
VOLUNE 2(U) AIR FORCE WRIGHT AERONAUTICAL LABS
UMRIONT-PATTERSON RFD OH R SZYNANSKI 30 NOV 85

UNCLASSIFIE FML-TR - B5l-VOL6VOLF/O14/2NL

1111112 1~~2 .2
- qI IIII I.O .JL.

'"" ii - .. IDI1 _
' i.:1

I1.25 i4 162iii 1111_L 6

inv ,

p

,. ..- ,-. ,-- t.-\..- ,,,., ..,,.. -. ,r.. . -.- ., .-., • * ,., ,

,, "1 , - , ,,', , ,":,,': . ',,' ,T,:T' ,,,' '7, . ,.. ,, ,. ,.. ,-. .r.*.'. . ". -"f". " "'

AFWAL-TR-35-1016
VOL II

EVALUATION AND VALIDATION
(E&V)

TEAM PUBLIC REPORT
h

Volume 11
ELECTE

11gr ~SEP 2 3 IM
CV) RAYMOND SZYMANSKI
N E&V TEAM CHAIRPERSON D,;

AVIONICS LABORATORY -

AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6543

30 NOVEMBER 1985

Interim Technical Report for Period
1 October 1984 - 30 September 1985

APPROVED FOR PUBLIC RELEASE,

DISTRIBUTION UNLIMITED

PREPARED FOR:

ADA* JOINT PROGRAM OFFICE
3D139 (FERN ST/C107) PENTAGON

WASHINGTON, D.C. 20301

AVIONICS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6543

1 P0

NOTICE

When Government drawings, specifications, or other data are used for any purpose
other than in connection with a definitely related Government procurement operation,
the United States Government thereby incurs no responsibility nor any obligation .

whatsoever; and the fact that the government may have formulated, furnished, or in
any way supplied the said drawings, specifications, or other data, is not to be re-
garded by implication or otherwise as in any manner licensing the holder or any
other person or corporation, or conveying any rights or permission to manufacture
use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is ,
releasable to the National Technical Information Service (NTIS). At NTIS, it will K

be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

/- ymond Szymanski Date
Project Engineer

FOR THE COMMANDER

[,,,", '., C. ; '.

FPM iNCGE~'F 1 m LAFDate
M A.< I C. G,,, ., . , f Co.. USAF

A,,i1.CS L .. (iXufy

If your address has changed, if you wish to be removed from our mailing list, or
if the addressee is no longer employed by your organization please notify AFWAL/AAAF,
W-PAFB, OH 45433 to help us maintain a current mailing list.

5'.1

Copies of this report should not be returned unless return is required by security
considerations, contractual obligations, or notice on a specific document.

'f ' '' " " " " " '" " " " " " " " %' " " " " " " " " " " " " "''" "' - ."- ". .'l, U
-'W '' . .' . " ,.: " .,..-_"-'. ._-."., . " " •.- -,r_ ¢,.._- .' .. '4, ' -'" '' " ' '' •" "" '' ' 4 - " -. ". - ',. v.-. " '_

UNCLASSIFIED
SECUR4ITY CLASSIFICATION OF THIS PAGE

___ __ ___ __ AD-A 172 343 _ _ _ _ _ _

Ia& REPORT SECURITY CLASSIFICATION

-UNCLASSIFIED _______________________

2&. SECURITY CLASSIFICATION AUTHORITY 3. OISTRIUUTION/AVAiLASILITY Of REPORT

Approved for Public Release;
2b. O&CLASSIFICATIONIOOWNGRADING SCHEDULE Distribution Unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) SL MONITORING ORGANIZATION REPORT NUMBER(S)

AFWAL-TR-85-1016, Vol 11

S&. NAME OF PERFORMING ORGANIZATION ~b. OFFICE SYMBOL 7.. NAME OF MONITORING ORGANIZATION
Air Force Wright
Aeronautical Laboratories gAFWAL/AMAF-2

Sc. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City. SOaN and ZIP Code)

Wright-Patterson Air Force Base, OH 45433-654.

Be. NAME OF FUNDING/SPONSORING 9 b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Of appUtable)

Ada*JOINT PROGRAM OFFICE

Sc. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

3DI39 (Fern Street/C107) Pentagon PROGRAM PROJECT TASK WORK UNIT

Washington, D.C. 20301 ELEMENT NO. NO. NO. N.

11. TITLE lInclde Secaafgty Clowificotio.,) Evaluation and Valid-I
_ation (E&V) Team Public Report, Voluae II (U),626 jAP 85
12. PERSONAL AUTHOR(S)

Raymond Szymanski, E&V Team Chairman

Interim Technica FROM Oct 84 yo 3 0 Sep 5 1985 November 3041

Evaluation Ada Programming Support Environment (APSE)
Validation

19. ABSTRACT (Contfinue on nrvere ifnecewawy and idedanfy by block number)

Activities and accomplishments of the Evaluation and Validation (E&V) Team are reported
f or FY1985. The purpose of the E&V Task, which is sponsored by the Ada Joint Program
Office (AJPO), is to develop techniques and tools that will provide a capability to
perform assessment of Ada Programming Support Environments (AJSEs) and to determine
conformance of APSES to the Common APSE Interface Set (CATS). As this technology is
developed, it is being made available to DOD components, industry, and academia.

2.DIST RIBUTI$ON/AVAILABI LITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIF4EO/UNLIMITEO @SAME AS RPT. 0 OTIC USERS 0 UNCLASSIFIED
22s. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL

Raymond Szymanski(5325-46AWLAF2

DO FORM 1473, 83 APR EDITION OP I JAN 73 IS OBSOLETE. UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE .-

TABLE OF CONTENTS

SECTION I - Project Technical Summary 1-1

APPENDIX A - Evaluation and Validation Technical Coordination
Strategy Document, Version 2.0A-I

APPENDIX B - Evaluation and Validation Public Coordination

Strategy Document, Version 2.0B-1

APPENDIX C - Minutes of the Evaluation & Validation (E&V)

Meeting December 1984 C-i

APPENDIX D - Minutes of the Evaluation & Validation (E&V)
Meeting March 1985D-I

APPENDIX E - Minutes of the Evaluation & Validation (E&V)
Meeting June 1985E-1

APPENDIX F - Minutes of the Evaluation & Validation (E&V)
Meeting September 1985F-i

APPENDIX G - CAIS Operational Definition Project Status G-i

APPENDIX H - Using Ada in the Real-Time Avionics Envirornent:

Issues and Conclusions (Masterts Thesis) by
Donald J. Witt, M.A., B.S., Captain, USAF- H-i

APPENDIX I - Position Papers Presented in June, 1985 I I
1) Single Project/Multiple APSEs - Jerry Brookshire
2) Ada Program Library Systems - Thomas Leavitt

% 3) Security in APSE M.B. Sury and E.W. Martin

Accesion For- - o

NTIS CRA&Q
DT C TAB
Ui.annou.,ced

By

Di-t lbteo. I

AvdIlJb !tty (Mlt+ '

iii

-r; '..,*-.",, --.-. .4

LIST OF FIGURES

Figure H-1 Extreme Architecture/Distribution Combinations H-26

Figure H-2 Typical Ada Life Cycles: One Parent and Two Children . . H-39

Figure H-3 Source Code for ADDSA#1-58

Figure G-1 Representation of a Compilation G-8

Figure G-2 An Editing SessionG-10

Figure G-3 Group Relationships G-3-3

Figure G-4 Access RelationshipsG-36

Figure G-5 Access Relationships- 37

Figure G-6 Mandatory Access LabelingG-40

Figure G-lA A Directed Graph G-83

Figure G-2A An Adjacency List Representation of a Directed Graph G-84

Figure G-3A A Node Model ExampleG-86

Figure G-4A A Representation of the Node Model Example G-87

Figure G-5A A Representation Using an Access Control Table G-90

4.'.

.r

iv

' -. . " .. : - ' .,. '..' .. v . -. . -,: - .*.. - ,- '- V .. - *: * - - -U -. - -

MI LV' OF 1'AIII1..

Table G-1 Account and Quota Attributes. G-11

Table G-2 GRANT attribute BNF... G-25

Table G-3 Predefined Access Rights. G-27

a.v

LA p --

~FCTON I

PROJECT TECHNICAL SUMMARY

1.1 Introduction

This report is the second in a series of annual technical reports

to be published by the Evaluation and Validation (E&V) Team. The
purpose of the E&V Public Report is to provide an overview of the many
technical accomplishments of the E&V Team during the preceding fiscal
year. This second report contains information resulting from E&V
activities during fiscal year 1985 (October 1984 - September 1985) which
is being made available for public review and comment. Contents of this
report reflect an observation of the E&V Team progress during the fiscal
year and should not be viewed as final representations of the technoloy
being developed.

1.2 Background

In June 1983 the Ada Joint Program Office (AJPO) proposed the
formation of the E&V Task and a tri-service E&V Team, with the Air Force
designated as lead service. The purpose of the E&V Task is to develop
the techniques and tools which will provide a capability to perform
assessment of Ada Programming Support Environments (APSEs) and to
determine conformance of APSEs to the Common APSF Interface Set (CAIS).
As the E&V technology is developed, it will be made available to the
community for use by DoD components, industry, and academia as deemed
appropriate by the respective organizations. In October 1983, the Air
Force officially accepted responsibility as lead service and designated
the Air Force Wright Aeronautical Laboratories (AFWAL) at Wright-Patterson
Air Force Base as lead organization. By November 1983, a comprehensive
E&V Plan was developed, and by December 1983 an E&V Team had been
established, with the first meeting held at Wright-Patterson Air Force
Base. In April 1984, an E&V Workshop was held at Airlie, Virginia. The
purpose of the Workshop was to solicit the participation of industry
representatives in the E&V Task. Many of the participants in the E&V
Workshop have chosen to remain involved in the E&V Task as Distinguished
Reviewers, and have contributed significantly to the accomplishments of
the E&V Team.

1.3 E&V Meetings

E&V Team meetings are held on a quarterly basis. The 5-7 December
1984, 5-7 June 1985, and 4-6 September 1985 meetings were held at the
Wright-Patterson Air Force Base. The 6-8 March 1985 meeting was held in
San Diego, California. The F&V Workshop was not held in 1985 due to the
low response to the call for papers. As a substitute, the E&V Team
hosted a Birds of a Feather session at the February 1986 SICAda meeting
in Los Angeles, California. Communication among EV Team members
throughout the year is accomplished primarily via the MILNET.

'-I

1.4 E&V Team Organization

The E&V Team is organized into the following four working groups:

a. Requirements Working Group (REQWG)

The PEQWG is responsible for reviewing life-cycle methodology
materials to determine life-cycle issues which should be addressed
by the E&V Team; developing an E&V Requirements Document; providing
analysis of E&V requirements to determine completeness,
traceability, testability, consistency, and feasibility;
identifying issues which may impact the development of E&V
technology but which do not necessarily correlate to APSE
components; and providing recommendations for development/
acquisition of E&V tools/aids.

b. Coordination Working Group (COORDWG)

The COORDWG is responsible for performing a literature search for
efforts relevant to the E&V Task; developing a Technical
Coordination Strategy Document which documents the relationship of
these efforts to the E&V Task; and profiding technical
presentations to the E&V Team on these related efforts. They are
also responsible for identifying professional organizations which
are technically related to the E&V Task; developing a Public
Coordination Strategy Document; preparing E&V Status Reports; and
developing and maintaining an F&V project reference list.

c. APSE Working Group (APSEWG)

The APSEWG is responsible for providing expertise on DoD and
commercial APSEs available within the DoD; providing presentations
to the E&V Team on these APSEs; identifying existing capabilities/
tests/tools associated with each APSE; and developing a Don APSE
Analysis Document.

d. Standards Evaluation and Validation Working Group (SEVWG)

The SEVWG is responsible for providing a forum for the development
of methodologies for evaluating and validating current, proposed or
future standards relating to APSEs; identifying issues affecting
the evaluation or validation of standards; suggesting validation
approaches or evaluation criteria; providing inputs to any
supported efforts developing evaluators or validators for
standards: and developing an APSE Validation Procedures Document
and a CAIS Analysis Document.

1.5 Conclusion

This E&V Public Report is being made available by the E&V Team in
order to solicit comments from those individuals who are not actively
involved in the E&V Task. All comments should be addressed to:

Raymond Szymanski
AFWAL/AAAF
Wright-Patterson AFB, Ohio 45433-6543
(RSZYMANSKI@ADA20)

1-2

" - -, ... - .-. - -...- ..-....--....-..... ' - . - -. . -.- -.. . - - .- . -.. .- .. '

N
APPENDIX A

EVALUATION and VALIDATION

TECHNICAL COORDINATION STRATEGY DOCUMENT

VERSION 2.0

29 AUGUST 1985 I

I
A-I

%-

The purpose of the Evaluation and Validation (E&V) Task, which is sponsored by

the Ada Joint Program Office (AJPO), is to develop the technology by whih
Ada Programming Support Environments (APSEs) will be evaluated and validated.
As the E&V technology is developed, it will be made available to the user

community for implementation by DoD components, industry, an academia as
appropriate. The purpose of this document is to provide lines of communication
between the E&V Task and other technically related DoD and industry efforts

and organizations. With respect to identifying and interfacing with other

efforts/organizations, the following areas have been addressed : 1) the name
of the technically related effort/organization; 2) purpose; 3) relationship to

the E&V Task; 4) benefits to the E&V Task; 5) benefits to the related effort
or organization; 6) impact on E&V Task schedules; 7) impact on related effort
or organization task schedule; 8) required j.val of coordination;
9) resolution of issues; and 10) focal point.

-A-2~A-2

Table of (Jiitentf.

1. INTRODUCTION '-

1.1 Objective of the Technical Coordination Strategy Document

1.2 Background A-6

2. SCOPE

3. APPROACH A-10

3.1 Invited Briefings A-IC
3.2 Technical Coordination Statements/COORDWG Briefings A-10

4. IDENTIFICATION/ELABORATION OF RELATED TECHNICAL EFFORTS A-il

4.1 Ada C31 Test and Evaluation A-Il
4.1.1 Purpose A-il
4.1.2 Relationship to the E&V Task A-Il
4.1.3 Benefits to the E&V Task A-I!
4.1.4 Benefits to the Related Effort/Organization A-1I
4.1.5 Impact on E&V Task Schedules ;-ii
4.1.6 Impact on Related Effort/Organization Schedules A-12
4.1.7 Required Level of Coordination A-12
4.1.8 Resolution of Issues A-1,
4.1.9 Focal Point A- K

4.2 Ada Integrated Environment A-12
4.2.1 Purpose A-12
4.2.2 Relationship to the E&V Task A-I
4.2.3 Benef - to the E&V Task A-l3
4.2.4 Benefits to the Related Effort/Organization
4.2.5 Impact on E&V Task Schedules t-13
4.2.6 Impact on Related Effort/Organization Schedules
4.2.7 Required Level of Coordination A- 13

4.2.8 Resolution of Issues A-i-
4.2.9 Focal Point

4.3 Ada Joint Program Office A-
4.3.1 Purpose
4.3.2 Relationship to the E&V Task
4.3.3 Benefits to the E&V Task
4.3.4 Benefits to the Related Effort/Organization

4.3.5 Impact on E&V Task Schedules
4.3.6 Impact on Related Effort/Organization Schedules
4.3.7 Required Level of Coordination 15
4.3.8 Resolution of Issues A-15
4.3.9 Focal Point A-15

* 4.4 Ada Language System A-16
4.4.1 Purpose A-16
4.4.2 Relationship to the E&V Task A-16
4.4.3 Benefits to the E&V Task
4.4.4 Benefits to the Related Effort/Organization -
4.4.5 Impact on E&V Task Schedules

A-3

4". 2 :, .. ' V ' . :""""" '. -,' ' ".. '"" ' -. . . • .- -. -'.- - ... '. . .•• - -

Ir

4.4.b Impact on Related Effort/Organizarion Schedules A-Y
4.4.7 Required Level of Coordination '-17

4.4.8 Resolution of Issues A-

4.4.9 Focal Point A-i7

4.5 Ada Program Design Language Evaluation Guidelines A-17

4.5.1 Purpose A-17

4.5.2 Relationship to the E&V Task

4.5.3 Benefits to the E&V Task

4.5.4 Benefits to the Related Effort/Organization

4.5.5 Impact on E&V Task Schedules

4.5.6 Impact on Related Effort/Organization Schedules '-

4.5.7 Required Level of Coordination

4.5.8 Resolution of Issues A
4.5.9 Focal Point -

4.6 Ada Test and Verification System

4.6.1 Purpose

4.6.2 Relationship to the E&V Task
4.6.3 Benefits to the E&V Task -9

4.6.4 Benefits to the Related Effort/Organization A--

4.6.5 Impact on E&V Task Schedules

4.6.6 Impact on Related Effort/Organization Schedules

4.6.7 Required Level of Coordination A-IS

4.6.8 Resolution of Issues
4.6.9 Focal Point A-IC

4.7 Ada Validation Organization

4.7.1 Purpose
4.7.2 Relationship to the E&V Task A-El

4.7.3 Benefits to the E&V Task A-2,

4.7.4 Benefits to the Related Effort/Organization A-21

4.7.5 Impact on E&V Task Schedules A-21

4.7.6 Impact on Related Effort/Organization Schedules
4.7.7 Required Level of Coordination

4.7.8 Resolution of Issues
4.7.9 Focal Point

4.8 Air Force Computer Resource Management Technology

4.8.1 Purpose
4.8.2 Relationship to the E&V Task

4.8.3 Benefits to the E&V Task

4.8.4 Benefits to the Related Effort/Organization

4.8.5 Impact on E&V Task Schedules -.

4.8.6 Impact on Related Effort/Organization Schedules

4.8.7 Required Level of Coordination ,7.-.U
4.8.8 Resolution of Issues

4.8.9 Focal Point
4.9 Common Ada Missile Packages

4.9.1 Purpose

4.9.2 Relationship to the E&V Task

4.9.3 Benefits to the E&V Task
4.9.4 Benefits to the Related Effort/Organization A-' I

4.9.5 Impact on E&V Task Schedules e
4.9.6 Impact on Related Effort/Organization Schedules A

4.9.7 Required Level of Coordination

'..

A-U

, %~ .. ~ *. A *~*~**,** ~ * ~ ,-'

4.9.6 Resolution of lssucs A-25
4.9.9 Focal Point A-25

4.10 Johnson Space Center Ada Project A-26
4.10.1 Purpose A-26
4.10.2 Relationship to the E&V Task A-26
4.10.3 Benefits to the E&V Task A-26
4.10.4 Benefits to the Related Effort/Organization A-26
4.10.5 Impact on E&V Task Schedules A-27
4.10.6 Impact on Related Effort/Organization Schedules A-27
4.10.7 Required Level of Coordination A-27
4.10.8 Resolution of Issues A-27
4.10.9 Focal Point A-27

4.11 KAPSE Interface Team/KAPSE Interface Team from Industry and Academia A-25
4.11.1 Purpose A-28
4.11.2 Relationship to the E&V Task A-28
4.11.3 Benefits to the E&V Task A-26
4.11.4 Benefits to the Related Effort/Organization A-28
4.11.5 Impact on E&V Task Schedules A-29
4.11.6 Impact on Related Effort/Organization Schedules A-29
4.11.7 Required Level of Coordination A-29
4.11.8 Resolution of Issues A-29
4.11.9 Focal Point A-30

4.12 Prototype Advanced Ada Programming Support Environment A-30D ;
4.12.1 Purpose A-30
4.12.2 Relationship to the E&V Task A-30
4.12.3 Benefits to the E&V Task A-30
4.12.4 Benefits to the Related Effort/Organization A-30
4.12.5 Impact on E&V Task Schedules A-31
4.12.6 Impact on Related Effort/Organization Schedules A-31
4.12.7 Required Level of Coordination A-*1
4.12.8 Resolution of Issues
4.12.9 Focal Point

4.13 Software Engineering Automation for Tactical Embedded Computer Systems A-32
4.13.1 Purpose A-32

4.13.2 Relationship to the E&V Task A
4.13.3 Benefits to the E&V Task A-32

4.13.4 Benefits to the Related Effort/Organization A -3

4.13.5 Impact on E&V Task Schedules A-32
4.13.6 Impact on Related Effort/Organization Schedules A-32

*4.13.7 Required Level of Coordination A- 33
S4.13.8 Resolution of Issues A- 33

4.13.9 Focal Point A-33
4.14 STARS - Application Thrust Area A-33

4.14.1 Purpose 4-33
4.14.2 Relationship to the E&V Task A-34

4.14.3 Benefits to the E&V Task A-34

4.14.4 Benefits to the Related Effort/Organization A-34

4.14.5 Impact on E&V Task Schedules A-34

4.14.6 Impact on Related Effort/Organization Schedules A-3L

4.14.7 Required Level of Coordination A-34

4.14.8 Resolution of Issues A-34

4.14.9 Focal Point A-35

A-5

4.15 STARS - Business Practices Thrust Area -
4.15.1 Purpose A-15
4.15.2 Relationship to the E&V Task A-35
4.15.3 Benefits to the E&V Task A-36
4.15.4 Benefits to the Related Effort/Organization A-36
4.15.5 Impact on E&V Task Schedules A-36
4.15.6 Impact on Related Effort/Organization Schedules A-36
4.15.7 Required Level of Coordination A-36

4.15.8 Resolution of Issues A-36

4.15.9 Focal Point A-36
4.16 STARS - Human Resources Thrust Area A-37

4.16.1 Purpose A-37
4.16.2 Relationship to the E&V Task A-37

4.16.3 Benefits to the E&V Task A-37
4.16.4 Benefits to the Related Effort/Organization A-38
4.16.5 Impact on E&V Task Schedules A-38
4.16.6 Impact on Related Effort/Organization Schedules A-38

4.16.7 Required Level of Coordination A-38
4.16.8 Resolution of Issues A-38
4.16.9 Focal Point A-38

4.17 STARS - Measurement Thrust Area A-39

4.17.1 Purpose A-39

4.17.2 Relationship to the E&V Task A-39

4.17.3 Benefits to the E&V Task A-39

4.17.4 Benefits to the Related Effort/Organization A-39

4.17.5 Impact on E&V Task Schedules A-39

4.17.6 Impact on Related Effort/Organization Schedules A- 0

4.17.7 Required Level of Coordination A-4O

4.17.8 Resolution of Issues A-40

4.17.9 Focal Point A-40

4.18 STARS - Methodology Thrust Area A-40

4.18.1 Purpose A-40

4.18.2 Relationship to the E&V Task A-41

4.18.3 Benefits to the E&V Task A- I

4.18.4 Benefits to the Related Effort/Organization A-41

4.18.5 Impact on E&V Task Schedules A-41

4.18.6 Impact on Related Effort/Organization Schedules A-41

4.18.7 Required Level of Coordination A-41

4.18.8 Resolution of Issues A-4I

4.18.9 Focal Point A-42

4.19 STARS - Software Engineering Environment Thrust Area A-L2

4.19.1 Purpose
A-42

4.19.2 Relationship to the E&V Task A-h2
4.19.3 Benefits to the E&V Task A-L3

4.19.4 Benefits to the Related Effort/Organization
A-43

4.19.5 Impact on E&V Task Schedules
A-h3

4.19.6 Impact on Related Effort/Organization Schedules
A-43

4.19.7 Required evel of Coordination A-43

4.19.8 Resolution of Issues A-44

4.19.9 Focal Point
4.20 STEP

A-4

4.20.1 Purpose
A-44

A-6

• .,'y we', ' [.\,e,.e,, ,.',' ,', T., , ,. -% './ "." r , ; , .. -, '. , ," . .. , -- ,', "- , , -

4. i,,uhi p to the E&; 'aS. A-45
4.20.3 Benefits to the E&V Task A-45
4.20.4 Benefits to the Related Effort/Organization A-45
4.20.5 Impact on E&V Task Schedules A-45
4.20.6 Impact on Related Effort/Organization Schedules A-46
4.20.7 Required Level of Coordination A-46
4.20.8 Resolution of Issues A-46
4.20.9 Focal Point A-46

4.21 Tactical Ada Guidance A- 4 7
4.21.1 Purpose A-47
4.21.2 Relationship to the E&V Task A-47
4.21.3 Benefits to the E&V Task A-47
4.21.4 Benefits to the Related Effort/Organization A-47
4.21.5 Impact on E&V Task Schedules A-47
4.21.6 Impact on Related Effort/Organization Schedules A-47
4.21.7 Required Level of Coordination A-48
4.21.8 Resolution of Issues A-48
4.21.9 Focal Point A-48

4.22 Virginia Polytechnic Institute APSE Validation Effort A-L8

4.22.1 Purpose A-- 8
4.22.2 Relationship to the E&V Task A-49
4.22.3 Benefits to the E&V Task A-49
4.22.4 Benefits to the Related Effort/Organization A-49
4.22.5 Impact on E&V Task Schedules A-49
4.22.6 Impact on Related Effort/Organization Schedules A-49
4.22.7 Required Level of Coordination A-50
4.22.8 Resolution of Issues A-50
4.22.9 Focal Point A-50

4.23 WWJCCS Information System A-51
4.23.1 Purpose A-51
4.23.2 Relationship to the E&V Task A-51
4.23.3 Benefits to the E&V Task A-51
4.23.4 Benefits to the Related Effort/Organization A-51
4.23.5 Impact on E&V Task Schedules A-51
4.23.6 Impact on Related Effort/Organization Schedules A-52

4.23.7 Required Level of Coordination A-52

4.23.8 Resolution of Issues A-52

4.23.9 Focal Point A-52

I. Appendix A A-53

1.1 Acronyms A-53

II. Appendix B A-57

II.1 COORDWG Members A-57

1l1. Appendix C A-55

111.1 Related Technical Efforts Matrix A-58

A-7

,4-,

1. INTRODUCTION

1.1 Objective of the Technical Coordination Strategy Document

The objective of the Technical Coordination Strategy Document (TCSD) is t.o
provide a mechanism whereby both Department of Defense (DoD) and contractor
technical efforts/organizations which are potentially related to the Evaluation
and Validation (E&V) of Ada Programming Support Environments (APSEs) Task, may
be identified. Specifically, the TCSD will identify : a) related technical
efforts; b) relationships between the E&V Task and each related effort; c) areas
of mutual benefit; d) impact of schedules; e) the level of coordination required
between the E&V Task and each related effort; and f) issues which require
resolution with respect to the mutual benefit of both the E&V Task and the
particular related effort involved.

1.2 Background

The purpose of the E&V Task, which is sponsored by the Ada Joint Program
Office (AJPO), is to develop the technology by which APSEs will be evaluated and
validated. The term "evaluation" represents a qualitative assessment of an APSE
component for which no objective standard exists. The term "validation"
represents a quantitative measurement of an APSE component for which both a
standard and metrics exist. Techniques and tools will be developed which will
provide a capability to perform assessment of APSEs and to determine conformance
of APSFs to the Common APSE Interface Set (CAIS), which is being developej by
the Kenel Ada Programming Support Environment (KAPSE) Interface Team (KIT) an-
their companion organization, the KAPSE Interface Team from Industry and
Academia (KITIA).

As the E&V technology is developed, it will be made available to the user
community for implementation by the DoD components, industry, and academia as
appropriate.

A-8

The overall goal of the TCSD is to establish line- of communi(at ion b.t,,
the E&V Task and other related DoD and industry efforts/organizations. It
essential to the success and effectiveness of the E&V Task as a w!,,,l,
coordinate with other related efforts. This type of coordination 8--
communication will keep other organizations and efforts abreast of the E&V Tac.
and its resulting technology and will identify those areas of evaluation an:
validation which are of mutual benefit.

During the December 1984 E&V Team meeting, the decision was made to combine
two of the five working groups, specifically, the Public Coordination Workin;
Group (PUBWG) and the Technical Coordination Working Group (TECWG). This

combination resulted in the establishment of the Coordination Working Grn.:
(COORDWG), whose scope encompasses both communicating/interfacing with rh.
public in terms of disseminating E&V information, as well a'
establishing/maintaining a technical interface between the E&V Task and other
technically related efforts. It is the responsibility of the COORDWG to : 1)
develop the TCSD; 2) provide technical presentations to the E&V Team on relatez
technical efforts identified; and 3) provide position papers throughout the
duration of the E&V Task which address particular aspects of the E&V Task with
related tasks/efforts. The COORDWG is responsible for both providing and
updating the status of these technically related efforts to the Team, as well as
enhancing this document in future revisions with the identification of
additional tasks/efforts and updated information on currently identifie:
efforts. In addition to these tasks, the COORDWG is responsible for trE
information contained in the Public Coordination Strategy Document.

This version of the TCSD was developed by combining the various 7einx:aL
Coordination Statements which were prepared by members of the E&V Team, who are
presently involved or associated with the identified task/effort. The follo-..:-
represents the Technical Coordination Statement template used by each E&V Tea-
member :

1. Name of the technically related effort

2. Purpose
3. Relationship to the E&V Task
4. Benefits to the E&V Task
5. Benefits to the related effort/organization
6. Impact on E&V Task schedules
7. Impact on related effort/organization schedules
8. Required level of coordination
9. Resolution of issues

10. Focal point

A-9

, . e, , . . , -. , , , ,',.,% " .. . " -' . *.- 2, , **, ,, C*, .•. -

I

Currently, two primary methods to establish and promote coordinatirjn Lt-, ,
the E&V Task and other related technical efforts/organizations havc ht.t
identified and are outlined below.

3.1 Invited Briefings

Invitations will be extended to particular individuals to attend the quarterly
E&V Team meetings as appropriate, for the purpose of briefing specific relatec
efforts. These briefings will provide interactive communication and dialogue
between the E&V Team members and the particular briefer with respect to exchangE
of technical information.

3.2 Technical Coordination Statements/COORDWG Briefings

Technical Coordination Statements will be used in conjunction with the metho'
indicated in paragraph 3.1. The purpose of these statements is to Identify a
related effort (or organization), and elaborate upon various aspects of this
relationship. Currently, ten specific relational aspects are identified on the
Technical Coordination Statement, as indicated above.

In addition, the COORDWG Chairperson (or Vice-Chairperson) will update the E&'.

Team on the status of various related technical efforts at the quarterly E&X
meetings. These briefings will adhere to the following format

NAME OF RELATED EFFORT/ORGANIZATION

PROGRAM MkNAGER (ADDRESS/PHONE)

PROGRESS STATEMENT (SIGNIFICANT EVENTS/MILESTONES) SINCE LAST UPDATE

DATE

A-10

'.
¢.

4. IDENIl iCAIIONiELABORATION OF RELATED TEkCiiICA-. LiiJK,'IS

The following technical efforts/organizations have been identified as b .
related to the E&V Task and are elaborated in the following paragraphs.

4.1 Ada C31 Test and Evaluation

4.1.1 Purpose

The purpose of this effort is to test and evaluate the effectiveness of using
an integrated Ada programming environment in an Air Force command, control,
communication and intelligence (C31) system software development project. Areas
to be evaluated include the use of Ada as a programming design language,
documentation, the quality and quantity of the code produced, and Lomnpiler
performance and productivity. In order to determine the effectiveness of Ada,
the software for a selected Air Force system acquisition will be implemented in
Ada as a parallel effort.

4.1.2 Relationship to the E&V Task

The results of this effort will be a technical report describing the results
of the test and evaluation. The results of this effort may aid in the
development of requirements and criteria for the evaluation and validation of
APSEs.

4.1.3 Benefits to the E&V Task

The information gained as a result of this effort may assist the E&V Tas. in
the development of APSE evaluation and validation requirements and criteria.

4.1.4 Benefits to the Related Effort/Organization

Any requirements and criteria for the evaluation of compilers developed before
this contract is awarded will aid in the evaluation of the Ada Integrated
Environment (AIE) Ada compiler.

4.1.5 Impact on E&V Task Schedules

No schedule impacts are currently identified.

A-11

6 ,. * *. ;-: ;. .. ., - : -. ., ,., . - . , . ,

4.-6 Impact on RtLa:ed Effort/Organization Schedules

No schedule impacts are currently identified.

4.1.7 Required Level of Coordination

At present, Elizabeth Kean is an active member of the E&V Team and will assist
in the coordination of this effort and the E&V Task.

4.1.8 Resolution of Issues

Issues identified within the E&V Task will be handled within the E&V Tasr..
Issues identified within the Ada C3I Test and Evaluation effort will be resolve-

through the Rome Air Development Center (RADC) chain of command, up to an:
including the AJPO.

4.1.9 Focal Point

The focal point is indicated below

Elizabeth Kean

Rome Air Development Center

Commercial : (315) 330-4325

Autovon : 587-4325

4.2 Ads Integrated Environment

4.2.1 Purpose

The purpose of this Air Force-directed effort is to design and develop a
Minimal Ada Programming Support Environment (MAPSE) including a state-of-tne-ar:
Ada compiler. The Ada compiler will be developed for rehosting and retargerin
to a number of computers. The MAPSE will also consist of software tools anr
aids to assist programmers and project managers in the development of Ada
software. Procedures for rehosting/retargeting the compiler and the MAPSE will
be developed under this effort.

A-12

4.2.2 kc.at :ital i. tu tht. Lc.V 1is

The product of this effort, a MAPSE, may eventually be evaluated and valiated
using the requirements and criteria developed under the E&V Task.

4.2.3 Benefits to the E&V Task

The AIE is the Air Force's implementation of a MAPSE. The AIE can be used as
an aid in determining the requirements and criteria for evaluating and
validating future APSEs.

4.2.4 Benefits to the Related Effort/Organization

The E&V technology developed under the E&V Task will aid in the assessment of
future software tools to be incorporated in the AIE. The CAIS will eventually
be implemented on the AIE. The CAIS and the CAIS validation capability will
provide standardization of interfaces and a method for validating the
implemented interfaces.

4.2.5 Impact on E&V Task Schedules

No schedule impacts are currently identified.

4.2.6 Impact on Related Effort/Organization Schedule

The CAIS will eventually be implemented on the AIE, therefore, the CAIS
validation schedule may impact the AIE effort.

4.2.7 Required Level of Coordination

At present, Elizabeth Kean is an active member of the E&V Team and a technical
evaluator on the AIE effort and will p.ovide coordination between this effort
and the E&V Task.

4.2.8 Resolution of Issues

Issues identified within the E&V Task will be handled within the E&V Task.
Issues identified within the AIE effort will be resolved through the Rome Air
Development Center (RADC) chain of command, up to and including the AJPO.

A-13

4.2.9 Focal Point

The focal point is indicated below

Donald Mark

Rome Air Development Center

Commercial : (315) 330-3398

Autovon : 587-3398

4.3 Ada Joint Program Office

4.3.1 Purpose

The purpose of the AJPO, which was established on 12 December 1980 by the
Under Secretary of Defense for Research and Engineering, is to manage the DoD's
effort to implement, introduce and provide life-cycle support for Ada. The AJP.
must ensure the implementation and maintenance of Ada as a consistent,
unambiguous standard recognized by the DoD and also by the widest possible
community. The AJPO must ensure the smooth introduction and acceptance of Ada
in the DoD as early as possible, consistent with the needs of individual
components. The AJPO must ensure the provision of life-cycle support for Ada
through the development of a robust Ada Programming Support Environment (APSE,
to improve productivity both in development and in continued evolution.

4.3.2 Relationship to the E&V Task

The AJPO is the sponsor of the E&V Task. The status of the E&V Task is

briefed to the AJPO at the quarterly Tri-Service review meetings.

4.3.3 Benefits to the E&V Task

The AJPO oversees all of the E&V Task activities and provides managerial
direction and funding to the E&V Task as necessary.

A-i4

L. I
V,- -

4.3.4 Benefits to the Re.&:.E Effort/Organization

The development of the E&V technology by the E&V Task supports th, At
objective of improving the productivity in development and continued e u'
of APSEs.

4.3.5 Impict on E&V Task Schedules

No schedule impacts are currently identified.

4.3.6 Impact on Related Effort/Organization Schedules

No schedule impacts are currently identified.

4.3.7 Required Level of Coordination

The AJPO focal point (LCDR Philip Myers) attends E&V Team meetings and is on
the distribution list for all E&V Team MILNET communication. In addition, the
E&V Team Chairperson (Raymond Szymanski) is required to brief the AJP on the
status of the E&V Task at quarterly Ada Tri-Service Reviews.

4.3.8 Resolution of Issues

All such issues should be brought to the attention of the AJPO by the EV Tea-
Chairperson. The AJPO has final authority in the resolution of such issjlts.

4.3.9 Focal Point

The focal point is indicated below

LCDR Philip Myers

Ada Joint Program Office

1211 South Fern St

RM C107

Arlington, VA 22:02

Commercial : (202) 694-0208

Autovon : 224-0208

MILNET MYERS@ECLB

A-1 5

4.4 Ada Language System

4.4.1 Purpose

The Ada Language System (ALS) is under the direction of the U.S. Army. Tre
purpose of this effort is to develop an APSE on the VAX/VMS 11/780 with a
MIL-STD-1815A host compiler targeted to the VAX. Other targets include tn:
Military Computer Family (MCF) Nebula instruction set architecture (ISA), a-c
the Intel 8086.

4.4.2 Relationship to the E&V Task

The technology developed through the E&V Task can be applied to the AL?
. development.

4.4.3 Benefits to the E&V Task

The ALS represents the Army's implementation of an APSE. The ALS can be usee
as an example in determining the criteria for performing evaluation an
validation on future APSEs.

4.4.4 Benefits to the Related Effort/Organization

The technology which is developed by the E&V Team will provide input to the
development of the ALS. Also, the CAIS, which is currently being developed b.
the KIT/KITIA, will be used with the ALS at a future time.

4.4.5 Impact on E&V Task Schedules

No schedule impacts are currently identified.

4.4.6 Impact on Related Effort/Organization Schedules

No schedule impacts are currently identified.

A-16

''o°~~~~~~....... "..o...........', . . "'o,- .. i'

Wk VT . -

4.4.7 Required Level oi Coordination

Coordination will be with the Army's ALS maintenance personnel. In additior,
Mr James Williamson is currently participating as the Air Force reprscrntac i'.
on the Tri-Service ALS testing team.

4.4.8 Resolution of Issues

All such issues should be brought to the attention of the AJPO by the E&V Tea-:
Chairperson. The AJPO shall be responsible for informing the appropriate Arny
personnel and seeking resolution of these issues.

4.4.9 Focal Point

The focal point is indicated below

Dennis Turner

DRSEL-TCS-Ada

U.S. Army/CECOM, Ft. Monmouth, New Jersey 07703

Commercial : (210) 544-4149

Autovon : 995-4149

4.5 Ada Program Design Language Evaluation Guidelines

4.5.1 Purpose

As part of a general plan to use the best available technology for software
development and maintenance, the Facilities Engineering and Systems Development
(FESD) branch of Transport Canada requires contractors to use an Ada program
design language (PDL). The Ada PDL evaluation guidelines will be use2 by
project managers to assess the compliance of software development proposals uritn
the requirement to use an Ada PDL. The Ada PDL evaluation guidelines are al s
intended to provide industry with an outline of the requirements for an Ada PDL
capability relevant to the needs of Transport Canada.

A-IT

• " • ." ." ." ." .. .-- ." .. " ... ". '.. .- ..' ., , -.. / .'. '- ., ..' .' . / = .. -' / -. .. -1

4.5.2 Rtat ionbhip to thu E , lais

The evaluation guidelines produced will be publically available in .arlyv l9 ,.
The E&V Team may acquire this document at that time.

4.5.3 Benefits to the E&V Task

The Transport Canada Ada PDL evaluation guidelines will contribute to the

guidelines being prepared by the E&V Team for evaluating PDL capabilities.

4.5.4 Benefits to the Related Effort/Organization

The Transport Canada Ada PDL guidelines will be enhanced by any constructive
criticism made by the E&V Team.

4.5.5 Impact on E&V Task Schedules

No schedule impacts are currently identified.

4.5.6 Impact on Related Effort/Organization Schedules

No impact is anticipated. The Transport Canada Ada PDL evaluation guidelines
will be produced as a first version early in 1985. The production of an upda-ed

second version will depend on the feedback resulting fron the first version. A

second version is not currently anticipated in the near term.

4.5.7 Required Level of Coordination

At present, Randal Leavitt is an active member of the E&V Team representinz
Canadian interests and activities. He will provide any needed coordinatio7
between the E&V Team and Transport Canada.

4.5.8 Resolution of Issues

Both Transport Canada and the E&V Team will resolve issues related to Ada PD>
evaluation guidelines independently. Transport Canada is interested, however,
in any constructive criticism that the E&V Team members may care to offer.

A-l8

-~~~~~~~~~~~~~.. ".."..............-...- •,. ".--. •., " . -- - J

4.5.9 Focal Point

The focal point is indicated below

Randal Leatitt

PRIOR Data Sciences, Ltd.

39 Highway 7, Bell Mews Plaza

Nepean, Ontario

K2H 8R2

Commercial : (613) 820-7235

MILNET : MAGLIERI@ECLB

4.6 Ada Test and Verification System

4.6.1 Purpose

The purpose of this effort is to design an Ada Test and Verification Syste-
(ATVS) which can be implemented as a set of computer-based software tools to
improve the reliability and maintainability of Ada software systems. It is
intended that this system will be applied during the coding, testing,
verification, and error detection/correction phases of software developenr.t.
This effort will begin with a study to determine the most advanced techniques
and capabilities to be included in the design. The ATVS will then be designed
as an integral component of an APSE. As a minimum, the ATVS shall be designed
for use with both the Air Force's AIE and the Army's ALS.

4.6.2 Relationship to the E&V Task

The ATVS will be a portable software tool residing on an APSE. Thus, the
technology developed by the E&V Task can be applied.

4.6.3 Benefits to the E&V Task

If the CAIS is available at the time of implementation, it will be used as the
interface.

A-19

ftft- f~ f A L ~~j. 1. ~ * ~ ~ ft A

*.. Benefits to the Related Effort/rgariization

The requirements and criteria for the evaluation and validation of APSE5 ma.
result from the initial analysis study and the resulting implementation.

4.6.5 Impact on E&V Task Schedules

No schedule impacts are currently identified.

4.6.6 Impact on Related Effort/Organization Schedules

The development of the CAIS may impact the schedules of this effort.

4.6.7 Required Level of Coordination

At present, Elizabeth Kean will relay any information to and from the RADC
focal point.

4.6.8 Resolution of Issues

Issues identified within the E&V Task will be handled within the E&V Task.
Issues identified within the ATVS effort will be resolved through the RADC chai.
of command.

4.6.9 Focal Point

The focal point is indicated below

Richard Evans

Rome Air Development Center

Commercial : (315) 330-3398

Autovon 587-3398

A-20

.,

. ."," .. "" =. ,'".. .'..- . --..-..- '" -",*'.- -'...- -'--', . -"- '-".-- . -. ...- : '- '- '"- - '-7

4.7 A,.. idatioik Organization

4.7.1 Purpose

The Ada Validation Organization (AVO) is sponsored by the AJPU. its purpose
is to ensure that developers of Ada compilers have correctly implemented the
standard Ada language (ANSI/HIL-STD-1815A-1983).

4.7.2 Relationship to the E&V Task

The AVO has been responsible for the development and implementation of an Ada
Compiler Validation Capability (ACVC) in order to determine conformance of Ada
compilers to the standard Ada language. The ACVC provides a capability to
validate one particular tool within an APSE and, as such, will be incorporated
within the E&V technology developed by the E&V Team.

4.7.3 Benefits to the E&V Task

The AVO has established formal procedures for validating Ada compilers and
mechanisms by which the validation procedures are executed. The expertise
gained through the development and implementation of these procedures will be
beneficial to the E&V Team as it begins to establish recommendations for formal
procedures for the implementation of E&V technology.

4.7.4 Benefits to the Related Effort/Organization

The E&V Task is responsible for developing evaluation capabilities, as well as
validation capabilities. The determination of evaluation criteria for the
assessment of compilers is but one of the many activities being performed by the
E&V Task. The Ada compiler evaluation capability will be of particular benefit
to the AVO.

4.7.5 Impact on E&V Task Schedules

No schedule impacts are currently identified.

4.7.6 Impact on Related Effort/Organization Schedules

No schedule impacts are currently identified.

A-21

4.7.7 RKeqirc.' LA-L' of Coordination

At present, Capt Albert Deese of the Language Control Fa ility at W;.i.

(ASD/ADOL) is an active member of the E&V Team, and coordination will bc thruu,.-

him.

4.7.8 Resolution of Issues

Issues of concern should be raised to the AJPO level if necessary for
resolution.

4.7.9 Focal Point

The focal point is indicated below

Thomas Probert

Institute for Defense Analyses

1801 N. Beauregard St.

Alexandria, Virginia 22311

Commercial : (703) 845-2517

Autovon : 289-1948 (ext. 2517)

4.8 Air Force Computer Resource Management Technology

4.8.1 Purpose

The over-all objective of the Air Force Computer Resource ,1anagemen:
Technology Program Element (64740F) effort is to apply advances in computer

resource management technology to the development and acquisition of Air Force

and other military systems.

4.8.2 Relationship to the E&V Task

This program element (PE) supports the development and application of

techniques to increase the performance and reduce the costs of mission-critica,
computer resources. It includes proposed programs from several Air Force
Systems Command Product Divisions to develop criteria for evaluating Ada
compilers. In addition, this PE includes programs which plan for and support
the introduction of the Ada programming language.

A-22I ".

. .. "

4.8.3 Benefits to the E&V Task

Various 64740F-sponsored programs may result in evaluation criteria for Ada
compilers and other Ada tools that may be useful to the E&V Task. Alr, n.7
software tools developed under 64740F may expand the APSE functionality
definition.

4.8.4 Benefits to the Related Effort/Organization

One project within the PE is concerned with software acquisition standards ane
mechanisms to improve the acquisition and support of computer resources. The
E&V criteria developed by the E&V Task will directly contribute to the goal of
this project.

4.8.5 Impact on E&V Task Schedules

No schedule impacts are currently identified.

4.8.6 Impact on Related Effort/Organization Schedules

No schedule impacts are currently identified.

4.8.7 Required Level of Coordination

At present, Debra Harto is an active member of the E&V Team and coordination
will be accomplished through her.

4.8.8 Resolution of Issues

The focal point for coordination will assist in resolving any issues that
arise which may adversely affect either effort.

4.8.9 Focal Point

The focal point is indicated below

William Letendre

ESD/ALEE

Hanscom Air Force Base, Massachusetts 01731

Autovon : 478-5113

A-23

4.9 Common Ada Missile Packages

4.9.1 Purpose

The objective of the Common Ada Missile Packages (CAMP) program is to explore
the feasibility of developing reusable software in Ada for armament
applications, and an associated parts composition system. CAMP is sponsored by
the Air Force Armament Laboratory (AFATL), the Air Force Munition and Ordnance
Program Element (64602F), the Software Technology for Adaptable Reliable Systems
(STARS) program, and the AJPO.

4.9.2 Relationship to the E&V Task

The product of this effort, APSE library components and associated parts
composition system, may eventually be evaluated using the requirements an2
criteria developed under the E6V Task.

4.9.3 Benefits to the E&V Task

The reusable software components and associated parts composition syste:
developed under the CAMP program, will result in new technology which may expan
the requirements and criteria for evaluating future APSEs. In addition, tht
common armament functions identified by the CAMP program may serve as a basis
for developing armament-specific compiler benchmarks for Ada compiler
evaluation.

4.9.4 Benefits to the Related Effort/Organization

The CAIS and CAIS Validation Capability (CVC) will provide standard interfaces

for future APSE libraries and supporting parts composition systems, such as are
being developed by the CAMP effort.

4.9.5 Impact on E&V Task Schedules

No schedule impacts are currently identified.

A-24

4. 9.6 I--pact on Related Efiort/Organization SIh.Jults

The following E&V Task schedules may impact the schedules of the CAMP effort.

CAIS Validation Capabilitv contract start - 2nd Quarter FY85

Draft CVC - Ist Quarter FY86

Version 1 CVC - Ist Quarter FY86

4.9.7 Required Level of Coordination

At present, Debra Harto is an active member of the E&V Team and coordination
will be accomplished through her.

4.9.8 Resolution of Issues

Issues identified related to the E&V Task will be addressed within the E&V
Task. Issues identified related to the CAMP program will be handled by the
AFATL CAMP Program Manager.

4.9.9 Focal Point

The focal point is indicated below

Chris Anderson

AFATL/DLCM

Eglin Air Force Base, Florida 32542

Commercial : (904) 882-2961

Autovon 872-2961

A-25

• - : -.". '.- ' .'.' % '- . -'.,"- .- " -" " '-..." ...:." ," ." ." .' ._." ,,.'... .-' '.., -" -..:< --: .: -..' . -' , I

4.10 Johnson Space Center Ada Project

4.10.1 Purpose

The Johnson Space Center (JSC) Testing and Analysis of DoD Ada LanguAgc
Products for NASA (JSC Ada Project) effort is sponsored by National Aeronautics
and Space Administration (NASA) Headquarters. The purpose of this effort is tc
perform testing and analyses of Ada software technology products being produced
by the DoD, evaluate their applicability to future NASA projects (such as rhE
Space Station) and develop a plan for their implementation in future NASA flight
systems as a standard. The JSC Ada Project was established as a result of the
Memorandum of Agreement (MOA) signed in June 1983 by Dr. Edith Martin, Deputy

Under Secretary of Defense for Research and Development Technology, and Dr. Jack
Kerrebrock, NASA Associate Administrator for Aeronautics and Space Technology.

This agreement establishes NASA/DoD cooperation in the DoD STARS Program, an,

recognizes APSE Beta Testing at the JSC and the University of Houston (at Clear
Lake City) as part of that cooperation.

4.10.2 Relationship to the E&V Task

Both tasks have a common goal of developing technology for use in evaluatinE
APSEs. But in addition to using technology provided by the E&V Task, the JSC

Ada Project will also develop specific evaluation criteria and tests based upo.
technology and tools used in current NASA spaceflight systems (e.g., the HAL/S
programming support system currently used as a NASA standard).

4.10.3 Benefits to the E&V Task

The JSC Ada Project will primarily focus on use of APSEs in the developzent of
prototype applications. Data and information from this activity will be used to
develop standards and criteria later used in evaluating APSEs for NASA. This
work, in conjunction with other studies and analyses at JSC, will identify
additional APSE features and tools needed for support of NASA spaceflightn

applications projects. Information provided by the JSC Ada project shouldi
assist the E&V Task in its development of standards and criteria for use in
evaluation of APSEs.

4.10.4 Benefits to the Related Effort/Organization

The technology developed by the E&V Task will be utilized in the JSC Ada

Project to assist in evaluating APSEs for NASA.

A-26

*L. P. . .- "..." A.-

4.10.5 Impact on E&V Task Schedules

No schedule impacts are currently identified.

4.10.6 Impact on Related Effort/Organization Schedules

An impact to the APSE evaluation criteria may occur.

4.10.7 Required Level of Coordination

At present, Mr. Terry D. Humphrey is an active member of the E&V Team, and is

also the Steering Group Subcommittee Chairman for prototype applications
development within the JSC Ada Project.

4.10.8 Resolution of Issues

Such Issues should initially be addressed within the respective task in which
they arise (i.e., the E&V Task or JSC Ada Project). Recommendations should then
be developed within that task to resolve such issues. The issues and associated

recommendations should then be presented to the other task leader. Task leaders
should work together to obtain resolution. If resolution is unattainable at
that level, both task leaders should elevate the issues for review by STARS
personnel.

4.10.9 Focal Point

The focal point is indicated below

Jack Garman

Johnson Space Center

Mail Code : FD

Houston, Texas 77058

(713) 483-4788

A-27

% It-%.

4.11 KAPSE Interface Team."KAPS. Interface Team from Industry and Academia

4.11.1 Purpose

The Kernel Ada Programming Support Environment (KAPSE) Interface Team (KIT) is
a Navy-led organization sponsored by the Ada Joint Program Office (AJPD). both.
the KIT and its companion Industry-Academia Team (KITlA), were formed by a M:.A
signed by the Assistant Secretary of each of the Services, and the Under
Secretary of Defense in early 1982. The KITIA consists of volunteer
representatives from industry and universities who provide technical expertise
to the KIT. Their purpose is to contribute to the achievement of

interoperability of applications databases and transportability of software
development tools ("I&T"). In order to accomplish this objective, the KIT/KITIA.
is defining a Common APSE Interface Set (CAIS) to which all Ada-related tools
can be written, thus assuring the ability to share tools and databases betwec-
conforming APSEs.

4.11.2 Relationship to the E&V Task

The CAIS is now a draft MIL-STD and is expected to become a full MIL-STD in
the near future. As such, a CAIS Validation Capability (CVC) must be developed
to enable determination of conformance to the MIL-STD by APSEs which implement
the CAIS. One of the goals of the E&V Task is to develop the CVC.

4.11.3 Benefits to the E&V Task

In addition to the definition of the CAIS, the KIT/KITIA activities of
developing requirements and criteria, improving upon the STONEAIAN definition of
an APSE, providing APSE-related terminology and definitions, examining the issu_
of determining compliance of the CAIS to the original requirements, etc., will
provide useful inputs and obviate the need for repetitive activities by the ES%
Task. In addition, E&V Tools developed in the future should be portable across
CAIS implementations.

4.11.4 Benefits to the Related Effort/Organization

The process of developing a CVC in parallel with the definition of the CA!5

will provide to the KIT/KITIA information related to problems encountered by the
E&V Task in understanding CAIS semantics, such as ambiguities an-
inconsistencies, thus enabling the KIT/KITIA to modify the CAIS definition
accordingly. The E&V Task will also help guide the KIT/kITIA in their choice of
how to express the semantics and the specifications themselves, based upo:.
experience with what can be validated best.

A-28

.

4.11.5 Impact on E&V Task Schedules

The following KIT/KITIA schedules may potentially impact the E&'. Tas
schedules.

CAIS Draft Version 2 - January 1986

CAIS MIL-STD Version 2 - January 1987

4.11.6 Impact on Related Effort/Organization Schedules

The following E&V Task schedules may impact the schedules of the KIT/KITIA.

CVC contract start - 1st Quarter of FY86

CV- Version 1 - Ist Quarter of FY87

CVC Version 2 - 4th Quarter of FY87

CVC Version 3 - 3rd Quarter of FY88

CVC Version 4 - 2nd Quarter of FY89

4.11.7 Required Level of Coordination

There are several E&V Team members who are also members of the KIT/KITIA.
Areas of common interest are coordinated through these common representatives.
The representatives are Virginia Castor. Elizabeth Kean, Timothy Lindquist,
Patricia Oberndorf, Paul Reilly, and Guy Taylor.

4.11.8 Resolution of Issues

Issues of concern should be coordinated through the common E&V-KIT/K1TIA
representatives and raised to the level of team leaders if necessary for
resolution.

A-29

/¢ . .-. . ..z... ° ...- ..- . "3 . z_ "..-/ °..$ > 2 €.- '£.2 ¢e *2tL'3,
"

'I

4.11.9 koLal Point

The focal point for the KIT/KITIA is indicated below

Patricia Oberndorf

Naval Ocean Systems Center (NOSC)

Code 8322

San Diego, California 92152

a.. Commercial (619) 225-6682

Autovon 933-6682

4.12 Prototype Advanced Ada Programming Support Environment

4.12.1 Purpose

The purpose of the Prototype Advanced Ada Progra=ming Support Envirowne7:

(PA-APSE) project is to combine research into advanced APSE features, with

support for the KIT.

4.12.2 Relationship to the E&V Task

The E&V Task is concerned with developing criteria for judging the quality an2

value of APSEs. The PA-APSE project investigates potential APSE features whicf.

may be found to be required or desirable, and so included in the fearurt-

considered by E&V.

4.12.3 Benefits to the E&V Task

The PA-APSE project will identify APSE features of potential interest to tht

E&V Task, and the qualities of those features which are desirable.

4.12.4 Benefits to the Related Effort/Organization

The E&V Task may identify potential APSE features which should be further

investigated by the PA-APSE project.

A-30

I- ; -. i, ." ' ; ' ,' , : :_, - e , , , .. , ' - '- - , ,-: '. .. ,•. . -' , " '

, Impact on E&V Task Scheduler,

No s h)wdule impacts are currently identified.

4.12.6 Impact on Related Effort/Organization Schedules

No schedule impacts are currently identified.

4.12.7 Required Level of Coordination

Mutual information flow is recommended. This can be provided via the
communication paths already established between the KIT and the E&V Team.

4.12.8 Resolution of Issues

Such issues should be brought to the attention of the E&V Chairperson, and the
PA-APSE contract monitor.

4.12.9 Focal Point

The focal points are indicated below

Frank Belz (Project Manager at TRW)

TRW DSG

One Space Park

R2/1127

Redondo Beach, California 92078

Commercial : (213) 535-1623

Patricia Oberndorf (Contract Monitor)

Code 8322

NOSC

San Diego, California 92152

Commercial (619) 225-6682/7401

A-31.

A.

".
i.

4.13 Software Engineering Automation for Tactical Embedded Computer Systez

4.13.1 Purpose

The Software Engineering Automation for Tactical Embedded Computer Systems
(SEATECS) project is an internal Naval Ocean Systems Center (NOSC) effort which

, conducts research into environment construction issues. A set of Top Level
Requirements has been developed, and a proposed environment architecture will
soon be published. The project also includes an experimental environment which
is used to conduct investigations into various proposed environment features.
Although SEATECS is not exclusively concerned with APSEs, all of the SEATECS

work is applicable to APSEs.

4.13.2 Relationship to the E&V Task

SEATECS is involved in establishing and investigating potential environwent
features. Such features could be of interest to the E&V Task. In addition,

SEATECS seeks to resolve various issues in environment construction which could

be of importance to the E&V Task.

4.13.3 Benefits to the E&V Task

SEATECS will identify various aspects of environments which are important to a
potential user, but which are often over-looked in current approaches to
environment construction.

4.13.4 Benefits to the Related Effort/Organization

The E&V Task may identify issues which are appropriate for investigation using
the SEATECS approach.

4.13.5 Impact on E&V Task Schedules

No schedule impacts are currently identified.

4.13.6 Impact on Related Effort/Organization Schedules

No schedule impacts are currently identified.

A-32

4.13.7 Required Level of Coordination

Mutual information flow is recommended. This can be provided via thy
communication paths already established between NOSC and the E&V Team.

4.13.8 Resolution of Issues

Such issues should be brought to the attention of the E&V Chairperson, and tIhe
SEATECS project manager, Howard Harvey. The KIT Chairperson, Patricia
Oberndorf, will act as liaison as required.

4.13.9 Focal Point

The focal point is indicated below

Howard Harvey

Code 8322

NOSC

San Diego, California 92152

Commercial : (619) 225-6682/7401

4.14 STARS - Application Thrust Area

4.14.1 Purpose

The STARS Application Thrust Area is three-phased in nature and can be
summarized as follows : Phase I - Learning/Collection. Because of the need to
get some early visability, this phase aims at accelerating the use of improved
software tools and methods on DoD systems developments without creating undue
start-up costs or schedule risks. While longer term competitive procurement

activity will be initiated in this phase, selective application-specific
prototyping will be initiated immediately where results and concepts can be
applied for high immediate payoff for technology transition; Phase 11 - Major
Development and Refinement. Some Phase I tasks will continue but the major
thrust is in the development contracting initiative begun in Phase I to
concentrate in acquisition of component repositories and insertion of components
into system building harnesses and prototyping scenarios for a few important
application areas; and Phase III - Completion and Transition to Services. Some
of the basic technology work will continue but the main focus will be in
technology transition of results into services and industry.

A-33

.* - *. .. - ..,¢. o , , . ~.r. . .. *... , , , . -D...,- . > -. *,: . ,, .,.-

4. 14.2 Relationship to tht E&V Task

Like the E&V Task, the STARS Application Thrust Area is concerned witv
ensuring that quality software tools are acquired and/or developed, ar
implemented in mission critical software development efforts. Both tasks ta-.
complement each other in this respect. Further, both tasks are concerned witr.
transitionin their respective technologies to the user community in a timely
manner.

4.14.3 Benefits to the E&V Task
-h

The STARS Application Thrust Area can benefit the E&V Task -n terms of
providing insight into the application of reusable software components (e.g.,
reusable libraries), as well as providing a perspective on software componen:
composition, access methods, etc., and matching findings against Ada
capabilities with respect to establishing guidelines for future development
efforts.

4.14.4 Benefits to the Related Effort/Organization

The E&V Task can benefit the STARS Application Thrust Area by providing inp't
into the required functionality of various software tools and resources which
would ensure the development of quality components.

4.14.5 Impact on E&V Task Schedules

No schedule impacts are currently identified.

4.14.6 Impact on Related Effort/Organization Schedules

No schedule impacts are currently iderntified.

4.14.7 Required Level of Coordination

At present, lines of communications in terms of an E&V/STARS liaison are beini
investigated.

4.14.8 Resolution of Issues

Once such issues are identified, they should initially be addressed within thE
specific task in which the issue arose (i.e., E&V or STARS Application).
Recommendations should then be developed within that task to resolve such.
issues. The issues and associated recommendations should then be presented to
the other task leader. Task leaders should work together to obtain resolution.
If resolution is unattainable at that level, both task leaders should elevatc
the issues for review by AJPO and STARS personnel.

A-34

-7:-2'-7 .X - U6- VW.W .- Ow r 'W -' I

4.14.9 Focal Point

The focal point is indicated below

Robert D. Kolacki

Naval Electronic System Command

Elex 8141B NC #1

Room 5E40

Washington D.C. 20363

Commercial : (202) 692-8484

MILNET : KOLACKI@NRL

4.15 STARS - Business Practices Thrust Area

4.15.1 Purpose

The purpose of this effort is to improve the acquisition management of missio
critical computer resources by the development of acquisition practice guidance
based on past experience and by the integration and development of automated
tools to facilitate acquisition/project tracking, monitoring, estimation, and
interface with the development process. These improvements will be developed to

be consistent and compatible with the defense system acquisition structure.
Subgoals to improve business practices include : 1) identify and encourage the
use of current effective practices which have not been institutionalized; 2)
define better contracting mechanisms and incentives for defense systems
software; 3) develop an integrated set of tools to facilitate software

acquisition; 4) incentivise reuse of software; 5) apply expert systems
technology to automate and facilitate software acquisition; and 6) interface the
software acquisition tools to the software development environment.

4.15.2 Relationship to the Z&V Task

One of the goals of the E&V Task is to develop evaluation criteria for APSE
components with respect to the defined functionality of each tool. Since the

objective of the STARS Business Practices Thrust Area is to develop and improve
acquisition practices for mission critical computer resources, the E&V Task can
provide useful input in terms of determining functional adequacy of various
mission critical tools and resources which will be developed or acquired.

