to read and write information using magnetic

tape.

The CAIS allows an implementation to maintain files sepa-

rately from the files maintained by the host file system.

Package FILE_IMPORT_EXPORT provides facilities to transfer

files between these two systems.

Within list utilities, the abstract data type LIST_TYPE is

defined for use by other CAIS interfaces. A list (an entity

of type LIST_TYPE) is a linearly ordered set of data elements

called list items. A list may be named or unnamed. List items

STRING_ITEM,

may be one of the following types: LIST_ITEM,

INTEGER_ITEMN, FLOAT_ITEM, or IDENTIFIER_ITEM. Package

LIST_UTILITIES defines the types, subtypes, constants, ex-

ceptions, and general list manipulation interfaces. Items of

a list can be manipulated by: extracting items from a list,

replacing or changing values of items in a list, and insert-

ing new items into a list. Tools could use list utilities to

create lists from external strings and insert and extract

items or sets of items from such lists.

...............
..............

........
......................
.........................

General Node Management, CAIS Process Nodes, CAIS Input and
Output, and CAIS Utilities provide interfaces to file, di-
rectory, process, and device management services. These ser-
vices are traditionally provided by an operating system and
affect tool transportability. If all APSE tools are imple-
mented using only the Ada language and the CAIS, maximal

transportability will be acheived.

G-19

.........

.0 DESCRIPTION OF ACC CHAN

The CAIS requires that mechanisms for discretionary and man-
datory access control be established. According to the CAIS
specifications, discretionary access control is "a means of
restricting access to objects based on the identity of sub-
jects and/or groups to which they [the subjects] belong. The
controls are discretionary in the sense that a subject with
certain access permission is capable o* passing that permis-
sion (perhaps indirectly) on to any other subject." Mandatory
access control "provides access controls based directly on a
comparison of an individual's clearance or authorization for
the information and the classification or sensitivity desig-

nation of the information being sought."

In the CAIS, access control consists of three basic compo-
nents (access control rights, access control rules, and ac-
cess checking). Access control rights describe the kinds of
operations that may be performed. Access control rules are
the rules which determine which access control rights are
required for an intended operation. Access checking involves
the determination of whether the granted access rights are

sufficient for permitting the intended operation.

G-20

Access to a node is defined in terms of the operations which

may be performed on the node. Four classes of operations

constitute access to a node:

The

reading or writing the contents of the node

reading or writing of attributes of the node

reading, writing, or traversing relationships emenatin

from the node

reading or writing attributes of relationships emenating

from the node

traversing the node.

following operations do not constitute access to a node:

closing node handles to a node

opening a node with intent EXISTENCE (see Table 2)

querying the kind or status of node handles to a node

reading or writing of relationships pointing to a node.

G-21

e

AN,

S TR TS

a0y

A node is inaccessible if access to the node is not permitted

after either discretionary or mandatory access checking. The

property of inaccessibility is relative to the process cur-
rently requesting access to a node and not a property of the

node itself.

2.1 DISCRETIONARY ACCESS CONTROL

Discretionary access control provides a means for specifying
the operations a subject may perform on objects. An object
is the node to which access is requested. A subject is a
process (which is acting for a user) intending to perfcrm an
operation which requires access to the object. A role node
is a structural node which serves as an intermediary be%tween
subiacts and objects. Object nodes have established for them
secondary relationships of the relation ACCESS (which is a
predefined relation). These relationships define the oper-
ations which are allowed to be performed on the node and by
virtue of their destination who may perform these operations.
These relationships emanate from the object node and have
targets which are role nodes. A subject may have established
for it relationships of the relation ADOPTED_ROLE (which is
a predefined relation). These relationships emanate from the
subject node and have targets which are role nodes. The
combination of these two kinds of relationships determines

the access rights to the object which have been approved for

the subject. The approved access rights are then compared %o

the intentioi of the subject to determine if an operation may

u s s V]

be performed.

2.1.1 Access Rights .

An object node may be the source of any number of access re-
: lationships to one or more role nodes. Each access re-
lationship has an attribute called GRANT. The predefined
GRANT attribute specififes the access rights of the object
which can be granted to subjects. Access relationships and
grant attributes are established in either of two ways: at
nocde creation or explicitly using the interfaces of package
ACCESS_CONTROL. The SET_ACCESS_CONTROL procedure (of package
ACCESS_CONTROL) has two possible uses. It may be used to es-
tablish an access relationship between two nodes and set the
value of the grant attribute of that relationship or, it may
be used to change the value of a grant attribute of an ex-
isting ACCESS relationship. If the ACCESS relationships are
to be established at node creation, a check is made to de-
, termine if creating such a relationship is permitted. If the
relationship is permitted, then SET_ACCESS_CONTROL is called

to establish the access relationship. The ACCESS relationship

i L R)

is defined wusing the key and GRANT value from the
ACCESS_CONTRCL parameter of the calling procedure. Regardless

0f how access relationships are established or modified the K

G-23

; P a & - e y - o 2 Y i g . AR AR ek SR Al ok e 0 o 2 g hatitd ~Y
2SR N FENIntR SEEE BLL S S SR A L R A B et SW WUV Y P gie bl S Ra/e AU - PRANL N A4 ACRl LA Sl dni A A A R A)

process carrying out such operations is required to have

sufficient access rights to the object.

PLAIT W o

7
’u rd

The value of the GRANT attribute is a list whose syntax is

consistent with that of a CAIS list as supported by package

h 5

LIST_UTILITIES. The BNF for the GRANT value is given in Table
A 2.

« o8 A

A s s €

. *im;t‘[‘ﬁ y] pl‘.- '-.;‘- ‘ - ‘f '- “\ . :. .~ 7~. \. "-.' S o e LIPS -". -\ o .~“.. At _;.._ .-_\ ‘.-{ .J'\(.I..“_ -..‘- vt _._"

Table g-2. GRANT attribute BNF

LTS

grant_attribute_value::=
([grant_item{,grant_item}])

T

grant_item::=
((necessary_right=>]resulting_rights_list) '

necessary_right::= identifier g

resulting_rights_list::= identifier | -
(identifier{,identifier}) hy
Notation: :

1. Words - syntactic catagories
2 [] - optional items

3. {} - an item repeated zero or more times i
4 | - seperates alternatives

AR e R e Ol Rl Bk i A Sk ot Rt Tk B S AR BN S RSB Yah T TN A M A

Although access rights may be user defined, the CAIS has de- :
fined a set of predefined access rights. These are found in

Table 3.

PRI

©r

EE V] l‘»-

PR

TIPS

G~26

-

oY, " LN S T A T et et e O I R . .. Y et et o . ‘
% \(_'~.'{_..f_ Sttt ety CQC e e -',;.'__(T e et e e T e A e et N e e e e
i, - R » s w '

-

........

Table G-3. (Part 1 of 4).

Predefined Access Rights

EXISTENCE

The minimum access rights
without which the object is
inaccessible to the subject.
Without additional access
rights the subject may nei-
ther read nor write attri-
butes, relationships or
contents of the object.

READ_RELATIONSHIPS

The subject may read attri-
butes of relationships ema-
nating from the object or use
it for traversal to another
node; the access right EXIST-
ENCE is implicitly granted.
This access right is neces-
sary to open the object with
intent READ_RELATIONSEHIPS.

APPEND_RELATIONSHIPS

The subject may create re-
lationships emanating from
the object and attributes of
these relationships; the ac-
cess right EXISTENCE is im-
plicitly granted. This access
right is necessary to open
the object with intent
APPEND_RELATIONSHIPS.

READ_ATTRIBUTES

The subject may read attri-
butes of the object; the ac-
cess right EXISTENCE is
implicitly granted. This ac-
cess right 1is necessary to
open the object with intent
READ_ATTRIBUTES.

G-27

LRI N

Yo%

ol o a4 %% &

Fa¥e oo a 0 B

Table G-3. (Part 2 of &).

Predefined Access Rights

WRITE_ATTRIBUTES

The subject may create,
write, or delete attributes
of the object; the access
right EXISTENCE is implicitly
granted. This access right .s
necessary to open the object
with intent WRITE_ATTRIBUTES.

APPEND_ATTRIBUTES

The subject may create attri-
butes of the object; the ac-
cess right EXISTENCE is
implicitly granted. This ac-
cess right is necessary to
open the object with intent
APPEND_ATTRIBUTES.

READ_CONTENTS

The subject may read contents
of the object; the access
right EXISTENCE is implicitly
granted. This access right is
necessary to open the okbject
with intent READ_CCNTENTS.

WRITE_CONTENTS

The subject may write the
contents of the object; the
access right EXISTENCE is im-
plicitly granted. This access
right is necessary to open
the object with intent
WRITE_CONTENTS.

APPEND_CONTENTS

The subject may append con~-
tents of the object; the ac-
cess right EXISTENCE is
implicitly granted. This ac-
cess right 1is necessary to
open the object with intent
APPEND_CONTENTS.

G-28

fabe. pNL AR AR b4

Table G-3 (Part 3 of 4). Predefined Access Rights

W o

READ This is the union of
READ_RELATIONSHIPS,
READ_ATTRIBUTES,
READ_CONTENTS, and EXISTENCZ
access rights. This access
right is necessary to open .
the object with intent READ. s
It is sufficient to open the .

object with intent
READ_RELATIONSHIPS,
READ_ATTRIBUTES, or
READ_CONTENTS.

WRITE This is the union of
WRITE_REALTIONSHIPS,

WRITE_ATTRIBUTES,
WRITE_CONTENTS, and EXISTENCZ
access rights. This access .
right is necessary to open A
the object with intent WRITE.
It is sufficient to open the -
object with intent
WRITE_RELATIONSHIPS,
WRITE_ATTRIBUTES, or
WRITE_CONTENTS.

-

y o v a_® .

APPEND This is the union of
APPEND_RELATIONSHIPS, :
APPEND_ATTRIBUTES, .
APPEND_CONTENTS and EXISTENCE y
access rights. This access .
right is necessary to open :
the object with intent AP- -
PEND. It 1is sufficient to
open the object with intent

APPEND_RELATIONSHIPS, .
APPEND_ATTRIBUTES, or .

APPEND_CONTENTS. X

G-29

ICa "4

& Tadble G-3 (Part 4 of 4). Predefined Access Rights

EXECUTE The subject may create a
process that takes the con-
tents of the object as its
executable image; the access
right EXISTENCE is implicitly
granted. This access right is
necessary to open the objec:
with intent EXECUTE.

P

CONTROL The subject may modify access
control information of the
N object; the access right EX-
2, ISTENCE is implicitly
' granted. This access right is
_ necessary to open the object
with intent CONTROL.

s A NS Y

i G-30

. £2.1.2 Adopting Roles

A role, gives a subject a set of access rights that it may
use when acting under the authority of that role. A role may
be associated with a user, a program in execution, or a group
of users, programs, or subprograms. Roles are acguired dy-
namically. A user may act under the authority of any number)
of different roles simultaneously. A role is represented by
a node. This node may be a top level process node represent-
ing the file containing the executable image of a program or

a structural node representing a group.

A structural node representing a group has relationships em-

anating from it whose target nodes represent members of the '
group. There are two kinds of relationships that can be used
to identify group members. The first is the primary re-
lationship of the predefined relation PERMANENT_MEMBER. The
permanent member relationship may be used to create a hier-

archy of users and/or groups of users. However, a user top

level node may not be a permanent member of a group since it
: may only have a primary relationship from the system level
node. The second kind of group relationship is the secondary
relationship of the predefined relation POTENTIAL_MEMBER.
This relationship identifies those subjects which may dynam-
ically acquire membership in the group. Potential members of
a group include all members identified by the relationship

: G-31 ‘

4
.

B O B o O S R B

PLAE RS A

AN N %

- il et N

POTENTIAL_MEMBER along with all permanent members. In order

to adopt the role representing a group, a subject must be
must be a potential member of the group. An example of a group

is found in Figure 3.

When a process adopts a role, a secondary relationship of the
relation ADOPTED_ROLE is established from the subject node
(representing the process) to the role node. A process node
may be the source of several ADOPTED_ROLE relationships.
Roles may be either adopted at node creation or adopted ex-
plicitly. At node creation, a process node automatically
adopts the role represented by the file node representing the
executable image of the program that is currently executing.
t creation, a root process node adopts the role of the cur-
rent user node. Processes explicitly adopt roles using the

procedure ADOPT of paclrage ACCESS_CONTROL.
valu ces jaht

The evaluation of discretionary access control rights in-
volves the derivation of relevant grant items and approved
access rights from the values of GRANT attributes. Relevant
grant items are grant items that are in values of GRANT at-
tributes of the access relationships emanating from the ob-
ject and pointing to a role node representing an adopted role
of the subject or a group node representing a group of which

G-32

a'ala rahiad Sl te el ad sl e Al T s A 4 B Sl ach Reh A s ad & orh ek o4

rerperENTL 0P L] Pt ;
BEER " = E 5
BE
POTENTIFL :
MEMEER

Skl SUE 2

'ﬁm =F‘{.

EROUF FELATIONSHIFS

an adopted role node is a permanent member. An approved ac-
{ cess right is an access right which meets one of two crite- ;
ria. First, the access right may be a necessary right for
which the resulting rights list is null. Second, the access y
right may be within a resulting rights list of an approved
necessary right. Examples of evaluating access rights follow

in Figqures 4 and 5.

In Figure 4, a subject has adopted two roles, RCLE 1 and ROLZ 3

e o o as

2. From ROLE 2 the subject acquires the approved access right

READMAIL. From ROLE 1 along with the approved necessary right

of REACMAIL the subject acquires the approved access right ;
of READ and WRITE. This combination ¢of access rights is re-
quired for the subject to be permitted to perform the oper- -

ations of read and write on the object.

Figure 5 represents part of a set of relationships that could
be found within a project. SUBJECT 1 has adopted RCLE 1 ard
ROLE 3 and assumed the role of a project leader. SUBJECT 2
has adopted ROLE 2 and ROLE 3 and assumed the role of a B
project programmer. Through ROLE 3 both subjects acquire the -
approved access right EDIT. Using ROLE 1 along with the ap- ;
proved necessary right EDIT, SUBJECT 1 has approved access Ky

rights of READ and WRITE to both objects. Using ROLE 2 along

with the approved necessary right EDIT, SUBJECT 2 has the ;

approved access right of READ to OBJECT 1 and approved access
rights of READ and WRITE to OBJECT 2.

Within the CAIS discreticnary access checking is done at the
time a node is opened. This is accomplished by cocmparing the
INTENT parameter of the procedure OPEN with the apprcved ac-
cess rights of the node to be opened. 1If the INTENT is no:
an approved access right then an exception is raised. I£
approved, the INTENT value can be used for comparison when

other operations are attempted.

2.2 MANDATORY ACCESS CONTROL

Mandatory access control provides a mechanism for information
security which may not be altered by CAIS users. There are
two types of mandatory access control classification (hi-
erarchical and non-hierarchical). A hierarchical classi-
fication level is one of an ordered set of classification
levels. This classification represents either the
trustworthiness of a subject or the sensitivity of an object.
In order for a reading process to obtain access to an object
it must have a hierarchical classification greater than or
equal to that of the object being read. On the other hand, a
writing process must have a hierarchical classification less

than or equal to that of the information being written. y

G-35 y

“;;}S:';};zr’.. -n': -'.'f: * .{.‘ ".. "c".-'\I e

LOOOOK

OO

L e

. AN ,, (..l

w7 ol ey

Figure g-\4

FE!ESE//J- FOLEL N rooeren.
GFRTT=FERDIALS, POLE

| FRERDWRITEY

-

Wﬁ ‘il
FAOMET

bl []

[EEEEET | TR
—f

TOHSHTRS

it

m p)
]
(]
™
[K]
(4D
)
{1]
I
-—l

e

FRAMT=
[E0TT= ...'::Hl OWRITEY
(FES0 HFITEN (EDLT=3FEAD WRITE]

FOLE 2 k

"{ ERAHT= |‘l‘u =M=
[ELTT=: [EDIT=}FERD WRITEY
FERD)) .y
- BPENT= W gRRNTE D)
ELIT) ROOFTED.
ACCESS ACCESS FULE
ET1 e 2B 1]
< B2

RCCESS RELATIONEHIFS

Figure G-5.

G=37

Each subject and object is assigned any number of non-
hierarchical catagories to represent coexisting classifica-
tions. A reader must be assigned each of the non-hierarchical
catagories assigned to the object read. An object written to
must be assigned each of the catagories of the writer. Both
hierarchical and non-hierarchical access rules must be sa%-
isfied before a subject can obtain access to an object.
Mandatory access checking is carried out at the time txhat an
operation is requested by the subject. The classification of
the subject and that of the object are compared before the

operation is permitted.

In order to accomplish mandatory access checking nodes need
to be labeled with their mandatory access classification.
Process nodes have both an object and a subject classifica-
tion, since process nodes can be both the subject and object
of operations. Non-process nodes only have object classi-
fications. Ncdes for devices have two object classifica-
tions: LOWEST_CLASSIFICATION and HIGEEST_CLASSIFICATION to
represent the range of information that may be handled by the

particular device.

Mandatory access control rules are checked when access con-
trol is enforced for a given operation. If an operation vio-
lating mandatory access control rules is attempted then the

operation is not permitted and a SECURITY_VIOLATION exception
G-38

-y

is raised. Figure 6 illustrates mandatory access labeling _

for a reading.process and an object being read.

2.3 SUMMARY ;
‘]
:
The combination of the discretionary and mandatory access '
control mechanisms provides the basis for the complete pack- "
P
age of CAIS ACCESS_CONTROL. The discretionary access control 5

mechanisms provide the user a means of explicitly restricting
access to information. The mandatory access control mechanism

provides a means for maintaining information security.

M UL

N e 0 ¥ -

G-39

; SUEJELT | SUBJECT.

v | CLRSSIFICATION
SECFET ((STRFF, MRIL _FERTER)

OBJECT CEIECT.

' ‘CLH'SSIF ICATION

: 1 |]

3 CONFICENTIAL! {IMRIL_FERCER]

: MAMDRTCRY RCCESS LABELING

E Figure G-6.

.0 E N PLEMENTA

The implementation of the discretionary and mandatory access
control mechanisms of the CAIS posed interesting information
problems. Seperate strategies were chosen for the implemen-
tation of each mechanism. The discretionary access control
mechanism closely adheres to the suggested implementation
outlined within the CAIS specifications. The mandatory access
control mechanism is implemented in a slightly different
manner than the suggested implementation scheme. Any vari-
ations from the suggested implementaion strategy do not alter

the interfaces specified by the CAIS.

3.1 DATA STRUCTURES

The discretionary access control mechanism uses many data
structures that are previously defined within the CAIS.
Mainly, the discretionary access control mechanism is highly
reliant on the CAIS relationships and CAIS LIST_UTILITIZS.
As described previously, a discretionary access right is a
cross of two relationships, the ACCESS relationship and the
ADOPTED_RCOLE relationship. It was necessary to develop
mechanisms for creating and evaluating such a complicated

cross of relationships. Such mechanisms are described in de-

G-41

DRI S

' tail in the sections of this paper which describe the indi-

. vidual Acczss;CONTROL procedures.

The mandatory access control mechanism still uses many pre-
3 viously defined data structures, but also introduces a .
ﬁ structure of its own. It was suggested that the labeling of
- nodes for mandatory access control be accomplished by imple-
é menting such labels as predefined node attributes. In the
N interest of simplicity, a different approach is used. The
) mandatory access control labels have been made into fields
of the node itself. A variant record approach is used since
the labels are different for different kinds of nodes. By
using this implementation approach the process of mandatory
access checking is simplified. Mandatory access rights can
be checked directly as opposed to searching through an entire
attribute list. It is important that mandatory access check-

ing be as simple as possible, since mandatory access checking

L 0 Dl N V)

should be done with almost every operation. The mandatory

access control mechanisms do use CAIS LIST_UTILITIES to a

a0

limited extent in accordance with the suggested specifica-
tions. The precise details of mandatory access checking are

described in the section on the underlying routine

A

MANDATORY_CHECK.

LY

. G-k42

LA Ahe B it et el fing I S B

A 3 NT

The procedure SET_ACCESS_CONTROL is a CAIS interface that ’
sets access control information for a given node. The proce-
dure has three input parameters: NCDE of type NCDE_TYPE, the
object node handle; ROLE_NODE of type NODE_TYPE, the role
node handle; GRANT of type GRANT_VALUE, the value to be as-
signed the grant attribute. If an access relationship does
, not exist from the object node to the role node, one is cre-
ated. Alsc, a grant attribute of the access relationship is
created. The effect of this procedure is to grant the access
rights specified by the GRANT parameter to processes who have ;

adopted the role represented by ROLE_NODE.

The SET_ACCESS_CONTROL_PROCEDURE is designed as follcws. A
check is made to determine if the object node and role node
have been opened. If either is not open a STATUS_ERROR ex- i
i ception is raised. A check is made to determine if the object
node is open with the intention of CONTROL. If this is not
. true an INTENT_VIOLATION exception is raised. The procedure
MANDATORY_CHECK is called to make sure all mandatory access
control constraints are met. Access to the object node is :
achieved using the procedure GET_ACCESS_NODE. The relation-
. ships emanating from the object node are searched to see if
; an access relationship exists to the role node. If no such

relationship is found, one is created. If such a relation-

G-43

SN
A

IR RRNI

n & A A A

ship is found, access to it is established using the proce-
dure GET_ACCESS_REL. If the access relationship already has
a grant attribute, its value is replaced by that of GRANT,
otherwise, a new grant attribute with the wvalue GRANT is at-

tached to the relationship.

A second interface is provided by an overload version of
SET_ACCESS_CONTROL. In this version of the procedure the
object node and role node are referred to by their name
strings. This version opens the object and role nodes using
their name strings and gets node handles. It then calls the
first version of SET_ACCESS_CONTROL using the acguired node
handles. Finally, it closes the role and object nodes re-
gardless of the termination status of the procedure call to

the first version.
.3 RAN K

The function IS_GRANTED returns true if the current process,
as a subject has an approved access right to the object node.
Otherwise, it returns false. The function has two incoming :
parameters: OBJECT_NODE of type NODE_TYPE, the object node
handle and ACCESS_RIGHT of type NAME_STRING, which is an ac-

cess right.

P RIS

G-Lh

)

a2 e as s A&

......

The function IS_GRANTED is designed as follows. A check is
made to determine if the object node has been opened. If it
has not been opened then a STATUS_ERROR exception is raised.
A check is made to determine if the object node is open with
intent CONTROL or with intent READ_RELATIONSHIPS. If this
is not true then an INTENT_VIOLATICON exception is raised. The
outgoing relationships of the object node are searched until
one or more access relationships are found. Each grant itenm
is extracted from the grant attribute of the access re-
lationship. If the resulting rights list of the grant iten
is null then the grant item name and the access right are
cormpared. If the two values are egual, then the access re-
lationship is considered complete to the role node. 1f the
resulting rights list is not null, a call is made to IS_IN
to determine if the access right is contained in the result-
ing rights list. If the access right is so contained then
IS_GRANTED is called recursively to determine if the neces-
sary right has been approved. Once both checks are successful
the access relationship is considered complete to the role
node. The procedure IS_ROLE is called to see if the role node
is an adopted role of the SYSTEM_CURRENT_PROCESS_NODE (cur-
rent user). If the search is successful, then the value of
true is returned. Otherwise, the value of false is returned.
Using the access relationships of Figure 4, IS_GRANTED could
be invoked as IS_GRANTED(OBJECT, "READ"). Once the access re-

lationship is found to ROLE 1, the procedure IS_GRANTED is

G-45

N . . T Mdh S0 AN SEL RSN o o
‘ u iag® - . T Pl et ity (KA E A s A - BT e PR

. invoked recursively as IS_GRANTED(OBJECT,"READMAIL"). This
simple examplé illustrates the need for at least one level a

of recursion to evaluate access rights.

A second interface is provided by an overload version of

o s € &

IS_GRANTED. In this version the object node is referred to
by its name string. This version opens the object node using
its name string to get a node handle. It then calls the firs<
version of IS_GRANTED using the acquired node handle. If the
| function terminates normally, the object node is closed and
the acquired value is returned. If the function call termi-
nates with an exception no value is returned, the okject node

is closed and the exception is raised again.

The procedure ADOPT causes the current process to adopt the
group role specified by ROLE_NODE. The procedure has two pa-
rameters: KROLE_NODE of type NODE_TYPE, which is the group
role node handle; ROLE_KEY of type RELATIONSHIP_KXEY, which
is the key of the ADOPTED_ROLE relationship to be created.
An adopted role relationship is created from the calling
process to the role node with the relationship key ROLE_KEY.
In order for the calling process to adopt the group role,

some other adopted role of the calling process must be a po-

’
tential member of the group. o
G-46

.......

The ADOPT procedure is designed as follows. A call is made
to procedure'IS_ROLE to see if the current user is a poten-
tial member of the group represented by the role node. If it
is not a potential member then a USE_ERROR exception is
raised. A check is made to determine if the role node is open.
If it is not open a STATUS_ERRCR exception is raised. A check
is made to determine if the role node is open with intention
APPEND_RELATIONSHIPS. If this is not true then a LOCK_ERRCR
exception is raised. A call is made to the procedure manca-
tory check to make sure all mandatory access control con-
straints are met. A new relationship cell with the name
"ADOPTED_ROLE" is created with key ROLE_KEY. Finally, the
newly created relationship <cell is attached to the
SYSTZM_CURRENT_PROCESS_NODE, which represents the calling

process.

.5 NADOPT

The procedure UNADOPT deletes the adopted role relationship
with key ROLE_KEY (the only parameter to the procedure). If
such alrelationship does not exist, the procedure has no ef-
fect. The procedure UNADOPT is designed as follows. A check
is made to determine if the SYSTEM_CURRENT_PROCESS_NCDE is
opened with intent WRITE_RELATIONSEIPS. If this is not true
then a LOCX_ERROR exception is raised. The ADCPTED_ROLE re-

lationship is accessed using the procedure GET_ACCESS_REL.

G-47

L MR ANNY

The target node of the adopted role relationship is checked
to see if it is the top level node. If it is the top level
node then a USE_ERROR exception is raised. Finally, the
adopted role relationship is detached from the

SYSTEM_CURRENT_PROCESS_NODE.

.6 NDER NG T

Three underlying routines have been introduced to aid in the
implementation of package ACCESS_CONTROL. These routines
carry out operations that are implicitly necessary for the
functioning of CAIS access control mechanisms. The names of

the routines are IS_IN, IS_ROLE, and MANDATURY_CHECK.

2.6.1 IS IN

The routine IS_IN is a simple augmentation to the list man-
agement routines. Its function is to check if a given ele-
ment is found within a given list. It calls the list
management routine POSITION_BY_NAME. If POSITION_BY_NAME
finds the item in the list it returns a position number

Since the position number is of no consequence IS_IN simply
returns true. If the item is not in the list POSITION_BY_NAME
raises a SEARCH_ERROR exception. IS_IN handles the excertion

and returns false.

G-L8

o N T T T)t e T e A e e T T
Ry r T Y G A S T

......
Gt P
. o«

« #_1 & g

ave 4 8 B

- - - ¥ V - - -, S W ..4) [9 . b - e . . A \ . "

An overload version of IS_IN is also present. Its function
is to check if all the elements of a given list are contained
within a second list. It calls the list management routine
EXTRACT to extract items from the first list. It calls the
first version of IS_IN to determine if each extracted item
is in the second list. If all the items of the first list are
contained in the second list the function returns true. Oth-

erwise, it rerurns false.

3.6.2 IS ROLE

The routine IS_ROLE is useful in access checking. Its func-
tion is to establish if a specified kind of relationship em-
anates from the SYSTEM_CURRENT_PROCESS_NODE (the calling
user) and has a target which is the given node. It searches
through all of the relationships emanating from the
SYSTEM_CURRENT_PROCESS_NODE. It returns true only if a re-
lationship meeting the above criteria is found. Otherwise,

the routine returns false.

3.6.3 MANDATORY CHECK

The routine MANDATORY_CHECK performs the mandatory access
control checking. It first checks to make sure that the
NODEl parameter is a process node (since it represents the

subject). The procedure derives the subject classification.

G-L9

3 The procedure checks the type of the NODE2 parameter and cde-
? rives its objéct classification or range of classifications.

It checks the intention of the object node (NODE2) to deter-

mine which kind of comparisons need to be made between the

subject's and object's hierarchical and non-hierarchical

PR R s e

classifications. For a read operation, the subject's hierar-
- chical classification must be greater than or egqual to tha:
of the object. The subject's set of non-hierarchical
catagories must be contained within that of the object. FEor

" a write operation the subject's hierarchical classificaticn

LA]

must be less than or equal to that of the object. The object's
set of non-hierarchical catagories must be contained within
that of the subject. If any of the mandatory checks are

failed a SECURITY_VIOLATION exception is raised.

..

G-50

4.0 IMPLEMENTABILITY ANALYSIS

The access control mechanisms of the CAIS are designed to
provide a great deal of flexibility of use while keeping

torage demands reasonable. fhe major expense of this design
is the amount of time required to evaluate (check) access
rights. Each discretionary access check requires a great
deal of searching. Each relationship emanating from the ob-
ject node must be examined to determine if it is an access
relationship. For each access relationship found, each at-
tribute must be examined in order to find the grant at<tri-
bute. A grant attribute may have several grant items to be
examined. Once a desired access right is found within scme
resulting rights list, a recursive discretionary access check
is performed to determine if the necessary right is approved.
Finally, when an access relationship has been found to a role
node, a search is performed to determine if the role has been
adopted by the current process. This search is reasonably
straight forward with simple access rights lists. However,
if the necessary right is located within a resulting rights

list the complexity of the search could be enormous.

The access control mechanisms are not consistently specified
throughout the CAIS. The interfaces specified in the package

ACCESS_CONTRCL have access rights represented by items of
G-51

-~

type NAME_STRING or lists of these items. The interfaces
specified in péckage NODE_MANAGEMENT have INTENTs specified
as arrays of type INTENT_SPECIFICATION. The type NAME_STRING
is a subtype of the type STRING and the type
INTENT_SPECIFICATION is an enumeration type. As such tane two
types are not compatable for direct comparison as reguired
by the CAIS specifications. Therefore, it was necessary to
develop a mechanism to convert items of type
INTENT_SPECIFICATION to type NAME_STRING to enable discre-
tionary access checking to be performed within other pack-

ages.

The organization of the CAIS has made it difficult to imple-
ment access control mechanisms. According to the specifica-
tions the interfaces which provide the primatives for
discretionary access checking are to be contained in package
ACCESS_CONTROL. As specified package ACCESS_CONTRCOL must use
routines from package NODE_MANAGEMENT. At the same time rou-
tines within package NODE_MANAGEMENT are required to periorm
discretionary acccess checking. It would seem logical to use
the interfaces provided in package ACCESS_CONTROL to perform
such checking. This is not possible since package
ACCESS_CONTROL is dependent on package NODE_MANAGEMENT. As a
result of this situation it was necessary to duplicate some

of the routines from package ACCESS_CONTROL within package

NODE_MANAGEMENT.

An alternate access control mechanism is the use of access
control lists. Each object node would have attached to it a
list of subjects and the access rights that each subject is
granted. While access checking is clearly easier to implement
with access lists than with CAIS access relationships, they
are deficient in two respects. Access lists reguire more
storage than CAIS access relationships, and access lists are

not as flexible to use as CAIS access relationships.

The design of an operational definition of the CAIS has re-
vealed that the specified access control mechanisms are
implementable. CAIS access mechanisms provide for a large

amount of flexibility at a moderate cost.

G-53

*y "3 ~» "4}

Yot e g ¥

X XA L]

.....

......

2l Bue, barh i Yt gf Sak s Bl b s B dr i R A faB o W RN T

CON o]

The operational definition of access control mechanisms de-
scribed herein has been designed to meet all specified re-
quirements. The completion of the design has demonstrated the
implementability of CAIS access mechanisms. The CAIS access
mechanisms sacrifice execution efficiency in favor of flexi-
bility of use and storage economy. Since the CAIS is intenced
for use within a program development environment, such a
sacriface seems quite reascnable. The completion of this op-
erational definition is an important step leading to the de-
velopment of a wuseful Common Ada Programming Suppor:

Envircnment Interface Set.

G-5U

aA KRS s

-

III. AN ABSTRACT MACHINE SPECIFICATION OF THE NODE MODEL

In this section, using text from a Master's Thesis by

Margaret D. Little, the operational definition's approach

to specifying CAIS Node Model is presented. The implementatior
approach in this Ada-only representation of the Node Model

is a set of highly linked structures for nodes, relationcshipe,
and attributes.

G-55

.. ‘ -‘A.- .'-{.;'-.. ..‘ ! }:'x- - -’ - .4*‘:',_ -'-.‘_ -'l~.. - :._\,1_‘:.‘.) .{‘.‘. .f'.’ »,,'. .{ . ;:.‘;."”.'-.l\!‘;vf.-ih\(““.\1'.-g"~'.'..f.".’;....‘ RS ‘: f"“ ~~ -.‘.‘.. "._ :.

>

fud- !

%)

Ty

Chapter 1

‘>

INTRODUCTION

]

In 1975 the Department of Defense (DoD) established the High

Order Language Working Group to "produce a minimal number of

e
¥y

common, modern High Order Computer Languages for the DoD
2 embedded computer systems applications and to assure a
unified, well supported, widely available, and powerful
X programming support environment for these languages." From
this project came the STEELMAN language reguirements
document and the Ada! language. Also from this project came
the STONEMAN document outlining requirements for an Ada
! Programming Support Environment (APSE).
3 An APSE is a complete programming environment whose
) purpose is "to support the development and maintenance of
3 Ada applications software throughout its life cycle" [6].
. To fulfill this objective, an APSE provides a coordinated
: set of software tools intended to facilitate project
management and long term maintenance as well as progranm
development.
' A major goal in the design of an APSE is to facilitate
' the transfer of APSE tools and tool sets between machines.