A-35

I "

4.15.3 bt:efits to the E&V Ta.k

This effort can benefit the E&V Task by providing input in terms of proje, i
traiking, monitoring, estimation, etc., with respect to potential software toou
and aids development efforts which may be required in order to perfori
evaluation and validation of APSE components.

4.15.4 Benefits to the Related Effort/Organization

The E&V Task can benefit the STARS Business Practices Thrust Area by providinE
input with respect to determining the appropriateness of various mission
critical computer resources in terms of component functionality prior to a
particular tool/resource development acquisition.

4.15.5 Impact on E&V Task Schedule.

No schedule impacts are currently identified.

4.15.6 Impact on Related Effort/Organization Schedules

No schedule impacts are currently identified.

4.15.7 Required Level of Coordination

At present, lines of communications in terms of an E&V/STARS busines!
Practices liaison are being investigated.

4.15.8 Resolution of Issues

Once such issues are identified, they should initially be addressed within the
specific task in which the issue arose (i.e., E&V or STARS Business Practices).
Recommendations should then be developed within that task to resolve such

issues. The issues and associated recommendations should then be presented to
the other task leader. Task leaders should work together to obtain resolution.
If resolution is unattainable at that level, both task leaders should elevate
the issues for review by AJPO and STARS personnel.

4.15.9 Focal Point

The focal point is indicated below

.5

Philip S. Babel

ASD/EN (CRFP)

A-36

-. 5~.~* ~ ~~ .-

Wright-Patterson AFB, Oil 45433-6543

Commercial : (513) 255-3656

Autovon 785-3656

MILNET BABELP@WPAFB-JALCF

4.16 STARS - Human Resources Thrust Area

4.16.1 Purpose

The objective of this effort is to provide the DoD by 1991 with established
programs in career planning, training, and education which will provide and
maintain the personnel resources needed to satisfy the STARS's goal. To meet
this objective, the Human Resources Working Group (HRWG) recognizes the need for
concurrent implementations of efforts in research, development, and insertion.
Although the details of a Human Resources Program Plan have not been completed,
the HRWG has definitized specific activities required to meet the thrust area
objective. A major task of the HRWG is to determine what is presently being
done in these areas and how this work can be adopted or redirected to support
the STARS's goal.

4.16.2 Relationship to the E&V Task

One of the characteristics to be evaluated by the E&V Task is APSE usability.
One of the major concerns of the Human Resources Thrust Area is the design of
highly usable systems.

4.16.3 Benefits to the E&V Task

The Human Resources Thrust Area is focusing on steps that can be taken to
improve the usability of future environments, while the E&V Task is focusing on
developing the technology necessary to evaluate current and future environments.
As a consequence of the STARS work, a greater understanding of the
characteristics leading to the design of highly usable systems should be gained.
This should, in turn, support an approach to evaluating usability which is based
on an analysis of these characteristics (as compared to an approach which is
purely empirical).

A-37

4.lb.-. btl, CItF tL, the Related Effort/Organlz;llon

Progress within the Human Resources Thrust Area depends on an inrtrj
understanding of the rharacteristics leading to highly uible system, (in(1Li,,

APSEs). It is anti. ipated that the E&V Task will lead to the tolle tioo r
empirical data that will be useful in identifying th,--c characteristic-s.

4.16.5 Impact on E&V Task Schedules

No schedule impacts are currently identified.

4.16.6 Impact on Related Effort/Organization Schedules

No schedule impacts are currently identified.

4.16.7 Required Level of Coordination

It is intended that a technical liaison be established between the E&V Tas,
and the STARS Human Resources Thrust Area in the near future.

4.16.8 Resolution of Issues

Issues should be addressed via coordination between the STARS Joint Progra-
Office and the E&V Team.

4.16.9 Focal Point

The focal point is indicated below

Joseph Kernan

Commander

US Army Communications-Electronics Command

AMSEL-ICS-ED

Ft Monmouth, New Jersey 07703

.

A- 38

i%

4..17 STARS - Mcas,::.L:-.t Thrust Area

4.17.1 Purpose

This task, which is sponsored by the STARS program, is concerned with thy.
development and use of measures to support evaluations and comparisons of

software products, and of the processes associated with software development and
support. The strategy for the Measurement Thrust Area includes establishing
success criteria for the other task areas, performing cost/benefit analyses of
various opportunities, collecting baseline data against which to measure
progress, instrumenting automated support environments for data collection, and
developing techniques for testing hypotheses and models re'ated to software
development and in-service support. Thus, this area is important not only for
improving DoD programs, but also for assessing how well the STARS program is
meeting its objectives.

4.17.2 Relationship to the E&V Task

The development of quantitative indicies to support comparision is key to both
efforts. The Measurement Thrust Area of STARS is concerned with a broader area
than the E&V Task.

4.17.3 Benefits to the E&V Task

One concern of the Measurement Thrust Area is the instrumentation of auto-ave2

environments for data collection. Progress in this area will directly bcnef:r
the E&V Task.

4.17.4 Benefits to the Related Effort/Organization

The E&V Task is confronted with many of the same issues stemming from the

effort to measure APSE characteristics of importance to potential uscrs.
Success in the E&V Task will require the development of objective, reliable
procedures for measuring these characteristics, some of which (e.g.,
"usability") are difficult to pin down precisely. Many of the lessons learned,
and measurement procedures resulting from the E&V Task will have direct
relevance to the Measurement Thrust Area.

4.17.5 Impact on E&V Task Schedules

No schedule impacts are currently identified.

A- 39

4.17.6 Impact on Related Eflort/Organization Schedules

No schedule impacts are currently identified.

4.17.7 Required Level of Coordination

Plans are currently underway to establish a technical liaison between the E&.
Task and the STARS Measurement Thrust Area.

4.17.8 Resolution of Issues

Issues should be addressed via coordination between the STARS Joint Progra-
Office and the E&V Team.

4.17.9 Focal Point

The focal point is indicated below

Joe Cavano

RADC/COEE

Griffis AFB, New York 13441

MILNET CAVANO@RADC-MULTICS

4.18 STARS - Methodology Thrust Area

4.18.1 Purpose

The purpose of the STARS Methodology Thrust Area is to identify (specify) a
set of methodologies from which a program manager can intelligently select a
methodology for use in his/her project. To accomplish this objective, thE

specified set of methodologies can contain existing methodologies, ne.
methodologies, or some combination of methodologies that, when integrated withi-
a software engineering envirorinent, satisfy the project manager's requirements.
In other words, the Methodology Thrust Area will not define and develop a whole
new set of methodologies for use on DoD programs; it will retain and apply as
much as possible from those that already exist.

A-4O

NL

.4

79~~~~~~~~~~~ ~ ~ ~ ~ ~ ~ _' W-
-.. -11 -I

-17W7'6,--. F kr _ V- - V

4.18.2 Relationship to the E&V Task

As technology is developed to evaluate life-cycle software methodooi'es, it
should indicate which methodologies are better than others, and encoura~e too:
set developers to implement those methodologies. At some point, the evaluation
of the APSE should determine what methodologies are supported, evaluate then,
and indicate to what extent the tool set supports them.

4.18.3 Benefits to the E&V Task

The E&V Task will benefit from the definition of technology to evaluate
methodologies implemented on an APSE. Measures could possiLly be developed
which could be used on E&V tools and tool sets.

4.18.4 Benefits to the Related Effort/Organization

Even though a methodology is evaluated abstractly as good, bad, or somewhere
in between, the tool set implementing that methodology can severely impact its
usefulness. The E&V technology to evaluate tools and tool sets, should help in
determining this aspect of the problem. Also, the E&V technology should assist
in characterizing, evaluating, and selecting methodologies, and provide measures
to accomplish this.

4.18.5 Impact on E&V Task Schedules

No schedule impacts are currently identified.

4.18.6 Impact on Related Effort/organization Schedules

No schedule impacts are currently identified.

4.18.7 Required Level of Coordination

Plans are currently underway to establish a technical liaison between the E&V
Task and the STARS Methodology Thrust Area.

4.18.8 Resolution of Issues

Issues should be identified, properly specified, and discussed within the team
in which the issue originated. The issue should then be forwarded via the

MILNET to the chairperson of the other team. The two chairpersons should
determine how to address and resolve the issue.

A4

A-hi

/ - . .°e~ . e~ . . --. ,, .- ,. - -. ,

'4.18.9 Focal Point

The focal point is indicated below

Peter Fonash

Army Material Command

A.CDE-SB

5001 Eisenhower Avenue

Alexandria, Virginia 22333-0001

Commercial : (202) 274-9318

MILNET : FONASH@ECLB

4.19 STARS - Software Engineering Environment Thrust Area

4.19.1 Purpose

The Software Engineering Environment (SEE) is sponsored by the Softwart
Technology for Adaptable Reliable Systems (STARS) Program. A sofrware
engineering environment is an integrated system that supports mission-critical

computer software over the entire life-cycle, from the initial statement of the
requirements of the software to the support of the operational software. The
three major objectives of the SEE Thrust Area are : 1) to define, design, an:
develop a production-quality SEE which can be used by all the Services; 2) to

lay a solid foundation for the continuing evolution and technical advance of
software engineering environments (beyond the STARS timeframe); and 3) to
transition the 1990's environment to the services and to the Software

Engineering Institute (SEI) for actual use by the services.

4.19.2 Relationship to the E&V Task

One of the goals of the SEE Thrust Area is to produce a high quality Join!
Service SEE (JSSEE). As such, principles which will guide this thrust area

include emphasis on production quality tools which reflect human engineering
features, and which encourage good software engineering practices. The SEE an2

E&V Tasks will address common areas of interest and can benefit from one another

in the research/technology common to both.

A-42

I. , ,.ij ' .. ' , ' .' ..' .. -..

-.19.3 Benefits to the E&V Task

The SEE Task will result in the definition and preliminary design oa a JS.,
based upon careful review of life-cycle methodologies, tool fun(tiri2tiis,
etc. The rationale which is used by the SEE Team to design the JSSEE, wi11
provide useful requirements criteria to be addressed by the E&V Team.

4.19.4 Benefits to the Related Effort/Organization

The evaluation technology developed via the E&V Task will enable the JSSEE
Team to assess the tools being incorporated within the JSSEE. The validation
technology developed via the E&V Task will enable the JSSEE Team to deterine
JSSEE compliance with the CAIS , which is currently under development by the
KIT/KITIA.

4.19.5 Impact on E&V Task Schedules

No schedule impacts are currently identified.

4.19.6 Impact on Related Effort/Organization Schedules

The following E&V Task schedules, with respect to the CAIS Validation

Capability (CVC), may impact the JSSEE schedules.

Contract start - Ist Quarter FY86

CVC Version I st Quarter FY87

CVC Version 2 - 4th Quarter FY87

CVC Version 3 - 4th Quarter FY88

CVC Version 4 - 4th Quarter FY89

4.19.7 Required Level of Coordination

At present, Ms. Ronnie Martin is an active member of both the E&V Team and the
JSSEE Team. In addition, the E&V Team Chairperson, Raymond Szymanski, is on the
distribution list for all JSSEE MILNET communications.

A-43

) .. , '. -- 0 - I " . - . -- -. 7

.:. i kesolution of Issues

Once such issues are identified, they should initially be addressed within tr.

specific task in which the issue arose (i.e., E&V or SEE). Recom-n dat .
should then be developed within that task to resolve such issues. Tne issJ,_,
and associated recommendations, should then be presented to the other tas.
leader. Task leaders should work together to obtain resolution. If resolutior
is unattainable at that level, both task leaders should elevate the issues fc.
review by STARS and AJPO personnel.

4.19.9 Focal Point

The focal point is indicated below

Phil J. Andrews

Naval Sea Systems Command

SEA 61R2

* Washington DC 20362

Commercial : (202) 692-9761

Autovon 222-9761

MILNET PANDREWS@ECLB

4.20 STEP

4.20.1 Purpose

The Software Test and Evaluation Project (STEP), Phases III and IV, is
sponsored by the Director Defense Test and Evaluation (DDT&E) and the STARS
program. The purpose of STEP is to aid in the development and implementation of
new DoD guidance and policy for the test and evaluation of computer software for
mission critical applications. Principal subgoals include the stimulation of
tool development, the support of policy development, and the identification of
research issues and directions in the area of software testing. Principal
recommendations from the previous STEP phases are intended to establish a chain
of test planning, documentation, and evaluation criteria which starts at the
most general planning document (the Test and Evaluation Master Plan, or TEMP)
and proceeds through the plans and procedures implemented by the project
offices, development organizations, and independent test organizations. Phases
IlII and IV of STEP, which are currently underway, are designed to define the
technology and provide implementation support for these recommendations.

A-44

X .A'''' " ." , ', . . . -

R lelations6lp to the E&V Task

There are at least three areas in which STEP and the E&V Task are relat : a,
STEP is tasked to develop new guidance statements, as needed, for softwairt- IL-
and evaluation (T&E), as well as the necessary implementation methods. Wort, 1. .
this area is intended to address the policy-related issues so that tiqe. -
technology receives the support that is needed to put it into practice. Tnis
would include any modifications to DoDD 5000.3 and attendant Service
regulations, etc., which would require TEMPs to report the results of the
evaluation and validation of support software; b) STEP is tasked to produce T6E
management and operating plans, and demonstration and qualification procedures.
The procedures for inclusion of qualified tools in TEMP specifications and
lower-level test plans will also be defined. These t, sks address the
technology-related problems involved in the qualification of software tesring
tools for DoD use. This is, in many ways, a subset of the work to develop the
E&V technology; and c) STEP is tasked to provide functional requirements for
APSE test envirornments. The requirements produced will need to be supported by
the E&V technology.

4.20.3 Benefits to the E&V Task

The E&V Task will benefit from STEP's efforts in at least two ways. First of
all, the E&V technology will receive the policy support needed which Will
accelerate its use. Secondly, efforts to develop E&V technology for application
to testing tools should benefit from the qualification procedures developed by
STEP.

4.20.4 Benefits to the Related Effort/Organization

The efforts of the E&V Task will allow the insertion of demonstrated risk
reduction technology into the acquisition cycle. The qualification procedures
developed by STEP will be elaborated and inserted into an environment where the
standard operating procedures include the evaluation and validation of support
software. Furthermore, the functional requirements for APSE test enviroments
to be developed by STEP will be supported by a technology which ensures their
implementation.

4.20.5 Impact on E&V Task Schedules

No schedule impacts are currently identified.

A-45

%. . , . . . o - . . , . . . -

4.20.6 Impact on Related Effort/Organization Schedules

No schedule impacts are currently identified.

4.20.7 Required Level of Coordination

At present, Ms. Ronnie J. Martin is serving as STEP's liaison to the E&V Task.
However, if both tasks are to capitalize upon the obvious opportunities for
mutual benefit, additional mechanisms for increased coordination and support
should be explored.

4.20.8 Resolution of Issues

Once such issues are identified, they should initially be addressed within the
specific task in which the issues arose (i.e., STEP or E&V). Recommendations
should then be developed within that task to resolve such issues. The issues,
and associated recommendations, should then be presented to the other task.
Task leaders should work together to obtain resolution. If resolution is

unattainable at that level, both task leaders should elevate the issues for
review by DDT&E, STARS, and AJPO personnel, as appropriate.

4.20.9 Focal Point

The DDT&E and STARS focal points, respectively, are indicated below

Charles K. Watt

Director Defense Test and Evaluation

Room 3E (1060)

The Pentagon

* Washington D.C. 20301

Commercial : (202) 695-7171

Joseph C. Batz

Acting Director, STARS Joint Program Office

Room 3D 139 (Fern St/C107)

The Pentagon, Washington D.C. 20301

Commercial (202) 694-0208

A-4-6

" . ' ., . . ." ' .. ., . . - '. .-. , . - --. . "-" . - " • . - . - , " .. ,.. .*" .* .-" . , . . " -*b

Autovon 224-0208

4.21 Tactical Ada Guidance

4.21.1 Purpose

The purpose of the Tactical Ada Guidance (TAG) program, which is sponsored by
the Air Force Armament Laboratory (AFATL) and the Air Force Cmputer Resource
Management Technology Program Element (64740F), is to demonstrate the use of Ada
in a real-time armament system. Specifically, the software in the Medium Range
Air-to-Surface Missile (MRASM) Test Instrumentation Controller (TIC) computer is
being redesigned and implemented in Ada.

4.21.2 Relationship to the E&V Task

One of the by-products of this effort is the identification of Ada compiler
implementation-dependent features that are particularly desirable for armament
applications. These features may be useful in defining application-specific
metrics for Ada compilers.

4.21.3 Benefits to the E&V Task

The TAG program will result in recommendations for application-specific (i.e.,
armament) evaluation criteria for Ada compilers.

4.21.4 Benefits to the Related Effort/Organization

No benefits are identified. The TAG program concluded in May 1985, prior to

any E&V technology transition.

4.21.5 Impact on E&V Task Schedules

No schedule impacts are currently identified.

4.21.6 Impact on Related Effort/Organization Schedules

No schedule impacts are currently identified.

A-47

lot

•~W " o ..

4.. it ired Level of Coordinatior.

At present, Debra Harto is an ar tive member of the E&V Team and coordinat --
will be through her.

4.21.8 Resolution of Issues

Issues identified which relate to the E&V Task will be handled within the E&.

Task. Issues identified which relate to the TAG progran will be resolved by th.
AFATL TAG Program Manager.

4.21.9 Focal Point

The focal point is indicated below

Chris Anderson

dAFATL/DLCM

Eglin Air Force Base, Florida 32542

Commercial : (904) 882-2961

Autovon : 872-2961

4.22 Virginia Polytechnic Institute APSE Validation Effort

4.22.1 Purpose

The Virginia Polytechnic Institute (VPI) and State University APSE Validatio-
Effort is a research project conducted by the VPI Department of Computer Science
for the AJPO through the Office of Naval Research. The purpose of the effort i5
to identify and address research issues related to, and supporting AP6I
validation. Based on a position paper and proposal delivered to the KITIL
meeting in June of 1982 by Tim Lindquist, an initial effort addressin;

validation needs in an APSE was conducted during the summer of 1982. This study

raised issues indicating the need for an APSE model able to accommodatE

distributed and secure APSEs. It further indicated a need to address validation
of a kernel set of APSE facilities to achieve transportability of APSE tools.
Subsequent efforts on this project have detailed an APSE model based on the Open
Systems Interconnection (OSI) model, and have developed an Abstract Machine
approach to specifying the CAIS and a technique for developing a validatio-

suite from the specifications. The project is in the process of developin:
specifications for the CAIS Node Model and Process Management sections, and wil.
undertake an operational definition of CAIS Version 1.4.I

A-48

**,

S. L L- TR7 U I T-1 I -

4..21." ,. .' n.. n l. 4 to th. E&V Task

The KIT/KlTlA-designed CAIS will become a MIL-ST-. in 1985. Further, 0 ,'i.,
Validation Capability (CVC) will be developed through the E&V Task to deter::.,
conformance to the CAIS. The specification and validation techniques devejps,_j
by the VP1 APSE Validation Effort relate to both of these activities.

4.22.3 Benefits to the E&V Task

The VPI APSE Validation project specifications for the CAIS Node Model and

Process Management sections, will serve as inputs to the development of a CVC.
Whether the specifications generated are used for the CAIS, they isolate issues
that must be addressed by the CVC. The Abstract Machine descriptions and the
technique for generating test cases from the Abstract descriptions, can be used
to identify areas the CVC must address. The operational definition of CAIS
Version 1.4 will benefit the E&V Task by providing input to the CAIS Validation
Capability (CVC) effort in constructing validation tests.

4.22.4 Benefits to the Related Effort/Organization

This project uses the E&V Team and the KIT/KITIA for review and feedback on

its results.

4.22.5 Impact on E&V Task Schedules

The following VPI APSE Validation Effort schedules are of interest to t!.,,

Task

September 1, 1984 - Preliminary Abstract Description of CAIS Node Model

November 1, 1984 -- Preliminary Abstract Description of CAIS Process

Management

4.22.6 Impact on Related Effort/Organization Schedules

The E&V Task schedules regarding the CVC impact this effort.

A-0
, . , , .. ,

4.22.7 Required Level of Coordination

The Principal Investigator of the VPI APSE Validation Effort (Tim Lindquist),
is a technical consultant to the E&V Task, and the E&V Team Chairperson (kaymo-c
Szymanski), is the Project Monitor.

4.22.8 Resolution of Issues

The focal point for coordination will assist in resolving any issues that
arise which may adversely affect either effort.

4.22.9 Focal Point

The focal point is indicated below

Dr. Timothy E. Lindquist

Department of Computer Science

Virginia Polytechnic Institute and State University

Blacksburg, Virginia 24061

Commercial : (703) 961-7537 (961-6931 messages)

MILNET : LINDQUIST%VPI@RAND-RELAY

Note : Dr. lindquist has recently taken a position at Arizona State
University. His new address is as follows:

Dr. Timothy E. Lindquist

Department of Computer Science

Arizona State University

Tempe, Arizona 85287

Commercial : (602) 965-2783

MILNET : LINDQUISASU@CSNET-RELAY

A-50

2 Al lf r'-Lt io:. Sys t e:_

4.23.1 Purpose

The World Wide Military Command and Control System (WANCCS) Information System
(WIS) effort Is a Joint Service Program with the goal of modernizing the
existing WWMCCS automatic data processing (ADP) and upgrading that system with
new capabilities to satisfy developing requirements. The WIS program intends to
use an Ada designed and implemented software first approach to the upgrade in
order to make it portable to other hardware whenever it becomes necessary.

4.23.2 Relationship to the E&V Task

WIS is generating a very broad systems development and maintenance environment
(SDME). This is to be active on multiple machines over a network. It will have
control of code, data, and documentation at several applications levels. It is
not a simple APSE, but may contain APSEs. The environment will be developed in
Ada, starting from an existing program control and support system. A number of
machine-independent tools are being assembled to provide an initial programming
capability. Compilers will be evaluated and used as appropriate.

4.23.3 Benefits to the E&V Task

The WIS program will need to evaluate early in the program various tools and
tool sets, as well as the tools they develop themselves. This will provide rwo
opportunities for the E&V Team. First, the E&V Task should be able to adopt or
learn from any technology for specific evaluations that WIS develops. Second,
WIS can possibly be an early user of any E&V technology developed. Present WIS
work includes compiler criteria and benchmarks to measure performance against
those criteria.

4.23.4 Benefits to the Related Effort/Organization

The WIS program should be able to take advantage of any E&V technology that is
developed.

4.23.5 Impact on E&V Task Schedules

The following WIS schedule may impact the E&V Task schedules.

Jan 86 - Internal delivery of SDME environment

A-51

II

4.23.6 Impact on k-a:e Ef: :tiOrganizbtion Shedie.

No schedule impacts are currently identified.

4.23.7 Required Level of Coordination

The E&V Team should keep current electronic status from the WIS Joint Prograz
Management Office (JPMO) on their plans and schedules. At present, Lt Patrick
Sheridan is an active member of the E&V Team and will be responsible for
coordination.

4.23.8 Resolution of Issues

Issues shall be addressed within the respective tasks (WIS or E&V).
Recommendations should be developed within that task on how to resolve the issue
and should be forwarded to the other team for consideration.

4.23.9 Focal Point

The focal point is indicated below

Col William A. Whitaker

WIS JPMO/TE

Washington DC 20330

' Commercial : (703) 285-5065

Autovon 365-5065

MILNET WWHITAKER@ECLB

A - 5'2-

1. Appendix A

1.1 Acronyms

ACVC Ada Compiler Validation
Capability

ADP Automatic Data Processing

AFATL Air Force Armament Laboratory

AFB Air Force Base

AlE Ada Integrated Environment

AJPO Ada Joint Program Office

ALS Ada Language System

ANSI American National Standards
Institute

APSE Ada Programming Support
Environment

ATVS Ada Test and Verification

System

AVO Ada Validation Organization

CAIS Common APSE Interface Set

CAMP Common Ada Missile Packages

C31 Command Control Communication

and Intelligence

COORDWG Coordination Working Group

CVC CAIS Validation Capability

DDT&E Director Defense Test and

Evaluation

DoD Department of Defense

DoDD Department of Defense Directive

E&V Evaluation ani Validation

A- 53

A~53 -

.~r.i Worki ne Grou; *

I DA.......................... Institute for Defense Analyses

IDAS Integrated Design Automation
System

IE&V Independent Evaluation and

Validation

ISA......................... Instruction Set Architecture

&T...........................Interoperability and

Transportability

JPMO Joint Program Management Office

JSC Johnson Space Center

JSSEE Joint Service Software
Engineering Environment

KAPSE Kernel Ada Programming Support

Environment

KIT........................o. KAPSE Interface Team

KITIA............o.............KAPSE Interface Team from
Industry and Academia

MAPSE................so Minimal Ada Programnming Support
Environment

MCF.................... Military Computer Family

MQA..................... Memorandum of Agreement

MRASM o-o-..-........ Medium Range ir-to-Surface

Missile

NASA..... National Aeronautics and Space

Administration

NOSONaval Ocean Systems Center

OSI Open Systems Interconnection

PA-APSE Prototype Advanced Ada

Programming Support Environment

A- 5 4

PDi Program Design Language

PE Project Element

PPG Program Planning Group

PUBWG Public Coordination Working Group

RADC Rome Air Development Center

SEATECS Software Engineering Automation
for Tactical Embedded Computcr
Systems

SEE Software Engineering Environment

SEI Software Engineering Institute

STARS Software Technology for

Adaptable Reliable Systems

STD Standard

STEP Software Test and Evaluation

Project

TAG Tactical Ada GLidance

TCSD Technical Coordination Strategy
Document

TECWG Technical Coordination Working
Group

T&E .-...................... Test and Evaluation

TEMP Test and Evaluation Master Plan

TIC Test Instrumentation Controller

USDRE Under Secretary of Defense for
Research and Engineering

VAX Virtual Address Extension

VHSIC Very High Speed Integrated
Circuits

VMS Virtual Memory System

VPI Virginia Polytechnic Institute

A-55

J
. . .

°I

.W-JWVURV 'WN' 1-w I LI FL "VC .

WIS WWMOCS Information System

WWMCCS World Wide Military Command and
Control System

'-

.4

A-A

° .% . . \ . . , - .% -*- i - - .-' -o _. #I : .- -. * . $ J

11. Appc ndh:) b

II1. COORDWG Members

Don Jennings, Chairperson
OC-ALC/ MMECO

Tinker AFB, OK 73145-5990

James S. Williamson, Vice-Chairman

Air Force Wright Aeronautical Laboratories
WPAFB, OH 45433-6543

Debra Harto

AFATL/DLCM

Eglin AFB, FL

Patrick Maher (Distinguished Reviewer)
Magnavox Electronics Systems Co.
1313 Production Rd.
TC-1 0-C3

Fort Wayne, IN 46808

Jane Shirley
SYSTRAN Corp.

4126 Linden Ave.
Dayton, OH 45432

Betty Wills
CCSO/SKXD
Tinker AFB, OK

A- 57

%%

III. Appendix C

111.1 Related Technical Efforts Matrix

EVALUATION and VALIDATION

RELATED TECHNICAL EFFORTS MATRIX

(RTEM)

The following represents the Evaluation and Validation (E&V) Related
Technical Efforts Matrix (RTEM), indicating members of the E&V Team,
along with potentially related technical efforts/organizations with
which each indicated member is involved. This matrix will reside in
<EV-INFORNATION> and be continually updated as appropriate by the
Coordination Working Group (COORDWG).

A-58

*. .. *. .* * - *~ . q. l.

.' - .,,,v ." . .----. . ---- . . -".-. '- ,. - .. '- - -,- .''' - . -. i' , - - -,,-<.-, ,- / ,"," .- '

(RTEM)

1 > RELATED TECHNICAL EFFORT/ORGANIZATION 0

I EEEEEEEE !1 !2 13 14 15 !6 !7 18 !9 !10!11112113!14!15!16!171
EE
EEEE I I I I ! I I I I I I 1 1 I **7**7**!

* EE !A !A IA !A !A IA IA IA IC IJ !K !P IS IS IS IS IS I
I EEEEEEEE Id !d Id Id !d !d !d II !A IS II IA IE IT IT IT IT I
I la !a !a Ia !a la !a !R IM IC !T I IA IA IA !A IA I

I I I I 1 1 1 1 IP I I!/ IA IT IR IR IR !R I
& IC I IJ !L IP IT IV IF I IA !K !P IE IS IS IS IS I

I 13 IN 70 IA ID IE IA !0 1 Id !I IS !C I/ I/ I/ I/ I
VV VV 11 IT I IN !L IS IL IR I !a IT IE IS IA !B !H II I

* VY VV I IE IN IG I IT !I !C I 1 H I I !P !U !U !E I
VV VV IT !G IT !U IE I ID IE I !P IA I I IP IS IM IA I

VVV !E !R I IA IV !A IA I I !R I I I I I IA I I
V IS IA IP !G IA IN IT !C I !0 I I I IT !P IN IT I

IT IT IR !E !L ID II O I IJ I I I IH !R I !H I
I IE 10 1 I 1 10 !M I IE I I I IR !A IR !R I
IA ID IG IS IG IV IN IP I IC I I I ! I !E !U I
IN I !R IY !U IE I I I IT I I I IS IT IS IS I

TEAM !D !E IA IS !I !R 10 !R I I I I I IT !H I IT I
I IN !M IT ID I IR !E I I I I I I IR IT I I

MEMBER !E IV I IE IE IS IG IS I I I I I IA I IH !A I
IV IR 10 IM !L !Y I I I I I I I IR IA !R !R I
IA IM IF I 1I IS I IM I I I I I !E !R I !E I
IL IN IF I IN I I IA I I I I I IA !E !A !A I
I T I I IE I I IN I I I I 1A A R I I

!I 12 13 !4 !5 !6 17 !8 !9 !10!11!12!13!14!15!16!17!

'DEESE, A CAPT! i i I I I ix I I I I I , '
S.--------------
IHARTO,D* I I I I I I X!XI I I I I I

----- ---- ------ I--I'--I--I--I--I-- I----'-- --- '---v--
;HUMPHREY,T * I I I I I I I IX I I I I I I I
I --------------
: KIRKPATRIC LT! I I I I I I I 1 I I I I !X 1 I I I

;KEA,L !X IXI I I !X! I I I IXI I I I 1 I I
..-------------------------I--I--I--I--

ILIN'DQUIST, T I I I I I 1 1 I 1 1 1 1 I 1 I 1

!NK RTIN, R ,X I I I I I I I I I I I I I I I I

LDUERSTCTR! I !X! ! ! ! I I I I I I I I I I

;OBERNDOR. P I I I I I I I I I I ix IX IX I I I I I
i-- -- - I- - I __ __--! -- -- --- __,__--__ '__ ,__
ISHERIDANLT I I I I I I I I I I I I I
I -------------- I .I--I,-I,-- -- I-- -- II--I--I--I--.--I--I--I
!SZYMANSKI, R I I I I I I I I I I IX I IX I I I
I .--------------I ---- I--I----I----I--I--I--I--I--I--I--I--I--!
!TAYLOR,G I I I I I I I I I I 1 I I I I

I -- - -- . . . - - - - - -

!WILLIAMSON, J I I I IX I I I I I I I I I ' I
I--------------

SEE RTEM (CONTINUED)

E&V TEAM PJINT OF CONTACT TO BE DETERMINED

*: A-59

RTEM (C.NINL,)

1 > RELATED TECHNICAL EFFORT/ORGANIZATION >

EEEEEEEE !18!19!20!21122!23!24!25!26!27128!29!30!31!32!33!34!

I EEEE I I** I I I I I I I I I
I EE IS IS IS IT IV !W I 1 I I I I 1 I

EEEEEEEE IT IT IT IA IP II 1 1 I I ! 1 I I I 1
IA IA IE IC 11 IS I ! I 1 1 1
!R IR IP IT ! I I I I 1 1 I I I 1 I I

I & ISIS! II IA ! I I I I I 1 I I 1 I
I/ I/ I IC IP I I I I I I 1 I I I

I IM IS I IA IS I I I I I I 1 I I I I
I VV VV IE!EI ILIE 1 I I I 1 1 1

VV VV IT IEI I 1 ! l ! I I 1
I VV W !H I IA IV ! I ! I ! 1 1 1 I I
I VVV I IT Id IA ! I I I I I I I '
I V IT !H Ila IL I I 1 1 1 1 1 I 1
I !H !R I I ! I I II I 1 I
I !R IU I !G !D I I 1 I I ! 1 1 1 1 ! I

IU ISI IU IAI I I I 1 I I I I 1 1 I
I !S IT I !I IT ! I I I 1 1 1 I I I
I TEAM IT ! I ID II! I I 1 I 1 1 1 1 1 I 1 1
I I IA I IA 10 1I I I I I I I
I MEMBER !A IR I IN IN I I ! I I I I 1 1 I I I
I !R I IC I 1 ! 1 1 1 I 1 1 I I I
II !EI I ! I E 1I '1I
I *** !

!18!19!20!21 !22!23!24!25!26!27!28!29!30!31 !32!33!34!

'PARTO, D I I I !X I! I I! I I I-- - - -- - - --, ,- - -- -- -. - -! -i - -i.. . - --- - --,--,---,

;"--NNE, M i!X '. , I 1 ! I I I ! I I ,
!H M H E , T I I I I I I I I I I I I I I I I i I f-I-i--i_- - _ _

!LINDQUIST, T I I I ! IX I I I I I I I I I I I I I

!M.ARTIN, R I IX !X 1 I I 1 1 I 1 I 1 I 1 1 II -- -- -- - -- V - - V - - V - - v - - l - - v-.. - - ! - - ! -

!SHERIDAN, P LTI I I I I IX 1 I I I I I I ! I I I
I ---------_-_-_ , .._-_-_-_ ._.. - --v ' - I -

E&V TEAM POINT OF CONTACT TO BE DETERMINED

A-60 ,

U

- -.- ,;:.......

Ta c ' I owing,. provld(c a:, . of ac r,n. s and a ,,rt'.: .i.

ubcd in the above Related lechnical Efforts Matrix (RTEM)

APPENDIX

RTEM ACRONYMS/ABBREVIATIONS

APP Application
APSE Ada Programming Support Environment
AR Area
BUS Business
CAMP Common Ada Missile Packages
COMP Computer
C31 Command Control Communication and

Intelligence
ENVrRMNT Environment
EVAL ... *. Evaluation
JSC Johnson Space Center
KIT KAPSE Interface Team
KITIA KAPSE Interface Team from Industry and

Academia
MAN Management
MEA Measurement
METH Methodology
OFF Office
ORG Organization
PA Prototype Advanced
PDL Program Design Language
PRA Practices
RES Resource
SEATECS Software Engineering Automation for

Tactical Embedded Computer Systems
SEE Software Engineering Environment
STARS Software Technology for Adaptable Reliable

Systems
STEP Softwere Test and Evaluation Project
SYS S stem
THR rust
VER Verification
VPI Virginia Polytechnic Institute
WIS WWMCCS Information System (Note:

"WWMCCS" stands for Worldwide Military
Command and Control System.)

L

A-61

APPENDIX B

EVALUATION AND VALIDATION

PUBLIC COORDINATION STRATEGY

VERSION 2.0

1 JULY 1985

B-1

TABLE OF CONTENTS
PAGE

EXECUTIVE SUMMARY B-3

1. INTRODUCTION B-h

1.1 Objective B-4

1.2 Background B-4

2. SCOPE B-4

3. APPROACH B- 5

3.1 Briefings B-5

3.2 Papers B-5

3.3 F&V Workshop B-5

3.4 Quarterly EV Team Meeting Minutes B-6

3.5 F&V Status Report B-6

3.6 Project Reference List B-6

3.7 &V Public Report B-6

3.8 MILNE FBEV Directory B-6

APPENDIX A Acronyms B-8

APPENDIX B Members B-9"

APPENDIX C Organizations B-10

APPENDIX D Publications B-13

APPENDIX E COORDWG Forms B-16

APPENDIX P FV Minutes Format B-17

APPENDIX G Document Format B-19

B-2

.-. ~ .-. -.-

EXECUTIVE SUMMARY
The ove-tll Evaluation and Validation(E&V) Task objective

is to develop the technology for the evaluation and validation
of APSEs. As the F&V technology is developed, it will be made
available to the community for use by DOD components, industry,
and academia as deemed appropriate by the respective
organizations. In order to accomplish the open channel of
communication to the public, the F&V Coordination Working Group
(COORDWG) was established. This document describes the strategy
for accomplishing the communications need for public awareness.
The mechanisms for communication with the Public include:

(1) Briefing; (2) Papers; (3) F&V Workshops; (4) Quarterly F&V
Team Meeting minutes; (5) EV Status Rep '; (6) Project
Reference List; (7) E&V Public Report; aid (8) Milnet EV
Directory.

B-3

I. INTRODUCTION

1.1 Objective

The purpose of the Evaluation and Validation (F&V) Task is to
develop the techniques and tools which will provide a capability
to perform assessment of Ada Programming Support Environments
(APSEs) and to determine conformance of APSEs to the Common APSE
Interface Set (CAIS). "Evaluation" represents a method of
assessing the performance of APSE components. "Validation"
represents a method of determining conformance to a standard which
a method of determining conformance to a standard which is
is applicable to an APSE(e.g., MIL-STD-1815A, CAIS, etc.) As the
E&V technology is developed, it will be made available to the
community for use by DoD components, industry, and academia as
deemed appropriate by the respective organizations. The objective
of the F&V Coordination Working Group (COORDWG) is to facilitate
the transition of this technology to the public as it becomes
available. This document describes the strategy for accomplishi
this transition.

1.2 Background

Currently there is little data available on correlating
specific APSE capabilities with project requirements. As stated
in section 1 .1, one of the goals of the E&V Task is to provide an
evaluation capability for APSE components for which there exists
neither a standard nor a method of determining conformance to that
standard (e.g., Ada compiler implementation dependent features,
run-time system characteristics, etc.) Since this information is
critical to the success of the software development process, it is
essential that emerging evaluation techniques resulting from the
E&V Task be provided to the public as soon as they become
available.

Similarly, in order to ascertain whether data and tools from
one APSE will be able to be transported to another APSE, a metrics
capability must be developed to enable the determination of
conformance to the CAIS, which is expected to become a Military
Standard in 1985. Again, this information is vital to software
program managers and designers who plan to achieve maximum
software portability and should be made available to the public as
it emerges.

2. SCOPE

In order to accomplish the objectives described in section
i .1, it is essential that the FAV Team maintain open channels of
communication to the public. The public coordination strategy
outlined in this document primarily focuses on communication
originating from the FAV Team to the public and associated
feedback from this communication. Technical information related
to the E&V Task originating outside the team will be monitored by
the F&V Coordination Working Group (COORDWG) and transmitted to
the appropriate F&V working groups. The mechanisms supporting the
outflow of information from the team to the public are described
in section 3 and appendices C-G.

B-4

3. A.PPROACH

Several mechanisms for communication with the public have
been identified to assist team members in the public exchange
process. These mechanisms are outlined in the following
subsections.
3.1 Briefings

It may be appropriate for team members to occasionally
present briefings to the public. A current set of "official" FEV
vugraphs will be maintained by the COORDWG for use by any team
member. Briefing from a standard set of vugraphs will ensure that
each briefer will be presenting the FAV Task in an appropriate,
consistent and accurate manner. However, following a presentation
submission of the "Public Exchange Record" to the Chairperson,
with a copy to the team is required. The format for this is
listed in Appendix E and on MINKET USC-ECLB directory
<EV-INFORMATION>.

Briefings may be resented to DoD organizations, committees
and conferences as well as to industry and academia. A list of
candidate o;ganizations is presented in Appendix C, along with the
primary mission and point of contact.

An EV update will be presented by the Chairperson or
designated alternate at the AdaJUG Government Corner and the
SIGAda Environment/Standards subcommittee session, as warranted by
the emergence of E&V technology.

3.2 Papers

Various team members may wish to submit F&V Task related
papers 'o professional journals. The paper must be submitted to
the FAV Chairperson for review and approval prior to publication.
Since these papers will be subject to Government public release
approval, substantial lead time should be allowed (4-6 weeks). A
copy of the approved paper should be forwarded to the FAV Team
Chairperson for inclusion in the annual FAV Team Public Report. A
list of candidate publications is given in Appendix D, along with
procedures for document submittal.

Also the author of the paper should complete the COORDWG form
listed in Appendix E for inclusion in the F&V Project Reference
List maintained by the COORDWG on the MILNET USC-ECLB directory
<EV-INFORMATION>.

3.3 F&V Workshop

An F&V Workshop will be conducted on an annual basis
throughout the duration of the E&V Task. The purpose of the EV
Workshop is to encourage industry/academia participation in the
E&V effort, and participation will be limited. Those selected to
participate will be extended an invitation to join the team as F&V
Distinguished reviewers. Information on the proposed F&V Workshop
will be made publicly available and participants will be selected
on the basis of position papers which are written relevant to the
technical aspects of the E&V Task.

I

3.4 Quarterly F&V Team Meeting Minutes

The minutes of each quarterly E&V Team meeting will be
recorded by the COORDWG and submitted for team comment and
approval prior to entry in the <EV-INMORMATION> directory under
file names "MINUTES-MONTH-YEAR" with MONTH being three letters,
YEAR being two digits beginning in "DEC-83" and continuing at
three month intervals. A hardcopy of the minutes will also be

incorporated in the annual E&V Team Public Report. The format for
the minutes is presented in Appendix F.

3.5 F&V Status Report

The COORDWG will prepare a brief F&V Status Report base" on
the B&V Minutes. After being reviewed by the team and approved by
the E&V Chairperson, the report will be published in the
Ada Information Clearinghouse Newsletter, the LCF Newsletter,
put on the MILNET USC-ECLB <EV-INFORMATION directory and be
available for publication or for "handouts" at appropriate
conferences.

3.6 Project Reference List

A list of FAV related documents will be kept in the Project
Reference List on the MILNET USC-ECLB <EV-INFORMATION> directory.
This list will be maintained by the COORDWG. Team members should
contribute to the list by filling out the template listed in
Appendix E and sending it to the Chairperson with a copy to the
team. The list will not only inform the public about various FEV
related studies, but also keep the team up to date on any related
technology.

3.7 F&V Public Report

An F&V Team Public Report will be published annually in order
to provide the public with information on the activities of the
F&V Team. The F&V Team Public Report will contain the minutes
of all F&V Team meetings as well as all position papers prepared
by F&V Team members. The F&V Team Public Report will also contain
position papers written by industry/academia participants in the
annual F&V Workshop, as well as all documentation which results
from the FV Workshop.

3.8 MILNET EV Directory

Another mechanism for communication with the public is via
the MILNET USC-ECXLB <EV-INFORMATION>directory. Use of this
directory (with password "EV") is available to anyone with Milnet
access. Included in this directory are the minutes from the
quarterly FV Team meetings, and abbreviated EV Quarterly Report,
the F&V Project Reference List, EV Team member listing, and
other pertinent F&V related information.

B-6

Files which are referenced through the <EV-INFORMATION>
directory are actually stored in another directory, <EV-INMO>, to
which access is not available. All files in <EV-INFO> have an
extension of ".HLP". The public may access files by one of the
following methods: (1) loggin into the <EV-INFORMATION> directory
and using the HELP facility to read the files; and (2) copying
the HELP facility to read the files; or (25 copying files
(specifying the ".HLP" extension) using the TYPE or ETP facilities
directly from the <EV-INFO> directory without actually logging
into the directory.

B-:7

.5

, " " " " ' " -' ' : -" ' 4 ' ' ' ' .' ." .' ' " " - - ' - • " " - ' ." .-. . . • • -. . " -. -. - -. ,*

.'

APPENDIX A

ACM Association for Computing Machinery

AdaIC Ada Information Clearinghouse

AdaJUG Ada Jovial Users Group

AFLC Air Force Logistic Command

AFSC Air Force Systems Command

AIAA American Institute of Aeronautics and Astrcnautics

AJPO Ada Joint Program Office

APSE Ada Programming Support Environments

CAIS Common APSE Interface Set
I

COORDWG E & V Coordination Working Group

ECR Enbedded Computer Resource

EIA Electronics Industries Association

IEEE Institute of Electrical and Electronics Egineers

ICF Language Control Facility

NSIA National Security Industrial Accociation

NTIS National Technical Information Service

SIGAda Special Interest Group Ada

B-8

APPENDIX B

Don Jennings Chairperson
OC-AIL/MMAJO
Tinker AFB, OK 73145-5990

Jimmy Williamson Vice-Chairperson
AFWA/AAF-2
Wrigh+t-Patterson AFB, OH 45433

Debra Harto
AFATL/DLCM
Eglin AFB, FL

Betty Wills
CCSO/SOX
Tinker AFB, OK 73145

Patrick Maher
Magnovox Electronics Systems Co.
1313 Production Rd
Ft Wayne, IN 46808

Jane Shirley

Systran Corporation
Dayton, OH

B

B- 9

APPENDIX C

Organizations

The following organizations have been identified as possible
candidates for FAV related presentations. DoD and
industry/academia organizations are listed separately.

DoD Organizations and Conferences

Air Force Systems Command (AFSC) Embedded Computer Resource (ECR)

Focal Group

This group consists of representatives from the AFSC
laboratories and product divisions associated with embedded
computer resources. Meetings are held approximately three times
yearly. Attendance is usually limited to members. To present a
special briefing of interest contact your AFSC ECR focal point or
Maj Chuck Lillie, AFSC/AIR, Wright-Patterson AFB, OH, AV 785-6941,
(513) 255-6941.

.4 AFSC Software Technology Coordinating Group

This group consists of representatives associated with
software technology from the AFSC laboratories. Meetings are held
approximately four times per year. Only official members may
attend. To present a special briefing contact your APSC
representative or Capt. Sunny Riley, AFSC/DLA, Andrews AFB, DC
20334, AV 858-2482, (301) 981-2482.

Armament/Avionics Standardization Conference

This annual conference (usually in Sept) is jointly sponsored
by AFSC and AFLC. Candidate presentations should conform to panel
issues. The chairperson of the Standardization Panel is Robert

Earnest ASD-AFAI/AXTS, Wright-Patterson APB, AV 785-5945.

Ada Information Clearinghouse (AdaIC)

Under the direction of the AJPO, the AdaIC was established to
facilitate the transfer of information to the Ada user community.
The Clearinghouse is expected to serve as the focal point for
collecting and disseminating information. The Information
Clearinghouse announces activities including upcoming conferences,
seminars, classes, and general information on Ada via
(ADA-INFCPMTION> an on-line file accessible through ARPANET or
TELET. The IC also offers reference services via Net mail,
telephone, or postal mail. Pofessional information scientists,
knowledgeable of Ada activities, update the <ADA-INFORMATION>
files an respond to inquiries. AJPO invites inquiries through
one of the following channels:

B-1O

4

ii
Net Mail: <ADA-NFOMRMATION>

Postal Mail: Ada Information Clearinghouse
P.O. Box 849
Rome, NY 13440

Telephone: (315) 336-2359

Postal Mail: Ada Information Clearinghouse
1211 S Fern RMC1O7
Arrlington, VA 22202
3d139 (400 AN)

Telephone: (202) 694-0210 (703) 685-1477
AV 224-0210

Industry/Academia Organizations and Conferences

SIGAda

This professional association meets three times yearly.
Technical topics associated with the use or implementation of Ada
are welcome. For more information concerning the appropriate
session in which to present a briefing, contact Jean Whitaker,
Hughes Aircraft Co., (714) 732-9231.

AdaJUG

This professional organization brings together
representatives from industry, academia and the Government,
interested in standardization and language control activities,
compilers and tools; applications and development efforts
associated with JOVIAL and Ada. The Government Corner is an
appropriate session to brief short presentations (15-20 min)
concerning Government sponsored Ada activities. The Chairperson
of this session is Lt Col Joseph W. Dangerfield, ASD/AXT,
Wright-Patterson AFB, OH 45433, AV 785-5941, (513) 255-5941. For
longer presentations contact the AdaJUG Chairperson Donna Gant at(919) 920-3663.

National Security Industrial Association (NSIA)

Members of the association are defense contractors. Open
national conferences focusing on special topics are held several
times a year. For further information contact W. M. McMurray,
General Dynamics, at (314) 851-8910.

-If

Institute of Electrical and Electronics Engineers (IEEE)

This professional organization has over 210,000 engineers and
scientist members. There are numerous meetings and special
technical conferences held annually. For more information contact
Eric Herz, Executive Director, at (212) 705-7900, or write 345
East 47th Street, New York, NY 10017.

Association for Computing Machinery (ACM)

This professional organization has over 53,000 memhers
associated with computing and data processing.. There are over 31
special interest groups. National conferences are held annually
(usually in October). For more information contact Sidney
Weinstein, Executive Director, at (212) 869-7440 or write 11 West
42nd Street, 3rd Floor, New York, NY 10036.

Electronics Industries Association (EIA)

American Institute of Aeronautics and Astronautics (AIAA)

4

"4

i'Si

'.9

B- 12

',2 ' ."" " .:-. "- '-, --- ,. " " - " , .. < ' -:' , ' - -. . -- -. . - . -" . . - - ." - < ' - - . .. " '- -*- * - S * * . , ' ." ,- ' '

177'f"7-7- 7 C

APPENDIX D

Publications

The following publications have been identified as candidates
for publishing F&V related papers. Procedures for document
submittal are also included.

Computer Magazine (IEEE)

Articles that cover all aspects of computer science are
welcome. Articles are usually survey or tutorial in nature.
Submit six copies of the manuscript including illustrations,
references, and authors' biographies to the Editor-in-Chief:

Stephen S. Yau
Dept. of EE and Computer Science
Northwestern University
Evanston, IL 60201
Telephone: (312) 492-3641

Defense Electronics

Articles covering aspects of computer science that are
relevant to the DOD community are welcome. Send to:

EW Communications, Inc.
1170 East Meadow Drive
Palo Alto, CA 94303-4275
Telephone: (415) 494-2800 I

Ada Letters (ACM)

Information dealing with all aspects of Ada are welcome.
"Short Notices" announce meetings or publications. "Letters to
the Editor" raise issues or answer them. Articles typically deal
with indepth technical topics related to the use of Ada. "Ada
Events" announce sigiificant events of major interest to the Ada
community.

I

B-1.3

I

-. . . 4 4 L + • ' +- + +.... . • , 4...., .*4." ," . " . .k pr ql ~

Short Notices
Letters to the Editor

Dr. Kaye Grau
Harris Corporation (GISD)
150 Wickham Road
Melbourne, FL 32901
Telephone: (305) 676-6446

Articles Ronald F. Brender
DEC
110 Spit Brook Rd
ZKO2 - 3/N30
Nashua, New Hampshire 03062
Telephone: (603) 881-2088

Ada Events Robert I. Eachus
Honeywell SSPD
300 Concord Road
Billerica, MA 01821
Telephone: (617) 671-2907

Submissions should be single-spaced with no page numbers, and may
be printed two-up. Submission deadlines Aug 31, Oct 31, Dec 31,
Feb 28/29, Apr 30 and Jun 30.

Communications of the ACM

This publication serves as a newsletter to members about
activities of the Association of Computing Machinery and as a
publication medium for contributed technical papers and other
material of interest. Papers on all aspects related to computing
science are solicited. In particular, research contributions in
a!). areas are welcomed. Manuscript format is provided in the July
1982 issue, pages 507 - 508. Submit to:

Nicolas Mokhoff
ACM Headquarters
11 West 42nd Street
New York, NY 10036
Telephone: (212) 869-7440

JOVIAL Language Control Facility Newsletter

Brief articles or announcements related to Ada activities are
welcome. Submit to:

ASD/ADOL
Wright-Patterson AFB, OH 45433
(513) 255-4472/4473
AV 785-4472
LCF at WPAFB-JALCF.

"" B-i)

...

Ada Joint Program Office Newsletter

Brief articles or announcements related to Ada activities are
welcome. Submit to:

Technical Research Institute
c/o Ada IC
P.O. Box 849
Rome, New York 13440

B15

1 .L l ?. . .

m.DLA~~..

Appendix E

There are three forms for the submission of data to the team:
the Public Exchange Record, the Project Reference List Submittal
Form, and the F&V Working Group Status Report.

Public Exchange Record*

TYPE OF EXCHANGE: (briefing, paper, etc.)

SPECIFIC TOPIC:

DATE:

PLACE OR PUBLICATION:

ATTENDEES:

PRESENTER:

MATERIAL PRESENTED: (Brief synopsis of technical content of
presentation)

FEEDBACK:

*This form shall be completed within one week of the presentation.
Send a copy to the entire E&V Team for information purposes.

Project Reference List Submission Form*

TITLE:

DATE:

AUTHOR(S):

AFFILIATE:

SPONSOR:

ABSTRACT:

RELATIONSHIP TO E&V:

TO ORDER:

*This form should be submitted by individual who has found the

relevant material and desires to have it included in the list.
Cc to the F&V Team membership.

B-16

. -.-.- -..-.-. :- .- - -. .

APPENDIX F

EV Minutes Format

The minutes of EV quarterly - tings are presented on the
MILNT USC-ECLB <EV-INFORMATION> directory in files
"MINUTES-MONTH-YEAR" with MONTH being three letters, YEAR being
two digits, beginning in "DEC-83" and continuing at three month
intervals.

Minutes

of the

EVALUATION & Validation (E&V) MEETING

Date

I. Date

1.1 Topic 1

1.2 Topic 2

1.N Topic N

2. Date

2.1 Topic 1

2.2 Topic 2

2.N Topic N

3. Action Items

Appendix A Acronyms

Appendix B F&V Meeting Attendance

B-17

FAV WORKING GROUP STATUS REPORT

This report shall be submitted by working group chairs to the
FV Chairperson at the quarterly FWV meeting. This report will
be incorporated as part of the FV Team minutes.

WORKING GROUP:

DATE:

PERSONNEL: (List Chair, Vice Chair, and members. Note changes.)

DELIVERABLE DUE THIS QUARTER:

ACCOMPLISHETS THIS QUARTER:

KEY ISSUES ADDRESSED DURING THIS QUARTER:

UNRESOLVED PROBLEMS OR ACTION ITEMS:

PROJECTED WORK FCR NEXT QUARTER:

DELIVERABLES DUE NEXT QUARTER:

PRESENTATIONS PLANNED FOR NEXT MEETING:

OTHE SIGNIFICANT INFORMATION:

B-18

*;" ... *'-: ' ,Td .. dl, d *.tl. *444*4,* 4..',,..-. .-. ' . ., .

Appendix G
Document Format

This is the format to be used in all documents produced by the E&V
Team.

EV Title Sheet

Version 1.1

Date

WORICNG PAPR_ NOT APPROVE

This is an unapproved draft and subject to change. Do not specify or
claim conformance to this document.

The Task for the Evaluation & Validation of Ada* Programming Suipport
Environments (APSEs) is sponsored by the Ada Joint Program Office(AJPO)

(This version is for disatribution to E&V Team members only)

*Ada is a Registered Trademark of the US Government (Ada Joint
Program Office).

Table of Contents

E)[ECUTIVE SUMMARY

1. INTRODUCTION
1 .1 Objective

1 .2 Background

2. Scope

3. Approach

3.1

Appendix A Acronyms

Appendix B MNebers

Appendix C References

B-19

APPENDIX C

MINUTES

of the

EVALUATION & VALIDATION (E&v) MEETING

5-7 December 1984

C-1

TABLE OF CONTENTS

1. Wednesday, 5 December 1984

1.1 Welcome and General Business

1.2 STARS - Software Technology For Adaptable, Reliable Systems

1.2.1 STARS Objective
1.2.2 Software Standards
1.2.3 Organization of STARS
1.2.3.1 Measurement and Metrics
1.2.3.2 Business Practices
1.2.3.3 Methodology
1.2.3.4 Human Resources
1.2.3.5 Software Engineering Environments
1.2.3.6 Applications
1.2.4 STARS Support
1.3 Joint Services Software Engineering Environment OCD
1.3.1 DoD-STD-SDS
1.3.2 JSSEE
1.3.2.1 JSSEE Goals
1.3.3 OCD-JSSEE
1.3.3.1 Scope
1.3.3.2 Mission
1.3.3.3 Installation Organization

1.3.3.4 Characteristics
1.4 Ada Language System / Navy (ALS/N)

1.4.1 Status of ALS/N

1.4.2 Basis of ALS/N on the ALS
1.4.3 The Structure of the ALS/N
1.4.3.1 Programming Support Environment
1.4.3.2 Run-time Environment
1.4.4 Design Goals of the ALS/N
1.4.5 Characteristics of the ALS/N
1.4.5.1 Multi-lingual Support
1.4.5.2 Multi-level Security (MLS)
1.4.5.3 Extensibility
1.4.5.4 Run-time Support

2.0 Friday, 7 December, 1984

2.1 Working Group Status Reports
2.1.1 REQWG Status Report
2.1.2 APSEWG Status Report
2.1.3 COORDWG Status Report
2.1.4 CAISWG Status Report
2.2 Individual Presentations
2.3 General Discussion
2.3.1 ECLB Disk Space
2.3.2 Distinguished Reviewers
2.4 Action Items

.. C-2F.

1.0 Wednesday, 5 December 1984

1.1 Welcome and General Business

The E&V meeting began with a welcome by the Chairperson, Jinny
Castor. Her new supporting secretary, Ms. Rilla Pezzopane, was
introduced, followed by self-introductions of all E&V Team Members.

A list of files on the <ev-information> directory was
discussed. The newest addition to the directory is the file <AIMS-
PHASE-I> which describes 3 aspects of Ada's application to real-time
avionics software.

It was announced that Systran Corporation, a local Dayton

company is performing documentation and administrative tasks in
support of the E&V Team. Systran is helping to organize the 1985 E&V
Workshop, and they are consolidating all of the E&V deliverable
documents in order to compile the E&V Public Report.

The 1985 E&V Workshop will be held in Airlie, Virginia from
8-12 July. An announcement soliciting position papers from industry
will appear in the Commerce Business Daily sometime in March.

1.2 STARS - Software Technology For Adaptable, Reliable Systems

Major Charles W. Lillie from Headquarters Air Force Systems
Command gave a presentation concerning Software For Adaptable,
Reliable Systems (STARS). STARS is an OSD program directed by Dr.
Robert Mathis. STARS is supported by all three Services as well as
by other government agencies such as NASA.

Major Lillie began by discussing the need for the STARS
program. He outlined the following topics to be discussed during the
remainder of his presentation: (1) the development of software
system standards, (2) the organization of the STARS committee, (3)
the support STARS will provide for related projects.

1.2.1 STARS Objective

The objective of the STARS organization is to establish the
development and transition of mission critical software technology
in order to increase defense system software productivity. STARS is
interested in the total system development including requirements
analysis, design, implementation, and maintenance. It is also
interested in improving the software acquisition process and
software program management.

STARS is striving to correct the problems of inefficient cost
estimates, low software reliability and low software productivity.
Its goal is to achieve an increase in productivity of 10 to 1 in
mission critical computer software. STARS proposes to define a set
of software standards to increase software productivity, system
reliability and adaptability.

c-3

a -

1.2.2 Software Standards

Since it has been proven that it is less costly and less

timely to make a change in the software than to manipulate the
hardware to achieve the same result, it is imperative that high
quality software is produced. In order to improve the quality of
software, one needs to apply standards to the requirements analysis
and design phases of software development. If more time was spent in
the front-end development of software systems (such as requirements
analysis and design) the development time would be reduced.
Therefore, the need exists to develop standards for software
systems. Standards will decrease development time, improve
productivity, and reduce maintenance costs. Standards will also aid
in transporting software packages across various systems and
programs. The results achieved by developing standards will help to
attain the projected order of magnitude increase in productivity.

1.2.3 Organization of STARS

The STARS program is headed by Dr. Robert Mathis. The Air
Force STARS Program Manager is Col. K. Nidiffer; the Army STARS
Program Manager is Col. R. Stanley; the Navy STARS Program Manager
is Ms. C. Morgan. Each Service has two thrust areas that it
supervises. The six thrust areas or area coordinating teams are as
follows: Measurement and Metrics, Business Practices, Methodology,
Human Resources, Software Engineering Environments, and
Applications.

1.2.3.1 Measurement and Metrics

One of the Air Force thrust areas, the Measurement and
Metrics area coordinating team is chaired by Joe Cavano. This
team's task is to develop the techniques for measuring software. The
team investigates software production methods, and methods for
measuring software quality and software reliability. Another area of
interest is the productivity of the STARS program. The team follows
the STARS program to determine if it attains its projected goals,
and to determine if the 10 to 1 increase in productivity is reached.

1.2.3.2 Business Practices

The second Air Force thrust area is the Business Practices

area coordinating team. The chairperson of this team is Phil Babel.
The task for this team is to define methods to manage software.
Areas of concern include software acquisition, software program
management, and automated work stations. The team is also
investigating tools to automate acquisition management.

C-4 "

'I

* *4~,~C~.2*i~I*-. *** -~* .. *~ ~-.- ~ S..

1.2.3.3 Methodology

The methodology area coordinating team is supervised by the

Army and is chaired by Pete Fonash. This team's objective is to
investigate the development methods for software. They are
researching software life cycle models to improve existing
development methods.

1.2.3.4 Human Resources

The second thrust area for the Army is the Human Resources

area coordinating team. The chairperson of this team is Joe Kernan.
The team's objective is to investigate the methods employed to
Pducate people in software enqineering, and the career paths for
military and civil service personnel involved with mission critical
computer systems. This team investigates the military's definition
of software engineering and the methods used to categorize a
software engineer.

1.2.3.5 Software Engineering Environments

The Software Engineering Environments area coordinating
team is supervised by the Navy. The chairperson is Phil Andrews. The
objective of this group is to investigate the development of
software engineering environments. The team is involved mainly with
the Joint Services Software Engineering Environment (JSSEE),
although they follow other environment development efforts also.

1.2.3.6 Applications

The second thrust area for the Navy is the Applications

area coordinating team which is chaired by Bob Kolacki. The team is
interested in the development and management of generic software.
They are studying the concept of generic libraries, the methods for
documenting generic software, and the problem of tracking the
changes made to a generic software package.

1.2.4 STARS Support

STARS will provide support and funding to projects that can
show that they are satisfying the objectives of one of the thrust
areas. STARS is interested in projects that can be used across the
DoD and are likely to be submitted for competitive bids. If one has
a proposal to be submitted, they can send it to HO AFSC/ALR, or send
it to Major Lillie at the following address:

Major Charles Lillie

HO AFSC/ALR
Andrews AFB, MD 20335-5000

If anyone has questions about STARS or requires further information
they can contact Major Lillie at Av 858-6941, commercial (301)
981-6941, or on the Net at LILLIE%AFSC-HQ.

C-5

..

1.3 Joint Services Software Engineering Environment (JSSEE)
Operational Concept Document (OCD)

Mr. Daniel Green from the Naval Surface Weapons Center (NSWC)
in Dahlgren, Virginia, discussed the Joint Services Software
Engineering Environment (JSSEE) Operational Concept Document (OCD).
JSSEE is the major product of the STARS Software Engineering
Environment task area.

The topics Mr. Green outlined for his presentation are the
following: (1) describe the DoD-STD-SDS, (2) define JSSEE, and (3)
discuss OCD-JSSEE.

1.3.1 DoD-STD-SDS

JSSEE is heavily based on the DoD Standard on Defense System
Software Development (DoD-STD-SDS). DoD-STD-SDS establishes a
uniform software development process which is applicable throughout
the system life cycle. The DoD-STD-SDS covers the total system
lifecycle starting with concept exploration, through demonstration
and validation, and including full-scale development followed by
production and deployment. DoD-STD-SDS provides the overall
methodology that JSSEE is designed to support.

1.3.2 JSSEE

JSSEE is defined as an integrated set of methods, procedures,
and supporting computer programs that are needed to develop and
support mission critical computer resources (MCCR) software. JSSEE
methods for carrying out software development and support process
designed to allow the Services to add methods that are unique to
their projects. The JSSEE methods are provided as standard/default
for each particular activity. JSSEE's procedures refer to the
documentation that describes the implementation model. The
supporting computer programs are the software that automates or
supports a particular method. JSSEE is designed to support any piece
of software which is critical to the primary missions of the three
Services and of the other supporting agencies.

1.3.2.1 JSSEE Goals

JSSEE goals are closely integrated into the goals of the
STARS project. The goals of the implementation of JSSEE are to
improve personnel productivity, to improve software quality, and to
decrease the development/change time. JSSEE is also expected to help
increase the predictability of cost and schedule.

C-6

LI

1.3.3 OCD-JSSEE

The OCD is one of three major documents that are required for
the full-scale development of JSSEE. The OCD describes the
conceptual operation of the system. The second document, the System
Segment Specification (SSS), defines the specifications to which
JSSEE will be built. The last major document is the Computer
Resources Life Cycle Management Plan (CRLCMP). The CRLCMP indicates
how the government plans to provide support over the life cycle of
the system.

The OCD takes the place of the formal mission s' atement for
JSSE. It was developed as a user-oriented docuienL. IL provides a

description of JSSEE as it appears to users and a description of how
users will interact with JSSEE. It also presents the assumptions for

the operation of tasks.

1.3.3.1 Scope

The scope of the OCD is to express the software engineering

environment as it will be required for large projects. Particular
attention is being focused on defining functions that need to be
formed and deciding the extent to which those functions can be
automated. Once the feasibility of automating functions is
determined, JSSEE will attempt to provide the tools required to
perform the automation.

1.3.3.2 Mission

The JSSEE mission is divided into two segments. The primary

mission is to support the MIL-STD-SDS development approach, all
software development activities, and post deployment use and
development. Software management and the production of all software
products are also included in the primary mission. The secondary
design goals are to support the following: (1) selected system
design activities, (2) selected system management activities, and
(3) part of the system test and integration.

1.3.3.3 Installation Organization

In order for JSSEE to operate, it presumes that it is built

upon a set of computers, probably a distributed system. These
computers have their own operating systems with terminals connected
by a communication network.

(_-7

. , ." " ,''- ". .. . -".. , - -.- ".' i ' "''° . -. ". ". ''' .o ' 7 ".

- T

JSSEE provides a set of methods that it supports (such as
the Harness method), the documentation describing the methods, and a

set of tools with associated documentation describing how to use the
tools to implement the models in that particular work area. JSSEE

tools will include a word processor, database management system, and
an Ada compiler. JSSEE was developed with the idea that installation

managers could add methods unique to their installation. Therefore,
although JSSEE provides an Ada compiler, if another compiler was

more fitted to a particular installation, the manager could
substitute one for the other without restructuring the entire

1.3.3.4 Characteristics

JSSEE has some unique system characteristics. It is based

on Ada, but since many larger systems were developed in other
languages such as CMS-2, JOVIAL or Fortran, JSSEE has multilingual
capabilities. Since JSSEE was designed for multiple hosts and
multiple target computers, many JSSEE installations will develop
each tailored to specific Services. Another JSSEE characteristic is
that it was designed to support 1 to 50 projects and 10 - 1000 users
per installation.

1.4 Ada Language System / Navy (ALS/N)

Mr. Tom Conrad from the Naval Underwater Systems Center (NUSC)
presented an overview of the Ada Language System / Navy (ALS/N). The

ALS/N is a minimal programming support environment based on the
Army's Ada Language System (ALS). The ALS/N goal is to provide a

full Ada capability for the Navy standard target computers, the
AN/UYK-43, AN/UYK-44, and AN/AYK-14. This full capability includes
support for both program development activities and run time
activities. The topics Mr. Conrad outlined for his presentation are

the following: (1) the status of the ALS/N, (2) the basis of ALS/N
on the ALS, (3) the structure of the ALS/N, (4) the ALS/N design
goals, and (5) the characteristics of the ALS/N.

1.4.1 Status of ALS/N

The system specification for the ALS/N is complete. A draft

dated September 1983 is available. The program performance
specifications (PPS) are in final review, and the ALS/N is currently
undergoing a FY85 competitive procurement. In addition, an effort is
underway to develop a pilot production capability for the UYK-44
which includes certain of the ALS/N components. This information was
based upon currently public status (i.e., 9/83 public disclosure).

C-6

p . , o' °- ,o ,' ',.' ,- -. .' ' o' '. o,*'% '/ '*'" ,. ,. -, . .. ~ j~i h-, .|'.*. i' *. *" " -*.. .. . ,*.. , - " .". **-".." ,

SS VOLUME 2(U) AIR FORCE HRIGHT AERONAUTICAL LAS
URIGHT-PATTERSON AFI OH R SZYMANSKI 30 NOV 85

UNCLSSIFIED AFMdL-TR-85-1616-VOL-2 F/O 14/2 ML

mhuhhhchE

11111u IA) .82
=2 123 2

j. 6 ON

111.8 mJA

IIIJIL2 1.6

mmmli wily

1.4.2 Basis of ALS/N on the ALS

The ALS/N is built upon the basic ideas and components of the

ALS. The ALS/N includes the same database structure, the same user
interface with some extensions and the same KAPSE with additional
extensions. The ALS/N will capture 7 ALS functions intact and will
include another 10 ALS functions that will need some modifications.

1.4.3 The Structure of the ALS/N

The ALS/N consists of a programming support environment

(MAPSE) on the host computer, and a run time environment (RTE) that
resides on the target computer.

1.4.3.1 Programming Support Environment

The MAPSE user interacts with the user access support

system. This system consists of the command language processor, the
file administrator, the HELP facility, and the environment data
manager. The user access support system interacts with four other
support systems via the command language processor interface. The
four support systems are the following: (1) language processor
support, (2) separate compilation support, (3) code manipulation
support, and (4) MTASS interface support. These four systems
communicate with the MAPSE run time environment (RTE) via a KAPSE
interface, and the MAPSE RTE communicates directly to the host
operating system. A third communication interface is the Container
Data Manager which connects the language processor system to the
separate compilation system, and the separate compilation system to
the code manipulation system.

1.4.3.2 Run-time Environment

The run-time environment has three parts. One section is the
user-written Ada programs. The second part is the run-time
application support which consists of the run-time performance
measurement aids, the run-time debugger, and the run-time loader.
The third part of the environment is the run-time operating system.
This system consists of the run-time support library and the run-
time executive.

1.4.4 Design Goals of the ALS/N

One of the design goals of the ALS/N is to provide a built-in

capability to transmit an application program from the MAPSE
environment on a host computer to the RTE on a target computer for

the purposes of execution or debugging. This will be accomplished by p

using the text io package to achieve communication via the embedded
target computer interface. This will be used to support single and
multiple target environments based on UYK-44, UYK-43, and AYK-14.

C-9

A second design goal is to provide a built-in capability for
direct exchange of environment database components with remote sites
also employing ALS/N. This will be accomplished with an interhost
telecommunications interface that will support transmit and receive
commands of the file administrator. It will also support direct
host-to-host links for ARPANET and DECNET file transfer protocols.

1.4.5 Characteristics of the ALS/N

Some distinguishing characteristics of the ALS/N are its
approach to multi-lingual support, multi-level security,
extensibility, and run-time support.

1.4.5.1 Multi-lingual Support

The ALS/N provides full support for Ada program
*- development, and it includes partial support for earlier Navy

languages such as CMS-2. This was built-in to provide some
transition capability from currently used languages to Ada. The

* ALS/N supports separate CMS-2 code development using existing
MTASS/L tools within the ALS/N MAPSE. It also permits importation of
MACRO/L and MACRO/M code, developed according to certain interface

.. specifications, to be linked with Ada code.

1.4.5.2 Multi-level Security (MLS)

Due to the cost, the expected performance impact, and the
technical risk assessment, the decision was to defer MLS. Therefore,
ALS/N does not support multi-level security.

1.4.5.3 Extensibility

Since the ALS/N is heavily based on the ALS, if the ALS/N
succeeds then it proves the extensibility of the ALS core elements

* such as the database structure, and the chief interfaces to the user
system and to the operating system. The notion of "Project
Interface" is incorporated into the ALS/N such that project-specific
tools and command scripts for enforcing project-specific
methodologies are expected to be overlaid on the basic ALS/N tool
set. The practical limits on extensibility may be the ability of the
host computer system to provide enough processing power and storage
capacity to support particular methodologies.

1.4.5.4 Run-time Support

The ALS/N run-time support is considered as critical to the
system as the compile time support. The ALS/N must support all
configurations of the Navy standard target computers and must
provide a user-configurable run-time environment. It must include
provisions for user programs to directly access some run-time
executive services. The ALS/N run-time support is also required to
provide a direct link between the host and target systems to permit
loading and debugging.