The layered structure of an APSE outlined in STONEMAN is

! Ada is a registered trademark of the U.S. Department of
Defense.

«
-
a

(]

G-56

".;.,'- RIS OIS, s -_..'_.\-..-_‘-;:".'\.'.‘:__.'_'.' oy .'.‘.f_‘..\.' LA . ._..,..-_.:\-' o e g s N

designed to allow source-level transportability of software
tools written in Ada. The structure has four levels, as
follows:

level 0: Hardware and host software as
appropriate

level 1: Kernel Ada Program Support Environment
(KAPSE), which provides database,
communication and run-time support
functions to enable the execution of an
Ada program (including a MAPSE tool) and
which presents a machine-independent
portability interface.

level 2: Minimal Ada Program Support Environment
(MAPSE) which provides a minimal set of
tools, written in Ada and supported by
the KAPSE, which are both necessary and
sufficient for the development and
continuing support of Ada programs.
level 3: Ada Program Support Environments (APSEs)
which are constructed by extensions of
the MAPSE to provide fuller support of
particular applications or
methodologies. [6]
Software tools written in Ada that use only the machine-
independent interface provided by the Kernel APSE (KAPSE) to
communicate with the underlying machine may be transported
to other machines that support the same KAPSE interface.

The potential introduction of several different APSEs,
with correspondingly different KAPSEs, lead to the formation
of the KAPSE Interface Team (KIT) and the Kernel APSE
Interface Team from Industry and Academia (KITIA) to define

standard KAPSE interface conventions. The KIT and KITIA

G-5T

"ol |

'l

-'n - -

have developed a set of kernel interfaces called the Common
) APSE Interface Set (CAIS), described in the Draft
y Svecification of +the Common APSE Interface Set (CAIS),

hereafter referred to as the CAIS Specification.? The CAIS

-

[J0 v S0 L8

is a collection of Ada packages; when implemented, the
subprograms in these packages can be used by APSE tools to
provide system services.

To ensure uniform implementations of the CAIS, a suite of

| UK R

validation tests, the CAIS Validation Capability, is being
developed through the APSE Evaluation and Validation Team

[2]. To develop validation tests a complete, precise

LVAD LRSS

specification of the CAIS is needed. An important part of
) such a specification is the definition of the function, or
semantics, of each subprogram of the CAIS.
. The interface semantics are not well-defined in the
current CAIS specification. The specification describes the

function of each subprogram using commentary; these

[P - ¥ XS

descriptions are incomplete and contain inconsistencies.

»

- Consequently, implementations based on this specification
are not 1likely to be uniform. A specification that

L overcomes these problems is needed.

2 A subsequent version of this specification, [4), has been
proposed as a Government standard and is currently in the
review process.

, G-58

LG S T -~
- LY - -~

Ll

-

¢ o e, " - - e M
NI :

I N TN

- Se Y L Te Te T e T e e v P . wm T .
P LTI - B S S TN RS e
- BRI SN T RO P PP T S SN N

The objective of this paper is to identify a semantic

specificatioﬁ technique that is easily understandable, vyet
lends itself to a complete and consistent description of the
Common APSE Interface Set, and to use this technique to
develop a new specification for the CAIS node model.

This paper develops specifications for the Ada packages
outlined in [1] that constitute the CAIS node model. These
packages are CAIS_NODE_DEFS, CAIS_NODE_MANAGEMENT, and
CAIS_ATTRIBUTES. In addition, a specification for the
CAIS_STRUCTURAL_NCDES package, which is not a general node
package, 1is given. Since the CAIS specification available
for this project [1] did not thoroughly define access
control for the node model, the CAIS_NODE_CONTROL package
described therein is omitted from this study.

The following terms are used in this paper:
specification: a document that defines requirements,

details a design, or describes a product (IEEE);

rans abilitv: "the degree to which a [APSE] tool can be
installed on a different APSE without reprogramming;
the tool must perform with <the same functionality in
both APSEs. Synonyms commonly used are portability and
transferability." [3];

facility: a function implemented in the kernel APSE

G-59

I A R

interface: the means of interaction between a software tool Ry

and a fécility [15];

'
svntax: the collection of rules which indicate whether a .

string of characters is a valid use of a kernel Q
interface; ﬁ
semantics: the rules that give meaning to a kernel _
interface, used synonymously with function and oY
functionality. g
‘.

Chapter 2 of this paper presents a review of
<
proposed techniques for the semantic specification of ﬁ
‘.
kernel interfaces and applications of these techniques; 2
<.
Chapter 3 details the specification technique wused in N
this study. Chapter 4 provides a preliminary -
description of the CAIS node model, and Chapter 5 =

reflects the details of the application of the
N
specification technique to the node model. Chapters 6, ‘3
7, and 8 present the specifications; and Chapter 9 j§
~
reports summary conclusions and suggests areas for]
further study. E?
:
;'.l
<
!
&
o
f_:
o
N
3

G-60

YT

gt

Chapter 11

SEMANTIC SPECIFICATION TECHNIQUES

This chapter presents a review of the literature pertaining
to the semantic specification of kernel APSE interfaces.

A report® by Kafura and others [15] states that a
complete specification of kernel APSE facilities must

include four elements:

l. syntax,
2. semantics,
3. limits: details of any structural or usage

constraints placed on a facility, and
4. hidden protocols: interactions between facilities,
by means of direct communication or shared data, that
may not be visible.
The report points out that, of the four parts of the
specification, the semantics are the most difficult ¢to
define and, at the same time, the most important.
The problems with semantic specifications are not new.
The specification of the semantics of programming languages,
the rules that give meaning to programs, is a topic that has

been extensively researched.

3 This material is also covered in a published article [16].

G-61

T T

Aho and Ullman (7] discuss some of the approaches to
specifying ﬁrogramming language semantics. One such
approach is axiomatic definition [13] [7]. 1In this approach
axioms and rules of inference are developed to define the
meaning of the language. These axioms and rules are used in
proving properties of programs written in the language.
Another approach to semantic description of languages is
denotational (or mathematical) emanti [71. In a
denotational semantic specification, rules are defined that
translate programs into abstract mathematical objects.

Another approach described by Aho and Ullman is
operational (or interpretive) semapntics. The premise behind
this method is that the semantics of a machine language can
be defined by the machine itself; "a machine language
program 'means’' exactly what the computer does when the
program is run." The semantics of a high 1level language
cannot be defined in this way, however, since a high level
language program cannot be run on a computer without first
being compiled intoc some machine language, which itself
requires a semantic definition of the language. Aho and
Ullman give the following description:

The interpretive [or operational] approach to defining

the semantics of programming languages is to postulate
an abstract machine and provide rules for executing

programs on this abstract machine. These rules then
define the meaning of programs the way the real machine
did for assembly language programs. Usually, the

abstract machine is characterized by a state, consisting

G-62

of all data objects, their values, and the program with
its program counter (indicator of the 'current' step in
the program). The semantic rules specify how the state
is transformed by the various programming language
constructs [7].
Each of these approaches is the basis for a semantic
specification method for kernel APSE interfaces.

The report by Kafura and others ([15] outlines four
general methods for specifying the semantics of kernel APSE
facilities:

1. natural language specification,

formal methods,

2.
3. by example, and
4.

abstract machine specification.

A pnatural lancuage specification is an informal description,
. by means of commentary, of the intended function.

Specifications of this type are relatively easy to construct

and very readable; they are, however, quite difficult to
) check for completeness and absence of ambiguity.
: The report [15] suggests several formal methods that
might be used to specify the function of kernel facilities.
These methods include axiomatic specification and denotation
semantics. Formal methods produce precise specifications
that can be mathematically analyzed. However, they are

S difficult to construct and not easy to comprehend.

c-63

. ~ . - - w7 LY e .
IR L T L S N R T
M e W S Y e N

e

Another method of semantic specification suggested in the
report [15]. is by example. This method requires the
construction of a set of wvalidation tests. By definition,
then, any implementation that produces the output expected
by the validation tests is functicnally correct.
Specifications of this type would have to be extremely well-
documented to be useful to implementors, which would again
lead to a natural language specification, albeit a more
thorough one. The quality of a specification of this type
depends entirely on the techniques wused to develop the
validation tests.

A final method for specifying the function of kernel

facilities, described in the report [15], is abstract

machine specification. This abproach is based on the
operational semantics described above. An abstract machine

is detailed that contains primitive objects representing the
elements in the kernel environment. Programs written for
the machine that perform the intended function of a facility
then provide a semantic specification of the facility. A
specification of this type is more precise than a natural
language specification, yet easier to understand than a
formal specification. The main difficulty with this method
pointed out in the report is that the semantics of the

language of the abstract machine must be defined. The

G-6b

.

report suggests that this difficulty can be eased by using
Ada as the pfogramming language.

Freedman brings up some issues involved in developing a
formal specification for a standard kernel APSE interface
[11]. He discusses the relative merits of an operational

rproach (using an abstract machine) versus a denotational

appreocach, and points out that an operational specification
is built wusing a bottom-up design technique, a relative
disadvantage; the machine must be defined before programs
can be written and their semantics defined. Another
disadvantage pointed out to this approach is that it 1is
implementation~dependent; the specification is based
entirely on the definition of the abstract machine.

The abstract machine approach to specifying kernel APSE
interface components is examined further by Lindquist and
others in [16]. This article points out that, while an
abstract machine specification may seem to require a
specific implementation, <the abstract machine programs are
intended to describe semantics solely by their (perceived)
execution effects. Thus, any implementation that generates
identical output defines the same semantics.

The article [16] goes on to specify an abstract machine
and illustrate its use through an abstract machine program

for one procedure of the CAIS_PROCESS_CONTROL package. This

LA A A

S St NS i sihl Ta Sk AR A il

abstract machine is defined in terms of three components: a
o processor, a.storage, and an instruction set, The basis of
. the instruction set is the Ada language, chosen because of
its well-defined semantics and its familiarity to the
intended reader. The example program for the abstract
machine clearly identifies both valid inputs and error

conditions, and the error handling techniques are explicit.

DU it

These are points that are incomplete in the natural language
description of the CAIS given in [1]. The Ada based
abstract machine described in this report provides a
readable and well-defined semantic description for the
example given.

The abstract machine approach to specifying the CAIS has

been further analyzed in a paper by Facemire [9], in which a

CL LA

validation mechanism based on an abstract machine
specification is developed. Another paper, by Srivastava

[17], has successfully applied an abstract machine approach

A AN N

in developing semantic specifications for the process node

packages of the CAIS.

As indicated by this review, the abstract machine
3 approach to specifying the semantics of the CAIS 1looks
promising. It leads to a more complete and precise semantic

“ specification than the natural language apprcach used in the

.

. G-66

..

.

= L

current specifications, and the specifications are easier to
construct ana more readable than formal mathematical
methods. In addition, it forms a specification on which
1 validation mechanisms can be based. This paper focuses on
applying this approach to the node model packages of the
CAIS to develop a semantic specification that is complete,

consistent and unambiguous.

P rChian

G-67

S L A N
A% AN,

N I N O D O S R Sy S AN S S

S ee et .
s e RS
T A N
R ¥ LI N a
Y "y oy
-

P
e "aa”al

.

i

'.,-

Chapter I1ll
THE ABSTRACT MACHINE METHOD OF SPECIFYING CAIS
FUNCTION
The method used in this paper to specify the function of
CAIS operations 1is an abstract machine approach based on
operational semantics. As proposed in [15] and [16], and
illustrated in [9] and [17], this method can be used to
specify the function of <the kernel APSE interfaces. To
apply this approach, an abstract machine must be defined.
The meaning of any program written for the abstract machine
is then defined by the execution rules of the machine. In
particular, the meaning of the CAIS operations can be
defined by giving programs that perform the intended

function of the operations on the abstract machine.

3.1 IHE ABSTRACT MACHINE

As seen in the previous chapter, to write a program for an
abstract machine that describes the function of a CAIS
operation, a complete description of the abstract machine
must be given. The design of a complete abstract machine
with its states and execution rules could be a major job.
An ideal solution to this problem is to use the Ada language
to describe the function of the CAIS operations. This

language has a thorough semantic specification on which to

G-68
L U I IV UL I L o T T I G IR S NN LI A ...
NN '.\. - N0l ._.r‘ " S, & Tu $-$#~f < DRI -~ N o €y

..........

base the abstract machine. In addition, since it should be

familiar to those readers interested in kernel APSE

interfaces, the resulting specifications, programs written
in Ada, will be easily comprehensible.

The abstract machine used in this report is a high level
language machine based on the Ada language. This machine
accepts Ada statements as its instruction set; programs
written for the machine are written in Ada.

The specification of the Ada language, given in the
language reference manual [5], provides the execution rules
for the abstract machine. These rules clearly define the
results of the execution of any instruction on the machine.

The data objects for the machine can be defined by each
program in the Ada language using Ada type and object
declarations. Thus, each Ada program can define the initial
state of the storage of the machine and can modify this
storage during execution.

Ttate characterizations of the abstract machine during
execution of a program are not given here. It is assumed
that the reader is familiar with the Ada language or some
similar high level language. The language reference manual
[S] should be used as a reference where needed by the

reader.

a"a & A A 2

3 T g

AR ASA J B Al Ak e ol

3.2 M RA

To describe .the CAIS node model, this paper develops the
bodies of several packages of the CAIS. The CAIS
Specification gives the Ada package specifications of the
packages that form the node model. These package
specifications contain type and object declarations and
subprogram specifications for the node mcdel operations.
This paper develops the bodies of the subprograms to
describe the node model operations. The subprogram bodies
form part of the package bodies presented in this paper.
Together with <the Ada package specifications, the package
bodies provide a complete description of the semantics, as

well as the syntax, of the CAIS node model.

............................
...........

3.3 SUMMARY

This chapter details the abstract machine approach used in

this paper to specify the function of CAIS operations. The
abstract machine itself is a high-level language machine
based on the Ada language; therefore, programs written for
the machine are written in the Ada language. The operations
of the CAIS node model are described by developing an Ada
package body corresponding to the Ada package specification
given for each package comprising the node model in the CAIS

Specification [1].

iy

-
e

Chapter IV

T

THE CAIS NODE MODEL

This chapter provides an overview of the elements and
structure of the CAIS node model, as described in the CAIS
Specification, and provides a basis for the discussion of
implementation techniques in the following chapter. The
node model provides the basic foundation upon which the
remainder of the CAIS is built. The intent of the CAIS is
to provide standard interfaces to traditional operating
system services. Thus, the model must provide some
representation for typical operating system entities, such
as files, processes, and devices.)

The node model has three basic elements, nodes,

9 relationship, and attributes. A pode holds information E
’ about an entity. A relatjonship indicates a 1logical
) connection between two entities. An attribute represents a

property of an entity or a connection between entities.
The structure of the model is a directed graph. The -
nodes of the model are the vertices of the graph, and the

relationships are the directed edges.

G-T2 -

4.1 NODES
A node has properties that depend on the entity it

represents. version 1.1 of the CAIS defines four kinds of

£ v 5

nodes: sStructural nodes, £file nodes, process nodes, and

device nodes. This pode kind is a property of the node. N
Nodes also have content that varies according to the kind

of node. A structural node has no content, it holds »

relationships and attributes. The content of a file node is

a data file on an external storage device. The content of a

process node 1is some representation of the execution of a

program. The content of a device node is a representation :

of a logical or a physical device.
All nodes can hold relationships and attributes. Nodes \

are not named; they are accessed through the named ;

relationships connecting them.

4.2 RELATIONSHIPS

Relationships can be viewed as the directed edges that
connect the nodes in the directed graph structure of the
model. A relationship emanates from one node called the
Source node, and terminates at another node, the target

node. A relationship may only be accessed from its source

node.

G-T3

o 4R S L

L I I N I P A SR)
IR Bl SRR ettt PRt

...........

Because entities may have many different types of logical

connections with one another, relationships are categorized.

A relationship type is called a relation. Relations group

relationships according to their characteristics. There are

several predefined relations that serve special purpos-zs.

A relationship is an instance of a relation, and is

and a relationship kev. The
The relationship key

identified by a relation pame

relation name identifies the relation.

identifies one of many relationships the source node may

hold of the relation.

4.3

ATTRIBUTES

Nodes and relationships can have one or more attributes

Attributes represent a property of

associated with them.

the node or relationship.

An attribute of a node or a relationship is identified by

an attribute pame.

f values are represented by a LIST type as described in the

Each attribute has a list of values; the

CAIS_LIST_UTILS utility package of the CAIS Specification

[1).

..............
.....................

.......
.......................
-

4.4 STRUCTURE

Relationshipé are further classified as primary or
secondary. The primary relationships form strict tree
structures within the generalized directed graph structure
of the model.

The nodes of the model make up a forest of trees. The
root of a tree is called a top-level node. Each particular
tree structure can be thought of as belonging to a user of
the APSE. The top-level node of the tree represents the
user.

Each node has one primary relationship to it from another
node, its parent node. Each node, except a top-level node,
also has a secondary relationship emanating from it to its
parent, acting as a back pointer. Thus, a tree can be

traversed in either direction, up or down.

4.5 PATHS

A path is a sequence of relationships. Since nodes are not
named, they are accessed by traversing a seguence of
relaticnships, which are named. An absolute path is any
path beginning at a top-level node. A relative path is a
path that begins at any convenient node (not necessarily a
top~level node). A primary path is a path consisting of

only primary relationships. Since these primary

G-T5

PO OO CO A ¢

relationships follow strict tree structures, each node has
one unique aﬁsolute primary path (that is, a primary path
beginning at a top-level node).

A pathname is a sequence of relationship names indicating

a path to a node. A pathname can be broken up inio path

elenments, each of which represents one relationship in the
sequence. The syntax of a path element is an apostrophe

('), called a tick, followed by a relation name, followed by
a relationship key within parentheses, for example:
'DOT (CONTROLLER) . A pathname consists of a sequence of
these path elements.

The path element of the previous example shows an
occurrence of a predefined relation, DOT. Instances of the
DOT relation in a path element can be abbreviated by a dot
(.), followed by the relationship key, for example:
.CONTROLLER.

A process uses a pathname to identify nodes when making a
call to a CAIS interface. In a CAIS implementation, this
process will be associated with a process node. This
process node, called the current process node, 1is used as

the starting node in interpreting and traversing a path.

G-T6

4.6 EFINED R

The CAIS Specification gives some predefined relations that

| have special meaning. The relation DOT discussed in the .

[} 3
* previous section is a predefined relation. It is used as a
default relation. Instances of the DOT relation can be

abbreviated in pathnames producing simple and easily
readable pathnames.

The PARENT relation is another predefined relation. Each 4
node has a secondary relationship to its parent node. This
relationship is an instance of the PARENT relation. PARENT
relationships are managed automatically by the CAIS in
‘é maintaining the primary tree structures.

t A few predefined relations are provided to give process
nodes some basic access channels for connections with other
nodes. The relation USER allows access to top-level nodes,
the roots of the tree structures. A process node can access
any top-level node using the predefined relation USER and a
relationship key that identifies a user of the APSE. ;

A user can have one or more process node trees, called a

job, at any time. A relationship of the predefined JCB

relation connects a root process node to its user's top-

' et R Vi M)

. level node. Each process node is a node of one process

tree, which is a subtree of one user's tree.

6-71

LA

Yy

Three special relations are provided to allow easy accecs

-~
5 R

to certain ﬁodes from a process node. The CURRENT_JCB
relationship of a process node indicates the root node of
its process tree. The CURRENT_USER relationship indicates
the user's top-level node. The CURRZNT_NODE relationship
points to some known node (often a structural node) used in

specifying relative paths.

4.7 NODE HANDLES

Node handles are objects associated with a process that
allow easy identification of nodes. They provide direct
- access to a node, bypassing the relationship traversals

necessary when a pathname is used to identify a node.

-

4.8 R N

" The details of the operations of the node model are
presented in package descriptions of the CAIS Specification.
The CAIS_NODE_DEFS package provides definitions of data
types and objects. No operations are given in this packacge.
The package CAIS_NODE_ _MANAGEMENT defines the basic
operations on nodes and relationships. It gives operations
to copy and delete nodes, create and delete secondary
relationships, change primary relationships, use nocdce

handles, and obtain information about existing nodes. The

G-T78

W LT A W W W ————

CAIS_ATTRIBUTES package defines some data types and
operations fér node and relationship attributes.

The package CAIS_NODE_CONTROL presented in version 1.1 of
the CAIS Specification [1l] defines some node access
synchronization primitives. This package is incomplete, and
its semantics are not <clearly enough described to appear
useful. It is anticipated that this package will either be
completely rewritten, or deleted altogether.
CAIS_NODE_CCNTROL will not be further described in this
report.

In addition to these basic packages comprising the node
model of the CAIS, the package CAIS_STRUCTURAL_NODES 1is
included in this paper. The operations to create nodes are
included in the packages dealing with a particular kind of
node. The CAIS_STRUCTURAL_NODES package defines the

operations to create structural nodes.

4.9 SUMMARY
This chapter provides a basic overview of the CAIS node

model. Nodes, relationships, and attributes are introduced,

and the basic structure of the model is illustrated. The
use of pathnames, which represent sequences of
relationships, to identify nodes is described, and node
handles, which allow short-cut access to nodes, are

G-T9

Lt wall A g st Sl g oo B R0 s B¢ A S s A AR st et et ad A udie et adiiont i iiirhd oA
PR S . AN .

e —

) introduced. The packages of the CAIS containing the node

v model operations are briefly discussed.

o ‘
r
‘I
~,
)

G-80 g

-

et o fa

g e G e S T e L T T e

XY

- o
-y

!
)
|}

Chapter V
THE IMPLEMENTATION TECHNIQUES USED IN THE
ABSTRACT MACHINE PROGRAMS

This chapter outlines the implementation techniques used in
developing the abstract machine programs that describe the
CAIS Node Model. To write programs that manipulate nodes
and relationships, some storage representations are needed.
An implementation package, CAIS_PRIVATE_DEFS, defines data
types and data objects used in the abstract machine
programs. In addition, to allow the development of more
readable programs, CAIS_PRIVATE_DEFS defines some simple
operations to manipulate these data types. This chapter
presents an overview of the concepts used in defining the
storage structures. The details of the CAIS_PRIVATE_DEFS
package appear in Appendix A.

The package CAIS_NCODE_DEFS, defined in the CAIS
Specification [1], also defines some data types and data
objects used in the abstract machine programs. Parts of
this package are discussed here; the details are in Appendix

B.

G-81

e le 2l "0

5.1 N PRES OF TEE NOD eD

As seen in Chapter 2, the structure of the node model is a

directed graph. The node model, however, does not enforce
two restrictions placed on formal graph structures [14].
One of these restrictions requires that a vertex not have an
edge connecting it to itself; the other restriction reguires
that two vertices not have multiple edges connecting
themselves. Consequently, a representation technique for
the node model must be chosen that can be modified to
include these characteristics not generally held by directed
graphs.

Adjacency list representation, detailed in Horowitz and
Sahni's book [14], is a particularly good representation
technique for a directed graph. Using this representaticn
method, each vertex of a graph has a linked list associated
with it. The cells of this linked list can be considered to
represent the directed edges (arcs) out of the vertex. Each
cell of the linked 1list must contain two fields; VERTEX
indicates which vertex the arc points to, and LINK connects
the linked 1list by pointing to the next 1list cell. An
adjacency list representation of the graph in figure 1A is
shown in figure 2A.

The nodes and relationships of the CAIS node model can be

represented in the same way using adjacency lists, see

278 £ A

O—G_B

Figure G-1A: A Directed Graph

G-83

iy S S MR A S I S i AL N A i Wil A gl S

/
o) *— 21 | | @ >1 3 |/
E

Figure G-2A: An Adjacency List Representation of a Directed
Graph

oY

- - - Tw s N N -
R NN I A ST AL R RO LR

P

figures 3A and kA, Each node has a 1linked 1list of

y relationships.associated with it allowing access <to other
. nodes. The node field ARC_OUT is the head of the linked
list of relationships the node holds with other nodes. The
relationship field TO_NODE indicates the <target node of the
relationship, and the field LINK connects the 1list of

relationships of the source node.

5.2 1 E N

As seen in Chapter 2, the primary relationships of the node
model form tree structures; the user top-level nodes are the
roots of the trees. In this implementation, these tree
structures are maintained within the directed graph
representation. Both primary and secondary relationship
records contain a field PRIMARY, which is true, for a
primary relationship, or false, for a secondary
relationship. Primary and secondary relationship records
are linked together in the arc out list of a node.

: The primary relationships in this implementation form a
single tree structure. A system node called SYSTEM_ROOT,
defined in CAIS_PRIVATE_DEFS, is the root of the tree. All
. relationships held by this node are primary USER
relationships that access the top-level nodes. These USER

relationships are the only primary relationships not having

G-85

,,,,,

....................

‘DOT(A) ' poT (B)

3l ey

‘pot(¢)

Figure G-3A: A Node Model Example

L IR SR DR Y]

»

4, 0, %, s e

L)

-

)

G-86

.....
...............

T

003¢ | - S[coT [A Josio] 1]

Q&DOT [z Jouwz4] 7]

06341 /
poT |c fou34]/ |

NODE {numBER] AR DUT]

RELATIONSHIP [vame[ey [Tonove]Link]

Figure G-LA: A Representation of the Node Model Example

auflod s it b o Rt Aen Bt Iae i don Al Sie Ao

ve

Doy

a corresponding secondary predefined PARENT relationship

from the target node to the source node of the primary

X1

relationship that simulates bi-directional access between

parent and child nodes of the tree.

%

e 5.3 THE ACCESS CONTROL TABLE
The possible existence of dangling references to deleted

nodes makes a detection method necessary. The CAIS

o WM N ACH

Specification states, "If a node is deleted, (i.e., its
primary relationship is broken), outstanding secondary
relationships for which it is the target may remain, but
attempts to access the node via these relationships will
N raise an exception" [1]. An efficient method for detecting

both dangling secondary relationships and open node handles

T M

to deleted nodes is needed so the appropriate exception can
be raised.

The method used here adds a layer of indirection using

P e

node sequence numbers and an access control table to detect
: deleted nodes. A unique sequence number, supplied by the
; package SEQNUM_MANAGER (see Appendix A), is assigned to each
node when it is created. The number, along with a pointer
to the node record, 1is stored in the access control table.

’ The entry in the table provides the only access to the node;

relationships and node handles contain only the sequence

number of the target node and must go through the table to
obtain access to the node record itself. When the node is
deleted, its entry in the access control table is deleted,
and since these sequence numbers are unique and never
reused, any attempted access using the old sequence number
fails. A representation using an access control table of
the node model example in figure 3 is shown in figure 54,
Assigning each node a unigque sequence number is not an
impracticéble implementation technigue. Assume that, on the
average, a new node is created and a new seguence number
assigned every millisecond. Using a sixty-four bit sequence
number, it would take 26* milliseconds, or approximately

585 million years, to use up all possible unigque numbers.*

5.4 IY¥PE SPECIFICATIONS

The type specifications that reflect the implementation
methods are now presented. The Ada definitions of nodes,
relationships, attributes, and the access control table are

the basic objects manipulated by the abstract machine

programs.
4 264 mg = 1,84 * 10'? ms = 1.84 * 10!'6 g = 5.12 * 10!'2 hr K
= 2.14 * 10'! day = 5.85 * 10°% yr r
G-89

y ot d il il A Sl Bt ARt A A A iCS i At s g
palm L TR T TTTTRTRY el kel el sl Vel de ks Sl it Al Anl sl gt = R

ACCESS CONTROL TABLE
003C [~— otl[A loaio | :}3
0210 |
20T[B _]0634 | /]
0Tl ¢ Jou32] ~ |
Figure G-5A: A Representation Using an Access Control Table
g
G-90
VA AT RO JRURSAS L N T e T e L S T T e e TSR

5.4.1 ce e

The implemeﬁtation defines nodes and relationships as
dynamically created storage structures. Thus, when a node
record or relationship record is created, it 1is accessed
through a pocinter to the record, an Ada access type. Tre
following incomplete record specifications and access type
specifications are defined in CAIS_PRIVATE_DEFS.

type RELATIONSHIP (PRIMARY : boolean := false);
type ACCESS_REL is access RELATIONSHIP;

type NODE (KIND : CAIS_NODE_DEFS.NODE_KIND);
type ACCESS_NODE is access NODE;

5.4.2 A Node Record
The type specification of a node appears in
CAIS_PRIVATE_DEFS.

type NODE (KIND : CAIS_NODE_DEFS.NODE_KIND) is

record
NUMBER : NODE_SEQUENCE_NUMBER;
ARC_OUT : ACCESS_REL;
ATTRIBUTE : ACCESS_ATTRIBUTE;

case KIND is
when STRUCTURAL =>
null;
end case;
end record;
The KIND field of this variant record indicates whether this
is a file, structural, process, or device node; the content

of the node depends on this field. A structural node has no

content, as shown in the type specification. The

G-91

specification of the contents of other types of nodes is

beyond the séope of this paper.
The NUMBER field of the node record holds a
) NODE_SEQUENCE_NUMBER that serves as a unique identifier of
X the node. The ARC_OUT field holds a pointer to the first
: relationship in the linked list of relationships held by the
node. The ATTRIBUTE field allows access to the attributes
of the node; the implementation of attributes is discussed

later in this chapter.

. 5.4.3 elationshi eco

The type specification of a relationship record, below, 1is

. taken from the CAIS_PRIVATE_DEFS package.
j type RELATIONSHIP (PRIMARY : boolean := false) is
record
RELATION : CAIS_NODE_DEFS.RELATION_NAME;
KEY : CAIS_NODE_DEFS.RELATIONSHIP_KEY;
; TO_NODE : NODE_SEQUENCE_NUMBER;
X ATTRIBUTE : ACCESS_ATTRIBUTE;
) LINK : ACCESS_REL;

case PRIMARY is
¥ when true =>
null;
when false =>
PREDEFINED : boolean := false;
end case;
end record;

The PRIMARY field of this variant record distinguishes a

primary relationship from a secondary relationship. The

PREDEFINED field of a secondary relationship identifies

those predefined secondary relationships, for example,

G-92

CAMN It~ alal

PARENT, that the user cannot modify. The TO_NODE field
identifies thé target node of the relationship. The LINK
N field connects the 1linked 1list of relationships of the
y source node and contains a pointer to the next relationship

in the linked list.

5.4.4 A Node Handle
A node handle is a NODE_TYPE variable held by a user process
that allows efficient access to a node. Many of the CAIS

operations require a node handle to identify a particular

A N

node.

The CAIS Specification defines NODE_TYPE as a limited
private type in the CAIS_NODE_DEFS package. Consequently,
outside the CAIS_NODE_DEFS package, the details of the
definition of the type are not visible, and the assignment
operation and tests for equality and inequality are not
available. Because the free use of the NODE_TYPE data type
is required to detail the abstract machine programs for
routines in other packages, NODE_TYPE has not been defined
as limited private in this paper. Some other protection
mechanism is assumed to exist to prevent users of the CAIS
from directly examining or changing the contents of a

NODE_TYPE variable.

F ol S B §

G-93

.

The abstract machine programs in this paper define a node
handle as a ﬁointer to a relationship record. The detailed
type specification given here appears in the CAIS_NODE_DEZS

package.
type NODE_TYPE is new ACCESS_REL;

Since this is a derived type, the abstract machine programs
can make explicit type conversions to assign a pointer to a
relationship record into a NODE_TYPE variable. The
relationship record contains the node number of its target
node, and thus the node record is easily accessed using the
node handle. Additionally, all information that must be
carried by a NODE_TYPE variable detailing how the node was

originally accessed is directly available.

5.5 Q ONS NODES ELATIONSH
This section provides an overview of some basic operations

on node and relationship structures used in the abstract

machine programs. The purpose of wusing such operations is

to avoid complicated code in the abstract machine programs
that makes the programs difficult to read. The operations
are described in more detail in <the CAIS_PRIVATE_DEFS

package in Appendix A.

The functions GET_ACCESS_NODE and EXISTS perform similar
duties. GEf_ACCESS_NODE takes a node number and searches
the access control table for the pointer to the node record.
If the number is not found, GET_ACCESS_NODE raises an
exception, NONEXISTENT_NCDE. A similar function, EXISTS,
takes a node number and searches the access control table.
If a control record is found, the node exists, and the
function returns true, otherwise, it returns false.

CREATE_NODE_CELL creates a node record and makes an
appropriate entry in the access control table.
DELETE_NODE_CELL deletes a node's entry from the access
control table without actually deleting the node record,
making the node inaccessible.

The functions GET_ACCESS_REL and IS_RELATIONSHIP search
the list of relationship records of a specified node for a E
relationship with a specified relation name and relationship
key. GET_ACCESS_REL returns a pointer to the relationship,
or, if the relationship is not found, raises an exception
called RELATIONSHIP_NOT_FOUND. IS_RELATIONSHIP returns true
if the relationship is found, false if it is not found.

GET_ACCESS_PRIMARY_REL requires two parameters, a pointer
to a parent node and a pointer to a child node. The
function searches the relationship list of the parent node
for the primary relationship to the child node, and returns

a pointer to this relationship.

G-95

i CREATE_RELATIONSHIP_CELL creates and initializes a new
y relationship'record, and ATTACH links the record into the
g relationship 1list of the specified source node. All
. relationships are 1linked in ASCII lexicographical order by
% relation name and then by relationship key. DETACH unlinks
o a relationship record from the relationship 1list of a
f specified source node, effectively deleting the
% relationship.