C-10

~~~- - -. ,. *- . ................ .... ""° ". "" "' '""""" i " " 
' '



7".

The general session of the E&V meeting was adjourned so
that working groups could meet separately. Working groups met
separately through Thursday.

2.0 Friday, 7 December, 1984

2.1 Working Group Status Reports

2.1.1 REQWG Status Report

The REQWG Status Report was given by Dr. Tim Lindquist,

chairperson of the group. No personnel changes were noted. No
deliverables were due this quarter. Work is proceeding on Version
2.0 of the Requirements Document. The major change in the document
is that version 2.0 will deal with a functionality-based taxonomy
rather than the tool-oriented taxonomy presented in version 1.0. A
draft version 2.0 of the Requirements Document is planned for
release during the E&V meeting in June 1985. The group also started
work on the Tools and Aids Requirements Document. Key issues
addressed were the audience and purpose of the document. Suggestions
for the purpose and contents of the document were discussed.

2.1.2 APSEWG Status Report

The APSEWG Status Report was presented by Liz Kean, the
chairperson. No personnel changes were noted. No deliverables were
due this quarter. Projected work includes evaluating the ALS, ALS/N
and the AIE environments against the SEE taxonomy. The APSEWG will
use the REQWG attributes to determine the strengths and weaknesses
of the three environments. Due to the relationship between the SEE
taxonomy and the REQWG attributes, Liz expects the APSEWG and REQWG
will be working closely during the next quarter. It was decided that
during the review of the three environments no comments will be
publicly released. A complete report of the conclusions reached will
be publicly released when the review process is completed.

2.1.3 COORDWG Status Report

The personnel from the PUBWG and TECWG were combined to form
a new working group, the COORDWG. Chairperson and Vice-chairperson
of the group are Don Jennings and Jimmy Williamson, respectively.
The team members include Paul Dobbs, Debra Harto, Don Jennings,
Randal Leavitt, Patrick Maher, Mark Mears, Capt. John Taylor, Jimmy
Williamson, and Betty Wills. This group is responsible for all
public and technical coordination efforts. The deliverables due this
quarter were the minutes of the last E&V meeting, and the E&V Status
Report. Work was accomplished on updating the Technical Coordination
Strategy Document. It was announced that there will no longer be any
condensed minutes. There will be only two forms of minutes
available, the status report and the full minutes. Randal Leavitt is
consolidating a list of tools and techniques for software
evaluation. These tools can be for any language, not only Ada. He
requests that any helpful information be sent to him.

C-ll.

Cj d .



2.1.4 CAISWG Status Report

The CAISWG Status Report was given by Lt. Darleen Sobota, the

chairperson. No personnel changes were noted. However, Tim Lindquist
sat in on part of the working session and provided valuable
comments. Darleen encouraged him to continue to offer any helpful
ideas he has. The group is working on the updated draft version 1.0
of the APSE Validation Procedures Document. The group is spending
many hours reading and trying to understand version 1.4 of the CAIS
Draft Military Specification. In order to help overcome the
complexities of the CAIS Mil Spec, the group is working on a
dependencies graph for CAIS models/nodes. A presentation i3 planned
for the next E&V meeting to discuss either the CAIS 1.4 document or
the APSE Validation Procedures Document.

2.2 Individual Presentations

Due to the large turnover of E&V team members, each member was
encouraged to present a short briefing on himself. From these
presentations, it is hoped that team members will become better
acquainted and that the Team will become more united.

2.2.1 Christine M. Anderson (Reported by Debra Harto)

Chris Anderson was the representative from the Air Force
* Armament Laboratory (AFATL) at Eglin AFB. She was chairperson of the

PUBWG and was responsible for writing the E&V meeting minutes. Chris
participated in the E&V Workshop by acting as the chairperson of the
E&V Workshop Recommendations Working Group. Chris consolidated the
information exchanged at the Workshop and produced the Workshop
Recommendations Document.

2.2.2 Michael Bridges / Jim Parlier

Michael Bridges is a distinguished reviewer representing

General Dynamics (GD). He is the alternate for Jim Parlier who is a
*- member of the REQWG. Michael's section of GD is the Ada focal point,
* and his participation in the E&V team allows him to provide better

consulting services on Ada environments to other GD organizations.

2.2.3 Bard S. Crawford

Bard Crawford is a distinguished reviewer representing TASC.

At the E&V Workshop, Bard participated in the REQWG and helped
produce the E&V Workshop Requirement Document. Currently, Bard is an
active member of the APSEWG. At TASC, Bard is the focal point for
Ada and STARS activities.

C-% 2



2.2.4 Capt. Albert Deese, Jr.

Capt. Deese is from the Language Control Facility (LCF) at
WPAFB where he has been involved in validating Jovial and Ada
compilers. He is currently a member of the APSEWG and is helping to
evaluate the ALS against the JSSEE taxonomy. From his past
experience in the software development and performance analysis of
WWMCCS (World Wide Military Command and Control System), Capt. Deese
has an excellent background to provide helpful inputs to the APSEWG.

2.2.5 Nelson Estes

Mr. Estes is a past CAISWG chairperson. His current E&V
interest is on Ada compiler performance evaluation as well as
participating on the CAISWG. His normal job function is program
manager for the Phase II Ada-1750A production quality compiler. He
has additionally spent time on Ada transportability moving the
Mathlib packages to the Data General APSE and encouraging
independent Ada-1750 compilation systems. Additional future work
will include changing MIL-STD-1750 so that it better supports Ada.

2.2.6 Richard Fleming

Richard Fleming is from the Space Division/ALR, a product

division involved in the acquisition and development of space
systems. As a member of the REQWG, Richard contributed the Command
Language Interpreter Section of the Requirements Document. Since his
work at Space Division includes analyzing the real-time performance
of Ada compilers, Richard provides useful feedback to acquisition
and development issues.

2.2.7 Kathleen A. Gilroy

Kathleen Gilroy is a representative of Software Productivity
Solutions, Inc. (SPS), active in the areas of software engineering,
Ada, and support environments. Planned products include a
proprietary environment supporting Ada projects, and Ada software
components for a variety of application domains. As a distinguished
reviewer and member of the REQWG, Kathy contributed to the
development of the E&V Requirements Document. From her participation
on the E&V Team, Kathy is able to provide guidance on in-house and
customer selection of environments, and guidance on development of
proprietary products.

2.2.8 Bud Hammons

Bud Hammons is a distinguished reviewer representing Texas

Instruments. Bud is a member of the CAISWG, and his major
contribution to the group was the organization of the E&V Reference
Manual. Bud's future work will involve studying the CAIS. He feels
that his interaction with the E&V team helps to promote the transfer
of technology within his home organization.

C-23



2.2.9 W. W. Happ / John Miller

Bill Happ is the alternate for John Miller who represents

McClellan AFB. As a member of the REQWG, Bill has received
information that is helpful to his efforts at McClellan. Bill and

John organized and taught a 40 hour course in Ada for embedded
computer systems. Bill also acts as a coordinator between activities
at McClellan and the E&V team.

2.2.10 Marlene Hazle

Marlene Hazle is a representative of the MITRE Corporation,

a Federal Contract Research Center (FCRC). Marlene is a member of
the REQWG and was responsible for the Configuration Management and
Acronym Sections of the Requirements Document. As a result of her
participation in the E&V team, Marlene disseminates information
obtained at the meetings and E&V products to her home organization,
where she is involved in Ada technology work and SPO support, and to
ESD/ALS. Some of the products distributed were compiler
questionaires, documents, and benchmark tests.

2.2.11 Marlow Henne

Marlow Henne is a distinguished reviewer representing Harris

Corporation. He is a member of the APSEWG. Marlow acts as an
interface point between the NATO Working Group on Ada Environments
for Guidance & Control, and he can assist the E&V team in collecting
information on commercial APSEs. Marlow feels that his participation
in the E&V team assists Harris's in-house APSE Evaluation Task.

2.2.12 Don Jennings

Don Jennings is from the Embedded Computer Systems Support
Section of the Oklahoma City Air Logistics Center at Tinker AFB. Don
is the chairperson of the COORDWG, and he is responsible for
producing and distributing the E&V Status Report. At his home
organization, Don is the Ada focal point.

2.2.13 Elizabeth S. Kean

Liz Kean is a representative from the Rome Air Development
Center (RADC). She is a principal evaluator of the Air Force's Ada
Integrated Environment (AIE) effort. As the chairperson (f tl,
APSEWG, Liz contributed the AIE an1i T.S writt,-ups to the brF
Analysis Document. She developed the Compiler Criteria Document.
Through her participation in the E&V team Liz has available
technology that she uses to evaluate the AIE Ada Compiler.

C-2j4

-

~.s'*'4~~ * 4~ . .%4~ * ' - ~ . ~ .' % . - - . 4 . . 4 . * 4



2.2.14 Randal Leavitt

Randal Leavitt is a distinguished reviewer representing a
Canadian Company, Prior Data Sciences, Ltd. Randal is the
chairperson of the Ada Working Group (AWG) for the Canadian
Standards Association. He is a member of the COORDWG and is
conducting a survey of current software evaluation methods.
2.2.15 Dr. Tim Lindquist

4|

Dr. Tim Lindquist is a professor at the Virginia Polytechnic
Institute Department of Computer Science. He is a memller of the
KIT/KITIA, and he is the chairperson of the REQWG. From his
participation in the E&V team, Tim has acquired information on the
following: research topics for students, software interface
specifications, and an operational semantic definition of the CAIS.
Tim emphasized the idea that the requirements defined by E&V are an
excellent focus for research projects.

2.2.16 Patrick J. Maher

Pat Maher is from the F-l Avionics Integration Support

Facility at Hill AFB. He is a member of the COORDWG and is
responsible for publishing the E&V meeting minutes. Pat also
assisted in the publication of the Public Coordination Strategy
(PCS) and Project Reference List (PRL) Documents. At his home
organization, Pat is the Ada focal point.

2.2.17 Ronnie J. Martin

Ronnie Martin is a representative of the Georgia Institute
of Technology School of Information and Computer Science. She is
working on the Software Test and Evaluation Project (STEP) whose
mission is to improve the practice of DoD software test and
evaluation (DDT&E). While participating in the REQWG, Ronnie
contributed to the Requirements Document and has served as a
coordination point between the E&V team and the STE/DDT&E
activities. Ronnie also participated in the E&V Workshop.

2.2.18 Gary McKee

Gary McKee is a distinguished reviewer representing Martin
Marietta. Gary is a member of the CAISWG. Gary's participation in
the E&V team provides input to Martin Marietta's in-house
Comprehensive Software Development Environment to aid the
environment design. His participation also provides a source for the
state-of-the-art E&V information relative to Ada technology to
disseminate to Martin Marietta's Ada training program.

C-15

• . .. . ° . ° . • .*~ § '.* r c .'°" . • . . • . - . *. *



2.2.19 Mike Meirink

Mike Meirink is a distinguished reviewer representing the
Sperry Corporation. Mike is a member of the REQWG. He led the
subgroup that drafted the outline for the Tools and Aids Document
and has made the Sperry tool taxonomy data available to the group.
Due to his participation in the E&V team, Mike has gained insight
into building and evaluating environments. The coordination between
E&V and Sperry Corporation helps to sustain harmony with the DoD
environment efforts and those efforts supported by Sperry.

2.2.20 Mike Mills

Mike Mills is a representative of the ECSPO at WPAFB. He
currently is maintaining their Jovial compiler and is participatinq
in the Ada/1750A compiler project. Mike feels that his experience
with compilers is beneficial to his working group, the CAISWG. The
information he has collected as a member of the E&V team has aided
the development of the Ada/1750A compiler project at WPAFB.

2.2.21 Lt. Douglas M. Olson

Lt. Olson represents Hq AFCMD/SID from Kirtland AFB. At his
home organization, Doug oversees, manages and administers contractor
performance. As a member of the APSEWG, Doug has taken an active
role in the second draft of the APSE Validation Procedures Document.
D)ue to his participation in the E&V team, Doug feels that he brings
increased Ada knowledge to his home organization.
2.2.22 Paul Reilly

4

Paul Reilly is a distinguished reviewer representing the
Data General Corp. He is involved in ADE development and software
support. Paul is a member of the APSEWG and feels that one of the
major benefits of being a part of the E&V team is the access to the
ARPANET and all the information that it holds.

2.2.23 Ray Sandborgh

Ray Sandborgh is a distinguished reviewer representing the
Sperry Corporation. Ray is a member of the REQWG and has been
working on the Reference Manual Guidehook. He is interested in
providing contractor perspective on measurement theory, experimental
design, clinical evaluation models, and software testing. As a
ber-fit from his participation in the E&V team, Ray has learned
about evaluation efforts which may help the development of
Sperry 1100 series compiler and has obtained in o r-tio, . t0,
development status of the AIE, ALS, and the ALS/N.

c-16

. -. (. . . . . . .



2.2.24 Lt. Darleen Avery Sobota

Lt. Sobota is a representative of AFWAL at WPAFB. She is the

chairperson of the CAISWG and has made significant contributions to
her group's validation documents. Through her participation in the
E&V team, Darleen keeps abreast of new technology and research
advances. She is currently involved in the installation of an Ada
compiler for her home organization.

2.2.25 Jimmy Williamson

Jimmy Williamson is a representative of AFW'L at WPAFB.

Jimmy is the Vice-chairper. -n of the COORDWG and is responsible for
maintaining an up-to-date list of technical coordination activities.
Through his participation in the E&V team, Jimmy provides AFWAL with
relevant information regarding the relationship of the E&V Task with

* other related efforts. Jimmy is a member of the Tri-Service ALS test
• team and is the Avionics Laboratory focal point for the ALS.

2.2.26 Betty Wills

Betty Wills represents the Command and Control Systems

Office (CCSO) at Tinker AFB. Betty is a member of the COORDWG and
was responsible for the reorganization of the Project Reference
List. Betty feels that her participation in the E&V team allows her
home organization to keep abreast of the changes in the Ala
environment.

2.2.27 Doug Yarborough

Doug Yarborough is from GTE representing WIS. WIS is the
WWMCCS Information System. WWMCCS is an acronym for World Wide
Military Command and Control System. As a member of the APSEWG, Doug

coordinates the activities of the GTE-sponsored APSE with the
activities of the APSE.1G.

*- 2.3 C>,rera1 Discu-sion

2.3.1 ECLB Disk Space

Too many team members are running out of disk space. To save

some of your messages, you can put them in a file and store the file
on tape. In order to do this: (1) save the messages in a file, (2)
execute the command ARCHIVE filename. Once a file is archived it
will no longer appear in your directory. In order to recover the
file from the tape, execute the command RETRIEVE filename. It takes

overnight for a file to be retrieved. Since archived files do not
appear in the directory, it is the team member's responsibility to
remember the files he/she has archived.

4.c- i

"- - . . -. .- . -- . -/ . - -- . -. . -£ .. ..- - . %..* *'.- . . - - -... .,.-*,.... 2- .2. , . . . .. . ..*.



2.3.2 Distinguished Reviewers
'a

If you presented a position paper at the 1984 E&V Workshop,
then you are considered a distinguished reviewer (DR). As a DR, you
are invited to join the E&V team and to participate in its
activities.

If you are a DR and you have left the organization that
supported you at the 1984 E&V Workshop, but your new organization is
willing to support you as a DR, then you can remain on the E&V team.
You can stay on the Team for as long as your new company is willing
to support you. The original company also has the right to continue
to send a representative because they supported the 1984 E&V
Workshop.

If you are a DR, but you do not take an active part in the
Team and its activities then you will be dropped as a DR. Your name
will be removed from the list of distinguished reviewers, and your
ARPANET account will be deleted.

If you are presently a DR as a result of the 1984 E&V
Workshop, you are not required to participate in the 1985 E&V
Workshop. If you wish to submit a position paper, that is fine. If
you choose riot to participate, then you will still keep your DR
status.

It should be understood that those people whose papers do get
-.cceptcK foi the 1985 E&V Workshop will be extended the opportunity
tc .:cc n'e a DR and will have all of the benefits and
responsibilities that it involves.

2.3.3 March 1985 Meeting

If Jinny can find a host, the next E&V meeting will be held
in California from 4-6 March. Otherwise, the meeting will default to
March 6-8 at WPAFB in Dayton, Ohio.

The E&V meeting was then adjourned.

C-18 v



2.4 Action Items

The format for the action items is the following:
AT-date-number: name of person responsible, topic of Al, date due.
The date due will be left off if no date was provided.

AI-12-5-84-l: Jinny Castor. Complete revised E&V Plan. 31 Dec 84.

AI-12-5-84-2: Jinny Castor. Request MILNET accounts for Kathleen
Gilroy and Debra Harto. 14 Dec 84.

AI-12-5-84-3: Jinny Castor. Request STARS list of point of contacts

for area coordinating teams from Major C. Lillie. 14
Dec 84.

AI-12-7-84-l: Jinny Castor. Request information regarding the E&V

CAISWG participation at the KIT/KITIA meeting in
January 1985. 14 Dec 84.

AI-12-7-84-2: Jinny Castor. Establish meeting dates and location
for the March 1985 E&V meeting.

AI-12-7-84-3: Jinny Castor. Provide copies of presentation slides
to E&V members.

AI-12-7-84-4: Jinny Castor. Update the EV-TEAM-INFO file and the

EV-TEAM-MAIL file.

AI-12-7-84-5: Jinny Castor. Send copies of the ALS & ALS/N

documents to Bard Crawford, and a copy of the AIE
document to Paul Riley.

AI-12-7-84-6: Don Jennings. Get information on the Asilomar
Conference Center as a possible site for the 1986 E&V
Workshop.

AI-12-7-84-7: Don Jennings. Investigate the requirements for the
public release of the E&V Status Report to
publications such as IEEE.

AI-12-7-84-8: Gary McKee. Send a NET message to Trish Oberndorf to
discuss questions on CAIS 1.4.

AI-12-7-84-9: Gary McKee. Develop the General Node Manaqement
breakdown for the CAIS, section 5.1.

AI-12-7-84-10: Nelson Estes and Mike Mills. Develop the breakdown oF
the CAIS Process Nodes, section 5.2.

AI-12-7-84-11: Bud Hammons and Doug Olson. Develop the breakdown of
the CAIS I/O Facilities, section 5.3.

AI-12-7-84-12: Darlere Sobota. Develop the breakdown of the CAIS

utilities, section 5.4.

C- 19



I.I

AI-12-7-84-13: Marlene Hazle. Map Configuration Management Section
into a functional taxonomy. Jan 85.

AI-12-7-84-14: Rich Fleming. Map Command Language Interpreter

Section into the functional taxonomy. Jan 85.

AI-12-7-34-15: Kathy Gilroy. Map the Compiler Section into the
functional taxonomy. Jan 85.

AI-12-7-84-16: Ronnie f .rtin. Consolidate the ideas on Product
quality guidance. 31 Dec 84.

AI-12-7-84-17: Ray Sandborgh. Generate a decision model for tool
support. Feb 85.

AI-12-7-84-18: Mike Meirink. Develop a refined outline of the Tools/
Aids Document. Mar 85.

AI-12-7-94-19: REQWG. Consider Liz Kean's definitions and how they
will fit into the functional taxonomy. Jan 85.

AI-12-7-84-20: REQWG. Consider outstanding comments. Mar 85.

C-20

goo
* . *. ,.,



* - -.- . .

ATTENDANCE LIST
E&V Team Meeting, 5-7 December, 1984

M4ichael Bridges Jeff Brunson, Jr.
General Dynarnics/DSD AFALC/PTEC
Sarn Diego, California Wright-Patterson AFB OH

Jinny Castor Thomas Conrad

AFWAL/AAAF NUSC
Wright-Patterson AFB OH Newport, Rhode Island

Bard Crawford Capt. Albert Decse, Jr.
TASC AS K/ADOL
Reading, Massachusetts Wright-Patterson AFB OH

Richirfi Flemiing Kathleen A. Gilroy

Space Division/ALR Software Productivitiy
c/o The Aerospace Corporation Solutions, Inc.
--,-s Angeles, California Melbourne, Florida

Dainiel Gre. ln Charles Hammons
14SWC Texas Instrumments
Dahigren, Virginia North Texas State University

McKinney, Texas

W. W. Happ Debra Harto
SM-ALC/MMEHP AFAT L/DLCM
McClellan AFB CA Eglin AFB FL

Marlene Hazle Marlow Henne
MlITRE Corporation Harris Corporation
R,1ford MA Melbourne FL

Don Jennings Elizabeth Kean
OC -A LC/MM ECE RADC/COES
Tinker AFB OK Griffiss AFB NY

Randal Leavitt Maj. Charles Lillie
PRIOR Data Sci/P.N.D. Canada HQ APSC/ALTR
39 Highway 7 Andrews AFB MD
Nepean, Ontario
K2H 8R6

Tim Lindquist Patrick Maher

!'r(ini~a Polytechnic Institute 00-ALC/MMECF
~U.>5IJVirginia Hill AFB UT

Ronnie J. Martin Gary McKee
Georgia Institute of Technology Martin Marietta
Atlanta, Georgia Denver, Colorado

C-21



Mike Meirink Mike Mills
Sperry Corporation ASD-AFALC/AXTS
St. Paul, Minnesota Wright-Patterson AFB OH

Lt. Douglas M. Olson Paul Reilly
HO AFCMD/SID Data General Corporation
Kirtland AFB NM 4400 Computer Drive

Westboro, Massachusetts

Ray Sandborg Jane Shirley
Sperry Corporation Systran Corporation
St. Paul, Minnesota Dayton, OH

Lt. Darleen Avery Sobota Lori Walton
kFWAL/FIGR Systran Corporation
Wright-Patterson AFR OH Dayton, OH

Jimmy Williamson Betty Wills
AFWAL/AAAF-2 CCSO/SKXD
Wright-Patterson AFB OH Tinker AFB OK

Doug Yarborough
GTE Governnent Systems
Billerica, Massachusetts

424!

C-22

6. . .. . . . . *I



APPENDIX D

MINUTES

of the

EVALUATION & VALIDATION (E&V) MEETING

4-7 March 1985

D-1



TABLE OF CONTENTS

1. Monday, 4 March 1985

1.1 Welcome

1.2 General Business/Action Items
1.2.1 Evaluation of APSES
1.2.2 E&V Workshop
1.2.3 Action Items From December Meeting
1.3 Real-Time Programming With Ada
1.3.1 Objective
1.3.2 Run-Time Executive
1.3.2.1 Run-Time Support Environment
1.3.2.1.1 Results
1.3.2.2 Implementation-Dependent Features
1.3.2.2.1 Order Of Elaboration
1.3.2.2.2 Synchronized Entry Points
1.3.3 Conclusions
1.4 WIS Software Development And Maintenance Environment
1.4.1 Overview of SDME
1.4.2 Requirements For SDME
1.4.2.1 Design Requirements
1.4.3 History Of SDME
1.4.3.1 WIS Precursors
1.4.3.2 NOSC Tools
1.4.3.3 Functional Model
1.4.3.4 Compiler Guidelines
1.4.3.5 Strategies
1.4.4 SDME Program
1.4.4.1 Procured Component Evaluation
1.4.4.2 Proof Of Concept And Prototyping
1.4.4.3 SDME Design Specification
1.4.4.4 Design, Development, And Integration
1.4.4.5 Test And Evaluation
1.4.4.6 Installation
1.4.4.7 Maintenance
1.4.4.8 Compiler Acquisition
1.4.4.9 Site Integration
1.4.5 Architecture
1.4.5.1 SDME Core
1.4.5.2 PAIS
1.4.5.3 Object Library
1.4.5.4 Tool Interface
1.4.5.5 User Interface
1.4.6 User View
1.4.7 Summary
1.5 Open Discussion
1.5.1 E&V Information
1.5.2 Deliverables

D-2



2.0 Tuesday, 5 March 1985

2.1 Interface Standardization
2.1.1 Background
2.1.2 KIT/KITIA Goal
2.1.3 KIT/KITIA Progress And Plans
2.1.3.1 CAIS Documents And Comment Reviews
2.1.3.2 ALS/CAIS Comparison Study
2.1.3.3 Interoperability And Transportability
2.1.3.4 MIL-STD-CAIS
2.1.4 Work Products
2.1.4.1 Requirements and Design Criteria (RAC)
2.1.4.2 Common APSE Interface Set
2.1.4.2.1 CAIS Document
2.1.4.2.2 CAIS Utilities
2.1.4.2.3 Important Observations
2.1.5 CAIS Prototype
2.1.5.1 Prototype Definition
2.1.5.2 Kinds of Prototypes
2.1.5.3 Identified Prototypes
2.2 The TRW Software Productivity System
2.2.1 Background
2.2.1.1 Productivity Assessment
2.2.1.1.1 Internal Assessment
2.2.1.1.2 Quantitative Assessment
2.2.1.2 TRW Productivity Goals
2.2.1.3 Strategies
2.2.1.4 Chronology
2.2.2 The SPS
2.2.2.1 Operational Concept
2.2.2.2 Objectives
2.2.2.3 SPS Software
2.2.2.4 SPS Hardware
2.2.3 Lessons Learned
2.2.3.1 Software
2.2.3.2 Hardware
2.2.3.3 Technology Transfer
2.2.3.4 Measurement
2.2.3.4.1 Tool Utilization
2.2.3.4.2 System Resources Utilization
2.2.3.4.3 User Function Data
2.2.4 Conclusions

3.0 Wednesday, 6 March 1985

3.1 Working Group Status Reports
3.1.1 APSEWG Status Report
3.1.2 CAISWG Status Report
3.1.3 COORDWG Status Report
3.1.4 REQWG Status Report
3.2 Life Cycle Software Engineering Environment Taxonomy
3.2.1 Background
3.2.2 NBS/ICST Taxonomy
3.2.3 SEE Taxonomy

D-3

" , 4 4 " '4 ', " ." " " -. * . ' "5'.' ' ',-' ", . '' ", -. : " , m . , - - , , , - - , . " " " " " ", " " " - ,



3.2.4 Future Plans
3.3 General Discussion
3.3.1 Stars Representatives From The E&V Team
3.3.2 Policy For Working Group Chairpersons
3.3.3 Requests For A Copy Of The ALS
3.3.4 E&V Glossary
3.4 Action Items From E&V Meeting 5-7 December 84 Not

Accomplished
3.5 Action Items From E&V Meeting 4-7 March 1985

D-4

~~i

4 ;, " ', ," . '''"4 .''. ¢'" ",;. ';...-. .;." '€i" 'o ./ '...'."""2. ,



1.1 Welcome

The E&V meeting began with a welcome by the chairperson, Jinny
Castor. Before the introduction of Mr. W. M. Murray, each Team
member introduced himself.

Mr. W. M. Murray, director of technical software for Data
Systems Division of General Dynamics (GD), welcomed the E&V Team to
GD's San Diego site. He stressed that GD is committed to Ada
development. GD is active in many Ada projects including the
following: the use of Ada in mission critical systems, the
development of an Ada/1750 compiler system, and the amount of
training required by systems and software engineers to become
proficient in Ada.

1.2 General Business/Action Items

1.2.1 Evaluation of APSEs

Jinny emphasized that it appears to other DoD organizations
that the E&V Team is investigating only whole APSEs and not the
individual components that make up an APSE. She encouraged the Team
to make it understood that the E&V Team is analyzing each component
of an APSE individually as well as evaluating an APSE as an entire
entity.

1.2.2 E&V Workshop

The E&V Workshop will be 8-12 July 1985 at Airlie, Virginia.
Unfortunately, this is the same week as the KIT/KITIA meeting. The
main thrust of the workshop is to enumerate the evaluation criteria
of APSEs associated with a particular application software
development. Any interested industry representative is invited to
submit a position paper in response to the Workshop's Commerce
Business Daily announcement.

1.2.3 Action Items From December Meeting

The action items (AI) generated at the December 1984 E&V
meeting were reviewed. The AI that were not completed will be
included in the minutes of the next meeting and will be carried
forward until they are fulfilled. Approximately 7 out of 20 AI from
the December 1984 meeting were not completed.

1.3 Real-Time Programming With Ada

Mr. John DaGraca from General Dynamics presented a briefing on
the current status of Real-Time Programming with Ada. Mr. DaGraca
presented a description of some Ada compiler implementation-
dependent features of the run-time support environment in order to

D-5

%*. *...-



7 " 7

support Ada tasking. The topics that outline Mr. DaGraca's
presentation are the following: (1) objective, (2) run-time
executive, and (3) conclusions.

1.3.1 Objective

The objective of this GD program was to apply software
engineering principles to obtain an efficient system with respect to
timing and memory utilization. The project was constructed in such a
way that one team of people would design the system, then another
team would maintain it. This allowed for an evaluation of the
maintainability of the Ada code produced by the design team.

They designed and implemented a real-time executive whose
* basic function was to serve as a process scheduler. Telesoft, Rolm,

NYU and DEC compilers were used to obtain comparison data for run-
time systems.

It was determined that a strong development methodology is
essential in order for the maintenance personnel to have a model
with which to work. A second conclusion is that thorough
understanding of the run-time support environment is crucial.

1.3.2 Run-Time Executive

The team used Ada tasking features to implement the run-time
executive. They found that it is important to have a thorough
understanding of the run-time support environment and the run-time
implementation-dependent features.

1.3.2.1 Run-Time Support Environment

The old method used to design a run-time executive was to

design an interrupt-driven scheduler. It was written in assembly
code and was driven by each process's priority. This design method
allowed the programmer to decide when an interrupt would occur, how
it would be handled, and what priority each process would be
assigned. The programmer knew that any process would be in one of
the following three states: active, suspended, or queued.

The new method used to design a run-time executive is to
use Ada tasking. Ada's tasking feature is difficult to understand
because one can use a task to implement a pure process, a monitor, a
buffer, a semaphore, a message, or an interface unit. The run-time
support environment decides when an interrupt will occur, how it
will be handled, and what priority each process will be assigned. It
is important that the programmer understands how the run-time
support environment is implemented because the tasking results
depend on the programmer's interpretation of this environment.

r-6



1.3.2.1.1 Results

It was determined that some Ada compilers implemented
tasking using time slicing and some used run/until blocks. When the
Ada tasking program was re-hosted on other machines, these various
run-time implementations caused the program to obtain different
results.

It was suggested that since the Ada Compiler Validation

Capability (ACVC) cannot determine how run-time systems are
implemented, a standard run-time model for compilers should be
developed. However, when a run-time system is implemented, it should
be thoroughly documented especially the implementation-dependent
features of tasking.

1.3.2.2 Implementation-Dependent Features

The two implementation-dependent features that gave the
team the most trouble were order of elaboration, and synchronized
entry points.

1.3.2.2.1 Order of Elaboration

The order that data is initialized in Ada tasking is not
* specified. It is important for a programmer to know when and in what

order data is initialized.

The Language Reference Manual (LRM) does not specify in
what order one can assume that tasks will be initiated. Yet, it is
important for a programmer to be able to predict in what order tasks
will execute. It is important because when something is designed,
the programmer wants operations to occur in the order that is
expected and not in an arbitrary manner. This was a problem for the
people programming the run-time executive.

1.3.2.2.2 Synchronized Entry Points

It is difficult to program tasks when rendezvous are
performed at unspecified times during execution. In one case where a
critical section was required, one compiler implemented it using a
signal/wait scheme, and the other compiler used tasking. These
variations in implementations cause a programmer problems when he is
concerned with timing and memory constraints.

1.3.3 Conclusions

It was concluded that run-time specifications and
implementations need to be standardized. Without standards, portable
software can be generated, but memory and timing faults will be a
problem.

D-7

* ' 72 .'" "' - S 'L' ,'-''> ', ,k ,.:." _..'"."? "..'. ..-*..-'. ..-.. '. .".-." - • . '.



7-77~rw -- _-

A second conclusion is that there are constructs which are
not fully explained in the LRM and are sometinmes left as
implementation-dependent features. Programmers who are unaware of
these implementation-dependent features could encounter numerous
problems with real-time programming with Ada.

A third conclusion is that a strong methodology is required
when programming in Ada because it provides the people tasked to
maintain the software with a path to trace back to the design level.

1.4 WIS Software Development And Maintenance Environment

Captain Percy Saunders from Hanscom AFB, Massachusetts
discussed the development of the all-Services software development
and maintenance environment (SDME). SDME is a program targeted to
updating the computer programming capabilities using the Ada
language for the World Wide Military Command and Control System
(WWMCCS) Information System, or WIS. Captain Saunders' presentation
was divided into the following sections: (1) overview of SDME, (2)
requirements for SPME, (3) history of SDME, (4) SDME program, (5)
architecture, (6) user view, and (7) summary.

1.4.1 Overview Of SDME

The SDME is a software system resident on standard WIS
hardware such as the WIS workstation, Common User Processor, and

* ,Joint Mission Hardware. Its purpose is to enhance the effectiveness
"* of WIS personnel whose mission is the development and maintenance of
*. WIS systems. The SDME accomplishes this through an evolvable set of

tools, embedded in a portable environment, with a common user
interface to all SDME functionality.

1.4.2 Requirements For SDME

SDME aims to provide powerful Ada programming tools to WIS
sites for support of software development activities. It is designed
to manage programs from 20 to 20 million lines of code and to
respond to the changing conditions of a software development
process. SDME is also responsible for providing the individual user
with access to a WIS workstation in order for him to develop
software without degrading the entire system's performance.

1.4.2.1 Design Requirements

SDME will be designed and implemented in Ada. It will be
portable over a variety of hardware and will be capable of operating
in a distributed environment. SDME provides evolutionary growth
capabilities and supports reusable software components.

D-6

* . S ' . . . . . . . . . S - *
- * . ~ . .* - ~ .. . . .~ ** . . . * . . . .



1.4.3 History Of SDME

1.4.3.1 WIS Precursors

WIS is based on the Distributed Software Engineering and

Control Process (DCP). DCP demonstrated the capabiltiy to develop
software in a distributed environment and the use of an Ada command
language interpreter. This effort was active from June 1983 to

December 1984.

1.4.3.2 NOSC Tools

The WIS Joint Program Management Office (JPMO) authorized

the Naval Ocean Systems Center (NOSC) to contract to approximately 25
vendors to require existing software tools in Ada. These tools will

*provide the foundation of the SDME; they include reusable software

packages such as mathematical functions and larger individual tools
such as editors and data base managers. These tools were delivered

*in the first quarter of FY85 and are currently being beta-tested by

GTE, the support contractor for the WIS SDME effort.

1.4.3.3 Functional Model

A functional model description that provides an

architectural basis for the SDME was delivered in January 1985. This
document identifies the content of the major components of the SDME,
especially the data base.

1.4.3.4 Compiler Guidelines

The WIS JPMO has received a document that details WIS's
need for Ada compilers. The document covers the entire compilation
system from the compiler to the run-time support environment. This
document will be used to communicate to industry WIS's unique needs
for Ada compilers and associated support tools.

1.4.3.5 Strategies

WIS intends to develop an evolvable, portable system that
meets the needs of the WIS user community. This will be accomplished
by integrating WIS precursor efforts into the mainline WIS program
and by incorporating feasible environmental and Ada technological

*. advances of industry and government. A dialogue with WIS site
personnel will be established in order to inform them of SDME and to
integrate their feedback into the SDME design.

1.4.4 SDME Program

The SDME program includes the following task areas: (1)
procured component evaluation, (2) proof of concept and prototyping,
(3) SDME design specification, (4) design, development, and

D-9



integration, (5) test and evaluation, (6) installation, (7)
maintenance, (8) compiler acquisition, and (9) site integration.

1.4.4.1 Procured Component Evaluation

This area is managed by NOSC, and its aim is to analyze

industry and government Ada tools. These tools will be evaluated as
to each tool's usefulness in the SDME.

1.4.4.2 Proof Of Concept And Prototyping

The purpose of this task is to research and prototype the
outstanding design issues for the SDME. Areas of special interest

" are Ada design, data base design, user interfaces, and requirements
tracking. A document, the Complete Conceptual Manual (CCM), will be
a result of this phase of the program.

1.4.4.3 SDME Design Specification

This task area will specify the required functionality of
tools, tool interfaces, and the user interface.

1.4.4.4 Design, Development, And Integration

This area will involve the design of the environment's
systemic components such as the interfaces and data base objects,
the development necessary to integrate all specific components, and
the interaction with the WIS user community in order to evaluate and
tune the design.

1.4.4.5 Test And Evaluation

This task will include rigorously stressing the system in
order to uncover errors prior to deployment. This testing will take

place at GTE's software development installation.

1.4.4.6 Installation

The purpose of this task is to install SDME in WIS
operational support facilities and to conduct acceptance testing.
This task also includes the training of WIS site personnel.

1.4.4.7 Maintenance

This process will involve on-site support for the SDME,
including error correction and interim enhancements. A staff from
GTE will be provided at the site to handle maintenance issues.

1.4.4.R Compiler Acquisition

This area includes development of compiler benchmark
programs for performance and functionality testing. An evaluation of

D-10

.- .-L. .. . - - .' " " ** ..,. - - . - -, - -



compilers will be conducted, and appropriate compilers for use in

SDME will be recommended to the government.

1.4.4.9 Site Integration

The purpose of this task area is to insure the utility of
SDME to site personnel. It involves hands-on training, consolidating
and evaluating user feedback, and providing input to t',e SDME design
group.

1.4.5 Architecture

The architecture of the SDME is based on layered levels of
increasing abstraction which provide portability, evolvability, and
maintainability. The main components of the SDME are the following:
(1) SDME come, (2) Portable APSE Interface Set (PAIS), (3) object
library, (4) tool interface, and (5) user interface.

1.4.5.1 SDME Core

The SDME core is machine dependent and includes the
operating system, network interface, and relational data base
management system.

1.4.5.2 PAIS

The PAIS insulates the rest of the SDME from the core. It
is compatable with the Common APSE Interface Set (CAIS), and other
interface standards such as the graphic kernel system. The PAIS is
designed to permit Ada package specifications to remain stable as
package bodies are reimplemented for rehosting.

1.4.5.3 Object Library

The object library is designed as a user view of objects.
The library includes an encyclopedia that contains object
information, libraries that contain collections of objects, and a
director that handles the logical to physical distributed mapping.

1.4.5.4 Tool Interface

The tool interface serves to isolate each tool from the
SDME data organization. This interface permits different
implementations of similar tools while preserving a stable user
interface.

1.4.5.5 User Interface

The user interface is separated from the SDME core by the
PAIS and is separated from the tools by the tool interface. The user
interface provides a stable boundary when the SDME is rehosted, the

D-11



core component changes, or the tools change. The user interface
implements the full Ada command language with menus, graphic systems
and windows.

1.4.6 User View

The user interface permits access to SDME functions and
controlled objects which reflect the user's work. This provides the
user with only the information that is relevant to his program.

The user view of the system is adaptable to different project
phases and work domains. It provides support for joint software
maintenance and site-unique software development. The user view of
the SDME is consistent from host-to-host, and site-to-site; it is
designed in such a way as to remain constant while remaining
flexible enough to incorporate new tool technology in the future.

1.4.7 Summary

The SDME focuses industry technology on WIS support needs and
was designed to be evolvable through use of externally developed
components. Although WIS is explicitely oriented toward a
distributed network environment, requirements of the WIS user
community are an important design issue. A significant design factor
of the SDME is that it was designed to be able to respond to a
changing environment, and to evolve as technology advances.

1.5 Open Discussion

1.5.1 E&V Information

Jinny Castor reminded the E&V Team that information made
available to the Team is primarily considered "for the E&V Team
only", unless explicitely stated otherwise. It should be reiterated
that information sent to the Team should be kept to the Team and not
distributed further.

1.5.2 Deliverables

A schedule of deliverables due for the remainder of FY85 was
reviewed. Each working group has deliverables due sometime during
the year and should keep working toward completing these documents.

The general session of the E&V meeting was adjourned so that
working groups could meet separately. Working groups met separately
for the remainder of the day.

D- 1I



2.0 Tuesday, 5 March 1985

2.1 Interface Standardization

Ms. Tricia Oberndorf, chairperson of the Kernel Ada Programming
Support Environment (KAPSE) Interface Team (KIT)/KAPSE Interface
Team from Industry and Academia (KITIA) presented a briefing on
KAPSE interface standardization. The objective of the Common Ada
Interface Set (CAIS) is to provide a standard interface to a KAPSE,
and the KIT/KITIA is responsible for the development of the CAIS.
The topics Ms. Oberndorf outlined for her presentation are the
following: (1) describe the background for the CAIS, (2) discuss the
KIT/KITIA goal, (3) discuss the KIT/KITIA progress and plans, (4)
list work products, and (5) discuss CAIS prototyping.

2.1.1 Background

The two basic motivations for common interfaces at the KAPSE
level are the following: (1) to reduce the cost of maintenance by
having fewer tools to accept and use, and (2) to reduce the cost of
development by having a common set of tools which everyone can use.
Basically, we want to be able to share tools and databases between
APSEs.

2.1.2 KIT/KITIA Goal

The goal of the KIT/KITIA is to develop a set of common
interfaces which will form a boundary between the tailored
implementation of the underlying host computer and the tools
developed to be common to APSEs. This set of common interfaces is
the CAIS, and it is planned that the CAIS will become the interface
level of the KAPSE itself and not an extra layer on top of the
KAPSE.

Since tools will be written to satisfy the common interface
(the CAIS) and not to satisfy the host computer's implementation
dependencies, the development of the CAIS will encourage a sharing

* of resources throughout the industry/government community. This
sharing could take place through channels such as DoD-industry

• information exchanges, IEEE or ACM conferences, and project
interchanges. The sharing of tools will result in CAIS-compatible
tool libraries. Since this software can be reused, government
projects will cost less than if this software had to be rewritten.

2.1.3 KIT/KITIA Progress and Plans

2.1.3.1 CAIS Documents and Comment Reviews

The KIT/KITIA has proposed a KAPSE interface set; this set
is documented in CAIS Document versions 1.2, 1.3, and 1.4. The draft
CAIS versions 1.3 and 1.4 were distributed to over 500 reviewers in

D-13



the United States and Europe. Two CAIS public reviews were

conducted, one in August 1984, and the second in November 1984. The
KIT/KITIA continues to review comments from these activities, and
answers will appear soon on the MILNET.

2.1.3.2 ALS/CAIS Comparison Study

An ALS/CAIS comparison study was conducted, end a report

containing the conclusions of this investigation is available. The
study considered the work required to transition the ALS to the CAIS
and dealt with the topics of how one would approach such a task, and
what are the similarities and differences between the ALS and the
CAIS.

2.1.3.3 Interoperability and Transportability

Interoperability (I) is the ability to share databases;
transportability (T) is the ability to move tools. The KIT/KITIA
recently reached concurrence on the requirements and design criteria
for interface sets which achieve I&T. This set of requirements will
be imposed on the CAIS Version 2.0 contractor who will design a set
of interfaces which meet this set of requirements and design
criteria, and which are upward compatible with CAIS Version 1.0. The
CAIS Version 2.0 contract will be awarded in May 1985.

2.1.3.4 MIL-STD-CAIS

The KIT/KITIA delivered a MIL-STD-CAIS to the AJPO. The

MIL-STD-CAIS will be distributed for review to the three Services,
to other DoD organizations, and to major industry associations. A
public review of the comments on MIL-STD-CAIS will be conducted, and
MIL-STD-CAIS will be revised to reflect these comments.

2.1.4 Work Products

2.1.4.1 Requirements and Design Criteria (RAC)

The RAC were designed in the context of STONEMAN and with
the idea that it would be implemented in approximately five years.
The RAC Document is directed toward any interface set which will
achieve transportability of tools and intere-perability of databases.
The five main sections of the RAC Document are the following: (1)
General Design Objectives, (2) General Syntax and Semantics, (3)
Entity Management, (4) Program Management Facilities, and (5) Input
and Output.

2.1.4.2 Common APSE Interface Set

2.1.4.2.1 CAIS Document

Founded on the ALS and AIE, the CAIS was written for

D-3 4



life-cycle environments for the support of mission critical computer
systems. It was designed for Ada support and was not designed for
use on target machines. The CAIS document describes the interfaces
of the CAIS; the document's main section provides the interfaces
described as Ada package specifications. For each interface the
following details are addressed: purpose, parameters, exception
handling, and additional interfaces. The document also includes four
appendices - predefined entities in the CAIS, comp-lable package
specifications, compilable package bodies, and an overview of the
interfaces by package and function.

2.1.4.2.2 CAIS Utilities

The CAIS standardizes those aspects of writing tools

which commonly cause problems when moving tools between hosts. The
CAIS provides the following: (1) naming conventions for users,
files, processes, and devices, (2) a hierarchical structure to
retain information about processes and files, (3) interfaces to
start processes and tools, (4) capability to create background
processes, (5) support for creating, deleting, opening, closing,
reading, and writing files, and (6) support for 3 kinds of terminals
and support for magnetic tape drives. Some topics deferred until the
initial CAIS is implemented are the following: (1) configuration
management, (2) explicit controls for distributed environments, and
(3) inter-tool interfaces.

2.1.4.2.3 Important Observations

Achievements noted during the development of the CAIS
are: (1) the CAIS remained as true to Ada as possible. In many
instances this included trying to cope with decisions which Ada did
not make because of the difficulties of making them in a
transportable way; (2) the CAIS was designed to operate with a wide
range of existing operating systems; (3) the CAIS had to accommodate
new ideas about what is required to support a software engineering
environment; and (4) the CAIS was developed in an extremely public
forum, and therefore represents a commitment to achieve concensus
from the Ada community.

2.1.5 CAIS Prototype

2.1.5.1 Prototype Definition

A CAIS prototype will be developed to prove whether the
CAIS design is implementable. The prototype will include a
combination of experimental implementations, experiments designed to
produce information using those implementations (including criteria
for measurement), and reports evaluating the performance of the
implementations with respect to the criteria. Besides justifying the
CAIS design, the CAIS prototype will provide some insight as to
whether useful tools can be implemented using the CAIS, and whether
the CAIS will achieve its transportability objective.

D-15

' .A ". . " ".* " - " .'" - , -' .- . .' - $ .-. . " .,.



2.1.5.2 Kinds of Prototypes

The four basic kinds of prototype implementations are the

following: "quick and dirty", tuned, full or partial implementation
of individual tools, and full implementation of toolsets. A "quick
and dirty" implementation is designed to be completed as quickly as
possible. This prototype is useful for proving implementability and
provides a base for tool experiments. A tuned implem(ntation is
designed to be as efficient as possible; it provides useful insights
into tailorability and the overall tool potential for efficiency. A
full or partial implementation of individual tools is useful for
insights into tool usability and applicability. The last type of
prototype, a full implementation of toolsets, is designed to provide
a full APSE content for experiments. Full implementations are also
useful for determining the ability of the CAIS to satisfy the CAIS
design requirements.

2.1.5.3 Identified Prototypes

There are nine prototypes currently in development. TRW is
developing a full CAIS Version 1.0 implementation under a KIT-
support contract. TRW's implementation is based on UNIX/ARCTURUS
hosted on a VAX. The MITRE effort is currently in the design phase.
The only totally in-house effort to prototype a CAIS is sponsored by
Gould. Other CAIS prototype work is being conducted by Texas
Instruments, Virginia Polytechnic Institute, a government-sponsored
WIS project, the RADC-sponsored AIE effort, a STARS-sponsored Los
Alamos project, and a VHSIC- and AJPO-sponsored very high order
development language (VHDL) program.

2.2 The TRW Software Productivity System

Mr. Imad Bitar from TRW's Redondo Beach, California facility
gave a presentation on TRW's Software Productivity System (SPS). The
SPS has been an ongoing project at TRW for four years, and its aim
is to increase the productivity of software engineers. The topics
that outline Mr. Bitar's presentation are the following: (1)
background, () the SPS, (3) lessons learned, (4) measurement data,
and (5) conclusions.

2.2.1 Background

2.2.1.1 Productivity Assessment

In 1980, TRW conducted a study to determine how the company
could increase its software productivity. The study involved an
internal assessment of the industry's shift to better software
productivity.

D-16

~'.]



2.2.1.1.1 Internal Assessment

TRW's internal assessment consisted of a questionnaire
that inquired "If there were only two or three things you could get
TRW to do to improve software productivity, what would they be?" The
four areas of improvement cited most often were management actions,
work environment and compensation, education, and software tools. An
interesting result of the survey was that while most upper and
middle management personnel felt that improved management actions
would improve productivity, the software engineers and programmers
emphasized the need for more software tools.

2.2.1.1.2 Quantitative Assessment

TRW studied some companies to determine what actions they
were taking to improve software productivity. Two of the companies
TRW investigated were IBM and Bell Labs. TRW received input from
some educational institutions such as Harvard and Carnegie Mellon,
and they received ideas from Dr. Barry Boehm's book "Software
Engineering Economics." One of the results of these studies was that
if one had nominal software tools in a project and only the software
tools were improved, then a 150 percent increase in productivity
could be expected. Another result was that if one improved the
quality of personnel on a software project then a 400 percent
increase in productivity could be expected.

2.2.1.3 TRW Productivity Goals

TRW's near-term goal (1985) is to increase the 1980 average
productivity by a factor of two; TRW's long-term goal (1990) is to
increase the 1980 average productivity by a factor of four. These
goals imply that in 1985 (1990) TRW software projects will bid 1/2
(1/4) the number of labor months in the 1980 time frame for the
development of similar applications software while maintaining the
required quality.

2.2.1.4 Chronology

The SPS was established in 1981, and its goal was to build
a software development environment (SDE).

The initial facility was system operational in 1982. It
supported one project, had nominal tool integration, and the
software tools were basically those provided with UNIX.

In 1983, the first SPS VAX was installed, and the number of
users was expanded to 190. TRW found that the users requested more
documentation and management aids than were currently available on
the system.

D-17

: 1

° - ° .o ° " 
°

' °0, ... . ° " . ' • * ° . - ° ., . . ° .. • . . . • . . * * *. ....



In 1984, two VAXs and two Pyramid computers were added to
the system. The system supported 400 users, and the user support
program was expanded by implementing additional software tools.

The goals for 1985 are to add five more computers and to
increase the number of users to 1000.

2.2.2 The SPS

2.2.2.1 Operational Concept

The operational environment consists of source computers,
to support the development environment, and target computers, to
host the final product. The system is connected by a LAN, and any
source computer can be reached from any terminal/workstation.

2.2.2.2 Objectives

TRW wanted to automate all of the activities of a project
life cycle. These activities include requirements and design,
coding, testing, and document preparation. TRW planned to implement
an environment that would automate one or more methodology. The
result of not forcing all projects to use a single methodology is
that software methodologies will support technical methods and
management procedures. TRW's environment was designed to support all
users, from managers and programmers to secretaries. The company
implemented a method of storing and relating data so that all data
pertinent to a project could be accessed.

2.2.2.3 SPS Software

Some design tools available on the SPS are a program
design language, and a requirements traceability tool. Development
software includes compilers for Ada, Fortran, C, and Pascal,
debuggers, and an automated unit development folder. MaDagement
tools include an electronic spread sheet containing functions for
cost-to-completion and proposal pricing, and a capability for
milestone charts. SPS software also includes automated office tools,
user interface utilities, general purpose utilities, and software to
accomplish file transfers.

2.2.2.4 SPS Hardware

The SPS LAN contains 9 central processing units (CPU's),
262 terminals (with 132 more on order), and 160 bus interface units.
The SPS also includes two IDM 500 Data Base Machines, 6 Imagen laser
printers, and numerous portable terminals.

2.2.3 Lessons Learned

D-18



2.2.3.1 Software

TRW found that selecting UNIX as the basis for SPS was an

excellent choice. UNIX is available on a variety of different
computers, and this proved beneficial because TRW is not tied to a

single manufacturer. TRW discovered that one should exercise caution
not to obtain a hybrid version of UNIX because porting problems will
result.

TRW learned that evolutionary SPS development has been

beneficial. User feedback and tool utilization measurement data
provided useful input to the project as it has developed over the
past four years.

TRW found that the core of an automated SDE is an

integrated project master data base. This data base avoids retaining
redundant data, promotes data flow between tools, and provides a

consistent means of storing data.

2.2.3.2 Hardware

TRW found that LANs are very beneficial; they are reliable
and cost effective. Through the LAN, performance has been measured

as high as 19.2K baud.

TRW concluded that a centralized environment is not an

ultimate solution to user support problems. It was discovered that

20 percent of the users consume 70 percent of CPU resources. TRW
plans to off-load the "heavy" resource users to personal
workstations in order to make the system more cost effective.

Another interesting conclusion is that user acceptance of
the SPS was enhanced through access to modern technology, such as
laser printers, graphics facilities, and data base machines. It was
noted that some users learned the system faster because of their
enthusiasm to use these high technology devices.

2.2.3.3 Technology Transfer

TRW learned that user support functions were consuming 50
percent of SPS resources. In order to provide better user training
and consulting, TRW created a User Support Organization. This
organization is responsible for a reference library, and hardware
maintenance support, as well as user consulting and training.

2.2.3.4 Measurement

Measurement data was collected on tool utilization, system
resources utilization, and user/system interfaces. Whenever
possible, subjective measurement was validated with real data.

D-19

%|



2.2.3.4.1 Tool Utilization

The measurement data indicated that twice as much CPU
time was spent for documentation services as was spent for software
development. Documentation services include preparing viewgraphs and
presentations, and updating requirements and design documents.

2.2.3.4.2 System Resources Utilization

Tools were analyzed based on the frequency of invocation.
This data is useful for determining which tools should be moved to
workstations in order to remove the load from the system. The ten
tools that most heavily tasked the CPU are the following: (1) vi -
screen editor, (2) csh - command interpreter, (3) ipr - formatter
for printer, (4) ips - printer status monitoring, (5) troff - text
formatter, (6) emacs - screen editor, (7) scribe - text formatter,
(8) query - forms manager, (9) viewcomp - electronic spreadsheet,
and (10) ada pdl - program design language.

2.2.3.4.3 User Function Data

Data was collected to determine which group of company
personnel used the system most often. It was concluded that the
software engineers and programmers occupied 65 percent of the CPU
for development, and secretaries used 11 percent of the CPU for data
entry. The personnel who used the system the least were managers and

* senior staff. Personnel who were surveyed felt that their
productivity increased almost 40 percent due to the SPS.

2.2.4 Conclusions

TRW found that software development environments should be
extensible, uniform, and customizable. The environment should
support friendly interactive facilities, rapid prototyping, and
reuse of internal components. It is also important to include a data
base for use as a central information repository.

TRW believes that a software development environment can
increase the productivity of project personnel, but a SDE is a large
system and requires corporate commitments. Mature support tools are
very important, and the man-machine interface must accommodate all
classes of users and must be consistent across all tools. The final
point that Mr. Bitar presented was that user involvement and
acceptance of SPS was crucial to the success of the SDE.

The general session of the E&V meeting was adjourned so that
working groups could meet separately. Working groups met separately
for the remainder of the day.

3.0 Wednesday, 6 March 1985

D-20

° . ' . * ..'. . . . . * ~ . . . . . .



3.1 Working Group Status Reports

3.1.1 APSEWG Status Report

The APSEWG status report was presented by Liz Kean, the
chairperson. One personnel change was noted: Lt. Jim Kiwkpatrick,
Gina Burt's replacement to the E&V Team, moved from the APSEWG to
the CAISWG. No deliverables were due this quarter. Accomplishments
this quarter include establishing the format to describe the
functions of the ALS, AIE, and ALS/N; the tool breakdown of these
environments has begun. Projected work for next quarter includes
listing the tools in the ALS, AIE, and ALS/N, and providing inputs,
processing, and outputs for each tool. This work is an effort to map
the environments into the SEE taxonomy. No deliverables are due next
quarter.

3.1.2 CAISWG Status Report

The CAISWG status report was presented by the chairperson
Darleen Sobota. Personnel changes noted include a new member, Lt.
Jim Kirkpatrick, who will be transitioned into the position of
CAISWG chairperson. The new vice-chairperson is Gary McKee, and the
transitioning chairperson is Lt. Doug Olson. Having Trisha Oberndorf
attend the CAISWG working group sessions helped them resolve many
CAIS-related questions that the CAISWG had generated. The
deliverables due this quarter is the APSE Validation Procedures
Document. Accomplishments this quarter include incorporating the
comments on the APSE Validation Procedures Document, reviewing the
draft CAIS-MIL-STD version 1.4, and providing input to the CAIS
working group of the KIT/KITIA. Projected work for next quarter is
to continue the development for the breakdown of sections 5.1, 5.2,
5.3, and 5.4 of the CAIS document. No deliverables are due next
quarter.

3.1.3 COORDWG Status Report

The COORDWG status report was presented by the chairperson
Don Jennings. One personnel change was noted; Randal Leavitt moved
from the COORDWG to the REQWG. No deliverables were due this
quarter. Accomplishments this quarter include the E&V meeting
minutes and status report, a draft Public Coordination Strateqy
Document version 2.0, and proposed changes to the Technical
Coordination Strategy Document. A format for all E&V documents was
prepared at the meeting and will be reviewed by the Team. Projected
work for next quarter includes Public Coordination Strategy Document
version 2.0, the E&V meeting minutes and status report, and the
draft Technical Coordination Strategy Oocument version 2.0. The
Public Coordination Strategy Document version 2.0 is the COORDWG
deli-erable for next quarter.

D-21

* . . . - - . *. 4



3.1.4 REQWG Status Report

The REQWG status report was presented by the chairperson Tim

Lindquist. Personnel changes noted were the following: (1) Pat
Lawlis will become REQWG chairperson, and (2) Marlene Hazle will
fill the position of vice-chairperson. No deliverables were due this
quarter. Accomplishments this quarter include the move to the SEE
taxonomy, the outline for the Tools and Aids Requirements )ocument,
and resolving the comments on the Requirements Document version 1.0.
Deliverables due next quarter are the draft Requirements Document
version 2.0, the draft Tools and Aids Requirements Document version
1.0.

3.2 Life Cycle Software Engineering Environment Taxonomy

Liz Kean from Rome Air Development Center (RADC) gave a
presentation on the Life Cycle Software Engineering Environment
(SEE) taxonomy. Liz covered the following topics: (1) background,
(2) NBS/ICST taxonomy, (3) SEE taxonomy, and (4) future plans.

* 3.2.1 Background

The E&V Team and the Software Technology for Adaptable,
Reliable Software (STARS) Joint Service Software Engineering
Environment (JSSEE) task needed a SEE taxonomy. Analysis of the
National Bureau of Standards Institute for Computer Sciences and
Technology (NBS/ICST) taxonomy determined that a major fault of the
NBS/ICST taxonomy is that it does not cover all of the tools
required for a life cycle; it includes tools for the coding and unit
test phases only. It was decided that the E&V Team and the JSSEE
task needed to develop a generic taxonomy of functions for a SEE
that included all phases of the life cycle. Three people from RADC,Richard Evans, Elizabeth Kean, and Frank LaMonica, were tasked to

develop this taxonomy.

3.2.2 NBS/ICST Taxonomy

The NBS/ICST taxonomy is a basis for the SEE taxonomy. The
NBS/ICST taxonomy is a hierarchical arrangement of software tool
features; the taxonomy covers the basic processes of a tool: input,

function, and output. There are three categories of tool functions;
they are the following: transformation, management, and analysis. A
transformation tool is defined to be any tool whose input is in a
different form than its output. An example of a transformation tool
is a compiler; the input is source code, and the output is object
code. A management tool is identified by the control of data; a data
base is a management tool. Analysis tools are categorized as static
or dynamic. An example of a static analysis tool is a consistency
checker which is a tool that determines whether or not an entity is
internally consistent in the sense that it contains uniform notation

[D-2?



and terminology. A dynamic analysis tool i. an assertion checker

which is a tool that tests the validity of assertions as the program
is executing.

3.2.3 SEE Taxonomy

The SEE taxonomy is a functionally-based, expanded version of

the NBBS/ICST taxonomy. Each of the tool categories are subdivided
into the following sections: (1) global, (2) system/software
requirement, (3) preliminary design, (4) detailed design, (5)
code/unit testing, (6) software integrati, testing, (7) software
performance testing, and (8) post-deployment support. This breakdown
is based on the NBS/ICST and on MIL-STD-SDS, and each of the eiqht
subsections is further divided into tool features.

3.2.4 Future Plans

Minimal feedback on the SEE taxonomy has been received by the

SEE design team at RADC; all constructive comments are appreciated.
Future work planned for the taxonomy is to condense as much of the
repetition as is possible. RADC plans to publish the SEE taxonomy as
a technical report in the near future.

3.3 General Discussion

3.3.1 Stars Representatives From The E&V Team

Any E&V Team member interested in being the E&V
representative to a STARS task area should contact Jinny Castor.
Distinguished reviewers will be allowed to participate if their
support organization agrees to pay travel expenses, and if the STARS
working group agrees to permit an industry representative to attend
its sessions. Government personnel who are interested in
representing the E&V Team will have their expenses paid by the E&V
Team budget. The E&V Team is most interested in sending
representatives to the STARS Metrics and Measurement, and the STARS
Applications task areas. The main responsibility of the E&V
representative is to serve as a liason between the STARS task area
and the E&V Team; each representative will report issues that impact
the E&V Team and issues that the E&V Team could impact for his
particular task area.

3.3.2 Policy For Working Group Chairpersons

Distinguished reviewers may hold the vice-chairperson
position in working groups; this position was previously reserved
for government personnel only. Each working group chairperson is
still required to be a government representative.

D-23



3.3.3 Requests For A Copy Of The Als

Any government E&V Team member who wants a copy of the ALS

must submit a written request to Jinny Castor. The letter must state
the following points: (1) the person requesting the ALS is an E&V
Team member, (2) the ALS will be used in support of E&V activities
only, and (3) the ALS will not be released to a third party. This
letter must be accompanied by three blank magnetic tapes which will
be used to mail the software.

3.3.4 E&V Glossary

A need has arisen for an E&V glossary of terms. The COORDWG
will adopt the KIT/KITIA glossary and add to it terms that are
related to the E&V task. This glossary will be updated and
maintained by the COORDWG.

The E&V Team meeting was then adjourned.

D-24

"""' ""' ' ":""" " " "" " "" "" ' '"" '" " " " . ..* .. . . . . .'. . ., . i, l



3.4 Action Items From E&V Meeting 5-7 December 84 Not Accomplished

AI-12-7-84-I: Don Jennings. Get information on the Asilomar
Conference Center as a possible site for the 1986 E&V
Workshop.

AI-12-7-84-2: Don Jennings. Investigate the requirements for the
public release of the E&V Status Report to
publications such as IEEE.

AI-12-7-84-3: Gary McKee. Develop the General Node Management
breakdown for the CAIS, section 5.1.

- AI-12-7-84-4: Nelson Estes and Jim Kirkpatrick. Develop the
breakdown of the CAIS Process Nodes, section 5. 2.

AI-12-7-84-5: Bud Hammons and Doug Olson. Develop the breakdown of
the CAIS I/O Facilities, section 5.3.

AI-12-7-84-6: Ray Sandborgh. Generate a decision model for tool
support.

AI-12-7-84-7: REQWG. Consider outstanding comments on draft 1 of
the Requirements Document.

3.5 Action Items From E&V Meeting 4-7 March 1985

AI-3-7-85-1: Jinny Castor. Obtain WIS Compiler Guidelines from
Capt. Percy Saunders and put them on the EV-INFO
directory.

AI-3-7-85-2: Jinny Castor. Send message to E&V Team indicating how
to edit the HERMES template to allow CC:.

AI-3-7-85-3: Jinny Castor. Update EV-TEAM.INFO.HLP file.

AI-3-7-85-4: Jinny Castor. Update EV-TEAM-MAIL.HLP file.

AI-3-7-85-5: Jinny Castor. Prepare public exchange records for E&V
briefing - SIGAda in San Diego, CA, and E&V briefinq
- Local SIGAda San Diego, CA.

AI-3-7-85-6: Jinny Castor. Modify EV-INFORMATION login file to
send comments to EV-INFO.

AI-3-7-85-7: Jinny Castor. Contact ECLB administrator to request
that mail sent to EV-INFORMATION be redirected to EV-
INFO.

D-25



AI-3-7-85-8: Jinny Castor. Send copy of E&V Plan to Ronnie Martin.

AI-3-7-85-9: Jinny Castor. Modify master copy of E&V Plan to

reflect: 1. Tools/Aids Requirements Document is draft
in FY85 and version 1.0 in FY86.

2. Changes to definition of E&V:
E - performance measurement
V - conformance measurement

AI-3-7-85-l0: Jinny Castor. Modify E&V viewgraph to reflect above
E&V definitions.

AI-3-7-85-ll: Jinny Castor. Send travel voucher/cost form to E&V

members.

AI-3-7-85-12: Jinny Castor. Coordinate with Jimmy Williamson to

develop 6 STARS Task Area descriptions for Tech Coord
Strategy Document.

AI-3-7-85-13: Jinny Castor. Notify E&V Team when Public Report is

available through DTIC.

AI-3-7-85-14: Jinny Castor. Chanqe E&V Plan schedule to reflect

that the draft Tools and Aids Requirements Document
version 1.0 is due next quarter.

AI-3-7-85-15: Greg Gicca. Confirm availability for presentation at

June E&V meeting.

AI-3-7-85-16: Greg Gicca. Draft of SDME into SEE taxonomy.

AI-3-7-85-17: Al Deese. Draft of ALS into SEE taxonomy.

AI-3-7-85-18: Bard Crawford and Marlow Henne. Draft of ALS/N into
SEE taxonomy.

AI-3-7-85-19: Paul Reilly and Stacy Reddan. Draft AIE into SEE
taxonomy.

AI-3-7-85-20: Liz Kean. Update the project reference list for those
documents referenced in the APSEWG Document.

AI-3-7-85-21: Marlene Hazle. Draft attribute definitions for
Requirements Document.

AI-3-7-85-22: Ronnie Martin. Draft 0/A section of Requirements
Document.

AI-3-7-85-23: Mike Meirink, Rick Contreras, and Bob Fritz. Draft
the Tools & Aids Requirements Document.

D-26



.................-- -- u-

AI-3-7-85-24: Rich Fleming. Review issues & prepare a draft rewrite
of section 4.0 of the Requirements Document.

AI-3-7-85-25: Pat Lawlis. Ensure Requirements Document conforms to
document format set up by COORDWG.

AI-3-7-85-26: Gary McKee. Provide overview/introduction of CAIS-
MIL-STD comments by 20 March 85.

AI-3-7-85-27: Gary McKee. Maintain all team members' comments of
the CAIS-MIL-STD.

AI-3-7-85-28: Darlene Sobota. Send Tricia a copy of APSE Validation
Procedures Document version 1.0.

AI-3-7-85-29: Darlene Sobota. Draft a letter for Gary McKee to be
new CAISWG chairperson.

AI-3-7-85-30: John Reddan. Send article on simulation of Ada
processes to Tricia.

AI-3-7-85-31: John Reddan. Develop the breakdown of the CAIS
utilities, section 5.4.

AI-3-7-85-32: E&V Team. Provide inputs to COORDWG for Project
Reference List.

AI-3-7-85-33: COORDWG. Obtain the KIT/KITIA glossary of terms and
use it to create an E&V glossary.

AI-3-7-85-34: COORDWG. Forward Tools/Aids questionnaire and obtain
responses.

AI-3-7-85-35: Don Jennings. Prepare boilerplate for working groups
document's section 1.2 (background).

AI-3-7-85-36: Don Jennings. Put a copy of the E&V document format
on the NET.

AI-3-7-85-37: Kathy Gilroy. Draft the requirements questionnaire
for NET distribution.

AI-3-7-85-38: Kathy Gilroy. Draft the compiler implementation
dependencies for the Requirements Document.

AI-3-7-85-39: Helen Romanowsky. Human/computer interfaces of
Requirements Document.

AI-3-7-85-40: Betty Wills. Update the E&V Project Reference List.

AI-3-7-85-41: Rick Contreras. Put on the NET a message soliciting
input for a software evaluator for computer resources
of a delivered Air Force system.

................... ...........••,,................... ...... . . .. ...... ,... .......



. t . ~~Y . fr' .* ..r .. o 7 7

ATTENDANCE LIST
E&V Team Meeting, 4-6 March, 1985

Stowe Boyd Michael Bridges
GTE Gov't Systems General Dynamics
1 Federal St. Data Systems Division
Billerica, Ma 01821 PO Box 85808, MZ VP 5300

San Diego, Ca 92138

Jinny Castor Capt. Ricardo Contreras
AFWAL/AAAF Hq AFOTEC/LG5S
Wright-Patterson AFB, Oh 45433-6543 Kirtland AFB, NM 87117

Bard Crawford Capt. Al Deese
TASC ASD/SIOL
One Jacob Way Wright-Patterson AFB, Oh
Reading, Ma 01867 45433-6543

Nelson Estes Richard Fleming
ASD-AFALC/AXTS Aerospace Corp.
Wright-Patterson AFB, Oh 45433-6543 MI/112

P.O. Box 92957
Los Angeles, Ca 90009

Capt. Ken Frankovich Robert Fritz
CSC
4045 Hancock St.
San Diego, Ca 92110

Gregory Gicca Kathleen Gilroy
GTE Gov't Systems SPS
1 Federal St. P.O. Box 361697
Billerica, Ma 01821 Melbourne, Fl 32936

Debra Harto Howard Harvey
AFATL/DLCM
Eglin AFB, Fl 32542-5000

Marlene Hazle Marlow Henne
MITRE Corp. Harris Corp.
Burlington Rd. GISD
Bedford, Ma 01730 505 John Rhodes Blvd.

Bldg. 1
Melbourne, Fl 32901

Don Jennings James Johnson
OC-ALC/MMECE
Tinker AFB, Ok 73145-5990

-.A

D-28



Elizabeth Kean Lt. James Kirkpatrick
RADC/COES AFALC/PTEC
Griffiss AFB, NY 13441 Wright-Patterson AFB, Oh

45433

Maj. Allan Kopp Capt. Patricia Lawles
AJPO AFIT/ENC
Rm 3D139 Wright-Patterson AFB, Oh
(Fern St/C107) 45433
The Pentagon
Washington, DC 20301-3081

Randal Leavitt Tim Lindquist
PRIOR Data Sciences VPI and State Univ.
39 Highway 7 562 McBryde Hall
Nepean, Ontario Blacksburg, Va 24061
K2H 8R6

Patrick Maher Ronnie Martin
. OO-ALC/MMECF Georgia Institute of Tech.
" Hill AFB, Ut 84056 Atlanta, Ga 30332

Gary McKee Michael Meirink
Martin Marietta Aerospace Sperry Corp.
M/S 0423, P.O. Box 179 DPG
Denver, Co 80201 P.O. Box 64525

St. Paul, Mn 55164

John Miller Trisha Oberndorf
SM-ALC/MMEHD NOSC
McClellan AFB, Ca 95652 Code 423

San Diego, Ca 92152-5000

Lt. Douglas Olson John Reddon
HQ AFCMD/SI Syscon Corp.
Kirtland AFB, NM 87117 3990 Sherman Way

San Diego, Ca 92110

Stacy Reddan Helen Romanowsky
Rockwell International
400 Collins Rd NE
Cedar Rapids, lo 52498

Lt. Darlene Sabota Ray Sandborgh
AFWAL/FIGRB Sperry Corp.
Wright-Patterson AFB, Oh 45433 Knowledge System Ctr.

3001 Metro Parkway, Suite 223
Bloomington, Mn 55420

D-29

> , .. . ... . . . . . .. . . . . . .. . . . . . . . .. . . . . .

v ,-.* . .* *'. ,- . .. ., / . . .-. ." t .*i ¢"..-" -"-,'-.<.'." '-"-.-'<.), ,h ' - ." 7, .i.?-



Capt. Percy Saunders Lt. Patrick Sheridan
WIS Program Office
Hanscom AFB, Ma 01731

Jimmy Williamson Betty Wills
AFWAL/AAAF-2 CCSO/SKXD
Wright-Patterson AFB, Oh 45433 TINKER AFB, OK 73145

D- 30



APPENDIX E

MIlqUTES

of the

,.-7 lunc 1985



, ..' = - . P T?2WJT.TW U .T. W. wJ V ,d - - - . .*-- .

TABLE OF CONTENTS

SECTION PAC.,

1.0 Wednesday, 5 June 1985
1.1 Welcome, Introductions and General Business j-

1.2 Functional Capabilities Required to Support Software Test and 1-)4

Evaluation
1.3 VHSIC Hardware Description Language (VHDL) Program E-6

1.4 Distinguished Reviewers --7
1.4.1 Single Project/Multiple APSE's E-7
1.4.2 Ada Program Library System --7

1.4.3 Security in APSE

1.5 Open Discussion

2.0 Thursday, 6 June 1985
2.1 Announcements i0
2.2 Component Evaluation Criteria E-10

2.3 Ada Validation Policy "Policeman"
2.4 ARTEWG Status Report E-

3.0 Friday, 7 June 1985
3.1 CAIS Operational Definition Status Report
3.2 STARS Status Report 1-15

3.2.1 STARS RADC Quality Metrics -C
3.3 Working Group Status Reports 1-IC

3.3.1 Requirements Working Group (REQWG) Status Report 2-16
3.3.2 APSE Working Group (APSEWG) Status Report E-16
3.3.3 Standards Evaluation and Validation Working E-17

Group (SEVWG) Status Report

3.3.4 Coordination Working Group (COORDWG) Status Report

3.4 Action Items E-I
3.5 Discussion Items E- 7

List of Attendees E-20

E2

-E-



1.0 Wednesday, 5 June 1985

1.1 Welcome, Introductions and General Business

The E&V Team meeting opened with welcoming rtomarks by Virginia Castor,
chairperson. Introduced to the team were Maj. Allen Kopp, AJPO; Maj. Kenneth
Schoonover, HQ Systems Command; Jerry Brookshlre, distinguished reviewer from
Texas Instruments; Manda Suri, distinguished reviewer from Lockheed; Thonas
Leavitt, distinguished reviewer from Boeing.

It was announced that:

- The E&V Technical Support Contract has not yet been awarded.

- The CAIS Validation Capability contract is itr, Procurement.

- The Ada Ccmpiler Evaluation Capability announcement of request for
proposal is scheduled to appear in the Commerce Business Daily (CBD) on .
30 May. The original of the announcement will be available over
ARPANET.

- Minutes of the March meeting are available on the NET under
<DHARTO>MIN. TEXT.

Action items carried over from the December and March meetings were
reviewed.

General Business included the following items:

- A list of E&V Team members was distributed and updates/corrections were
requested.

- It was requested that all mail messages go to all team members.

- The schedule of future meetings was reviewed.

- KIT/KITIA review was discussed.

- It was announced that Jinny Castor has taken a position with the AJPO
and will be moving to Washington D.C. The new E&V chairperson will be
Raymond Szymanski.

- The STARS glossary reflects conflict in terms of Evaluation and
Validation. The E&V Requirements Document is to be used as a baseline
for the definition of these terms.

- The E&V Status Report is due for the Language Control Facility (LCF)
Newsletter the week of 9 June. The COORDWG will address this during
its working group sessions.

- The Schedule of Deliverables was reviewed.

E- "

• % " j- . . - % j • + .' ' . , . ' ' 
"  

'e ._? ' -+ ' ' ' ' ' ' ' ' -

,, , a a.m ' . ° . ' . .L.-' % ' ' . ' ' - ' ' 
,

_ _ ' __ t "+ " , " " ', 
+

' " ? '



1.2 Functional Capabilities Required to Support Software Test and Evaluation
in Ada Programming Support Environments (APSEs)
Dr. Richard DeMillo, Project Director of STEP, Georgia Institute of
Technology

The Software Test and Evaluation Project (STEP) was initiated by the
Director Defense Test and Evaluation (DDT&E) in 1981, and is administered by the
Under Secretary of Defense for Research and Engineering, whose office is
responsible for large weapon system acquisitions.

The major goal of STEP is to improve the practice of software test and
evaluation. The approach used, which is top down in nature, is to make policy
changes and implement the changes, moving down to the technology hat supports
software test and evaluation.

A study that began in 1981 at the request of DDT&E provided an overview of
the state-of-the-art in software testing and reported the current view in the
practice of software testing. Recommendations prompted by the study were:

- Upgrade the automated technology available

- Insert the technology into APSEs

The STEP program was tasked by STARS (Software Technology for Adaptable,
Reliable Systems) to identify the functional requirements for technology to be
inserted in Ada development work. Requirements were identified as:

- Capabilities to remove barriers which prevent adequate testing

- Capabilities to facilitate improved testing

- Implementation of the defined capabilities, facilitating interface with
STARS efforts, assuring a two way flow of information.

The STEP view of the environment for testing operational software

recognizes that:

- Testers use software differently from other users

- Programmers view testers negatively

- Testing may delay delivery of software

- The testing life cycle is not identical to the development life cycle

- Testing needs cut across needs of the rest of the development

community.

Requirements for test and evaluation include identification of and response
to constraints placed on design environments that support the testing community.
These requirements are either general or specific in nature.

-



General requirements are those imposed on the tester by external
requirements. They are not always technical in nature and have little impact on
specific software design. General requirements state that:

1. Test and evaluation capabilities should be available at all points in
the software life cycle where test and evaluation is needed, should be
a component of existing decision support systems, and should feed into
a life cycle-based information repository.

2. The system should be accessable viL multiple interfaces to meet the
variety of needs that exist among the various users. Different modes
of operation are needed by different classes of users, including users
who are not testers.

3. Integration of tools is needed in order to eliminate duplication of
capabilities and allow the building of tools. Integration also
promotes uniformity of interfaces and efficient context switching.

4. Isolation of testers is necessary because there is a need for
integrity, reliablility, security and efficiency in the test process.