P 5.6 PATHNAMES

. When a pathname is supplied as an argument to a CAIS !
- operation in the form of a NAME_STRING variable, the
) pathname must be analyzed and the nodes and relationships in
; the path traversed to access the indicated node. The

package CAIS_PRIVATE_DEFS defines operations to perform

these functions. .
The procedure PARSE lexically analyzes the valid

NAME_STRING argument passed in and builds a 1list of

(relation name, relationship key) tuples. TRAVERSE uses

this list of tuples to navigate through the specified node

and relationship records, and returns a pointer to the last

relationship record encountered. The target node is not

accessed, thus it is possible to access a dangling secondary

relationship wusing this operation. PARSE raises an

exception, SYNTAT™TC_ERROR, if the NAME_STRING is

syntactically invalid, and TRAVERSE raises

TRAVERSE_EXCEPTION if it encounters a deleted node, or if a
specified relationship is not found.

CAIS_PRIVATE_DEFS defines a data object called
SYSTEM_CURRENT_NCDE. This ACCESS_NODE variable always
points to the process node that represents the process
currently executing. The procedure TRAVERSE uses this node
as a starting point in traversing the sequence of node and
relationship records in a path.

Several CAIS operations defined in [1] use a NAME_STRING
argument to specify a relationship that is to be created.
In this case, the first part of the path must be traversed
to find a node, but the last path element of the path name
refers to the relationship that must be created. The
procedure DISSECT, defined in the CAIS_PRIVATE_DEFS package,
picks off the 1last relation name and relationship key pair
and returns these, together with the path name to the base

node.

AR e st s 8

5.7 ATTRIBUTES

Nodes and reiationships, as seen in Chapter 2, can have one
or more associated attributes. Each attribute is identified
by a name and has a list of values.

The abstract machine programs developed in this paper use
a singly 1linked list representation for attributes. Each
node and relationship is the head of a linked list of
attributes, and each attribute is a cell of a linked list.
Each node and relationship record <c¢ontains an ATTRIBUTE
field that points to the first attribute in the list, and
each attribute record contains a LINK field that peoints to
the next attribute in the list.

The type specification of an attribute record, given in

CAIS_PRIVATE_DEFS, reflects this linked list implementation

method.
type ATTRIBUTE is
record

NAME : ATTRIB_NAME;
VALUE : LIST;

READ_ONLY : boolean := false;
INHERIT :+ boolean := false;
NEXT : ACCESS_ATTRIBUTE;

end record;

The NAME field holds the name by which the attribute is
identified. READ_ONLY and INHERIT are flags associated with

each attribute as defined in section 3.6.2 of [1].

G~98

a.

- e

v-(‘ A

P ariac SN i G RN ol

The VALUE field of an attribute is a variable of type
5 LIST_TYPE. -The CAIS Specification defines this type in a
. package called CAIS_LIST _UTILS. A LIST_TYPE is a limited
) private type and can only be operated on by the routines in
v the CAIS_LIST_UTILS package, described in [1].
- The cperations that manipulate the attribute structures
used in this implementation are outlined here and described A
in more detail in Appendix A. The functions IS_ATTRIBUTE
and GET_ACCESS_ATTRIBUTE search a linked list of attribute
records for the attribute with the given name.
. GET_ACCESS_ATTRIBUTE returns a pointer ¢to the attribute
record. IS_ATTRIBUTE returns true if the attribute is
found, false if it is not found. CREATE_ATTRIBUTE creates a
new attribute record with a specified attribute name, and
ATTACH_ATTRIBUTE attaches it into the 1linked list of a node
record or a relationship record in ASCII lexicographical
order by attribute name. DETACH_ATTRIBUTE deletes an
attribute by unlinking the attribute record from the node or

relationship attribute list.

aaa s s

G-99

5.8 SUMMARY

This chaptef describes the storage structures used in

deve.oping the abstract machine programs that define the ;
semantics of the operations of the CAIS node model. It

outlines the representation chosen for the node model, which

is based on adjacency 1list representation, and develops a

method for detecting deleted nodes using an access control

table. The chapter details the objects of the abstract

machine, nodes, relationships, and attributes, and outlines

basic operations that manipulate these objects. .

Ly T P/

'~

G-100

APPENDIX H

AFIT/GCS/NMA/85SD-6

’ USING ADA IN THE REAL-TIME AVIONICS ENVIRONMENT:

ISSUES AND CONCLUSIONS

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
in Partial Fulfillnment of the
Requirements for the Degree of

Masater of Science

Donald J. Witt, M.A., B.S.

Captain, USAF

December 19895

1 Approved for public relesse; distribution unlimited

H-1

S AL L LN
N “ad ‘. (o '..

TYFTET YT

- -

o

A Sp—)

Y
»

Contents
Acknowledgements . . . ¢ . « < + o o o o o o o o o o o H=h d
List Of FiGQUTesS . « + ¢ ¢ 2 o o + 2 o o » o o s » o o o oH6 !
: List Of ACTONYRB . « ¢ ¢ o o o o o » o o o o o o o o o oH=T7 f

Ab‘tr‘ ct L] Ll L) *® L L] L L] . [4 L 4 L) L - L) L] L] ® - - [2 [] L] H-B

L) {
, J. Introduction . . + o =« ¢ o o o ¢ + ¢ o o o o s o o +H9 .
Background . « e« o 2 ¢ 2 ¢ o s o o o = o o o o o oH-10 .

PZ‘OblCl L] e [] [] . . - . * L] [L]] . [. - . L] . . H—lh

scop. [) L] L] * L] L) ® L] L J - » L] L] L] - L] L] - L] L d ® - H-—l6

General Approach . « ¢ ¢ « ¢ o s o s o s o o o o oH=16
Sequence of Presentation . . . ¢ ¢« ¢ o » ¢ s o o o H=17 ‘
. € "
Il. The Environment .« ¢ « ¢ ¢ o a o s o o » o o o » o oH=19 K

Real-ti‘. AVvionics . « ¢« o« ¢ o = o o ¢ o & s s o » H-l9

B Architectures and Levels of Distribution+ . H-23
. Ta‘ks [] L] - L] L] L] [] [] - [] L] L] L] L] [] [] L] L] L] L ® L] H-26 :
Exception. [. L] L] ® [] L] [- [] L] L] L] L] * L] L] ® - L J H"3o :
Dat‘ structur.. L] L] * » [] » L] o L] L] [] L] L] L] L] L] [] H—31 -

III. I‘.UC‘ L] L] . L] . . . * [4 - » » - [] -] [] . L] - - [L3 H—Bl&

Issues Not Suitable for Empiricel TestingH-35

Issues Suitable for Empiricel Testing . . . « .« «H-L3
sunnary L] [] ® L 2 L] - L] »® L] [] L] L] - L] L] L] L] *» - - ® H—Sl '

IV. The Prototype ACEC and Other Test Programs}H-53

Prototype ACEC . &« s ¢ o « ¢ ¢ o o o o o s o o » «H=54

f Background . « o« ¢ 2 2 « s o » s o o e e o o o oH-54
Test Suite Composition . .« ¢ ¢ ¢ « o« o o o & o K56 !
Analy‘i‘ [] [] [] L] L L L) L] [] L] L L] Ll L] ® - L] [] ® . H—6O F

Evaluﬂt‘.on [® - L] L] L) - L] L] * L] L] L] L] L] - - L L] H—TE

Other Teat Programs o ¢ s o o o s o o o H-T7k

Sources of Public Domain Ada Tests « « «HL-75
Appliceble Teata From Other Sources «H-TT .o
Sul&lcr}' e ®© ©o o & 8 @ o & ® ® @€ ® e o o o s & 5 » H-Bl :

V. Compiletion and Execution Results « « « « }-82
nethodology [] [] - - L] ® [] [] L] - L] L] [] L] * L] L] . L] }l—82 .
R.‘ult. - . L] * » L4 L] L] [] * . - L] - - L] L L] . L 4 L] H—85 :
VI. Conclusions and Recommendations . . « « « o o o o «H-87 X
Th. Ehvironl.nt e e o o e ® o o @ o o & © ®© & e = H_88 ::

The Issues . . . <« o ¢ o o2 s o o o » » o » » o s oH=8g

Appendix
Appendix
Appendix
Appendix
Appendix
Appendix

Appendix

VITA .

e dEEEECT s s e o 1 3 FEEEE
a

R

T« @ o aAalEEDias WY
s

po s e T B R TARE TR T LT A e

RS R atdy

Aneslysis of Aveilasble Testas .

Bibliography

Appendix A:

B:

C:

D:

E:

F:

G:

H:

.........

Issues 1-7 . . « o ¢ ¢ o s o o o
Jasues 8-19 . . + ¢ ¢ ¢ o e s .
Compilation and Execution
General . . .+ o+ ¢ o s s s 6 s s e o

List of Iasues . . . « ¢« « o o

Summnary of Test Group Status .

Source Listinga of Other Programs

° L] L . .

Test Harness Used on the VAX 11/780

Test Harneas Used on the Date General

Compilation Results &
Sample of File HARNESS.OUT . .
Execution Results . . . « « . .

.............

.........

........

A AN A S A1 '71"'_""_"11‘*““"_1

. H-89
* H-89
» H-90
» H-91
+ H-91
. H-93
. H-96
- H-98
« H-102
H-108
H-111
H-112
H-11k
H-115

H-117

..........
........

AN L ER A T

9 i PRate gt bl Sk ALl iy N TR DTy T a——— - MM ZEG M ot i o 20 Rt B RAAL AN |

"
%
) Acknowledgements
.: The project described in this thesis was & natural
a offapring of the Air Force Wright Aeronauticel Laborastories’
‘g (AFWAL) Evealuetion & Validstion (E & V) team’s efforts. They
> had tesked the Institute for Defense Analyses to develop a)
'3 Prototype Ada Compiler Evaluation Cepebility (ACEC) £ and
’2 Virginie Castor, who wae then chief of the E & V teaa,
. suggested that someone needed to determine if the concerns
-
;i of the real-time avionice environment were addressed by the
'i ACEC. Further discussions with Ms. Cestbr and with my thesis
‘é advisor and AFIT instructor, Capt Patricia Lawlis, helped
{g shape the thesais proposal.
?E The project changed as time went on, and the task of
searching other acurces for appliceble tests was added. 1In
j; addition, one of the original goals, compiling the
;: applicable tests on an Ada to MIL-STD-1750A compiler and
i: running them on a MIL-STD-1750A machine, had to be modified
'5 because the compiler couldn’t be obtained in time.
E I think the results of the project are useful and will
;: become even more useful in the near future as more MIL-STD-
;E 1750A compilers are developed. The tests identiii.a in the .
.2 project should help prospective useras of Ada evaluate
;. different compilers and run-time systems. The builderas of
‘ﬁ the ACEC would also benefit from looking at the issuea
ﬁ identified in the project.
Tj I would like to thank my thesis advisor, Cept Lawlis,
§ for her guidance and advice. Mr. Ray Szymanski, who replaced
1)

-

n'

(e

C ol " N

= eTs JEEBE F P 2 JF JTHEEe

.......

T A A AN AT N e e e e e e s
RS AR R A S RSO RERORC O

Ms. Castor when she tranafered to the Ada Joint Progras
Office, deserves special thanks for providing invaluable
essistance whenever I requested it. Lts Long and Wood of
AFWAL were also very helpful as wes SSgt Swem of SeaFac. I
an extremely grateful to Colonel Walter Figel, Jr., for his
esgistance, encoursgement, and advice.

I reserve my Qfepest gratitude for my family. My wife,
Carolyn, and my thirteen year old daughter, Kimberly, have
truly susteined me throughout thia trying period. They
always exhibited patience when I couldn’t be with them or
had to cancel our plans because the best time to access the
conputer was on the weekends. They were extremely tolerant
of wny moods, sleepless nights, and frustrations while they
continually voiced encouragement and support. I couldn’t

have done it without the=n.

H-5

~

ORI S
i % W G Y DY

............
............
...............

A U
B

£

izt of res

PR

Figure Page)

]

1 Extreme Architecture/Distribution Combinations _p¢ X

L3
Ay

2 Typical Ade Life Cycles:
One Parent and Two Children . . . « ¢ o o « o H-39

3 SOUI‘CQ Code for ADDSA#] * . [. . [- [. . . H_58

o oty

YOS)

e e
AAS t’. ’, "'_' ‘I

4%

« ¥
L -
“-
.

>~ v -
RAADOL

!

'''''''''''''''''''''''''

ACVC
ACEC
ADE
AFWAL
AJPO
ANSI
ASPE
AVO
BMAC
CAIS
CPU
DoD
E&V
HOL
HOLWG
IDA
ISA
KB
LRM
MCCS
RTS

STARS

vDU

List of Acronymsa

Ada Compiler Validetion Capability
Ada Compiler Evaluation Capability
Ads Development Environment

Air Force Wright Aeronautical Laboratories
Ade Joint Programming Office
American National Standards Institute
Ada Programming Support Environment
Ada Validstion Orgenization

Boeing Military Aircraft Company
Common ASPE Interface Set

Centrel Proceasor Unit

Department of Defense

Evaluation and Validation

High Order Language

High Order Langusge Working Group
Institute for Defense Analyses
Instruction Set Architecture
KiloByte

Language Reference Manual

Mission Critical Computer Systenmas
Run-time Support

Software Technology for Adeptable Reliable
Systens

Visual Display Unit

H-T

AD-A172 343 EVALUATION AND VALIDATION C(E&Y) TERM PUBLIC REPORT
VOLUME 2(U> AIR FORCE MRIGHT AERONAUTICAL LABS
NRIGHT-PATTERSON AFB OH R SZYMANSKI 39 NOV 83

UNCLASSIFIED AFNAL-TR-83-1016-VOL-2 F/G 14/2

L
e ..Vm...(no.ﬁ.
WM ANRNC

" .‘-.‘v‘- L)

A EEE

1.8
==
16

14

K E EFEPEIH

I

.25

I

6 i o e AR TN
R A Tt i s PR N R RE E
-" v- f.': "u (Q.-;I."l'

RS LR TO L

&

L

AFIT/GCS/NA/85D-6

bstr
This project involved studying the real-time avionics
environment in which Ade will become the primary programaing
language in the near future. A set of issuea of concern
regarding the use of Ade within this environment wvas

identified and described. Test programs, including the new

Prototype Ade Compiler Evaluestion Capebility, were evalusted

a8 to their applicability to these issues. The applicable

test programs were compiled and executed using two validated
. e

Ade compilers. Compile time and run time statistics were

gathered to form a beseline against which other Ada

compilers (preferably MIL-STD-1750A Ada compilera) may be

compared.

I. Introduction 4

The Ado prosramming language was developed primarily

for wuse in embedded computers within the United Statea

manrARNLY

Department of Defense. An embedded computer is one that is

TR

part of a larger system. For example, &8 guided missile

systena conteains, among others, an embedded guidence ”
computer. These embedded computers may physically consist of
anything from & stand-alone microprocessor to a network of
computers. "In general, embedded systems are large and have
similar requirements for parallel procesaing, real-time
control, and high reliability” (Booch, 1983:3).)
The United Stetesa Air Force uses embedded computers in h
aeveral areas. The particular area of interest to this
effort is referred to as the real-time avionics environment. L
Avionica is & phrase used toc mean "aviation electronics".
The use of Ada to program applicetions in this environaent
is of particuler interest to the Air Force since the vast
majority of these applications are defined as defense
aission~critical applicationa. On 10 June 1983, Dr. Richard

D. DelLasuer, Under Secretery of Defense for Research and

re e s . - .

Engineering, issued a memorandum astating that “the Ada
prograsaing language sahall become the aingle, common
computer progremming language for defense mission-critical
applications” (Kramer and McDonald, 1984:42). In eddition,

the Air Force is the lead service, and the Air Force Wright

Aeronauticel Laboratories (AFWAL) is the leed orgeanizeation

”L Tl e N .

iy Ay .*'

.,

L2 s, 2,

P AP

[heF SoFf b Al o 4

< M

a8 8 AL

PRCA % 4

for the DoD Evaluation and Validetion (E & V) Tesk. In this

capacity, AFwWAL contracted the Institute for Defense
Analyses (IDA) to develop & single, coordinated teat suite
of progrema, taken froa several existing test suites, to
essist in the effort to evaluate Ade compilers.

This paper diacusses & project which establishes a set
of issues of particuler isportence to real-time evionics,
evaluates the effectiveness of the IDA test suite towards
accomplishing satisfactory evealuation o©f those issues,
searches other sources for tests aspplicable to the issues,
compiles applicedble test programs from the IDA test suite
and other sources using two Ade compilers, and evaluates the

results of zrunning ¢the tests on the compilers’ target

machines.

Background

In 1975, the Department of Defense (DoD) begean a
process to select one standard high order language to be
used for writing software for embedded computer systeams.
Most of the languages used at this time were not high order
= they were assembly languagea. A twofold reason haas been

given for this action:

1. There were many problems associated with high
order language (HOL) design such as:

- incompstible dielects among existing HOLs.

- creating entirely new languages very limited
in their application.

2. The DoD used over 400 languages in a wide
veriety of applications. There are high costs

H-10

. AL .‘u. ‘e 5.‘ ‘P. S -r. '-. ‘»;.".) :-'.\: Sy ‘w;) .I‘ . l TR R AT .")-‘ .--".‘ I -q.‘ ~.“‘.‘>.A'.. . ' *

0

2 4

associated with this language proliferation
such as:

- the direct cost of languege design and
compiler implementation efforts.

- language maintenance costs.

- cost of alipped aschedules and teasting
problens.

(Kramer and McDonald, 1984:v)

The approach taken by the DoD to develop a standard HOL
for embedded computer ayatems was unique. The first step was
to form & High Order Language Working Group (HOLWG) in 197S5.
The HOLWG was tesked to identify DoD’s requirementa for
computer programming languages, evaluate the existing
languages, and recommend the implementation and contreol of a
“minimesl set”. Later that vyear, HOLWG published a
requiresents analysis, called STRAWMAN, and sent it out for
public review. This proceas wes repested twice more, and in
197€é, DoD issued Directive 5000.29 (Management of Computer
Resources in Major Defense Systems). Thia directive limited
languages used in Defenase Sysatem Projects to those approved
by the DoD. In November 1976, DoD Inatruction 5000.31 was
issued which implemented DoDD 5000.29 and estadblished an
“Interim List of DoD Approved High Order Languages™ that
conteined aeven approved HOLa (Kremer .nd McDonald, 1984:v).

These languages were not considered to be the long-tera
solution DoD was looking for at the beginning of the
project. In June of 1978, the finalized DoD HOL requirements

were relessed in a report celled STEELMAN. The reqguiresents

H-11

L Py 475 05 B0 Ty] J"‘h' ’i\l‘. ' .. 7 Y

d L < -".,-'.'.- '.-‘ e -t R NI AL AP A AN e v fi
N I I N o a3 o D Y S T L e Ny N T T N T]

oiaiga g . e st i H - gy - o et 2 2 gt I B AN Rt S a R A AL B e Pt anat 10 ANl SN P A "

v
o -
T o

apecified in this document were used to competitively select
the language developed by Honeywell/Cii-Honeywell Bull aa
the new standardized HOL for the DoD. 1In 1979, the new
language was officially named Ade to honor Augusta Adse
Byron, Countess of Lovelace. The Countess was an associate ‘
of Charles Babbage and is presumed to be the world’s first
X progrexmer (Bernes, 1982:2).

Many other ectivities took place in the atteapt to
A systematically design and implement Ada as the socle HOL for
DoD’s =many criticel systems. Another set of requirements
accompanied the language design specifications. These

requirements were for the development of e robuat Ada

NS

Programming Support Environment (APSE) to improve

productivity both in software system development and in

A

continued system evolution. Again, world-wide review and

4

many revisions were performed before the final report,

J 38 Nl

called STONEMAN, was released in February 1980,

ava

> A proposed language reference manual (LRM) for the new
s language was released in July 1980 and was designated NIL-
STD-1815 in December 1980. In July 1983, when the American
Netional Standards I;stitute (ANS1) Ada waa adopted, the
] standard was redesignated MIL-STD-1815A.

4 A compiler velidation guide weas published in October of
1980 to essist Ade language implementora prepare their
compilers to meet the Ada language definition before

subritting them to the DoD deaignated testing fecility for

. validation.

H-12

-'Fn.’t‘,“.-

DS I T 1%

-

In December 1980, the Ada Joint Program Qffice (AJPO)
was established by the DoD *"to manage the effort to
implement, introduce, and provide life-cycle aupport for
Ada” (Kremer and McDonald, 1584:vi). One objective of the
AJPO is to ensure conformance of Ada language tranaslators to
the Ade stendard. The Ade Validation Organization (AV0O) waa
established by the AJPO to meake sure this objective is
reached. The Ada Compiler Validation Capability (ACVC) is a
test suite o©of Ada programs used by the AVDO to conduct
validation testing of proposed compileras (Kramer and
McDonald, 1984:8-10).

lLeter, in early 1983, the DoD started a project that
concentrates on solving mission critical computer software
problems. This project is called the Software Technology for
Adapteble Reliable Sysatems (STARS). An objective of the
STARS project is "controlling the cost and Jimproving the
quality of the software by facilitating the application of
modern software engineering practices to mission critical
computer system (MCCS) developments'” (Kramer and McDonald,
1984:15).

An Evalustion and Velidetion (E & V) Team was formed in
1983 for the purpoae of developing "“the techniques and tools
which will provide a capability to perform aszsessment of
APSEs and to determine the conformance of APSEa to the CAIS
(Common APSE Interface Set)"™ (Kean, 1984:1).

In September 1983, AFWAL commisasioned the Boeing

Military Airplane Company (BMAC) to conduct research into

H-13

P e AN N T T A L N A L L e e
o "- PR, » ‘.'- ..-.‘-'.- * -_\,..,\.. e B A ..

the use of Ade in embedded avionic systema. Two of the
principal ereass of study during the first phase of this
Tresearch were:

1. Issues relating to the compilation of Ada code
for a distributed MIL-STD-17350A architecture.

2. The Run-time Support (RTS) required to
support execution of Ada progranms.

Much careful work haes been accomplished, striving to
ensure the Ada language is standaerdized. Many aids are
available to developers &and iaplementors of Ada compilers to .
assist them in producing compilers that adhere to the
rigorous standards set forth by the DoD. The evaluation of '
these validated compilers by the Air Force is t;c next step. E
This process has already begun. The E & V Team has initieted
procedures for the development of an Ada Compiler Evealuation
Cepability (ACEC), a second software test suite which will

complenent the ACVC. A contribution to this effort is the -

major concern of this thesis.

ISR RN

The Problenm
Ada is a unique computer languesge in that it isa the

first practical language to combine important features such

v v v

as date abstreaction, multitasking, exception handling,
encapaulation, and generics (Barnes, 1982:vii)>. An important * R
part of real-time applications is the multitasking feature E
which will be referred to in this thesis simply as tasking. g
Tesking 4is provided for within the constructs of the ;
language itself and is the ebility to sccomplish & series of ?
X

H-14

-

T

an e

activities in parallel instead of in sequential order.
Concepts of teasking such as instantiation, scheduling,
RemOry management, rendezvous, and termination present
complex problema to developers and implementors of Ads
compilers. Many decisions involving timing and scheduling of
single processor and multiprocessor systems must be nmade,
then implemented and tested.

Eight Ade compilers were validated and two were re-
validated in 1S984. These nuabers represent a significant
increase over the three compilers validated in 1983. As more
compilers are validated, DoD organizations are already
asking questionas about their suitedbility <£or real-time
applications. The requirement for a means to evaluate Ads
compilers becomes more pressing all the time. The test suite
of programs assembled by IDA for use by AFWAL as part of the
E & V Team activities is an importent start toward a
comnplete Ada compiler evaluation capebility, the ACEC.

The main goal of the project described in this thesis
is to initially identify issuea of importance to the real-
time avionica environment, and then to find test progranms
that address those issuea. This will be accomplished by
first enalyzing the Prototype ACEC and tests from other
sources. Next, those test programs that are appliceble to
the identified issues will be compiled and executed.
Finally, the results will be reported and discussed.

The Prototype ACEC is included in the analysis becauase

it is essential thst any test suite of programs presented

H-15

o TR INRANAS. VY

b IR N Rt

AN

- - WL

1 " s

T MDA

Y EYi

R

A 4

W

vLalas

[}
v

» . A bk . . Py
...... Lol Rl S AL A it i i S SR

5

L

for use as & standard for evaluating Ada compilers include
tests that address the concerns of real-time programming

applications.

2cope

Identification of every compilation and run-time issue
related to Ade and subsequently evaluating the test suite of
programs in relstion to those jiasues would be too large e
task for one master’s thesis project. Hence, the project
desacribed in thia peper will focus on those issues moat
crucial to & real-time avionics environment with an eabedded
computer syatem as the target machine. It involves:

1. Researching issues of the real-time avionics
environment;

2. Eveluating the. test auite of progranss
presented to AFWAL by IDA;

3. Compiling those tests selected as appliceble to
the identified issues uaing two validated Ades
compilers; and

4. Running the compiled tests on the target
machines and reporting the results.

General) Approa

Issues related to the real-time avionics environment
will be identified following a thorough literature aearch.
Then the Prototype ACEC test suite furnished by IDA will be
anslyzed to determine those tests, if any, that pertain to
the identified issues. If a determinetion is made that those
isasues suitable for empirical testing are not addresaed by

the Prototype ACEC, tests from other sources will bDe

H-16

D‘ .\.. -(N ".' ‘. ..\ 'p Y '-.'..'. . ’ e _.-,:‘. - ..‘-. - ',‘-'_‘.‘- '.'-. '.‘. -.‘_-.I o ,—.‘;\.'.'_-.‘.:. .‘..c’. .t -. e tat "

———————

presented a8 candidates for the teat suite. Next, the
applicable teat programa of the IDA test suite and the
candidate test programs will be compiled using the

previously identified Ada compilera. Finally, the compiled

tests will be linked and executed on the target machine and

the results will be discusased.

Segquence of Presentetion

The real-time avionica environment is described in
Chapter II. Also, the Ade constructs of tesking and
exception handling are briefly described. Then an outline of
some applicable data structures is presented.

An analysis of compilation issues reletive to resl-time
avionica aeapplicetions is presented in Chapter III. 1In
saddition to identification of the issue @at heand, the
relevance of the issue and possible testing criteris are
discussed.

Chapter 1V is &an enalysis of the teat suite of
programs furnished to AFWAL by IDA. Eech progrem that is
designed to test any of the identified resl-time compilation

issues is evaluasted.

Chapter V reportas on the results of compiling and
running all selected test programs on the Ada compilers.
j Finelly, conclusions and recommendations concerning
ﬁ ~ this project are discussed in Chapter VI. The objective of
the project focused on e apecific aubset of issues relevant

- to the resl-time avionics environment and the degree to

,;.

] H-17

~

s

- J‘..-‘$c' s, .-_. e ~'. Nt T T S e et e, et ‘ . e)
T AN ™ _A\ ‘_A 'Aﬁ'_g‘r_.}_. _4\4_‘ | I .——:l.!'l\ ‘_ ‘L\. l‘ \~ \1\ St .ﬁ_x‘La._ P 1'.'!‘:"':'1':- .

which aveilable compilers and tests addreas those issues.

Thia chapter also considers expansion of this effort in

future projects.

DN A A 0 A A AR A At A iE St Sl P S i Sl A A At S A e s g s e g RSl Ak o dad &

ML A Al et e at 2h A T)

v v v
‘

I1. The Environment

wTYTw

The resl-time avionics environment differs from other

environments that are supported by computer programs because

0of the timeliness required in responding to requests and
because of the physical constrainta of the hardware. This
chapter discusses that real-time environment es well as aome
of the Ade language iasues related to programming fﬁr this

environment.

Reel-time Avionics
A real-timne system differs <from a conventional
interactive or batch oriented system in the timelineass of
responses. Ben-Ari stetes that *“the term rezl-time aystem is
usually restricted to systems that are reguired to respond
to sapecific predefined requests from a user or an external
sensor” (Ben-Ari, 1S982:12). HMellichemp defines resl-time
processing as follows:
“"Real-time processing involves the interconnection
of a process with a computer utilizing
analog/digitel and digitel/analog interfaces
and/or generalized digital (binary) data
interfacea. Deta acquisition by the computer must
be keyed to the time scale of the process. If the
computer is to influence the process as well, then
ita own response must be timely, resulting in an
appropriste process response.”
* (Mellichamp, 1983:10)
WVhile these definitions hold for most real-tine
applicationa, and these applications are well suited for

Ada’s tasking capability, real-time embedded avionics

applicationa have additional charscteristics that muast be K

BE-19

. e .

s SPRF IR "_'-{."-‘. v ,'-.'..~..‘..__.l
LGS ORI R UTRIL AN S A S Ny R

I e et et e A S A

considered. D. A. Fisher, who was then & DoD Staff
Specis’list for Computers, Communications, and Command and
Control, describes this environment in the following manner:

“Embedded computer software often exhibits

characteristica that are strikingly different froa

those of other computer applicetiona.... MNany
embedded computer applications require software

that will continue to operste in the presence of

faults.... The applicationa mey require the

monitoring of asensors, contreol of equipment
displays, or operator input proceasing. They =must
interface to special peripherasl equipment....

Software must sometimes be sble to respond at

periodic (real time) intervals, to service

interrupts within limited times, and to predict
computation times.... In many applications..it is
necessary to access, manipulate and display large
quantities of data. Much of this dats is symbolic

or textual rather than nureric and =must be

organized in an orderly and accessible fashion."

(Department of Defense, 1980:4)

The processor hardware used in avionics applicetions is
another critical fector that must be considered in this
environment. “Typical avionics applications take place in en
environment where weight, power, and volume of the processor
are at a premium™ (Phillips and Stevenson, 1984:100).
Traditionally, processors used in embedded systems have been
restricted due to cost and/or size constraints. The meajority
of these processors have 64 KB of memory or less. This
neans that reducing overhead generated by using Ads
constructs such as tasking and exceptions ia more critical
in embedded computer applicetions than when using & machine
in which the addressable memory can be easily expanded. This

viewpoint is steted very succinctly in the BMAC report as

follows:

H-20

N ™ Eaad ad
P/ ARk Sl Ak sl e Al bk Fad s b ot bl Sadlind sl el Maicsali Al dall Sl AadlA

SIS A R I8 ARS S S sal lat i b da g

“Compilers for embedded aevionics are very
concerned about the perforamsnce of the executed
code. Tredeoffas between effortas to improve code
and increasing the time (or other cost factora
like memory usasge) of the compiler are strongly
biased towards improved code a8 long as the
resulting compilation coats stay tolerable.”

et el et AN & b & A N &

° (Avionica Laboratory, 1984:3-44)

In general, avionics applications use processora to
provide interface and control within an integrated
environment. The processor =ust sense and control its
environment 80 that it can make and execute decisions. In
order to accomplish these objectivea, the processor nust
respond to its environment and dynamicelly resolve errors.

The processor’s response must be fast enough to
accommodate asynchronous events, which are usually signaled
by interrupts and need to be handled very quickly. The
response must alsoc be orderly to ensure the available
machine resources are used .ffoctivoly. This requires an
accurately meintained timing reletionship between the data
sarpling rate of the sensors and the freguency et which the
data being sampled is &vailable. Feilure to accurstely
maintain this relationship could lead to erronecus
extrapolations or an unstable control loop (Phillips and
Stevenson, 1984:100).

Software and hardware errors must be resolved in such a
way that the processor maintains control of its environment.
Software errors can be handled, for example, by restarting
the program at some point or using an exception handler

routine. Hardware errora can be planned for by uaing methods

',
-,
'..
2
’,
-
| H-21

such as fesult tolerant design or reconfiguration.

Another consideretion criticael to the real-time
avionics environment is theat an existing operating system is
usually not present in an embedded computer such as the MIL-
STD-1750A. The asignificance of using Ada as the programming
language for real-time avionics applications targeted for an
Y enbedded computer is that an Ada compilation system must
| provide various run-time support (RTS) features. In
ccntrast, languages previocusly used for these applicastions
> sssumed their programs ran under a u?er supplied asyatenm
executive. Usually, various mathematical routines were the
only compiler RTS provided by compiletion systems of other
languages. An Ada program aust have the ability to run on a
machine without an operating system since "each main progresm
acts as if called by some environment task™ (Department of
Defense, 1983:10-2). Thus, the Ada compiletion asystem haas to
act as the executive asystem and provide for such features as
. progrem initistion, construct (i.e., tasking or exception
handling) support, and even progrem termination. It also
rust provide a prograr supervisor.

One major area of concern ia that the Ada standard
(MIL-STD-1815A) cannot be as yet efficiently implemented on
a MIL-STD-1750A architecture that is us;d in the environment
by the Air Force. It is expected that the capebilities of
the 1750A will be exceeded due to the limita in logical
sddress apace, speed requirements, and need for syabolic

processing. Msjor problems faced by implementors using a

. s
A)

T TS TeTe s e = & N

c T v % vV v

segrnented Instruction Set Architecture (ISA) include:

1. Inplementing the taskine model with efficient
interrupt handling:

2. Implementing a heap space management method
with efficient gerbage collection;

3. Implementing date typea for efficient range
checking:;

4. Implementing context switching for efficient
task frame management: and

S. Implerenting epilog and prolog models with
efificient argument binding and large logiceal
address apaces.

(Estea, 1985a:2).

The report on a survey of & mejor portion of the defense
industry associated with the Air Force and Ada examines this

area in grester deteil (Estesa, 1985a).

Architecturee and lLevels-of-Distribution

Using Ada to write progrems for real-time avionics
applications has implications that are not fully understood
at this time. At present, moat applicetions are suited for
single procesasor shared memory architectures. The single
phyaical processor is divided into separate logical
processors that support the pearallel processing constructa.
However, it ia possaible that future requiresents will
dictate using sither an architecture featuring a
pultiproceasor target system <(having separate physical
processors) with shared memnory or one having a
rultiproceasor target system with ieparetc merories instead

of the single processor asrchitecture. The use of either of

H-23

s e e e e e .