In addition, isolation will prevent the software failures that occur
during testing from affecting the rest of the user community.

5. Stability of evolution must coincide with what is important to the test
community.

6. Host/target selection must be specified.

7. Testing applications are customized in the areas of life cycle phases,
project-specific management, application-specific technology, classes
of users, applicable policy, and applicable contracts, regulations and
standards.

8. Evolution of test capabilities includes easy inclusion of new tools and
methodologies.

Specific requirements may take the form of a wish list. They are set forti
to insure technical feasibility, and may include the comment, "it will not work
the way it should unless..." The wish list requires:

1. Classification of capabilities by function and Joint Services Software
Engineering Environment (JSSEE) structural features. This
classification is accomplished with respect to life cycle, level of
information required, and level of services required.

2. Types of development functions provided. A tool building capability is

better than providing specific tools and increases the possibility of
compatibility. A test building capability is more flexible than
providing specific tests. Other services include test
description/preparation, test analysis, and degree of summarization
services.

E-



3. Ability to control test related processes.

4. Human Factors that make the test process more pleasant, thereby

increasing productivity and effectiveness of the testers.

A final draft of the report describing requirements and rationale for tests

is available this summer. Copies can be obtained bv contacting Dr. DeMillo at
Georgia Institute of Technology.

1.3 VHSIC Hardware Description Language (VHDL) Program
Dr. John Hines, Very High Speed Integrated Circuits (VHSIC)

Program Office

VHDL is the government effort to produce a good standard hardware

description language. There are currently fifty seven different non-standard

hardware description languages in use. VHDL is to hardware documentation

* language what Ada is to software documentation language.

The VHDL contract was awarded in August 1983. Intermetrics is the prime

contractor with IBM and Texas Instruments as subcontractors. Intermetrics,

together with IBM is responsible for language definition. Intermetrics is

solely responsible for implementation of the compiler parts of the language

system, and Texas Instruments is responsible for the simulator.

Phase A, the definition phase of the project, produced a series of language

definition documents. This phase ended in July 1984 with version five of the
language definition. This document underwent major industry review and tool

analysis, which resulted in version seven. This document will be the baseline

for the implementation of the VHDL. A final document, which will incorporate

minor changes to version seven, is due December 1985. Phase B, the
implementation phase, has been in progress since October 1984.

The VHDL project, a part of the VHSIC program within the Department of

Defense, is required to have close Ada ties. The VHDL implemented language

structure is very similar to Ada to the extent that VHDL could be considered an

extended subset of Ada, extended in the sense that some user defined procedures,

functions and packages have been added. It uses Intermediate Design Language
(IDL) to define the form of the language, which is somewhat like a data base

schema. CAIS Version 1.3 was used in the design library.

Hardware design deals with an object-oriented philosophy, structure and

behavior. VHDL attempts to provide the levels of abstraction necessary to

depict high level design and maintain the structural aspects of the designer's
viewpoint. Entity models allow the designer to decompose to any level of the
design hierarchy. The system allows the designer to configure things as

desired, and a smart linker performs efficient simulation.

The compilation takes place in an analyzer which produces an intermediate

file similar to Diana. This file is dumped into a design library. A simulation

can then be performed to verify the description.

The simulator generates a simulation model, called the simulation kernel,

which is analogous to a run-time system on a computer. Intermediate VHDL
Annotated Notation (IVAN) generates an Ada program which is compiled and

E-6

"-% ,..'.'.r.'.. ";'',',.''. " ."', "' ."". "' ."". -"..' -". " - " " ". , .-". "- " -.- .- ." .-". "- ., ". . "-"- - " ",-• %• -IL , .%, .,- .... ,.,,,,= . ,-, ,P'hi - ...' ..' ., -- - .,, . .+..,, - +....Y,. . -..,,,., .- ".'.'-'-., ."



executed.

In addition to components mentioned above, the Virtual Memory Management

(VMM) system has been developed, and the final version delivered.

1.4 Distinguished Reviewers

1.4.1 Single Project/Multiple APSE's
Jerry Brookshire, Texas Instruments

(subject assigned to Requirements Working Group)

The fundamental underlying concern in this area is in regard to distributed

APSEs and their communication mechanisms. Large scale system development

includes components of mission critical software requiring concurrent design and
development, potentially involving a variety of target computers. Overall
system operational requirements could dictate a large volume of multi-way

concurrent communications between functional nodes.

Approaches to addressing the problems inherent in a single project using

multiple APSEs are:

- Begin with a single large central development APSE and move toward the

development of smaller remote versions. In this instance, it is
possible to insure compatibility by designing it in.

- Multiple APSEs are required at the beginning of many projects. This

situation requires that incompatibilities be addressed as they are

identified.

Issues that need to be resolved include host/development station

compatibility, database handling, and multilevel software development.

Considerations in addressing these issues could include: providing similar

facilities across different targets, initially developing all software at a
large central facility to avoid database problems, and working with a project
database not resident at smaller remote facilities. Host-to-host compilation

for debugging and early testing during development is a possible requirement.
Host-to-target code generation may require a simulator to do target debugging in

the beginning phases of a project when all development is confined to the host

machine.

1.4.2 Ada Program Library System

Thomas Leavitt, Boeing

(Subject assigned to Requirements Working Group)

The library system is the structure in which program development occurs and

is an important factor in usability. It is overlooked in some evaluation
t axonomie s.

In selecting a library system from those available, evaluation criteria

must be established. These tend to be subjective in nature and include ease of
use, parsimony, and elegance. Modifiable aspects of systems must be related to
the context of the whole programming system. A very important aspect of the

E-7



library system is support of controlled sharing of units in the library.

A means of evaluating library systems under consideration for a proposed
Ada system is to require each supplier to describe how his system will perform
each of the following scenarios:

I. Create a local executable file from a new main program unit which
incorporates preexisting library units.

2. Create a new library unit.

3. Create a local executable file from a modified library unit without
impacting existing files.

4. Replace a shared library unit with a new version.

5. Test the currency of a unit in a program without recompiling.

6. List all units which depend on a specified unit and all the units which
a specified unit depends on in the context of a named program.

7. Delete a unit.

8. List the units in a library.

9. Given a target machine address, determine the corresponding Ada unit.

10. Copy units between libraries on different APSEs at different sites.

11. What version support is provided?

12. Identify the source text files, by version and date, which were linked
together to form a specified executable program.

13. Estimate the learning time to know how to do all the above operations
from the documentation provided.

1.4.3 Security in APSE
Manda Sury, Lockheed Missiles and Space Company(Subject assigned to CAIS Working Group)

Software security is an essential feature of mission critical applications.
Therefore the E&V task should include security considerations in evaluating APSE
components and interfaces.

Security affects all the software attributes defined in E&V documentation:
robustness, reliability, integrity, correctness and completeness. Security can
be defined as:

- Protection of valuable assets

E-8



- Prevention, protection and correction of vulnerabilities.

In determining what to protect, the value of the item under consideration

should be compared to the cost of protecting it. Not everything warrants

security. Items (assets) to be protected include information, objects, and

programs.

Techniques for providing security include isolation and mediation.

Isolation keeps threat of security breaches away from the item being protected,

whereas a mediator acts as a go between for the object and would-be users.

Basic components of a protection mechanism are:

- organizational policy stating who can access each item

- person or process that implements the policy

- monitoring capability

The National Bureau of Standards defines a hierarchy of users as ownership
rights, delegation rights, and access rights. Security is in conflict with

user-friendliness and interoperability, particularly when users are allowed to
act in different role options. A balance between these entities must be
achieved.

A recommendation is that E&V consider that the access control mechanism

described in the proposed CAIS document (version 1.4) serve as a preliminary
standard for evaluating the security of software in APSE components and
interface sets.

1.5 Open Discussion

The open discussion was lead by Major Allan Kopp and took the form of a

question and answer session.

The first question concerned the personnel makeup of AJPO. It was

explained that the director, technical director, and secretary are

representatives of the Department of Defense. The new Technical Director is

Paul Cohen. Deputy program directors represent the Army, Navy and Air Force.

A series of questions were asked concerning the status of Ada compiler

validation standards. Answers to these questions and related issues were

covered in a briefing presented Thursday, 6 June 1985 during the general session

of the E&V Team meeting.

Discussion ensued concerning milestones and goals of the AJPO. Issues of
particular interest are the insertion of CAIS into the STARS program, the Ada

insertion policy, and Ada education. An education working group is organized
(Software Engineering Education Working Group - SEEDWG) that focuses on

education in the area of transitioning technology.

Following the open discussion and a lunch break, working groups met for t:1V

remainder of the day.

E-9

"~~. . . . . . ." "" . .. " °" " " " " '' ' ,' '" 'i " """". 'i .'"



2.0 Thursday, 6 June 1985

2.1 Announcements

1. The E&V Team INFO-HELP file listing was again distributed for
corrections.

2. The E&V Team Public Report will be mailed to the distinguished
reviewers.

3. The agenda for Thursday morning was modified to include a briefing by
Major Allan Kopp and the ARTEWG Status Report.

4. Virginia Castor announced that she would be availab ? to conduct
training sessions on the ARPANET during the lunch hour.

5. The draft Technical Coordination Strategy Document, Version 2.0 is

completed and copies are available for team members.

2.2 Component Evaluation Criteria
Greg Gicca, G.T.E Government Systems
WIS Program

One of the major effort of the Software Development and Maintenance
Environment (SDME) project at GTE will be to build an environment using existing
Ada technologies. The objective of the evaluation criteria is to determine
which software products currently available are acceptable.

Components are evaluated according to an established list of criteria.
Information is gathered through a four phawse review process that determines

whether or not the component should be procured.

General categories of evaluation criteria include functional applicability,
understandability, testability, evolvability, efficiency, portability, and human
engineering. In evaluating functional applicability, issues of usability,
methodology independence, procurement cost, data rights, and correctness of
output are considered.

In evaluating understandability, source features such as source code
modularity, granularity, descriptiveness of documentation, traceability,
programming methodology, and completeness of documentation are considered.

In evaluating testability (ease of verification), descriptiveness,
modularity, and instrumentation are examined.

Evolvability (the potential of modifying or expanding a component) is
evaluated in terms of flexibility, reusability of source code modules,
interoperability, descriptiveness, granularity, machine independence, and system
independence.

Efficiency of a component is rated in regard to data storage and system
response.

E- 10



Portability is determined by the programming language used and the degree
of machine independence and system independence inherent in the component.

Evaluation in terms of human engineering considers the issues of user
interaction, error recovery, error messages, on-line help facilities,
completeness of documentation, system response, integrity, and the degree of

training required.

The evaluation process that gathers the information takes place in four
phases: a high level initial component review, an initial component evaluation,
a more detailed component evaluation, and a specific component evaluation. The
Initial Component Review evaluates initial information at a high level regarding
functional applicability, evolvability, portability and human engineering.
Reviewers' comments and basic component/vendor information is input at this
time. The initial component evaluation decomposes these four areas of
evaluation, then evaluates the component in these areas with further comments
and recommendations from reviewers' specialized perspectives. The first two
phases of evaluation are top-down in nature. The third stage of review further
decomposes the functions and characteristics to be evaluated and produces more
detailed comments and recommendations from reviewers, who evaluate only from
their area of expertise. The final phase, specific component evaluation, rates
the component as acceptable, unacceptable, or comments that there is not
sufficient information upon which to make a determination. Components are
compared, so that the most acceptable item will be procured.

Current requirements and evaluation criteria address technology that is
available now, but may not address technology available a few years into the
future. The fourth phase of evaluation has been designed to allow for the
addition, subtraction, and changing of present evaluation categories.

2.3 Ada Validation Policy "Policeman"
Major Allan H. Kopp
Air Force Deputy Director, Ada Program

Although the Ada community needs a written policy, at the present time
there is no formal validation policy in effect. The current unwritten policy
addresses only part of the problem that exists. At present, a yearly
revalidation of compilers is specified.

A DoD Ad Hoc committee has been formed to draft a policy statement for
validation. The committee includes Maj. Allan Kopp and Paul Cohen of the AJPO,
Pete Fonash of the Army, Bill Wilder of the Navy, and Ken Schoonover of the Air
Force. Policy formation is envisioned as taking place on three levels. The
policy will be maintained at the OSD (AJPO) level. Procedures will be developed
at the DoD component and AVO level. Validations are to be conducted, reported
and administered at the AVF level.

The draft Validation Policy defines responsibilities, identifies the scope
of validation, and addresses validation schedules, revalidation, domain of
validation, validation reporting, and compiler maintenance.

The scope of validation includes reporting conformance to standards of the
tested compiler, but does not indicate the suitability of a compiler for a
particular purpose, nor does it replace a set of application-specific

E-I1

-:r :':-i.' --. ".-' '- ::--- -- :- '-..":- -.. i--. .- "- -. % ".-:.-.-.."i--. .. :. •-.- .:- -:-- .:> -i, --. --i. • -, . .--- f -. i--- _



requirements. Validation activities do not measure performance or capacity of a
compiler, but do include preparation, maintenance, and distribution of the
validation test suite.

Validation schedules allow for periodic validation. Initially, validation
of a compiler has been for a one year period; however, validation periods may be
extended for the convenience of the government. Revalidation has been required
yearly or when major software upgrades are made. A problem occurs when
validation certificates expire before revalidation can take place. New policy
considers that a validated compiler remains validated for a given mission
critical project.

The item being validated is the compiler in its executable form. The host
", machine is termed a virtual machine. This allows the recognition of derived

validations of equivalents to the virtual machine. The "equivalent" definition
is the responsibility of the vendor. These derived validations expire at the
same time that the original validation expires.

Validation reporting addresses not only the tracking and approval of
Validation Summary Reports (VSR) but also publication of VSR results and of
reasonable challenges. No policy has been established concerning the rescinding
of challenged validations; however, placing a deadline on vendor corrections to
the stated problem is being considered as a possible solution. Several issues
in the area of revalidation are in need of resolution.

At the present time, the old Ada Compiler Validation Certification (ACVC)
system is being used. The new policy is in the process of being "sold" to the
validation community. It has been presented in briefings, but the printed form
is being witheld, pending Tri-Service review.

2.4 ARTEWG Status Report
Kathleen A. Gilroy, SPS, Inc.

The Ada Run Time Environments Working Group (ARTEWG) is a merger of the
Run-Time Planning Group established by KIT/KITIA, the Common Run Time Interfaces
Working Group of the user subcommittee, and the Distributed Systems Working
Group of the user subcommittee. The purpose of this group is to develop
products and services for the Ada community. Goals and objectives stated in the
ARTEWG charter are:

- Establish conventions, criteria, and guidelines that promote
reusability of Ada components, improve the performance of Ada
components, and provide for the evaluation and selection of RTEs.

- Provide interface mechanisms between members of the community that will
promote quality RTE implementations and identify/resolve Ada RTE
issues.

A plan of action for achieving the stated goals involves these tasks:

Elaborate Ada implementation dependencies

E-12



- Examine approaches used in building RTEs and categorize Ada
implementation approaches

- Categorize applications and their RTE requirements

- Map the requirements onto implementations

- Derive commonality of RTE interfaces

A list of products to be used in implementing the identified tasks include
a catalogue of implementation dependencies designed for use by application
programmers, a catalogue of-implementation approaches for RTEs, classification
of application requirements, guidelines for use of Ada RTE. for application
programmers, and a catalogue of RTE interface options. The list of products
reflects needs that exist in the Ada community. These needs generally address
cross-target compilers and military applications.

It is anticipated that by-products to be generated will include a file of
Ada RTE issues, Appendix F documentation requirements, a dictionary of RTE
terminology, guidelines for evaluating RTEs and possibly an Ada run-time
"Transportability Handbook."

The ARTEWG is sponsored by SIGAda and endorsed by AdaJUG and the AJPO. The
group consists of twenty principal members and a larger number of advisory
members who contribute their time on specific issues that are in line with their
areas of expertise. Within the ARTEWG, there are three working groups that deal
with implementation dependencies and approaches, application requirements, and
common RTE interfaces.

Areas of interest to ARTEWG that are not currently being addressed include:

- A feasibility demo of "minimal RTE"

- Programming support environment/RTE relationship

- Definition of pragmas for RTE configurability

- RTE extensions

- Data transfer protocols

- Planning and/or conducting classes on fundamentals of the Ada RTE for
program managers or other novices

- Forums and workshops

- Formulating training/education guidelines

The principal link between ARTEWG and the E&V Team is one of communication.

At the conclusion of the above presentations, working groups convened.

E-13



3.0 Friday, 7 June 1985

3.1 CAIS Operational Definition Status Report
Dr. Timothy Lindquist, Virginia Polytechnic Institute

The project objective is to create an operational semantic definition of
CAIS written primarily in Ada. The operational definition will provide for
design refinements for the current version of CAIS and serve as input to version
2 of CAIS. It will provide a vehicle for tool transportability studies, for the
examination of CAIS functionality, and for tool retargetability studies. In
addition, it will provide input to the development of the CAIS validation
capability by developing validation tests, identifying and resolving
specification gaps, and by operationally testing validacion tests.
Theoretically, the operational definition will be the next step in a sequence of
more formal specifications.

A progress report stated that preliminary versions of CAIS List Utilities,
CAIS Node Management, and CAIS Process Control should be available in August
1985. At the present time, the Dynamic String Package is 90 percent complete,
CAIS private routines to support node management and process management are 80
percent complete. Node management done in MIL-STD CAIS is 33 percent complete,
and is totally completed in non-compilable code. List Utilities are 80 percent
complete, and Process Management, updated to the proposed MIL-STD, is 25 percent
complete.

Some CAIS/Ada issues in need of resolution have been identified. When
using the node management routines to manipulate attributes, one finds that the
value of the attribute has to be a list type. Therefore the tool must use
TOLIST to convert a string to a list before creating an attribute, and TO TEXT
to convert a value back to a string after a ..get". It is recommended that
overloads should be defined for attribute routines. A second issue involves
LISTUTILITIES. Compiling the specifications introduced an inconsistency
Text explaining LIST UTILITIES defines NAMESTRING, but the appendix does not.
The package NODE DEFINITIONS does not constrain NAME STRING. A problem
arises because NAME STRING is returned as the value of-a function, causing
difficulties for the CAIS user and the implementer. Therefore, either the
tool must invoke functions returning NAME STRING in a cumbersome manner, or

. implementation must constrain NAME STRING. The latter solution violates the
specification. Steps will be taken to insure adherence to the specification.
Solutions to the problem are being evaluated.

Work is being done in the area of generating validation tests from abstract
machine descriptions. The tests are to be administered in a black box manner
using a white box technique to develop the tests. An Ada-based abstract machine
description of the CAIS is used as input to the technique. Paths are isolated
by using symbolic execution to identify the number of paths to test in a
validation suite and to isolate input/output pairs that would cause those paths
to execute. The input/output pairs are then converted into validation tests.
The ultimate result of using the technique presented will be a more complete set
of validation tests.

Preliminary work is being done in the area of establishing a definition of
CAIS input/output. Efforts are being made to distinguish between input/output
that can be written in Ada only and those portions that are machine dependent.

E-14

"* * ' .. ''" "" " "'"""'".. .". . "."" " " " " • " "- S . ' p. ''' -.- . '-"'- - ' .". " x " , '



- -N K -. -wr

The final effort to be reported concerns Ada packages for encapsulating
CAIS elements. A problem regarding "conflict of interest" exists in that an
appendix to an earlier version describes two approaches to defining packages for
the CAIS in a compilable way

- Access to the tool using CAIS is limited

- Access to the CAIS implementation packages is unlimited.

No resolution on this issue has been reached.

3.2 STARS Status Report

Lt. James Kirkpatrick, AFALC/PTEC

The report presented highlights of the STARS Application Workshop which was
held 9 - 12 April 1985 at the Naval Research Laboratory, Washington, D.C. Focus
of the workshop was software reusability. Working groups addressed the issues
of taxonomy, incentives, libraries, design/integration, and metrics.

The taxonomy working group concentrated on the issues of common ter:-inology
and defining levels of reusability of software.

The working group on incentives identified problems in the proposal (bid)
evaluation process that discourage the use and development of reusable software.
Proposals that involve reuse of software are eliminated because they seem
unrealistically low, whereas proposals incorporating development of reusable
software seem unrealistically high. Possible resolutions to this problem were
outlined. Discussions regarding the testing of reusable software brought forth
reference to MIL-STD 2167 (Tr-Service), MIL-STD 1679 (Navy) and MIL-STD 1679A
(DoD).

The library working group addressed issues of Configuration Management (CM)
and maintenance of reusable software. The library is critical to reusability.

The design/integration working group dealt with assessing the current
status of, and determining future approaches to, the design and integration of
reusable software. Two areas examined were the designing of reusable parts, and
the development of designs using reusable parts. Two dimensions of reuse are
vertical (reusing software associated with a specific application) and
horizontal (reusing software across application areas). It was noted that
sociological problems exist with software reuse.

The working group on metrics highlighted methodology and measurements to be
used in the development of reusable parts. RADC methodology, RADC metric work
sheets, and Software Evaluation Reports of STARS Measurement DIDs were
recommended. In using reusable parts, information concerning development,
quality levels, functionality, operational history, and interface should be
obtained for all parts under consideration by the user.

E- 15

Ile %

.. .. . . . . . .. . .. . . .. .. .. .. . . . ... . . . . . ..



3.2.1 STARS RADC Quality Metrics

Marlow Henne

The STARS Quality Metrics represents a process one can use to evaluate a
program. Thirteen entities are evaluated, such as transportability, modularity,
etc. A contract with Defense Mapping Agency (DMA) funding was awarded a year
ago. This contract will automate the tools used in this process. STARS has
expanded this effort to include Ada software. The result is anticipated in
1986.

3.3 Working Group Status Reports

3.3.1 Requirements Working Group (REQWG) Status Report

The Requirements Working Group Report was presented by chairperson, Pat
Lawlis. Three new members of the working group were announced: Karyl Adams,
Jerry Brookshire, and Tom Leavitt. Deliverables due included a draft Version
2.0 of the Requirements Document and a draft Version 1.0 of the Tools and Aids
Requirements Document. Accomplishments reported included completion of updates
to the Requirements Document in the areas of Attributes Definitions, Required
APSE Evaluations and Validations, and Quality Guidance. Other accomplishments
were the conducting of a Tools and Aids Survey, drafting of a Tools and Aids
Requirements Document, and the writing of a document on assessment of
Availability of Tools and Aids. Key issues addressed concerned a need for
public awareness of the availability of tools and aids, prioritization of tools
and aids needed, and consideration of "Whole APSE" issues. Unresolved problems
or action items are: sending the glossary from the Requirements Document to
IDA, constructing a decision matrix for the Tools and Aids Document, obtaining
CAIS input to Tools and Aids Document, sending a draft copy of the Tools and
Aids Document to team members, development of rationales for requirements, and
developing a strategy for acquisition of tools and aids. Projected work for the
next quarter includes distribution of a revised draft of the Availability
Assessment Document to team members, first try at developing an availability
matrix, distribution for comment of a list of "Whole APSE" issues to team
members, review of relevant material to expand and elaborate whole APSE issues,
allocation of whole APSE issue items to working group members, and preparation
of a short description for allocated whole APSE items.

3.3.2 APSE Working Group (APSEWG) Status Report

Personnel changes included the return of Guy Taylor and the replacement by
Christine Stacey of Stowe Boyd. No deliverables were due this quarter.
Accomplishments this quarter included the finalization of taxonomy mappings, the

beginning of writeups, and the evaluation of "Boiler-Plate" portions of the
document. Action Items presented include completion of the first draft of the
ALS Decomposition and the forwarding of review comments to Guy Taylor,
documentation to be done in the areas of evaluation, evaluation of ALS/N, and
AlE. Projected work for next quarter includes completion of documentation in
the area of environment and completion of SEE taxonomy mappings. The APSEWG
taxonomy will include comments on ALS, ALS/N and AIE. No deliverables are due
next quarter; however, a draft of the Analysis document is planned to be
available for initial team review.

E-1i6

S..- '*, . ** -



3.3.3 Standards Evaluation and Validation Working Group (SEVWG) Status
Report

Jim Kirkpatrick, SEVWG chairperson presented the report of the SEVWG.
Announcement was made that the name of the group has been changed from CAISWG to
SEVWG, since the group will be dealing with evaluation and validation issues of
other standards in addition to CAIS. New members of the group include Tim
Lindquist, Kathleen Gilroy and Manda Sury. Darleen Sobota has been transferred
to AFIT. SEVWG concerns included the evaluation of the task before the group
and the planning of a single evolvable document dealing with issues relating to
standards development. Work planned for next quarter includes the concentration
on evaluation criteria while deemphasizing dependencies, planning of services to
be performed by the E and V support contractor, and meeting with REQWG to
discuss CAIS concerns which are applicable to both group . Deliverables
included the APSE Components Validation Procedures Document (ACVPD).
Accomplishments included the completion of version 2.0 of the ACVPD
incorporating team comments and working on CAIS dependencies tests. Unresolved
items include completion of dependency tests on MIL/STD CAIS sections.
Projected work includes planning a new deliverable document concerning CAIS
analysis and including sections on dependencies and evaluation criteria. A
strawman of this document has been built. Deliverables due next quarter include
an updated version of the ACVPD and a draft of the proposed document.

3.3.4 Coordination Working Group (COORDWG) Status Report

Don Jennings, COORDWG chairperson presented the status report.
Accomplishments this quarter included the writing of the March minutes, the E&V
Team Status Report, completion of an updated Project Reference List, and
completion of a draft E&V Public Coordination Strategy Document, Version 2.0.
Deliverables due included the draft E&V Public Coordination Strategy Document,
which is ready to go out for comments. The Public Coordination Strategy
Document, Version 2.0 has been completed ahead of schedule. Unresolved items
include a need for team members to provide updates to project reference lists
and a need for inputs to the Technical Coordination Strategy Document.
Projected work for next quarter includes producing a status report, producing
minutes of the June meeting, finalization of the Public Coordination Strategy
Document, and updating the draft TCSD to include comments received over the net.
Deliverables due next quarter include Version 2.0 of the Technical Coordination
Strategy Document

3.4 Action Items

AI-6-7-85-I: J. Castor. Send the E&V Status Report to the LCF Newsletter

AI-6-7-85-2: J. Castor. Put the March minutes on MILNET <D!iARTO>MIN.TXT

AI-6-7-85-3: J. Castor. Send Project Reference List item on the E&V
Public Report to B. Wills

AI-6-7-85-4: J. Castor. Put Project Reference List on MILNET

AI-6-7-85-5: J. Castor. Put E&V meeting schedule on MILNET

AI-6-7-85-6: J. Castor. Send list of CAIS Validation Issues to E&V Team

E-17

N . . . . . . . .... . . . .



-' - -... . - r ""~ ' - " . - .'.' ' , :- . -: 5 "'' ' "- - ' - - - -

4-
AI-6-7-85-7; J. Castor. Send E&V Status Report to D. Jennings for

publication

AI-6-7-85-8: J. Castor. Obtain MILNET accounts for Karyl Adams, Ray

Szymanski, Amos Rohrer, Greg Gicca

AI-6-7-85-9: J. Castor. Update <EV-INFO>EV-TEAM-INFO.HLP file (note new

name of SEVWG)

AI-6-7-85-l0: J. Castor. Update <EV-INFO>EV-TEAM-MAIL.HLP file

AI-6-7-85-11: J. Castor. Call Lt. Pat Sheridan concerning copy of WIS SDME
CPOP Annex

AI-6-7-85-12: J. Castor. Call Lt. Persons (AV 478-5980, ex 2694) for

WIS compiler guidelines

AI-6-7-85-13: J. Castor. Send message clarifying CBD article on ACEC

AI-6-7-85-14: J. Castor. Send message notifying all that the E and V
Public Report is available from DTIC.

AI-6-7-85-15: J. Castor. Send message telling how to set protection codes

on files

AI-6-7-85-16- J. Castor. Send message to team limiting distribution of
documents.

AI-6-7-85-17: J. Williamson. Contact K. Gilroy concerning input to TCSD
about the ARTEWG

AI-6-7-85-18: T. Lindquist. Send a copy of CAIS requirements package to
team menbers

AI-6-7-85-19: J. Brookshire. Call J. Castor for the guest MILNET access

information (after 17 June: (202)694-0209 or AV 224-0209)

AI-6-7-85-20: COORDWG and WG Chairmen. Update Document boilerplate with

statement concerning limited distribution to team only.

3.5 Discussion Items

I. It was announced that VPI papers are available for distribution to team
"" members, thanks to the efforts of Tim Lindquist.

2. Liason status reports are valuable to team members; however, the time
element at meetings is critical. Consensus seemed to be that a time limit

should be set and enforced.

3. The Public Coordination Strategy Document indicates that all briefings on
E&V by team members need to be reported. Reports were requested from Guy
Taylor, who had briefed the Navy and Marlow Henne, who had briefed NATO.

4. It was noted that mapping of contractual efforts as related to E and V

activicies should be done.

E-18

, . ~. . * . . . . • . .• . . -q



5. It was noted that a briefing should be provided at each E and V meeting
concerning status of work being done by the support contractor. Inputs by
working groups concerning how the contractor can be of support should be
drafted.

6. It was announced that funding for E and V related travel is available to
governent personnel only.

7. It was announced that NASA has shown interest in E and V activities, as have
several European countries, notably the English government and the German Navy.

8. It was announced that a presentation on IDA-Ada Prototype Compiler
Benchmarks has tentatively been scheduled for the next meeting.

9. Liasons were asked to check the Technical Coordination Strategy Document to

be sure that information concerning their areas is correct.

10. New chairman, Raymond Szymanski, was introduced to the group. His first

executive decision was to decree, after considering input from team members,
that the next meeting will be held 4 - 6 September as scheduled.

E-19



*ls 717 71 7. "'P -77.- 1-- 5-...1

ATTENDANCE LIST
E and V Team Meeting, 5 - 7 June 1985

Adams, Karyl A. Bridges, Michael

AFWAL/FIGD General Dynamics

WPAFB, OH 45433 Data Systems Division
P. 0. Box 85808, MZ VP 5300

San Diego, CA 92138

Brookshire, Jerry Burlakoff, Mike
Texas Instruments Southwest Missouri State Univ.

Dallas, TX

Castor, Virginia Crawford, Bard
AFWAL/AAAF-2 TASC
WPAFB, OH 45433 One Jacob Way

Reading, MA 01867

Deese, Capt. Al De Millo, Richard
ASD/SIOL Georgia Institute of Technology

WPAFB, OH 45433 Atlanta, GA 30332

Fleming, Richard Fritz, Robert

The Aerospace Corp. CSC
MI/112 4045 Hancock St.
P. 0. Box 92957 San Diego, CA 92110
Los Angeles, CA 90009

Gicca, Greg Gilroy, Kathleen
GTE Goverment Systems SPS, Inc.

I Federal St. P. 0. Box 361697

Billerica, MA 01821 Melbourne, FL 32936

Hammons, Charles Harto, Debra L.
Texas Instruments AFATL/DLCM

P. 0. Box 801, M/S 8007 Elgin AFB, FL 32542-5000
McKinney, TX

Hazel, Marlene Henne, Marlow
Mitre Corp. Harris Corp. GISD

Burlington Rd. 505 John Rhodes Blvd.

Bedford, MA 01730 Bldg. 1
Melbourne, FL 32901

Jennings, Don Johnson, J.

OC-ALC/MMECE AFWAL/AAAF

Tinker AFB, OK 73145-5990 WPAFB, OH 45433

Kean, Elizabeth Kirkpatrick, James
RADC/COEE AFALC/PTEC
Griffiss AFB, NY 13441 WPAFB, OH 45433

E-20

Sr.

~ . . 5 5 - .5



Kopp, Maj. Allan Lawlis, Patricia K.
AJPO AFIT/ENC
Rm. 3D139 (Fern St/C107) WPAFB, OH 45433
The Pentagon
Washington, D.C. 20301-3081

Leavitt, Thomas Lindquist, Tim
Boeing Military Airplane Co. VPI and State University
Wichita, KS 562 McBryde Hall

Blacksburg, VA 24061

Maher, Patrick Martin, Ronnie
Magnavox Georgia Institute of Technology
Fort Wayne, IN Atlanta, GA 30332

Mahew, David McKee, Gary
VPI and State University Martin Marietta Aerospace
Blacksburg, VA 24061 M/S 0423, P. 0. Box 179

Derver, CO 80201

Miller, John Reddan, John
SM-ALC/MMEHD SYSCON Corp.
McClellan AFB, CA 95652-5609 3990 Sherman St.

San Diego, CA92110

Reilly, Paul Rohrer, Amos
Data General EGG
Westboro, MA Manassas, VA

Romanowsky, Helen Schoonover, Kenneth
Rockwell International HQ AFSC/PLRT
400 Collins Road NE Andrews AFB, MD
Cedar Rapids, IA 52498

Shirley, Jane Stacey, Christine
SYSTRAN Corp. GTE Gov't Systems
4126 Linden Ave. Billerica, MD
Dayton, OH 45432

Sury, Manda Taylor, Guy
Lockheed Austin Div. FCDSSA
M/S T2-32, 30E Code 822
21 " E. St. Elmo Dam Neck
Austin, TX 78744 Virginia Beach, VA

Williamson, James Wills, Betty
AFWAL/AAAF-2 CCSO/ SKXD
WPAFB, OH 45433 Tinker AFB, OK 73145

E-21

-'" " - __c-. : '..e, W', .. .. .... A.. ,,L,. . '- '' .,.,,,.' ',,,, - " " '" ' "" ; " " " '' ... ' ""' " ""7



APPENDIX F

MINUTES

of the

EVALUATION & VALIDATION (E&V) ME~ETING

4-6 September 1985

F-1



TABLE OF CONTENTS

SECTION PAGE

1.0 Wednesday, 4 September 1985 F-3

1.1 Welcome, Introductions, and General Business F-3
1.2 Operational Definition of CAIS - Task Status F-3
1.3 Prototype Ada Compiler Evaluation Capability (ACEC) F-6
1.4 E&V Classification Schema F-8

2.0 Thursday, 5 September 1985 F-I1

2.1 The APSE Interactive Monitor (AIM) F-11

2.2 Announcements F- 13

3.0 Friday, 6 September 1985 F-14
3.1 Classification Schema, Revisited F-14
3.2 Working Group Status Reports F-15

3.2.1 Coordination Working Group (COORDWG) Status Report F-15-
3.2.2 Standards Evaluation and Validation Working Group F-15

(SEVWG) Status Report F-15
3.2.3 APSE Working Group (APSEWG) Status Report F-15
3.2.4 Requirements Working (REQWG) Status Report F-16

3.3 Announcements F-16
3.4 Open Discussion F-17
3.5 Action Items F-17

List of Documents Distributed F-18

List of Attendees F-19

F-2

5%. .- ,.s-



1.0 WEDNESDAY, 4 SEPTEMBER 1985

1.1 WELCOME, INTRODUCTIONS, AND GENERAL BUSINESS

The Evaluation and Validation (E&V) Team meeting opened with welcoming

remarks by chairperson Raymond Szymanski. Speakers for the morning session, Dr.
Timothy Lindquist of Arizona State University, Audrey Hook of the Institute for
Defense Analysis, Dr. Greg Riccardi of Florida State University, and Dr. Bard

Crawford and Peter Clark of The Analytic Sciences Corporation, were introduced.

It was announced that:

- Virginia Castor has become the Acting Director of the Ada Joint Program

Office (AJPO).

- Lt. Commander Phillip Myers has joined the AJPO and is the liaison for

the E&V Team. His MILNET address is <PMYERS@Ada20>.

- Marlow Henne has brochures on accommodations and maps of Harris Corp.
available for those who plan to attend the December meeting. Brochures

can also be obtained by contacting Debra Harto.

Action items listed in the June minutes were reviewed. All outstanding
action items were resolved.

1.2 OPERATIONAL DEFINITION OF CAIS - TASK STATUS
Dr. Timothy Lindquist

Arizona State University

The Common APSE Interface Set (CAIS) is a set of kernel-level interfaces

for building APSE tools. The CAIS is intended to be a single set of tool/system
interfaces founded on the ALS/ACS, and is incrementally developed. The CAIS,
which is to be DoD maintained, will provide a validation capability.

The CAIS scope, which is typical of operating systems, includes facilities

for structures and files, processes, and devices.

The CAIS has evolved to a level of maturity that allows it to be considered

a Draft Military Standard.

The need for an Operational Definition of CAIS (CAIS OD) was identified,
which would allow execution of the interfaces.

The CAIS OD technical objectives were to operationally define the CAIS in

as semantically complete a version as possible, written almost entirely in Ada,
and based on the Draft Standard CAIS.

Results of the first phase of the project are preliminary definitions of
List Utilities, Node Model, and Process Control and the production of associated

documentation. In addition, an examination report of the input/output (I/O)
section of the CAIS is being formulated. This report will define the components
of the I/O section that can profitably be written in a high order language such

as Ada, and which portions must be left to the underlying system.

F-3
F.-o3



Work remaining in the area of LIST UTILITIES includes resolution of

problems concerning the use of dynamic strings as tokens, and tweaking the float

items and integer items that have been written.

Work remaining in NODEMODEL includes completing some copy routines,

completing ACCESSMODEL, and addressing some management routines.

Work remaining in PROCESSCONTROL includes completing the SUSPEND and

RESUME routines, devising hooks to the underlying system, and finalizing status

. reporting routines for machine time, I/O units, and three other areas.

A total of approximately 9,000 lines of code are included in -he sixteen

major packages that make up these three sections of the CAIS OD.

Problems are being addressed in the areas of the CAIS specification itself,

as well as the three areas of work addressed by the Operational Definition.

In the CAIS specification, Appendices B and C present package

specifications and package bodies in compilable form. However, the use of

private types and limited private types prevent compilation when real statements

are added to the package bodies. A specific example is the use of NODE TYPE

within NODE DEFINITION, which is limited private. Various packages, such as

NODEMANAGEMENT and PROCESSCONTROL use NODETYPE, but because it is limited

private, these packages cannot function adequately. The classification

prohibits users of NODE DEFINITION from altering node types. At the same

time, routines in NODEMANAGEMENT are unable to set or alter the value of a

handle. A possible solution is for NODE MANAGEMENT to call routines existing

within NODE DEFINITIONS to cause modifications to take place, adding a level of

indirection. Reorganization is another solution that has not been tested for

usability.

Problems in the area of LISTUTILITIES center around constrained strings

that are returned by routines. An example is the routine TO TEXT, whose input

is a list and whose output is a text string. The length of the resulting

constrained string must be the length of the identifier into which it will go.

This requires using an aggregate assignment "T:-" which allows the changing or

setting of string length.

The CAIS specification requires that you have a declaration block within

each tool in order to call the tool. Ideally, a CAIS implementation should

define the string type; for example, one could define the type string to be a

dynamic string, which would solve the problem. The current specification does

not allow this, because in several instances strings are used to initialize

operations. Ada needs to be extended to a more flexible orientation for strings

which would allow more dynamic structures for applications such as CAIS.

Implementing the Operational Definition has identified several areas in the

CAIS that need refinement. Examples include the procedures required to create

node attributes, and the overloads (DELETE, SET EXTRACT, and EXTRACT) that one

has to consider in order to remove elements from a list.

Node management problems within NODE MODEL are being addressed. The

implementation approach is that nodes are used as carriers for entities (device

* file and process entities) and structures.

F-4



There are primary and secondary node relationships within the CAIS.
Primary relationships enforce a hierarchical structure within the CAIS, whereas
secondary relationships allow for a directed graph structure that may be cyclic.
Each node has one primary relationship but may have several secondary
relationships with other nodes. CAIS node management is defined in such a way
as to delete the primary relationship when you delete a given node. However,
the secondary relationships still remain. CAIS implementation needs to remember
the secondary relationships so that they can be referred to later, even though e
the node itself can't be. The least undesirable way of handling the situation
is by use of a capability table, active node table, or binary tree which would
allow the user to determine whether the object referred to by the relationship
is still an active entity in the storage system. Each node would be assigned a
unique 64-bit sequence number which would be used throughout the system. The
table or tree would reference only currently active nodes. If a node is
referenced by a dangling relationship, its sequence number will not occur in the
structure, and the implementation will know that it is not an active node.

Problems in the area of access control focused on a subset of discretionary
access mechanisms. Subjects (processes) are given access to objects by adopting
roles. The type of access given to the subject is determined by a grant
attribute pertaining to the relationship between the subject and the object.
This relationship involves granting the subject necessary rights. There is
currently a problem regarding the determination of rights provided to a subject
granted by roles adopted. The discretionary access mechanism specified in the
CAIS is felt to be more complex than is necessary. Work done to date includes
implementation of discretionary access through to only one level of indirection
without allowing necessary rights to be on the resulting rights list.

The implementation approach used in PROCESS CONTROL has been to use Ada
entirely. Each process node contains two tasks: the execution of the Ada
program and the synchronization with the spawning process. Process
synchronization is handled through these tasks. In order to be a real CAIS
environment, it is necessary to link to an underlying system to provide for
process initiation. Dynamic linking is not possible with Ada. The current Ada
implementation requires that all programs that are spawned or invoked must be
compiled with the CAIS, omitting dynamic linking. To date, it has not been
possible to suspend and resume in Ada. These two operations must rely on %
underlying primitives. -

The CAIS Operational Definition is perceived as being a vehicle for
exercising transportability studies, and rehosting studies onto the CAIS. The
Operational Definition can play an important part in generating a CAIS
validation capability by excercising the validation suite and offering a
rigorous approach to constructing validation tests. The CAIS OD will provide an
excellent prototyping basis for any extensions to the CAIS. Candidates for CAIS
extensions are a distributed environment and a modified access control
mechanism.

The area most critical to the CAIS program is tool studies. Since many
software engineering tools are perceived as undergoing minimal change in the
next ten to fifteen years, the CAIS's success depends upon the ease with which
tools can be transported to the CAIS. Automated testing and test generation
tools, and configuration management are examples of tools that should be
examined in terms of CAIS functionality. CAIS adoption would be greatly
advanced by transporting well known tools, written in Ada, onto the CAIS.

F-5

*%**.'4**.~.* .. . . .



The current goal is to have the CAIS OD on the NET by late October 1985,
together with documentation and a disclaimer.

1.3 PROTOTYPE ADA COMPILER EVALUATION CAPABILITY (ACEC)
Audrey Hook, Institute for Defense Analyses (IDA)
Dr. Greg Riccardi, Florida State University (FSU)

The scope of this task was to create a test suite using existing tests in
the public domain, develop a report writer similar to the Ada Compiler
Validation Capability (ACVC), write a user's manual for executing the test(s),
and prepare a final report to be used as input to future ACEC work.

The approach chosen for accomplishing this task was to use development
teams made up of people with expertise in various areas, such as compiler
builders, data base designers, and benchmark experts. This synergism, the
coming together of individuals from differing disciplines to address a common
problem, has proved effective and has resulted in the availability of a
diversity of hardware and compilers for use in the evaluation.

Work was organized into two areas. The first area of effort was the
development of a test suite. This involved gathering and analyzing tests, and
organizing the tests into a test suite. The second task was to develop an
architecture that would support the test suite, a report writer being a major
component of this package.

Four teams addressed the effort. The teams and their areas of
responsibility were:

- Team A (IDA) addressed project management, benchmark construction,
validation, and Ada language usage.

- Team B (General Systems Group) addressed benchmark construction,
architecture, database design, and Ada language usage.

- Team C (Florida State University) addressed compiler development,
instrumentation, and Ada language usage.

- Team D (SIGAda) addressed Beta testing.

A diversity of hardware and software was used as the development base for
Instrumenting the tests. The development base at IDA consisted of a Data
General mainframe running the ADE compiler, and a VAX running the DEC compiler.
The development base at FSU consisted of a VAX with a DDC compiler, a Cyber
170/760 executing the AFATL Ada Compiler, and a SUN development station using
the VERDIX compiler. Beta testing involved a variety of compilers including the
Data General (DG) ADE compiler, VAX machines using TELESOFT, VERDIX, DEC, SD-ADA
System Designers Limited, and SofTech's ALS compiler, and IBM with the
Intermetrics ACS compiler.

F-6

Iri



Contributors to the test suite included IBM, SRI, Harris, Ada Fair '84, and
SIGAda. Six hundred tests were collected; 136 were selected to be retained.
Tests were selected that would measure Ada language feature performance rather
than conformance or compiler architecture. The purpose of this task was to
develop a very basic prototype for compiler evaluation capability, tests that
were developed to investigate specific compilers were eliminated. All tests
selected had to be unique and had to compile correctly. Tests were written in
Ada only.

Generally speaking, benchmarks are programs that represent a specific
workload and are used to demonstrate relative measures of capacity and
efficiency for different computer systems or configurations. For this task,
compiler benchmarks are programs that demonstrate the effect of specific
language feature usage on the capacity of a computer system, and programs that
demonstrate the limitations that would be imposed by the compiler on application
development.

The test suite was organized into two categories. The normative part of
the test suite dealt with language granularity, language constructs which must
be implemented in a conforming compiler, and addressed performance and capacity.
The optional part addressed compiler features and algorithms.

Tests were instrumented to determine where each would fit into the
benchmark architecture. E&V Team criteria for evaluating benchmarks were used.
The language feature tested by each test had to be determined, and the best
version of each test had to be selected. Test objectives were described, and
the type of statistics rendered (addressing compilation, execution, or both) was
noted. It was decided that a single test instrumentation strategy would be
implemented. In view of the fact that each test provides compilation and
execution statistics, host/target dependent capabilities of the various tests
had to be identified. All that can be done to make a given test portable is to
define interfaces for using available statistics.

For each test, a control version of the program is run. The control
version does not contain the language feature being tested. The difference in
the execution time between the two versions shows the cost of the language
feature. The goal of this procedure is to measure both CPU time and real time.

The test suite is designed so that the user can run a single test or use

all the tests to obtain data. Test results can be weighted to provide data on
the particular feature being scrutinized.

The purpose of this task was not to create large synthetic benchmarks or to
rate language features. This effort can provide the user with an incomplete
sampling of tests that allows him to select applicable tests and create his own
synthetic benchmarks. Intended users of the test suite are programmers who are
familiar with their Ada compiler, the host/target operating system, and resource
accounting packages.

Work remaining includes evaluating Beta Test results and developing
enhancements for Version 0 (Beta Test). Tapes of Version I of the ACEC test
suite and the User's Manual are planned for delivery by the end of September
1985. A technical report will be written that documents the work done, lists
tasks that could not be undertaken because of the time constraints imposed, and
identifies areas that require research and data. The report is planned for

F-7



release in late December. Point of distribution for the software developed will
be the Language Control Facility (LCF) at WPAFB. The LCF Newsletter will
announce the availability of this package in its October or November edition.
Access by MILNET/ARPANET will not be provided.

1.4 E&V CLASSIFICATION SCHEMA
Dr. Bard Crawford, Mr. Peter Clark
The Analytic Sciences Corporation (TASC)

The two-fold purpose of this briefing was to present a progress report from

the E&V Technical Support Contractor and to present the statds of the
development of the E&V Classification Schema.

The three major tasks of the support contractor are to develop
documentation, to provide the E&V Team with technical support, and to provide
configuration management. Documentation to be produced in performing the first
task includes an E&V Classification Schema document, an E&V Reference Manual,
and an E&V Guidebook. The Reference Manual and Guidebook are to be updated
yearly, and the feasibility of automating the Reference Manual and Schema is to
be studied. The second task addresses providing the E&V Team and its working
groups and workshops with technical support. This does not include
administrative support or report preparation. Task three includes the
development of a Configuration Management Plan for tracking and controlling
documentation, and the implementation of the Plan.

In general terms, the job of the E&V support contractor is to support the
development of E&V technology, publicize it, and make it available to the rest
of the Ada community. Tool builders form the underlying base of this
technology, and users of tools and APSEs are the ones whose needs should be
addressed in the development of tools and reports.

A summary of E&V technology is to appear in the form of the Reference
Manual and Guidebook, preliminary versions of which are scheduled to be released
in early 1986. The Reference Manual is envisioned as a functional index that
would contain single page summaries of each E&V technology and refers to the
Guidebook. The Guidebook is envisioned as containing detailed explanations of
each E&V technology and providing guidance in application of these technologies.

The Classification Schema, a draft of which is due in October 1985, will
provide a framework for the Reference Manual and will determine the design of

the Guidebook.

Alternatives are being considered for the development of the Classification
Schema. As a starting point, the E&V Plan was analyzed. This plan, which
pictures a taxonomy showing components, four interface classes, and the five E&V
categories, states that components should be identified and classified in terms
of a well-defined classification schema. The original concept is good, in that
although this is a fairly complex axis requiring a hierarchy of components,
other elements are simple, direct and relevant to the task.

F-8



An alternative would be to use functions rather than components as an axis.
Functions tend to be more stable than components. Also, users and builders of
tools are more concerned with what the tool does than with what components
comprise the tool. Another alternative would be to use attributes as an axis in
place of interface classes. E&V categories are important, in that users need to
be guided to consider these characteristics. However, they may be ultimately
omitted from the Schema, depending on the terminology developed.

It is proposed that the Classification Schema be defined as a multiple

dimension taxonomy or set of axes to classify items that are subject to E&V.

Items can be individual tools, tool sets, or entire software engineering
environments such as minimal APSEs (MAPSEs) and APSEs. The Schema is used to
establish a framework of reference indices which provide a structure for E&%.
record keeping.

A major objective is to make the Schema easy to use by incorporating
terminology that is familiar to the user, who is then directed to the
appropriate technology via the Schema. The following are attributes of the
Schema that the support contractor perceives as desirable:

- Stability. The Schema should be comprised of information that will not
quickly become obsolete.

- Open-endedness. The Schema should be able to accommodate new
combinations of functions, new attributes, and other new developments.

- Comprehensiveness. The Schema should be applicable to all phases of
the software development life cycle.

- Conciseness. The Schema should provide a framework that is easily
understood by a broad range of users.

- User-friendliness. The Schema should be oriented toward the concerns
of potential users.

The terminology used in the Schema should coincide with any unique
terminology used in MIL-STDs and DoD-STDs.

In defining the Schema, the evolution of the definition of APSEs is being
considered. The 1980 "Stoneman" document defines an APSE as a data base, user
interface, system interface, and tool sets. This evolved into the 1983 National
Bureau of Standards (NBS) definition of an APSE as a collection of input
functions and output, with the data base being absorbed into both input and
output, and interfaces and tool sets being absorbed into various functions.
Another definition of an APSE might be the collection of input and output into a
set of objects and functions executing in a host environment. Although many
tools are hardware independent, various host environments influence tool
performance.

Based on this theory, and using the Software Engineering Environment (SEE)
Taxonomy as a point of departure, a taxonomy using an object axis is considered.
In this taxonomy, input and output are combined. It is felt that the SEE
Taxonomy approach to handling input and output is unclear. Another departure
from the SEE Taxonomy would be the use of a functional taxonomy as an axis with

F-9



the removal of the life cycle, but retaining the top three levels of detail used
in the SEE Taxonomy. The life cycle might then become a separate axis. (The
third axis might be host environment.)

Attributes that shape requirements and their definitions need to conform to
E&V objectives. Because of the obvious importance of attributes, a taxonomy for
attributes would have perhaps six to ten categories, and lower levels of the
taxonomy would contain more specific definitions. Users would have the
capability of weighting attributes.

E&V categories determine methodologies used to assess elements. The

category of an element derived from the object/function/host environment
taxonomy is undefined; only the category for an element/attribute pair is
defined. This is subject to change as the technology matures; thus, E&V
categories as an axis seems improbable.

In selecting the axes to be incorporated in the Schema, the developer must
consider concerns of potential users, and provide support the users' application
areas. Possible combinations of axes include function vs. object, function vs.
lifecycle, function vs. attribute, function vs. host environment, function vb.
E&V category, and function vs. application area.

COMMENTS FROM THE E&V TEAM CONCERNING THE SCHEMA ARE REQUESTED.

1.5 The general session of the E&V Team Meeting was adjourned. Working groups
met for the remainder of the day.

F-10



2.0 THURSDAY, 5 SEPTEMBER 1985

2.1 THE APSE INTERACTIVE MONITOR (AIM)
Tim Harrison
Texas Instruments

[This report is a summary of a presentation that was given to KIT/KITIA in
July.)

The goal of the Naval Ocean Systems Center (NOSC) sponsored APSE
Interactive Monitor (AIM) project, was to evaluate interfaces available in the
ALS and AlE, the two government APSEs being developed. The AIM project was to
design a tool that would be tested on both the ALS and AlE. The project's
purpose was not to develop tool(s) that would run on both systems, but to gain
experience in design and use of Ada, and to evaluate the interfaces provided by
the ALS and AlE. Another objective was to produce reports documenting
discrepancies between the two sets of interfaces and the problems inherent in
those interfaces that would impact tool development.

AIM is a tool that acts as an interface between the APSE user and APSE
processes. AIM coordinates the input and output from APSE processes, and
provides a device-independent computer terminal interface. The AIM provides a
multi-window image on the terminal screen which allows the user to monitor
several processes simultaneously, and allows him to edit one process while
observing another. The AIM command language interpreter is constantly available
to receive commands, build images, start processes, arrange windows, and halt
completed processes. The AIM requires the following interfaces: terminal
control and communication; data base; and process control and communication.
Process control and communication allows creation and deletion of processes, the
suspension and resumption of process execution, and interprocess communication.

The AIM consists of a total of 22,000 lines of code which make up 240
compilation units. Reusable software components include a virtual terminal, a
help package, system dependencies, LALR parser support which serves as a table
reader and Ada driver, and general support packages such as queue, stack, etc.

Because the ALS and AlE did not become available for AIM implementation,
alternatives had to be selected. The Data General ADE validated compiler was
available and therefore was implemented. From this initial implementation, the
AIM was transported to VAX/VMS. All modifications to the AIM required for this
rehost were accomplished in one month.

The two environments differ in nature. On the DG, the APSE is entered from
the AOS/VS command language interpreter, and it extends the command set from
AOS/VS. On the VAX, the APSE is the VMS Ada Compilation System (ACS), which is
entered from the VAX/VMS command language interpreter (DCL). The Ada command is
available directly from DCL, and all other ACS commands are executed from within
ACS. Both compilers were validated Ada compilers. The same operations were
performed on both:

- Parse the entire Ada source file. If any syntax errors are
encountered, compilation is terminated.

F-II

!.." . .. " ".' .-. •- ... .. ,....... . .. " .... ".. ' o °., . ........ ,.. - ..., ., . .. -



- Assuming no syntactic errors were detected, semantically check each
compilation unit. If any semantic errors are detected, compilation
terminates for that unit, but continues for the remaining units.

- Generate relocatable binary machine code for each correct unit, and
update the program library accordingly.

The Ada compiler can be invoked from the command line or executed in a batch
stream.

Functional capabilities that emerged for the two systems differ. Both
systems have the capabilities of generating assembly language, generating debug
information, specifying a different program library, suppressing all run-time
checks, and compiling multiple files at one time. The differences between the
two lists of capabilities did not cause major problems.

Differences between the linker functional capabilities of the two systems
were more marked. The VAX linker allows the user to link in other languages,
which allows a routine in any language VAX supports to call subprograms written
in any other VAX supported language. Other sophisticated features are available
on the VAX.

With the interactive source level debuggers on both systems, it was
possible to separate points on exceptions and identify the statements containing
errors. Both tools were easy to use, but both were relatively new, untried
tools with some capability limitations. The VAX tool offers automatic
recompilation.

The files generated by the compilers and linkers of both systems do not
differ gieatly in number, but do vary in file content. The DG system gives the
user all files available, but the VAX provides the option of turning some files
off. The VAX also allows the user to specify a maximum number of revisions
retained.

Capabilities of the program librarian and of the configuration management
tools are similar. The VAX is somewhat easier to use.

The text editors provided on the the two systems were not used because of
requirements imposed by the Local Area Network (LAN) at Texas Instruments (TI),
and because implementors preferred to use other editors. The editor used on the
VAX provided more capabilities than did the one on the DG.

The electronic mail system on the VAX provides more capabilities than do
the MACROs written on the DG.

Conclusions are that the two environments contain very similar tools. The
VAX ACS is integrated into the VAX system more completely than is the ADE into
the DG. The DEC compiler/linker generates more helpful error messages.

Problems encountered when implementing the AIM on the DG AOS included
problems with system dependencies in the areas of terminal communication,
process control, and process communication. A significant problem encountered
with the DG compiler concerned storage allocation. This is particularly true
when one is dealing with dynamic allocation and aggregates. Documentation was
very inadequate in these areas. Other problems encountered related to syntax

F-12

* * ? -%



, -. . . - - - -_ ,i -- . . .

error detection, linker/library search list closure, and package "dy
dependency.

The rehost of AIM to the VAX required 2.4 man-months. Some of this time
was used in dealing with system dependencies. On VMS, access is provided to all
system services in Ada. All system services are contained in six packages. The
dependency linking among them caused problems. For the sake of timeliness,
system-dependent parts of the AIM were written in assembler for the rehost.

Details of the project are reported in a three volume Interface Report
which will be available from DTIC. Information included in the report details
the AIM project work, including lessons learned in Ada programming in such areas
as constructs, tasking problems, problems with object-oriented design, and how
this project maps to other life cycle projections.

AIM is available through the Ada Software Repository on MILNET and ARPANET.
To receive information concerning tools available from this source, send NET
mail to: ADA-SW-REQUEST@SIMTEL20, or contact Rick Conn at Texas Instruments,
MS/8007, P. 0. Box 801, McKinney, TX 75069, telephone 214/952-2139.

2.2 ANNOUNCEMENTS

1. Team members are asked to review "Definition of a Production Quality
Compiler." This is a prototype requirement for the AJPO to levy on
compilers and is complete with guidelines for applying the
requirements. A questionnaire concerning capacity and performance
accompanies the document. Five or six copies are available to those
who wish to participate in the review.

2. Copies of the Technical Coordination Strategy Document, Version 2.0 are
available to team members.

3. Review comments are requested from team members on the June minutes,
copies of which are available.

4. Copies of viewgraphs used in the TI presentation on the AIM will be
available.

2.3 The general session of the E&V Team meeting was adjourned. Working groups
met for the remainder of the day.

F

F- 2.3



3.0 FRIDAY, 6 SEPTEMBER 1985

3.1 CLASSIFICATION SCHEMA REVISITED
Dr. Bard Crawford, TASC

This presentation took the form of an open discussion. The first topic of

discussion was a clarification of items to be classified by means of the
framework or schema. These items were identified as individual tools, tool
sets, and APSEs.

Concern was expressed regarding the best way to evaluate a tool. A

question was raised as to whether it is better to classify b: tool or by
function. It was decided that items should be classified by function.

The SEE Taxonomy was cited as a good example of a working taxonomy. It was
stated that the soon-to-be-released Schema should use this taxonomy as it is, or
clearly document those areas that differ from the SEE and explain the rationale
for these differences. It is proposed that the Schema would remove the life
cycle and use a strictly functional axis. The second and third axes have not
been definitely selected yet. Candidates include object, phase, and attribute.
The SEVWG had discussed the possibility of putting life-cycle phase into a data
base and localizing it to a particular viewpoint if it is removed from the
schema.

*! The taxonomy used is envisioned as being three dimensional but having

additional indices for the benefit of users with interest in a specific phase.
A user wanting to evaluate a single tool would be guided toward a single

intersection of function vs. object. The document or automated system would
then point toward an appropriate set of single function attributes, which would

point toward the category and the E&V technology to be used in evaluating the
tool. Other users may want to classify an entire APSE or a tool set. In these
instances, the user would be led to cluster attributes or other attributes that
would appear elsewhere in the document or automated system.

It was suggested that some of the functions in this taxonomy could include
the three categories mentioned in the NBS taxonomy and the SEE taxonomy:
transformation, management, and analysis. The comment was made that the
categories mentioned in the NBS and SEE taxonomies should not clutter the list

of functions, but are actually points of view, and can be separated into an
index, as with life cycle phases.

To assist the user, the Reference Manual might include an index of common

component names and another index of commercial names. The purpose of such
indices would be to reference a set of functional code numbers to assist in
finding one's way into the maze

Clusters and cluster attributes and how they could be addressed via the
schema were discussed. The need for top-down analysis was identified. It was
noted that schemas identify characteristics, but don't always tell how they fit

together.

F-14

V

• . % % . . . .. . .. . . . . .. . *,,./.-' . ., •- $ • ... .... %.,.:,% , • , , .• .-.- ,..v . ,'jz . .," , ,"- -"- ' . .- "- . "."; ".,", ,' .- . ." , "-.*.



3.2 WORKING GROUP STATUS REPORTS

3.2.1 Coordination Working Group (COORDWG) Status Report

COORDWG Chairperson, Don Jennings, stated that there were no personnel
changes. Accomplishments this quarter included the review of June minutes, the
writing of the E&V Team Status Report, delivery of the Public Coordination
Strategy Document, Version 2.0, and delivery of the Technical Coordination
Strategy Document, Version 2.0. Deliverables due this quarter included the
Technical Coordination Strategy Document, Version 2.0. The Public Coordination
Strategy Document, which was due last quarter, was delivered in July. Key
issues addressed included the E&V Status Report and the Technical Coordination
Strategy Document, Version 2.0. There were no unresolved problems or action
items. Projected work for next quarter includes producing the Status Report and
the minutes. No deliverables are due next quarter. No presentations are
planned next quarter. Inputs are needed for the Project Reference List. Those
who have given briefings on E&V are urged to provide information for the Public
Exchange Record.

3.2.2 Standards Evaluation and Validation Working Group (SEVWG) Status Report

One personnel change occurred on the SEVWG; Jeff Facemire replaces Bud
Hammons. Deliverables due this quarter were the APSE Components Validation
Procedures Document, Version 1.3 (ACVPD) and the CAIS Analysis Document Version
1.0, which will address all aspects of CAIS including evaluation, validation,
scope, description, use, and evolution. Accomplishments this quarter included
the collection of comments on the ACVPD from Virginia Castor and Patricia
Oberndorf. Work is being done to integrate their comments into the next version
of the document. Other work accomplished included establishing a strawman of
the CAIS Analysis Document Version 1.0. Unresolved action items are the
integration of final comments to the ACVPD that will move it from Version 1.2 to
Version 1.3, and the development of dependency tests for CAIS Sections 5.2 and
5.3. Projected work for next quarter includes the closing of past action items
and further development of the CAIS Analysis Document. No deliverables are due
next quarter, but plans are being made to include the CAIS Analysis Document in
the E&V Plan, with revisions planned every six months. A presentation is
planned for the next meeting on the CAIS Analysis Document. The possibility of
repeating this presentation at the January KIT/KITIA meeting will be explored.
Possible research topics for the technical support contractor to investigate
include conducting a survey of existing CAIS implementation efforts, and
reporting on the purpose, problems encountered, and issues discovered in
implementations. Possible transport of the CAIS OD from the DG system to
another system such as the VAX was explored.

3.2.3 APSE Working Group (APSEWG) Status Report

One personnel change occurred on the APSEWG; Greg Burns replaces C.
Stacey. Accomplishments this quarter included resolving the issue of AlE
analysis by removing the AlE analysis from the APSE Analysis Document. The form
and a major part of the content of the APSE Analysis Document were finalized.
Version 2 of this document nears completion with some work still needed on
appendices. Appendix E will map the ALS and ALS/N onto the SEE Taxonomy. No
deliverables were due this quarter. Key issues addressed were the removal of
the AIE from the APSE Analysis Document and the consideration of conducting a
survey of commercial environments. This is a possible project if it is found to

F-15

Z. . .. .- , - ,. -1 •- -'I. . • . , . - . . .



be legal. Unresolved problems or action items concern investigating the
legality of surveying commercial environments. Projected work for next quarter
includes completing the APSE Analysis Document Version 2.0 and the planning of a

survey format. The only deliverable due next quarter is the APSE Analysis
Document.

3.2.4 Requirements Working Group (REQWG) Status Report

Three new people joined the REQWG: Peter Clark (TASC), Sandi Mulholland
(General Dynamics), and Nelson Weiderman (Software Engineering Institute). No
deliverables were due this quarter. Accomplishments this quarter included
updating Section 4 of the Requirements Document, updating the To Is and Aids
Requirements Document, completing the Availability Assessment Document,
beginning work on whole APSE requirements issues, providing input to the STARS
glossary, and coordinating with the SEVWG concerning requirements for standards.
Key issues addressed during this quarter included the examining of the focus of
the REQWG and formulating requirements and recommendations. Recommendations
are:

- Establish a repository for APSE tool evaluator, and methodology
information.

- Include in the Configuration Management activity the capability to
manage working group drafts/documents that are not necessarily Team
products.

- Prepare a short document outlining the concept of Team operations,
organization of working groups, and team focus.

- Establish a liaison with Ada Europe.

- Archive all NET mail to the EV-TEAM in EV-INFO

- Request a presentation for the next meeting from the STARS Methodology
Coordinating Team outlining their tasks, particularly the Methodology
Classification, Evaluation, and Selection Tasks.

Unresolved problems or action items include putting the Draft Tools and Aids
Requirements Document and the Draft Version 2.1 Requirements Document on the NET
and providing follow up to STARS glossary input.

3.3 ANNOUNCEMENTS

I. A presentation by the Software Engineering Institute is planned for the
December meeting.

2. Selected products will be presented to SIGAdi at their February meeting
in Los Angeles. Presentations and deliverables for next quarter need
to be very high quality so they will reflect the excellence of the E&V
Team.

F-16

't - -e*.-1: - -r '.W



- -.- A. - -

3.4 OPEN DISCUSSION

Questions were asked concerning the proper procedure for maiking software

available to the public. The standard procedure is to send a letter to the
Federal Software Exchange and submit the software to them for distribution.

The Team was informed that the sole source of ACVC tests is through

ASD/SIOL and their contractor, SofTech.

It was noted that only legal users of the NET can use tools available

through SIMTEL20.

A question was raised concerning whether the evaluation of methodologies is
within the scope of the E&V Team. The technology for evaluating APSEs will, to
some extent, involve methodology, but won't evaluate methodologies. Input from
STARS is needed to make a determination. Consensus was that it is probably not
a part of the charter, but if this is not being done by STARS, perhaps the task
should be considered as a possible addition.

3.5 ACTION ITEM LIST

AI-9-6-85-1 SYSTRAN. Compile a list of all documentation distributed at
the September meeting and include it in the minutes.

AI-9-6-85-2 SYSTRAN. Implement CM on the documents distributed at the

meeting.

AI-9-6-85-3 Szymanski. Archive the Team mail.

AI-9-6-85-4 Szymanski. Locate and make available E&V Team viewgraphs.

AI-9-6-85-5 Szymanski. Open NET accounts for Nelson Weiderman, SEI and
Peter Clark, TASC. Change P. Dobbs account to S.L: Mulholland,
and Bud Hammonds account to Jeff Facemire.

AI-9-6-85-6 Szymanski. Investigate meeting with Ada Europe.

AI-9-6-85-7 Szymanski. Investigate the legality of the survey proposed

by REQWG on commercial environments.

AI-9-6-85-8 Szymanski. Arrange for the STARS Methodology Team to give
a presentation at the December meeting.

AI-9-6-85-9 Szymanski. Consult with ITARS and J. Castor on the Public
Review problem.

AI-9-6-85-10 Szymanski. Consult with STARS to see if methodology should
be included in the E&V charter.

AI-9-6-85-1I Harto. Send a message on the NET telling where to send

visit requests for the December meeting.

AT-9-6-85-12 Jennings. Send the E&V Status Report to R. Szymanski at
the KIT/KITIA meeting.

F-iT

.. ... . .-.-,-. ,- . . .-. .-. .- < . .-2...."-. .<? . .< 4 ?-i < -?< - - -< i-, . < <



AI-9-6-85-13 Fritz. Put the Draft Tools and Aids Requirements Document
on the NET.

AI-9-6-85-14 Fleming, Lawlis. Put the Draft Requirements Document, Version
2.0 on the NET.

LIST OF DOCUMENTS DISTRIBUTED AT THE SEPTEMBER E&V TEAM MEETING

I. The PAMELA Methodology - A Process-Oriented Software Development Method
for Ada - DRAFT

2. DRAFT Mxnutes of the June E&V Team Meeting

3. Presentation Materials used in "A Technical Briefing: CAIS Operational
Definition"

4. Presentation Materials used in "Prototype Ada Compiler Evaluation
Capability (ACEC)"

5. Presentation Materials used in "The APSE Interactive Monitor"

6. Attendance List

7. Technical Coordination Strategy Document, Version 2.0

8. Definition of a Production Quality Compiler (5 - 6 copies only)

F-18

..........................

A~ L A { % A .A5. ~ .L .A ..W ~. ~. A ~ ~ ~.- ~ .. . . ...



LIST OF ATTENDEES

Adams, Karyl A. Brookshire, Jerry
AFWAL/FIGD Texas Instruments
WPAFB, OH 45433 M/S 3114, P. 0. Box 660246

Dallas, TX 75266

Burns, Greg Clark, Peter
GTE!WIS TASC
I Federal Street 1 Jacob Way
Billerica, MA 01821 Reading, MA 01867

Crawford, Bard Deese, Capt. Al
TASC ASD/SIOL
One Jacob Way WPAFB, OH 454433
Reading, MA 01867

Estes, Nelson Facemire, Jeff
ASD/AXT Texas Instruments
WPAFB, OH 45433 M/S 8007, P. 0. Box 801

McKinney, TX 75069

Fleming, Richard Gargaro, Anthony
The Aerospace Corp. Computer Science Corp.
M1/112 4045 SLB/810
P. 0. Box 92957 304 West Route 38
Los Angeles, CA 90009 Moorestown, NJ 08057

Gicca, Greg Harto, Debra L.
GTE Government Systems AFATL/DLCM
1 Federal St. Eglin, AFB, FL 32542-5000
Billerica, MA 01821

Hazel, Marlene Henne, Marlow
Mitre Corp. Harris Corp. GISD
Burlington Rd. 505 John Rhodes Blvd.
Bedford, MA 01730 Bldg. 1

Melbourne, FL 32901

Jennings, Don Kean, Elizabeth
OC-ALC/MMECE RADC/COEE
Tinker AFB, OK 73145-5990 Griffis AFB., NY 13441

Kirkpatrick, James Lawlis, Patricia K.
AFALC/PTEC AFIT/ENC
WPAFB, OH 45433 WPAFB, OH 45433

Lindquist, Tim Maher, Pat
Computer Science Department Magnavox
Arizona State University TC-10-C3, Dept. 542
Tempe, AZ 85287 1010 Production Road

Fort Wayne, IN 46808

F-19



- - -. - - - - -- Y. - - - - -- - I' -. ' - -.''b7 -
-

McKee, Gary Meirink, Mike
Martin Marietta Aerospace Sperry/DPG

M/S 0423, P. 0. Box 179 3333 Pilot Knob Road
Denver, CO 80201 St. Paul, MN 55164

Miller, John Mulholland, S. L.
SM-ALC/MMEHD General Dynamics
McClellan AFB, CA 95652-5609 Suite 735

6100 Western Place

Ft. Worth, TX 76107

Reddan, John Riccardi, Gregory A.
SYSCON Corp. Florida State University
3990 Sherman St. Dept. of Computer Science

San Diego, CA92110 Tallahassee, FL 32306

Romanowsky, Helen Sandborg, Ray
Rockwell International Sperry Knowledge System Center

400 Collins Road NE Suite 223
Cedar Rapids, IA 52498 3001 Metro Parkway

Bloomington, MN 55420

Shirley, Jane Szymanski, Ray
SYSTRAN Corp. AFWAL/AAAF-2

4126 Linden Ave. WPAFB, OH 45433

Dayton, OH 45432

Taylor, Guy Weiderman, Nelson
FCDSSA SEI
Code 822 Carnegie Mellon University

* Dam Neck Pittsburg, PA 15238
* Virginia Beach, VA 23461

Williamson, James Wills, Betty
AFWAL/AAAF-2 CCSO/SKXD
WPAFB, OH 45433 Tinker AFB, OK 73145

Witt, Donald J.
AFIT/EN
WPAFB, OH 45433

F-20



APPENDIX G

CAIS OPERATIONAL DEFINITION PROJECT STATUS

G-1



l , - . . , , r ,L , , , -- ' lV '. -. L -L- -" - . -l. --l' 
"

I. RESEARCH DESCRIPTION

a. Description. The Ada program has made the evolution of a
single set of kernel facilities to support Ada Programming Support
Environment (APSE) tools a clear objective. As one avenue toward
the objective the KIT/KITIA (Kernel APSE Interface Team/Industry
and Academic) has developed an initial set of facilities to support
APSE tools, which is called CAIS (Common APSE Interface Set,
pronounced as case). A preliminary study has developed a
specification technique for CAIS that enables a more complete
validation capability to be constructed. Using an Ada-bastd
abstract machine, a specification of CAIS Node Model and Process
Control has been generated. This research contract has addressed
converting the abstract machine definition of CAIS Process Control,
Node Model and List Utilities into operational Ada.

b. Significant Results. The project has developed an
operational version of CAIS Process Control, Node Model, and List
Utilities. In this definition, Process Control has been defined
using the tasking facilities of the language. Thus, independent
CAIS processes have been defined using Ada tasks. CAIS operations
on processes and interactions with the operating environment are
constructed through both a concurrent and a sequential form of
program invocation. The Operational Definition implements the
process hierarchy and imposes a hierarchical task structure on each
process. A CAIS process and its interactions with the operating
environment are defined as a tree of Ada tasks.

Of further significance in the definition is our treatment of
discretionary access mechanisms. CAIS proposed a generalized set
of dynamic access controls which define how a subject may view an
object. This set of facilities has become controversial from the
perspectives of utility to tools, ability to be demonstrated secure
and efficiency of implementation. Our definition is the basis for
analysis of these issues.

Another result of the project is continued refinement of a
technique for converting the operational definition of CAIS into a
set of validation tests. Our goal is to provide a rigorous
technique to generate a nearly complete set of test programs that
may be used to exercise a CAIS implementation to assure its
conformity to the specification. Two masters students have been
funded through this project to develop the technique, and one of
the papers presented during the reporting period describes the
technique.

c. Plans for Next Year's Research. A continuation proposal
is currently being reviewed by the Ada Joint Program Office and the
Evaluation and Validation Team. The proposal would provide
resources to complete the operational definition. Our plans are to
finish the definitiors of Node Model and Process Control, and to
construct an operational definition of the Input/Output section of
CAIS. Supporting this work is continued work on the technique for
developing validation tests from the operational definition.

G-
G- 21



Currently, a graduate student working with Dr. Tim Lindqulst at
Arizona State University is developing a masters thesis whose focus
is implementing the technique for generating input/output pairs
automatically from the operational definition. The input/output
pairs form the basis for constructing validation tests.

G- 3

9. ..

- ~ * 4 *. . % * *~"



.- -.- * _ - .* -.- . . - .- .'L . . - - -' .,

II. ACCESS CONTROL FOR THE COMMON APSE INTERFACE SET

This section contains a portion of a Master's Thesis by
Douglas J. Bower. It describes the design of the Operational
Definition of CAIS discretionary access mechanisms.

G-4



1.0 ZNTRODUCTZON

One of the major objectives of the Ada program is to reduce

software costs by increasing the transportability of Ada

software. To meet this objective for Ada Programming Support

Environment (APSE) tools, a common set of kernel facilities

have been developed called CAIS (Common APSE Interface Set).

Transportability of APSE tools will be greatly enhanced if

tools are developed to rely only on the Ada language and CAIS

interface. By providing implementations of CAIS as the basis

of an APSE, tools will be more transportable.

In this paper a design for an operational definition of the

access control mechanisms of the CAIS is presented. Before

doing that a general overview of the CAIS, as proposed for

Department of Defense Standardization (Ada JPO.MIL-STDCAIS]

is presented.

The CAIS provides interfaces to administer entities relevant

to an APSE such as files, directories, processes, and de-

vices. Each entity has various properties and may be inter-

related with other entities. Within the CAIS a node serves

as a carrier of information about an entity. A relationship

represents an interconnection between two entities. An at-

tribute represents a property of an entity or of an inter-

G-5



connection. The structure represented by CAIS nodes and

relationships is that of a directed graph. The nodes form the

vertices of the jraph and relationships form the directed

edges of the graph.

1.1 CAIS NODE MODEL

Three different kinds of nodes are identified within the

CAIS: structural nodes, file nodes, and process nodes. A node

may have contents and attributes and may be the source or

target of relationships. The contents of a node depends on

the kind of the node. A file node contains an Ada external

file. A process node contains a representation of the exe-

cution of an Ada program. A structural node has no contents

and serves as a holder of relationships and attributes. Nodes

may be created, deleted, renamed, and accessed through CAIS

operations.
V

A node may be the source or target of many relationships re-

presenting many different classes of connections. In order

to distinguish among these different classes, the concept of

a relation is introduced. A relation is a catagory which

identifies the nature of a relationship. For example a re-

lation called PARENT connects a newly created node back to

itz parent. The CAIS predefines certain relations and aLlows

the user to define other relations. Some basic predefined

G-6



relations are USER, DEVICE, JOB, CURRENT-JOB, CURRENT_USER,

and CURRENT_NODE. According to this concept, each relation-

ship is identified by a relation name and a relationship key.

The relation name identifies the class of the relationship,

and the relationship key distinguishes the relationship from

other relationships of the same class emanating from the same

node. Nodes can be obtained by traversing relationships, that

is, following a relationship from its source to its target

node. An example of a typical set of CAIS nodes and attri-

butes is shown in Figure 1.

There are two kinds of relationship: primary and secondary.

A primary relationship is established with a newly created

node. Primary relationships are restricted to maintain a hi-

erarchical structure of nodes. An example of a primary re-

lationship is the predefined relation USER which emanates

from the system-level node to a user top-level node. Primary

relationships form a tree, in which there exists only one

sequence of primary relationships from the root to each other

node in the tree. A secondary relationship may be established

between any two existing nodes. An example of a secondary

relationship would be the connection between a source file

and the corresponding object file which is created by com-

piling. The set of secondary relationships may form an ar-

bitrary directed graph.

G-7

.--. ..., ..... ... ,. ., ,. - .. .. ..., ., . • ... .- .- .- ........ .. -. .. v .. .. -. ... ..- .. . -. . ... . ..; .. .L.A



I D

I URE7

FE LFCIEN

Ct IFILE
CLFRENT - N*, CUF.RENT -

INPUT ./ NOLITF'L!

REPI LENW FI FRCEMP) T

Figure G-1

G-



A path is a sequence of relation name, relationship key

pairs. A path starts at a known node (not necessarily top-

level) and terminates at a desired node. Every accessible

node may be reached by following some path from a system-

level node to the given node which involves only the trav-

ersal of primary relationships. A node may be identified by

a pathname. An example of a pathname is

'USER(JONES)TEXTEDITOR(APPEND)TFILE which represents a path

from user JONES to the node representing the file being ed-

ited (see Figure 2).

The properties describing nodes and relationships are main-

tained in attributes. Each attribute is represented by a

named list which consists of an attribute name and a list of

values. The CAIS predefines certain attributes which usually

may not be manipulated by users. A user, however, may create

and manipulate user defined attributes. Examples of attri-

butes are found in Table 1.

G-9

~$ ~ **~***~ 4-~ . ~ V-~V-..~VI'f% .... '



ITFILE

Pit EDIIG SEO

Figure G-2

G-10



Table G-1. Account and Quota Attributes

accountattributevalue ::= account-number =>
userlist

userlist = user-item
(user-item useritem

useritem user_name, password

username :: identifier

password stringliteral

quotaattribute_value :: accountnumber >
user_list

quota-list = quota-item
(quota-item ,quota-item

username ::= identifier

quota ::= integer_number

Notation:

1. Words - syntactic catagories
2. [] - optional items
3. EL - an item repeated zero or more times
4. I - seperates alternatives

-.

i G-II

JI



AD-R172 343 EVALUATION AND VALIDATION (ESY) TEAM PUBLIC REPORT 315
VOLUME 2(U) AIR FORCE RRIGHT AERONAUTICAL LABS
MAIGHT-PRTTERSON AFB ON R SZYMANSKI 39 NOV 85

UNCLASSIFIEDFALTR1S±6VOLFO14/2NL

Ehhmmhmmhhhhhl
EhmhEEmhmhhhhI



'-

LL

__ .1 .'

IIIIII - l I
it,.,-

,"' ,- _"T.... e ,''r.. , w ,,5%....%% .' .. ,,,',_. .. ",,,''w,.e,,w-.',.. .. .,,... ..,. .' .,,... .,..,.1-. ....
1._N1 ! IIIA!- I! ) 1 1i. ~ l- i J.J J--f- - 1]m !q.-- 1-- -A --- -."." -- " --." l --i111111i-i= -!



1.2 CAIS PACKAGE STRUCTURE

The CAIS consists of several seperate, but related, Ada

packages. The packages are grouped into four major areas

(node management, list utilities, process management, and

input/output). Each contain several supporting operations.

1.2.1 General Node Management

Node management consists of interfaces for the manipulation

of structural nodes, relationships, and attributes. These

interfaces are separated into five packages:

NODE_DEFINITIONS, NODE_MANAGEMENT, ATTRIBUTES,

ACCESS_CONTROL, and STRUCTURALNODES. An Ada type NODETYPE

is defined for values that represent a node handle.

The package NODE_DEFINITIONS defines the Ada type NODE_TYPE.

Handles are created from a pathname by the open operation.

Open is performed to indicate that a node will be used in

future operations. NODEDEFINITIONS defines certain string

and enumeration types and exceptions that are used for node

manipulation. Tools would use this package to acquire visi-

bility of types defined within the package so that objects

of these types may be created for use with node management

interfaces.

0-12



The package NODE_MANAGEMENT defines the general primitives

for manipulating, copying, renaming, and deleting nodes and

their relationships. These operations are generally applica-

ble to all nodes, relationships, and attributes. Interfaces

are provided for the manipulation of node handles and the

performance of access synchronization. A tool could use rou-

tines from this package to open nodes, to obtain information

about nodes and their relationships, and to modify the re-

lationships among the nodes.

The package ATTRIBUTES supports the definition and manipu-

lation of node attributes and relationships. The operations

defined in this package are generally applicable to user de-

fined attributes and not to attributes predefined by the

CAIS. A tool could use routines from this package to define

and modify information describing certain nodes and re-

lationships.

The CAIS specifies two types of access control mechanisms:

discretionary and mandatory. Discretionary access control

involves dynamically granting to processes the right to per-

form certain operations on given objects. An example of dis-

cretionary access control would be to allow the current user

to execute a given program file. Mandatory control is a

static form of access control which involves restricting ac-

cess to objects based on the sensitivity of the object and

G-13

.. ,B - .--.... ,,., .,'.-. ... -.- : ..-. . -.. *- . :.:.-.-;.. ".',B......-.. ,*.1. . ' ' ;" ''



t-he clearance or authorization of the requesting process. For

example an object with a secret clearance designated as a

mail user could read any mail classified at the secret level

or below. Within certain constraints, the user may manipulate

discretionary access control information, however the user

may not manipulate mandatory access control information.

The package ACCESSCONTROL provides primatives for the ma-

nipulation of discretionary access control information for

CAIS nodes. Routines are provided to establish, delete, and

modify the necessary relationships. A routine is provided

to determine if access rights have been granted. A tool

could use routines from this package to grant or restrict

access to objects under its control.

The package STRUCTURAL_NODES provides the ability to create

nodes that do not have contents. A structural node only car-

ries common information about other nodes related to it. A

tool could use the interfaces of this package to create di-

rectories or configuration objects.

1.2.2 CAIS Process Nodes

Process management consists of interfaces for initiating and

controlling the execution of Ada programs as represented by

CAIS processes. The execution of a program including all of

G-14

° _. : . . ,



bh

its tasks is represented by a process node. Predefined at-

tributes of the process nodes maintain information about the

process, such as CURRENTSTATUS, PARAMETERS, and RESULTS.

Predefined relationships link a process node to its input,

output, and error files. Process management is seperated in:o

two packages: PROCESS_DEFINITIONS and PROCESS_CONTROL.

The package PROCESSDEFINITIONS defines the types and ex-

ceptions associated with process nodes. Tools would use this

package to acquire visibility of types defined within the

package so that objects of these types may be created for use

with process management interfaces.

The package PROCESSCONTROL consists of interfaces for the

creation and termination of processes and the creation and

termination of process node attributes. Newly created process

nodes have several secondary relationships established for

them such as the predefined relation CURRENT_INPUT. The pre-

defined relationships are initialized from input parameters

to the invoking operation. Newly created nodes inherit se-

veral secondary relationships from the creating process such

as all secondary relationships of the predefined relation

CURRENTUSER. A tool could use the interfaces of this package

to spawn several parallel processes.

G-15



1.2.3 CATS Input and Output

Input and output management consists of interfaces for the

control of the flow of data to and from four kinds of files:

secondary storage, queue files, terminal files and magnetic

tape drive files. Ada external files are represented by CA:S

file nodes. Predefined attributes of a file node, such as

ACCESSMETHOD, FILEKIND, QUEUE-KIND, AND TERMINAL_KIND,

maintain information about its contents and access method.

There are ten input and output management packages:

I0_DEFINITIONS, DIRECT_10, SEQUENTIALI0, TEXTIO0,

I0_CONTROL, SCROLL_TERMINAL, PAGE_TERMINAL, FORMTERMINAL,

MAGNETICTAPE, and FILE_IMPORTEXPORT.

Package IO_DEFINITIONS defines the types and exceptions as-

sociated with file nodes. Tools would use this package to

acquire visibility of types defined within the package so

that objects of these types may be created for use with input

and output interfaces.

Packages DIRECTIO, SEQUENTIAL_IO, and TEXTI0 provide

interfaces for input and output to their respective types of

files comparable with those specified in the Ada Language

Reference Manual. Files created using package DIRECT-IO are

rerdable using package SEQUENTAL_1O, if the two packages are

instantiated with the same generic data type. A tool could

G-16



use these packages to create, open, or delete Ada external

files of the above types.

Package IO_CONTROL provides facilities to modify or query t-he

functionality of CAIS files. Specialized facilities provide

for: associating text files with output logging files, forc-

ing data frcm an internal file to its associated external

file, manipulating function keys and prompt strings, and

creating mimic and copy queues. Tools could use the facili-

ties of this package to set up a desirable input and output

environment.

Three packages provide interfaces for terminal input and

output: SCROLL-TERMINAL, PAGE-TERMINAL, and FORM_TERMINAL.

Each package provides the functionality of the respective

type of terminal listed here in order of increasing complex-

ity. Tools can be constructed which handle input and output

from a terminal at a higher level using the primitive rou-

tines of these packages.

Package MAGNETICTAPE provides interfaces for the support of

input and output operations on both labeled and unlabeled

magnetic tapes. The routines within this package provide

specialized tape related functions such as: mounting, ini-

tializing, loading, unloading, and dismounting. After a tape

is loaded the information from t-he tape is extracted using

G-17

k "1



package TEXTIO routines. A tool could use routines from

package MAGNETICTAPE in conjunction with routines from

package TEXT-IO to read and write information using magnetic

tape.

The CAIS allows an implementation to maintain files sepa-

rately from the files maintained by the host file sys:em.

Package FILEIMPORTEXPORT provides facilities to transfer

files between these two systems.

1.2.4 CAIS Utilities

Within list utilities, the abstract data type LIST-TYPE is

defined for use by other CAIS interfaces. A list (an entity

of type LIST_TYPE) is a linearly ordered set of data elements

called list items. A list may be named or unnamed. List items

may be one of the following types: LIST_ITEM, STRING_ITEM,

INTEGERITEM, FLOAT-ITEM, or IDENTIFIERITEM. Package

LIST_UTILITIES defines the types, subtypes, constants, ex-

ceptions, and general list manipulation interfaces. Items of

a list can be manipulated by: extracting items from a list,

replacing or changing values of items in a list, and insert-

ing new items into a list. Tools could use list utilities to

create lists from external strings and insert and extract

items or sets of items from such lists.

G-18

• ' '- ' . .' : :. .[ -: - '.; ;; ; , .. , , , . . " . ....... .. . .. . ... '.. . -'I .



General Node Management, CAIS Process Nodes, CAIS Input and

Output, and CAIS Utilities provide interfaces to file, di-

rectory, process, and device management services. These ser-

vices are traditionally provided by an operating system and

affect tool transportability. If all APSE tools are imple-

mented using only t-he Ada language and t-he CAiS, maximal

transportability will be acheived.

G-19

I'

4 *,q



2.0 DESCRZPTION OF ACCESS MECMANISMS

The CAIS requires that mechanisms for discretionary and man-

datory access control be established. According to thd CAIS

specifications, discretionary access control is "a means of

restricting access to objects based on the identity of sub-

jects and/or groups to which they [the subjects] belong. The

controls are discretionary in the sense that a subject with

certain access permission is capable o passing that perm.s-

sion (perhaps indirectly) on to any other subject." Mandatory

access control "provides access controls based directly on a

comparison of an individual's clearance or authorization for

the information and the classification or sensitivity desig-

nation of the infoimation being sought."

In the CAIS, access control consists of three basic compo-

nents (access control rights, access control rules, and ac-

cess checking). Access control rights describe the kinds of

operations that may be performed. Access control rules are

the rules which determine which access control rights are

required for an intended operation. Access checking involves

the determination of whether the granted access rights are

sufficient for permitting the intended operation.

G-20



Access to a node is defined in terms of the operations which

may be performed on the node. Four classes of operations

constitute access to a node:

1. reading or writing the contents of the node

2. reading or writing of attributes of the node

3. reading, writing, or traversing relationships ernenating

from the node

.5

4.. reading or writing attributes of relationships e hena"ing

from the node

5. traversing the node.

The following operations do not constitute access to a node:

1. closing node handles to a node

2. opening a node with intent EXISTENCE (see Table 2)

o.

3. querying the kind or status of node handles to a node

4. reading or writing of relationships pointing to a node.

G- 21



A node is inaccessible if access to the node is not permitted

after either discretionary or mandatory access checking. The

property of inaccessibility is relative to the process cur-

rently requesting access to a node and not a property of the

node itself.

2.1 DISCRETIONARY ACCESS CONTROL

Discretionary access control provides a means for specifying

the operations a subject may perform on objects. An object

is tLhe node to which access is requested. A subject is a

*process (which is acting for a user) intending to perform an

operation which requires access to the object. A role node

is a structural node which serves as an intermediary between

subi-cts and objects. Object nodes have established for the-

secondary relationships of the relation ACCESS (which is a

predefined relation). These relationships define the oper-

ations which are allowed to be performed on the node and by

virtue of their destination who may perform these operations.

These relationships emanate from the object node and have

targets which are role nodes. A subject may have established

for it relationships of the relation ADOPTEDROLE (which is

a predefined relation). These relationships emanate from the

subject node and have targets which are role nodes. The

combination of these two kinds of relationships determines

the access rights to the object which have been approved for

G-22



_ -. . .- - ., ":. . .. -- _ -- . .-. . ' - . k L - --

the subject. The approved access rights are then compared to

the intentioi of the subject to determine if an operation may

* be performed.

2.1.1 Access Rights

An object node may be the source of any number of access re-

lationships to one or more role nodes. Each access re-

lationship has an attribute called GRANT. The predefined

GRANT attribute specififes the access rights of the object

which can be granted to subjects. Access relationships and

grant attributes are established in either of two ways: at

node creation or explicitly using the interfaces of package

ACCESSCONTROL. The SET_ACCESSCONTROL procedure (of package

ACCESSCONTROL) has two possible uses. It may be used to es-

tablish an access relationship between two nodes and set the

value of the grant attribute of that relationship or, it may

be used to change the value of a grant attribute of an ex-

isting ACCESS relationship. If the ACCESS relationships are

to be established at node creation, a check is made to de-

termine if creating such a relationship is permitted. If the

relationship is permitted, then SET_ACCESS_CONTROL is called

to establish the access relationship. The ACCESS relationship

is defined using the key and GRANT value from the

ACCESSCONTROL parameter of the calling procedure. Regardless

of how access relationships are established or modified the

G-23

.. . . . . . . .



- V.). . .7

process carrying out such operations is required to have

sufficient access rights to the object.

The value of the GRANT attribute is a list whose syntax is

consistent with that of a CAIS list as supported by package

LISTUTILITIES. The BNF for the GRANT value is given in Table

2.

G-2



Table G-2. GRANT attribute BKF

grant..attribute..valuo: :=
([grant.item(,qrant..iteml 1)
grant..item::
((necessary..rihtjreultinq..riqhtslist)

necessary..right:: identifier

resulting_rightsjlist::= identifier
(identifierf ,identifierl)

Notation:

1. Words - syntactic catagories
2. (1 - optional items
3. H- an item repeated zero or more times
4. I-seperates alternatives

G-25



Although access rights may be user defined, the CAIS has de-

fined a set of predefined access rights. These are found in

Table 3.

G'

.5



Table G-3. (Part . of 4). Predefined Access Rights

EXISTENCE The minimum access rights
without which the object is
inaccessible to the subject.
Without additional access
rights the subject may nei-
ther read nor write attri-
butes, relationships or
contents of the object.

READ_RELATIONSHIPS The subject may read attri-
butes of relationships ema-
nating from the object or use
it for traversal to another
node; the access right EXIST-
ENCE is implicitly granted.
This access right is neces-
sary to open the object with
intent READ_.ELATIONSHIPS.

APPENDRELATIONSHIPS The subject may create re-
lationships emanating from
the object and attributes of
these relationships; the ac-
cess right EXISTENCE is im-
plicitly granted. This access
right is necessary to open
the object with intent
APPEND-RELATIONSHIPS.

READ_ATTRIBUTES The subject may read attri-
butes of the object; the ac-
cess right EXISTENCE is
implicitly granted. This ac-
cess right is necessary to
open the object with intent
READ_ATTRIBUTES.

G-27



Table G-3. (Part 2 of 4). Predefined Access Rights

WRITE-ATTRIBUTES The subject may create,
write, or delete attributes
of the object; the access
right EXISTENCE is implicitly
granted. This access right -'s
necessary to open the object
with intent WRITEATTRIBUTES.

APPENDATTRIBUTES The subject may create attri-
butes of the object; the ac-
cess right EXISTENCE is
implicitly granted. This ac-
cess right is necessary to
open the object with intent
APPENDATTRIBUTES.

READ_CONTENTS The subject may read contents
of the object; the access
right EXISTENCE is implicitly
granted. This access right is
necessary to open the object
with intent READ_CONTENTS.

WRITE_CONTENTS The subject may write the
contents of the object; the
access right EXISTENCE is im-
plicitly granted. This access
right is necessary to open
the object with intent
WRITECONTENTS.

APPENDCONTENTS The subject may append con-
tents of the object; the ac-
cess right EXISTENCE is
implicitly granted. This ac-
cess right is necessary to
open the object with intent
APPENDCONTENTS.

G2

G-28



Table G-3 (Part 3 of 4). Predefined Access Rights

READ This is the union of
READ_RELATIONSHIPS,
READ_ATTRIBUTES,
READ_CONTENTS, and EXISTENCE
access rights. This access
right is necessary to open
the object with intent READ.
It is sufficient to open the
object with intent
READ_RELATIONSHIPS,
READ_ATTRIBUTES, or
READCONTENTS.

WRITE This is the union of
WRITEREALTIONSHIPS,
WRITEATTRIBUTES,
WRITE_CONTENTS, and EXISTENCE
access rights. This access
right is necessary to open
the object with intent WRITE.
It is sufficient to open the
object with intent
WRITERELATIONSHIPS,
WRITEATTRIBUTES, or
WRITECONTENTS.

APPEND This is the union of
APPEND_RELATIONSHIPS,
APPENDATTRIBUTES,
APPENDCONTENTS and EXISTENCE
access rights. This access
right is necessary to open
the object with intent AP-
PEND. It is sufficient to
open the object with intent
APPEND_RELATIONSHIPS,
APPENDATTRIBUTES, or
APPENDCONTENTS.

G-29



Table G-3 (Part 4 of 4). Predefined Access Rights

EXECUTE The subject may create a
process that takes the con-
tents of the object as its
executable image; the access
right EXISTENCE is implicitly
granted. This access right is
necessary to open the object
with intent EXECUTE.

CONTROL The subject may modify access
control information of the
object; the access right EX-
ISTENCE is implicitly
granted. This access right is
necessary to open the object
with intent CONTROL.

G3

..

G- 30

-n ' " " " *- - , - , - , - m - . - . . - , . - - -%. - t . .- .- % 5. .- .5 ..



2.1.2 Adootina Roles

A role, gives a subject a met of access rights that it may

use when acting under the authority of that role. A role may

be associated with a user, a program in execution, or a group

of users, programs, or subprograms. Roles are acquired dy-

namically. A user may act under the authority of any number

of different roles simultaneously. A role is represented by

a node. This node may be a top level process node represent-

ing the file containing the executable image of a program or

a structural node representing a group.

A structural node representing a group has relationships em-

anating from it whose target nodes represent members of the

group. There are two kinds of relationships that can be used

to identify group members. The first is the primary re-

lationship of the predefined relation PERMANENT_MEMBER. The

permanent member relationship may be used to create a hier-

archy of users and/or groups of users. However, a user top

level node may not be a permanent member of a group since it

may only have a primary relationship from the system level

node. The second kind of group relationship is the secondary

relationship of the predefined relation POTENTIAL_MIMBER.

This relationship identifies those subjects which may dynam-

ically acquire membership in the group. Potential members of

a group include all members identified by the relationship

G-31

d. - , €,•"""° .- -:-'-' ." ...-- . ',''-' , ,,,. ; -- '-".;,"-"-"."."."-."."r"-" , , - :"•"o.



POTENT IALMEMBER along with all permanent members. In order

to adopt the role representing a group, a subject must be

must be a potential member of the group. An example of a group

is found in Figure 3.

When a process adopts a role, a secondary relationship of the

relation ADOPTED-ROLE is established from the subject node

(representing the process) to the role node. A process node

may be the source of several ADOPTEDROLE relationships.

Roles may be either adopted at node creation or adopted ex-

plicitly. At node creation, a process node automatically

adopts the role represented by the file node representing the

executable image of the program that is currently executing.

At creation, a root process node adopts the role of the cur-

rent user node. Processes explicitly adopt roles using t-he

procedure ADOPT of package ACCESS_CONTROL.

_p

J

2.1.3 Evaluatina Access Rights

The evaluation of discretionary access control rights in.-

volves the derivation of relevant grant items and approved

access rights from the values of GRANT attributes. Relevant

grant items are grant items that are in values of GRANT at-

tributes of the access relationships emanating from the ob-

ject and pointing to a role node representing an adopted role

of the subject or a group node representing a group of which

G-32



r I IBE

PETTR E ;LIB PT

MEEFWP ME.IOEHI'

Figure G-3

Figure 333



an adopted role node is a permanent member. An approved ac-

cess right is an access right which meets one of two crite-

ria. First, the access right may be a necessary right for

which the resulting rights list is null. Second, the access

right may be within a resulting rights list of an approved

necessary right. Examples of evaluating access rights follow

in Figures 4 and 5.

In Figure 4, a subject has adopted two roles, ROLE 1 and ROLE

2. From ROLE 2 the subject acquires the approved access right.

READMAIL. From ROLE 1 along with the approved necessary righ-.

of READMAIL the subject acquires the approved access rights

of READ and WRITE. This combination of access rights is re-

quired for the subject to be permitted to perform t-he oper-

ations of read and write on the object.

Figure 5 represents part of a set of relationships that could

be found within a project. SUBJECT 1 has adopted ROLE 1 and

ROLE 3 and assumed the role of a project leader. SUBJECT 2

has adopted ROLE 2 and ROLE 3 and assumed the role of a

project programmer. Through ROLE 3 both subjects acquire the

approved access right EDIT. Using ROLE I along with the ap-

proved necessary right EDIT, SUBJECT 1 has approved access

rights of READ and WRITE to both objects. Using ROLE 2 along

with the approved necessary right EDIT, SUBJECT 2 has the

G-34



approved access right of READ to OBJECT I and approved access

rights of READ and WRITE to OBJECT 2.

Within the CAIS discretionary access checking is done at the

time a node is opened. This is accomplished by comparing the

INTENT parameter of the procedure OPEN with the approved ac-

cess rights of the node to be opened. If the INTENT is not

an approved access right then an exception is raised. If

approved, the INTENT value can be used for comparison when

other operations are attempted.

2.2 MANDATORY ACCESS CONTROL

Mandatory access control provides a mechanism for information

security which may not be altered by CAIS users. There are

two types of mandatory access control classification (hi-

erarchical and non-hierarchical). A hierarchical classi-

fication level is one of an ordered set of classification

levels. This classification represents either the

trustworthiness of a subject or the sensitivity of an object.

In order for a reading process to obtain access to an object

it must have a hierarchical classification greater than or

equal to that of the object being read. On the other hand, a

writing process must have a hierarchical classification less

than or equal to that of the information being written.

G-35

% ANR



V-v- V

ROE

~CCES r ROLE 12.Ic 7 D.

OBJECT Se J 6UJC

A CCES.S 33FELAfilN'HT"PI:l

Figure G-4.

G- 36



......... -FiLE3 C OL

FEMJICEE E~TOEI'

Figur GFR7-H5.R17 ED

(EDIT COF-37



Each subject and object is assigned any number of non-

hierarchical catagories to represent coexisting classifica-

tions. A reader must be assigned each of the non-hierarchical

catagories assigned to the object read. An object written to

must be assigned each of the catagories of the writer. Both

hierarchical and non-hierarchical access rules must be sat-

isfied before a subject can obtain access to an object.

Mandatory access checking is carried out at the time that an

operation is requested by the subject. The classification of

the subject and that of the object are compared before the

operation is permitted.

In order to accomplish mandatory access checking nodes need

to be labeled with their mandatory access classification.

Process nodes have both an object and a subject classifica-

tion, since process nodes can be both the subject and object

of operations. Non-process nodes only have object classi-

fications. Nodes for devices have two object class-fica-

tions: LOWESTCLASSIFICATION and HIGHEST_CLASSIFICATION to

represent the range of information that may be handled by the

particular device.

Mandatory access control rules are checked when access con-

trol is enforced for a given operation. If an operation vio-

lating mandatory access control rules is attempted then the

operation is not permitted and a SECURITY_VIOLATION exception

G-38



is raised. Figure 6 illustrates mandatory access labeling

for a reading process and an object being read.

2.3 SUMMARY

The combination of the discretionary and mandatory access

control mechanisms provides the basis for the complete pack-

age of CAIS ACCESSCONTROL. The discretionary access control

mechanisms provide the user a means of explicitly restricting

access to information. The mandatory access control mechanism

provides a means for maintaining information security.

G-3

0--39



'a..

jC:LASE;'IFICATIOtI

jSrET TRF ,MILF RE)

C, OBJET E O0E:J11ECL
CLRSSIFICATION

[C t'lFID1E$'!T I AL [tMILRFE'DEi )

MANDOATORY ACCESS LAEBELING

Figure G-6.

G-4o



3.0 DESIGNER IMPLEMENTATION

The implementation of the discretionary and mandatory access

control mechanisms of the CAIS posed interesting information

problems. Seperate strategies were chosen for the implemen-

tation of each mechanism. The discretionary access control

mechanism closely adheres to the suggested implementation

outlined within the CAIS specifications. The mandatory access

control mechanism is implemented in a slightly different

manner than the suggested implementation scheme. Any vari-

ations from the suggested implementaion strategy do not alter

the interfaces specified by the CAIS.

3.1 DATA STRUCTURES

The discretionary access control mechanism uses many data

structures that are previously defined within the CAIS.

Mainly, the discretionary access control mechanism is highly

reliant on the CAIS relationships and CAIS LISTUTILIT7ES.-

As described previously, a discretionary access right is a

cross of two relationships, the ACCESS relationship and the

ADOPTED-ROLE relationship. It was necessary to develop

mechanisms for creating and evaluating such a complicated

cross of relationships. Such mechanisms are described in de-

G-4i



tail in the sections of this paper which describe the indi-

vidual ACCESS_CONTROL procedures.

The mandatory access control mechanism still uses many pre-

viously defined data structures, but also introdu-ces a

structure of its own. It was suggested that the labeling of

nodes for mandatory access control be accomplished by imple-

menting such labels as predefined node attributes. In the

interest of simplicity, a different approach is used. The

mandatory access control labels have been made into fields

of the node itself. A variant record approach is used since

the labels are different for different kinds of nodes. By

using this implementation approach the process of mandatory

access checking is simplified. Mandatory access rights can

be checked directly as opposed to searching through an entire

attribute list. It is important that mandatory access check-

ing be as simple as possible, since mandatory access checking

should be done with almost every operation. The mandatory

access control mechanisms do use CAIS LISTUTILITIES to a

limited extent in accordance with the suggested specifica-

tions. The precise details of mandatory access checking are

described in the section on the underlying routine

MANDATORYCHECK.

%I

~G-h2

-, , , 7 '-* ",.'',-"". "..'...-".".-" " -..,.-'.- -... . '.-.-..'. .., ..''. -.. .. ... . .-. . ."- . ..z .-",



3.2 SET ACCESS CONTROL

The procedure SETACCESSCONTROL is a CAIS interface that

sets access control information for a given node. The proce-

dure has three input parameters: NCDE of type NODE_TYPE, the

object node handle; ROLENODE of type NODE_TYPE, the role

node handle; GRANT of type GRANTVALUE, the value to be as-

signed the grant attribute. If an access relationship does

not exist from the object node to the role node, one is cre-

ated. Also, a grant attribute of the access relationship is

created. The effect of this procedure is to grant the access

rights specified by the GRANT parameter to processes who have

adopted the role represented by ROLENODE.

The SET_ACCESSCONTROLPROCEDURE is designed as follcws. A

check is made to determine if t-he object node and role node

have been opened. If either is not open a STATUS-ERROR ex-

ception is raised. A check is made to determine if the object

node is open with the intention of CONTROL. If this is not

true an INTENTVIOLATION exception is raised. The procedure

MANDATORYCHECK is called to make sure all mandatory access

control constraints are met. Access to the object node is

achieved using the procedure GETACCESS_NODE. The relation-

ships emanating from the object node are searched to see if

an access relationship exists to the role node. If no such

relationship is found, one is created. If such a relation-

G-43



ship is found, access to it is established using the proce-

dure GETACCESSREL. If the access relationship already has

a grant attribute, its value is replaced by that of GRANT,

otherwise, a new grant attribute with the value GRANT is at-

tached to the relationship.

A second interface is provided by an overload version of

SETACCESSCONTROL. In this version of the procedure the

object node and role node are referred to by their name

strings. This version opens the object and role nodes using

their name strings and gets node handles. It then calls the

first version of SETACCESSCONTROL using the acquired node

handles. Finally, it closes the role and object nodes re-

gardless of the termination status of the procedure call to

the first version.

3.3 IS GRANTED

The function IS-GRANTED returns true if the current process,

as a subject has an approved access right to the object node.

Otherwise, it returns false. The function has two incoming

parameters: OBJECT_NODE of type NODETYPE, the object node

handle and ACCESSRIGHT of type NAMESTRING, which is an ac-

cess right.

G,

S . S . - I I



The function IS_GRANTED is designed as follows. A check is

made to determine if the object node has been opened. If it

has not been opened then a STATUSERROR exception is raised.

A check is made to determine if the object node is open with

intent CONTROL or with intent READRELATIONSHIPS. If this

is not true then an INTENTVIOLATION exception is raised. The

outgoing relationships of the object node are searched until

one or more access relationships are found. Each grant item

is extracted from the grant attribute of the access re-

lationship. If the resulting rights list of the grant item

is null then the grant item name and the access right are

compared. If the two values are equal, then the access re-

lationship is considered complete to the role node. If the

resulting rights list is not null, a call is made to ISIN

to determine if the access right is contained in the result-

ing rights list. If the access right is so contained then

ISGRANTED is called recursively to determine if the neces-

sary right has been approved. Once both checks are successful

the access relationship is considered complete to the role

node. The procedure IS-ROLE is called to see if the role node

is an adopted role of the SYSTEM_CURRENTPROCESSNODE (cur-

rent user). If the search is successful, then the value of

true is returned. Otherwise, the value of false is returned.

Using the access relationships of Figure 4, IS_GRANTED could

be invoked as ISRANTED(OBJECT,"READ"). Once the access re-

lationship is found to ROLE 1, the procedure IS_GRANTED is

G-45

6 \' ]I



- - - 'C. - .w,; . . 7.

invoked recursively as ISGRANTED(OBJECT,"READMAIL"). This

simple example illustrates the need for at least one level

of recursion to evaluate access rights.

A second interface is provided by an overload version of

ISGRANTED. In this version the object node is referred to

by its name string. This version opens the object node using

its name string to get a node handle. It then calls the first

version of ISGRANTED using the acquired node handle. If the

function terminates normally, the object node is closed and

the acquired value is returned. If the function call termi-

nates with an exception no value is returned, the object node

is closed and the exception is raised again.

3.4 ADOPT

The procedure ADOPT causes the current process to adopt the

group role specified by ROLE_NODE. The procedure has two pa-

rameters: ROLENODE of type NODE_TYPE, which is the group

role node handle; ROLEKEY of type RELATIONSHIP_KEY, which

is the key of the ADOPTED_ROLE relationship to be created.

An adopted role relationship is created from the calling

process to the role node with the relationship key ROLEKEY.

In order for the calling process to adopt the group role,

some other adopted role of the calling process must be a po-

tential member of the group.

G-46



- - - I .- -I . . !: .91: t Z L I -1 V- - . *1 t h - -

The ADOPT procedure is designed as follows. A call is made

to procedure ISROLE to see if the current user is a poten-

tial member of the group represented by the role node. If it

is not a potential member then a USE-ERROR exception is

raised. A check is made to determine if the role node is open.

If it is not open a STATUSERROR exception is raised. A check

is made to determine if the role node is open with intention

APPEND_RELATIONSHIPS. If this is not true then a LOCKERROR

exception is raised. A call is made to the procedure manda-

tory check to make sure all mandatory access control con-

straints are met. A new relationship cell with the name

"ADOPTEDROLE" is created with key ROLE-KEY. Finally, the

newly created relationship cell is attached to t-he

SYSTEM_CURRENTPROCESSNODE, which represents the calling

process.

3.5 UNADOPT

The procedure UNADOPT deletes the adopted role relationship

with key ROLE-KEY (the only parameter to the procedure). If

such a relationship does not exist, the procedure has no ef-

fect. The procedure UNADOPT is designed as follows. A check

is made to determine if the SYSTEM_CURRENTPROCESSNODE is

opened with intent WRITERELATIONSHIPS. If this is not true

then a LOCKERROR exception is raised. The ADOPTED-ROLE re-

lationship is accessed using the procedure GETACCESSREL.

G-47

- . .-



The target node of the adopted role relationship is checked
to see if it is the top level node. If it is the top level

node then a USE_ERROR exception is raised. Finally, the

adopted role relationship is detached from the

SYSTEM4_CURRENTPROCESS_NODE.

3.6 UNDERLYING ROUTINES

Three underlying routines have been introduced to aid in the

implementation of package ACCESS_CONTROL. These routines

carry out operations that are implicitly necessary for the

functioning of CAIS access control mechanisms. The nam~es of

the routines are ISIN, IS-ROLE, and MA4NDATCORY_CHECK.

3.6.1 IS IN

The routine IS-IN is a simple augmentation to the list man-

agement routines. Its function is to check if a given ele-

ment is found within a given list. It calls the list

management routine POSITION_BYNAME. If POSITION_BY_NAMXE

finds the item in the list it returns a position number.

Since the position number is of no consequence IS_IN simply

returns true. If the item is not in the list POSITION_BY_NA.ME

raises a SEARCH_ERROR exception. ISIN handles the exception

and returns false.

G-48

i

*, " . : ',v - , .- - ' ,., - . . . . . . . . . ..- . . . . .-. .. .- -.. . . .-



An overload version of ISIN is also present. Its function

is to check if all the elements of a given list are contained

within a second list. It calls the list management routine

EXTRACT to extract items from the first list. It calls the

first version of ISIN to determine if each extracted item

is in the second list. If all the items of the first list are

contained in the second list the function returns true. Oth-

erwise, it rerurns false.

3.6.2 IS ROLE

The routine ISROLE is useful in access checking. Its func-

tion is to establish if a specified kind of relationship em-

anates from the SYSTEM_CURRENT_PROCESSNODE (the calling

user) and has a target which is the given node. It searches

t1hrough all of the relationships emanating from the

SYSTEMCURRENTPROCESS_NODE. It returns true only if a re-

lationship meeting the above criteria is found. Otherwise,

the routine returns false.

3.6.3 MANDATORY CHMECK

The routine MANDATORY_CHECK performs the mandatory access

control checking. It first checks to make sure that the

NODE1 parameter is a process node (since it represents the

subject). The procedure derives the subject classification.

G-49

''.., .i.' '.'', .§g. . . ff... fi. ll ... , .'.'..'. .5. .x , . - " , • " ' , '



The procedure checks the type of the NODE2 parameter and de-

rives its object classification or range of classifications.

It checks the intention of the object node (NODE2) to deter-

mine which kind of comparisons need to be made between the

subject's and object's hierarchical and non-hierarchical

classifications. For a read operation, the subject's hierar-

chical classification must be greater than or equal to that

of the object. The subject's set of non-hierarchical

catagories must be contained within that of the object. For

a write operation the subject's hierarchical classification

must be less than or equal to that of the object. The object's

set of non-hierarchical catagories must be contained within

that of the subject. If any of the mandatory checks are

failed a SECURITY_VIOLATION exception is raised.

G-50

...................................... . . .



4.0 IMPLEMENTABILITY ANALYSIS

The access control mechanisms of the CAIS are designed to

provide a great deal of flexibility of use while keeping

storage demands reasonable. The major expense of this design

is the amount of time required to evaluate (check) access

rights. Each discretionary access check requires a great

deal of searching. Each relationship emanating from the ob-

ject node must be examined to determine if it is an access

relationship. For each access relationship found, each at-

tribute must be examined in order to find the grant attri-

bute. A grant attribute may have several grant items to be

examined. Once a desired access right is found within some

resulting rights list, a recursive discretionary access check

is performed to determine if the necessary right is approved.

Finally, when an access relationship has been found to a role

node, a search is performed to determine if the role has been

adopted by the current process. This search is reasonably

straight forward with simple access rights lists. However,

if the necessary right is located within a resulting rights

list the complexity of the search could be enormous.

The access control mechanisms are not consistently specified

throughout the CAIS. The interfaces specified in the package

ACCESSCONTROL have access rights represented by items of

G-51



type NAMESTRING or lists of these items. The interfaces

specified in package NODE_MANAGEMENT have INTENTs specified

as arrays of type INTENT_SPECIFICATION. The type NAMESTRING

is a subtype of the type STRING and the type

INTENT_SPECIFICATION is an enumeration type. As such tne two

types are not compatable for direct comparison as required

by the CAIS specifications. Therefore, it was necessary to

develop a mechanism to convert items of type

INTENT_SPECIFICATION to type NAMESTRING to enable discre-

tionary access checking to be performed within other pack-

ages.

The organization of the CAIS has made it difficult to imple-

ment access control mechanisms. According to the specifica-

tions the interfaces which provide the primatives for

discretionary access checking are to be contained in package

ACCESS-CONTROL. As specified package ACCESSCONTROL must use

routines from package NODE_MANAGEMENT. At the same time rou-

tines within package NODE_MANAGEMENT are required to perform

discretionary acccess checking. It would seem logical to use

the interfaces provided in package ACCESSCONTROL to perform

such checking. This is not possible since package

ACCESSCONTROL is dependent on package NODEMANAGEMENT. As a

result of this situation it was necessary to duplicate some

of the routines from package ACCESS_CONTROL within package

NODEMANAGEMENT.

G- 52



An alternate access control mechanism is the use of access

control lists. Each object node would have attached to it a

list of subjects and the access rights that each subject is

granted. While access checking is clearly easier to implement

with access lists than with CAIS access relationships, they

are deficient in two respects. Access lists require more

storage than CAIS access relationships, and access lists are

not as flexible to use as CAIS access relationships.

The design of an operational definition of the CAIS has re-

vealed that the specified access control mechanisms are

implementable. CAIS access mechanisms provide for a large

amount of flexibility at a moderate cost.

G-53

* 'J-!



IMPR

5.0 CONCLUSION

The operational definition of access control mechanisms de-

scribed herein has been designed to meet all specified re-

quirements. The completion of the design has demonstrated the

implementability of CAIS access mechanisms. The CAIS access

mechanisms sacrifice execution efficiency in favor of flexi-

bility of use and storage economy. Since the CAIS is intended

for use within a program development environment, such a

sacriface seems quite reasonable. The completion of this op-

erational definition is an important step leading to the de-

velopment of a useful Common Ada Programming Support

Envircnment Interface Set.

G-54

-~ ~* -* * ~ *"'



V 1

III. AN ABSTRACT MACHINE SPECIFICATION OF THE NODE MODEL

In this section, using text from a Master's Thesis by

Margaret D. Little, the operational definition's approach

to specifying CAIS Node Model is presented. The implementation

approach in this Ada-only representation of the Node Model

is a set of highly linked structures for nodes, relationships,
and attributes.

G-55



Chapter I

INTRODUCTION

In 1975 the Department of Defense (DoD) established the High

Order Language Working Group to "produce a minimal number of

common, modern High Order Computer Languages for the DoD

embedded computer systems applications and to assure a

unified, well supported, widely available, and powerful

programming support environment for these languages." From

this project came the STEELMAN language requirements

document and the Ada' language. Also from this project came

the STONEMAN document outlining requirements for an Ada

Programming Support Environment (APSE).

An APSE is a complete programming environment whose

purpose is "to support the development and maintenance of

Ada applications software throughout its life cycle" [6].

To fulfill this objective, an APSE provides a coordinated

set of software tools intended to facilitate project

management and long term maintenance as well as program

development.

A major goal in the design of an APSE is to facilitate

the transfer of APSE tools and tool sets between machines.

The layered structure of an APSE outlined in STONEMAN is

I Ada is a registered trademark of the U.S. Department of
Defense.

G-56



designed to allow source-level transportability of software

tools written in Ada. The structure has four levels, as

follows:

level 0: Hardware and host software as
appropriate

level 1: Kernel Ada Program Support Environment
(KAPSE), which provides database,
communication and run-time support
functions to enable the execution of an
Ada program (including a MAPSE tool) and
which presents a machine-independent
portability interface.

level 2: Minimal Ada Program Support Environment
(MAPSE) which provides a minimal set of
tools, written in Ada and supported by
the KAPSE, which are both necessary and
sufficient for the development and
continuing support of Ada programs.

level 3: Ada Program Support Environments (APSEs)
which are constructed by extensions of
the MAPSE to provide fuller support of
particular applications or
methodologies. [6]

Software tools written in Ada that use only the machine-

independent interface provided by the Kernel APSE (KAPSE) to

communicate with the underlying machine may be transported

to other machines that support the same KAPSE interface.

The potential introduction of several different APSEs,

with correspondingly different KAPSEs, lead to the formation

of the KAPSE Interface Team (KIT) and the Kernel APSE

Interface Team from Industry and Academia (KITIA) to define

standard KAPSE interface conventions. The KIT and KITIA

G-57



have developed a set of kernel interfaces called the Common

APSE Interface Set (CAIS), described in the Draft

Specification of the Common APSE Interface Set (CAIS),

hereafter referred to as the CAIS Specification.2  The CAIS

is a collection of Ada packages; when implemented, the

subprograms in these packages can be used by APSE tools to

provide system services.

To ensure uniform implementations of the CAIS, a suite of

validation tests, the CAIS Validation Capability, is being

developed through the APSE Evaluation and Validation Team

[2]. To develop validation tests a complete, precise

specification of the CAIS is needed. An important part of

such a specification is the definition of the function, or

semantics, of each subprogram of the CAIS.

The interface semantics are not well-defined in the

current CAIS specification. The specification describes the

function of each subprogram using commentary; these

descriptions are incomplete and contain inconsistencies.

Consequently, implementations based on this specification

are not likely to be uniform. A specification that

overcomes these problems is needed.

2 A subsequent version of this specification, [41, has been
proposed as a Government standard and is currently in the
review process.

G-58



The objective of this paper is to identify a semantic

specification technique that is easily understandable, yet

lends itself to a complete and consistent description of the

Common APSE Interface Set, and to use this technique to

develop a new specification for the CAIS node model.

This paper develops specifications for the Ada packages

outlined in [1] that constitute the CAIS node model. These

packages are CAIS_NODE_DEFS, CAISNODEMANAGEIENT, and

CAIS_ATTRIBUTES. In addition, a specification for the

CAIS_STRUCTURAL_NODES package, which is not a general node

package, is given. Since the CAIS specification available

for this project (1] did not thoroughly define access

control for the node model, the CAIS_NODE_CONTROL package

described therein is omitted from this study.

The following terms are used in this paper:

specification: a document that defines requirements,

details a design, or describes a product (IEEE);

transportabilitv: "the degree to which a [APSE] tool can be

installed on a different APSE without reprogramming;

the tool must perform with the same functionality in

both APSEs. Synonyms commonly used are portability and

transferability." 13];

acil i: a function implemented in the kernel APSE

G-59



interface: the means of interaction between a software tool

and a facility [15];

syntax: the collection of rules which indicate whether a

string of characters is a valid use of a kernel

interface; .

semantics: the rules that give meaning to a kernel

interface, used synonymously with function and

functionality.

Chapter 2 of this paper presents a review of

proposed techniques for the semantic specification of
'a

kernel interfaces and applications of these techniques;

Chapter 3 details the specification technique used in

this study. Chapter 4 provides a preliminary

description of the CAIS node model, and Chapter 5

reflects the details of the application of the

specification technique to the node model. Chapters 6,

7, and 8 present the specifications; and Chapter 9

reports summary conclusions and suggests areas for

further study.

a,-

G-60

. $.~i , [e .K.. 3..> .91.'..-. ' -'. , ., ' *...- *-.-. i v -q'-. ..' 7 [ [ >?



', _ .W .... I V - * 'V - -. --

Chapter II

SEMANTIC SPECIFICATION TECHNIQUES

This chapter presents a review of the literature pertaining

to the semantic specification of kernel APSE interfaces.

A report3 by Kafura and others [15] states that a

complete specification of kernel APSE facilities must

include four elements:

1. syntax,

2. semantics,

3. limits: details of any structural or usage

constraints placed on a facility, and

4. hidden protocols: interactions between facilities,

by means of direct communication or shared data, that

may not be visible.

The report points out that, of the four parts of the

specification, the semantics are the most difficult to

define and, at the same time, the most important.

The problems with semantic specifications are not new.

The specification of the semantics of programming languages,

the rules that give meaning to programs, is a topic that has

been extensively researched.

3 This material is also covered in a published article [16].

G-61



7.

Aho and Ullman (71 discuss some of the approaches to

specifying programming language semantics. One such

approach is axiomatic deinition [13] (7]. In this approach

axioms and rules of inference are developed to define the

meaning of the language. These axioms and rules are used in

proving properties of programs written in the language.

Another approach to semantic description of languages is

denotational (or mathematical) semantics [7]. In a

denotational semantic specification, rules are defined that

translate programs into abstract mathematical objects.

Another approach described by Aho and Ullman is

overational (or interpretive) semantics. The premise behind

this method is that the semantics of a machine language can

be defined by the machine itself; "a machine language

program 'means' exactly what the computer does when the

program is run." The semantics of a high level language

cannot be defined in this way, however, since a high level

language program cannot be run on a computer without first

being compiled into some machine language, which itself

requires a semantic definition of the language. Aho and

Ullman give the following description:

The interpretive [or operational] approach to defining
the semantics of programming languages is to postulate
an abstract machine and provide rules for executing
programs on this abstract machine. These rules then
define the meaning of programs the way the real machine
did for assembly language programs. Usually, the
abstract machine is characterized by a state, consisting

G-62

L, . . ..



of all data objects, their values, and the program with
its program counter (indicator of the 'current' step in
the program). The semantic rules specify how the state
is transformed by the various programming language
constructs [7].

Each of these approaches is the basis for a semantic

specification method for kernel APSE interfaces.

The report by Kafura and others (151 outlines four

general methods for specifying the semantics of kernel APSE

facilities:

1. natural language specification,

2. formal methods,

3. by example, and

4. abstract machine specification.

A natural languaae specification is an informal description,

by means of commentary, of the intended function.

Specifications of this type are relatively easy to construct

and very readable; they are, however, quite difficult to

check for completeness and absence of ambiguity.

The report [15] suggests several formal methods that

might be used to specify the function of kernel facilities.

These methods include axiomatic specification and denotation

semantics. Formal methods produce precise specifications

that can be mathematically analyzed. However, they are

difficult to construct and not easy to comprehend.

c--63
I



Another method of semantic specification suggested in the

report [15] is by example. This method requires the

construction of a set of validation tests. By definition,

then, any implementation that produces the output expected

by the validation tests is functionally correct.

Specifications of this type would have to be extremely well-

documented to be useful to implementors, which would again

lead to a natural language specification, albeit a more

thorough one. The quality of a specification of this type

depends entirely on the techniques used to develop the

validation tests.

A final method for specifying the function of kernel

facilities, described in the report [151, is abst:act

machine specification. This approach is based on the

operational semantics described above. An abstract machine

is detailed that contains primitive objects representing the

elements in the kernel environment. Programs written for

the machine Ithat perform the intended function of a facility

then provide a semantic specification of the facility. A

specification of this type is more precise than a natural

language specification, yet easier to understand than a

formal specification. The main difficulty with this method

pointed out in the report is that the semantics of the

language of the abstract machine must be defined. The

G-64



report suggests that this difficulty can be eased by using

Ada as the programming language.

Freedman brings up some issues involved in developing a

formal specification for a standard kernel APSE interface

[Il]. He discusses the relative merits of an operational

approach (using an abstract machine) versus a denotational

approach, and points out that an operational specification

is built using a bottom-up design technique, a relative

disadvantage; the machine must be defined before programs

can be written and their semantics defined. Another

disadvantage pointed out to this approach is that it is

implementation-dependent; the specification is based

entirely on the definition of the abstract machine.

The abstract machine approach to specifying kernel APSE

interface components is examined further by Lindquist and

others in [16]. This article points out that, while an

abstract machine specification may seem to require a

specific implementation, the abstract machine programs are

intended to describe semantics solely by their (perceived)

execution effects. Thus, any implementation that generates

identical output defines the same semantics.

The article [16] goes on to specify an abstract machine

and illustrate its use through an abstract machine program

for one procedure of the CAISPROCESS_CONTROL package. This

G-65

° [ ", ' - '. -



abstract machine is defined in terms of three components: a

processor, a storage, and an instruction set. The basis of

the instruction set is the Ada language, chosen because of

its well-defined semantics and its familiarity to the

intended reader. The example program for the abstract

machine clearly identifies both valid inputs and error

conditions, and the error handling techniques are explicit.

These are points that are incomplete in the natural language

description of the CAIS given in [1]. The Ada based

abstract machine described in this report provides a

readable and well-defined semantic description for the

example given.

The abstract machine approach to specifying the CAIS has

been further analyzed in a paper by Facemire [9], in which a

validation mechanism based on an abstract machine

specification is developed. Another paper, by Srivastava

[17], has successfully applied an abstract machine approach

in developing semantic specifications for the process node

packages of the CAIS.

As indicated by this review, the abstract machine

approach to specifying the semantics of the CAIS looks

promising. It leads to a more complete and precise semantic

specification than the natural language approach used in the

G-66

":... -. .. . .. . . . . . .



current specifications, and the specifications are easier to

construct and more readable than formal mathematical

methods. In addition, it forms a specification on which

validation mechanisms can be based. This paper focuses on

applying this approach to the node model packages of the

CAIS to develop a semantic specification that is complete,

consistent and unambiguous.

G-67

,3



Chapter III

THE ABSTRACT MACHINE METHOD OF SPECIFYING CAIS
FUNCTION

The method used in this paper to specify the function of

CAIS operations is an abstract machine approach based on

operational semantics. As proposed in [15] and [16], and

illustrated in [9] and [17], this method can be used to

specify the function of the kernel APSE interfaces. To

apply this approach, an abstract machine must be defined.

The meaning of any program written for the abstract machine

is then defined by the execution rules of the machine. In

particular, the meaning of the CAIS operations can be

defined by giving programs that perform the intended

function of the operations on the abstract machine.

3.1 THE ABSTRACT MACHINE

As seen in the previous chapter, to write a program for an

abstract machine that describes the function of a CAIS

operation, a complete description of the abstract machine

must be given. The design of a complete abstract machine

with its states and execution rules could be a major job.

An ideal solution to this problem is to use the Ada language

to describe the function of the CAIS operations. This

language has a thorough semantic specification on which to

G-68

..- .. , . - .. . . ..- . -. ., .-. . . ' ' . . ." , . . , , ' , - :'- . . ,- ..



base the abstract machine. In addition, since it should be

familiar to those readers interested in kernel APSE

interfaces, the resulting specifications, programs written

in Ada, will be easily comprehensible.

The abstract machine used in this report is a high level

language machine based on the Ada language. This machine

accepts Ada statements as its instruction set; programs

written for the machine are written in Ada.

The specification of the Ada language, given in the

language reference manual [5], provides the execution rules

for the abstract machine. These rules clearly define the

results of the execution of any instruction on the machine.

The data objects for the machine can be defined by each

program in the Ada language using Ada type and object

declarations. Thus, each Ada program can define the initial

state of the storage of the machine and can modify this

storage during execution.

Ctate characterizations of the abstract machine during

execution of a program are not given here. It is assumed

that the reader is familiar with the Ada language or some

similar high level language. The language reference manual

[5] should be used as a reference where needed by the

reader.

G-69



3.2 PROGRAMS FOR THiE ABSTRACT MACHINE

To describe the CAIS node model, this paper develops the

bodies of several packages of the CAIS. The CAIS

Specification gives the Ada package specifications of the

packages that form the node model. These package

specifications contain type and object declarations and

subprogram specifications for the node model operations.

This paper develops the bodies of the subprograms to

describe the node model operations. The subprogram bodies

form part of the package bodies presented in this paper.

Together with the Ada package specifications, the package

bodies provide a complete description of the semantics, as

well as the syntax, of the CAIS node model.

G

* G-70

" ' -& < , ,.................................. • - a -*.c-~ " . *." "[ ' - -" '"' -" - *. v '



3.3 $UMMARY

This chapter details the abstract machine approach used in

this paper to specify the function of CAIS operations. The

abstract machine itself is a high-level language machine

based on the Ada language; therefore, programs written for

the machine are written in the Ada language. The operations

of the CAIS node model are described by developing an Ada

package body corresponding to the Ada package specification

given for each package comprising the node model in the CAIS

Specification [1].

G

a

4 ~G- 71



- - - - -

Chapter IV

THE CAIS NODE MODEL

This chapter provides an overview of the elements and

structure of the CAIS node model, as described in the CAIS

Specification, and provides a basis for the discussion of

implementation techniques in the following chapter. The

node model provides the basic foundation upon which the

remainder of the CAIS is built. The intent of the CAIS is

to provide standard interfaces to traditional operating

system services. Thus, the model must provide some

representation for typical operating system entities, such

as files, processes, and devices.

The node model has three basic elements, nodes,

relationship, and attributes. A node holds information

about an entity. A relationship indicates a logical

connection between two entities. An attribute represents a

property of an entity or a connection between entities.

The structure of the model is a directed graph. The

nodes of the model are the vertices of the graph, and the

relationships are the directed edges.

G-72



4.1 NODES

A node has properties that depend on the entity it

represents. version 1.1 of the CAIS defines four kinds of

nodes: structural nodes, le9 nodes, Rrocess nodes, and

device nodes. This n is a property of the node.

Nodes also have content that varies according to the kind

of node. A structural node has no content, it holds

relationships and attributes. The content of a file node is

a data file on an external storage device. The content of a

process node is some representation of the execution of a

program. The content of a device node is a representation

of a logical or a physical device.

All nodes can hold relationships and attributes. Nodes

are not named; they are accessed through the named

relationships connecting them.

4.2 RELATIONSHIPS

Relationships can be viewed as the directed edges that

connect the nodes in the directed graph structure of the

model. A relationship emanates from one node called the

source node, and terminates at another node, the target

node. A relationship may only be accessed from its source

node.

*I

G-73



Because entities may have many different types of logical

connections with one another, relationships are categorized.

A relationship type is called a rJaio . Relations group

relationships according to their characteristics. There are

several predefined relations that serve special purposis.

A relationship is an instance of a relation, and is

identified by a relation name and a relationship ky. The

relation name identifies the relation. The relationship key

identifies one of many relationships the source node may

hold of the relation.

4.3 ATIUE

Nodes and relationships can have one or more attributes

associated with them. Attributes represent a property of

the node or relationship.

An attribute of a node or a relationship is identified by

an attribute name. Each attribute has a list of values; the

values are represented by a LIST type as described in the

CAISLIST_UTILS utility package of the CAIS Specification

[G1.

G-7 I

iv- .- ~ K~W~ ~ * **'* * .~. . .~ .. Ta. ~ . . a"o *



'a

4.4 STRUCTURE

Relationships are further classified as r or

secondary. The primary relationships form strict tree

structures within the generalized directed graph structure

of the model.

The nodes of the model make up a forest of trees. The

root of a tree is called a toR-level node. Each particular

tree structure can be thought of as belonging to a user of

the APSE. The top-level node of the tree represents the

user.

Each node has one primary relationship to it from another

node, its parent node. Each node, except a top-level node,

also has a secondary relationship emanating from it to its

parent, acting as a back pointer. Thus, a tree can be

traversed in either direction, up or down.

4.5 PATHS

A path is a sequence of relationships. Since nodes are not

named, they are accessed by traversing a sequence of

relationships, which are named. An absolute R_ is any

path beginning at a top-level node. A r p is a

path that begins at any convenient node (not necessarily a

top-level node). A Drimary R is a path consisting of

only primary relationships. Since these primary

G-75



relationships follow strict tree structures, each node has

one unique absolute primary path (that is, a primary path

beginning at a top-level node).

A Rathname is a sequence of relationship names indicating

a path to a node. A pathname can be broken up into R3th

elements, each of which represents one relationship in the

sequence. The syntax of a path element is an apostrophe

('), called a tick, followed by a relation name, followed by

a relationship key within parentheses, for example:

'DOT(CONTROLLER). A pathname consists of a sequence of

these path elements.

The path element of the previous example shows an

occurrence of a predefined relation, DOT. Instances of the

DOT relation in a path element can be abbreviated by a dot

(.), followed by the relationship key, for example:

.CONTROLLER.

A process uses a pathname to identify nodes when making a

call to a CAIS interface. In a CAIS implementation, this

process will be associated with a process node. This

process node, called the c process node, is used as

the starting node in interpreting and traversing a path.

G-76

- . - . ... . . * . . . . ... ~. . - .. . . .~ 1 . . .. . .. ,



4.6 PREDEFINED RELATIONS

The CAIS Specification gives some predefined relations that

have special meaning. The relation DOT discussed in the

previous section is a predefined relation. It is used as a

default relation. Instances of the DOT relation can be

abbreviated in pathnames producing simple and easily

readable pathnames.

The PARENT relation is another predefined relation. Each

node has a secondary relationship to its parent node. This

relationship is an instance of the PARENT relation. PARENT

relationships are managed automatically by the CAIS in

maintaining the primary tree structures.

A few predefined relations are provided to give process

nodes some basic access channels for connections with other

nodes. The relation USER allows access to top-level nodes,

the roots of the tree structures. A process node can access

any top-level node using the predefined relation USER and a

relationship key that identifies a user of the APSE.

A user can have one or more process node trees, called a

lob, at any time. A relationship of the predefined JOB

relation connects a root process node to its user's top-

level node. Each process node is a node of one process

tree, which is a subtree of one user's tree.

G-77



Three special relations are provided to allow easy access

to certain nodes from a process node. The CURRENTJOB

relationship of a process node indicates the root node of

its process tree. The CURRENT_USER relationship indicates

the user's top-level node. The CURRENTNODE relations.ip

points to some known node (often a structural node) used in

specifying relative paths.

4.7 NODE HANDLES

Node handles are objects associated with a process that

allow easy identification of nodes. They provide direct

access to a node, bypassing the relationship traversals

necessary when a pathname is used to identify a node.

4.8 OPERATI

The details of the operations of the node model are

presented in package descriptions of the CAIS Specification.

The CAISNODEDEFS package provides definitions of data

types and objects. No operations are given in this package.

The package CAISNODEMANAGEMENT defines the basic

operations on nodes and relationships. It gives operations

to copy and delete nodes, create and delete secondary

relationships, change primary relationships, use node

handles, and obtain information about existing nodes. The

G-78

:z : .



CAISATTRIBUTES package defines some data types and

operations for node and relationship attributes.

The package CAIS_NODE_CONTROL presented in version 1.1 of

the CAIS Specification [1] defines some node access

synchronization primitives. This package is incomplete, and

its semantics are not clearly enough described to appear

useful. It is anticipated that this package will either be

completely rewritten, or deleted altogether.

CAIS_NODE_CONTROL will not be further described in this

report.

In addition to these basic packages comprising the node

model of the CAIS, the package CAIS_STRUCTURAL_NODES is

included in this paper. The operations to create nodes are

included in the packages dealing with a particular kind of

node. The CAISSTRUCTURAL_NODES package defines the

operations to create structural nodes.

4.9 S=MARY

This chapter provides a basic overview of the CAIS node

model. Nodes, relationships, and attributes are introduced,

and the basic structure of the model is illustrated. The

use of pathnames, which represent sequences of

relationships, to identify nodes is described, and node

handles, which allow short-cut access to nodes, are

G-79



introduced. The packages of the CAIS containing the node

model operations are briefly discussed.

G-80

CU *U'%U



Chapter V

THE IMPLEMENTATION TECHNIQUES USED IN THE
ABSTRACT MACHINE PROGRAMS

This chapter outlines the implementation techniques used in

developing the abstract machine programs that describe the