~—

the nultiprocesasor erchitectures increases the complexity of
ean Ada coapilation systea and the rasultant RTS when
compared to the complexity involved in using a single
processor ahared memory architecture.

There are problems that =sust be solved before
inplementing multiprocessor compilers. Ada featurers that
present the most deaign and implementation difficulties are
the conditional entry cell and acceas types. In addition,
Ada does not support the assignment of compilation units to
specific processcors. This could possibly require placing
duplicate code on esach processor which in turn could lead to
problems with Ada scoping rules. The selection end placement
of this duplicate code is an aree of concern. Other issues
such as the use of interrupts, exception handling, and other
machine dependent features must be considered. Because of
these problema, any difficulties encountered trying ¢to
correctly coampile and 1link Ada programs for a single
processor architecture are likely to be compounded
considerably if transferred to a multiprocessor
erchitecture. Additional problems not applicable to single
procesasor architoctur;s are also likely to surface as
research {n this area continuea. (Araitege and Chelini,
1985:36).

Another factor affecting the complexity of an Adas
compiler and its associsted RTS is the level-of-distribution

of the proposed system. The three possible levels-of-

distribution are:

.......

Y "

e

- %

AN SOAPIAY

1. No distribution - a single Ads amain progras
together with all its tesks run on & single
processor;

2. Fixed asaignment of program parta to proceassors
- for example, on program initiation all tasks
are assigned & processor and that assignment
remains throughout exscution; and

3. Dynamic assignment of prograna parts to

processors - in this case the assignment of a
progrem part to & processor may change.

(Lindquist aend Joyce, 1985:9).

Matching the three previously mentioned architectures
with these levels-of-distribution produces nine possible
combinations of systems. The easiest combinetion for an Ada
compilation system to implement correct RTS procedures on is
a single-processor architecture with no distribution. The
complexity and resultant difficulty of echieving correct and
efficient RTS only increases for the remaining combinationa.
The most difficult is an environment using a wmultiprocessor
without shared memory and dynamically essigning progras
parts to processors. Figure 1 illustrates these two
extremes.

Since many of the issuee identified in the next chapter
are related either directly or indirectly ¢to tasks,
exception handling, or dats structures, a brief explanation
of these asubjects is required. For a more detailed
explanation, the reader may refer to Software Engineering

With Ada by Booch and to the Ada LRM (Department of Defense,

1983),

]n.k ltask PROCESSOR
2 1

ata data|j/data NENORY

A c B

8. Single-procesaor architecture with no distridbution
m==

ask PROCESSOR A
1

MENORY 2

PROCESSOR

MEMORY 2

PROCESSOR

ata MENORY 3
C

b. Kulti-processor without shared memory, dynenric
assignaent of prograa parts to processors

Fig H-1. Extrese Architecture/Distridbution Coabinations

Jesks
The follovwing definition of teaks is taken from the Adas

LRN:

“Taska are entities whose executions proceed 4n
parallel in the following sense. Each task can be
conaidered ¢to be executed by a logicel proceasor
of {ts own. Different tasks (different logical
processors) proceed independently, except at
points where they synchronize.”

(Departaent of Defense, 1983:9-1)

This definition nakes no distinction between nmechine

architectures. The physical operastion of tasks can take

place on multicomputer systeams, aultiprocessor systeas, or

H-26

-as a @ 9 A

on logically separate processors in a aingle-proceasor
system. Whatever the choice 0t architecture, the effect must
be the seme. In other words, taska are executed on their own
logical processor regerdless of ¢the physical processor
configuration.

Teasks are program components with the unique
characteristic of operating concurrently with other progranm
components. Taaks depend on the unit which declares thes.
Thia unit is often referred to as the “parent”. A taak
declered by a unit is ceslled the “child”, while multiple
tasks of the same parent are celled “siblings™”. Tesks have a
specificetion part which establishes the interfece used by
other program components to interact with the tesk. Tasks
also have a Dbody that conteins atatements defining its
actions. When the task is executed, the declarative part of
the body is elaborsted. This means that the RTS can now
associate & name with the teask and can initislize newly
declared variables of the task. Eleboration is followed by
the action associated with the body’a statement sequence.
The atatesent segquence often takes the form of an infinite
loop in order to continue processing indefinitely. Also, the
delay stetement is often used to establish a pattern within
the task, typically in monitoring applications.

Tasks can usually be broedly aasigned to one of two
groups according to the specific function they perfora in
the system ¢to which they belong. These groups have been

labeled ‘“producers and consumers” (Booch, 1983:233) or

H=27

“servers and requestors™ (Olsen and Whitehill, 1983:160).
Producers or servers exist to provide services to consumers
or requestors. A server task is able to provide any one of
several services if the select statement is used by the
programmer.

Comrunication between tasks ia vital, eapecially since
tasks are executed asynchronously. Explicit, programmer-

specified aynchronizetion is provided by what is known as a

rendezvous. This “rendezvous” is the message-pagsing concept

in Ada. This concept works through the use of taesk entries.
A task is not required tc contein any entries. However, in
order to become synchronized with other taska, it muat have
an entry and be called by another taak. In this cese, the
task may accept a call of an entry by executing an eaccept
astatement for the entry. Synchronization is then achieved
between the celling and the accepting task, and & rendezvous
has occurred. During the rendezvous, memory is protected
thus accompliahing the "criticel region®” function of mutual
exclusion necessary in reasl-time applications. After a
rendezvous ia complete, the two tasaks continue
independently. The program may choose to ignore a rendezvous
by vusing f£flegs known as “guards” attached to the select
atatement.

While an Ada prograem is running, a task can be in one
of several statea. The task can be activated, executed,
suspended, completed, or terminated.

Task activetion is the process by which tasks are put

H-28&

into execution. The <firat step of this process is the
elaboration of the taask body’s declerations. It is during =

this state thaet the run-time system must initiealize ita

tasking date structures. The tesk is then ready to execute
the sequence of instructions in its body. A task is
activated prior to execution of the first statement in the
program component that declared the task.

When activation is through, the task body is executed.
This can occur in parallel with other tasks or progras
components and is not dependent on then.

A task can be suspended as necesssry in order to
rendezvous with other taska. Thia takes place at the entry
points. It is also suspended if it has to wait on a
processor.

A task is completed upon reaching the end of ¢the
sequence of statementa in the task body.

A task can be terminated normelly or abnormally. A task
is coneidered to have terminated normally if it reaches the

end of its atatement aequence and sll)l of its dependent tasks

RIS

are completed. Abnormal termination is explicitly controlled
by using either the teraminate alternative in e aelect
astaterment or by uaing the abort statement. The terminate
alternative is applicadble only if the block of which the
task 4is a part is waiting for termination of its dependent :
tasks. The more powerful abort statement may be used to
terminate any taak, even itaself, . and ell dependents of the

teak. However, if the tesk 18 in the terminate state N
H=-79

e A A e e e e e e e e 1

A .,..._ IR

>'.\...‘ - .‘.‘l'h“.
LRl O S RNl A N N Y |

already, the abort statement has no effect.

Errors can occur in any Ada unit, including tesks. Adea
has provided the exception mechaniam to allow the programmer
to respond to situations beyond the ascope of normel program
operations. The exception and exception handling are

described in the next section.

Exceptions

Any of severel different factors may cause an error
during execution of a progream on a computer. Most erroras
cannot be ignored. Good programming practices dictete that
the progrem react to errors. This reaction cen teke the fora
of some apecific action to correct or ‘"get around™ the
error, or the program can abort and allow the operating

syastem to decide subsequent operations.

In real-time avionics applications, software and

hardware systemss must be able to continue performing their
functions in spite of gerious erroras. This is especially
critical since these systems are often used to support human
life as well as investments of extremely large amounts of
RONey.

The designers of Ada provided a mechanism intended *to
be used to report and handle unusual errors that are not
expected to occur when a program is executing properly”™
(Olsen and Whitehill, 1583:183). This mechanism is called an
exception and, together with an essociated exception

handler, provides the programmer the ability to reaspond to

W W el R e T T TR TN T T TR TN

the exception or to continue processing with reduced
capability. An exception is raised as it is brought to the
prograg’s attention. Exception handling refers to the
response to the raised exception. The LRM lists aseveral pre-
defined exceptions which are always avajilable to the ﬁrogran
unless explicitly suppressed by the use of the pragaa
SUPPRESS (Department of Defense, 1983:11-1). This pragma ias
discussed in the next chapter.

An exception handler ia essociated with one or more
specific exceptiones and contains the action to be taken when
those exceptions are raised. When an exception occurs during
execution of any unit, including an exception handler, none
of the remeining statements of the unit are executed.
Control goes to an exception handler {f there is one
associsted with the particuler exception. If not, the
exception is propagated to either the caller of the
subprogram, the enclosing unit of the block, or the parent
unit of a tesk. Thus, the exception is propagated all the
way to the mein body if necessary. I1If there is still no
exception handler for the exception, the program is then

terminated.

Data Structures

Two clesses of data structure are referenced in this
thesiasa. The first is the shared variable and the second is

an indiviasible data satructure that exceeds meRory

o “an e e w Raadl’
e b e WER".T-Te T TR P
. .

boundaries.

H-31

> Ry .v

a_an Ak 3

As previously mentioned, tasks communicete via entry
calls and accept statements. I1f two tasks read (load) or

update (store) a variable eccessidble to them both, that ,

2 ain MR oSl k-0

variable is called & shared variable. Neither of ¢the two .

tasks may assume anything about the order in which the other

b S

taak’s operations are carried out except when the twc taskas

are aynchronized. Synchronization occurs at the atart and
end of two tasks’ rendezvous. Also, &t the start and end of
a task’s activation: it is synchronized with the task that
caused the activation (its parent unit). Any task thet haa ;
completed 4itas execution is likewise synchronized with any
other task (Department of Defenase, 15983:9-19).

Ada provides a pragma called SHARED. This pragma can be

applied ¢to an eppropriate variable to specify that every

read or update of the variable is a synchronization point
for the veriable. It is the programmer’s responsibility to
use the shered veriable correctly. The pragma SHARED is
necessary to ensure that the shared data are properly
referenced Dby two or more tasks. An implementation must
restrict the objects for which the pragma SHARED is allowed
such that direct resding and direct updating of the objects . ;
is implemented as an indivisible operation (Department of ?

Defense, 1983:9-19).

An indivisible data atructure that exceeds memory

o 4

boundaries is a distinct possibility in real-time avionics
applications. An example of the use of this structure might

be for scene generation on an aircraft consocle’s “Heads Up

H-32

T TTC TS 7 V)7 7 GEmrEs< ™

[A

YT WEERS R AL ST TR Y T
«

.
J
]
v
3
v

-
o« Qe -

Displey.” While it (s posaible and, in the avionics

environment, highly desirable to restrict memory uae to the
eapplicable bounda <(noramelly 64 KB of =memory), future
requirements could dictate using these large indivisible
data structuresa. For such cases in which large data
structures are unavoidable, the sssocisted overhead required
to track and access the dats could be unacceptable.
Currently, intimate involvement by the spplication
programmer regarding the design and physical layout of the
code is regquired in order to avoid problems with large date
structures.

The @above discusasion of the environment of real-time
avionics applicatione for wuse in an embedded computer
reveals unique considerations regarding the use of Ada in
that environment. Therefore, compiler and/or RTS solutions
that might have applicability 4in the normal real-time
environment could be unsatisfactory when applied to avionics
applicetions becsuse of the stringent requirements of the
avionice environment. Programmers and designers of avionics
systems are also concerned whether Ada compilers and their
associated RTSs effectively and efficiently address issues
of importence to the avionics environment. A set of these

issues is8 identified and discussed in the next chapter.

ti=33

W PL AN AP I N S TSP A

PRI

)

M -

I

PSS

I1I. Jasyes

There is continuing research regarding the best methods
of implementing RTS for Ada with various architecture/level
of distribution combinationa. Recently, methods have been
presented that ashow how tasking can be implemented
efficiently for aultiprocessors with shared memnory
(Lindquist and Joyce, 1985:9-19. Their paper also
references the implementation methods thet D. Cornhill and
E.S. Roberts proposed for other architecture/level-of-
distribution combinations. An efficient implementation of
tasking for a single s*.red processor has also been
dermonstrated. This implementetion uses "simple, straight-
forward, and efficient selgorithms" (Baker and Riccardi,
1985:34). Designs <for other specialized RTS asystems are
presented in the literaturp (Leathrunm, 1984:4~-13) and
(Riccardi and Baker, 1984:14-22) .

As noted previously, the real-time avionics environment
presents special challengea and calls for special solutions
within the conatraints of the environment. For example, 1if
an effective implementation of tasking were developed that
required 36 KB of memory, many applicationa could and
probably would use the implementation. However, that amount
of memory in the current real-time avionics environment is
not aveilable to aupport the implementation of a single
function.

Nany issues of concern have been raised by programsers,

H-34

- e W

vy

I . T o
.......

designers, and Jimplementors of real-time avionics aysteas
concerning the use of Ada in this environment. These issues
of concern provide the 1-petu{ for further research and are
identified and described in this chapter.

The nineteen i{ssues identified here were compiled after
reviewing current literature regarding Ada and the real-
time avionics environment. In addition, dinterviews were
conducted with people who work in the environment. The
issues were subjectively placed into two categories by ¢the
author. First are those issues that are not suitable for
eapiricel testing. Iasues were placed into this cetegory if
an Ada-based test could not reasonably disclose the issue or
that the developrent of an Ada test program would be too
difficult a task for this project. Next, those issuea for
which it was poasible to identify criteria or tests that
could be used to evaluate an Ada compiler’s trestment of the
issues are listed. Ada-based test progrems that can be used

to test the issue are provided or referenced.

Issues Not Suitable for Empirical Testing

For the following issues, it waa determined that either
empirical teat resolution is uncertain or that tests do not
exiat and would be too difficult, 4f not impossible, to
develop during this project. In aome cases, teat developaent
ia hampered by not having access to sophisticated enough
compilers, RTS syatemsa, or programaing tools. In others, the

isasue does not lend itself to empirical testing.

H-35

., .

Iasye 1. Is the overhead aasocisted with an effective
rendezvous efficient to the point that the time sequenced
operations aro'pot disrupted?

The rendezvous is central to the concept of Ada
tasking. Software is divided into tasks because it
sisplifies deaign and developaent. However, Ade will not be
useful for real-time evionics applications unless the
tesking operations (e.g., activation, execution, and
termination) are implemented efficiently. The following
opinion reflects a major concern of real-time avionics
application programmers:

“"Esbedded systems which apend healf their time

doing task manipulation are not going to be very

effective in perforaing their primary function. 1If

it turns out that tasking constructions involve

large amounts of overhead, then the applicetion

aystens will minimize the use of tasking.”

(Avionics Laboretory, 1984:3-47).

The responsibility of providing an efficient rendezvous
lies with the RTS which is effectively the interface to the
architecture. As previously discussed, Ada compilers will

have to0 generate code for e variety of systems associated

with any nusber of host operating systema. These operating

systems range from the complex (e.g., VAX 11/780 VMS) to the
nonexistant (e.g., NIL-STD-1750A). Accordingly, RTS will
range £from a collection of primatives that call operating
system functions (such as memory managenment, page swapping,
etc.) to RTS that contain routines to implement ¢these

functions internally.

: . ry
i R AR A AR e I i

However conceived, the RTS must in one way or another
provide such functions as synchronization, mutual exclusion,
queue processing, memory manasgement (including heap memory
allocation and perhaps some form of “garbage collection®),
stack management, dispatching, and acheduling.

The RTS is required to provide mutusl exclusion and
synchronizetion through the rendezvous. Mutual exclusion is
the concept of a single task having access to date (memory
contents) at any point in time. The rendezvous mey be used
to enforce this. Synchronization is implicit in the entry
call/accept protocol. All this must be accomplished without
interfering with the ability of the computer to respond to
stimuli from a process sufficiently fast to accommodate the

needs of the process.

Issue 2. How does the RTS system deal with the
interaction between taaks and lexical scopea?

Every task is created by a declaration. This ties the
livelihood of the task to the existence of the declarative
framework of the program. The operations which are regquired
to support crestion, activation, execution, and termination

of tasks have been described as:

1. Create dependent tasks (children).

2. Activate all children. Begin execution when
children have ended their activation
processing.

3. End of activation.

4. Wait for termination of all children.

H=-37

L)

.................................

S. Terminaste.

(Leathrum, 1984:6)

There aeare some critical coordination points between
these operations. As an example, the declaration processing
for a child cannot begin until the declaration processing
£or‘ the parent is coapleted. At this time, the parent
activates all its children. Also, the parent must wait to
begin execution of its own statement sequence until all its
children have compléted their activation operation. Figure 2
illustrates typicel Ade life cycles of one parent and two
children. The critical coordination points are indiceated by
“esee", These coordination points are criticael because, for
example, the declaration processing for & child cannot begin
until the declaration processing for the parent ias complete,
at which point the parent does an "activete &all children”™ |
operation. The parent may not begin executing its own code
until all children have performsed an "“"end of activaetion®
operastion. Also, the parent may not pass through the end of
the scope of its declaration until all its children have -

terminated.

issve 3. *“If sasultiprocessing is supported Dby the 1
implementation, are Ada tasks mapped to a single underlying
processor, or is each task mepped to a separste proceasor?”
(Kean, 1584:7)

Iaplementing _Ada on various architecture/level-of-

distribution combinations iis an area of current ressarch.

H-38

PARENT

declearation
processing

create first
child

create second
child

activate all
children

and

‘then

begin execution
[X X]

end of activation

nd execution

wait for children
to tera ses

end of declaration
acopse

terainate

declaration
procesaing
activate all
children

and

then

begin execution
end of activation

end execution
wait for children
to terainate

end of declaration
scope

terainate eee

declaration
proceasaing
activate all
children

and then

begin execution
end of ectivation

end execution
wait for children
to terminate

end of declarastion
acope

terainate eese

Fig H-2.

H-39

(Leathrum 1984:6)

Typical Ada Life Cycles: One Parent and Two Children

o v ¥y Vv

°-‘-'-‘\,'.-.\.--v.\~.-‘~'< Se L e e
('-{’1\.\ \%{Q—{‘{'ﬁ{.’n{"':'-‘L'-‘.‘En’:‘l‘l‘l:). < v

Hardware designers eare now propoaing architecturea that

eddress some of the more difficult aspects of implementing
Ada on conventional architecture mechines such as supporting
Tun-time constraint checking and representation of
discriainant records and dynamic arreys (Biswas, 1984:23).
An inastruction set architecture thet has special features to
support Ada on a computer known as the High Level Language
Machine hes also been proposed (Avionics Laboratory, 198S5).
Meanwhile, other ideas are being presented to support
distributed Ada tasking. Weatherly describes the
fundarnentals ©of a proposed network operating systen
(Weatherly, 1984:136-144). Cornhill diascusses four
approaches to partitioning application software for
execution on a distributed target system. They are:

l. Write an Ada program for each processor in the
distributed systex;

2. Partition only taaka:

3. Allow partitioning on any aource level
construct; and

4. Extend Ade with constructions aspecific for
programming distributed systeas

(Cornhill, 1984:153-162).
With the myriad of methods available, the programmer needs

to be aware of the implementation method used.

asue . Are shared variables protected by the
rendezvous?
Occesionelly, there is & need for s variable to be

shered by two taska. On those occesions, the tasks sust be

H-b40O

oL b Y e BT At Al aheiasate sl gt A gty

assured that the shered variable is not available for either
reading or vupdeating by any other tesk during the time the
two original tasks are synchronized. They are synchronized
X at the start and at the end bf their rendezvous. It is
important that the implementstion restrict the objects for
\ which the pragma SHARED is allowed to objecta for which each
of direct reading and direct updasting is implemented as an

indivisible operation (Department of Defense, 1983:9.11).

NOTE! Meny identifiers wused <from this point

forward in this paper contein an underscore (_),

primarily to make the identifier more meaningful.

Issve 5. What impact on performance does zrun-time
constraint checking have?

The LRM lists m»many situetions which will cause the
raising of the CONSTRAINT_ERROR exception. To check each
possible s8itustion during run-time would unsatisfactorily
degrade the system. There are numerous compiler optimization
techniques aveasilable which could reduce the costs of
constraint checking considerably. However, situations exist
that can only be asufficiently teasted during run-tise.
Y Therefore, the run-time constraint checking that is
. iaplemented must not degraede the system’s operation such

that timing sequences are adverasly affected.

ssu . How is dynamic type checking of parameters

handled and what impact on performance does it have?

The exception CONSTRAINT_ERROR may be raised Dby a

,

..

b'

9

3

;

¢

9 -
! H-k1

>

DISCRIMINANT_CHECK. This checks that a discriminant of a
composite value has the value imposed by @& discrimination
constraint. A discriminant is a special component of certein
record and private typea. The values of discriminants
distinguish &slternative <forms of velues of one of these
types. Also, wvhen accessing a record component, a check isas
nade to ensure that it exists for the current discriminant

values (Department of Defense, 1983:11.7).

Issue 7. Whet is the range of typicael context switching

times?

The context awitching scheme is largely implementation
dependent since there are different methods that can be used
to accomplish this function. One method is for the compiler
to generate relocatable code without worrying ebout the
memory boundary. This requires the linker ¢to £find eall
unresolved external references and deal with ¢them by
identifying a2ll procedure calls requiring a context awitch.
Another method is to create asome shared data which can be
accessed directly by ell the applicadble memory images.
Whatever the =method .or combination of methods used to
accomplish context switching, it must be fast enough not to
interfere with the important timing constraints elready
established.

In order to enhance the following discussion, two
assurptions about the environment ere made. The first is

that a contiguous instruction space is linited to the memory

H-4L2

. o

ST T TS TR ITATNT T LT N

bounds of & single processor (normally 64 KB for avionics
applications 1like the MIL~-STD-1750A>. The second ia thet a
contiguouas data structure is also linited to the availeble
memory bounds. In general, ¢two situations could arise

. needing context switching. They ere instruction branches or
calls, and instruction operand data references.

Given the assumptions, the first situstion of context
switching should be provided by the implementation with
relatively 1little overhead. An optimizing compiler could
even decide to duplicate code for small routines within each
address space so that they can be accessed without a context
switch.

Instruction operand datae references are more difficult
to implement efficiently. Problems surface when there are
general references to deta allowed between address spaces,
especially with formal parameters and acceas types. One such
problem is that more bits of address rmuat be uaed to ensure
identification o©f the data object in the extended data
address space. Another problem is that a large penalty could
be incurred while eccessing what is actually locel data to

accommodate the poasibility that the datea might not be loceal

(Avionics Laboratory, 1984:4-15 thru 4-19).

Issues Suitable for Empirice)l Testing

The following issues were placed in this section after
determining that empirical testing should disclose the

. information desired. Also, a program either exista to teat

Ls

H-L73

. - N
L P Ik T B P S - ‘. *a - .. Ny e et
T G PR PRI S AR & AU SO A

the issue, or could be developed in a relatively
A2 straightforward menner. Either the source c>de of existing
tests or references to where it may be obtained is listed in

M Appendix B.
1

W Jesue 8. "Doea the number of select choicea affect

i performance?” (Kean, 1984:7)

,' The selective wait form of the select statement allows
, & combination of waiting for, and selecting from, one or
more alternatives.¢ It does not limit the numbers of select
choices. One could theorize that an increese in the number
¥ of select choices would incresse performance since the

) likelihood of a rendezvous is increased.

issue 9. “"How does ueing select alternatives affect the
performance of the executable code?” (Kean, 1984:7)

Ada provides several variastions of the entry call and
accept statementa. The sinpie entry call and simple accept
staterent may be extended by using the conditional entry

call, the timed entry call, or the selective wait. The

-..‘ll‘.l

conditional entry cell makes the calling task issue a call

for another task’s entry point with no waiting (zero tise

. delay). It takes the fora of:
- conditional_entry_call ::= .
, select
! entry_ceall_statement {(sequence_of_statements)
else
L aequence_of_statements

end select:

The ¢timed entry call ensures that an elternative

o BB B o

B H=Lk

WA RN S s aid

aeguence of statements is executed if & rendezvous cannot

begin in & specified amount of time. It takes the form of:
tined_entry_call ::=
select
entry_call_ststement [(sequence_of_stastements)
or
delay_statement (aequence_of_statements)
end select;

The selective wait allowa a called task to wait for
only one of a set of entry points for a rendezvous. It takes
the fora of:

selective_wait ::=

select
select_slternative
{or select_alternative)
else
sequence_of_statements -
end select;
where the select_alternative takeas the form:

select_alternative ::=
(when condition =>] select_wait_alternative

select_wait_alternative ::=
accept_statesment [(sequence_of_statementsl

i delay_statement [sequence_of_statements)

| terminate
A speciel implementation problem is introduced by the
selective wait. A task may be ready to accept & call on a
set of @several entries &t the same moment. This requires
checking to determine if the called entry corresponds to one
of the open alternatives. Also, sasince there may be seversl
open accept alternatives, the set of pending entries must be

checked against the set of open accept alternatives (Baker

and Riccardi, 1985:40).

There are many posaible ways to implement these

H-l5

N -

P Y Q0 M ¥ W 4

g
"
.&'-'-'.’A E

D)
’

NN

DR AP

alternatives in @a compiler. For example, Leathrum hes
combined these Ade forms into & very general select
statement (Leathrum, 1984:5). The reader is referred to
Leathrum’s peasper for the form of this general select
astatement and his rules summarizing the Ada forms. The
chosen method of implementing these Ades forme will detsrmine

the effect upon execution time when the forms are used.

Isesue 10. *“Ias it better to have many small tasks with
single entry choices or & few large tasks with meny select
choices?” (Kean, 1584:7)

It 4is possible in most caseas to perform the sanme
function with either of the above strategies. Depending on
the implementation techniques used, one strategy could prove
to be more efficient than the other. In the past, avionics
applicetion programmers have tended to code in large modules
in order to reduce the overhead associated with calling the
modules. Because the Ada tesk is assigned its own logical
processor (could be physical as well), it might well be more
efficient to code in small tasks. If wmore rendezvous
candidates are available, more tasks could be completed in a
shorter time. However, the overhead asscocisted with tasking
in the particular implementation will determine the better

strategy to use (Fogel, 1985).

Issue 11. *“Doea the ordering of entry clauses in a
SELECT impact execution speed?* (Kean, 1884:7)

The select statement is non-deterministic. Thus, if

H-46

aeveral elternetivesa can be selected, one is chosen
arbitrarily according to the Ade language rulea. Over the
long run, ordering of entry calls should not Jimpact

execution speed.

Iesue 12. “Can the Ade scheduler starve a task?" (Kean,
1984:7)

Each teask is aen independent eactivity with the
capability of interacting with other unitse. Each tesk is
assigned its own' logicel (may be physical as well)
processor. Therefore, each task should receive a share of
available processing time for ita logical proceasor to

execute.,

Issue 13. Are there any aids in the compiler or RTS
to aasiat the progremmer find deadneas errors in tasking
programs?

“A new class of errors, not found in sequential
languages, can result when the tasking constructa of Ada are
used. These errors are celled deadness errors and arise
when task communicstion feils” (Helmbold and Luckhan,
1984:96),

A task can be considered "dead”™ if two conditions are
true. First, the task becomes blocked. This happens when a
teak cannot proceed with its own computetion becauae it is
waiting for one or more tasks. Being blocked is a normal
part of task execution and occurs in severel task activities

such asa: 4issuing an entry call that has not been answered

H-b7

o e

A D S S S
< PR LA S A g P ST L
A YU ORI YN “~_"¢.',J'-- . f--. o .‘(‘.-, L)

S /an et sunii d B i Sag Ly " L2 O TN T - YT T W I W I YW WYy
At AR A A 4 - A B AT . . . L SRR S S At

BT W V. T

vyet; waiting for en entry call at an accept statement:
waiting at the end of & block for tasks dependent on the
block to terminate; or finished executing its own code and
waiting for its dependent taske to terminate. The second
condition necessary for a task to be considered “dead” is .
when there is no possible continuation of the program where
the blocked taask can continue with its own execution. When a
program contains a dead taak, a deadness error has occurred.
Desdness errors such as global blocking, circular
deadlock, and 1local blocking depend only on the status of
the tasks involved. Globel blocking errors occur when at
least one task is blocked, and every other tesk is either
blocked or is terminated. Circular deadlock occurs when
there is & closed circle of tasks and each teask has iasued
. ean entry call to the next task in the circle. In this
\ situation, each task in the circle waits forever for the
next task to accept its entry call. Locel blocking is
similar to globesl blocking, but with the universe restricted
to those tasks directly or indirectly dependent on one task
thet is either block-waiting, cormpleted, or issuing an entry
call to & task in the dependent universs.

Other forms of deadness errors depend more on the
semantics of the particular program in which they occur. An
exanple of this type of deadness error is the call-wait
deadlock. In this error, task T4 is accepting &an entry that
cen be called only by task T2, and T2 is calling a different

entry of task T1. If any other task but T2 could ceall Ti’s

H-L8

.............

AR A S - EalieSle RIS D'l NataAdty il AR A A At e st il & DU S ot i R i ot

entry, thaia would not result in a deadness error. Therefore,
the error is @ fesult of the progrem rather than the
language. Helmbold and Luckham present a detailed discuasion
of deednes; errors in their paper (Helambold and Luckhanm,
1984:96-105) .

Since the use of tasks is an integral pert of the resl-
time avionics environment, any tools such as @& run-time
monitor, snapshot displeys, or state history monitor would

be helpful to the programamer.

sasue 14. "Do idle tesks impact the performance of the
executable code?” (Kean, 1984:7)

A tesk should not add to execution time until it is
activated. During execution, if one task is ready to
rendezvous before the other task, it should nqt use
procesaing resources. Instead, the waiting taak should be

suspended until the other task is ready for the rendezvous.

issue 15. How much overhead in execution time does an
exception take if it ia never invoked?

Exception handling can and ahould be conaidered part of
the termination operation of the program unit they reside in
rather than the execution operation. Exceptions wvere
deaigned to be used asparingly and only to protect & prograsm
from situations outside the range of normal program bugs. It
is desirable that features which are not u.;d, not slow down
execution of the program. This means that exceptions should

add to the execution time if and only if they are reised.

H-L9

Issue 16. Does the compiler effectively deal with
indivisible data structures exceeding memory boundariea?

It would be extremely inefficient to tresat each date
element aa if it could exceed the memory boundaries.
However, in those relstively rare instances in which en
indivisible data structure doees in fact exceed the boundary,
the compiler or aessociasted RTS should be capadble of
efficient accesa operationa. The programmer needs to know {f
this type of data structure is allowed and if so, what cost

in execution time {s required to use it.

asu 7. What is the effect of using each of the
following three optiona: OPTIMIZE = none? OPTIMIZE = gpace?
OPTIMIZE = time? (Keean, 1984:7-8)

The use o©of these options could affect the aize of
resulting object code, the CPU time required for execution
of the compiled code, and the meximum/minimum size of the
RTS system with or without tssking. As previously stated,
the real-time avionics environment is concerned with the
size, weight, and space o0f embedded computers. Also,
comnpileras used in this environment are more concerned with
the performance of executable code than other factors. A
programmer should be aware of the performance

characteristics of these three OPTINIZE options.

IJasue_)18. How does use of a SUPPRESS pragmas affect
execution time?

The use of a SUPPRESS pragma gives permission to ean

H-50

TSR RS TR R T AT VW N

W TR

{
‘
i
1
1
q

izsplementation to omit certain run-time checka. It seenms

|
j

D

logical that the use of a SUPPRESS pragma would reduce run- f

tine. Howevar, implementstions that incorporate Ade
constructs such eas range or length checking within the
architecture could possibly require more overhead in
execution time and code to suppreas those conatructs. In the
real-time avionica environment, this pragma will probably
not be used until the final version of the program is
tested. At that point, 4t would logicelly be invoked for
some areas of code in order to save run-time overhead. The
applications programmer needs to know if there is & penalty
incurred or no benefit derived <from using the pragma

SUPPRESS.

issuve 19. For which checks is the pragme SUPPRESS
implemented?

“For certain implementationa, it may be impossible or

too costly to suppress certain checks. The corresponding

SUPPRESS preagma can be ignored" (Department of Defense,

.
\
-
bl

1983:11.7). A programmer needs to be aware of which checks

the compiler ellows .to be suppressed and which are too

costly to suppress.

Summary

S T e B ¢ & ¥

The preceding discussion identifies nineteen issues of
f concern that have surfeced in current literature or during
conversationas with experienced real-tine avionics

application personnel. (For ease of reference, juat the

H-51

..... . et e e
..... R Y tat
.

I TR

OO RILTI S SR S At

N -

- ol

RARAOOL S L pprrr

wh

. 8
LALAL RN

Yy gy

‘,';"} "{

Lol A

oL NS Y

2T e
f

a5
Ta'a' s
v,

issues are listed in Appendix A.) Seven of the identified
issuea have to be conaidered "untestable™ at thias time
because of the nature of the issues and the current state of
the art regarding the evalustion of concurrent processes.
However, the remaining twelve issues can be empiricslly
tested. Applicable tests must now be applied to the issues.
Since the DoD recognizes the benefits of Ade compiler
and RTS evaluation, they are gathering a common test suite
of progrems called the ACEC to assist in this effort. The

next chapter presents the first version of this ACEC and

analyzes its epplicability to the twelve testable issues.

.......

FRISF S "RENANFR IR NTIR FIF N 3 A Aat Bat gt fat Bt aba'ada" b gy § : . pr " o v g q
- - . a L

IV. The Prototype ACEC and Other Test Programs

In June 1983, the AJPO propcsed that the E & V Taask be
initiated and a tri-service E & V Tean be formed. The Air
Force was deaignated as the lead aservice and AFWAL was

deaignated as the lead organizetion of the E & V Taak. The

R

overall goal of the E & V Task is to develop and provide the
Ada community the technology £for the evaluation and
validation of ASPE.. In order to eccompliah this goal,
eleven apecific objectivea were identified (Caator, 1984:A-8
thru A-12).