CAIS Node Model. To write programs that manipulate nodes

and relationships, some storage representations are needed.

An implementation package, CAISPRIVATEDEFS, defines data

types and data objects used in the abstract machine

programs. In addition, to allow the development of more

readable programs, CAIS_PRIVATE_DEFS defines some simple

operations to manipulate these data types. This chapter

presents an overview of the concepts used in defining the

storage structures. The details of the CAISPRIVATEDEFS

package appear in Appendix A.

The package CAIS_NODEDEFS, defined in the CAIS

Specification [1], also defines some data types and data

objects used in the abstract machine programs. Parts of

this package are discussed here; the details are in Appendix

B.

G81.

....



5.1 AN ADJACENCY LIST REPRESENTATION OF THE NODE MODEL

As seen in Chapter 2, the structure of the node model is a

directed graph. The node model, however, does not enforce

two restrictions placed on formal graph structures [14].

One of these restrictions requires that a vertex not have an

edge connecting it to itself; the other restriction requires

that two vertices not have multiple edges connecting

themselves. Consequently, a representation technique for

the node model must be chosen that can be modified to

include these characteristics not generally held by directed

graphs.

Adjacency list representation, detailed in Horowitz and

Sahni's book [14], is a particularly good representation

technique for a directed graph. Using this representation

method, each vertex of a graph has a linked list associated

with it. The cells of this linked list can be considered to

represent the directed edges (arcs) out of the vertex. Each

cell of the linked list must contain two fields; VERTEX

indicates which vertex the arc points to, and LINK connects

the linked list by pointing to the next list cell. An *

adjacency list representation of the graph in figure 1A is

shown in figure 2A.

The nodes and relationships of the CAIS node model can be

represented in the same way using adjacency lists, see

G-82

4'.



Figure G-1A: A Directed Graph

G-8 3



I /

* " la /

Figure G-2A: An Adjacency List Representation of a Directed
Graph

G-84



figures 3A and 4A. Each node has a linked list of

relationships associated with it allowing access to other

nodes. The node field ARCOUT is the head of the linked

list of relationships the node holds with other nodes. The

relationship field TO_NODE indicates the target node of the

relationship, and the field LINK connects the list of

relationships of the source node.

5.2 PRIMARY RELATIONSHIPS

As seen in Chapter 2, the primary relationships of the node

model form tree structures; the user top-level nodes are the

roots of the trees. In this implementation, these tree

structures are maintained within the directed graph

representation. Both primary and secondary relationship

records contain a field PRIMARY, which is true, for a

primary relationship, or false, for a secondary

relationship. Primary and secondary relationship records

are linked together in the arc out list of a node.

The primary relationships in this implementation form a

single tree structure. A system node called SYSTEMROOT,

defined in CAIS_PRIVATE_DEFS, is the root of the tree. All

relationships held by this node are primary USER

relationships that access the top-level nodes. These USER

relationships are the only primary relationships not having

G-85



Figure G-3A: A Node Model Example

G- 86



(:Z OT C 061 4

-NODE.IVME] CW

T ELATJONSHIP INAMEJ Kc.1 IW~ LINK~

Figure G-4A: A Representation of the Node Model Example

G-87

- **** ~ C -..- -.
6



a corresponding secondary predefined PARENT relationship

from the target node to the source node of the primary

relationship that simulates bi-directional access between

parent and child nodes of the tree.

5.3 THE ACCESS CONTROL TABLE

The possible existence of dangling references to deleted

nodes makes a detection method necessary. The CAIS

Specification states, "If a node is deleted, (i.e., its

primary relationship is broken), outstanding secondary

relationships for which it is the target may remain, but

attempts to access the node via these relationships will

raise an exception" [1]. An efficient method for detecting

both dangling secondary relationships and open node handles

to deleted nodes is needed so the appropriate exception can

be raised.

The method used here adds a layer of indirection using

node sequence numbers and an access control table to detect

deleted nodes. A unique sequence number, supplied by the

package SEQNUMMANAGER (see Appendix A), is assigned to each

node when it is created. The number, along with a pointer

to the node record, is stored in the access control table.

The entry in the table provides the only access to the node;

relationships and node handles contain only the sequence

G-88



number of the target node and must go through the table to

obtain access to the node record itself. When the node is

deleted, its entry in the access control table is deleted,

and since these sequence numbers are unique and never

reused, any attempted access using the old sequence number

fails. A representation using an access control table of

the node model example in figure 3 is shown in figure 5A.

Assigning each node a unique sequence number is not an

impracticable implementation technique. Assume that, on the

average, a new node is created and a new sequence number

assigned every millisecond. Using a sixty-four bit sequence

number, it would take 2 64 milliseconds, or approximately

585 mili years, to use up all possible unique numbers.'

5.4 TYPE SPECIFICATIONS

The type specifications that reflect the implementation

methods are now presented. The Ada definitions of nodes,

relationships, attributes, and the access control table are

the basic objects manipulated by the abstract machine

programs.

4 2 64 ms = 1.84 * 1019 ms =1.84 *1016 s =5.12 *1012 hr
= 2.14 * 1011 day =5.85 10lO yr

% I



N,~~~~~ ~ ~ ~ ~ V. 9*1I711I- IF 1 . 7

ACCESS C.ONTR~OL TABLE

Figure G-5A: A Representation Using an Access Control Table

G- 90



5.4.1 Access Tves

The implementation defines nodes and relationships as

dynamically created storage structures. Thus, when a node

record or relationship record is created, it is accessed

through a pointer to the record, an Ada access type. The

following incomplete record specifications and access type

specifications are defined in CAIS_PRIVATEDEFS.

type RELATIONSHIP (PRIMARY : boolean := false);
type ACCESSREL is access RELATIONSHIP;

type NODE (KIND : CAIS_NODE_DEFS.NODE_KIND);
type ACCESSNODE is access NODE;

5.4.2 A Node Recor

The type specification of a node appears in

CAIS_PRIVATE_DEFS.

type NODE (KIND : CAIS_NODEDEFS.NODE_KIND) is
record

NUMBER : NODESEQUENCE_NUMBER;
ARCOUT : ACCESS_REL;
ATTRIBUTE : ACCESS_ATTRIBUTE;
case KIND is

when STRUCTURAL =>
null;

end case;
end record;

The KIND field of this variant record indicates whether this

is a file, structural, process, or device node; the content

of the node depends on this field. A structural node has no

content, as shown in the type specification. The

G-91



specification of the contents of other types of nodes is

beyond the scope of this paper.

The NUMBER field of the node record holds a

NODESEQUENCENUMBER that serves as a unique identifier of

the node. The ARCOUT field holds a pointer to the first

relationship in the linked list of relationships held by the

node. The ATTRIBUTE field allows access to the attributes

of the node; the implementation of attributes is discussed

later in this chapter.

5.4.3 A Relationship Record

The type specification of a relationship record, below, is

taken from the CAIS_PRIVATE_DEFS package.

type RELATIONSHIP (PRIMARY : boolean false) is
record

RELATION CAIS_NODEDEFS.RELATION_NAME;
KEY CAISNODE_DEFS.RELATIONSHIPKEY;
TONODE NODE_SEQUENCE_NULMBER;
ATTRIBUTE ACCESS_ATTRIBUTE;
LINK ACCESSREL;
case PRIMARY is

when true =>
null;

when false =>
PREDEFINED: boolean := false;

end case;
end record;

The PRIMARY field of this variant record distinguishes a

primary relationship from a secondary relationship. The

PREDEFINED field of a secondary relationship identifies

those predefined secondary relationships, for example,

G-92

.1-* ~ . . .



PARENT, that the user cannot modify. The TO_NODE field

identifies the target node of the relationship. The LINK

field connects the linked list of relationships of the

source node and contains a pointer to the next relationship

in the linked list.

5.4.4 A Node Handle

A node handle is a NODETYPE variable held by a user process

that allows efficient access to a node. Many of the CAIS

operations require a node handle to identify a particular

node.

The CAIS Specification defines NODE_TYPE as a limited

private type in the CAIS_NODE_DEFS package. Consequently,

outside the CAIS_NODE_DEFS package, the details of the

definition of the type are not visible, and the assignment

operation and tests for equality and inequality are not

available. Because the free use of the NODETYPE data type

is required to detail the abstract machine programs for

routines in other packages, NODETYPE has not been defined

as limited private in this paper. Some other protection

mechanism is assumed to exist to prevent users of the CAIS

from directly examining or changing the contents of a

NODETYPE variable.

G-93

i-

" . -~ J 5 ~ - * ~ ~ * \ .- . -- ~--~a.



The abstract machine programs in this paper define a node

handle as a pointer to a relationship record. The detailed

type specification given here appears in the CAISNODE_DEFS

package.

type NODE_TYPE is new ACCESS_REL;

Since this is a derived type, the abstract machine programs

can make explicit type conversions to assign a pointer to a

relationship record into a NODETYPE variable. The

relationship record contains the node number of its target

node, and thus the node record is easily accessed using the

node handle. Additionally, all information that must be

carried by a NODE_TYPE variable detailing how the node was

originally accessed is directly available.

5.5 PRIMITIVE OPERATIONS ON NODES AND RELATIONSHIPS

This section provides an overview of some basic operations

on node and relationship structures used in the abstract

machine programs. The purpose of using such operations is

to avoid complicated code in the abstract machine programs

that makes the programs difficult to read. The operations

are described in mote detail in the CAISPRIVATEDEFS

package in Appendix A.

G-94



The functions GET_ACCESS_NODE and EXISTS perform similar

duties. GET_ACCESS_NODE takes a node number and searches

the access control table for the pointer to the node record.

If the number is not found, GET_ACCESS_NODE raises an

exception, NONEXISTENT_NODE. A similar function, EXISTS,

takes a node number and searches the access control table.

If a control record is found, the node exists, and the

function returns true, otherwise, it returns false.

CREATE_NODE_CELL creates a node record and makes an

appropriate entry in the access control table.

DELETE_NODE_CELL deletes a node's entry from the access

control table without actually deleting the node record,

making the node inaccessible.

The functions GET_ACCESS_REL and ISRELATIONSHIP search

the list of relationship records of a specified node for a

relationship with a specified relation name and relationship

key. GET_ACCESS_REL returns a pointer to the relationship,

or, if the relationship is not found, raises an exception

called RELATIONSHIP_NOT_FOUND. IS_RELATIONSHIP returns true

if the relationship is found, false if it is not found.

GET_ACCESS_PRIMARYREL requires two parameters, a pointer

to a parent node and a pointer to a child node. The

function searches the relationship list of the parent node

fct the primary relationship to the child node, and returns

a pointer to this relationship.

G-95



CREATERELATIONSHIPCELL creates and initializes a new

relationship record, and ATTACH links the record into the

relationship list of the specified source node. All

relationships are linked in ASCII lexicographical order by

relation name and then by relationship key. DETACH unlinks

a relationship record from the relationship list of a

specified source node, effectively deleting the

relationship.

5.6 PATHNAMES

When a pathname is supplied as an argument to a CAIS

operation in the form of a NAMESTRING variable, the

pathname must be analyzed and the nodes and relationships in

the path traversed to access the indicated node. The

package CAIS_PRIVATE_DEFS defines operations to perform

these functions.

The procedure PARSE lexically analyzes the valid

NAMESTRING argument passed in and builds a list of

(relation name, relationship key) tuples. TRAVERSE uses

this list of tuples to navigate through the specified node

and relationship records, and returns a pointer to the last

relationship record encountered. The target node is not

accessed, thus it is possible to access a dangling secondary

relationship using this operation. PARSE raises an

G-96



exception, SYNTA?--TC_ERROR, if the NAMESTRING is

syntactically invalid, and TRAVERSE raises

TRAVERSEEXCEPTION if it encounters a deleted node, or if a

specified relationship is not found.

CAISPRIVATEDEFS defines a data object called

SYSTEM_CURRENT_NODE. This ACCESSNODE variable always

points to the process node that represents the process

currently executing. The procedure TRAVERSE uses this node

as a starting point in traversing the sequence of node and

relationship records in a path.

Several CAIS operations defined in [1] use a NAME_STRING

argument to specify a relationship that is to be created.

In this case, the first part of the path must be traversed

to find a node, but the last path element of the path name

refers to the relationship that must be created. The

procedure DISSECT, defined in the CAIS_PRIVATEDEFS package,

picks off the last relation name and relationship key pair

and returns these, together with the path name to the base

node.

G-97



5.7 ATTRIBUE

Nodes and relationships, as seen in Chapter 2, can have one

or more associated attributes. Each attribute is identified

by a name and has a list of values.

The abstract machine programs developed in this paper use

a singly linked list representation for attributes. Each

node and relationship is the head of a linked list of

attributes, and each attribute is a cell of a linked list.

Each node and relationship record contains an ATTRIBUTE

field that points to the first attribute in the list, and

each attribute record contains a LINK field that points to

the next attribute in the list.

The type specification of an attribute record, given in

CAISPRIVATEDEFS, reflects this linked list implementation

method.

type ATTRIBUTE is
record

NAME ATTRIB_NAME;
VALUE LIST;
READONLY boolean false;
INHERIT boolean false;
NEXT ACCESSATTRIBUTE;

end record;

The NA1E field holds the name by which the attribute is

identified. READ_ONLY and INHERIT are flags associated with

each attribute as defined in section 3.6.2 of [1].

G-98

* -U. *' U~ ~ U~U~~~ ~ ~ * . U ~ ~ A~~*A~.~ I .



The VALUE field of an attribute is a variable of type

LIST-TYPE. The CAIS Specification defines this type in a

package called CAISLIST_UTILS. A LISTTYPE is a limited

private type and can only be operated on by the routines in

the CAISLIST_UTILS package, described in [1].

The operations that manipulate the attribute structures

used in this implementation are outlined here and described

in more detail in Appendix A. The functions ISATTRIBUTE

and GET_ACCESSATTRIBUTE search a linked list of attribute

records for the attribute with the given name.

GET_ACCESS_ATTRIBUTE returns a pointer to the attribute

record. ISATTRIBUTE returns true if the attribute is

found, false if it is not found. CREATEATTRIBUTE creates a

new attribute record with a specified attribute name, and

ATTACHATTRIBUTE attaches it into the linked list of a node

record or a relationship record in ASCII lexicographical

order by attribute name. DETACH_ATTRIBUTE deletes an

attribute by unlinking the attribute record from the node or

relationship attribute list.

G-99

..%.~-.* US*



5.8 TSUIARY

This chapter describes the storage structures used in

deveioping the abstract machine programs that define the

semantics of the operations of the CAIS node model. It

outlines the representation chosen for the node model, which

is based on adjacency list representation, and develops a

method for detecting deleted nodes using an access control

table. The chapter details the objects of the abstract

machine, nodes, relationships, and attributes, and outlines

basic operations that manipulate these objects.

G-100

r



APPENDIX H

AFIT/GCS/MA/S5D-6

USING ADA IN THE REAL-TIME AVIONICS ENVIRONMENT:

ISSUES AND CONCLUSIONS

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Donald J. Witt, M.A., B.S.

Captain, USAF

December 1985

Approved for public release; distribution unlimited

H-I



Contents

Acknowledgements .......... . . . . l-b

List of Figures . . . . 0 . . a . . . . . . H-6

List oa Acronyms . . .. . . . ..... . . . . H-7

Abstractrd t. . . . . . . . . . . o . . . . H-8
1. Introduction ... . ........ 0 a. ..... H-9

Background . . . . . . . . a . .0. . . . . . . . . H-10
Problem a.o.e ........ o. .. 0. ..... H-14
Scope *. *.. . .a . . . .*.. . . .. . . . - H-i6

General Approach . .... . .. . o e H-16

Sequence of Presentation . . . . . . . . .. H-17
.f

II. The Environment . . . . . . . . . . . .. H-19

Real-time Avionics ............. . -19
Architectures and Levels of Distribution ..... H-23
Tasks . . . . .. * . . . .. H-26
Exceptions . . . . . . . . . . . .. . H-30
Data Structures .. . ...... . . .. . . .H-31

ZIz. Issues . o. .... . . . .. c. T... . . . .H-34

Issues Not Suitable or Empirical Testing . ... H-35Issues Suitable for Empirical Testing . .... H-L3
Summary e.. .. ... .. ... .. H-51

IV. The Prototype ACEC and Other Test Programs .*... H-53

Prototype ACEC . . . . . . ......... . 4

Background . .. . . .. ...... . . . . H-54
Test Suite Composition . . .. ......... H-56 r
Analysis a........ a.. .. .. .. ... H-60

Evaluation . . . . . e . . * . o . . 0 . . . . .H-72
Other Test Programs ....... ......

Sources of Public Domain Ada Tests . .... -7.

Applicable Tests From Other Sources . .... H-77
Summary . .. . . . . . . . . . . . . .. . . -H-81

V. Compilation and Execution Results . . . . . . . . 11-82

Methodology . . . . . 82
Results a 0 . . . . . .. . H-85

V1. Conclusions and Recommendations .......... H-87

The Environment . .. .. .. .. . . .. . . . H-88
The Issues .................... H-B9

"-2

ffg. W* . *..



Analysis of Available Tests . ......... H-89
Issues 1-7 .... ................. . . . . H-89

Issues 8-19 . . . .. . . . . . . . . . . -90
Compilation and Execution ...... . . . . H-91
General . . . . . . . . . . . . . . . . . . {-91

Bibliography . . . . . . . . . . . . . . . . . H-93

Appendix A: List of Issues . . . . . . . . . . ..... H-96

Appendix B: Summary of Test Group Status .... ........ H-98

Appendix C: Source Listings of Other Programs . . . . . . H-102

Appendix D: Test Harness Used on the VAX 11/780 . . . . H-108

Appendix E: Test Harness Used on the Data General . . . H-lll

Appendix F: Compilation Results . . . . . . . . .. H-112

Appendix G: Sample of File HARNESS.OUT . . . . . . . . H-

Appendix H: Execution Results . . . . . . . . . . . . 0 H-115

VITA . . . . . . . . . . . . . . . . . . . .. . H-117

--3
.-" .-" . . . . . . . . . .

--p.' - --- , .,, .I' " r., ,',,~"d '", + :" "" .>"- "-""""-.., ,""+,- - -.- -'' ".-..'



Acknowledgements

The project described in this thesis was a natural

offspring of the Air Force Wright Aeronautical Laboratories'

(AFWAL) Evaluation & Validation (E & V) team'& efforts. They

had tasked the Institute for Defense Analyses to develop a

Prototype Ada Compiler Evaluation Capability (ACEC). and

Virginia Castor, who was then chief of the E & V team,

suggested that someone needed to determine if the concerns

of the real-time avionics environment were addressed by the

ACEC. Further discussions with Ms. Castor and with my thesis

advisor and AFIT instructor, Capt Patricia Lawlia, helped

-' shape the thesis proposal.

The project changed as time went on, and the task of

searching other sources for applicable tests was added. In

addition, one of the original goals, compiling the

applicable testa on an Ada to MIL-STD-1750A compiler and

running them on a MIL-STD-1750A machine, had to be modified

because the compiler couldn't be obtained in time.

I think the results of the project are useful and will

become even more useful in the near future as more MIL-STD-

1750A compilers are developed. The tests identified in the

project should help prospective users of Ada evaluate

different compilers and run-time systems. The builders of

the ACEC would also benefit from looking at the issues

identified in the project.

I would like to thank my thesis advisor, Capt Lawlia,

for her guidance and advice. Mr. Ray Szymanski, who replaced

- .., , , .. . .'.. . .,' ".-#. .,- .- ' ,, ..% ... , -,. . ,. ." ,.. .- ." -.-,-.-.-4



~ - ,'-- . .. .* *~ .- .. .. . . ... . ,.j.. . ... . ,.

Ms. Castor when she transaered to the Ad& Joint Program

Office, deserves special thanks for providing invaluable

assistance whenever I requested it. Lts Long and Wood of

AFWAL were also very helpful as was SSgt Swea of SeaFac. I

am extremely grateful to Colonel Walter Figel, Jr., for his

assistance, encouragement, and advice.

I reserve my deepest gratitude for my family. My wife,

Carolyn, and my thirteen year old daughter, Ximberly, have

truly sustained me throughout this trying period. They

always exhibited patience when I couldn't be with them or

had to cancel our plans because the best time to access the

computer was on the weekends. They were extremely tolerant

of my moods, sleepless night&, and frustrations while they

continually voiced encouragement and support. I couldn't

have done it without them.

H-5

-- ,-.- * '- .".". ', " '. . ._ .- .



List of Figures

Figure Page

1 Extreme Architecture/Distribution Combinations H-26

2 Typical Ada Life Cycles:
One Parent and Two Children .. ....... . . H-39

3 Source Code for ADDSA#. . . . . . . . . .*. . H-58

H-6U

r- 6

%1

:2



List of AcronYms

ACVC Ada Compiler Validation Capability

ACEC Ada Compiler Evaluation Capability

ADE Ada Development Environment

AFWAL Air Force Wright Aeronautical Laboratories

AJPO Ada Joint Programming Office

ANSI American National Standards Institute

ASPE Ada Programming Support Environment

AVO Ada Validation Organization

BMAC Boeing Military Aircraft Company

CAIS Common ASPE Interface Set

CPU Central Processor Unit

DoD Department of Defense

E & V Evaluation and Validation

HOL High Order Language

HOLWG High Order Language Working Group

IDA Institute for Defense Analyses

ISA Instruction Set Architecture

KB KiloByte

LRM Language Reference Manual

MCCS Mission Critical Computer Systems

RTS Run-time Support

STARS Software Technology for Adaptable Reliable
Systems

VDU Visual Display Unit

H-7



AD-Ai72 343 EVRLUATION RMD VRLIDATION (ESY) TERM PUBLIC REPORT 4/5
VOLUME 2(U) RIR FORCE MRIGHT AERONRUTICAL LRBS
URIGHT-PRTTERSON RFB OH R SZYNANSKI 36 NOV 95

UNCLASSIFIED RFUAL-TR-85-1S16-VOL-2 F/O 14/2 ML

EhmhhEEEmhEmhE

Eh~~Ehh~h~E



S. ~

~ 328 .5 5.__ *25
_ .5%
__ *22 **45 ~

*~ 3~2 I
L 136 m11111 ii 5..11111 '*' LIAO

b~.5

11111 1.8 .

IIIIi'~2~~ I'll'11111 '*~ ~- 11111I- - --

IC-

5~~

A ~.

5.'

5.5w

S..

d. '~J~

'5.

1~** - -%%S~%%* 5.. ~

--. ,~.-...~ P .~. ~ --. 5.. **..~ -- S - !.S5'~5 S S -. .. s5..J,..
5. 5,-..- S 5 - 5..~ *5* 5.5~*



AFIT/GCS/NA/85D-6

Abstrgct

This project involved studying the real-time avionics

environment in which Ada will become the primary programming

language in the near future. A &et of issues of concern

regarding the use of Ada within this environment was

identified and described. Test programs, including the new

Prototype Ada Compiler Evaluation Capability, were evaluated

as to their applicability to these issues. The applicable

test programs were compiled and executed using two validated

Ada compilers. Compile time and run time statistics were

gathered to form a baseline against which other Ada

compilers (preferably MIL-STD-1750A Ada compilers) may be

compared.

5,

ji-8

, o • . o- .. . . *. . . ,,. ..-7 . - • -. : . . % ". , , ,.'..-*.'.....*,. -- ..... , .-'. ..... ..-.. j .S. .S-... ....- S. = ; ..- ,



W. -."w W

I. Introduction

The Ado programming language was developed primarily

for use in embedded computers within the United States

Department of Defense. An embedded computer is one that is

part of a larger system. For example, a guided missile

system contains, among others, an embedded guidance

computer. These embedded computers may physically consist of

anything from a stand-alone microprocessor to a network of

computers. "In general, embedded systems are large and have

similar requirements for parallel processing, real-time

control, and high reliability" (Booch, 1983:3).

The United States Air Force uses embedded computers in

several areas. The particular area of interest to this

effort is referred to as the real-time avionics environment.

Avionics is a phrase used to mean "aviation electronics".

The use of Ada to program applications in this environment

is of particular interest to the Air Force since the vast

ma3ority of these applications are defined as defense

mission-critical applications. On 10 June 1983, Dr. Richard

D. DeLauer, Under Secretary of Defense for Research and

Engineering, issued a memorandum stating that "the Ada

programming language shall become the single, common

computer programming language for defense mission-critical

applications" (Kramer and McDonald, 1984:42). In addition,

the Air Force is the lead service, and the Air Force Wright

Aeronautical Laboratories (AFWAL) is the lead organization

H- 9

*~* * * 4



v . . rt . . - . . .

for the DoD Evaluation and Validation (E & V) Task. in this

capacity, AFWAL contracted the Institute for Defense

Analyses (IDA) to develop a single, coordinated teat suite

of programs, taken from several existing teat suites, to

assist in the effort to evaluate Ada compilers.

This paper discusses a pro3ect which establishes a set

of issues of particular importance to real-time avionics,

evaluates the effectiveness of the IDA test suite towards

accomplishing satisfactory evaluation of those issues,

searches other sources for tests applicable to the issues,

compiles applicable teat programs from the IDA test suite

and other sources using two Ada compilers, and evaluates the

results of running the tests on the compilers' target

machines.

Background

In 1975, the Department of Defense (DoD) began a

process to select one standard high order language to be

used for writing software for embedded computer systems.

Most of the languages used at this time were not high order

- they were assembly languages. A twofold reason has been

given for this action:

1. There were many problems associated with high
order language (HOL) design such as:

- incompatible dialects among existing HOLs.

- creating entirely new languages very limited
in their application.

2. The DoD used over 400 languages in a wide
variety of applications. There are high costs

H-l0

' , __",," .. ,;,.,.. ,.- ,, .... ,-< .. -. , G.;,,. ., *i,....,.,*X . , . ',',,.*.. . ,- ,,.-.



associated with this language proliferation
such as:

- the direct cost of language design and

compiler implementation efforts.

- language maintenance costs.

* - cost of slipped schedules and testing
problems.

(Kramer and McDonald, 1984:v)

The approach taken by the DoD to develop a standard HOL

for embedded computer systems was unique. The first step was

to form a High Order Language Working Group (HOLWG) in 1975.

The HOLWG was tasked to identify DoD's requirements for

computer programming languages, evaluate the existing

languages, and recommend the implementation and control of a

$.minimal set". Later that year, HOLWG published a

requirements analysis, called STRAWMAN, and sent it out for

public review. This process was repeated twice more, and in

1976, DoD issued Directive 5000.29 (Management of Computer

Resources in Major Defense Systems). This directive limited

languages used in Defense System Projects to those approved

by the DoD. In November 1976, DoD Instruction 5000.31 was

issued which implemented DoDD 5000.29 and established an

"Interim List of DoD Approved High Order Languages" that

contained seven approved HOLe (Kramer and McDonald, 1984:v).

These languages were not considered to be the long-term

solution DoD was looking for at the beginning of the

project. In June of 1978, the finalized DoD HOL requirements

were released in a report called STEELMAN. The requirements

H-I!



specified in this document were used to competitively select

the language developed by Honeywell/C£i-Honeywell Bull as

the new standardized HOL for the DoD. In 1979, the new

language was officially named Ada to honor Augusta Ada

Byron, Countess of Lovelace. The Countess was an associate

of Charles Babbage and is presumed to be the world's first

programmer (Barnes, 1982:2).

Many other activities took place in the attempt to

systematically design and implement Ada as the sole HOL for

DoD's many critical systems. Another set of requirements

accompanied the language design specifications. These

requirements were for the development of a robust Ada

Programming Support Environment (APSE) to improve

productivity both in software system development and in

continued system evolution. Again, world-wide review and

many revisions were performed before the final report,

called STONEMAN, was released in February 1980.

A proposed language reference manual (LRM) for the new

language was released in July 1980 and was designated NIL-

STD-1815 in December 1980. In July 1983, when the American

National Standards Institute (ANSI) Ada was adopted, the

standard was redesignated MIL-STD-1815A.

A compiler validation guide was published in October of

1980 to assist Ada language implementors prepare their

compilers to meet the Ada language definition before

submitting them to the DoD designated testing facility for

validation.

H-1c



In December 1980, the Ada Joint Program Office (AJPO)

was established by the DoD "to manage the effort to

implement, introduce, and provide life-cycle support for

Ada" (Kramer and McDonald, 1984:vi). One objective of the

AJPO is to ensure conformance of Ada language translators to

the Ada standard. The Ada Validation Organization (AVO) was

established by the AJPO to make sure this objective is

reached. The Ada Compiler Validation Capability (ACVC) is a

test suite of Ada programs used by the AVO to conduct

validation testing of proposed compilers (Kramer and

McDonald, 1984:8-10).

Later, in early 1983, the DoD started a project that

concentrates on solving mission critical computer software

problems. This project is called the Software Technology for

Adaptable Reliable Systems (STARS). An objective of the

STARS project ls "controlling the cost and improving the

quality of the software by facilitating the application of

modern software engineering practices to mission critical

computer system (MCCS) developments" (Kramer and McDonald,

1984:15).

An Evaluation and Validation CE & V) Team was formed in

1983 for the purpose of developing "the techniques and tools

which will provide a capability to perform assessment of

APSEs and to determine the conformance of APSEs to the CAIS

(Common APSE Interface Set)" (Kean, 1984:1).

In September 1983, AFWAL commissioned the Boeing

Military Airplane Company (BMAC) to conduct research into

H-13

' ' ' > ,' , " o" " ."' ,. '.' .- '' .. . . . . . ' ' ' '
:. ' i ~ l Xl~~l. l ' 'u: " ''"""'"' "'; "';" "','/'' ". ",,' 'A A,',



the use of Ads in embedded avionic systems. Two of the

principal areas of study during the first phase of thir

research were:

1. Issues relating to the compilation of Ada code
for a distributed MIL-STD-1750A architecture.

2. The Run-time Support (RTS) required to
support execution of Ada programs.

Much careful work has been accomplished, striving to

ensure the Ads language is standardized. Many aids are

available to developers and implementors of Ada compilers to

assist them in producing compilers that adhere to the

rigorous standards set forth by the DoD. The evaluation of

these validated compilers by the Air Force is the next step.

This process has already begun. The E & V Team has initiated

procedures for the development of an Ada Compiler Evaluation

Capability (ACEC), a second software test suite which will

complement the ACVC. A contribution to this effort is the

ma3or concern of this thesis.

I.

The Problem

Ada is a unique computer language in that it is the

first practical language to combine important features such

as data abstraction, multitasking, exception handling,

encapsulation, and generics (Barnes, 1982:vii). An important

part of real-time applications is the multitasking feature

which will be referred to in this thesis simply as tasking.

Tasking is provided for within the constructs of the

language itself end is the ability to accomplish a series of

H-1



activities in parallel instead of in sequential order.

Concepts of tasking such as instantiation, scheduling,

memory management, rendezvous, and termination present

complex problems to developers and implementors of Ada

compilers. Many decisions involving timing and scheduling of

single processor and multiprocessor systems must be made,

then implemented and tested.

Eight Ada compilers were validated and two were re-

validated in 1984. These numbers represent a significant

increase over the three compilers validated in 1983. As more

compilers are validated, DoD organizations are already

asking questions about their suitability for real-time

applications. The requirement for a means to evaluate Ada

compilers becomes more pressing all the time. The test suite

of programs assembled by IDA for use by AFWAL as part of the

E & V Team activities is an important start toward a

complete Ada compiler evaluation capability, the ACEC.

The main goal of the pro3ect described in this thesis

is to initially identify issues of importance to the real-

time avionics environment, and then to find test programs

that address those issues. This will be accomplished by

first analyzing the Prototype ACEC and tests from other

sources. Next, those test programs that are applicable to

the identified issues will be compiled and executed.

Finally, the results will be reported and discussed.

The Prototype ACEC is included in the analysis because

it is essential that any test suite of programs presented

H-15



for use as a standard for evaluating Ada compilers include

tests that address the concerns of real-time programming

applications.

Scope

Identification of every compilation and run-time issue

related to Ada and subsequently evaluating the test au.te of

programs in relation to those issues would be too large a

task for one master's thesis project. Hence, the project

described in this paper will focus on those issues most

*" crucial to a real-time avionics environment with an embedded

computer system as the target machine. It involves:

1. Researching issues of the real-time avionics

environment;

2. Evaluating the test suite of programs
presented to AFWAL by IDA;

3. Compiling those tests selected as applicable to
the identified issues using two validated Ada
compilers; and

4. Running the compiled tests on the target
machines and reporting the results.

General Approach

Issues related to the real-time avionics environment

will be identified following a thorough literature search.

Then the Prototype ACEC test suite furnished by IDA will be

analyzed to determine those tests, if any, that pertain to

the identified issues. If a determination Is made that those

issues suitable for empirical testing are not addressed by

the Prototype ACEC, tests from other sources will be

11-1



presented as candidates for the teat suite. Next, the

applicable teat program& of the IDA test suite and the

candidate teat programs will be compiled using the

previously identified Ada compilers. Finally, the compiled

tests will be linked and executed on the target machine and

the results will be discussed.

Seguence of Presentation

The real-time avionics environment is described in

Chapter I. Also, the Ada constructs of tasking and

exception handling are briefly described. Then an outline of

some applicable data structures is presented.

An analysis of compilation issues relative to real-time

avionics applications is presented in Chapter II. In

addition to identification of the issue at hand, the

relevance of the issue and possible testing criteria are

discussed.

Chapter IV is an analysis of the teat suite of

programs furnished to AFWAL by IDA. Each program that is

designed to teat any of the identified real-time compilation

issues is evaluated.

Chapter V reports on the results of compiling and

running all selected test programs on the Ada compilers.

Finally, conclusions and recommendations concerning

this project are discussed in Chapter VI. The objective of

the project focused on a specific subset of issues relevant

to the real-time avionics environment and the degree to

H-I.7



-ri

which available compiler& and test& address those issues.

This chapter also considers expansion of this effort in

future pro~ects.

4H41



II. The Environment

The real-time avionics environment differs from other

environments that are supported by computer programs because

of the timeliness required in responding to requests and

because of the physical constraints of the hardware. This

chapter discusses that real-time environment as well as some

of the Ada language issues related to programming for this

environment.

Real-time Avionics

A real-time system differs from a conventional

interactive or batch oriented system in the timeliness of

responses. Ben-Ari states that "the term real-time system is

usually restricted to systems that are required to respond

to specific predefined requests from a user or an external

sensor" (Ben-Ari, 1982:12). Mellichamp defines real-tine

processing as follows:

"Real-time processing involves the interconnection
of a process with a computer utilizing
analog/digital and digital/analog interfaces
and/or generalized digital (binary) data
interfaces. Data acquisition by the computer must
be keyed to the time scale of the process. If the
computer is to influence the process as well, then
its own response must be timely, resulting in an
appropriate process response."

(Nellichamp, 1983:10)

While these definitions hold for most real-tine

applications, and these applications are well suited for

Ada's tasking capability, real-time embedded avionics

applications have additional characteristics that must be

IA '.A 9



a : : 7 '4 J~ , -. o-' - ,, . . - • -- - . . . . . . .

considered. D. A. Fisher, who was then a DoD Staff

Specialist for Computers, Communications, and Command and

* Control, describes this environment in the following manner:

"Embedded computer software often exhibits
characteristics that are strikingly different from
those of other computer applications.... Many
embedded computer applications require software
that will continue to operate in the presence of
faults.... The applications may require the
m onitoring of sensors, control of equipment
displays, or operator input processing. They must
interface to special peripheral equipment....
Software must sometimes be able to respond at
periodic (real time) intervals, to service
interrupts Oithin limited times, and to predict
computation times.... In many applications..it is
necessary to access, manipulate and display large
quantities of data. Much of this data is symbolic
or textual rather than numeric and must be
organized In an orderly and accessible fashion."

(Department of Defense, 1980:4)

The processor hardware used in avionics applications is

another critical factor that must be considered in this

environment. "Typical avionics applications take place in an

environment where weight, power, and volume of the processor

are at a premium" (Phillips and Stevenson, 1984:100).

Traditionally, processors used in embedded systems have been

restricted due to cost end/or size constraints. The majority

of these processors have 64 KB of memory or less. This

means that reducing overhead generated by using Ada

constructs such as tasking and exceptions is more critical

in embedded computer applications than when using a machine

In which the addressable memory can be easily expanded. This

viewpoint is stated very succinctly in the BMAC report as

follows:

11-20

...................................................................... ""



,I

"Compilers for embedded avionics are very
concerned about the performance of the executed
code. Tradeoffs between efforts to improve code
and increasing the time (or other cost factor&
like memory usage) of the compiler are strongly
biased towards improved code as long as the
resulting compilation costs stay tolerable."

(Avionics Laboratory, 1984:3-44)

In general, avionics applications use processors to

provide interface and control within an integrated

environment. The processor must sense and control its

environment so that it can make and execute decisions. In

order to accomplish these ob3ectives, the processor must

respond to its environment and dynamically resolve errors.

The processor's response must be fast enough to

accommodate asynchronous events, which are usually signaled

by interrupts and need to be handled very quickly. The

response must also be orderly to ensure the available

machine resources are used effectively. This requires an

accurately maintained timing relationship between the data

sampling rate of the sensors and the frequency at which the

data being sampled is available. Failure to accurately

maintain this relationship could lead to erroneous

extrapolations or an unstable control loop (Phillip& and
d

Stevenson, 1984:100).

Software and hardware errors must be resolved in such a

way that the processor maintains control of its environment.

Software errors can be handled, for example, by restarting

the program at some point or using an exception handler

routine. Hardware errors can be planned for by using methods

.- H- 21



such as fault tolerant design or reconfiguration.

Another consideration critical to the real-time

avionics environment is that an existing operating system is

usually not present in an embedded computer such as the NIL-

STD-1750A. The significance of using Ada as the programming

language for real-time avionics applications targeted for an

embedded computer is that an Ada compilation system must

provide various run-time support (RTS) features. In

contrast, languages previously used for these applications

assumed their programs ran under a user supplied system

executive. Usually, various mathematical routines were the

only compiler RTS provided by compilation systems of other

languages. An Ada program must have the ability to run on a

machine without an operating system since "'each main program

acts as if called by some environment task" (Department of

Defense, 1983:10-2). Thus, the Ada compilation system has to

act as the executive system and provide for such features as

program initiation, construct (i.e., tasking or exception

handling) support, and even program termination. It also

must provide a program supervisor.

One major area of concern is that the Ada standard

(IL-STD-1815A) cannot be as yet efficiently implemented on

a MIL-STD-1750A architecture that is used in the environment

by the Air Force. It is expected that the capabilities of

the 1750A will be exceeded due to the limits in logical

address space, speed requirements, and need for symbolic

processing. Major problems faced by implementors using a

H-22

.1

r: ", .-' :.-".:-: .. . : .'," "a .". " ''''' .'.': . * . '..*' *;"; ., -'"-." " ., ' ',,, / "



I
segmented Instruction Set Architecture (ISA) include:

1. Iplementing the taskine model with efficient

interrupt handling;

2. Implementing a heap space management method
with efficient garbage collection;

3. Implementing date types for efficient range
checking;

4. Implementing context switching for efficient
task frame management; and

5. Implementing epilog and prolog models with
efficient argument binding and large logical
address spaces.

(Estes. 1985a:2).

The report on a survey of a ma3or portion of the defense

industry associated with the Air Force and Ada examines this

area in greater detail (Estes, 1985a).

Architectures and Levels-of-DIstribution

Using Ada to write programs for real-time avionics

applications has implications that are not fully understood

at this time. At present, most applications are suited for

single processor shared memory architectures. The single

physical processor is divided into separate logical

processors that support the parallel processing constructs.

However, it is possible that future requirements will

dictate using either an architecture featuring a

multiprocessor target system (having separate physical

processors) with shared memory or one having a

multiprocessor target system with separate memories instead

of the single processor architecture. The use of either of

H-23



the multiprocessor architectures increases the complexity of

an Ada compilation system end the rnsultant RTS when

compared to the complexity involved in using a single

processor shared memory architecture.

There are problems that must be solved before

implementing multiprocessor compilers. Ada featurer that

present the most design and implementation difficulties are

the conditional entry call and access types. In addition,

Ada does not support the assignment of compilation units to

specific processors. This could possibly require placing

duplicate code on each processor which in turn could lead to

problems with Ada scoping rules. The selection and placement

of this duplicate code is an area of concern. Other issues

such as the use of interrupts, exception handling, and other

machine dependent features must be consaidered. Because of

these problems, any difficulties encountered trying to

correctly compile and link Ada programs for a single

processor architecture are likely to be compounded

considerably if transferred to a multiprocessor

architecture. Additional problems not applicable to single

processor architectures are also likely to surface as

research in this area continues. (Armitage and Chelini,

1985:36).

Another factor affecting the complexity of an Ada I.

compiler and its associated RTS is the level-of-distribution

of the proposed system. The three possible levels-of-

distribution are:

H-24



1. No distribution - a single Ada main program
together with all its toaks run on a single
processor;

2. Fixed assignment of program parts to processors
- for example, on program initiation all tasks
are assigned a processor and that assignment
remains throughout execution; and

3. Dynamic assignment of program parts to
processors - in this case the assignment of a
program part to a processor may change.

(Lindquist and Joyce. 1985:9).

Matching the three previously mentioned architectures

with these levels-of-distribution produces nine possible

combinations of systems. The easiest combination for an Ada

compilation system to implement correct RTS procedures on is

a single-processor architecture with no distribution. The

complexity and resultant difficulty of achieving correct and

efficient RTS only increases for the remaining combinations.

The most difficult is an environment using a multiprocessor

without shared memory and dynamically assigning program

parts to processors. Figure 1 illustrates these two

extremes.

Since many of the issues identified in the next chapter

are related either directly or indirectly to tasks,

exception handling, or date structures, a brief explanation

of these sub3ects is required. For a more detailed

explanation, the reader may refer to Software Engineerinq

With Ada by Booch and to the Ada LRM (Department of Defense,

1983).

H-25



pmi9 t_ 1  task PROCESSOR
rat a rate dste MEMORY

a. Single-processor architecture with no distribution

ell% PROCESSOR A

oak PROCESSOR 5

U daeMEMORY 2

en PROCESSOR C

e a .. 0 MEMORY 3

C

b. Multi-processor without shared memory, dynamic
assignment of program parts to processors

Fig h-1. Extreme Architecture/Distribution Combinations

The following definition of tasks Is taken from the Ad*

LRN:

"Task& are entities whose executions proceed In

parallel In the following sense. Each task can be
considered to be executed by a logical processor
of Its own. Different tasks (dffaerent logical
processors) proceed Independently, except at
points where they synchronize.'

(Department of Defense, 1983:9-1)

This definition makes no distinction between machine

architectures. The physical operation of tasks can take

place on multicosputer systems, multiprocessor systems9  or

H-26

~ ~ 2&~~X"\~~~~2L2 -- ' ~~*N ']



on logically separate processors in a single-processor

system. Whatever the choice o1 architecture, the effect must

be the same. In other words, task& are executed on their own

logical processor regardless of the physical processor

configuration.

Tasks are program components with the unique

characteristic of operating concurrently with other program

components. Tasks depend on the unit which declares them.

This unit is often referred to as the *parent". A task

declared by a unit is called the "child", while multiple

tasks of the same parent are called "siblings". Tasks have a

specification part which establishes the interface used by

other program components to interact with the task. Tasks

also have a body that contains statements defining its

actions. When the task is executed, the declarative part of

the body is elaborated. This means that the RTS can now

associate a name with the task and can initialize newly

declared variables of the task. Elaboration is followed by

the action associated with the body's statement sequence.

The statement sequence often takes the form of en infinite

loop in order to continue processing indefinitely. Also, the
delay statement is often used to establish a pattern within

the task, typically in monitoring applications.

Tasks can usually be broadly assigned to one of two

groups according to the specific function they perform in

the system to which they belong. These groups have been

labeled "producers and consumers" (Booch. 1983:233) or

ii-2T

I .*.4~ ~ N



. . . . . . . .. .. . . d t o e o .' . a4 t 'o - . -'* .

"server& end requeators" (Olsen and Whitehill, 1983:160).

Producers or servers exist to provide services to consumers

or requestors. A server task is able to provide any one of

several services if the select statement is used by the

programmer.

. Communication between tasks is vital, especially since

tasks are executed asynchronously. Explicit, programmer-

specified synchronization is provided by what is known as a

rendezvous. This "rendezvous" is the aesaage-passing concept

in Ada. This concept works through the use of task entries.

A task is not required to contain any entries. However, in

order to become synchronized with other tasks, it must have

. an entry and be called by another task. In this case, the

task may accept a call of an entry by executing an accept

statement for the entry. Synchronization is then achieved

between the calling and the accepting task, and a rendezvous

has occurred. During the rendezvous, memory is protected

thus accomplishing the "critical region" function of mutual

* exclusion necessary in real-time applications. After a

rendezvous is complete, the two tasks continue

independently. The program may choose to ignore a rendezvous

by using flags known as "guards" attached to the select

statement.

While an Ada program is running, a task can be in one

of several states. The task can be activated, executed,

suspended, completed, or terminated.

Task activation is the process by which tasks are put
4

H- 28

% *~. . 4.~ r



into execution. The first step of this process is the

elaboration of the task body's declarations. It is during

this state that the run-time system must initialize its

tasking data structures. The task is then ready to execute

the sequence of instructions in its body. A task is

activated prior to execution of the first statement in the

program component that declared the task.

When activation is through, the task body is executed.

This can occur in parallel with other tasks or program

components and is not dependent on them.

A task can be suspended as necessary in order to

rendezvous with other tasks. This takes place at the entry

points. It is also suspended if it has to wait on a

processor.

A task is completed upon reaching the end of the

sequence of statements in the task body.

A task can be terminated normally or abnormally. A task

is considered to have terminated normally if it reaches the

end of its statement sequence and all of its dependent tasks

are completed. Abnormal termination is explicitly controlled

by using either the terminate alternative in a select

statement or by using the abort statement. The terminate

alternative is applicable only if the block of which the

task is a part is waiting for termination of its dependent

tasks. The more powerful abort statement may be used to

terminate any task, even itself, and all dependents of the

task. However, if the task is in the terminate state

H-29



-71: -. 1 -.1 ~ ~

already, the abort statement has no effect.

Errors can occur in any Ada unit, including tasks. Ada

has provided the exception mechanism to allow the programmer

to respond to situations beyond the scope of normal program

operations. The exception and exception handling are

described in the next section.

Exceptions

Any of several different factors may cause an error

during execution of a program on a computer. Moat errors

cannot be ignored. Good programming practices dictate that

the program react to errors. This reaction can take the form

of some apecific action to correct or "get around" the

error, or the program can abort and allow the operating

system to decide subsequent operations.

In real-time avionics applications, software and

hardware systems must be able to continue performing their

functions in spite of serious errors. This is especially

critical since these systems are often used to support human

life as well as investments of extremely large amounts of

money.

The designers of Ada provided a mechanism intended "to

be used to report and handle unusual errors that are not

expected to occur when a program is executing properly"

(Olsen and Whitehill, 1983:183). This mechanism is called an

exception and, together with an associated exception

handler, provides the programmer the ability to respond to

H-30



- -".- Y-- -- .- V r - -K -J - --.-. .

the exception or to continue processing with reduced

capability. An exception is raised as It is brought to the

program's attention. Exception handling refers to the

response to the raised exception. The LRM lists several pre-

defined exceptions which are always available to the program

unless explicitly suppressed by the use of the pragma

SUPPRESS (Department of Defense, 1983:11-1). This pragme is

discussed in the next chapter.

An exception handler is associated with one or more

specific exceptions and contains the action to be taken when

those exceptions are raised. When en exception occurs during

execution of any unit, including an exception handler, none

of the remaining statements of the unit are executed.

Control goes to an exception handler if there is one

associated with the particular exception. If not, the

exception is propagated to either the caller of the

subprogram, the enclosing unit of the block, or the parent

unit of a task. Thus, the exception is propagated all the

way to the main body if necessary. If there is still no

exception handler for the exception, the program is then

terminated.

Data Structures

Two classes of data structure are referenced in this

thesis. The first is the shared variable and the second is

an indivisible data structure that exceeds memory

boundaries.

li-



As previously mentioned, tasks communicate via entry

calls and accept statements. If two tasks read (load) or

update (store) a variable accessible to them both, that

variable is called a shared variable. Neither of the two

tasks may assume anything about the order in which the other

task's operations are carried out except when the twc tasks

are synchronized. Synchronization occurs at the start and

end of two tasks' rendezvous. Also, at the start and end of

a task's activation, it is synchronized with the task that

caused the activation (its parent unit). Any task that has

completed its execution is likewise synchronized with any

other task (Department of Defense, 1983:9-19).

Ada provides a pragma called SHARED. This pragma can be

applied to an appropriate variable to specify that every

read or update of the variable is a synchronization point

for the variable. It is the programmer's responsibility to

use the shared variable correctly. The pragma SHARED is

necessary to ensure that the shared data are properly

referenced by two or more tasks. An implementation must

restrict the ob3octa for which the pragma SHARED is allowed

such that direct reading and direct updating of the objects

is implemented as an indivisible operation (Department of

Defense, 1983:9-19).

An indivisible data structure that exceeds memory

boundaries is a distinct possibility in real-time avionics

applJcations. An example of the use of this structure might

be for scene generation on an aircraft console's "Heads Up

H-32

. . ' , ' ': ' -'.., .,- ,, . a .: . . a -,-. - .



Display." While it is possible and, in the avionics

environment, highly desirable to restrict memory use to the

applicable bounds (normally 64 KB of memory), future

requirements could dictate using these large indivisible

data structures. For such cases in which large data

structures are unavoidable, the associated overhead required

to track and access the data could be unacceptable.

Currently, intimate involvement by the application

programmer regarding the design and physical layout of the

code is required in order to avoid problems with large date

structures.

The above discussion of the environment of real-time

avionics applications for use in an embedded computer

reveals unique considerations regarding the use of Ada in

that environment. Therefore, compiler and/or RTS solutions

that might have applicability in the normal real-time

environment could be unsatisfactory when applied to avionics

applications because of the stringent requirements of the

avionics environment. Programmers and designers of avionics

systems are also concerned whether Ada compilers and their

associated RTSs effectively and efficiently address issues

of importance to the avionics environment. A set of these

Issues is identified and discussed in the next chapter.

I.-



II

!II. Issues

. There is continuing research regarding the best methods

'* of implementing RTS for Ada with various architecture/level

of distribution combination&. Recently, methods have been

presented that show how tasking can be implemented

-' efficiently for multiprocessors with shared memory

(Lindquist and Joyce, 1985:9-19). Their paper also

references the implementation methods that D. Cornhill and

E.S. Roberts proposed for other architecture/level-of-

distribution combinations. An efficient implementation of

tasking for a single slQred processor has also been

demonstrated. This implementation uses "simple, straight-

forward, and efficient algorithms" (Baker and Riccardi,

1985:34). Designs for other specialized RTS systems are

presented in the literature (Leathrum, 1984:4-13) and

(Riccardi and Baker, 1984:14-22)

As noted previously. the real-time avionics environment

presents special challenges and calls for special solutions

* within the constraints of the environment. For example, if

*- an effective implementation of tasking were developed that

*, required 36 KB of memory, many applications could and

* probably would use the implementation. However, that amount

* of memory in the current real-time avionics environment is

not available to support the implementation of a single

function.

Many issues of concern have been raised by programmers,

H-3h

• ' .. . , . *.' . , . , '*. .* , .... * , *. , . . . ...*. , . .. * . . * * ... .-. ,



designers, end implementors of real-time avionics systems

concerning the use of Ads in this environment. These issues

of concern provide the impetus for further research and are

identified and described in this chapter.

The nineteen issues identified here were compiled after

reviewing current literature regarding Ads and the real-

time avionics environment. In addition, interviews were

conducted with people who work in the environment. The

issues were subjectively placed into two categories by the

author. First are those issues that are not suitable for

empirical testing. Issues were placed into this category if

an Ada-based test could not reasonably disclose the issue or

that the development of an Ada test program would be too

difficult a task for this pro3ect. Next, those issues for

which it was possible to identify criteria or teats that

could be used to evaluate an Ada compiler's treatment of the

issues are listed. Ada-based test programs that can be used

to test the issue are provided or referenced.

Issues Not Suitable for Emuirical Testing

For the following issues, it was determined that either

empirical test resolution is uncertain or that tests do not

exist and would be too difficult, if not impossible, to

develop during this pro3ect. In some cases, test development

is hampered by not having access to sophisticated enough

compilers, RTS systems, or programming tools. In others, the

issue does not lend Itself to empirical testing.

H-35

.° - - , ..- - - - . . . . - • *... . .



"aaMsu* . Is the overhead associated with an effective

rendezvous efficient to the point that the time sequenced

operations are not disrupted?

* The rendezvous is central to the concept of Ada

tasking. Software is divided into tasks because it

simplifies design and development. However, Ada will not be

useful for real-time avionics applications unless the

tasking operations (e.g., activation, execution, and

termination) are implemented efficiently. The following

opinion reflects a major concern of real-time avionics

application programmers:

"'Embedded systems which spend half their time
doing task manipulation are not going to be very
effective in performing their primary function. If
it turns out that tasking constructions involve
large amounts of overhead, then the application
systems will minimize the use of tasking."

(Avionics Laboratory, 1984:3-47).

The responsibility of providing an efficient rendezvous

lies with the RTS which is effectively the interface to the

architecture. As previously discussed, Ada compilers will

have to generate code for a variety of systems associated

with any number of host operating systems. These operating

systems range from the complex (e.g., VAX 11/780 VMS) to the

nonexistant (e.g., MIL-STD-1750A). Accordingly, RTS will

range from a collection of primatives that call operating

system functions (such as memory management, page swapping,

etc.) to RTS that contain routines to implement these

functions internally.

H-36

.;.*- - -- * *. c'- ;-.- . >t - .. .4



However conceived, the RTS must in one way or another

provide such functions as synchronization, mutual exclusion,

queue processing, memory management (including heap memory

allocation and perhaps some form of "garbage collection"),

stack management, dispatching, and scheduling.

The RTS is required to provide mutual exclusion and

synchronization through the rendezvous. Mutual exclusion is

the concept of a single task having access to data (memory

contents) at any point in time. The rendezvous may be used

to enforce this. Synchronization is implicit in the entry

call/accept protocol. All this must be accomplished without

interfering with the ability of the computer to respond to

stimuli from a process sufficiently fast to accommodate the

needs of the process.

Issue 2. How does the RTS system deal with the

interaction between tasks and lexical scopes?

Every task is created by a declaration. This ties the

livelihood of the task to the existence of the declarative

framework of the program. The operations which are required

to support creation, activation, execution, and termination

of tasks have been described as:

1. Create dependent tasks (children).

2. Activate all children. Begin execution when
children have ended their activation
processing.

3. End of activation.

4. Wait for termination of all children.

H-37



5. Terminate.

CLeathrus, 1984:6)

There are sox* critical coordination points between

these operations. As an example, the declaration processing

for a child cannot begin until the declaration processing

for the parent is completed. At this time, the parent

activates all Its children. Also, the parent must wait to

begin execution of itc own statement sequence until all its

children hove compl&ted their activation operation. Figure 2

illustrates typical Ada life cycles of one parent and two

children. The critical coordination points are indicated by

"000". These coordination points are critical because, for

example, the declaration processing for a child cannot begin

until the declaration processing for the parent is complete,

at which point the parent does an "'activate all children"

operation. The parent may not begin executing its own code

until all children have performed an "end of activation"

operation. Also, the parent may not pass through the end of

the scope of its declaration until all its children have

terminated.

Issue 3. "If multiproceasing is supported by the

implementation, are Ada tasks mapped to a single underlying

processor, or is each task mapped to a separate processor?"

(Kean, 1984:7)

Implementing Ada on various architecture/level-of-

distribution combinations is an area of current research.

H-38

::. t **.*f .* .~*. . . .* .** .* **



P&ETFIRST CH=~ SECOND CHILD

declaration
processing

create first
child

create second
child

activate all declaration declaration
children processing processing

* activate all
and . children

* and then
-then . begin execution

activate all end of activation
children .
and *

then
begin execution

begin execution end of activation

end of activation *

end execution end execution
end execution wait for children wait for children

to terminate to terminate
end of declaration end of declaration
scope scope

wait for children terminate *ee terminate *.e
to ters see

end of declaration
scope

terminate

(Leathrum 1984:6)

Fig H-2. Typical Ada Life Cycles: One Parent and Two Children

H-39

. . * " . - . . . . . . . . . . .. .



Hardware designers are now proposing architectures that

address some of the more difficult aspects of implementing

Ada on conventional architecture machines such as supporting

run-time constraint checking and representation of

discriainant records and dynamic arrays C(bswas, 1984:23).

An instruction set architecture that has special features to

support Ada on a computer known as the High Level Language

Machine has also been proposed (Avionics Laboratory, 1985).

Meanwhile, other ideas are being preaented to support

distributed Ada tasking. Weatherly describes the

fundamental& of a proposed network operating system

(Weatherly, 1984:136-144). Cornhill discusses four

approaches to partitioning application software for

execution on a distributed target system. They are:

1. Write an Ada program for each processor in the
distributed system;

2. Partition only tasks;

3. Allow partitioning on any source level
construct: and

4. Extend Ada with constructions specific for
programming distributed systems

(Cornhill, 1984:153-162).

With the myriad of methods available, the programmer needs

to be aware of the implementation method used.

Image .. Are shared variables protected by the

rendezvous?

Occasionally, there is a need for a variable to be

shared by two tasks. On those occaaions, the tasks must be

,

ii- 4 0



assured that the shared variable is not available for either

reading or updating by any other task during the time the

two original tasks are synchronized. They are synchronized

at the start and at the end of their rendezvous. It is

important that the implementation restrict the objects for

which the pragma SHARED is allowed to objects for which each

of direct reading and direct updating is implemented as an

indivisible operation (Department of Defense, 1983:9.11).

NOTE! Many identifiers used from this point
forward in this paper contain an underscore ( ,
primarily to make the identifier more meaningful.

Issue 5. What impact on performance does run-time

constraint checking have?

The LRM lists many situations which will cause the

raising of the CONSTRAINTERROR exception. To check each

possible situation during run-time would unsatisfactorily

degrade the system. There are numerous compiler optimization

techniques available which could reduce the costs of

constraint checking considerably. However, situations exist

that can only be sufficiently tested during run-time.

Therefore, the run-time constraint checking that is

implemented must not degrade the system's operation such

that timing sequences are adversely affected.

Issue 6. How is dynamic type checking of parameters

handled and what impact on performance does it have?

The exception CONSTRAINTERROR may be raised by a

11-41

2



DISCRIMINANTCHECK. This checks that a discriminant of a

composite value has the value imposed by a discrimination

constraint. A discriminant is a special component of certain

record and private types. The values of discriminanta

distinguish alternative forms of values of one of these

types. Also, when accessing a record component, a check is

made to ensure that it exists for the current discriminant

values (Department of Defense, 1983:11.7).

Issue 7. What is the range of typical context switching

times?

The context switching scheme is largely implementation

dependent since there are different methods that can be used

to accomplish this function. One method is for the compiler

to generate relocatable code without worrying about the

memory boundary. This requires the linker to find all

unresolved external references and deal with them by

identifying all procedure calls requiring a context switch.

Another method is to create some shared data which can be

accessed directly by all the applicable memory images.

* Whatever the method or combination of methods used to

accomplish context switching, it must be fast enough not to

interfere with the important timing constraints already

established.

In order to enhance the following discussion, two

assumptions about the environment are made. The first is

that a contiguous instruction space is limited to the memory

11-42



bounds of a single processor (normally 64 KB for avionics

applications like the MIL-STD-1750A). The second is that a

contiguous data structure is also limited to the available

memory bounds. In general, two situations could arise

needing context switching. They are instruction branches or

calls, and inatruction operand data references.

Given the assumptions, the first situation of context

switching should be provided by the implementation with

relatively little overhead. An optimizing compiler could

even decide to duplicate code for small routines within each

address space so that they can be accessed without a context

switch.

Instruction operand data references are more difficult

to implement efficiently. Problems surface when there are

general references to data allowed between address spaces,

especially with formal parameters and access types. One such

problem is that more bit* of address must be used to ensure

identification of the data ob3ect in the extended data

address space. Another problem is that a large penalty could

be incurred while accessing what is actually local data to

accommodate the possibility that the data might not be local

(Avionics Laboratory, 1984:4-15 thru 4-19).

Issues Suitable for Empirical Teating

The following issues were placed in this section after

determining that empirical testing should disclose the

information desired. Also, a program either exists to test

f.. 4 3



the Issue, or could be developed in a relatively

straAghtforward manner. Either the source code of existing

teats or references to where it may be obtained is listed in

Appendix R.

Issue 8. "Does the number of select choices affect

performance?" (Kean, 1984:7)

The selective wait form of the select statement allows

a combination of waiting for, and selecting from, one or

m ore alternatives.' It does not limit the numbers of select

choices. One could theorize that an increase in the number

of select choices would increase performance since the

likelihood of a rendezvous is increased.

Issue 9. "How does using select alternatives affect the

performance of the executable code?" (Kean, 1984:7)

Ada provides several variations of the entry call and

accept statements. The simple entry call and simple accept

statement may be extended by using the conditional entry

call, the timed entry call, or the selective wait. The

conditional entry call makes the calling task issue a call

for another task's entry point with no waiting (zero time

delay). It takes the form of:

conditionalentry_call ::a
select
entrycall atatement (sequence-ofstatements)

else

sequence ofsatementa

end select;

The timed entry call ensures that an alternative

H-44

* .
-S. , ". ". . *?.**.*,- . .. ,.',-' :* . ',* *. ','".,','., . . .,. ,, ' '' ; .'. . ,.



sequence of statement& is executed if a rendezvous cannot

begin in a specified amount of time. It takes the form of:

timedentrycall ::
select
entrycallIstatemont EsequenceofsatatementsJ

or
delaystatement EsequenceofsatatementsJ

end select;

The selective wait allows, a called tak to wait for

only one of a set of entry points for a rendezvous. It takes

the form of:

selective-wait::
select
select-alternative

(or select-alternative)
else

sequence-ofsatatements
end select;

where the select-alternative takes the form:

select-alternative : :a
Lwhen condition w)3 select-wait-alternative

select wait-alternative.: :&
accept statement Csequenc*_of tatemonts3

I delaysitatement Esequenceofs-tatemental
I terminate

A special Implementation problem is introduced by the

selective wait. A task may be ready to accept a call on a

&et of several entries at the same moment. This requires

checking to determine if the called entry corresponds to one

of the open alternatives. Also, since there may be several

open accept alternatives, the set of pending entries must be

checked against the set of open accept alternatives (Baker

and Riccardi, 1985:40).

Thore are many possible ways to implement those



alternatives in a compiler. For example, Leathrum has

combined these Ada forms into a very general select

statement (Leathrum, 1984:5). The reader is referred to

Leathrum's paper for the form of this general select

statement and his rules summarizing the Ada forms. The

chosen method of implementing these Ada forms will determine

the effect upon execution time when the forms are used.

Issue 10. "'Is it better to have many small tasks with

single entry choices or a few large tasks with many select

choices?" (Kean, 1984:7)

It is possible in most cases to perform the same

function with either of the above strategies. Depending on

the implementation techniques used, one strategy could prove

to be more efficient than the other. In the past, avionics

application programmers have tended to code in large modules

in order to reduce the overhead associated with calling the

modules. Because the Ada task is assigned its own logical

processor (could be physical as well), it might well be more

efficient to code in small tasks. If more rendezvous

candidates are available, more tasks could be completed in a

shorter time. However, the overhead associated with tasking

in the particular implementation will determine the better

strategy to use (Fogel, 1985).

Issue 11. "Does the ordering of entry clauses in a

SELECT impact execution speed?" (Kean, 1984:7)

The select statement is non-deterministic. Thus, if

11-46

.'. *I



. . .. . . .. . . . . . . . .. . .

several alternatives can be selected, one is chosen

arbitrarily according to the Ada language rules. Over the

long run, ordering of entry calls should not impact

execution speed.

Issue 12. "Can the Ada scheduler starve a task?" (Kean,

1984:7)

Each task is an independent activity with the

capability of interacting with other units. Each task is

assigned its own' logical (may be physical as well)

processor. Therefore, each task should receive a share of

available processing time for its logical processor to

execute.

Issue 13. Are there any aids in the compiler or RTS

to assist the programmer find deadness errors in tasking

programs?

**A new class of errors, not found in sequential

languages, can result when the tasking constructs of Ada are

used. These errors are called deadness errors and arise

when task communication fail&" (Helabold and Luckhas,

1984:96).

A task can be considered "dead" if two conditions are

true. First, the task becomes blocked. This happens when a

task cannot proceed with Its own computation because it Is

waiting for one or more tasks. Being blocked is a normal

part of task execution and occurs in several task activities

such as: issuing an entry call that has not been answered

II 4



W- w- 7 -

yet; waiting for an entry call at an accept statement:

waiting at the end of a block for tasks dependent on the

block to terminate; or finished executing its own code and

waiting for its dependent tasks to terminate. The second

condition necessary for a task to be considered "dead" is

when there is no possible continuation of the program where

the blocked task can continue with its own execution. When a

program contains a dead task, a deadness error has occurred.

Deadness errors such as global blocking, circular

deadlock, and local blocking depend only on the status of

the tasks involved. Global blocking errors occur when at

least one task is blocked, and every other task is either

blocked or is terminated. Circular deadlock occurs when

there is a closed circle of tasks and each task has issued

an entry call to the next task in the circle. In this

situation, each task in the circle waits forever for the

next task to accept its entry call. Local blocking is

aiailar to global blocking, but with the universe restricted

to those tasks directly or indirectly dependent on one task

that is either block-waiting, completed, or issuing an entry

call to a task in the dependent universe.

Other forms of deadness errors depend more on the

semantics of the particular program in which they occur. An

example of this type of deadness error is the call-wait

deadlock. In this error, task Ti is accepting an entry that

can be called only by task T2, and T2 is calling a different

entry of task T 1 . If any other task but T2 could call TI's

H-48

A , - . , ..° .* . .. . . . . . . • . , .



entry, this would not result in a deadness error. Therefore,

the error is a fault of the program rather than the

language. Helmbold and Luckham present a detailed discussion

of deadness errors in their paper (Helbold and Luckham,

1984:96-105)

Since the use of tasks is an integral part of the real-

time avionics environment, any tools such as a run-time

monitor, snapshot displays, or state history monitor would

be helpful to the programmer.

Issue 14. "'Do idle tasks impact the performance of the

executable code?" (Kean, 1984:7)

A task should not add to execution time until it is

activated. During execution, if one task is ready to

rendezvous before the other task, it should not use

processing resources. Instead, the waiting task should be

suspended until the other task Is ready for the rendezvous.

Issue 15. How much overhead in execution time does an

exception take if it is never invoked?

Exception handling can and should be considered part of

the termination operation of the program unit they reside in

rather than the execution operation. Exceptions were

designed to be used sparingly and only to protect a program

from situations outside the range of normal program bugs. It

is desirable that features which are not used, not slow down

execution of the program. This means that exceptions should

add to the execution time if and only if they are raised.

H-49

.. .



Issue 16. Does the compiler effectively deal with

indivisible data structures exceeding memory boundaries?

It would be extremely inefficient to treat each data

element as if it could exceed the memory boundaries.

However, in those relatively rare Instances in which an

indivisible data structure does in fact exceed the boundary,

the compiler or associated RTS should be capable of

efficient access operations. The programmer needs to know if

this type of data structure is allowed and if so, what cost

in execution time is required to use it.

Issu e  17. What is the effect of using each of the

following three options: OPTIMIZE - none? OPTIMIZE a space?

OPTIMIZE a time? (Keen, 1984:7-8)

The use of these options could affect the size of

resulting object code, the CPU time required for execution

of the compiled code, and the maximum/minimum size of the

RTS system with or without tasking. As previously stated,

the real-time avionics environment is concerned with the

size, weight, and space of embedded computers. Also,