One of these objectives ia to develop evaluation and
validation tools and aida. These include teat suitea (setsa),
test sacenarios, a data reduction capebility, and other
designated means of automated asupport. The ACVC is included
in thia aet of toola. Another tool deemed neceasary to
aupport thia objective is the ACEC. The Prototype ACEC tesat "
suite hasa been prepared for AFWAL by IDA.

Veraion O (Beta Teat) of the Prototype ACEC teat suite 3
is the subject of the firat section in this chapter. After e .
brief background diacussion of the Prototype ACEC, an .
analysis of each of the groupas of teat programs is
presented. Thia analyaia ia baased on the teat group’sas
applicability to any of the issues identified 4n Chapter
I11. The &eanalyais wvas conducted by examining the progran .

code and associated documentation. Based on this analysis, :

each tesat was either rejected as not applicable or accepted

’ for compilation and execution. A rejection in the context of
thia thesis in no manner implies that the test is invalid or
useleas. It aimply nmesna that it has been subjectively
N judged as not directly applicable to the issues identified
for empirical testing in Chapter IIl (listed in Appendix A.)

Appendix B is & summary of the results of thia analyais.

| g S o pe,

Other teat programs are availaeble in the public domain. ;
Some of these programs have been reviewed by IDA and not

included in the Prototype ACEC because they failed to meet

Pt " Y

1) one or more of the three test selection criteris established
by IDA and liated in the firast section. However, 1if the A

author deteramined that a particular teat progras waa

applicable to any of the issues numbered 8-19 in Chapter
II11, the test was included for analysis and is discusaed in
the second aection of this chapter. These teata are compiled
end executed in the same manner as the applicsble Prototype
N ACEC tests. Listings of those applicable programs readily
avajilable (for example, tests that are part of the ACVC) are
referenced but not included aa part of this work. Other

program listings are contained in Appendix C. Chapter V

-

presents and diacusses the resultas of compiling and

B

executing all of the selected tests.
Prototype ACEC

' ack . The purpose of the Prototype ACEC is to
provide users or potential users of Ada compilers with a |

single, organized suite of compiler performance tests.
H-54

. . e e cm T T, AT At P -
. Jl.‘ .'- '."'.\'> - AN .n. PN, L I B T ‘_-.“- -~

A e .(‘f -‘,'-"-"'~-.’-)\..'-.."._'.‘.'~ .'-‘:. o> ‘\' \‘.'»"'-..‘-"'-‘.\A"- R :_‘. _\‘_'

AR AR A A R S R AR AL &2 E il el af
w7 A ."‘:“"m"{v,v,v\“““

Included in this prototype ACEC is the support software for

A e .

executing these tests end for collecting perforaance
statistica. The test programs are those taken frorm existing

test suites in the public domain thzt meet three selection

. criteria. These criteria eare:

1. The test measures Adse language feature
perforsance verausa conformance versus compiler
architecture;

2. The test is a unique test; and

3. The test compilea correctly.

(Hook, 1985).

The tests have been orgsnized, and in some Cases,
instrumented to provide statistics about the Ada language
features that are being tested.

The Prototype ACEC is intended for use by programmers
or analyasts already familiar with a particular Adea
compilation system. They must be able to invoke the Ada
compiler and the host or tafget dependent portions of the
Prototype ACEC. Familierity with the operation of the ACVC
would benefit the user as the ACEC is roughly equivalent in

execution complexity.

The design groal of the Prototype ACEC was to collect
. objective, quantifiable attributes of an Ade compiler and
! ¢ its associated RTS system. An interested user, programmer,
or analyst could use this collection of attributes to
‘ evaluate the usefulneas of & particular compiler <£for a
specific application. The actual language conatructs most

frequently used in & particular eapplication will have the

'.
L]
]
»
J
J
3
4
i H-55
v
i
v
]

W O e PRI A W O W W T, TV R TN, ha P

nost effect on the perceived usefulness of the compiler. For
example, if an application plans not ¢to use generic
instantiation of packages, procedures, or functions; then it

matters little 4if that part of the compiler/RTS is

e bt 2

inefficient. However, i1f taaking is & subatantiel]l part of

the application, the user will be most demanding that the

AL M]

compiler/RTS produce efficient, effective tasking
constructs.

It ia isportant for usera of the Prototype ACEC or any

i Ada test suite to understand that the measurements obtained

from tests are only an indication of the effect produced by

an Ade language feature under controlled conditions. The

. frequency that the features are used and the methodology

under which they are programmed in a real application could

cause significantly different results. With this in =mind,

this test suite provides two optiona for evaluating an Ada

compiler. A aet of teats that approximate the £frequency

distribution of the proposed application can be selected or

all tests can be executed to evasluate a stress load for the
compiler/RTS.

Test Suite Composition. A group of teats conaists

X of basically the initial test (control) repeated one or more

times with controlled changes made to produce a test version

and perhaps a special version (for example, to test the

effect of the pragma SUPPRESS). Normally, theae changea are

contained in all versions, but appear only as comments in

the versions not using thesm.

X H-56

L2 T E S T L S PRI P O PO SR
T S VR L T P S D T T T T I S I N T
A AR IC R WA AT A AL LA T

|‘
:

)

.......

Figure 3 shows the group of teata that measure the time
required for an add instruction. The three versions are
ADDSAl, ADDSA2, and ADDSA3 which are the control, test, and
pragma SUPPRESS versions, respectively. Only one version of
the test group is shown in Figure 3 with appropriate
comments referencing the versions in which changes in the
code appear. Examination of the source code reveala that it
is identical for all three versions except that certain
lines are comments rather than actual code in two of the
versions. The version of the test dictates which lines
become code vice rerain comments. The code exactly as shown
in Figure 3 4is the control versaion, with explanatory
comments added by the author. The test version is made by
deleting the comment indicator (--) from in front of the
code Y = Y ¢« X ¢« X ¢ X ¢« X « X « X « X « X « X « X;." When
this line becomes code, the effect of addition can be
measured between the control version and the test version.
Since everythirng else is exactly the seame, the difference in
time divided by the number of additions (10,000 in this
case) provides the cost of an addition. Similarly, the

pragma SUPPRESS version ia made by removing asome or all of

the comment indicators from the lines of code that invoke
the different pragma SUPPRESS statements. The effect of esach
individual SUPPRESS atatement or any combination of SUPPRESS
statenents could be tested in this =manner.

Two categories of tests were established by 1IDA. They

are celled Normative and Optional. Test groups placed in the

H-5T

WITH INSTRUMENT; USE INSTRUMENT;
PROCEDURE ADDSA# 1S -- #3151, 2, or 3
==~ PRAGMA SUPPRESS (ACCESS_CHECK):
=~ PRAGMA SUPPRESS (DISCRIMINANT_CHECK);
==~ PRAGMA SUPPRESS (INDEX_CHECK);
== PRAGMA SUPPRESS (LENGTH_CHECK):;
==~ PRAGMA SUPPRESS (RANGE_CHECK);
== PRAGKA SUPPRESS (DIVISION_CHECK);
== PRAGMA SUPPRESS (OVERFLOW_CHECK);
=- PRAGMA SUPPRESS (STORAGE_CHECK);

- The 8 lines adbove are not commanta in ADDSA3 (pragma
-~ SUPPRESS)

X ¢ FLOAT := 0.000_001;
Y ¢ FLOAT = 0.0;
BEGIN

START("ADDSA#*,“ADD PROGRAX, @0@ VERSION - 10_000 ADDS*);
FOR I IN 1..100 LOOP
FOR J IN 1..10 LOOP

== Y isYeX e XeXoXeXeXe XX XX

-=- The above line is not a comment in ADDSA2 (test) and
-=- ADDSA3 (pragma SUPPRESS).

Y = FLOATC(IDENT_INT(I«J)>);
END LOOP;
END LOOP;
STOP;
END ADDSA#;

--The packege INSTRUKENT {s part of the test suite. It
~-contains procedure START thst aust be invoked st the
--gtart of a test, Dbafore any of the other report
--routines are invoked. It saves the test nare and
--putputs the name and description. Procedure STOP {is
~-also in INSTRUKENT and must be invoked at the end of s
~-test. It ocutputs & measage indiceting whether the test

--as & vhole passed or fesiled, or is not applicabdle.
LA IR YN YRR NRNNS NN NN NNR R NN NN N NN NR R NN RN RN X R N NN N N & N

Fig H-3. Source code for ADDSA#

H-58

SR T Sk Sl S R £ bl Rk B o R B A A

EASCIALA S R AN s Db iy M TN T TR Y YTy vy

...... o

i
{
]
N
J
E

Normative ceategory are intended to provide e means for
detersaining the ayatem costs for a particular language
feature. They should provide a quantifieble indicetion of
the compiler’s usefulness. Within the Normative category, a
test group is placed into either the Performance or Capacity
sub-category. Performance tests collect speed and space
attributes for various Ada features while Capacity tests
will indicate the limits imposed by the compiler/RTS.

Teat groups of the Optional category may be selected by

.o

the user to represent an applications profile consisting of
the most frequently used language features. There are also
two sub-categories within the Optional category. Features
tests provide messurement of those features which are not a
required par§ of the Ade compiler. They also provide
nreasurerents of the effects of certain compiling options
referenced in Chapter 13 of the LRM. Tests of the Special
Algorithms sub-category are combinations of language
constructs that eare characteristic of synthetic benchmark
progrems. Some examples of these are Whetstone, Dhrystone,
and the Sieve of Eratosthenes.

While not actually part of the tests, the Prototype
ACEC provides some “support software™ which is designed to
pake it easier for the user to schedule compiles and
execution runs of the tests and maintain records of the test
activities. The “support software”™ architecture and
operating instructions sre contained in the User’s MNanual

for the Prototype ACEC (Hook and others, 1985).

e peaep _
I] B T T N
e e e N T e e e e e e e
W U

e
ol

WPFS

e .. e . N R
s et T) L - K R TR IR L SN STt -
PP LI IR N YO LS iy -.."n .E“'-. “n "n J'..,[\~J\‘_‘.'_‘.‘:\ 4:.‘-‘_':,‘:' PRI M

T E

..........

Analysis. The groups of programs in the Version 0
(Beta Test) of the Prototype ACEC were analyzed according to
the following criteria:

1. Was the Ada language feature tested in the

group of programs a key part of the diacusaion
of an iasue?

2. Would any information (for example, execution
tinas) gained by uasing the group of tesat
programa contribute to measurementa related to
an iassue?

The methodology wea to meke a deteraination regerding
the applicability of each group of tests to any of the
issues numbered 8-19 discussed in Chapter JIII based on these
criteria.

A description of the individual Prototype ACEC progranm
groups and comments regarding their applicability ¢to the
issues of Chapter lIl]I follows. The test program groups that
were determined not appliceble to any relevant issue were
not 4included for subsequent corpile and execution. The
results have been summarized in Appendix B for easy
reference.

The tests labeled ADDSAl, ADDSA2, and ADDSA3 are in
sub-category Performance. These tests perfora 10,000
floeting point additions. They aere the contreol, test, and
pregma SUPPRESS versions, respectively. These tests are
epplicable to Iasues 18 and 19.

The tests lebeled AKERA2 and AKERA3 ere in the Special
Algorithm sub-category. This test performs the Ackermann

algoriths. The versions are test and pragme SUPPRESS

H-60

R g e 2 P S e e e

) respectively. The test is accepted even though it is only
applicable to the some issues (18 and 19) as the ADDSAw
tests.

; LVRNAZ2, LVRNAl, LVRNB2, and LVRNBl1 are from the

» Performance sub-category. LVRNA2 asnd LVRNAl are the test and
control versions respectively and measure reference to one
local variable, non-access scalar type. LVRNBZ and LVRNB1
are also the test and control versions, respectively; but

these tests measure reference to ten local variables, non-

access scalar types. These tests evaluaste the code
efficiency of referencing locel veriables. A local variable
is defined for purposes of these tests as a variable that is
declared immediately within the given declarative region.
These tests are not applicable to sny relevant issue.

LVRAA2, LVRAAl, LVRAB2, and LVRABl1 are <from the
Performance sub-category. LVRAAZ and LVRAAl are the test and
control versions respectively and measure reference to one
local varieble, access type. LVRABZ and LVRABl1 are also the
test and control versions, respectively; but these tests
measure reference to ten local variables, access types.
These tests evaluate the code sfficiency of referencing
local variables. A local variasble is defined as above. These
tests are not applicable to any relevant issue.

BRUAAZ, BRUAA1, BRUNA2, AND BRUNAl are <from the

Ll i Sl N

Performance sub-category. These tests evaluate the code
efficiency of a reference from within a block to an uplevel

variable. An uplevel variasble is defined for purposes of

s H-61

these tests as & variable that is declared in & declarative
region that statically encloses the block. The reference is
to a variadble declared in the immediately enclosing region
(one level up). BRUAAZ and BRUAAl reference an access type
in this mode while BRUNA2 and BRUNAl reference a non-acoess
scelar type variable. These tests sre not applicable to any
relevant issue.

PRUAAZ, PRUAA1, PRUNA2, AND PRUNAl are from the
Performance sub-category. These tests evaluate the code
efficiency of a reference frox within a procedure to an
uplevel variable. An uplevel variable is defined for
purposes of these tests as & variable that is declared in a
declarative region that statically encloses the procedures.
The reference is to a veriable declared in the immediately
enclosing region (one levael up). PRUAA2 and PRUAAl reference
an access type in this nqdo while PRUNAZ2 and PRUNAl
reference & non-access scalar type variable. These tests are
not applicable to any relevant issue.

GVRAAZ2, GVRAAL1l, GVRNA2, AND GVRNAl are from the
Performance sub-category. Thesae tests evaluste the code
efficiency of referencing a global variable. A global
variable is defined for purposes of these tests as a
variable that is declared in the outermost declarative
region. GVRAA2 and GVRAAl reference an access type in this
mode while GVRNA2 and GVRNA]l reference a non-access scalar
type variable. These ¢tests are not applicable ¢to any

relevant issue.

H-62

-

A &,

l

Rl iy et

LI]

FPRAAZ, FPRAAl, FPRNAZ2, AND FPRNAl @are <from the

Performance sub-category. Thmase tests evaluate the code

efficiency of referencing s formal parameter of mode IN QUT.
FPRAA2 and FPRAAl reference an access type in this mode
while FPRNA2 and FPRNAl reference & non-access scalar type
variable. These tests are not applicable to any relevant
issue.

LRR1A2 and LRR1Al are <from the Performance &ub-
category. LRR1A2 is the test version and LRR1Al is the
control version. These tests evaluate the code efficiency of
referencing a first level component of a local record
variable. A local record variable is defined for purposes of
these tests as a variable in a record that is declared
immediately within the declarative region in which the
component is referenced. These tests are not applicable to
any relevant issue.

LRR2A2 and LRR2A1 are frox the Performance sub-
category. LRR2A2 is the test version and LRR2A1 is the
control version. These tests evaluate the code efficiency of
referencing a second level component of & local record
variable. A locsl recor& variable is defined as above. These
tests are not applicable to any relevant issue.

LRR3A2 and LRR3A1 are from the Performance sub-
category. LRR3A2 is the test version and LRR3A1 is the

control version. These tests evaluate the code efficiency of

referencing a third level component of a local record

variasble. A local record variable is defined as above. These

H-63

gty W]

PSS

-

Y ¥ ¥ %,

........

tests are not applicable to any relevant issue.

LAVRA2, LAVRAl1, LAVRB2, and LAVRB1 are from the
Performance sub-cetegory. LAVRA2 and LAVRAl are the test and
control veraiona respectively and measure reference to one
component of a local array. LAVRB2 and LAVRBl1 are also the
test and control versions, respectively; but these tests
measure ten local references. These tests evaluate the code
efficiency of referencing a component of & 1local variable
array. A local varieble arrey is defined for purposes of
these tests as an array that is declsred immediately within
the given declarative region in which the component is
referenced. These tests are not applicable to any relevant
issue.

NLOOAl, NLO7A2, and NL6SA2 are from the Capacity sub-
category. These tests evaluate the overhead for nested
loops. NLOOA1l contains O lpops. while NLO7A2 conteins 7
loops, and NL6E6SA2 contains 65 loops. These tests are not
appliceble to eny relevaent issue.

The tests labeled MULTAl, MULTA2, and MULTAS are in the
Performance sub-category. These testas perform 10,000
multiplications. There are control, teast, and pragnma
SUPPRESS versions, respectively. These teats are accepted
because of their applicability to Issues 18 and 19.

CHSSAL, CHSSA2, and CHSSA3 &are from ¢the Special
Algorithms sub-category. These tests perform a character
string search. There are control, test, and pragma SUPPRESS

versions respectively. These tests are accepted because of

H-64

[

their applicability to Issues 18 and 1S.

SIEVAl1 end SIEVA2 sre from the Special Algorithms sub-
category. These teats perform the “Sieve of Eratosthenes"
benchmark. They are not applicable to any relevant issue.

The following tests were delivered to AFWAL 18 October
1885 and are part of the Prototype ACEC. The documentation
waa changed and written information regarding the sasub-
category assignaents of the tests was deleted. This
information is evaflablo through the support saystem which
waa not used for this project.

AOCEAl, AOCEA2, AOIEAl, and AOIEA2 evaluate & code
improvement potential that results from executing a less
expensive arithmetic operation when the opportunity is
offered to replace e nmultiplication that uses a loop
pararmeter and a constent with an addition. These tests are
applicable to Issue 17.

ASSIA2, ASSIA3, ASSIA4, ASSIAS, and ASSIB2 have groups
of assignment statements and comments in various
distributions. They ere not applicable to any relevant
issue.

BALPAl eand BALPA2 evaluaste the code efficiency of o
simple loop atatement and are not applicable to any relevant
issue.

BLEMA2 checks that Dblocks can be embedded up ¢to an
arbitrary level (65). It is not epplicable to any relevant
issue.

BSRCA2 and BSRCA3 are packages that implement a generic

H-65

S L e e . . -'."."',.- ~_‘~_'-_ R I AT Vo - Tt Y. t e A . -) e ettt el Lo L - - .
W AP S el fn';"g.' '(L':L";"L.' I AT O s T e T VT L M R T NRFCVEEN

.- - - - B -~
- TP R U VAL LA R N e A St R TR S TN PR LT Ty e
PR PP Y, (T T T T AL VA S VR T R TP S SIS T A N T

M

‘4"' A A

LA

o

L T

. PR
ha s o e e

o f_f ".u o

PLAF SR

binary search function designed to allow use of an

enunerstion type for the table index. Theae teata were
included for uniforaity with other generic operations on
unconstrained arrays and sre not applicable to any relevant
issue.

C31PA2 checka that 31 parameters may be passed and is
not applicable to any relevant issue.

CAPAAl, CAPAA2, CAPABl1, and CAPAB2 evaluate the code
efficiency of a call to a procedure that haa a single formal
IN OUT parameter of an unconstrained array subtype. They are
nct appliceble to any relevant issue.

CASEA2 checks a case statement of size 256 and is not
applicable to any relevant issue.

CENTA2 and CENTB2 check enumerated types and enumerated
literals, reapectively, and are not applicable ¢to eany
relevant issue.

CSBTAl, CSBTA2, CSCTAl, CSCTA2, CSDTAl, CSDTA2, CSETA1L,
CSETA2, CSSTAl, C%STAZ, CSSTB1, CSSTB2, CSSTC1l, CSSTC2,
CSSTDY, CSSTD2, CSSTE1, and CSSTE2 evaluate the code
efficiency of various case statementa (i.e., binary,
clustered, dense, exhaustive, and aparse). They are not
applicable to any relevant issue.

DRPCA1 and DRPCA2 evaluate the efficiency of a
recursive ceall to a procedure that has no formal paraneters.
They are not applicable to any relevant issue.

F1IUAl, Fi1IUA2, FL2RAl, FL2RA2, FLPlAl, FLP1A2, FLP2Al,

and FLP2A2 evaluate the code efficiency of loop statements

H-66

A A i D T ke A R AN i e 4 gt A nid i e A A AL b ol g AR it g <

in wvarious forms. They are not applicadble to any relevant

!

issue.

FACTAl and FACTAZ determine a factoriel value using a
recursive function and are not epplicable to any relevant
issue.

FPAAAl, FPAAA2, FPAAB1, FPAAB2, FPANAl, FPANA2, FPANB1,
FPANB2, FPANC1l, FPANC2, FPAND1l, and FPAND2 evaluate the code
efficiency of a call to e procedure that has formal IN OUT
parameters of the same generic formal type. They are not
applicable to any relevant issue.

HSDRA2 4is & heespsort benchmark program end is not
applicable to any relevant issue.

IADDA1, IADDA2, IDIVAl, IDIVA2, IEXPAl, IEXPA2, IMIXA1,
IMIXA2, IMIXB1, 1IMIXB2, IMIXCi, 1INMIXC2, 1IMIXD1, IMIXDZ2,
IMIXE1, 1IMIXE2, 1IMODAl, 1IMODA2, 1IMULAl, IMULA2, IREMAl,
IREMA2, 1SUBAl, and ISUBA2 evaluate integer expressions and
are not applicable to any relevant issue.

INTDA2, INTDB2, and INTDB3 evaluaste Ada declarsation
statements and are not applicable to any relevant issue.

INTQA2 evaluetes a full integer queue and is not
appliceble to any relevant issue.

ISEQA2, NMTCOA2, PGQUA2, S0Q10A2, SQPGA2, and VPGSA2
evaluate PUT, ASSIGN, RESET, and GET sequences. They are not
applicable to any relevant issue.

LFIRAl, LFIRA2, LFSRAl, end LFSRA2 evaluate loops and
eare not applicable to asny relevant ifssue.

LOAEAl, LOAEA2, LOECAl1, LOECA2, LOFCAl, LOFCA2, LONEA1,

H=-6T

...............

o e,

AR A

LONEA2, LOSCAl, LOSCA2, LOUIAl, LOUIA2, LOUSAl, and LOUSA2
evaluate code improvement potential in loops. They are
relevant to Issue 17.

MINIA2 is a noaminal wminimum progranm with one
declaration and one assignment. It yields three statements
and five lines. It is not applicable to any relevant issue.

MTESA2 and MTISA2 evaluate an empty set of enumeretion
type and an empty set of integers, respectively. They are
not epplicable to any relevant iasue.

NPPCAl and NPPCA2 eveluate the efficiency of a call ¢to
a procedure that has no formal parameters and are not
applicable to any relevant issue.

NRPCA1l and NRPCA2 evaluate the code efficiency of &
nested recursive call to & procedure that has no forasal
parareters and are not applicable to any relevant issue.

NULLA1l eand NULLA2Z are null procedures that don‘’t have
declarations or executable stétenent. and are not applicable
to any relevant issue.

OPAEAl, OPAEA2, OPBFAl1, OPBFA2, OPCEAl1, OPCEA2, OPCFA1L,
OPCFA2, OPDSAl, OPDSA2, OPISAl, OPISA2, OPLEAl, OPLEAZ2,
OPNFAl1, OPNFA2, OPSCAl, OPSCA2, OPSEAl, and OPSEA2 evaluate
a code improvement potential that results from the reduction
of computational operations when the opportunity is offered.
Aress presented are? arithmetic elimination, boolean
folding, function cell elimination, constant folding,
distributed simplification, identity simplification, load

elimination, numeric folding, subscript calculestion

H-68

elimination, and store elimination. These tests are
applicable to Issue 17.

PIAPAZ ia & version of the PI benchmark tesat progranm
and is not appliceble to any relevant issue.

PKGEA1, PKGEA2, PKGSAl, and PKGSA2 evaluate packages
and are not applicable to any relevant issue.

PRCOA2 evaluates tasking performance using the
buffering task given es an example in Chapter 9 (9.12) of
the LRM. It is not applicable to any relevent issue.

PRPCA1 and PRPCA2 evaluate the code efficiency of a
parallel recursive call and are not appliceble to any
relevant issue.

PUZZA2 and PUZZA3 are puzzle programs and are
applicable to Issuesa 18 and 19 because PUZZA3 uses pragma
SUPPRESS.

RANDA2 returns & random integer result aeand is not
applicable to any relevant iasue.

RCDSA2 checks 400 field records and is not applicable
to any relevant issue.

RENDA1 and RENDA2 =measures the time required for a
aimple rendezvous. .Thil information is critical for
evaluating Issue 1. However, more data (such as the timing
constrainta of the time sequenced operations and the tinme
required for complex rendezvous) are required to complete
the evaluation.

SHARAZ illustretes the use of tasking to provide shared

accesa to Global variables and is not applicable to any

B-69

...

relevant iasue.

R AT K

SORTA2 4is & sort shell and is not applicable to any

relevant iasue.

- - e

SRCRAl and SRCRA2 evaluate the code efficiency of

representing a component of a composite object that has been
declered aa a record type with a representetion clause. They
are not applicable to any relevant iasue.
SRTEA1l and SRTEA2 eveluate the code efficiency of
1 slaborating an object declaration of a simple record type
that has an asaociated record representation cleuse. They
are not appliceble to any relevant issue.
X TAIPAl, TAIPA2, TAIPB1, TAIPB2, TAIPC1l, TAIPC2, TAIPD),
3 TAIPD2, TAIPEl, TAIPE2, TAIPFl, TAIPF2, TAIPGl, and TAIPG2
evaluate the effect of an IN paremeter size on task
) performance. They are not appliceble to any relevant issue.
) TAOPAl1, TAOPA2, TAOPB1, ?AOPBZ. TAOPC1, TAOPC2, TAOPD:,
TAOPD2, TAOPEl, TAOPE2, TAOPFl1l, TAOPF2, TAOPGl, and TAOPG2
evaluate the effect of an IN OUT parameter asize on task
performance. They are not applicable to any relevant issue.
TPGTA2, TPGTB2, TPGTC2, and TPGTD2 evaluate the impact

of using guards on select entries. These testa are

. applicable to Issue 9, but do not provide comprehensive
| testing of the issue.

TPITAl, TPITA2, TPITB1, TPITB2, TPITC1, TPITC2, TPITD1,

and TPITD2 evaluates the effect of idle tasks on the

performance of the executsble code. They are applicable ¢to

Issue 14.

H-T0

TPOTAZ, TPOTB2, and TPOTC2 contain entry clauses
ordered differently in each version. They are aspplicable to
Isave 11.

TPSTA2 and TPSTB2 evaluate the effect the number of
select choices haa on performance. They are applicable to
Issue 8.

TPTCA2, TPTCB2, TPTCC2, TPTCD2, TPUTA2, TPUTB2, TPUTCZ2,
and TPUTDZ evaluate the effect of “chains®” of tasks. Each
chain task, within fach cycle of the loop, calls an entry in
the next task 1n.a chain of tasks. They are not eapplicable
to any relevant issue. i

TPUTE2 evaluates whether a task gets starved and is
applicable to Issue 12.

UAPAAl, UAPAA2, UAPAB1, and UAPABR2 evaluste the code
efficiency of a call to & procedure that hes a single foraal
IN OUT type parameter of an unconstreained arrasay. They are
not applicable to any relevant issue.

VFADAl, VFADA2, VIADAl, &and VIADA2 measure the time
required to add elements of vectors and are not appliceable
to any relevant issue.

WHETA2 and WHETA3 are the Whetstone benchmark test and
are applicable ¢to Iasasues 18 and 19 because of the pragma
SUPPRESS.

WHLPAl and WHLPAR2 evaluate the code efficiency of a
loop statement using the "while” iteration consatruct. They

are not epplicable to any relevant issue.

H-T1

I I
T Y.

NOTE: A summary of the results of the ACEC analysis is
contained in Appendix B.

Evalvetjon. Evaluating the performance efficiency

of Ada coxpileras is not a trivial tesk. Previous studiea in
this &areea have been oriented to quantitative perforsance
testing relying on epproaches proven useful for evaluation
of other language compilers. These approaches included
writing a amall set of well-established benchmark programs,
writing representative application programs, and writing a
synthetic benchmark in Ada and other HOL then comparing the
resulting compilation and execution times. All three
approaches vyielded incomplete data. “The quantitative
measures are not refined to a level of detail at which
remedial action might be suggested to the compiler
implementor or user so that iaproved results might be
obtained” (Basaman and othera, 1984). The key requirementa
for evaluating the perforsance efficiency of the code
generated by an Ade compiler are:

1. To provide quantitative data on overall
performance efficiency for a particular
application domein;

To provide quantitative data on perforamance
efficiency thet promotes an informed
interpretation of the above data;

To provide a qualitative assessment of the code
generated by the compiler with respect to its
immediate and future use; and

To counteract any apecific effectas or
interactions, not explicitly required, that may

invalidete an evaluation of code efficiency.

(Bassman and others, 1984).

CRACE AN AN A i i el i St e At A ek ek & v et ol g ien o

One major problem in collecting an ell-inclusive Ads

g o A & 3

teat suite is thet the composition of the test sujite is
still & matter of opinion in the areas of content,

objectives, and substance. A related example of this problen

is the discovery by at lesat one compiler implementor that,
even though their Ada compiler was validated using tests of
the ACVC, it still contained many software errors (Bowles
and Olsson-Tapp, 1985).

The criterie used by IDA for including tests in the
Prototype ACEC is subjective as is the list of key
requirements for evaluating the performance efficiency of
Ada compilers used by Besaman and his aeasaociates. An
interested party could develop different criteris or
requirements more suited to the domain with which he or she
is familiar. Even soc, the development and distribution of a
common test suite is important.

The Prototype ACEC pfovides e vealuable first step
towards meeting these requirements with respect to the real-
time avionics environment. Of the testable issues, only
those numbered 10, 13, 15, and 16 do not have applicable
tests in the Prototype ACEC. It is encouraging that the
reraining eight testeble issues are addressed by tests of
the Prototype ACEC, especially since the initial thrust of

the Prototype ACEC was aimed at establishing a suite of

tests that address the moat common general asreas of concern.
However, the purpose of thias paper is to focus attention on

issues of & apecific domain in order thst tests relevant to

H-T3

v TV WOTRET W W T A e

- R Ny Ty wry~w

..................

all of the issuves become available to the domain. It ia the

author’s view that such tests must be developed or obtained

W and included in future versions of the ACEC.
é The support software that accompanied the Prototype
ACEC was not used in this project so it was not evaluated. .
F The test harnesses provided in the User’s Manueal were used
; on both ¢the VAX 11/780 and the Date General and gresatly
. fecilitated compiling, executing, and timing the test
pPrograms.

DR R I]

Other Test Programs

i

Another mejor probler in collecting an all-inclusive

Ada test suite 4is the lack of appropriate, quality,

-‘l l‘l

adaptable compiler/RTS tests available to the Ade community.
i: In fact, one company recently sponsored a contest feeturing
K. cash rewards and publicstion as prizes for test programs
that could be uased in its compiler test suite. The contest
called for "A suite of smallish Ada programs chosen to
maximnize the discovery of bugs in Ade compilera™ (Bowles and
Olsson-Tapp, 198%5).

One reason for this problem is that some developed
tesats are considered to be proprietary information.
Accordingly, if a company that intends to bid on Ada
projects develops tests related to crucial issues, that)
company is usually not willing to release those tests to the
v public. This is Dbecause releasing tests could give the

company’as competitors an unfair competitive advantage Dby

H-Th

T T YT T MT TR

'
'
f
.
.
0
.
i
o
-

having ¢the tests. Another reason is the difficulty of
teating sesome o©of the Ada langusge festures themselves,
especially in the concurrent procesasing area. The difficulty
arises Dbecause of the complexity of the language. Ada

expresses & greater range of concepts than moat previoue

- languages (e.g., tasks, generics, overloading, packages,
representation specifications, and exceptions). Tesating of
these features is even more difficult in the real-time i

avionice environment saince software for this environment

rust setisfy real-time requirements and is often composed of -1

sultiple concurrent tasks. In addition, the softwvare is
usually developed on a host system providing progran
development services and then moved to the target machine
which is normally dissizmiler to the host machine (Teylor and
Standish, 1984:119).

In spite of the previously mentioned obstacles, there
are tests of the Ada language that can be obtained <from
public sources. Some o0f thease teasts were developed by
private industry, others by universities, end still others
by or <£for government sponsored projects. Five of these
sources are presented éolow.

Sources of Public Domain Ada Tests. The yearly Ada

* Fair is sponsored by Los Angeles AdaTEC (now SIGAda). At the

1984 Ada Feir, a suite of testa selected by L. A. AdaTEC was

made availadble ¢to intereated vendora. Thesae teats, and

othera that heve been added aince, are available on the

ARPAnet by logging d4into EV-INFORMATION at ECLB (with a

T T ——————— AN A N A I A I S A A e a e A A Y ANk G it Sies Dl Mhech in Jhiet Ahaciba i he A 20 e Sie Ste Jite S Jla B o g}

b

pasaword of EV to access the EV information area) and
entering “HELP ADA-FAIR-PROGRANMNS-85". A help nmenu is
available in this area. The programs mey be downloasded for
use without special passworda. An alternative way to receive
the teats is vie mail over usenet. This cen be arranged by &
contacting Ed Colbert at "trwrb!trweppt!colbert™.
Other tests that were developed by SRI ere available ;
through the ARPAnet EV-INFORMATION. They can be accessed by
entering "HELP TESTS-SRI®. -
As mentioned previously, the primary purpose of the
ACVC is for validation testing of proposed compilers. While
the ACVC is not intended to be &8 comprehensive evaluation

test suite, asome of the tests could be used or slightly

‘A'. 'v’t—_- .,

modified to address specific issues. The office that
controls the ACVC and handles inquiries regsrding it is
ASD/SIOL, Wright-Patterson AFB, OH 45433.

A fourth source of tests is from Telesoft. The suite of
tests gathered from their recent contest is available to

universities for a handling fee of £$50.00, and to other

o J0 R ENE IR

busineases for & handling fee of &500.00. The contest
coordinator and contact regarding the test auite is Kani

Olsson-Tapp of Telesoft in Feirborn, Ohio (Bowles and

[oncl .'o

Olsson-Tepp, 1985).
The lest source of possibly applicable tests presented
in this work is textbooka. Softwere Engineering With Ada by

Booch, Ada_for Programmers by Olsen and Whitehill, and Ade,

en__Advanced Introduction by Gehani all contain excellent

IAAARNY

H-76

L I R P o N T o S S L WL S T i N 0 T S PN
.:._. [] .".," .*: LS AR . -

. - - ™ . T . -‘-‘-.._1‘.-.-..‘- - . . .-‘-'- '-.-. ‘. « " T G A T L
"‘. ', .-\,"o I..('- K AT A YR e el SRRCRERTE AR FREANN,

-

o 0 04 e e o

R4 &

...........

exsmples of programs thet could be used to test certain Ada
constructs.

licable Tests From Other Sources. The fol{owing
tests were subjectively determined to be applicable to one
or wmore of the testable issues listed in Chapter I1IlI. The
applicability of the test is discussed, and reference to the
location of the source code is made. Appendix C contains
the source code of several of the tests. Source code for
other testa that efo readily ayeilablc from one of the five
sources just listed is referenced but not duplicated.

All of the SRI tests listed below have been modified to
be compatible with the Prototype ACEC support system and are
included in it. Therefore, even though they are described
here, the SRl tests were not included in the actual compile
and execution phase of the project.

The group of SRI developed tests comprised of SELECT2,
SELECT2E, SELECT20, AND SELECT2OE are designed to determine
if the number of select choices affects performence. This is
the concern of Jasue 8. In these tests, one task calls a
single entry of a second task 1000 times, but the second
task has & select statement encompassing some number of
alternatives. The test was programmed for 2 and 20
alternetives with the deaired entry being the first one in
the select list (SELECT2 and SELECT20). It was then repeated
with the desired entry being at the end of the aelect list
(SELECT2E and SELECT20E). The ACEC tests TPSTA2 and TPSTB2

are based on these tests.

H-TT

= a e SRR

>~

The results of SRI tests GUARD2, GUARD2E, GUARD20,
GUARD20OE, GUARD20T, and GUARD2OET, when compared to the
reaultas of the tests in the previous parggraph, measure the
impact of using guards on select entries. The guards were
set in various patterns of true and false. Thes; testas are
applicable to lIssue 9, but do not provide comprehensive
testing of that issue. Further tests are required ¢to
adequately test Issue S. The ACEC tests TPGTA2, TPGTB2,
TPGTC2, and TPGTD2 are based on these tests.

The SRI teats MORETASKS, MORETASKS1, MORESELCT, and
MORESELCTR eare applicable ¢to Issre 10. In the progras
MORETASKS, @& master task cells each of 20 slave tasks, each
of which contains a single entry. In MORETASKS1l, each task
again hes a single entry, but it is embedded in a select
stetement ¢to enable a comparison with ¢the next test,
MORESELCT. 1In this program, & master task calls each of the
20 entries in a single slave task, and the slave task has
the 20 entries embedded in a large select statement. 1In the
last program, MORESELCTR, the 20 entries are listed opposite
from the order they are called by the maater task.

The group of SRI teats comprised of ORDER31l, ORDER31R,
ORDER32, and ORDER100 are applicable to Issue 11. These
tests are modifications of the MORETASKS progream desacribed
above and contain an increased number of entry clauses with
the order juggled in the different versions. The ACEC tests
TPOTA2, TPOTB2, and TPOTC2 are based on these tests.

SCHEDTEST 4is an SRI test program in which a alave taak

with &a two entry select statement is used independently by
three other tasks. The test is run until the slave has been
A called 1000 times. Two of the tasks call the firat entry,
“ and the third task calls the second alave entry. Each task
* and the slave have print statements that report which taak
fr is running. The order and relestive frequency these printouts
A . appear help determine whether any of the.teska are starved
or called more often then others. This test is applicable to
Issue 12 and forms the ACEC test TPUTE2.
The objective of the program TEST_DEADLOCK is to
determine system behavicr concerning timeouts and deadlocks.
The approach used was to create two tasks which call each

other for entries 80 as to create a deadlock situation and

.‘.\‘.'.'-'

establiah two cases. The first cese aseta timeouts such that
- the deadlock is relieved after the timeout period. The
second case does not have a timeout option thereby making
deadlock inevitable. A time log of when entries are called

and accepted in both tasks is provided to allow tracking of

F S MO g

the timeouts and the eventual deadlock condition. This
program is applicable to Issue 13, although it does not
o provide a comprehensive test of the issue. The source code
o of TEST_DEADLOCK and the package HEADER which is wused by
. TEST_DEADLOCK are listed in Appendix C (Ruane and others,
1985: 68-72).

The SRI teat programs IDLE1l, IDLES, IDLE10, and IDLE20
x contain & "chain” of two tasks. It is called & chain because

each chein task, within the cycle of the loop, calls an

ettt T

H-T9

¥l

g Y A

entry 4in the next task in the chain. The called entry

contains & null statement and returns, and the task then
waits to be called by & snother tesk at & similar entry of
its own. This chain of length two was cycled 10,000 times.
Before the cycles are started, the number of idle taskse
associated with the program’s name are called at an ™"init*™
entry. They eare left waiting at a “never” entry which is
never called. This group of tests is applicable to Issue 14.
The ACEC tests TPITAl, TPITA2, TPITB1, TPITB2, TPITC1,
TPITC2, TPITDl, and TPITD2 are based on these tests.

LIDSAl and LIDSA2 were adapted from the AINS Interim
Technical Report to address lssue 16. These tests attempt to
declare an array which is too long to fit within the add;ens
space boundary. LIDSAl forces the compiler/RTS to deal with
the problem while LIDSA2 programmaetically handles the
context awitch. A comparison of the execution times of the
programs should 4indicate the cost in tise for the
compiler/RTS’a solution to the problem of large indivisible
date structures.

EXCEP2, which addresses Issue 15, is & modified version
of the Prototype ACEC test ADDSA2. An EXCEPTION statement
which is never executed was added as the leaat statement in
the program. A comperison of the execution times of the two
programss (a aufficient number of samples) should indicate

the cost in time, if any, for the presence of the EXCEPTION

code.

TATHTN4ATA T aRMEMT e M TATRTEATET T TRTETW

SR S e R R g Saehic il et 8 v 01 it it Ak S D eiiadinal Ahinad MR AN S itk aik e o B aglheh | "W-W""."m
PR DR gl ik . Y A :

§UII.£!

Tests that ere availasble as part of the Prototype ACEC
or from other public domain sources were examined ¢to
determine applicebility ¢to previoualy discussed issues of
concern regarding the real-time avionics environment. Ten of
the twelve issues deened teatable were addressed by readily
available tests, although in some cases the tests did not
provide comprehensive evaluation of the issue. Tests for the
other two testable issues were easily generated.

The Prototype ACEC provides an excellent beginning for
the task of assembling a common suite of testa for Ada
compiler/RTS evaluation. It needs to be expanded to include
more tests dedicated to evaluating the major concerns of
the real-time avionics environment. Other sources of tests
must continually be examined with this purpose in mind.

The tests that were determined to be applicable in the
above discussion were compiled and executed using ¢two
different Ada compilers and zormputers. The reasults are

presented in the next chapter.

%
:
_.!

I S O O O T O T N N S R D SO

o
.t te O

1]

»
¢

. WOWOTON b

V. Compiletion end Execution Results

Eech test progrem that wes identified in Chapter IV aa
eppliciblo to at least one of the i1ssues numbered 8-19
identified in Chapter Il1] was compiled uasing two different
Ade compilers. These were the DEC VAX compiler and the
ROLM/Data General Ada Developrent Environment (ADED
compiler. The DEC compiler is hosted on and targeted to the
VAX 11/780 computer at AFWAL. The ROLM/Data General ADE
compiler is hosted on and tergeted to the Data General
computer at the Aeronauticel Systems Division, Information
Systems and Technology Center, Wright-Patterson AFB, Ohio.

Unfortunately, neither of these compilers are tergeted
to an embedded system. They were used because an Ada
compiler targeted to an embedded computer was not availeble
in a suitaeble stage of implementation for use by this
project. Therefore, the resuitl obtained from compiling and
executing the test programs on these compilers establish a
baseline for comparison when these tests ere compiled and
executed on an appropriate host/target combination 4in the

future.

Methodolegy

Each compiler heaa its own method of interacting with
the user and the hosat operating system. The DEC VAX compiler
on the VAX 11/780 interacts with the VMS operating systenm
and requires some preliminary steps to be taken prior teo

using 4it. The firast step is to enter ACS CREATE LIBRARY

H-82

bl et A g A e A AR A i et Al S L A P AN

b AT A e Tt e L e e S T e e e T I AT S AL
b e N A A " N - : o OIS . .

<

Al ok ol ok SRR

A R T S D g S A A Bt R s e Sl A b i e i ¢ e 4 i idhen 2
B E N LA RN . IR AN It ‘e d e b phe i Al aadie ale 2. ot Uy B S M A%e B e 2
" aT L LN WY AR R he A8 S0, S\ A ¥

§ {.ADALIB). This creates the Ada library in one’s directory.
This library c¢ontains the atandard Ada packages and will
. hold all newly compiled Ada programs, packages, and
. procedures. Once this step has been completed, it is not
v repeated because the library remeins in the directory. Next,
‘3 one has to enter ACS SET LIBRARY (.ADALIB]. This tells the
Ada compiler which Ade library to use for compiling. After
creating the asource code for an Ada program, the compiler is
invoked by entering ADA/(option} FILE_NAME. If the program
.
successfully compiles, entering ACS LINK PROGRAM_NAME
creates &n executable file, for example, PROGRAM_NAME.EXE.
The VMS command RUN PROGRAM_NAME will execute the progranm.
: The ROLM/Data General ADE compiler on the Data Genersl
computer interacts with the 0S/VS operating esystem and
operates under the control of the Mein Compiler Control
(MCC>. The MNMCC verifies the correctneas of the command to
execute the compiler, initializes functions, verifies the
i existence of specified objects, calla the front end and back
. end modules of the compiler, and generstes 8 history and
acript file. The history file ia & record of who performed
the compile, why, and when. The compiler consiats of the
. front end and back end modules. The front end checks the
. correctness of the program, while the back end generates
S optimized binary code for the target processor. After
S entering the ADE, compile of source code is accomplished by
entering ADA FILE_NAME. When the program ia successfully

compiled, entering ADALINK PROGRAM_NAME creates an

H-83

t

IR L o T TR e Coe . -
‘J-!l ", Nk $\\. %) Te e AN SR N e L et T T e S e e e e e e e et et e
R R R R it I IR S N Ml i Y T VT WA T I S e

executable file, for example PROGRAM_NAME.EXE.

The Prototype ACEC User’s Manusl contains & “test
harness” that grestly faciliteted compilation, execution,
and statistic collection on both machines. The test harneas
for use on the VAX 11/780 was modified to omit collecting
execution time and is shown in Appendix D. In the author’s
opinion, execution time does not enhance evaluation of the
prograem. CPU ¢time provides the true cost in time of the
program execution and is not affected by other prograzse
executing along with the program of interest. The test
harneas for the Date General was also modified and is shown
in Appendix E.

A summpary of the compilation times from both compilers
is conteined in Appendix F. The CPU time and object code
size figures reported for the Data General are not valid.
They were obtained by using the test harneas shown in
Attachment D. For some undetermined reason, the difference
in beginning CPU time and ending CPU time, which is supposed
to Dbe the combined compile and link time (in seconds and
hundredthas of seconda), and the reported object code Qize
(in page sections) both decrease with each program. A sample
of the file HARNESS_OUT, which contained the compilation
statistics, is shown 4in Appendix G. Because of the
questionable Data General statistica, a valid comparison of
the two compiler/RTSs is not possible. Only the VAX 11/780
times should be used for comparison with results from other

compiler/RTSs.

H-8L

The execution times from the two machines are shown in
Appendix H. They may be validly compared since the times for
the Data General were gathered from the INSTR.DAT £ile
inastead of the HARNESS.OUT file of the herness. Times in
this file were obteined by using e package called CPU_CLOCK
which was generated especially for the Data General by IDA.
Therefore, comparing the execution times is meaningful.
Results

The DEC VAX c?npiler did not allow the pragma SUPPRESS
and ignored it during compilation of those tests that used
it. This prohibited evaluation of the concerns stated in
Isasues 18 and 19. Two testa, OPBFAl and OPBFA2, had an error
during compiletion which prevented object code generation
for them. The statement "pragma main;” was not necessary in
the tests that were compiled with the DEC VAX compiler but
was required by the compiler as the last staterent when the
tests were compiled with the ROLM/Date General ADE compiler.

In general, the execution tirmes from the Data Generel
were faster except when tasking was used. For those prograss
that used taska, a significant reversal was evident with the
VAX 11/780 times being considerably faster. Thia leads to
the conclusion that if a particular domain has many
applications that use teasaking, perhapa the DEC VAX
compliler/RTS would be the better syatem to use. Otherwvise,
the ROLM/Data Generel would be better.

Although the compile and execution runs were not

gathered under strict scientific conditions, and used newly

avar e d-a. Al

- -

N
.
Y

developed procedures, they provide a first cut at measuring
compiler/RTS syastems. By refining the procedures to produce
accurate and statistically velid results along with
conducting the sample runs in &a controlled environment
(perhaps a dedicated machine), an interested party would be
able to make a valid evaluation of different Ada compilers
end RTSs from the results of the teasts. That is the purpose
of the ACEC, and the Prototype version evaluated in this

project is a valuable contribution toward echieving that

goal.

.................

B TaTuw »"%w 47T T RIE TRV EUERTA
..... L 5 [Y S A TIr vy ‘!‘JP."‘."":J

k|

4

VI. Conclusions and Recommendations

The purpose of this thesis wea to first examine ¢the
real-time avionics environment and identify Ada related
issues of that environment, and then to determine if there
are adeguate tests available for evaluation of Ade

R compilers/RTS with respect to those issues. AFWAL, ecting in
its capacity as the lead orgenization of ¢the DoD for
evaluation and validation, is trying to establish a common
test suite of programs called the ACEC to enhance Ade
compiler/RTS eveluation. The first increment of this ACEC,
called the Prototype ACEC, was the logical place to begin
searching for tests that addressed the issues. An
exanination of test programs available from other sources
followed. Unfortunately, an Ada compiler to MIL-STD-1750A
machine waa not available at the time of thia thesis, sc the
tests that were determined to be applicable to eny of the
avionics environment issues were compiled and executed on
other compilers. The results cen serve as & baseline for
comparison if the tests are used on a MIL-STD-175S0A compiler

in the future.

Although the project did not accomplish all of the
original goals, some important conclusjiona can be drawn from
the experience. Recommendations are slso made where areas of
future study would be beneficial, either as a continuation
of this project, or in other areass that were identified

during the project.

E
\
3
i

H-87

T AR .

et et T T e e - - :
ala Lo o g e s PRV R VY P R P T v P T A A e R AT e

The Environment

The real-time avionics environment as desacribed in
Chapter 1II establishes the basis for identifying issues of
concern regarding the use of Adas. Implementors of Adas
conpilera/RTSa es well as uaers are concerned about the
ability of Ade to asupport their requirements within ¢the
constraints of the environment. The Ada constructs examined
in the chapter are those most often associasted with causing
implementors of Ada compiler/RTSs extreme difficulty. The
present lack of any validated Ada/MIL-STD-1750A run-time
model is a testament to the difficulty of implementing the
nore complex Ada constructs. It seems unlikely that either
the MIL-STD-1750A architecture or the current set of Ada
language features will change in the near future. Therefore,
the developers and implementors of Ada compilers/RTSs must
find an efficient, effective method of implementing the full
pover of Ade on that architecture. This calls for further
research in at least _two areas. Firat, those iasues
identified in the Estes report should be examined 4in more
detail with the purpose of solving the inconaistancies of
the MIL-STD-1750A and the MIL-STD-1815A (Estes, 19835a).
Second, research that evalustes other architectures
purperting to be deaigned especially to support Ada should
be accomplished with the purpose of finding either
enhancemnents to or eventual replecements for the MIL-STD-
1750A.

This project did not examine the use of distributed

H-88

.....

PaL PAPEPLI A - :
A PR I A S e DL P SN LRV Tt
SV DEIN IP APIANE SR IP AP RP AP TP ST 38 DT S RIS SRR O,

hardvare. The distributed processing environment presents
different, perhaps even more difficult challenges for Ada
implementoras. Further research in this complex area is

certainly called for and should be supported.

The Issues

The euthor makes no cleim that the aset of iasues
identified in Chapter III encompass the entire set of
concerns of the real-time avionice environment. The iasues
were compiled after research and through interviews with
perscnnel familier with the environment. It is important,
however, that the set of issues be enhanced and =asade
available to interested parties. Without these issues, it ie
possible that the areass of concern could be overlooked by
implementors end developers of Ada compilers/RTSa or by

those responsible for evaluating propoased Ada compilers.

Anelysis of Aveileble Tests

Issues 1-7. The first seven issues are those that

were subjectively determined to be not suitable for
empirical testing. Although these issues are of great
concern to the reei-tine avionics environment, the
development of progrems that provide users with adeguate
tests for evaluastion of theae issues is certainly more than
e triviel task. An example of & project that is concerned
with testing and validation of tasking constructs is the
Arcturus project of Taylor and Standish. They are using en

integrated applicetion of a static analysis technique, a
H-89

e Tet Tttt P R R e . e
L T T R R I
. et . .t

s
=

A

4
!
1
!
1
4
1
¢
A
&
]
1
]
q
i

l‘ 2t l.

X R

~,.._‘
AA NIRRT

Py

X T ey
SOCRA If

-

"

3 |

L W B

ot

FONDARN

v

.

";'4.._'_.\;.
’ e
AP
Bdod oo

[l' l'll

.
.
-
‘s
-
O
.

.
.
i
Al
1
i

€ 2 a8 e«
.

P

o e -
et
ot et
[
a

PSR
[

L B
.

. ..-.;."l . :

A AV At VLN T R T e e T e RV LR LS P .'-‘,-.'~_~‘“-,- HEIEARC A A A A A e e

dynaric analyaia technique, and an interactive debugger in
their attempt to assure the relisbility of multi-tesking Ada
software developed in a hoast-target environment (Taylor and
: Standish, 1984:119). However, even as those authors propose
their methodology as essential for evaluating nulti-tusking

acoftware, they also state: "Other analyais aids are surely

XY Y.

necessary too. No cleim is made that the techniques
presented are sufficient” (Teylor and Staendish, 1984:119).

The difficulty of developing adequate testa for theae

a6 0N

lssues was crested by Ada’s complexity - a by-product of its

flexibility. At the present time, there are no machinea

designed exclusively for Ada. MNany earchitectures muat be

N N

enhanced with new hardware or instruction setsa simply ¢to

minimally adhere to Ade constructa. Often, a aspace or time

«'ata'ats

penalty, or both, must be paid. Since Ada was developed .

primarily to support embedded software applications which
commonly use the more advanced Ada constructs, the lack of
adequate evaluation tests is unacceptable. Therefore, it is

of the utmost importance that research be continued until a

comprehensive test suite is available for developers,

implementors, and prospective users of Ada compilers/RTSa. .

N

jssves 8-19. These tvelve isaues were determined to
) be suitable for empirical testing. Programs that provide at

least some testing for each of these issues were found and

are readily accessible. The Prototype ACEC addresses all but

two of these issues in its present form. Teats for these

P

issues were obtained fror other asocurcea, however. This leads

H-90

D, e B SRaiL EE BE A S T
Foret et W7 LR G A TR RIS T

to the recommendation that the developers of the ACEC .
attempt to identify specific issues of importance to many
epplicationa and include programs to test those isaues in !
the expanded test suite. Since some o0f the iasues reported

in this project apply to other applicetions, all of the

issueas nead to be thoroughly addressed by test prograss.

Compilation and Execution i

An original goal was to compile and execute eall

applicable test prbgrame on an Ada/MIL-STD-1750A compiler.

As the project progressed, it became apparent that the
compiler would not be delivered in time. However, two
valideted compilers were chosen to use for test compilation
and execution in order to establish & bsaeline of compile
and execution times asgsinst which the MIL-STD-1750A compiler
can be compared in the future. This ahould be accomplished
at the earliest possible time.

Any testing ahould be supervised by a person

knowledgeable about the operating system or RTS of the

mrachine being evaluated in order to ensure the methoda used
to collect time and apace statistica are accurate. The
environment should be dedicated to the testing without
having other proceases executing on the machine to provide

»ore accureate statistics.

l.‘
g
g

.
3

.
3
]
n

\
3
Q
X
.
"

,
.
.
.

General
The subject of evalustion testing is debated by
scholars, researchers, and within ¢the industry. The
! H-91

I.-.’..~.‘~.'.-.
EEL AT A MRS WF AT NP S U S AP Iy

......

definitionas of completeness, correctneas, and applicability

of evalustion testing are controversial. However, the
evaluetion of computer programs is necessary and desirable.
The Prototype ACEC is the correct firat step towards
providing a common, useful teast suite for evalueating Ada
corpilera and RTSs. It is not, however, as comprehensive as
it ahould be. The Ade community must support the effort to
enhance the ACEC by developing evaluation tests that might
be aspecific to their applicationa and by contributing then
to the ACEC. Only in this way will the evolving ACEC improve
its @applicability to ell areas and further benefit of Ade
users everywhere. As previously mentioned, developing tests
for aome of the areas of concern is not a trivial task.
Support for continued resesarch in this earea nust be

provided.

H-92

s ' et -
L)

™

N

AT

o Y
-

[O N At A R A e A AL AR A EA L A S i SN M A e i el AN et aiod o fab o i mos B Ao syt SIS R,
AN AR A SN A, k P Aa . Bat S b ot Ay, w TRLUWUW Lwy
<

Bibliography

Armitage, James W. and Jemos V. Chelini. "Ada Software on
Dis‘.ributed Tergets: A Survey of Approaches,” Ade letters,
4: 32-37 (January/February 1985).

Avionics Laboretory. da nformation Manegerment System
. (AIMS). Interim Technical Report. Boeing Military Airpleane

Company, Wichita, KS, 14 November 1984.

Avionics Laboratory. Advanced Avionice Computer
Architecture. Volume 1 - Executive Summary. Final Report for
Period May 1980 - November 1984. Lawrence Greenspan and
Ronald Singletary, Seanders Associestes, Inc., Nashua, New
Hampshire, May 1985.

Baker, T. P. end G. A. Riccardi. *“Ada Tasking: Fron
Semantics to Efficient Implementation,® l1EEE Software, 2,:
34-46 (March 1885).

Barnes, J.G.P. Progremming In Ada. London: Addison-Wealey
Publiashing Company, 1982.

Beasaman, M.J. end othera. ™"Evaluating the Perforsance

Efficiency of Ade Compilers,"” Proceedings of the Weshington
Ads Symposium, 1985.

Ben-Ari, M. Principles of Concurrent Proaramrming. Englewocod
Cliffse, New Jersey: Prentice/Hall International, 1982.

Biswes, Prassenjit. "A Capability Architecture for Ada,"™ IEEE
1984 ADA Applicetions And Environments Conference, 1984: 23-
32.

Booch, Gredy. Softwere Engineering With Ada. Menlo Park,
California: The Benjamin/Cummings Publishing Company, 1983.

Bowles, Ken, Chairmen, and XKami Olsson-Tepp, Contest
Coordinator, Telesoft. *Challenge Contest: An Invitetion,”™
Public letter, 1 May 1985. ‘

Cornhill, Dennis. “Four Approaches to Partitioning Ads
Programs for Execution on Distributed Targets,*” JEEE 1984
ADA Applications And Environments Conference, 1984: 153-162.

Department of Defense. Requirements for Ada Programming
Support Environments: STONEMAN. Waahington, D. C., February
1980.

Depertment of Defense. Military Standard: Ade Programming
Language - ANSI/MIL-STD-181%5A. Washington, D. C., January

1983.
H-93
Qmaaxaxﬁaxﬁaiﬁx;nxbdx:dmaf15~;¢v».vnp.-a:u«fuf;.'“ N T e e et e e e

e, S
-)

Estes, Nelson. *"Ade and 1750A: The Challenges of Two
Standards,” Report. Department of the Air Force, Joint
ASD(AFSC) =~ AFALC Deputy for Avionics Control, Wright-
Patterson Air Force Base, Ohio 45433-6503, 3 July 198S5.

Estes, Nelaon, Embedded Computer Standardization Progran
Office, Deputy for Avionics Control. Personal interview.
AFALC-ASD/AXTS, Wright-Patterson AFB, OH, 23 August 1985.

Fogle, Gary, Avionics Applicetion Programmer. Personal
interview. AFWAL/AAA-T, Wright-Patterson AFB, OH, 16 August
1985.

Helmbold, David and David Luckham. *Debugging Ada Tasking
Programe,"” IEEE 1984 ADA Applicationse And Environments
Conference, 1984: 96-105.

Hook, Audrey A., Institute for Defense Analyses, and G. A.
Riccardi, Floride State University. *“The Prototype Ada
Compiler Evaluation Ceapability (ACEC)". Briefing to the
Evaluation and Validation Conference, held at Wright-
Patterson AFRB, OH, 4 September 1985.

Hook, Audrey A. &and othera. *Draft User’s Manuel for the
Prototype Ada Compiler Evelustion Capability (ACEC) Version
O (BETA TEST)>*". Prepared for the Evalustion and Vealidation
(E & V) Teawm, Ada Joint Program Office (AJPO) by the
Institute for Defense Analyses. August 1985.

Kean, Elizabeth. Evealustion Criteris For Ade Compilers.
Pamphlet. Rome Air Development Center, 11 September 1984.

Kramer, John F. and Catherine W. McDonald. Ada Joint Progrem

ODffice Objectives and Progress - Through 1983. Contract MDA R
903 84 C 0031. Institute for Defense Analyses, Alexandria, ﬂ
VA, September 1984 (AD-A149 436). .
Leathrum, J. F. *Design of an Ada Run-time Sysater,” IEEEFE i
1984 ADA Applicetions And Environments Conference, 1984: 4- '
13. ' X
Lindquist, Timothy E. &end Richard C. Joyce. ™"Ada Teask

Synchronization 4in a DMultiprocessor System with Shared

Memory,” Journal of Pascal, Ada & Module-2, 4: 9S-1S
(January/February 1985).

Yellichamp, Duncan A. "Digitel Computing eand Real-Time
Digital Computing,*” Real-Time Computing, edited by Duncan A.
Yellichamp. Van Nostrand Reinhold Company, New York, 1983.

N
-

LY
‘3

Olsen, Eric W. and Stephen B. Whitehill. Ada for
Programmers. Reston, Virginia: Reston Publishing Compeny,
Inc., 1983.

H-9k

N
o
"
5‘.
l..
A
C
R

N

i
-

LV P O R I S N S RS It

P A A

s

|y i

 Aa AN

L R

=" oo el

. A Rl it il AR B I s B B oY T A A Sl g i o - S 20

Phillips, Stephen P. and Peter R. Stevenson. “The Role of
Ades in Real Time Embedded Applicetions," Ade letters, 3: 95-
111 (January/February 1984).

Riccardi, 6. A., &and T. P. Baker. "A Runtime Supervisor to
Support Ada Task Activation, Execution, and Termination
(Preliminary Report),” EE 1984 ADA Applications and
Environments Conference, 1984: 14-22.

Ruane, n. F., and others. Ade Run-time Environment
Characterization for JAMPS. Technical Report. Mitre,

Bedford, Massachusetts, March 1985.

Taylor, Richard N., and Thomas A. Standish. *Steps to an
Advanced Adea Programming Environment," Proceedings of the

7th International Conference on Softwere Engineering, March
26-29, 1984: 117-125.

Weatherly, Richard M. "A Message-Based Kernal to Support Adea

Tasking,” IEEE 1984 ADA_Applications And Environments
Conference, 1984: 136-144.

H-95

v

DI - Sl S 4,

E]
2.

LIS P

1]

A A

Srly A

[N Yl Sy My)

APPENDIX A

ist of Issues

Issues Not Suitable for Empiricel Testing

1. Is the overhead associated with an effective rendezvous
efficient to the point that the time segquenced operations
are not disrupted?

2. How doea the RTS syatem desl with the interaction between
tesks and lexical acopes?

3. *1f =multiprocessing is supported by the implementation,
are Ada tasks mapped to & single underlying processor, or is
each taak mapped to a separate processor?” (Kean, 1984:7)

4. Are shared variables protected by the rendezvous?

S. What impact on performance does run-time constraint
checking have?

6. How is dynemic type checking of parameters handled and
what impact on performance does it have?

7. What is the range of typicel context switching timeas?
ssyesgs Sujtable for Empirical Testin
8. "Does the number of select choices effect performance?”

(Kean, 1984:7)

9. "How does using select alternatives affect the perform-
ance of the executable code?” (Kean, 1984:7)

10. "Is it better to have meny small tasks with single entry
choicea or a few large tasks with many select choices?”
(Kean, 1984:7)

11, “Does the ordering of entry clauses in a SELECT impact
execution speed?” (Kean, 1984:7)

12. "Can the Ada scheduler starve a task?"” (Kean, 1984:7)

13. Are there any aida in the compiler or RTS to asaiat the
programmer find deedness errors in teaking programs?

14. Do idle tasks impact the perfornaﬂce of the executable
code?” (Kean, 1984:7)

H-96

Issues (Con’t)

15. How much overhead in execution time does an exception
take if it is never invoked?

16. Does the compiler effectively desl with indivisible dates i
‘ structures exceeding memory boundariesa? -

17. What is the effect of using each of the following three
options: OPTIMIZE = none? OPTIMIZE = apace? OPTIMIZE = time? .
(Kean, 1984:7) .

18. How does the use of a SUPPRESS pragma affect execution
time?

19. For which checks is the pragme SUPPRESS implemented?
s €

&

- o - - .

e

ADDSAL,
AKERA?Z,
LVRNAZ2,
LVRAAZ,
BRUAAZ2,
PRUAAZ,
GVRAAZ,
FPRAAZ2,
LRR1A2,
LRR2AZ2,
LRR3A2,
LAVRAZ,
NLOOA1l,
MULTA1,
CHSSAlL,
SIEVALl,
AOCEAl,

ASSIA2,
ASSIB2

BALPAl,
BLEMA2

BSRCAZ2,

Test Group

ADDSA2,
AKERA3

LVRNA1,
LVRAAL,
BRUAAL,
PRUAAL,
GVRAAL,
FPRAAL,
LRR1A1

LRR2A1

LRR3A1

LAVRA1,
NLO7AZ2,
MULTAZ,
CHSSAZ2,
SIEVA2

AOCEA2,

ASSIAS3,

BALPA2

BSRCA3

.................

APPENDIX B

Summary of Test Group Status

Appliceble
884
ADDSA3 18,19
18,19
LVRNB2, LVRNB1 N/A
LVRAB2, LVRAB1 N/A
BRUNA2, BRUNA1 N/A
PRUNA2, PRUNA1 N/A
GVRNA2, GVRNA1 N/A
FPRNA2, FPRNA1 N/A
N/A
N/A
N/A
LAVRB2, LAVRB1 N/A
NLESA2 N/A
NULTA3 18,19
CHSSA3 18,19
N/A
AOIEAl, AOIEA2 17
ASSIA4, ASSIAS,
N/A
N/A
N/A
N/A

H-98

...............................

Test Subject

Addition

Ackermann

Loc var, scal :
Loc var, acc

Block ref

Proc ref

Glob var !
IN OUT parm

Loc rec var

Loc rec var

Loc rec var

‘Loc array

Nested loops
Multiply
String srch
Eratosthenes
Optimize code

Assignment .
atatements

1 loop stmt

Embedded blks

Binary srch

C31PA2

CAPAAL,
CASEA2

CENTAZ,
CSBTAl,
CSDTAl,
CSSTAL,
CSSTC1,
CSSTE1,
DRPCA1l,

F1IUAl,
FLP1aAl,

FACTAL,

FPAAAl,
FPANAL,
FPANC1,

HSDRA2

IADDAl,
IEXPAl,
INIXB1,
IMIXD1,
IMODAL,
IREMAL,

INTDAZ2,
INTQA2

ISEQA2,
SAPGA2,

CAPAA2,

CENTB2

CSBTAZ,
CSDTAZ2,
CSSTAZ2,
CSSTC2,
CSSTEZ2

DRPCA2

FlIUAZ2,
FLP1A2,

FACTA2

FPAAA2,
FPANAZ2,
FPANC2,

IADDAZ,
IEXPAZ,
INIXB2,
IMIXD2,
INODA2,
IREMAZ2,

INTDBZ,

MTCQAZ2,
VPGSA2

CAPAB1,

CSCTAl,
CSETAl1,
cSsSThl,
CSSTD1,

FL2RAl,
FLP2Al,

FPAABl,
FPANB1,
FPAND1,

Ipival,
IMIXAL,
IMIXC1,
IMIXEL,
INULAY,
I1SUBAl,

INTDB3

PGQUA2,

CAPAB2

CSCTAZ2,
CSETAZ2,
CSSTB2,
CSSTDZ2,

FL2RAZ2,
FLP2A2

FPAAB2
FPANB2,
FPAND2

iDIvaz,
IMIXAZ,
IMIXC2,
IMIXEZ2,
INULAZ,
ISUBA2

SQ10A2,

LFIRA1,LFIRA2,LFSRA1,LFSRA2

LOAEAL,
LOFCAl,
LOSCAL,
LousSAl,

MINIAZ2

LOAEAZ2,
LOFCA2,
LOSCA2,
LOUSA2

LOECAL,
LONEA1,
LOUIAL,

LOECA2,
LONEA2,
LOUIA2,

Test Subilect

Parm passing

Proc call
Case stat
Enumeration

Case stats

Recuriion

Loop stants
Factorial

Proc calls

Heapsort

Integer
Expressions

Declr stats
Int queue

I/0 seqgs

Loops

Optimize
loops

Minimal pgn

........

2 . e

&

RN

MTESAZ2,

NPPCA1l,
NRPCA1l,

NULLA1,

OPAEAl,
OPCEAl,

PATIICs & 4
Urvoail,

OPLEAl,
oPSCal,

PIALAZ2

PKGEA1,
PRCOA2

PRPCAl,
PUZ2A2,
RANDAZ2

RCDSA2

RENDA1,
SHARA2

SORTA2

SRCRAl,
SRTEA1l,
TAIPAl,
TAIPCl,
TAIPE1,
TAIPG1,
TAOPA1l,
TAOPC1,
TAOPE1,
TAOPG1,

TPGTA2,

Test Group

MTISA2

NPPCA2
NRPCA2

NULLA2

OPAEAZ2,
OPCEAZ2,

TP

OPD3SAZ,
OPLEAZ2,
OPSCA2,

PKGEAZ2,

PRPCA2

PUZZA3

RENDA2

SRCRA2
SRTEA2

TAIPAZ,
TAIPC2,
TAIPEZ2,
TAIPG2

TAOPAZ2,
TAOPC2,
TAOPEZ2,
TAOPG2

TPGTB2,

OPBFAl,
OPCFA1l,
OPISAL,
OPNFAl,
OPSEAL,

PKGSAl,

TAIPB1,
TAIPDl,
TAIPF1,

TAOPB1,
TAOPDY,
TAOPF1,

TPGTC2,

OPBFAZ2,
OPCFAZ2,
OPNFA2,
OPSEA2

PKGSA2

TAIPB2,
TAIPD2,
TAIPF2,

TAOPB2,
TAOPD2,
TAOPF2,

TPGTD2

Appliceble
lssue

N/A

N/A
N/A

N/A

17
N/A
N/A
N/A
N/A
18,19
N/A

N/A

N/A
N/A
N/A

N/A

N/A

N/A

9

= . P T S R i R P

Teet Subject

Empty set

Proc call
Recursive call s

Null procas

Optimize

PI test
Packages
Buffering task
Parallel recur
Puzzle

Rand num gen
Record fields
Rendezvous
Acceas to glbl
Sort shell
Composite ob)
Simple rec typ

IN perm to tsk

IN OUT parns
to task

Guards

Test Group Applicable Test Su t
s8u
TPITAl, TPITA2, TPITB1, TPITB2, Idle taskas
TPITC1, TPITC2, TPITD1, TPITD2 i4
TPOTA2, TPOTB2, TPOTCZ2 11 Entry clauses
TPSTA2, TPSTB2 8 Num selects
E TPTCA2, TPTCB2, TPTCC2, TPTCD2, Task chaina
TPUTA2, TPUTB2, TPUTC2, TPUTD2 N/A
TPUTE2 12 Starved task
UAPAAl, UAPAA2, UAPABl, UAPAB2 N/A IN OUT as parm
VFADAl, VFADA2, VIADAl, VIADA2 N/A Vector add
WHETA2, WHETA3 18,19 Whetstone
WHLPAl, WHLPA2 N/A Loop while
3
F
|
:
H-101
5 25 R TS s oy R SR I S R s e e e e et

APPENDIX C

Source lListinge of Other Progrems

This is the source listing for TSTO2S5S. It wes obtained
from another project (Rueane and othere, 1985:695-71).

-~Ade Run Time Environment Teat Mitre Dept D-67
--Test Iasue #25 Project 4100

--Description:

-- Create deadlock situation to determine whether system will
recognize deadlock and acknowledge the problenm.

Michael Ruane, Joseph Galia
1.0

31 July 1984

TSTO25.ADA

ROLM/ADE

--Programmer
--Version
~-Date
-~-Filenanmne
--Computer

A A N K AN EEXEEEEENEEEZEENAEEIER R RN R REARRERERE R R R R NN R X N N R NN N XXX RN R N I

with TEXT_IO,
CALENDAR;

use TEXT_I0, CALENDAR;
procedure TEST_DEADLOCK is
DEAD_LOCK BOOLEAN := FALSE;

SECS ¢ conastant := 1.0;
PASSES 2 INTEGER := 2:

package INT_I0 is new INTEGER_IO (INTEGER);
use INT_IO;

procedure PUT_TINME {s
package DUR_IO is new FIXED_IO (DURATION):;

begin
DUR_IO0.PUT (ITEM=> SECONDS (CLOCK)>):
NEW_LINE;

end PUT_TINME;

..........

task ONE is
entry STARTUP;
entry INTO_ONE;
end ONE;

task TWO is
entry STARTUP;
entry INTO_TWO;
end TWO:;

task body ONE is
begin
for I in 1 .. PASSES loop
accept STARTUP; -- synchronize test
PUT_TINME:
SET_COL (TO => 20);
PUT_LINE ("Tesk ONE Stertup”™);
NEW_LINE:; .
PUT_TINME;
SET_COL (TD => 20);
PUT_LINE ("Call to task TWO");
TWO.INTO_TWO;
PUT_TIME;
SET_COL (TO => 20);
PUT_LINE ("Return to Task ONE™);
PUT_TIME;
SET_COL (TO => 20);
PUT_LINE ("Accept Tesk Two entry or wait 15 secs™);

select
sccept INTO_ONE do
PUT_TIME;

SET_COL (TO => 20);

; PUT_LINE ("Accepted Task TWO entry*);
- end INTO_ONE;

. or

delay 15 « SECS;

PUT_TIME;
- SET_COL (TO => 20);
- PUT_LINE (1S5S sec wait over™);

end select:;
end loop:
end ONE:;

taak body TWO is
begin
for I in 1 .. PASSES loop

accept STARTUP; -~ synchronize teat
PUT_TINE;
SET_COL (TO => 40);
PUT_LINE ("Teak TWO Startup™);

NEW_LINE;

...........
..............

AD-A172 343 EVALUATION ﬁND VRLIDHTION (EIV) TERH PUBL!C REPORT
VOLUME 2¢U> RIR FORCE WRIGHT AERONAUTICAL LABS
NRIGHT-PATTERSON AFB OH R SZYMANSKI 30 NOV 95

UNCLRSSIFIED AFNAL-TR-83-1816-V0L-2 F/G 14/2

FILELES oz
‘q\an- . hw‘ ' k‘lﬁ
s L AP LPPIL

EEEE

N of op - 42
EEEFEFEITH

=

|
1.6
=

m 1.8
|

14

B

oo

Iz i

L.

accept INTO_TWO do
PUT_TINE; ‘
SET_COL (TO => 40);
\ PUT_LINE ("Entry accepted in Tesk TWO™);
g PUT_TINE;
SET_COL (TO => 40);
PUT_LINE ("Timed entry call into Taask ONE: 20 sec™);

if not DEAD_LOCK then
select
ONE.INTO_ONE:
3 or
3 delay 20 = SECS;
PUT_TINME:
SET_COL (TO => 40):
PUT_LINE ("Weited too long. Finished Task TWO");
end select;
s elae
~=- DEADLOCK #?e?¢?a?0?0202¢2?¢22e?24222-~
SET_COL (TO => 40):
PUT_LINE (“"Deadlock about to be initiated*);
3 ONE.INTO_ONE;
‘ end if;
end INTO_TWO;
end loop:;
end TWO;

begin
-- TEST DEADLOCK

[N W A LR

for PASS in 1 .. PASSES loop
PUT (“Pess number: ")
PUT (PASS):;
NEW_LINE;
if PASS = 2 then
DEAD_LOCK := TRUE:
PUT ("Deadlock!!1*):
end if;
NEW_LINE (SPACING => 2);
ONE.STARTUP;
TWO.STARTUP;
PUT_TINE;
NEW_LINE:;
PUT_LINE ("Main prograr gets CPU and I/0%); ,
e NEW_LINE;
end loop:
-- PASSES
R end TEST_DEADLOCK:
5 pragaa KAIN:;

" N

At

H-10L

-- This program illustrates & large indivisible data
-- structure where the application program is not

-- concerned about address space boundries but forces
-- the Ada compiler/RTS to desl with then.

procedure LIDSA1(X: LONG_FLOAT);
procedure LIDSAl1(X: LONG_FLOAT) is
MAP ! arrasy (INTEGER range 1..32767) of LONG_FLOAT;

-~ arreay size > 64 K words => won’t £fit in
-- one address space

begin

for I in 1..32767 loop
LIDSA1(MAP(I));
-- This loop forces an address change aomevhere in it.
-=- The compiler/RTS must generate @ BEX that checks
-- every time through the loop for an address space
-= change.

end loop:

end LIDSAl;

~- NOTE: This program adapted from an example in the

-- AINMS Interim Technical Report
-- (Avionics Laboratory, 1984:4-24)
H-105

.
«®

o - W

| o

" a0 e O

-

LN

il el Yad i}

== This program is a modified version of LIDSAl where

-- the application program takes care of address apace
-- boundries. It was modified to take advantage of
-- where the atart of the array is physically located.

procedure LIDSA2(X: LONG_FLOAT);

procedure LIDSA2(X: LONG_FLOAT) ia

| MAP : array (INTEGER range 1..32767) of LONG_FLOAT;
-- array size > 64 K words => won’t £it in
-- one address space

begin
for I in 1..16384 loop

LIDSA2(MAP(I));
== MAP(1) should be physically loceted at the low end
- of address space 1, so there won’t be any context
- sawitching in this loop (so no BEX genersted).

end loop:;

LIDSA2(MAP(16385));
-- Context awitching done here (one BEX).

for I in 16386..32767 loop
LIDSA2(MAP(I));
-- There ahould be no context switching at &ll in this
-- loop since everything accessed is in address apace
.- 2 (a0 no BEX required).

end loop:

end LIDSA2:

-=- NOTE: This progrem adapted from an example in the AINMS

- Interia Technical Report
- (Avionics Laboratory 1584:4-2%5)
H-106

" o . PSS Y Y N TP A T T N e BRI L O
AL A E fa 'y €y 0 L O, RO PO O LY A G : >

B ol ura’rx-xxrlvlwvvvquw”mmmmmm

!

-- nis ia tne Prototype ACEC test ADDSA2 with the

-- EXCEPTION

-~- WHEN NUMERIC_ERROR =>

- Y 1= X;

-- lines added. When run times ©of this prograa are
. - compared to those of ADDSA2, an indication of the

- cost of an exception thet is never invoked ia

- obtained.

WITH INSTRUMENT; USE INSTRUMENT:;
PROCEDURE EXCEP2 1S

X : FLOAT := 0.000_001;
Y : FLOAT := 0.0:

BEGIN
START(“ADDSA3" ,"ADDSA2 WITH NUMERIC_ERROR EXCEPTION ")
FOR I IN 1..1000 LOOP
FOR J IN 1..10 LOOP
Y 2 Y o« X ¢ X o X X X X X+ X X + X
-= included in teat version
Y := FLOATC(IDENT_INT(I+J));
END LOOP;
END LOOP;
STOP;
EXCEPTION
WHEN NUMERIC_ERROR =>
Y := X;
END EXCEP2;

SRR N I

APPENDIX D
es arne Jsed On the VAX /7
This is the file harness_many.com. Jt wvas executed by
entering “submit harness_many/paranesters =

(addsa.lst, [witt.acvtatl))/noprint™.

$! This VAX/VHES command file loops through e file

s containing Ada source benchmark test file names and

$! aubnits them to the test harness for the collection of
$! the various statistics. For this implementation, thia

s COM file must be submitted as & batch job.

8!

$! The name of the file containing the teat names is given as
8! the first parameter to this commend procedure.

t 3

$! The second parameter ia the directory in which these tests
] nust reside.

s

s

$! Set the default Adea library

t

5 acs set lib [witt.adalib)

t

$! Set the default directory to (witt.acvtatl
8!

£ set def [witt.acvtst]

t

8! Creste the three statistic files

s

s create comp.dat

s create instr.dat

create run.dat

s

$! Open the file with the test names

s

! open/read in_file ‘pl’

s!

8! Loop through the file of tests, submitting each teat to
L J] the harness for the collection of the various data.
$!

8 loop:

s read/end_of_file=done in_file test

L @harness ‘test’ ’‘’p2’

! goto loop

8!

$! At the end of the input file, close the file and
L 3] terminate this command procedurs.

L 3]

8 done:

8 close in_file
8 write ayasoutput ”All tests have been submitted for testing”

-

AL

This is the file harness.com which was executed <froa» h
harness_many.

8! This VAX/VMS command file performs functions necessary to

t 4 collect varioua data about Ada source test files.
$! These deta are put into the files ‘comp.dat’
. $! (compilation statistics), ‘inatr.dat’
5! (instrumentaetion statistics) and ‘run.dat’ (run-time
$? statistica).
s ;
) $! Record the current elspsed and cpu times (before \
s compilation) '
8!

$ beg_cpu_time = fSget)jipi(~*,"cputia™)
£ beg_time = fStime()

8!

€! Compile and link'the test

t 3

$ ada/nocopy_source ‘p2’’pl’

& acse link ‘pl’

R

» = -

L 3

8! Record the current elspsed and cpu times (after

8! compilation)

s!

£ end_cpu_time = f$get)ipi(”","cputia®™)

S end_time = fStime() .
8! ‘file’ => file_spec of the object file created by the p
$! compilation .
8! ¢ \
$ file = “[witt.adalibl"” + pl + ",0b)")
s y
$! Calculete the number of bytes in the object file

$! <

$ blocks_used = fSfile_sttributea(file,"eof"™)
$ block_size = fSfile_attributes(file,”bls”)
$ file_size = blocks_used @ block_size

8! g

£! Calculate elapsed cpu time (in hundredths of seconds) E

P) .
p

8 cpu_tise = (end_cpu_tisme -~ beg_cpu_tinse) &

8!

. 8! Divide the elapsed cpu time into seconds and
s hundredths-seconds .
s! .

$ cpu_time_secs = cpu_time /7 100 L
$ cpu_time_hundsecs = cpu_time - 100 = cpu_time_secs »

L B ‘<

$! Put the compilation cpu statistics in an output line

s! NOTE: I filled in the elapsed time stuff--not relevant

8 out_line = "’’pl’ R)
*’’cpu_tine_secs’.’’cpu_time_hundsecs’ *’file_size’"” .

H-109

8

8!

$! Append the ocutput line onto the file
8!

$ open/appand comp comp.dat

$ write comp out_line

$ close comp

:: Record the current cpu time (before execution) ’
:’bog_cpu-tinc s fSget)ipi ("™, cputia™)
:: Run the executable file
:!run ‘pl’.exe
8!
$! Record the current cpu time (after execution)
L4
:.end_cpu_tile = fsSgetipi(””,"cputia™)
:: Append the ;nstruncntation atatisticas to instr.det
:!append instr.; instr.dat
$!?

$! Calculate elapsed cpu time (in hundredtha of aeconds)
$!
$ cpu_time = (end_cpu_time - beg_cpu_tine)

$!

8! Divide the elepsed cpu time into seconds and
s hundredths-seconds

8!

8 cpu_time_secs = cpu_time / 100
$ cpu_time_hundsecs = cpu_time - 100 & cpu_time_secs

$?

$! Put the available execution astestistics in one output line

 §] NOTE: I filled in the elapsed time stuff--not relevant

$ out_line = "’’pl1’ * e -
*’’cpu_time_secs’.’’cpu_time_hundseca’"”™

t §

$! Append the output line onto the file)

8!]

$ open/append run run.dat

$ write run out_line

8 close run

s!

8! Delete unnecessary files

s!

$ del instr.:e :
$ del ‘pl’.exe.* '
Sacs delete unit ’‘pl’

L 3}

H-110

- A .

APPENDIX E

est Harness Used O a Gener
This is the file HARNESS_MANY.CLI:

CREATE HARNESS.OUT

CREATE INSTR.DAT

QBATCH/Q0UTPUT=x1x.LOG/NOTIFY [(LINE CONTINUES)
tACCOUNTS:<acct number>:FILES:HARNESS_A x1x

It was executed by entering HARNESS_MANY TESTIN where TESTIN
is the name of the file that lists the progrems to be
compiled and executed in the following manner:

(PROGR1 &
PROGR2 &
PROGR3)

This is the file HARNESS_A.CLI. It‘’s purpose is to limit the
number of compiles or executions to juat one at a time.

tACCOUNTS:Cacct number>:FILES:HARNESS [x1x)

This ia the <file HARNESS.CLI. It controla the actual
compiletion, execution, and statistic collection.

WRITE/L=X1X.STAT %1%
RUNTIME/L=X1X,STAT

ADA/MAIN_PROGRAM X1-%

ADALINK %1%

RUNTIME/L=%1%.STAT

PAUSE 1S

FI/LENGTH/NHEADER/L=X1x.STAT %1x.PR

COPY/A HARNESS.OUT X1X.STAT

DELETE .X1X.HST x%1x.LOG X1X%+.0B X1X.PR X1X+.SR X1X%.STAT
DELETE X1X+.STR X1%+.TREE

X x1x

COPY/A/1=WARNING/2=WARNING INSTR.DAT INSTR

DELETE INSTR

............

AR AR NE AR M ahe gk ol srdy e st I AR il g

)

APPENDIX F t

m ion
TEST NAME DEC COMPILER DATA GENERAL COMPILER
CPU TIME OBJECT CODE CPU TIME OBJECT CODE
SI1ZE SIZE ’
(BLOCKS) (PAGE SECTS)
ADDSA1 6.42 1024 10.06 = esl o \
ADDSA2 6.96 1536 10.05 o 879 !
ADDSA3 7.22 1536 10.03 o 878 o
AKERA2 7.20 1024 10.02 = 876 = :
AKERA3 7.62 1024 10.00 = 875 o .
MULTAL 6.36 1536 9.97 . 874 R
MULTA2 6€.77 1536 9.94 o 872
NULTA3 7.21 1536 9.93 870 =
CHSSA1 10.00 4096 9.92 = 869 o
CHSSA2 10.20 4096 3.90 867 « A
CHSSA3 10.68 4096 9.91 865 o £
AOCEA1l 12.46 2560 9.8 e 864 = :
AOCEA2 12.45 2560 9.88 863
AOIEA1 12.69 3072 S.86 861 o
AOIEA2 12.€3 3072 9.84 o 860 =
LOAEA1 12.21 2560 9.81 o 858 «
LOAEA2 12.23 2560 9.79 857
LOECA1 12.70 2560 8.76 = 855 «
LOECA2 12.28 2560 9.73 853
LOFCA1 12.78 3072 9.69 =« 852 o
LOFCA2 12.66 3072 9.65 e 850
LONEA1 12.70 3072 9.5 849 - A
LONEA2 12.57 3072 9.47 = 848 o .
LosSCAl 14.80 4096 9.36 =« 846 ;
LOSCA2 14.88 4096 9.32 = 845 o
LOUIAL 15.43 3584 9.24 843 « -
LOUIA2 15.40 3584 9.19 o 841 = r
LOUSA1 12.90 3072 9.14 « 840 o {
LOUSA2 12.11 3072 9.11 840 o y
OPAEA1 13.19 3072 9.09 « 839 «
OPAEA2 13.17 3072 9.06 « 839 o
OPBFA1 COMPILE ERROR COMPILE ERROR
OPBFA2 COMPILE ERROR COMPILE ERROR ..
OPCEA1 14.17 3072 9.03 =« 837 =« 3
OPCEA2 14.21 3072 8.99 « 836
OPCFA1 14.10 3072 8.97 o 834 = N
OPCFA2 14.40 3072 8.96 = 833 =« 5,
OPDSA1 13.38 3072 8.94 831 *
OPDSA2 13.64 3072 8.93 =« 830 e

NOTE: Results marked with « are invalid

[pReeal A 2 i AR LA 5o SE e R ity ATt o' o g Lt g (g Fall bk i B Gat 3ol Sk wib v ul

Compjlation Results (Con’t)
TEST NAME DEC_COMPILER DATA GENERAL COMPILER X
CPU TIME OBJECT CODE CPU TIME OBJECT CODE L
SIZE SIZE g
(BLOCKS) (PAGE SECTS) .
OPISAl 14.15 3072 8.91 o 829 o
OP1ISA2 13.94 3072 8.90 =« 828 =« >
OPLEA1 14.44 3072 9.38 882 K
OPLEA2 14.29 3072 9.37 882 X
OPNFA1l 12.15 2560 9,35 o 879 e <
OPNFA2 12.31 2560 9.33 =« 877 ‘
OPSCAl 15.51 3584 9.32 =« 876 = .
OPSCA2 14.93 3584 9.30 =« 874 = -]
OPSEA1l 13.78 3072 9.29 = 873 « :
OPSEA2 14.30 3072 9.28 =« 872 :
PUZ2ZA2 38.83 14336 9,27 871 -
PUZ2A3 38.78 14336 9,23 = 867 =« :
RENDA1 8.22 2560 9,22 866
RENDA2 8.19 2560 9.21 = 865 {
TPGTA2 9.11 3072 S.18 8649 o !
TPGTB2 8.86 3072 8.18 862 3
TPGTC2 15.80 6656 S.16 « 861 8
TPGTD2 14.94 6656 9.14 859
TPITAl 9.65 3584 9,12 858
TPITA2 9.86 4096 9.11 = 856 o
TPITB1 13.23 6656 9.09 855 o
TPITB2 14.94 7168 9.07 = 854 o
TPITC1 18.27 10240 9.06 = 852 o ;
TPITC2 21.32 11776 9.05 850 -
TPITD1 27.47 17408 9.03 849 o
TPITD2 35.63 20480 9,01 =« 848 «
TPOTA2 17.53 8192 8.99 846 o
TPOTB2 17.%52 8704 8.98 « 844
TPOTC2 49.80 21504 8.96 842 o
TPSTA2 8.73 3072 8.94 « 841 o i
TPSTB2 12.93 . 5632 8.93 o 839 o _
TPUTE2 10.49 4096 8.91 838 o ‘
WHETA2 15.85 3584 8.90 = 836 o y
WHETA3 16.79 3584 8.81 o 834 o :

NOTE: Results marked with ¢ are invalid

H=-113

PO L TN Sy Ny
ﬁhﬁiﬁ‘.ﬁ&‘_&‘:‘.‘t&l\ e]

ADDSAl

ELAPSED 0:00:04,

ELAPSED 0:03:21,
=ADDSAl1.PR

ADDSA2

ELAPSED 0:03:51,

ELAPSED 0:07:1S,
=ADDSAZ.PR

EXCEP2

ELAPSED 0:07:48,

ELAPSED 0:11:08,
=EXCEP2.PR

ADDSA3

ELAPSED 0©:11:40,

ELAPSED 0:14:59,
=ADDSA3.PR

AKERA2

ELAPSED 0:15:32,

ELAPSED 0:18:55,
=AKERA2.PR

AKERA3

ELAPSED 0:19:27,

ELAPSED 0:22:54,
=AXERA3.PR

MULTA1

ELAPSED 0©0:23:25,

ELAPSED 0:26:42,
=MULTAl1.PR

NULT .

ELAPSED 0:27:14,

ELAPSED 0:30:36,
=sMULTA2.PR

MULTA3

ELAPSED 0:31:09,

ELAPSED 0:34:27,
=MULTA3.PR

CHSSAl

ELAPSED 0:35:00,

ELAPSED 0:38:33,
=CHSSAl.PR

CHSSA2

ELAPSED 0:39:18,

ELAPSED 0:42:39,
=CHSSA2.PR

CHSSA3

ELAPSED 0:44:37,

ELAPSED 0:48:33,
sCHSSA3.PR

APPENDIX

G

Semple of File HARNESS.QUT

CPU 0:00:00.196,
CPU 0:00:10.252,
323584

CPU 0:00:10.499,
CPU 0:00:20.551,
323584

CPU 0:00:20.79S,
CPU 0:00:30.822,
323584

CPU 0:00:31.066,
CPU 0:00:41.092,
323584

CPU 0:00:41.335,
CPU 0:00:51.353,
3235864

CPU 0:00:51.3595,
CPU 0:01:01.592,
323584

CPU 0:01:01.836,
CPU 0:01:11.803,
323584

CPU 0:01:12.045,
CPU 0:01:21.982,
323584

CPU 0:01:22.222,
CPU 0:01:32.154,
323584

CPU 0:01:32.399,
CPU 0:01:42.318,
323584

CPU 0:01:42.556,
CPU 0:01:52.453,
323584

CPU 0:01:52.694,

CPU 0:02:02.606,
323584

H-114

1s/0
I/0

I/0
1/0

I/0
1/0

1/0
I/0

1/0
/0

I/0
I/0

1/0
I/0

1/0
I/0

I/0
1/0

I/0
I/0

1/0
1/0

I/0
I/0

BLOCKS
BLOCKS

BLOCKS
BLOCKS

BLOCKS
BLOCKS

BLOCKS
BLOCKS

BLOCKS
BLOCKS

BLOCKS
BLOCKS

BLOCKS
BLOCKS

BLOCKS
BLOCKS

BLOCKS
BLOCKS

BLOCKS
BLOCKS

BLOCKS
BLOCKS

BLOCKS
BLOCKS

45,
219,

311,
488,

S82,
791,

887,
1065,

1158,
1335,

1432,
lel2,

1718,
1893,

1988,
2166,

2264,
2444,

2556,
2731,

2824,
3001,

3100,
3277,

PAGE
PAGE

PAGE
PAGE

PAGE
PAGE

PAGE
PAGE

PAGE
PAGE

PAGE
PAGE

PAGE
PAGE

PAGE
PAGE

PAGE
PAGE

PAGE
PAGE

PAGE
PAGE

PAGE
PAGE

SECS
SECS

SECS
SECS

SECS
SECS

SECS
SECS

SECS
SECS

SECS
SECS

SECS
SECS

SECS
SECS

SECS
SECS

SECS
SECS

SECS
SECS

SECS
SECS

14
886

9098
1844

1867
2808

2832
3775

3798
4739

4762
5702

5725
6662

6684
7618

7641
8575

8598
8530

9552
10483

10505
11437

. 2 2P

APPENDIX H

Execution Results

DEC_COMPILER DATA GENERAL COMPILER
TEST NAME CPU TIME CPU TINME
ADDSA1 0.93 0.17
ADDSA2 4.60 1.93
ADDSA3 4.30 1.93
AKERA2 1.60 0.25
AKERA3 1.70 0.25
MULTAL 3.84 1.72
MULTA2 4.40 2.06
MULTA3 4.11 2.06
CHSSA1 1.72 7.32
CHSSA2 . €11.54 32.90
CHSSA3 11.51 24.57
AOCEA1 1.84 1.15
AOCEA2 1.79 1.17
AOIEA1 1.89 1.15
AOIEA2 1.91 1.16
LOAEA1 3.51 2.11
LOAEA2 2.71 2.10
LOECA1 7.86 6.92
LOECA2 8.14 7.38
LOFCA1 1.79 0.84
LOFCA2 1.78 0.84
LONEA1 7.14 6.15
LONEA2 6.92 6.20
LOSCA1 13.32 12.34
LOSCA2 12.43 12.31
LOUIA1 7.54 6.93
LOUIA2 7.57 7.26
LOUSA1 7.12 _ 6.08
LOUSA2 7.25 6.35
OPAEA1 0.99 0.38
OPAEA2 0.99 0.38
OPCEA1 1.13 0.42
OPCEA2 1.10 0.38
OPCFA1 1.19 0.50
OPCFA2 1.19 0.51
OPDSA1 1.4 0.49
OPDSA2 1.15 0.49
OPISA1 1.15 0.49
OP1SA2 1.17 0.49
OPLEA1 1.38 0.67
OPLEA2 1.37 0.67
OPNFA1 0.83 0.18
OPNFA2 0.84 0.18

H-115

SRR €5, CRNAG GR K QRGN 5 W o0l

TEST NAME

OPSCAl
OPSCA2
OPSEAl
OPSEA2
PUZZA2
PUZ22A3
RENDA1l
RENDA2
TPGTA2
TPGTB2
TPGTC2
TPGTD2
TPITAl
TPITA2
TPITB1
TPITB2
TPITC1
TPITC2
TPITD1
TPITD2
TPOTAZ2
TPOTB2
TPOTC2
TPSTAZ2
TPSTB2
TPUTEZ2
WHETAZ2
WHETAS3

EXCEP2
LIDSAl
LIDSA2

TEST_DEADLOCK UNDETECTED DEADLOCK

Execution Regults (Con‘’t)

DEC COMPILER

CPU TINME

0.80
0.85
1.33
1.35
8.42
8.34
1.60
3.42
3.37
3.55
3.76
3.83
3.48
3.53
3.40
3.61
3.72
3.72
3.98
4.20
19.60
19.96
152.31
3.‘6
3.48
2,50
3.10
2.95

4.35

ERROR DURING LINK
ERROR DURING LINK

H-116

DATA GENERAL COMPILER
CPU TIME

0.19
0.19
0.67
0.67
11.65
12.01
0.18
6.77
11.48
11.57
12.11
12.11
11.03
10.96
10.87
11.08
11.04
11.03
11.06
11.21
S4.70
60.67
431.38
11.71
15.71
S.98
12.63
9.51

1.94
COMPILE ERROR
COMPILE ERROR

UNDETECTED DEADLOCK

-y -

oV e

Ao I

-~ - » -

> EP A

PXXPAAN,

; VITA

Donald J. Witt was born on 27 December 1946 in Cisco,

Py 4

Texas. He graduated f£from Cisco High School in 1964 and

enlisted in the Air Force in June 1964. His twelve year
enlisted career included assignmentas in Japan, the
Philippine Islands, Vietnax and at Keesler AFB, Mississippi,
and Gunter AFS, Alabama. After receiving a Bachelor of
d Science Degree in Busineas Administration from Troy State
University at Montgomery, Alabame, in 1976; he was
commniasioned through Officer Treining School 4in October X
1976. His firat assignment as an Air Force officer was to
the Manpower and Personnel Center at Randolph AFB, Texas.
While there, he was instrumenteal in designing, coding, and
implementing the Promotiona and Placement Referral System of
the Civilian Automated Personnel Data System. In D.cenbor
1980 he was asasigned to the 6002 Computer Services Squadron,
Heasdquarters Pacific Air Forces (PACAF), Hickam AFB, Hawaii.
Hisa duty was aas Chief, Analysis and Programming Division,
with his primary responsibility being the transition of
PACAF unique software under the guidelineas of the base level
capital replacement program, Phase IV. He left Hawaii when N
assigned to the Air Force Institute of Technology School of
Engineering at Wright-Patterson AFB, Ohio in May of 1984. :
Permanent addresa: Rt 1, Box 246

Grand Bay, Alabama 36541

H-11T ~

'-\'.'-'-','.' ':'-'A‘.'.‘nln_\'-\'.\'r‘.'ﬁ\.""-“.‘J".‘.\' LR SN "'-*"\(« !..‘*.-' B T " ¢ X ~'..-' RN IR DR S A P

. em we W S

¥ X

APPENDIX I

} APt

E&V POSITION PAPERS

a.3 a ¢

- L oa _ L.4

s e aaa e

e PeVa e

I-1

)
L
TR . T e e Y . . e A AT TR At e ST AR
Y .. "’f'.. ‘ ‘,.f, Ly ¢ \ \'. "\ Xy o \ {!-\-“'-“‘\ni < .:"J'\"'.\ "y ' R -

4

L]

Table of Contents K

Single Project/Multiple APSES . . « & & v ¢ o s o « o o o o o« o o« o« o o « . I=3 -

Ada Program Library Systems o ¢ & ¢ ¢ o ¢ o 4 4 o 4 s e s o« 4 . 4 . I=10

Security in APSE o & &t v &t 4 o o 4 o s o o o o s e o e m e e v e e e e e . . I-16

T e P -

-y - cre v

-

AT

. BN ST s S S Y ST
R Nl \(.'Q.'«.‘{.".‘ e

SINGLE PROJECT/MULTIPLE APSES

JERRY BROOKSHIRE
TEXAS INSTRUMENTS

I-3

L .-

P S WA

- .
«T oy

- LY YCNE ME NG

A

POSITION PAPER: SINGLE PROJECT/MULTIPLE AFSES

BAlnSROUND

Tre purpose of ¢this paper 1is tc propose a topic for extended
consideration at the next annual APSE E and V Workshop:, currently
scheduled for July 1985 The proposed topic has many facets. but the
fundamental wunderlying question is the concern for distributed APSESs
and their communication mechanisms. Many of the issues and problems
of conventional distributed processing are encountered here. plus a
set of concerns unique to multiple APSEs.

It is apparent that most very large scale defense system developments
will include components of very large scale mission critical software
development requirements, requiring substantial concurrent design and
deveiopment activies, potentially over a variety of target computers
which have been selected for their functional characteristics as
matched against desired/required system performance needs. It is to
be expected that overall system operational requirements would often
dictate a large volume of multi-way concurrent communications between
the various functional nodes.

Wnile the integration of such software developments into a cohesive
effort would be @ highly desirable and preferred goal, such a luxury
will most often be infeasible if not impossible. The concern then
becomes one of coordination, at least for those elements which, in
the operational environmment, will have to be made aware 0f each
other. What this in turn implies 1is a need to have (possibly)
heterogeneous APSEs communicating with each other as a side effect
during ¢the software development phase of the project. When this
situation is encountered, what are the special requirements for APSE
E and V that result?

In the "moving-target" environment of a large-scale software system
development, another ugly problem candidate presents itself,
especially at this vrelatively early stage of the Ada language
lifetime - ¢the concurrent wuse of different Ada compilers for the
different stages of a single system development. This same problem
might be expected at the point of phase-over from a development-host
based system to the development-station phase of the effort.

L S
fa N

SINGLE PROJECT / MULTIPLE APSEs or NETWORKED APSEs

Anpotrer of the many circumstances that are to be encountered 1in tne
field of large-scale projects requiring the development cf
significant amounts of mission-critical software, one particular ture
stands out as representing special and wunique problems for
multiple-AFSE evalvation and validation. This is the case where a
large host computer is vsed for primary embedded software
development, but the total effort also calls for the <concurrent
development of a deliverable work station/development station with
some variety of APSE, to be used by the customer 1in the life-cycle
software support for the progject. This circumstance places a special
emphasis on the above-mentioned communication problem early 1n the
system development phase - how can the transition from large-scaie
molti~user host to smaller-scale, fewer—-user development stations be
made while ainsuring compatibility of the software products being <o
generated”

Tne specisl 1ssues that this situation brings to E and V include

(Original-host : Development-station processor compatibility™

Gphoulda tne Development station APSE be fully compatible with that
of the large-scale host™ I not. how would the minimum AFSE

subset be defined™

GChould these problem types be treatec as two separate <concerns:

with two possibly independent APSEs and related E and V efforte™

All of the interface/who-does—what questions are jJjust postponed
slightliy by this position

= (One of the most significant aspects of all of the anticipatred
1ssues 1s the question of the database — its structure. 1ts
residence, and its dicstribution over the development networTk
How can a remote development station have access to the necessarty
information to support 1link- and run—-time data confirmation,

etc. 7
Development station selection/specification criteria the
MAKE/BUY decisionh processes for the system deveioper. 1§ & good

development station exists for the target. this may be a travisl
question - but can such an eventuality be used to drive the
selection of the target processors”?

The possibility of having different compilers on the host and on
the supporting development station. At which level do we place
the integration and test debugging; where to provide the
simulation support; how to handle the potential incompatabilities
of PRAGMAs and target-processor dependent representation
specifications.

Assuming at some stage an established working relationship
between the original development host computer, and the
used-destined development station. Should the host be accessed
by the workstation in order to provide the user with a consistent

I-5

A
[t) A MM A0 G A

‘-&‘. Cd
e

d

i
[
f
t
r
14
s
'

)
» &

i interface”

PROFOSED APPROACH - ISSUE STUDIES

1f this proposal 1s accepted as a topic for the workshop. we would
propose the development of a set of studiec based on the refined &nd
final issues to be delineated as a result of the workshop. The most
direct way of conducting such studies would seem to be in conjunction -
with preparations for large-scale mission-critical software
developments., such as the TI (Atrmy) LHX development, just underway
Other projects would have even more source for support, as they would

ol

Ao i 0]
L

;, initially 1involve ¢two or more major wundertakings by different !
: organizations/contractors (eg.. WIS and SDI).

-]

X

N

A

A

Y

\

N .
&

4

3}

N »
]

I-6

e e e e A e At e e o e A e et A et A e e e e et At et otk e et
PSP IORE SN IE SEN T M AP, N N AN A NEARY) AR AT AT PO S A Sy o A

SR L SARA A L b AL K A AR S Ot Aty A5 AR A Rcak cul Bl st 2 bt el inl ned i)

AFPENDIX A
REFERENCES

NoTE Tne fcllowing references are listed 1in alphabeticai oroer by
@=CENJGING YyE€EST

{TI774 3 Equipment Group Software Development Guaide
(SF24-EG77), December 1977

[TI77E 1 Eqguipment Group Software Management Standard
(SF23-EC77)., December 1977

[TIBo4A) Mocel 990 Computer Tl Pascal User‘s Manual, Texac
Instruments, Fart 946290-9701, 15 January 1980

[TIBCE 1 The Microprocessor Pascal System (User’'s Manval).
Texas Instruments, 1980

[TIBCC 3 Svurvival Kit For Software Producers., Texas
Instruments, March 1980.

[MSBUA 1 GSixteen-Bit Computer Instruction Set Architecture.
MIL-STD-1750A, 2 July 1980.

[S0FE81A] SofTech Inc., "Draft Adas Language Sgstem VAX-11/753
VAX/VMS Runtime Support Library BS Specification.”
Waltham, MA, July 1981.

(SOFE1E) SofTech Inc., "Preliminary Draft Ada Language System
nWAFPSE BS Specification." Waltham, MA. August 1981

[(TIBIA J Texas Instruments, "Ada Integrated Environment.,"
Lewisville, TX, March 1981. Prepared for Rome Air
Development Center (RADC) under DeD Contract
F30602-80-C-0293.

[TIBIB) Equipment Group Programming Standards ¢or Computer
Programs, Advanced Computer Systems Laboratory.
Texas Instruments, July 1981.

"-,"

N A,

[NOSCEZA] Kernal Ada Programming Support Environment (KAPSE)
Interface Team Public Report Volume 1, Naval Ocean
Systems Center San Diego. Ca. 1 April 1982

-

17,

{NOSCS82B] Kernal Ada Programming Support Environment (KAPSE)
Interface Team: Public Report Volume 2, Naval Ocean
P Systems Center San Diego. Ca, 28 October 1982

[SDOFBc 3 GSofTech Inc.. “Draft Ada Language System
Specification, " Waltham, MA., August 1982.

[TIB2A J Teras Instruments, Advanced Computer Systems
. Laboratory. "Proposal for Development of Ada
~ Software Tools and Interface Standards, " Lewisville,
= TX, February 1982

[TIBEE 1 Texas Instruments, Advanced Computer Systems
Laboratory, “A Training Frogram for Adsa- Issves and
Motivations", Lewisville, TX, 29 July 1982

= [MSESA] Nebuvla Instruction Set Architecture, MIL-STD-1862E,
3 Janvary 1983

[AJFOE3] Evalvation and Validation (E and V) Test Plan,
Version 1. 0, November {983

[BODE2 1 Booch., Grady, Software Engineering With Ada.
_ Berijamin/Cumminge Publiching Co, Inc. Menlo Park,
;: Ca. 1963

[DAY2Z2 3 JUb Day and H Zimmerman, “The 051 Reference
Moadel", Proceedings of the JEEE, v.71, n.1c,
December, 1983, pp 1334-1340

3y [HOUSS) "A Taxonomy of Tool Features for the Ada
Prcgramming Support Environment (APSE) ", U. S
Department of Commerce, National Bureavu of
Standards, December 1982, Issued February 1983

[TIB3A] Texas Instruments, “AIM (APSE Interactive Monitor)
Program Performance Specification, " Lewisville, TX,
19 September 1983. Prepared for Naval Ocean Systems
Center (NOSC) under contract _ N66001-82-C-0440.

)

[TIB3B] Texas Instruments, “AIM (APSE Interactive Monitor)
. Interim Report on Interface Analysis and Software
§ Engineering Techniques” Lewisville, TX, 16 May 1983
Prepared for Naval Ocean Systems Center (NOSC) under
contract _ N&66001-82-C-0440.

[TIB3L J Texas Instruments, "APSE Interactive Monitor (AIM)

Interim Report on Interface Analysis and Software
; Engineering Techniques 11 (IR2)", Contract
- _ N66001-82-C-0440. O1 December 1983

[CAISE4] KIT/KITIA CAIS Working Group. "Proposed Military
Standard Common APSE 1Interface Set (CAIS)", 01

-
t
4
k)
3
k,
’
»
P
'
o
“
.
’
'
B
NyTe g7
)

August 1984

vy

. .

AL

ADA PROGRAM LIBRARY SYSTEMS

THOMAS LEAVITT
BOEING

a 49 8 &

~ C AWy T T Te Y

POSiIiTION PAPER
Ada Program Library Systens

After the compiler proper. the most important Ada Programming Support
Environment (APSE) design issue is the program library system. The library
system provides the structure in which operations take place. lte major
properties are not revealed by listing the explicit library management
tunctions that can be performed. lNost ot the references to the library will
be 1mplicit with the operation of the compiler: such as finding "with"ecd
units and the parents ot subunits: or storing objects. However., the
library system is not part of the compiler. Libraries exist independent of
a particular compirlation, and there are operations performed on them not
related to compilation. like deletions of objects. and etatus inquires.

With validated Ada systems. running the ACVC test suite shows that 1t .1is
Fossible to get the separate compilation facility to work. This 18 a
m.nimal demonstration of Butficiency 0f a library system and does not 1imply
trhat the system 18 easy to use., Oor even practical to use i1n a production
erv.renment. Various suppliers have taken very ditferent approaches to
l:bra-y ByBstem design. Vhen evaluating an APSE. it i®s important to consider
row the library system wi1l]l affect the program development process. Even
w.th the 1limited experience to date. it has been clear that some library
eystems are awkward to use. and would be impractical on all but small
projects.

The criteria for evaluating a library eystem are somewhat subjective. The
criteria 1include ease ot use.,. effort required to learn., economy of uee ot
di1ec storage. elegance. efficiency of operations., robustness of operations.
and adaptability to project requirements. A good library system should
encourage controlled sharing. It must be easy to keep modules private and
to share them. A programmer constructing a test version of a program should
not i1mpact other users of the library until explicit steps are taken to make

the updated version(s) visible to other users. VYhen a shared unit 1is
updated. all the affected users should see the new version without requiring
any 8pecial action: in particular, it should not be necessary to send a

measage to every user telling them to copy the new version 1into thear
private labraries.

A good way to evaluate the library system of a proposed Ada system 1i8 to
require each sesupplier to respond with how their system will operate to
perform a li1s8t of scenarios. Each scenario would be rated with respect to
ease o0f wuse. and a minimum level determined. Systeams which do not perform
up to the minimal level would be rejected (or at least be noted as
unacceptable without repair). Care should be taken that the minimum
standarde do not unnecessarily disqualify off-the-shelt systems which are
workable i1f unpleasant. When actually procuring an APSE it is not desirable
to tind that the lowest cost bidder. who has proposed what would have been
an acceptable system. has been disqualified, or woree that all bidders have
been disqualified.

Requesting such a list is important. Experience has shoun that trying to
determine the capability of s suppliers library systen from a less specifaic
request for i1nformation i@ frustrating. Proposals can be very unclear.
probably 1n part because the suppliers are so familiar with their systems

I-11

L]
¥
.

NI OV R P IR S AL I

tha: they think their descriptions are obvious: they know what the
descriptions wmean. but readers unfamiliar with the system can find the
wording extremely cryptic. The main ispue to consider is that the system 1is
straightforuard and simple to use. Some conasideration should be given to
other issues like space usage. similarity to existing eystems tfamiliar to
users. and execution time overheads.

The following list of thirteen operations should be stated in an RFP and
each wsupplier would respond with a description of how their system would
pertform thenm.

1. Create a new main program "M’ which "with"s a preexisti-g wunit 'A’,
where 'A' is shared by several programs and 18 visible to several
accounts. The new program "N’ is ¢to be local in wvisibility to the
creating account. Outline the steps to be taken to edit. compile and
execute the program.

As in STONEMAN 4.A.4., every vergsion in a library should be accessible.
The suppliers need to explain how this is done. In particular. where
unitse are named by "with" clauses. how do programmers indicate which
versions and variations are desired? There are at least three ways this
might be done: (a) by =& directory structure and associated search
strategy such that programmers can place objects in the directory
structure where they will be found before other versions or variations of
the object (this wmight work implicitly through host O0S directory
structure,. or explicitly by having the programmer provide a8 list of
directoriese as a8 conmpiler parameter):; (b) by w®=some form ot JCL or
compirler options which specitfy for each Ada unit name the identity of the
version and variation to use: or (c) by forcing the programmer to copy a
version of the desired object into a local structure before invoking the
compiler.

2. Create a new library unit *'C', which "with"s no other units. Outline
the eteps to be taken to compile the program and place it into a local
library so that it could be "with"ed by another unit at a later time.

3. Consider 8 main program 'H’ which "with"s unite A*' and 'B'., which
are all globally viesible. Outline the steps a programmer would follow to
create a test version of the program which uses a modified version of the
library unit 'A°'. Assume that the only changes are to the body of °*A°.
not to the wespecification:? this should permit the wuser to avoid
recompiling "N’ in some cases and these steps should be described in the
proposal. Where the specification and body of 'A' are separate (i.e.
there is a subunit for the body o©0f °'A') and the specification is
unchanged. recompilation of "' should not be required unless the body
contains a wesubprogram specified "inline"™. An optimizing compiler might
note when specifications are unchanged even when the body ie not a
subunit, and so avoid obsoleting 'N'. The modified library unit A’
should be local: and so should the resulting executable program. This
new executadble program veresion must not odbsolete the preexisting version
visible to other users. The modifying programmer muat be able to access
both the neu local version and the preexisting external version. The
supplier should describe how this is done.

I-12

4. Cons:der the w®situation wesimilar to 3. above when. atfter cte.ng
convinced o0f the correctness of the modification. the global version o1
A’ is to be updated. Vhen done., is any notifaication given about units
which depended on "A’ and are now obsolete? Or is such notification only
given when a refersnce to an outdated unit is made?

5. Outline what steps would be taken to see if a8 unit s “"curre-1":
that is. if it has been compiled more recently than the unite on which 13
depends and they in turn are also current. 1[f versions or variations are
supported. how does the user identify the ones to use when integrating
the library system? 1t is not tolerable to recompile & unit just tc see
if the compiler generates any "obsolete unit” error messages.

6. For a program °*P’:, for each unit, list all other units which depend
on the wunit. Alsos. for each unit., list the units which it depends on.
The context of the program ie important. since with unite shared between
programs. the programmer could be swamped by extraneous unit names. A
popular unit such as a math library may be used in hundreds of diftferent
programs.

!n 8 eamilar manner, it is desirable to list all the units which directly
or 1indirectly depend on a specitfied unit. within a program. Such a list
indicates the units which would be made obsolete if the sapecified unit
were modified.

Such liste of dependent units might be provided by annotations in a8 1link
map or by a separate library inquiry utility.

7. Delete a unit *A' from the library. It there are other wunite which
depend on 'A', does the system indicate at thies time that unite have been
obsocleted, or does it wait wuntil programmers reference the obsoleted
unite?

STONENAN requirement 4.A.6 calls for a mechanism to insure that "all the
database objects needed to recreate a specified object will continue to
be maintained in the database as long as the specified object 1itself
remains in the database”. It such a mechanism is provided. how will the
‘system regpond to an improper delete request? In particular, wi1ll 21t
list the units which depend on the specified unit?

8. List the items in a library and their properties. The min:mal
properties include:? names: dimc space occupied by the i1tems: the Ada
unit names associated with the items (also the operating system source
file names should also be given since an Ada compilation can conta:n
several Ada compilation units. and the name of the source tile need not
be related to any of the contained units): the time of creation or last
vpdate: and the time of last reference.

S. Trace back a machine addrees to the corresponding Ada source text.
Addresses may come from target machine sssembly level debuggers. post
mortem dumps. hardware performance sonitors. or test panel operations.
The expected mode o0t operation will be to refer to a link map to isolate
to an Ada unit., and it finer resolution is required. use a compiler
option to produce a assenmbly code listing. It i®s desiradble for the link
map provided to isolate address ranges to the Ada subprogram name level.,

I-13

P S "I TR

2 el P N

\ - . "-‘_ -',.-',..-‘.. 7 ',‘:..\'.-‘;--.;_-' '.'."'.'.5'.':."’ \-.-"- . $-'\q".r ' -'.-- q.- .".". 'ﬂ..'-._‘.._ . .- Te s - .

—— ME e MG A b AN b gD 4 A dbien g b e TN wYTwT

‘e

.
.
0

even 1f these names are not visible outside the units they are declared
in.

This may seem to reflect a linker requirement rather than a laibrary
management system issue. However, many APSE's have integrated linking
into the compilation process and all linking may be done as 8 side eftect ¢
of compiling the main program, making linking a compiler/library issue.

. T i

This contlicte somewvhat with STONEMNAN 2.B.7 which encourages the use of
Ada source terms, rather than assembly or machine level terms. However., . o
1t is doubtful]l that APSE'e which will become available in the near future
will be able to satisfy this STONEMNAN goal. Some may argue that the
availability of a source level debugger will remove the nee' for wmapping
from addresses to source. However» {f the debugger requires any ’
information in the object code to identify unit names or line numberse. or
if the use of the debugger involves a compiler option which produces any
different code (e.g. inhibite some optimization). the user 18 s8t1l] G
faced with the possible problems of debugging & program wWhich works when N
1 the "DEBUG" compile option is specified, but does not work when it is not *
specified.

Sy 2y Ay 2y xY

e

10. Copy a set of items in & library to another library.

It must be possible to create an ANS! interchange tape of source texts to
ship to another site which may be running an APSE of a totally different
design philosophy. It is highly desirable to be able to transter
intermediate objecte to other sites which run the same APSE so that 1t ie
not necessary to recompile everything. It is also desirable to be able
to transfer objecte between library systems in different accounts on the
same host system.

- ,,
BB

b 8, % % °v N

1l1. Some systems support versions of items. 1t the system supports
them, outline what steps are taken to restore a library to a prior
version. In particular, igs this any different than creating a new
version of source of a unit, which happens to correspond to the text of a
prior version. and compiling it?

»

12. For a particular executable program it is necessary to be able to
determine the identity of the units from which it is constructed. Thie
includes the version and variation of the unit and the date o0f each
unit’s creation or last modification.

.".."“.(

Thie information may be provided on & link map. [t should be possible to
retrieve this information without relinking. since users may have deleted
some 0f the objects used in the creation of the executablae.

2 R SO

13. How much time does it take for typical users familiar with other ’
high level languages and with the Ada Language Reference Nanual (LRM. to
learn to do all of the operations listed sbove from the user guide and
other supplied documentation?

}.‘"'l'

It is not sutficient that the system developers can operate their oun
systen. 1t must be assured that programmers using the system can make 1t
work. 1t should not be necessary for the supplier to provide hande on
training for users to discover how to effectively use a aystem. The

AR/

I-14

. Tesw Y A BARLAE Sag Sad Sul i L - T -
P A AR A A AR S AN A ANASATMANAA A Nk ARATE S DACIA DA 2 At i TYLelYY

1ssues i1nvolved relate to the clarity of the documentation and to the
complexity of the systenm.

This ie an important point. A proposal for a system which supporte a
required capability but does not provide sufficisnt documentation to

enable users to invoke it is not acceptadble as it stands. Similarly. =a
function i1n an APSE which serves no immediately obvious purpose should be
explained.

Although a long learning time is not desirable. a successful APSE will be
uvuaed for & long time on several projects sllowing a programmere learning
time to be amortized over years o0f use. Even then. unnecessary
complexity will complicate operationas. It programmers do not understand
- a system, they will not use it well.

As in STONENMAN 3.C. simplicity is desirable. A good design will use the
minimum number ot additional concepte which etill eatisfy all
requirements. New arbitrary operstions and unclear utilities should be
avoided 1f possible.

It 18 important that an Ada prograna library system be easy to use and
powerful enough to provide support for the program development process. By
requiring suppliers to describe how to perform a number of specitac
operations it 18 possible to determine how easy programmers will find thear
systems to use. It is required that the library system support controlled
sharing. Even though a system which doesn't share might be made very easy
to use it would not satiefy project requirements. Projects need to have
programmers create test versions of a system without impacting other users.,
and programmers should pick up the most current vereion of shared units. In
all cases. users need to specify what units to wuse. These are sofme
capabilities associsted with a library system which will facilitate use but
which may be packaged in aseveral ways - either as separate tools, as part of
a linker. or as part of the compilation system proper. No matter where they
are packaged. they form an important part of the operations of an APSE and
are critical to the evaluation of an APSE. These capabilities include:
dependency list creation: identitication of @sources (including vers:ion
1dentification and creation dates) which went into the construction of an
executable program: currency checking: and the user documentation of the
system.

.-_.‘_-'-..- . r .' K . RP SR R '
. O SO SRS AL AR LY

i
&
[t
SECURITY IN APSE
v
M.B. SURY and E.W. MARTIN :
‘ LOCKHEED MISSILES AND SPACE COMPANY "R
! i3

>y e v -

Pl Sl

o o

'?’l'l.(, i

o
o s

VT RIS RN ‘.}-..‘.'._.-.._-..;._\'. . Rt N e <, B A B N S RN .;5,- Tt AN LY e O e et

L)

S Lo fadhy

SECURITY IN APSE
M. B. SURY and E. W. MARTIN
Lockheed Missiles And Space Company
AUSTIN Division, Austin Texas

1.0 POSITION STATEMENT

SINCE software security is an essential
feature of mission critical applications,
the Evaluation and Validation (E&V) Task
should include software security
considerations in evaluating Ada»
Programming Support Environment (APSE)
Components and interfaces.

Section 2 elaborates on the above position statement along
with supporting arguments. A brief overview of software
security is also included. Section 3 presents an overview of
the approaches to security in the proposed Common APSE
Interface Set (CAIS), Ada Integrated Environment (AIE), Ada
Language System (ALS), and ALS/NAVY (ALS/N). Impacts on ERV
Requirements are briefly discussed. We conclude with the
observation that the access control mechanisms described in
CAIS Version 1.4 are supportive of the various security needs
and recommend that validation of an APSE be contingent on
conformance to CAIS in this regard.

2.0 BACKGROUND AND DISCUSSION
2.1 BRelevant Security Concepts

Security can be described in general terms as the protection
of wvaluable assets. It is a recognized fact that software is
a valuable asset having a direct value (such as proprietary
material) as well as an indirect value (such as in the case of

software which controls a mission critical system). Mission
critical (Tactical) systems have stringent requirements for
information security and system availability. Specific

measures are required to ensure the privacy, reliability and
integrity of the system - while it is being developed as well
as after it is operational. The software must resist
penetration, malicious damage and possible takeover. There is
a need to protect software from unauthoriszed modifications and
destructions, whether accidental or malicious. Two proven
approaches to prevent unauthorized access are (i) isolation
and (ii) mediation. Isolation means separating the object

- .- - - - G e G R - -

¢ Adas is a3 Registered Trademark of the Department of Defense, Ada
Joint Program Office. 1-17

Pu®nrf M
" I’A‘

PN 2 Nnva "o "
s 3

v o "

o

-
Har]

TR,

L e

ST T

TR

being protected from its threat. Mediation means that a
prctected object can be accessed only via a mediating entity
called the ‘"reference wmonitor®. When a user (or a process)
wishes to access some data, the user makes an "access request'
to the reference monitor after properly identifying himself.
The reference monitor verifies that the user is allowed the
requested access and if all the necessary checks have been
successful, then - and only then - the request is granted.
The reference monitor uses a prespecified authorization policy
to determine a user’s capabilities and access permissions. It
15 to be noted that a "user® in this context, may be a person
in an interactive session with a computer or a process within
one computer acting on behalf of a user or a computer
communicating with another.

We classify security concerns into two categories: (1) those
that are related to the development environment and (2) those
related to the operational environment.

We observe that the software to be protected involves both
data and the routines (modules). We believe that the privacy
and integrity of the data (as opposed to the routines) are
more critical during operations than during development.
Thus, during development we emphasize the protection of the
code more than the test data. This is because an unauthorized
modification of the software might be the insertion of a
*trojan horse", which makes the software behave unpredictably.
The concern is compounded by the possibility that the
unpredictable behavior of the software might bappen at the
most inopportune moment.

Mission critical applications involve the basic functions of
collection, processing, distribution and storage of data.
Bowever, these functions (collection etc.) might be
distributed over a wide geographical area, involving a
sultitude of processors of different types connected by
various types of communication links. Furthermore, these
functions bave to be performed more securely, more reliably,
in shorter durations and in hostile environments.

In either of the environments - development and operations -
certain issues arise due to the distributed nature of the
processing. Distributed processing is supported by APSEs and
bas the benefits of improved performance, protection through
physical separation and confinement of sensitive information
within selected boundaries. However, it should be noted that
security controls on any one node in the network become
irrelevant if the information is available to other bosts that
do not have effective controls. Thus, security in a
distributed system is only as strong as its weakest link.

...............

BT 200 9 LI IP NN IR I NN SOl S S GRN

'd. 4]
e N ANE NV a7, 3 d d Fal vatoialotad sk LEANS R DAl ALl Hhirkd 208 b S i Srady 0 il o Do - """ﬁt‘\’.‘

2.2 Security Issues In The Development Setting

The complex software needed for today’s tactical systems is
usually developed by several vendors in a combined cooperative
effort. Besides the usuval issues of integration, such an
environment raises sensitive security issues. To provide
accountability, maintainability, privacy, and integrity of the
software, standard physical and administrative security
controls need to be imposed in a way similar to a data
processing environment.

The development environment needs to be secured using standard
physical and administrative controls. All changes to
development software should be traceable and the tracking
should be automated. The measures to ensure functionality of
the software can also ensure the integrity and thus the
security of the software. We need to adopt good scftware
engineering practices. Object oriented design is one such
process that supports the principles of information hiding,
traceability, and maintainability. We need to verify also the
design and code of the developed software to ensure that the
software behaves as it is expected to. Towards this, progranm
verification techniques might be employed using tools such as
the Gypsy language. To control the costs, these techniques
may be applied to verify only the critical parts of the
software (e.g. KAPSE) rather than the entire software.

Tools are needed to prevent the penetrator frop (i) exploiting
known vulnerabilities, (3ii) recovering information from the
system, (iii) subverting security controls, (iv) denying
service to legitimate users, and (v) reprogramming the
operating system to do similar functions. The systemn must
provide a privileged set of commands that can be executed only

by well-controlled ®critical® processes. Most users and
user-processes will not have access to these privileged
instructions.

The system must prevent users from directly accessing or
executing critical functions such as resource allocation,
ma.ntenance routines, utilities, and data transfer control.
The system should have exclusive control over these critical
functions and it should be able to detect and report to the
system security officer any unauthorized attempts to execute
any of the above. The system should be able to detect all
error conditions that might jeopardize the system’s integrity.

Rigorous procedures should be implemented to identify and
suthenticate users and remote terminals. These access checks
would be performed at least once at the beginning of a session
and might be repeated (or augmented by additional checks)
several times during the session.

I-19

; 2.3 Security Issues In The Operational Setting

Data bas to be protected while it is stored (dormant) in a
processor and while it is being processed. Data resident in a
processor might influence future transactions and
user-decisions and so the integrity and privacy of this data
is very critical.

Unauthorized access to mission critical data might be passive

, (mere retrieval of data) or active (modification of data). '
i Passive access results in a loss of privacy and active access

results in a loss of integrity. This loss of integrity might

adversely influence future transactions. Access attempts (of '

both passive and active types) can be thwarted by ensuring
tbat the operating system performs frequent integrity checks

on the data. Furthermore, stringent identification and
! avthentication measures should be implemented for database ;
! updates.
o
\ The level of access control imposed on change-requests should

Y vary (and be commensurate) with the level of software in the
system that is being changed. For example, changes to the

' operating system will be allowed only to the super-user and

' only from the system console located at a predetermined,
physically secure location and only after the user passes
stringent authentication procedures. All changes to the
operating system should be recorded on a hard-copy or a
non-erasable medium.

2.4 Ada Programming Support Environmert (APSE)

In the previous subsection, the need for security in the
development and operational environments bas been detailed.
This section discusses the APSE approach to security.

The purpose of APSE is to provide an environment for the
design, development, documentation, testing, management, and
paintenance of embedded computer software written principally J
in the Ada Programming Language. In particular, the 4
management and @®aintenance aspects warrant integrity, N
reliability, robustness, and correctness of the software.
Major emphasis in the current work on APSE bas been on
increasing the inter-operability and user-friendliness of the
software. Inter-operability makes an application wmore ’
user-friendly, but it creates a security vulnerability in
terss of unauthoriged (uncontrolled) use of the software.
Also, increased access potential implies increased exposure to
threats, and this warrants a need to place more trust in the
software during the design and development phase. A "trojan
borse® might be incorporated during the early development of
the wmission critical software which goes unnoticed and which
might surface in an entirely unexpected and unsuspected
manper. This might be triggered by an unusual combination of
the events such as voltage surges and memory overloads. Such
trojan bhorses can be best caught by a close scrutiny of the

. .

9 By & v 0

I-20

-~ &‘ ~ M S IR) el W e b % e iTa it ~‘-.'~_: o ‘___‘. o, (-'Y’-

" e

P -, A'. Y “. \-\ - X _'- "- "~.‘- .t ..-..\- _.- 'h. .'.
P RN [£ - [} & 1 LN

IRV N R

developed code by a group of individuals that has the least
chance of collusion. This means that the APSE has to support
the policing of the use of the environment.

There are several features of the current APSEs that support
the auditing, wmonitoring or simply organizing development
activities. By supporting good software engineering
practices, Ada and APSEs can support and contribute to good
security.

It is our position that these features be given at least as
much value as those that make the environment user-friendly.
For example, the auditing features would discourage the
occasional perpetrator and at the same time cap also aid the
detection and isolation of undesirable events such as
maintenance problems.

Some of the features that would aid in wmonitoring the code

development are: (i) Capabilities to identify the user and
the module; (ii) Logging of all activities on critical
objects (i.e. modules critical to the success of the

mission); (iii) Analysis and Data Reduction techniques to be
applied to the audit reports; (iv) Query capability to
investigate patterns of unauthorized access; and (v) Negative
testing (where the software is tested to check that it does
not do what it is not supposed to).

These features are included in the discussion on Access
control in the recent CAIS Document (Revision 1.4). Further
discussion on current work on APSEs is given in the next
section.

3.0 CURRENT STATUS

Based on a review of CAIS, ALS, ALS/N, E&V Requirements draft
documents, it is seen that CAIS (Rev. 1.4) bad the most
copprehensive consideration of security. Following is an
overview of the security discussion in each of these efforts.

3.1 CAIS

Section 4.4 of the CAIS document discusses access control in
detail and meets all the needs briefed in section 2.1. In
particular, for each unauthorised access request (whether
accidental or not), an Ada exception is raised. By reviewing
<bhe sudit log (that provides the details of this activity),
the systen administrator can determine whether there is a
threat to the software and possibly the extent of the threat.

One aspect that needs elaboration here is the capability to
change the CAIS Access Control Package. It is our
recomnendation that only the system administrator be able to

I-21

»am N LIRS)

S R TR RS N
05O 3 % Pp DM ot R ARG GGG P 2% 2%

podify this package and that all changes be logged on a
nor.-erasable medium.

3.2 Ada Integrated Environment (AIE)

The AJE database is a collection of objects that have
attributes and content. Some of these objects, called "window
objects®, provide a cross reference to a partition of another

object in the database. This mechanisn permits access to
relevant parts of the database to authorized users and
processes. The attributes of an object that are system

defined include access control information (as defined in
STONEMAN) .

Independent and modular program development is supported by
the Program Integration Facility (PIF). The PIF provides
functions to allow the compiler to access the program library
during the processing of single compilation units. Security
concern in this case is that the units in the 1library wmight
bhave been tampered with. This would be a possible entry for a
trojan horse.

AIE has a MAPSE Command processor that allows commands to be
interrupted and restarted by the user. This can be used by
the System administrator to selectively terminate the sessions
of unauthorized users before substantial damage is done.

3.3 Ada Language System (ALS)

The ALS environment database is self contained and independent
of the host file system. It stores all the project-relevant
information and allows the tracking of changes to it. Access
control in ALS is provided by setting attributes to objects in
the database. Initially, when an object is created, the
creator and everyone in his "tean" bave privileges to read and
execute. The creator can then set additional restrictionms.

3.4 Ada Language System/NAVY Description (ALS/N)

The ALS/N is implemented as an extension of ALS and it
includes a functional area for user access support. Included
in the program support environment are configuration
Danagement, report generator, and inter-host
telecompunications interface. These tools can be used by the
syster administrator to monitor system activity, detect
unauthorized accesses, and take corrective actions.

3.5 E&V Requirements.

The E&V Task Force adopted the Taxoromy of tool {features f{for
APSE and divided an APSE into Components and Interface sets.
Among the components that could help enforce security (e.g.
by wmonitoring the system activity), are the Command Language
Interpreter (CLI), the Configuration Management (CN), Control
Flow Static Analygzer, Set-Use Static Analyzer, and the Dynamic
Analysis Tool. There are four interface sets (CAIS, Ada
Packages, Inter-Tool Data interface, and User-to-APSE
interface). The EEV requirements (as detailed in October 1884
issue) do not emphasize following security related attributes
of components: integrity, reliability, robustness,and
correctness. We recommend the inclusion of these attributes
among those to be evaluated for the Compiler and CLI.

Security falls in the Category A of APSE EEV Categories since
no standard for the security of an APSE component is available
and po technique for evaluating conformance has been
developed. In other words, the security of a component needs
to be evaluated subjectively. In this context, the E&V Tean
needs to interface with the DoD Computer Security Center. Our
proposal is that the KAPSE part of an APSE should be a trusted
systen as per the Trusted Computer System Evaluation Criteria.

4.0 CONCLUSION

We presented an overview of the security needs in the
development and operations of mission critical systems. We
feel that the current work on APSEs is not providing adequate
emphasis on software security. We believe that the access
control mechanisp described in the proposed CAIS document
(Version 1.4) can serve as a preliminary standard for
evaluating the security (i.e. robustness, correctness,
integrity, and reliability) of the software in the APSE
Components and Interface sets.

.S. Government Printing Otfice: 1986 646-067/40923

’,
» “v

Ay L,
e " Sl

oY i,
y .‘a.!'.l'

v

\.
o

w LR LRI

N MNP
. . .
;

I T2 M
N .-.2 % \":‘. AT N .
» o -~ - v Ld .. '. .‘ . ’ * - "
b AT M E N I S S N RS A YR I
N O U AP ‘ O
e e e R