compilers used in this environment are more concerned with

the performance of executable code than other factors. A

programmer should be aware of the performance

characteristics of these three OPTIMIZE options.

Issue 18. How does use of a SUPPRESS pragma affect

execution time?

The use of a SUPPRESS pregma gives permission to an

H- 50
~ --***.'* * ~-* -4



implementation to omit certain run-time checks. It seems

logical that the use of a SUPPRESS pragma would reduce run-

time. However, implementations that incorporate Ada

constructs such as range or length checking within the

architecture could possibly require more overhead in

execution time and code to suppress those constructs. In the

real-time avionics environment, this pragma will probably

not be used until the final version of the program is

tested. At that point, it would logically be invoked for

some areas of code in order to save run-time overhead. The

applications programmer needs to know if there is a penalty

incurred or no benefit derived from using the pragma

SUPPRESS.

ssue -.9. For which checks is the pragma SUPPRESS

implemented?

"For certain implementations, it may be impossible or

too costly to suppress certain checks. The corresponding

SUPPRESS pragma can be ignored" (Department of Defense,

1983:11.7). A programmer needs to be aware of which checks

the compiler allows .to be suppressed and which are too

costly to suppress.

Summary

The preceding discussion Identifies nineteen Issues of

concern that have surfaced in current literature or during

conversations with experienced real-time avionics

application personnel. (For ease of reference, 3uat the

H-51

e% . '



issues are listed in Appendix A.) Seven of the identified

issues have to be considered "untestable" at this time

because of the nature of the issues and the current state of

the art regarding the evaluation of concurrent processes.

However, the remaining twelve issues can be empirically

tested. Applicable tests must now be applied to the isues.

Since the DoD recognizes the benefits of Ada compiler

and RTS evaluation, they are gathering a common test suite

of programs called the ACEC to assist in this effort. The

next chapter presents the first version of this ACEC and

analyzes its applicability to the twelve testable issues.

H-52



IV. The Prototype ACEC and Other Test Proarams

In June 1983, the AJPO proposed that the E & V Task be

initiated and a tri-service E & V Team be formed. The Air

Force was designated as the lead service and AFWAL was

designated as the lead organization of the E & V Task. The

overall goal o5 the E & V Task is to develop and provide the

Ada community the technology for the evaluation and

validation of ASPEa. In order to accomplish this goal,

eleven specific ob3ectivea were identified (Castor, 1984:A-8

thru A-12).

One of these objectives is to develop evaluation and

validation tools and aids. These include test suites (sets),

test scenarios, a data reduction capability, and other

designated means of automated support. The ACVC is included

in this set of tools. Another tool deemed necessary to

support this ob3ective is the ACEC. The Prototype ACEC test

suite has been prepared for AFWAL by IDA.

Version 0 (Beta Test) of the Prototype ACEC teat suite

is the sub3ect of the first section in this chapter. After a

brief background discussion of the Prototype ACEC, an

analysis of each of the groups of test programs is

presented. This analysis is based on the test group's

applicability to any of the issues identified In Chapter

III. The analysis was conducted by examining the program

code and associated documentation. Based on this analysis,

each test was either re3ected as not applicable or accepted

H-53

.1



-- - - - - - - - - - - - -

for compilation and execution. A rejection in the context of

this thesis in no manner implies that the teot is Invalid or

useless. It simply means that it has been subjectively

judged as not directly applicable to the issues identified

for empirical testing in Chapter III (listed in Appendix A.)

Appendix B is a summary of the results of this analyaia.

Other test programs are available in the public domain.

Some of these programs have been reviewed by IDA and not

included in the Prototype ACEC because they failed to meet

one or more of the three teat selection criteria established

by IDA and listed in the first section. However, if the

author determined that a particular teat program was

applicable to any of the issues numbered 8-19 in Chapter

III, the test was included for analysis and is discussed in

the second section of this chapter. These test& are compiled

and executed in the same manner as the applicable Prototype

ACEC tests. Listings of those applicable programs readily

available (for example, tests that are part of the ACVC) are

referenced but not included as part of this work. Other

program listings are contained in Appendix C. Chapter V

presents and discusses the results of compiling and

executing all of the selected tests.

PrototyPe ACEC

BaLcaDrd.. The purpose of the Prototype ACEC is to

provide users or potential users of Ada compilers with a

- single, organized suite of compiler performance tests.

H-54



Included in this prototype ACEC is the support software for

executing these tests and for collecting performance

statistics. The test programs are those taken from existing

test suites in the public domain that meet three selection

criteria. These criteria are:

1. The test measures Ada language feature
performance versus conformance versus compiler

architecture;

2. The test is a unique test; and

3. The test compile& correctly.

(Hook, 1985).

The tests have been organized, and in some cases,

instrumented to provide statistics about the Ada language

features that are being tested.

The Prototype ACEC is intended for use by programmers

or analysts already familiar with a particular Ada

compilation system. They must be able to invoke the Ada

compiler and the host or target dependent portions of the

Prototype ACEC. Familiarity with the operation of the ACVC

would benefit the user as the ACEC is roughly equivalent in

execution complexity.

The design goal of the Prototype ACEC was to collect

objective, quantifiable attributes of an Ada compiler and

its associated RTS system. An interested user, programmer,

or analyst could use this collection of attributes to

evaluate the usefulness of a particular compiler for a

specific application. The actual language constructs most

frequently used in a particular application will have the

H-55

-"" ;; '''-' - """"- k , "" '.-*-. '.• .. ". .• ...... •~** .



most effect on the perceived usefulness of the compiler. For

example, if an application plans not to use generic

*- instentiation of packages, procedure&, or functions; then it

matters little if that part of the compiler/RTS is

inefficient. However, if tasking is a substantial part of

the application, the user will be most demanding that the

compiler/RTS produce efficient, effective tasking

constructs.

It is important for users of the Prototype ACEC or any

Ada test suite to understand that the measurements obtained

from tests are only an indication of the effect produced by

an Ada language feature under controlled conditions. The

frequency that the features are used and the methodology

under which they are programmed in a real application could

cause significantly different results. With this in mind,

*this test suite provides two options for evaluating an Ada

compiler. A set of tests that approximate the frequency

distribution of the proposed application can be selected or

all tests can be executed to evaluate a stress load for the

compiler/RTS.

Test Suite Composition. A group of tests consists

of basically the initial test (control) repeated one or more

times with controlled changes made to produce a test version

and perhaps a special version (for example, to test the

affect of the pragma SUPPRESS). Normally, these changes are

contained in all versions, but appear only as comments in

the versions not using them.

Hi-56



Figure 3 shows the group of teats that measure the time

required for an add instruction. The three versions are

ADDSAI, ADDSA2, and ADDSA3 which are the rontrol, teat, and

pragma SUPPRESS versions, respectively. Only one version of

the test group is shown in Figure 3 with appropriate

comments referencing the versions in which changes in the

code appear. Examination of the source code reveals that it

is identical for all three versions except that certain

lines are comments rather than actual code in two of the

versions. The version of the test dictates which lines

become code vice remain comments. The code exactly as shown

in Figure 3 is the control version, with explanatory

comments added by the author. The test version is made by

deleting the comment indicator (--) from in front of the

code "Y := Y + X + X + X + X + X + X * X * X * X * X;." When

this line becomes code, the effect of addition can be

measured between the control version and the test version.

Since everything else is exactly the same, the difference in

time divided by the number of additions (10,000 in this

case) provides the cost of an addition. Similarly, the

pragma SUPPRESS version is made by removing some or all of

the comment indicators from the lines of code that invoke

the different pragma SUPPRESS statements. The effect of each

individual SUPPRESS statement or any combination of SUPPRESS

statements could be tested in this manner.

Two categories of tests were established by IDA. They

are called Normative and Optional. Test groups placed In the

H-5 --



WITH INSTRUMENT; USE INSTRUMENT;
PROCEDURE ADDSA# IS -- I IS 1, 2, or 3

-- PRAGMA SUPPRESS (ACCESSCHECK);
-- PRAGMA SUPPRESS (DISCRININAXT_CHECK);
-- PRAGMA SUPPRESS (INDEXCHECK);
-- PRAGMA SUPPRESS (LENGTH_CHECK);
-- PRAGMA SUPPRESS (RANGE_CHECK);
-- PRAGNA SUPPRESS (DIVISION_CHECK);
-- PRAGMA SUPPRESS (OVERFLOWCHECK);
-- PRAGMA SUPPRESS CSTORAGECHECK);

--- *Ooeg...oeeOOOUUUOO@Og.UUOOU@UgOBegO*UgggoooSOUeeeoUSee

-- The 8 lines above are not comments in ADDSA3 (pragma
-- SUPPRESS)

X : FLOAT := 0.000_001;
Y : FLOAT :a 0.0;

BEGIN
START(CADDSA#"OADD PROGRAM, 0*S VERSION - 10_000 ADDS");

FOR I IN l..100 LOOP
FOR 3 IN l..10 LOOP

-- V 20 Y * X * X * X * X * * X * X * X * X * X;

-- The above line is not a consent in ADDSA2 (test) and
-- ADDSA3 (pragna SUPPRESS).

Y :a FLOATIDETIXNTCI*J));
END LOOP;

END LOOP;
STOP;
END ADDSA#;

-- The package INSTRUMENT is part of the test suits. It
-- contains procedure START that must be invoked at the
-- start of a test, before any of the other report
-- routines are Invoked. It saves the test name and
-- outputs the name end description. Procedure STOP is
-- also In INSTRUMENT and must be Invoked at the end of a
-- test. It outputs a mesage Indicating whether the test
-- as a whole passed or failed, or to not applicable.

Fig H-3. Source code for ADDSA*

H-58



Normative category are intended to provide a means for

determining the system costs for a particular language

feature. They should provide a quantifiable indication of

the compiler's usefulness. Within the Normative category, a

test group is placed into either the Performance or Capacity

sub-category. Performance tests collect speed and space

attributes for various Ada features while Capacity tests

will indicate the limits imposed by the compiler/RTS.

Test groups of the Optional category may be selected by

the user to represent an applications profile consisting of

the most frequently used language features. There are also

two sub-categories within the Optional category. Features

tests provide measurement of those features which are not a

required part of the Ada compiler. They also provide

measurements of the effects of certain compiling options

referenced in Chapter 13 of the LRM. Tests of the Special

Algorithms sub-category are combinations of language

constructs that are characteristic of synthetic benchmark

programs. 5ome examples of these are Whetstone, Dhrystone,

and the Sieve of Eratoothenes.

While not actually part of the tests, the Prototype

ACEC provides some "support software" which is designed to

make it easier for the user to schedule compiles and

execution runs of the tests and maintain records of the test

activities. The ..support software" architecture and

operating instructions are contained in the User's Manual

for the Prototype ACEC (Hook and others, 1985).

Ii- 5



The groups of programs in the Version 0

(Beta Test) of the Prototype ACEC were analyzed according to

the following criteria:

1. Was the Ada language feature tested in the
group of programs a key part of the discussion
of an issue?

2. Would any information (for example, execution
times) gained by using the group of test
programs contribute to measurements related to
an issue?

The methodology was to make a determination regarding

, the applicability of each group of tests to any of the

issues numbered 8-19 discussed in Chapter III based on these

criteria.

A description of the individual Prototype ACEC program

groups and comments regarding their applicability to the

issues of Chapter III follows. The test program groups that

were determined not applicable to any relevant issue were

not included for subsequent compile and execution. The

results have been summarized in Appendix B for easy

reference.

The tests labeled ADDSAI, ADDSA2, and ADDSA3 are in

* sub-category Performance. These tests perform 10,000

floating point additions. They are the control, test, and

pragma SUPPRESS versions, respectively. These tests are

applicable to Issues 18 and 19.

The tests labeled AKERA2 and AKERA3 are in the Special

Algorithm sub-category. This test performs the Ackermann

algorithm. The versions are test and pragma SUPPRESS

tt-60

* **-C * * .- ,;' * ~ *-. . ... . 'I t t'.



respectively. The test is accepted even though it is only

applicable to the same issues (18 and 19) as the ADDSA#

tests.

LVRNA20 LVRNAI, LVRNB2, and LVRNB1 are from the

Performance sub-category. LVRNA2 and LVRNAI are the test and

control versions respectively and measure reference to one

local variable, non-access scalor type. LVRNB2 and LVRNBI

are also the test and control versions, respectively; but

these tests measure reference to ten local variables, non-

access scalar types. These tests evaluate the code

efficiency of referencing local variables. A local variable

is defined for purposes of these tests as a variable that is

declared immediately within the given declarative region.

These tests are not applicable to any relevant issue.

LVRAA2, LVRAA1, LVRAB2, and LVRAB1 are from the

Performance sub-category. LVRAA2 and LVRAAI are the test and

control versions respectively and measure reference to one

local variable, access type. LVRAB2 and LVRAB1 are also the

test and control versions, respectively; but these tests

measure reference to ten local variables, access types.

These tests evaluate the code efficiency of referencing

local variables. A local variable is defined as above. These

tests are not applicable to any relevant issue.

BRUAA2, BRUAAI, BRUNA2, AND BRUNAI are from the

Performance sub-category. These tests evaluate the code

efficiency of a reference from within a block to an uplevel

variable. An uplevel variable is defined for purposes of

11-61



these tests as a variable that is declared in a declarative

region that statically encloses the block. The reference is

to a variable declared in the immediately enclosing region

(one level up). BRUAA2 and BRUAA1 reference an access type

in this mode while BRUNA2 and BRUNAI reference a non-access

scalar type variable. These tests are not applicable to any

relevant issue.

PRUAA2, PRUAA1, PRUNA2, AND PRUNA1 are from the

Performance sub-category. These tests evaluate the code

efficiency of a reference from within a procedure to an

uplevel variable. An uplevel variable is defined for

purposes of these tests as a variable that is declared in a

declarative region that statically encloses the procedure.

The reference is to a variable declared in the immediately

enclosing region (one level up). PRUAA2 and PRUAAI reference

an access type in this mode while PRUNA2 and PRUNAl

reference a non-access scolar type variable. These tests are

not applicable to any relevant issue.

GVRAA2, GVRAAI, GVRNA2, AND GVRNAI are from the

Performance sub-category. These tests evaluate the code

efficiency of referencing a global variable. A global

variable is defined for purposes of these tests as a

variable that is declared in the outermost declarative

region. GVRAA2 and GVRAA1 reference an access type in this

mode while GVRNA2 and GVRNAI reference a non-access scalar

type variable. These tests are not applicable to any

relevant Issue.

H-62

-* -:.:.-:.



FPRAA2, FPRAA1, FPRNA2. AND FPRNA1 are from the

Performance sub-category. These tests evaluate the code

efficiency of referencing a formal parameter of mode IN OUT.

FPRAA2 and FPRAA1 reference an access type in this mode

while FPRNA2 and FPRNAI reference a non-access scalar type

variable. These tests are not applicable to any relevant

issue.

LRR1A2 and LRRIAI are from the Performance sub-

category. LRRIA2 is the test version and LRRIA1 is the

control version. These tests evaluate the code efficiency of

referencing a first level component of a local record

variable. A local record variable is defined for purposes of

these tests as a variable in a record that is declared

immediately within the declarative region in which the

component is referenced. These tests are not applicable to

any relevant issue.

LRR2A2 and LRR2A1 are from the Performance sub-

category. LRR2A2 is the test version and LRR2A1 is the

control version. These tests evaluate the code efficiency of

referencing a second level component of a local record

variable. A local record variable is defined as above. These

tests are not applicable to any relevant issue.

LRR3A2 and LRR3A1 are from the Performance sub-

category. LRR3A2 is the test version and LRR3A1 is the

control version. These tests evaluate the code efficiency of

referencing p third level component of a local record

variable. A local record variable is defined as above. These

11-63



*" tests are not applicable to any relevant issue.

LAVRA2, LAVRA1, LAVRB2, and LAVRB1 are from the

Performance sub-category. LAVRA2 and LAVRA1 are the test and

control versions respectively and measure reference to one

component of a local array. LAVRB2 and LAVRB1 are also the

test and control versions, respectively; but these tests

measure ten local references. These tests evaluate the code

efficiency of referencing a component of a local variable

array. A local variable array is defined for purposes of

these tests as an array that is declared immediately within

the given declarative region in which the component is

referenced. These tests are not applicable to any relevant

issue.

NLOOAI, NL07A2. and NL65A2 are from the Capacity sub-

category. These tests evaluate the overhead for nested

loops. NLOOAI contains 0 loops, while NLO7A2 contains 7

loops, and NL65A2 contains 65 loops. These tests are not

applicable to any relevant issue.

The tests labeled MULTA1, MULTA2, and MULTA3 are in the

Performance sub-category. These tests perform 10,000

multiplications. There are control, test, and pragma

SUPPRESS versions. respectively. These tests are accepted

because of their applicability to Issues 18 and 19.

CHSSAI, CHSSA2, and CHSSA3 are from the Special

Algorithms sub-category. These tests perform a character

string search. There are control, test, and pragna SUPPRESS

versions respectively. These tests are accepted because of

H-64



their applicability to Issues 
18 and 19.

SIEVA1 and SIEVA2 are from the Special Algorithms sub-

category. These teats perform the "Sieve of Eratosthenes"

benchmark. They are not applicable to any relevant issue.

The following tests were delivered to AFWAL 18 October

1985 and are part of the Prototype ACEC. The documentation

was changed and written information regarding the sub-

category assignments of the tests we deleted. This

information is available through the support system which

was not used for this project.

AOCEA1, AOCEA2, AOIEA1, and AOIEA2 evaluate a code

improvement potential that results from executing a less

expensive arithmetic operation when the opportunity is

offered to replace a multiplication that uses a loop

parameter and a constant with an addition. These tests are

applicable to Issue 17.

ASSIA2, ASSIA3, ASSIA4, ASSIA5, and ASSIB2 have groups

of assignment statements and comments in various

distributions. They are not applicable to any relevant

issue.

BALPAI and BALPA2 evaluate the code efficiency of a

simple loop statement and are not applicable to any relevant

issue.

BLEMA2 checks that blocks can be embedded up to an

arbitrary level (65). It is not applicable to any relevant

issue.

BSRCA2 and BSRCA3 are packages that implement a generic

H-65



binary search function designed to allow use of an

enumeration type for the table index. These tests were

included for uniformity with other generic operations on

unconstrained arrays and are not applicable to any relevant

issue.

C31PA2 checks that 31 parameters may be passed and is

not applicable to any relevant issue.

CAPAA1, CAPAA2, CAPABI, and CAPAB2 evaluate the code

efficiency of a call to a procedure that has a single formal

IN OUT parameter of an unconstrained array subtype. They are

not applicable to any relevant issue.

CASEA2 checks a case statement of size 256 and is not

applicable to any relevant issue.

CENTA2 and CENTB2 check enumerated types and enumerated

literals, respectively, and are not applicable to any

relevant issue.

CSBTAI, CSBTA2, CSCTAI, CSCTA2, CSDTA1, CSDTA2, CSETAI,

CSETA2, CSSTA1, CSSTA2, CSSTBI, CSSTB2, CSSTC1, CSSTC2,

CSSTDI, CSSTD2, CSSTEI, and CSSTE2 evaluate the code

efficiency of various case statements (i.e., binary,

clustered, dense, exhaustive, and sparse). They are not

applicable to any relevant issue.

DRPCA1 and DRPCA2 evaluate the efficiency of a

recursive call to a procedure that has no formal parameters.

They are not applicable to any relevant issue.

FIZUA1, FIIUA2, FL2RA1, FL2RA2, FLP1Al, FLP1A2, FLP2A1,

and FLP2A2 evaluate the code efficiency of loop statements

11-66

- -l:-2Si* -K $/-.:*.-



in various forms. They are not applicable to any relevant

issue.

FACTA1 and FACTA2 determine a factorial value using a

recursive function and are not applicable to any relevant

issue.

FPAAAI, FPAAA2, FPAABI, FPAAB2, FPANAI, FPANA2, FPANBI,

FPANB2, FPANCI, FPANC2, FPAND1, and FPAND2 evaluate the code

efficiency of a call to a procedure that has formal IN OUT

parameters of the same generic formal type. They are not

applicable to any relevant issue.

HSDRA2 is a heapsort benchmark program and is not

applicable to any relevant issue.

IADDA1, IADDA2, IDIVA1, IDIVA2, IEXPA1, IEXPA2, IMIXA1,

IMIXA2, IMIXB1, IMIXB2, IMIXCI, IMIXC2, IMIXD1, IMIXD2,

IMIXE1, IMIXE2, IMODAI, IMODA2. IMULAI, IMULA2, IREMA1,

IREMA2, ISUBAI, and ISUBA2 evaluate integer expressions and

are not applicable to any relevant issue.

INTDA2, INTDB2, and INTDB3 evaluate Ada declaration

statements and are not applicable to any relevant issue.

INTQA2 evaluates a full integer queue and is not

applicable to any relevant issue.

ISEQA2, XTCQA2, PGQUA2, S01OA2. SQPGA2, and VPGSA2

evaluate PUT, ASSIGN, RESET, and GET sequences. They are not

applicable to any relevant issue.

LFIRA1, LFIRA2, LFSRA1, and LFSRA2 evaluate loops and

are not applicable to any relevant issue.

LOAEA1, LOAEA2, LOECA1, LOECA2, LOFCA1, LOFCA2, LONEA1,

11-67



I .. -M -- WT k 1 P -k- 4i l

LONEA2, LOSCAl, LOSCA2, LOUIA1, LOUIA2, LOUSAI, and LOUSA2

evaluate code improvement potential in loops. They are

relevant to Issue 17.

KINIA2 is a nominal minimum program with one

declaration and one assignment. It yields three statements

and five lines. It is not applicable to any relevant issue.

MTESA2 and MTISA2 evaluate an empty set of enumeration

type and an empty set of integers, respectively. They are

not applicable to any relevant issue.

NPPCA1 and NPPCA2 evaluate the efficiency of a call to

a procedure that has no formal parameters and are not

applicable to any relevant issue.

NRPCA1 and NRPCA2 evaluate the code efficiency of a

nested recursive call to a procedure that has no formal

parameters and are not applicable to any relevant issue.

NULLA1 and NULLA2 are null procedures that don't have

declarations or executable statements and are not applicable

to any relevant issue.

OPAEA1, OPAEA2, OPBFA1, OPBFA2, OPCEA1, OPCEA2, OPCFAI,

OPCFA2, OPDSAI, OPDSA2, OPISAI, OPISA2, OPLEA1, OPLEA2,

OPNFAl, OPNFA2, OPSCAI, OPSCA2, OPSEA1, and OPSEA2 evaluate

a code improvement potential that results fro& the reduction

of computational operations when the opportunity is offered.

Areas presented are: arithmetic elimination, boolean

folding, function call elimination, constant folding,

distributed simplification, identity simplification, load

elimination, numeric folding, subscript calculation

11-68



elimination, and store elimination. These tests are

applicable to Issue 17.

PIALA2 is a version of the PI benchmark test program

and is not applicable to any relevant issue.

PKGEA1, PKGEA2, PKGSA1, and PKGSA2 evaluate packages

and are not applicable to any relevant issue.

PRCOA2 evaluates tasking performance using the

buffering task given as an example in Chapter 9 (9.12) of

the LRM. It is not applicable to any relevant issue.

PRPCA1 and PRPCA2 evaluate the code efficiency of a

parallel recursive call and are not applicable to any

relevant issue.

PUZZA2 and PUZZA3 are puzzle programs and are

applicable to Issues 18 and 19 because PUZZA3 uses pragma

SUPPRESS.

RANDA2 returns a random integer result and is not

applicable to any relevant issue.

RCDSA2 checks 400 field records and is not applicable

to any relevant issue.

RENDAI and RENDA2 measures the time required for a

simple rendezvous. This information is critical for

evaluating Issue 1. However, more data (such as the timing

constraints of the time sequenced operations and the time

required for complex rendezvous) are required to complete

the evaluation.

SHARA2 illustrates the use of tasking to provide shared

access to Global variables and is not applicable to any

ji-69



.
.  

. . . . . . . - . . . . . . . ..

relevant issue.

SORTA2 is a sort shell and is not applicable to any

relevant issue.

SRCRA1 and SRCRA2 evaluate the code efficiency of

representing a component of a composite object that has been

declared as a record type with a representation clause. They

are not applicable to any relevant issue.

SRTEA1 and SRTEA2 evaluate the code efficiency of

elaborating an object declaration of a simple record type

that has an associated record representation clause. They

are not applicable to any relevant issue.

TAIPA1, TAIPA2, TAIPB1, TAIPB2, TAIPC1, TAIPC2, TAIPD1,

TAIPD2, TAIPEi, TAIPE2, TAIPFI, TAIPF2, TAIPG1, and TAIPG2

evaluate the effect of an IN parameter size on task

performance. They are not applicable to any relevant issue.

TAOPA1, TAOPA2, TAOPBl, TAOPB2, TAOPCI, TAOPC2, TAOPDl,

TAOPD2, TAOPE1, TAOPE2, TAOPF1, TAOPF2, TAOPG, and TAOPG2

evaluate the effect of an IN OUT parameter size on task

performance. They are not applicable to any relevant issue.

TPGTA2, TPGTB2, TPGTC2, and TPGTD2 evaluate the impact

of using guards on select entries. These tests are

applicable to Issue 9, but do not provide comprehensive

testing of the issue.

TPITAI, TPITA2, TPITBI, TPITB2, TPITC1, TPITC2, TPITDI0

and TPITD2 evaluates the effect of idle tasks on the

performance of the executable code. They are applicable to

Issue 14.

H-70

" ,¢ .',' 'J ';. 2,'. J . "" " " ". .." " " " " " " ' " ."" ' ' " " " " " " " '

', ',, :" " " !, . " " ,' ." ," . ," %- ." - *" * ,€ . '



TPOTA2, TPOTB2, and TPOTC2 contain entry clauses

ordered differently in each version. They are applicable to

Issue 11.

TPSTA2 and TPSTB2 evaluate the effect the number of

select choices has on performance. They are applicable to

Issue 8.

TPTCA2, TPTCB2, TPTCC2, TPTCD2, TPUTA2, TPUTB2, TPUTC2,

and TPUTD2 evaluate the effect of "chains" of tasks. Each

chain task, within each cycle of the loop, calls an entry in

the next task in a chain of tasks. They are not applicable

to any relevant issue.

TPUTE2 evaluates whether a task gets starved and is

applicable to Issue 12.

UAPAA1, UAPAA2, UAPABI, and UAPAB2 evaluate the code

efficiency of a call to a procedure that has a single formal

IN OUT type parameter of an unconstrained array. They are

not applicable to any relevant issue.

VFADAI, VFADA2, VIADAI, and VIADA2 measure the time

required to add elements of vectors and are not applicable

to any relevant issue.

WHETA2 and WHETA3 are the Whetstone benchmark test and

are applicable to Issues 18 and 19 because of the pragma

SUPPRESS.

WHLPA1 and WHLPA2 evaluate the code efficiency of a

loop statement using the "while" iteration construct. They

are not applicable to any relevant issue.

H7-71



"

NOTE: A summary of the results of the ACEC analysis is
contained in Appendix B.

Evaluation. Evaluating the performance efficiency

of Ada compilers is not a trivial task. Previous studies in

this area have been oriented to quantitative performance

testing relying on approaches proven useful for evaluation

of other language compilers. These approaches included

writing a small set of well-established benchmark programs,

writing representative application programs, and writing a

* synthetic benchmark in Ada and other HOL then comparing the

resulting compilation and execution times. All three

approaches yielded incomplete data. "'The quantitative

measures are not refined to a level of detail at which

remedial action might be suggested to the compiler

implementor or user so that improved results might be

obtained" (Bassman and others, 1984). The key requirements

for evaluating the performance efficiency of the code

generated by an Ada compiler are:

1. To provide quantitative data on overall
performance efficiency for a particular
moplication domain;

2. To provide quantitative data on performance
efficiency that promotes an informed
interpretation of the above data;

3. To provide a qualitative assessment of the code
generated by the compiler with respect to its
immediate and future use; and

4. To counteract any specific effects or
interactions, not explicitly required, that may
invalidate an evaluation of code efficiency.

(Baseman and others, 1984).

S *.*~~b ;..~%~V%.\-.f? '-*. .



t One maor problem in collecting an all-inclusive Ada

L teat suite in that the composition of the test suits is

still a matter of opinion in the areas of content,

ob3octives, and substance. A related example of this problem

is the discovery by at least one compiler implementor that,

even though their Ada compiler was validated using tests of

the ACVC, It still contained many software errors (Bowles

and Olsson-Tapp, 1985).

The criteria used by IDA for including tests in the

Prototype ACEC is subjective as is the list of key

requirements for evaluating the performance efficiency of

Ada compilers used by Baseman and his associates. An

interested party could develop different criteria or

requirements more suited to the domain with which he or she

is familiar. Even so, the development and distribution of a

common test suite is important.

The Prototype ACEC provides a valuable first step

towards meeting these requirements with respect to the real-

time avionics environment. Of the testable issues, only

those numbered 10, 13, 15, and 16 do not have applicable

tests in the Prototype ACEC. It is encouraging that the

remaining eight testable issues are addressed by tests of

the Prototype ACEC, especially since the initial thrust of

the Prototype ACEC was aimed at establishing a suite of

tests that address the most common general areas of concern.

However, the purpose of this paper is to focus attention on

issues of a specific domain in order that tests relevant to

H-73

............... ..... .-



all of the issues become available to the domain. It is the

author's view that such tests must be developed or obtained

and included in future versions of the ACEC.

The support software that accompanied the Prototype

ACEC was not used in this project so it was not evaluated.

The test harnesses provided in the User's Manual were used

on both the VAX 11/780 and the Data General and greatly

facilitated compiling, executing, and timing the test

programs.

Other Test Programs

Another major problem in collecting an all-inclusive

Ada test suite is the lack of appropriate, quality,

adaptable compiler/RTS tests available to the Ada community.

In fact, one company recently sponsored a contest featuring

cash rewards and publication as prizes for test programs

that could be used in its compiler test suite. The contest

called for "A suite of smallish Ada programs chosen to

maximize the discovery of bugs in Ada compilers" (Bowles and

Olsson-Tapp, 1985).

One reason for this problem is that some developed

tests are considered to be proprietary information.

Accordingly, if a company that intends to bid on Ada

projects develops tests related to crucial issues, that

company is usually not willing to release those tests to the

public. This is because releasing tests could give the

company's competitors an unfair competitive advantage by

H-74

- ~ - -*. . . . . . .



i

having the tests. Another reason is the difficulty of

testing some of the Ada language features themselves,

especially in the concurrent processing area. The difficulty

arises because of the complexity of the language. Ada

expresses a greater range of concepts than moat previous

languages (e.g., tasks, generics, overloading, packages,

representation specifications, and exceptions). Testing of

these features is even more difficult in the real-time

avionics environment since software for this environment

must satisfy real-time requirements and is often composed of

multiple concurrent tasks. In addition, the software is

usually developed on a host system providing program

development services and then moved to the target machine

which is normally dissimilar to the host machine (Taylor and

Standish, 1984:119).

In spite of the previously mentioned obstacles, there

are tests of the Ada language that can be obtained from

public sources. Some of these tests were developed by

private industry, others by universities, and still others

by or for government sponsored pro3ects. Five of these

sources are presented below.

Sources of Pu blc Dmat2 da Tests. The yearly Ada

Fair is sponsored by Los Angeles AdaTEC (now SIGAda). At the

1984 Ada Fair, a suite of tests selected by L. A. AdaTEC was

made available to interested vendors. These tests, and

others that have been added since, are available on the

ARPAnet by logging into EV-INFORMATION at ECLB (with a

H-75

.... m.=_ , ,. , . ,, ,,. .:,.. .. .- ,..-................. ........... ,.......



password of EV to access the EV information area) and

entering "HELP ADA-FAIR-PROGRAMS-85". A help senu is

available in this area. The programs may be downloaded for

use without special passwords. An alternative way to receive

the tests is via mail over usenet. This can be arranged by

contacting Ed Colbert at "trwrb!trwspptcolbert".

Other tests that were developed by SRI are available

through the ARPAnet EV-INFORMATION. They can be accessed by

entering "HELP TESTS-SRI".

As mentioned previously, the primary purpose of the

ACVC is for validation testing of proposed compilers. While

the ACVC is not intended to be a comprehensive evaluation

test suite, some of the tests could be used or slightly

modified to address specific issues. The office that

controls the ACVC and handles inquiries regarding it is

ASD/SIOL, Wright-Patterson AFB, OH 45433.

A fourth source of tests is from Telesoft. The suite of

tests gathered from their recent contest is available to

universities for a handling fee of 550.00, and to other

businesses for a handling fee of 500.00. The contest

coordinator and contact regarding the test suite is Kami

Olsson-Tapp of Telesoft in Fairborn, Ohio (Bowles and

Olsson-Tapp, 1985).

The last source of possibly applicable tests presented

in this work is textbooks. Software EngineerinQ With Ada by

Booch, Ada for Programmers by Olsen and Whitehill, and Aa,

an Advanced Introduction by Gehani all contain excellent

11-76



examples of programs that could be used to test certain Ada

construct&.

Applicable Tests From Other Sources. The following

tests were subjectively determined to be applicable to one

or more of the testable issues listed in Chapter 111. The

applicability of the test is discussed, and reference to the

location of the source code is made. Appendix C contains

the source code of several of the tests. Source code for

other tests that are readily available from one of the five

sources just listed is referenced but not duplicated.

All of the SRI tests listed below have been modified to

be compatible with the Prototype ACEC support system and are

included in it. Therefore, even though they are described

here, the SRI tests were not included in the actual compile

and execution phase of the project.

The group of SRI developed tests comprised of SELECT2,

SELECT2E, SELECT20, AND SELECT20E are designed to determine

if the number of select choices effects performance. This is

the concern of Issue 8. In these tests, one task calls a

single entry of a second task 1000 times, but the second

task has a select statement encompassing some number of

alternatives. The test was programmed for 2 and 20

alternatives with the desired entry being the first one in

the select list (SELECT2 and SELECT20). It was then repeated

with the desired entry being at the end of the select list

(SELECT2E and SELECT2OE). The ACEC tests TPSTA2 and TPSTB2

are based on these tests.

H-77



I

The results of SRI tests GUARD2, GUARD2E, GUARD20,

GUARD2OE, GUARD2OT, and GUARD2OET, when compared to the

results of the tests in the previous paragraph, measure the

impact of using guards on select entries. The guards were

set in various patterns of true and false. These tests are

applicable to Issue 9, but do not provide comprehensive

testing of that issue. Further tests are required to

adequately test Issue 9. The ACEC tests TPGTA2, TPGTB2,

TPGTC2, and TPGTD2 are based on these tests.

The SRI tests MORETASKS, MORETASKS1, MORESELCT, and

MORESELCTR are applicable to Iasie 10. In the program

MORETASKS, a master task calls each of 20 slave tasks, each

of which contains a single entry. In MORETASKS1, each task

again has a single entry, but it is embedded in a select

statement to enable a comparison with the next test,

MORESELCT. In this program, a master task calls each of the

20 entries in a single slave task, and the slave task has

the 20 entries embedded in a large select statement. In the

last program, MORESELCTR, the 20 entries are listed opposite

from the order they are called by the master task.

The group of SRI tests comprised of ORDER31, ORDER31R,

ORDER32, and ORDER100 are applicable to Issue 11. These

tests are modifications of the MORETASKS program described

above and contain an increased number of entry clauses with

the order juggled in the different versions. The ACEC tests

TPOTA2, TPOTB2, and TPOTC2 are based on these tests.

SCHEDTEST is an SRI test program in which a slave task

H-78

* ~ ~ ~ ~ ~ ~ It- 5r -K ** .*..



with a two entry select statement is used independently by

three other tasks. The test is run until the &lave has been

called 1000 times. Two of the tasks call the first entry,

and the third task calls the second &lave entry. Each task

and the slave have print statements that report which task

is running. The order and relative frequency these printouts

appear help determine whether any of the tasks are starved

or called more often than others. This test is applicable to

Issue 12 and forms the ACEC test TPUTE2.

The ob~ective of the program TEST-DEADLOCK is to

determine system behavior concerning timeouts and deadlocks.

"" The approach used was to create two tasks which call each

dother for entries so as to create a deadlock situation and

establish two cases. The first case sets timeouts such that

the deadlock is relieved after the timeout period. The

second case does not have a timeout option thereby making

deadlock inevitable. A time log of when entries are called

and accepted in both tasks is provided to allow tracking of

the timeouts and the eventual deadlock condition. This

program is applicable to Issue 13, although it does not

provide a comprehensive test of the issue. The source code

of TEST-DEADLOCK and the package HEADER which is used by

TEST-DEADLOCK are listed in Appendix C (Ruane and others,

*" 1985: 68-72).

The SRI test programs IDLE1, IDLE5, IDLE10, and IDLE20

contain a "chain" of two tasks. It is called a chain because

each chain task, within the cycle of the loop, calls an

H-79



entry in the next task in the chain. The called entry

contains a null statement and returns, and the task then

waits to be called by a another task at a similar entry of

its own. This chain of length two was cycled 10,000 times.

Before the cycles are started, the number of idle task&

* associated with the program's name are called at an "'init"

* entry. They are left waiting at a *never*" entry which is

never called. This group of tests is applicable to Issue 14.

The ACEC tests TPITA1, TPITA2, TPITBI, TPITB2, TPITC1,

TPITC2, TPITD1, and TPITD2 are based on these tests.

LIDSA1 and LIDSA2 were adapted from the AIMS Interim

Technical Report to address Issue 16. These tests attempt to

declare an array which is too long to fit within the address

space boundary. LIDSA1 forces the compiler/RTS to deal with

the problem while LIDSA2 programmatically handles the

context switch. A comparison of the execution times of the

programs should indicate the cost in time for the

compiler/RTS's solution to the problem of large indivisible

data structures.

EXCEP2, which addresses Issue 15, is a modified version

of the Prototype ACEC test ADDSA2. An EXCEPTION statement

which is never executed was added as the last statement in

the program. A comparison of the execution times of the two

programs (a sufficient number of samples) should indicate

the cost in time, if any, for the presence of the EXCEPTION

4, code.

H-8o

4



gUmeory

Tests that are available as part of the Prototype ACEC

or from other public domain sources were examined to

concern regarding the real-time avionics environment. Ten of

the twelve issues deemed testable were addressed by readily

available tests, although in some cases the tests did not

provide comprehensive evaluation of the issue. Tests for the

other two testable issues were easily generated.

The Prototype ACEC provides an excellent beginning for

the task of assembling a common suite of tests for Ada

compiler/RTS evaluation. It needs to be expanded to include

more tests dedicated to evaluating the ma~or concerns of

the real-time avionics environment. Other sources of tests

must continually be examined with this purpose in mind.

The tests that were determined to be applicable in the

above discussion were compiled and executed using two

different Ada compilers and €omputers. The results are

presented in the next chapter.

H-83

* " '"" a.."'" , , ,, . '- * ,:'- -,, ..>§ - , _Z* .J .. .., ... .-.



V. Compiletion and Execution Results

Each test program that was identified in Chapter IV as

applicable to at least one of the issues numbered 8-19

identified in Chapter III was compiled using two different

Ada compilers. These were the DEC VAX compiler and the

ROLM/Data General Ada Development Environment (ADE)

compiler. The DEC compiler is hosted on and targeted to the

VAX 11/780 computer at AFWAL. The ROLM/Data General ADE

compiler is hosted on and targeted to the Data General

computer at the Aeronautical Systems Division, Information

Systems and Technology Center, Wright-Patterson AFB, Ohio.

Unfortunately, neither of these compilers are targeted

to an embedded system. They were used because an Ada

compiler targeted to an embedded computer was not available

in a suitable stage of implementation for use by this

project. Therefore, the results obtained from compiling and

" executing the test programs on these compilers establish a

baseline for comparison when these tests are compiled and

executed on an appropriate host/target combination in the

future.

* Methodology

Each compiler has its own method of interacting with

the user and the host operating system. The DEC VAX compiler

on the VAX 11/780 interacts with the VMS operating system

and requires some preliminary steps to be taken prior to

using it. The first step is to enter ACS CREATE LIBRARY

H-82



Z.ADALIBJ. This creates the Ada library in one's directory.

This library contains the standard Ada packages and will

hold all newly compiled Ada programs, packages, and

* procedures. Once this step has been completed, it is not

repeated because the library remains in the directory. Next,

one has to enter ACS SET LIBRARY [.ADALIB3. This tells the

Ada compiler which Ada library to use for compiling. After

creating the source code for an Ada program, the compiler is

invoked by entering ADA/(option) FILENAME. If the program

successfully compiles, entering ACS LINK PROGRAMNAME

creates an executable file, for example, PROGRAMNAME.EXE.

The VMS command RUN PROGRAM-NAME will execute the program.

The ROLM/Data General ADE compiler on the Data General

computer interacts with the OS/VS operating system and

operates under the control of the Main Compiler Control

(MCC). The MCC verifies the correctness of the command to

execute the compiler, initializes functions, verifies the

existence of specified objects, calla the front end and back

end modules of the compiler, and generates a history and

script file. The history file is a record of who performed

the compile, why, and when. The compiler consists of the

front end and back end modules. The front end checks the

correctness of the program, while the back end generates

optimized binary code for the target processor. After

* entering the ADE, compile of source code is accomplished by

entering ADA FILE-NAME. When the program is successfully

compiled, entering ADALINK PROGRAM_NAME creates an

H-83

5- 5- - . , . ... >,. .: .. . ,,.,,. . - ., .-...... ,...,.. .. , ,



executable file, for example PROGRAMNAME.EXE.

The Prototype ACEC User's Manual contains a "test

harness" that greatly facilitated compilation, execution,

and statistic collection on both machines. The test harness

for use on the VAX 11/780 was modified to omit collecting

execution time and is shown in Appendix D. In the author's

opinion, execution time does not enhance evaluation of the

program. CPU time provides the true cost in time of the

program execution and is not affected by other programs

executing along with the program of interest. The test

harness for the Data General was also modified and is shown

in Appendix E.

A summary of the compilation times from both compilers

is contained in Appendix F. The CPU time and object code

size figures reported for the Data General are not valid.

They were obtained by using the teat harness shown in

Attachment D. For some undetermined reason, the difference

in beginning CPU time and ending CPU time, which is supposed

to be the combined compile and link time (in seconds and

hundredths of seconds), and the reported object code size

(in page sections) both decrease with each program. A sample

of the file HARNESSOUT, which contained the compilation

statistics, is shown in Appendix G. Because of the

questionable Data General statistics, a valid comparison of

the two compiler/RTSs is not possible. Only the VAX 11/780

times should be used for comparison with results from other

compiler/RTSs.

H-84 'I '4



The execution times from the two machines are shown in

Appendix H. They may be validly compared since the times for

the Data General were gathered from the INSTR.DAT file

instead of the HARNESS.OUT file of the harness. Times in

this file were obtained by using a package called CPU-CLOCK

which was generated especially for the Data General by IDA.

Therefore, comparing the execution times is meaningful.

Results

The DEC VAX compiler did not allow the pragma SUPPRESS

and ignored it during compilation of those tests that used

it. This prohibited evaluation of the concerns stated in

Issues 18 and 19. Two tests, OPBFA1 and OPBFA2, had an error

during compilation which prevented object code generation

for them. The statement "pragma main;' was not necessary in

the tests that were compiled with the DEC VAX compiler but

was required by the compiler as the last statement when the

tests were compiled with the ROLM/Data General ADE compiler.

In general, the execution times from the Data General

were faster except when tasking was used. For those programs

that used tasks, a significant reversal was evident with the

VAX 11/780 times being considerably faster. This leads to

the conclusion that if a particular domain has many
applications that use tasking, perhaps the DEC VAX

compiler/RTS would be the better system to use. Otherwise,

the ROLM/Data General would be better.

Although the compile and execution runs were not

gathered under strict scientific conditions, and used newly

I H- 85

>.A.



developed procedures, they provide a first cut at measuring

compiler/RTS system&. By refining the procedures to produce

accurate end statistically valid results along with

conducting the sample runs in a controlled environment

(perhaps a dedicated machine), an interested party would be

- able to make a valid evaluation of different Ada compiler&

and RTSs from the results of the teats. That is the purpose

of the ACEC. and the Prototype version evaluated in this

pro3ect is a valuable contribution toward achieving that

goal.

H-86



-- ;. " - L IW 7 Y . ' Y= ,

VI. Conclualons and Recommendations

The purpose of this thesis was to first examine the

real-time avionics environment and identify Ads related

issues of that environment, and then to determine if there

are adequate tests available for evaluation of Ada

coapilers/RTS with respect to those issues. AFWAL, acting in

its capacity as the lead organization of the DoD for

evaluation and validation, is trying to establish a common

test suite of programs called the ACEC to enhance Ada

compiler/RTS evaluation. The first increment of this ACEC,

called the Prototype ACEC, was the logical place to begin

searching for tests that addressed the issues. An

examination of test programs available from other sources

followed. Unfortunately, an Ada compiler to MIL-STD-1750A

machine was not available at the time of this thesis, so the

tests that were determined to be applicable to any of the

avionics environment issues were compiled and executed on

other compilers. The results can serve as a baseline for

comparison if the tests are used on a MIL-STD-1750A compiler

in the future.

Although the project did not accomplish all of the

original goals, some important conclusions can be drawn from

the experience. Recommendations are also made where areas of

future study would be beneficial, either as a continuation

of this project, or in other areas that were identified

during the project.

11-87



X_- V_ - 7 1 - - 1 77u

The Environment

The real-time avionics environment as described in

Chapter II establishes the basis for identifying issues of

concern regarding the use of Ada. Implementors of Ada

compilers/RTSs as well as users are concerned about the

ability of Ada to support their requirement& within the

constraints of the environment. The Ada constructs examined

in the chapter are those most often associated with causing

Simplementors of Ada compiler/RTS& extreme difficulty. The

present lack of any validated Ada/MIL-STD-1750A run-time

model is a testament to the difficulty of implementing the

more complex Ada constructs. It seems unlikely that either

the MIL-STD-1750A architecture or the current set of Ada

language features will change in the near future. Therefore,

the developers and implementora of Ada compilers/RTSs must

find an efficient, effective method of implementing the full

power of Ada on that architecture. This calls for further

research in at least two areas. First, those issues

identified in the Estes report should be examined in more

detail with the purpose of solving the inconsistancies of

the MIL-STD-1750A and the MIL-STD-1815A (Estes, 1985a).

Second, research that evaluates other architectures

purporting to be designed especially to support Ada should

be accomplished with the purpose of finding either

enhancements to or eventual replacements for the NIL-STD-

1750A.

This pro3ect did not examine the use of distributed

H- 88



hardware. The distributed processing environment presents

different, perhaps even more difficult challenges for Ada

implementors. Further research in this complex area is

certainly called for and should be supported.

The Issues

The author makes no claim that the set of issues

identified in Chapter III encompass the entire set of

concerns of the real-time avionics environment. The issues

were compiled after research and through interviews with

personnel familiar with the environment. It is important,

however, that the set of issues be enhanced and made

available to interested parties. Without these issues, it is

possible that the areas of concern could be overlooked by

implementors and developers of Ada compilers/RTSs or by

those responsible for evaluating proposed Ada compilers.

Analvsis of Available Tests

Issues 2-7. The first seven issues are those that

were subjectively determined to be not suitable for

empirical testing. Although these issues are of great

concern to the real-time avionics environment, the

development of programs that provide users with adequate

tests for evaluation of these issues Is certainly &ore than

a trivial task. An example of a pro3ect that is concerned

with testing and validation of tasking constructs is the

Arcturus pro3ect of Taylor and Standish. They are using an

integrated application of a static analysis technique, a

H-89

%*o %



dynamic analysis technique, and an interactive debugger in

their attempt to assure the reliability of multi-tasking Ada

software developed in a host-target environment (Taylor and

Standish, 1984:119). However, even as those authors propose

their methodology as essential for evaluating multi-tasking

software, they also state: "Other analysis aids are surely

nwecessary too. No claim is made that the techniques

presented are sufficient" (Taylor and Standish, 1984:119).

The difficulty of developing adequate tests for these

issues was created by Ada's complexity - a by-product of its

flexibility. At the present time, there are no machines

-, designed exclusively for Ada. Many architectures must be
A

enhanced with new hardware or instruction sets simply to

minimally adhere to Ada constructs. Often, a space or time

penalty, or both, must be paid. Since Ada was developed

primarily to support embedded software applications which

commonly use the more advanced Ada constructs, the lack of

adequate evaluation tests is unacceptable. Therefore, it is

of the utmost importance that research be continued until a

comprehensive test suite is available for developers,

implementors, and prospective users of Ada compilers/RTSs.

Issues 8-19. These twelve issues were determined to

be suitable for empirical testing. Programs that provide at

*least some testing for each of these issues were found and

are readily accessible. The Prototype ACEC addresses all but

two of these issues in Its present form. Tests for these

issues were obtained from other sources, however. This leads

H-90

,4



to the recommendation that the developers of the ACEC

attempt to identify specific issues of importance to many

applications and include programs to test those issues in

the expanded test suite. Since some of the issues reported

in this project apply to other applications, all of the

issues need to be thoroughly addressed by test programs.

Compilation and Execution

An original goal was to compile and execute all

applicable test pr6grams on an Ada/MIL-STD-1750A compiler.

As the project progressed, It became apparent that the

compiler would not be delivered in time. However, two

validated compilers were chosen to use for test compilation

and execution in order to establish a baseline of compile

and execution times against which the MIL-STD-1750A compiler

can be compared in the future. This should be accomplished

at the earliest possible time.

Any testing should be supervised by a person

knowledgeable about the operating system or RTS of the

machine being evaluated in order to ensure the methods used

to collect time and space statistics are accurate. The

environment should be dedicated to the testing without

having other processes executing on the machine to provide

more accurate statistics.

General

The subject of evaluation testing is debated by

scholars, researchers, and within the industry. The

1-91

% . -.- . - . - . .



definitions of completeness, correctness, and applicability

of evaluation testing are controversial. However, the

evaluation of computer programs is necessary and desirable.

The Prototype ACEC is the correct first step towards

providing a common, useful test suite for evaluating Ada

compilers and RTSs. It is not, however, as comprehensive as

it should be. The Ada community must support the effort to

enhance the ACEC by developing evaluation tests that might

* be specific to their applications and by contributing then

-to the ACEC. Only in this way will the evolving ACEC improve

its applicability to all areas and further benefit of Ada

* users everywhere. As previously mentioned, developing tests

for some of the areas of concern is not a trivial task.

Support for continued research in this area must be

provided.

1-92



Bibli ography

Armitage, James W. and James V. Chelini. "Ada Software on
Dis'ributed Targets: A Survey of Approaches," Ada Letters,
4: 32-37 (January/February 1985).

Avionics Laboratory. Ada Information Management System
(AIMS). Interim Technical Report. Boeing Military Airplane
Company, Wichita, KS, 14 November 1984.

Avionics Laboratory. Advanced Avionics Computer
Architecture. Volume 1 - Executive Summary. Final Report for
Period May 1980 - November 1984. Lawrence Greenspan and
Ronald Singletary, Sanders Associates, Inc., Nashua, New
Hampshire, May 1985.

Baker, T. P. and G. A. Riccardi. "Ada Tasking: From
Semantics to Efficient Implementation," IEEE Software, 2,:
34-46 (March 1985).

Barnes, J.G.P. Programming In Ada. London: Addison-Wesley
Publishing Company, 1982.

Baseman, H.J. and others. "Evaluating the Performance
Efficiency of Ada Compilers," Proceedings of the Washington
Ada Symposium, 1985.

Ben-Ari, M. Principles of Concurrent Proaramming. Englewood
Cliffs, New Jersey: Prentice/Hall International, 1982.

Biswas, Prasen3it. "A Capability Architecture for Ada." IEEE
1984 ADA Aprlications And Environments Conference, 1984: 23-
32.

Booch, Grady. Software Engineering With Ada. Menlo Park.
California: The Benjamin/Cummings Publishing Company, 1983.

Bowles, Ken, Chairman, and Kami Olsson-Tapp, Contest
Coordinator, Telesoft. "Challenge Contest: An Invitation,"
Public letter, 1 May 1985.

Cornhill, Dennis. "Four Approaches to Partitioning Ada
Programs for Execution on Distributed Targets," IEEE 1984
ADA Applications And Environments Conference, 1984: 153-162.

Department of Defense. Reguirements for Ada Programming
Support Environments: STONEMAN. Washington, D. C., February
1980.

Department of Defense. Military Standard: Ada Programming
Language -ANSI/MIL-STD-1815A. Washington, D. C., January
1983.

li-93



6~w~q. .,7 .7. =

Este&, Nelson. "Ada and 1750A: The Challenges of Two
Standard&,* Report. Department of the Air Force, Joint
ASD(AFSC) - AFALC Deputy for Avionics Control, Wright-
Patterson Air Force Base, Ohio 45433-6503, 3 July 1985.

Estes, Nelson, Embedded Computer Standardization Program
Office, Deputy for Avionics Control. Personal interview.
AFALC-ASD/AXTS, Wright-Patterson AFB, OH, 23 August 1985.

Fogle, Gary, Avionics Application Programmer. Personal
interview. AFWAL/AAA-T, Wright-Patterson AFB, OH, 16 August
1985.

Helabold, David and David Luckham. "Debugging Ada Tasking
Programs," IEEE 1984 ADA Applications And Environments
Conference, 1984: 96-105.

Hook, Audrey A., Institute for Defense Analyses, and G. A.
Riccardi, Florida State University. "The Prototype Ada
Compiler Evaluation Capability (ACEC)". Briefing to the
Evaluation and Validation Conference, held at Wright-
Patterson AFB, OH, 4 September 1985.

Hook, Audrey A. and others. "Draft User's Manual for the
Prototype Ada Compiler Evaluation Capability (ACEC) Version
0 (BETA TEST)". Prepared for the Evaluation and Validation
(E & V) Team, Ada Joint Program Office (AJPO) by the
Institute for Defense Analyses. August 1985.

Kean, Elizabeth. Evaluation Criteria For Ada Compilers.
Pamphlet. Rome Air Development Center, 11 September 1984.

Kramer, John F. and Catherine W. McDonald. Ada Joint Program
Office Obiectives and Progress - Through 1983. Contract MDA
903 84 C 0031. Institute for Defense Analyses, Alexandria,
VA, September 1984 (AD-A149 436).

Leathrum, J. F. "Design of an Ada Run-time System," IEEE
2984 ADA Applications And Environments Conference, 1984: 4-
13.

Lindquist, Timothy E. and Richard C. Joyce. "Ada Task
Synchronization in a Vultiprocessor System with Shared
Memory," Journal of Pascal, Ada . Modula-2, 4: 9-19
(January/February 1985).

Mellichamp, Duncan A. "Digital Computing and Real-Time
Digital Computing," Real-Time Computing, edited by Duncan A.
Mellichamp. Van Nostrand Reinhold Company, New York, 1983.

Olsen, Eric W. and Stephen B. Whitehill. Ada for

Proqramners. Reston, Virginia: Reaton Publishing Company,
Inc., 1983.

H-9U



7. V

Phillips, Stephen P. and Peter R. Stevenson. "'The Role of
Ada in Real Time Embedded Applications," Ada Letters. 3: 99-
111 (January/February 1984).

Riccardi, G. A., and T. P. Baker. "A Runtime Supervisor to
Support Ada Task Activation, Execution, and Termination
(Preliminary Report)," IEEE 1984 ADA Applications and
Environments Conference, 1984: 14-22.

Ruane, M. F., and others. Ada Run-time Environment
Characterization for JAMPS. Technical Report. Mitre,
Bedford, Massachusetts, March 1985.

Taylor, Richard N., and Thomas A. Standish. "'Steps to an
Advanced Ada Programming Environment," Proceedings of the
7th International Conference on Software Engineering, March
26-29, 1984: 117-125.

Weatherly, Richard M. "A Message-Based Kernal to Support Ada
Tasking,- IEEE 1984 ADA Applications And Environments
Conference, 1984: 136-144.

0

'

: H- 95



i ? V ' . .1 NA Xi . 1. 'J k : - - L ,. N ' .V .. ,2.' _:- .. . . ' .'-
7

APPENDIX A

List of- Isues

Issues Not Suitable for Empirical Testing

1. Is the overhead associated with an effective rendezvous
efficient to the point that the time sequenced operations
are not disrupted?

2. How does the RTS system deal with the interaction between
tasks and lexical scopes?

3. "If multiprocessing is supported by the implementation,
are Ada tasks mapped to a single underlying processor, or is
each task mapped to a separate processor?" (Kean, 1984:7)

4. Are shared variables protected by the rendezvous?

5. What impact on performance does run-time constraint
checking have?

6. How is dynamic type checking of parameters handled and
what impact on performance does it have?

7. What is the range of typical context switching times?

Issues Suitable for Empirical Testina

8. "'Does the number of select choices affect performance?"
(Kean, 1984:7)

9. "How does using select alternatives affect the perform-
ance of the executable code?" (Kean, 1984:7)

10. "Is it better to have many small taks with single entry
choices or a few large tasks with many select choices?"
(Kean, 1984:7)

11. "Does the ordering of entry clauses in a SELECT impact

execution speed?" (Kean, 1984:7)

12. "Can the Ada scheduler starve a task?" (Kean, 1984:7)

13. Are there any aids in the compiler or RTS to assist the
programmer find deadness errors in tasking programs?

14. "Do idle tasks impact the performance of the executable
code?" (Keen, 1984:7)

11- 96



Issues (Con't)

15. How much overhead in execution time does an exception

take if it Is never invoked?

16. Does the compiler effectively deal with indivisible data

structures exceeding memory boundaries?

17. What is the effect of using each of the following three
options: OPTIMIZE = none? OPTIMIZE a space? OPTIMIZE - time?
(Kean, 1984:7)

18. How does the use of a SUPPRESS pragma affect execution

time?

19. For which checks is the pragme SUPPRESS implemented?

11-97

* . ,.. . . 4.;:. ( i. .. : :... . .. .. . '. ,. ... :, .,. , ...,.... ...,-.. . .. -, -. -
, n •Im ~ lll -~liI lI l |S -l '"' ' ... .



APPENDIX B

Summary of Test Group Status

Test Group Applicable Test Subiect
Issue

ADDSA1, ADDSA2, ADDSA3 18119 Addition

AKERA?, AKERA3 18,19 Ackermann

LVRNA2, LVRNA1, LVRNB2, LVRNB1 N/A Loc var, scai

*LVRAA2, LVRAA1, LVRAB2. LVRAB1 N/A Loc var, see

BRUAA2, BRUAA1, BRUNA2, BRUNA1 N/A Block ref

PRUAA2, PRUAA1, PRUNA2, PRUNA1 N/A Proc ref

GVRAA2, GVRAA1, GVRNA2, GVRNA1 N/A Glob var

*FPRAA2, FPRAA1, FPRNA2, FPRNA1 N/A IN OUT parm

LRRlA2. LRRlA1 N/A Loe roe var

LRR2A2, LRR2A1 NIA Loc ree var

LRR3A2, LRR3A1 NIA Loc roe var

LAVRA2, LAVRAI, LAVRB2, LAVRB1 N/A Loc array

NLOOA1, NLO7A2, NL65A2 N/A Nested loops

* ULTA1, ?IULTA2, MULTA3 18,19 Mlultiply

CHSSAI, CHSSA2, CHSSA3 18,19 String arch

*SIEVAI, SIEVA2 N/A Eratosthenes

AOCEA1, AOCEA2, AOIEA1, AOIEA2 17 Optimize code

ASSIA2, ASSIA3, ASSIA4, ASSIA5, Assignment
ASSIB2 N/A statements

BALPA1, RALPA2 N/A 1 loop stant

BLEMA2 N/A Embedded blks

*BSRCA2, BSRCA3 N/A Binary arch

h-98



Test Group Applicable Test Subiect
Issuel

C31PA2 N/A Par& passing

CAPAA1, CAPAA2, CAPABI, CAPAB2 N/A Proc call

CASEA2 N/A Case stat

CENTA2, CENTB2 N/A Enumeration

CSBTA1, CSBTA2, CSCTA1, CSCTA2, Case stats
CSDTA1, CSDTA2, CSETA1, CSETA2,
CSSTAI, CSSTA2, CSSTB1, CSSTB2,
CSSTC1, CSSTC2, CSSTD1, CSSTD2,
CSSTE1, CSSTE2 N/A

DRPCA1, DRPCA2 N/A Recurion

FlIUA1, F1IUA2, FL2RA1, FL2RA2,
FLP1A1, FLP1A2, FLP2A1, FLP2A2 N/A Loop stants

FACTA1, FACTA2 N/A Factorial

FPAAA1, FPAAA2, FPAAB1, FPAAB2 Proc calls
FPANA1, FPANA2, FPANB1, FPANB2,
FPANC1, FPANC2, FPANDI, FPAND2 N/A

HSDRA2 N/A Heapsort

IADDA1, IADDA2, IDIVA1, IDIVA2, Integer
IEXPAI, IEXPA2, IMIXA1, IMIXA2, Expressions
INIXB1, IHIXB2, INIXC1, IMIXC2,
IMIXD1, IMIXD2, IMIXEI, IMIXE2,
IXODA1, IMODA2, IMULA1, IMULA2,
IREJIA1, IREJ1A2, ISUBAI, ISUBA2 N/A

INTDA2, INTDB2, INTDR3 NIA Decir stuts

INTQA2 N/A Int queue

ISEQA2, WTCQA2, PGQUA2, S0lOA2, 1/0 seqs
SQPGA2, VPGSA2 N/A

LFIRAI,LFIRA2,LFSRA1 ,LFSRA2 N/A Loops

LOAEAl, LOAEA2, LOECA1, LOECA2, Optimize
LOFCA1, LOFCA2, LONEA1, LONEA2, loops
LOSCA1I LOSCA2, LOLJIA2., LOUIA2,
LOUSAl, LOUSA2 17

WIN IA2 N/A Minimal pgm

H- 99



Test Group Applicable Teat Subiect
Issue

MTESA2, NTISA2 NIA Empty set

NPPCAI, NPPCA2 NIA Proc call

NRPCA1, NRPCA2 N/A Recursive call

XUL.LA1, NULLA2 N/A Null procs

OPAEA1, OPAEA2, OPBFA1. OPSFA2, Optimize
OPCEA1, OPCEA2, OPCFAI, OPCFA2,

ODA!, OPS2 OPISAl, OPISA2,
OPLEA1, OPLEA2, OPNFA1, OPNFA2,
OPSCA1, OPSCA2, OPSEA1, OPSEA2 17

*PIALA2 N/A PI test

PKGEA1, PKGEA2, PKGSA1, PKGSA2 N/A Packages

*PRCOA2 N/A Buffering task

PRPCA1, PRPCA2 N/A Parallel recur

PLJZZA2, PUZZA3 18,19 Puzzle

*RANDA2 N/A Rand num gen

RCDSA2 N/A Record fields

RENDA1, RENDA2 1 Rendezvous

SHARA2 NIA Access to glbl

SORTA2 N/A Sort shell

SRCRAI, SRCRA2 N/A Composite ob3

*SRTEA1, SRTEA2 N/A Simple rec typ

TAIPAI, TAIPA2, TAIPBi, TAIPB2, IN parm to tak
TAIPCI, TAIPC2, TAIPD1, TAIPD2,
TAIPE1. TAIPE2, TAIPF1, TAIPF2,
TAIPGl, TAIPG2 NIA

TAOPA1, TAOPA2, TAOPB1, TAOPB2, IN OUT parm
*TAOPC1, TAOPC2, TAOPD1, TAOPD2, to task

TAOPEI, TAOPE2, TAOPF1, TAOPF2,
TAOPG1, TAOPG2 N/A

*TPGTA2, TPGTB2, TPGTC2, TPGTD2 9 Guards

H-100



Test Group Applicable Test Subiect

Issue_

TPITAI, TPITA2, TPITBI, TPITS2, Idle task&
TPITC2, TPITC2, TPITDI, TPITD2 14

TPOTA2, TPOTB2, TPOTC2 22. Entry clauses

TPSTA2, TPSTB2 8Nuwi selects

TPTCA2, TPTCS2, TPTCC2, TPTCD2, Task chains
TPUTA2, TPUTB2, TPUTC2, TPUTD2 NI/A

TPUTE2 12 Starved task

UAPAA1, UAPAA2, UAPAB1, UAPAB2 NIA IN OUT as pars

VFADA1. VFADA2, VIADAI, VIADA2 NIA Vector add

WHETA2, WHETA3 18,19 Whetstone

WHLPAI, WHLPA2 N/A Loop while

H-101



APPENDIX C

Source ListinQs of Other ProQrams

This is the source listing for TST025. It was obtained
from another project (Ruane and others, 1985:69-71).

--Ad& Run Time Environment Test Mitre Dept D-67
--Test Issue #25 Project 4100 --

--Description:

.. -- Create deadlock situation to determine whether system will
- recognize deadlock and acknowledge the problem. --

--Programmer : Michael Ruane, Joseph Galia
--Version : 1.0
-- Date : 31 July 1984
-- Filename : TSTO25.ADA --

-- Computer : ROLM/ADE

with TEXT 10,

CALENDAR;

use TEXTIO, CALENDAR;

procedure TESTDEADLOCK is

DEAD-LOCK : BOOLEAN :a FALSE;
SECS : constant :a 1.0;
PASSES : INTEGER :- 2;

package INT_IO is new INTEGER_1O (INTEGER);

use INTIO;

procedure PUTTIME is

package DURIO is new FIXED_1O (DURATION);

begin
DURIO.PUT (ITEMs> SECONDS (CLOCK));
NEWLINE;

end PUTTIHE;

H-102



task ONE is
entry STARTUP;
entry INTOONE;

end ONE;

task TWO is
entry STARTUP;
entry INTO_TWO:

end TWO;

task body ONE is
begin

for I in 1 .. PASSES loop
accept STARTUP; -- synchronize test
PUT TIME;
SET COL (TO w> 20);
PUT LINE ("Task ONE Startup");
NEW LINE;
PUT-TIME;
SET COL (TO *> 20);
PUT-LINE ("Call to task TWO");
TWO.INTOTWO;
PUT TIME;
SET COL (TO a> 20);
PUT LINE ("Return to Task ONE");
PUT TIME;
SET COL (TO a> 20);
PUT-LINE ("Accept Task Two entry or wait 15 sees");

select

accept INTO-ONE do
PUTTIME;
SET COL (TO => 20);
PUTLINE ("Accepted Task TWO entry");

end INTOONE;
or

delay 15 * SECS;
PUTTIME;
SET COL (TO a> 20);
PUT LINE ("15 sec wait over");

end select;
end loop;

4end ONE;

task body TWO is
begin

for I in 1 .. PASSES loop
accept STARTUP; -- synchronize teat
PUT TIME;
SETCOL (TO -> 40);
PUTLINE ("Task TWO Startup");
NEW-LINE;

H-103

*5**- • * , o * 5* o . , o . - S. ,,,% % I % , * % °, , .. S , , . * 5. . . . .. ",' . -. • .J**~* S* S . .S .,-~ , S. * . . -.



RD-A172 343 EVALUATION AND VALIDATION (EAY) TERM PUBLIC REPORT 545
VOLUME 2(U) AIR FORCE HRIGHT AERONAUTICAL LAOS
WRIGNT-PATTERSON AFD OH R SZYMANSKI 36 NOV 85

UNCLSSIFIED F MALTR855-1016VOL22F/O142NL

EEEmhhhEEohhhI



1.8.

IIIIL25__



accept INTO_TWO do
PUTTIME;
SETCOL (TO a> 40);
PUTLINE ("Entry accepted in Tack TWO");
PUT-TIME;
SETCOL (TO a) 40);
PUT-LINE ("Timed entry call into Task ONE: 20 sac");

if not DEAD-LOCK than
select
ONE.INTOONE;

or
delay 20 * SECS;
PUT TIME;
SETCOL (TO a) 40);
PUT-LINE ("Waited too long. Finished Task TWO");

end select;
else

-- DEADLOCK *?*?o?*??*??e??e??e??*???--
SETCOL (TO a) 40);
PUT-LINE ("Deadlock about to be initiated");
ONE.INTOONE;

end if;
end INTOTWO;

end loop;
end TWO;

begin
-- TEST DEADLOCK

for PASS in 1 .. PASSES loop
PUT ("Peas number: ");
PUT (PASS);
NEWLINE;
if PASS a 2 then
DEADLOCK := TRUE;

dPUT C"Deadlock!2");

end if;
NEXWLINE (SPACING w) 2);
ONE.STARTUP;
TWO.STARTUP;
PUTTIME;
NEWLINE;
PUT_LINE ("Main program gets CPU and I/O");
NEW_LINE;

end loop;
-- PASSES

end TEST-DEADLOCK;
pragmea MAIN;

H-i04
* . S &~ M ~ M4 ~ ~ .k



-- This program illustrate& a large indivisible date
-- structure where the application program is not
- - concerned about address space boundries but forces
-- the Ada compiler/RTS to deal with them.

procedure LIDSAI(X: LONG_FLOAT);

procedure LIDSAl(X: LONG-FLOAT) is
MAP : array (INTEGER range 1..32767) of LONGFLOAT;

-- array size ) 64 K words =) won't fit in
:* - - one address space

begin

for I in 1..32767 loop

LIDSA1(MAP(I));

-- This loop forces an address change somewhere in it.
-- The compiler/RTS must generate a BEX that checks
-- every time through the loop for an address space
-- change.

and loop;

and LIDSA1:

-- NOTE: This program adapted from an example in the
-- AIMS Interim Technical Report
-- (Avionics Laboratory, 1984:4-24)

H-105

4 i

-i~~.* v -



-- This program is a modified version of LIDSA1 where
-- the application program takes care of address space
-- boundries. It was modified to take advantage of
-- where the start of the array is physically located.

procedure LIDSA2CX: LONGFLOAT);

procedure LIDSA2(X: LONGFLOAT) is

MAP : array (INTEGER range 1..32767) of LONGFLOAT;
-- array size > 64 K words => won't fit in
- - one address space

begin

for I in 1..26384 loop

LIDSA2(MAP(I));

-- MAP() should be physically located at the low end
-- of address space 1, so there won't be any context
-- switching in this loop (so no SEX generated).

end loop;

LIDSA2(MAP(16385));
-- Context switching done here (one SEX).

for I in 16386..32767 loop

LIDSA2(MAP(I));

-- There should be no context switching at all in this
- - loop since everything accessed is in address space
-- 2 (so no SEX required).

end loop;

end LIDSA2;

-- NOTE: This program adapted from an example in the AIMS
-- Interim Technical Report
-- (Avionics Laboratory 1984:4-25)

H-1o6



- - .s .stne Prototype ACEC test ADDSA2 with the

- - EXCEPTION
- - WHEN NUMERIC-ERROR U)
-- Y Y:aX;

-- lines added. When run times of this program are
-- compared to those of ADDSA2, an indication of the
-- cost of an exception that is never invoked is
-- obtained.

WITH INSTRUMENT; USE INSTRUMENT;
PROCEDURE EXCEP2 IS

X : FLOAT :a 0.000_001;
Y : FLOAT :a 0.0;

BEGIN
START (ADDSA3", "ADDSA2 WITH NUKERICERROR EXCEPTION )

FOR I IN 1-1200 LOOP
FOR J IN 1-1l0 LOOP

Y :sY * X 0 X * X + X * X X X*X *X X *I

-included in teat version
Y :aFLOATCIDENTINT(I*J));

END LOOP;
END LOOP;

STOP;
EXCEPTION

WHEN NUMERICERROR *

Y :a X:
END EXCEP2;

A -

b. Y
IJ



I
APPENDIX D

Test Harness Used On the VAX 11/780

This is the file harnessmany.com. It was executed by
entering "'aubmit harnessmany/parameters
(addsa.lat,[witt.acvtat))/noprint".

$1 This VAX/VMS command file loops through a file
$! containing Ada source benchmark test file names end
6! submit& them to the test harness for the collection of
St the various statistics. For this implementation, this
S! COM file must be submitted as a batch 3ob.
8!
6! The name of the file containing the test names is given as
6! the first parameter to this command procedure.

* 5!

6! The second parameter is the directory in which these tests
8! must reside.
a!
3!
6! Set the default Ada library
S!

S acs set lib [witt.adalib)
3!

St Set the default directory to (witt.acvtat2
3!

8 set def [witt.acvtat]
$!

S! Create the three statistic files
6!
a create comp.dat
* create instr.dat
a create run.dat

6! Open the file with the test names
8!

a open/read in_file "p1
St
$! Loop through the file of tests, submitting each test to
at the harness for the collection of the various data.
6!
S loop:
S read/endoffileadone in-file test
S @harness 'test' 'p2'
S goto loop

*! At the end of the input file, close the file and
at terminate this command procedure.

S done:
S close Lnfile
• write ayaSoutput "All tests have been submitted for testing"

H-1o08

* *-- . . . . . . . .-. * .. ., -. . , .-.. .*.*~. .. ,- .- -, *",*,. ,,*.*q.,*,,., -,,'...**, . ,



This is the file harneas.con which was executed from
harnessany.

6? This VAX/VMS command file perform& functions necessary to
6! collect various data about Ada source test file&.
a! Theme data are put into the file& 'comp.dat'
a! (compilation statistics), linstr.det'
9! (instrumentation statistics) and 'run.dat' (run-time
at statistics).
6!
6! Record the current elapsed and CPU times (before
6! compilation)
a!
" beg~cputime a f~getjpi("*,8*putim")
S beg time a f~timeo)

8! Compile and linktthe test

0 ada/nocopy~source *p2''pl'
9 acs link 'p2.'

B! Record the current elapsed and cpu times (after
8! compilation)
6! 1
" and~cpu~time a f~getjpiC","cputim")
" end-time af~timeo)
G!
8! 'file' a> filespec of the ob~ect file created by the
6! compilation

S file a "Cwitt.adalibJ" * p2. * "o3
8!
5! Calculate the number of bytes in the ob~oct file

" blocks-used a f~file-attributes(file,'Oeof")
* block-size afsfile-attributes(filoeabls")
" file-size a blochs-used * block-size

6! Calculate elapsed cpu time ( in hundredth& of seconds)

S cputime a Cendcputime - beg~cpu~time)
St

* St Divide the elapsed cpu time into seconds and
$I hundredths-seconds

" cputimesaecs a CPU~time / 100
" cputimehundsecs a cputime - 100 * cputiaesaecs

61 Put the compilation cpu statistics in an output line
at NOTE: I filled in the elapsed time stuff--not relevant
6 out-line a "'1' *

' cputimesaecs'.''cputime-hundses' ''file-size'"

H-109



B!M T
St Append the output line onto the file
S!

* open/append coMp comp.dat
S write comp out_line
" close comp
St

$I Record the current cpu time (before execution)
St

6 beg cpu time a fSgetjpi("","cputim")

S! Run the executable file

S run 'pl'.oxe
St
S! Record the current cpu time (after execution)
S!
S end-cpu~time w f~getjpiVss 'cputim'o)
St
S? Append the instrumentation statistics to instr.dat

• "S append instr.; instr.dat
°. S!

S! Calculate elapsed cpu time (in hundredths of seconds)
S!
$ cpu time a (endcpuAtime - beg cpu time)
S!
S Divide the elapsed cpu time into seconds and
6! hundredths-seconds
8t
6 cpu_time_aecs a cputime / 100
S cpu_time_hundaecs a cputime - 100 a cpu_tiae_eca
St

S! Put the available execution statistics in one output line
St NOTE: I filled in the elapsed time stuff--not relevant
S out-line a "''pl' " # -

• "'cputiAe_eca.''cpu_tiAe_hundsec ""

S!

S! Append the output line onto the file
* St

S open/append run run.dat
S write run out-line
S close run

* St

St Delete unnecessary files
t

S del instr.;e
$ del "p1'.exe.q
Sacs delete unit 'pl'
St

H-IIO

, . - • • . .. . ,o . . . . " f. .• . - . . V.. - *. . . . . . .



.WN -. n -"? ~ ~ 7-2 W .WL - . W-7 - -; W. W. 7 W7 7.,

APPENDIX E

Test Harness Used On the Date General

This is the file HARNESSIANY.CLI:

CREATE HARNESS. OUT
CREATE INSTR.DAT
QBATCH/QOUTPUTzxlx.LOG/NOTIFY CLINE CONTINUES]
:ACCOUNTS:<acct number> :FILES:HARNESS-A %1

It was executed by entering HARNESSMANY TESTIN where TESTIN
is the name of the file that lists the programs to be
compiled and executed in the following manner:

(PROGR1 L
PROGR2 &

PROGR3)

This is the file HARNESS-A.CLI. It's purpose is to limit the
number of compiles or executions to just one at a time.

:ACCOUNTS:(ecct number)o:FILES:HARNESS EXl:3

This is the file HARNESS.CLI. It controls, the actual
compilation, execution, and statistic collection.

RUNTIME/L=Ix.STAT
ADA/MAIN PROGRAM %l-X
ADALINK XI
RUNTIME/Lwxl%. STAT
PAUSE 15
FI/LENGTH/NHEADER/Lvxlx.STAT Xl%.PR
COPY/A HARNESS.OUT %1%.STAT
DELETE .%1%.HST %1x.LOG x1%+.OB %X1.PR xlx..SR xlx.STAT
DELETE Xl%*.STR %l%+.TREE
X xi1s
COPY/A/laWARNING/2uWARNING INSTR.DAT INSTR

* DELETE INSTR

H-11l



APPENDIX F

Compilation Reaults

TEST NAME DEC COMPILER DATA GENERAL COMPILER

CPU TIME OBJECT CODE CPU TIME OBJECT CODE
SIZE SIZE

(BLOCKS) (PAGE SECTS)

ADDSAI 6.42 1024 10.06 a 81 
ADDSA2 6.96 1536 10.05 a 879 *
ADDSA3 7.22 1536 10.03 a 878 a
AKERA2 7.20 1024 10.02 a 876 a
AKERA3 7.62 1024 10.00 a 875 *
MULTA1 6.36 1536 9.97 o 874 a
MULTA2 6.77 1536 9.94 & 872 •
MULTA3 7.21 1536 9.93 o 870 *
CHSSAI 10.00 4096 9.92 - 869 a
CHSSA2 10.20 4096 3.90 a 867 a
CHSSA3 10.68 4096 9.91 a 865 a
AOCEAI 12.46 2560 9.89 a 864 a
AOCEA2 12.45 2560 9.88 a 863 *
AOIEAl 12.69 3072 9.86 a 861 *
AOIEA2 12.63 3072 9.84 a 860 a
LOAEA1 12.21 2560 9.81 a 858 a
LOAEA2 12.23 2560 9.79 o 857 '

LOECA1 12.70 2560 9.76 o 855 a
LOECA2 12.28 2560 9.73 * 853 a
LOFCAl 12.78 3072 9.69 o 852 9
LOFCA2 12.66 3072 9.65 a 850 a
LONEA1 12.70 3072 9.50 a 849 0
LONEA2 12.57 3072 9.47 * 848 0
LOSCAl 14.80 4096 9.36 846 a
LOSCA2 14.88 4096 9.32 a 845 a
LOUIAl 15.43 3584 9.24 843 a
LOUIA2 15.40 3584 9.19 841 a
LOUSAI 12.90 3072 9.14 * 840 •
LOUSA2 12.11 3072 9.11 * 840 a
OPAEA1 13.19 3072 9.09 • 839 a
OPAEA2 13.17 3072 9.06 • 839 &
OPBFAl COMPILE ERROR COMPILE ERROR
OPBFA2 COMPILE ERROR COMPILE ERROR
OPCEA1 14.17 3072 9.03 * 837 a
OPCEA2 14.21 3072 8.99 a 836 e
OPCFAI 14.10 3072 8.97 a 834 a
OPCFA2 14.40 3072 8.96 a 833 a
OPDSA1 13.38 3072 8.94 a 831 a
OPDSA2 13.64 3072 8.93 * 830 a

NOTE: Results marked with • are invalid

H-112

"€ ' '€ ' '¢ " "' " " " ', -'" , " 2 " " '- : " "- " " € * .." " • " ". ,' "" " *," " , " " *
'



Com iletion Results (Con't)

TEST NAME EC COMPILER DATA GENERAL COMPILER

CPU TIME OBJECT CODE CPU TIME OBJECT CODE
SIZE SIZE

(BLOCKS) (PAGE SECTS)

OPISAI 14.15 3072 8.91 a 829 *

OPISA2 13.94 3072 8.90 a 828 a

OPLEA1 14.44 3072 9.38 a 882 9

OPLEA2 14.29 3072 9.37 • 882 *

OPNFA1 12.15 2560 9.35 * 879 a

OPNFA2 12.31 2560 9.33 877 •

OPSCA1 15.51 3584 9.32 * 876 a

OPSCA2 14.93 3584 9.30 * 874 •

OPSEA1 13.78 3072 9.29 * 873 a

OPSEA2 14.30 3072 9.28 * 872 a

PUZZA2 38.83 14336 9.27 .871 •

PUZZA3 38.78 14336 9.23 * 867 a

RENDA1 8.22 2560 9.22 * 866 a

RENDA2 8.19 2560 9.21 • 865 a

TPGTA2 9.11 3072 9.19 9 864 a

TPGTB2 8.86 3072 9.18 • 862 •

TPGTC2 15.80 6656 9.16 a 861 a

TPGTD2 14.94 6656 9.14 a 859 -

TPITA1 9.65 3584 9.12 * 858 o
TPITA2 9.86 4096 9.11 a 856 a
TPITB1 13.23 6656 9.09 • 855 9
TPITB2 14.94 7168 9.07 a 854 a

TPITC1 18.27 10240 9.06 0 852 a

TPITC2 21.32 11776 9.05 a 850 a

TPITD1 27.47 17408 9.03 0 849 •

TPITD2 35.63 20480 9.01 0 848 a

TPOTA2 17.53 8192 8.99 * 846 •
TPOTB2 17.52 8704 8.98 - 844 a

TPOTC2 49.80 21504 8.96 * 842 •

TPSTA2 8.73 3072 8.94 * 841 n

TPSTB2 12.93 5632 8.93 839 a

TPUTE2 10.49 4096 8.91 * 838 •

WHETA2 15.85 3584 8.90 * 836 a

WHETA3 16.79 3584 8.81 * 834 a

NOTE: Reults marked with • are invalid

H-lII3



APPENDIX G

SEamle of File HARNESS.OUT

ADDSAI
ELAPSED 0:00:04, CPU 0:00:00.196. I/O BLOCKS 45, PAGE SECS 14
ELAPSED 0:03:21, CPU 0:00:10.252, 1/O BLOCKS 219, PAGE SECS 886

=ADDSAI.PR 323584
ADDSA2
ELAPSED 0:03:51, CPU 0:00:10.499, I/O BLOCKS 311, PAGE SECS 909
ELAPSED 0:07:15, CPU 0:00:20.551, I/O BLOCKS 488, PAGE SECS 1844

-ADDSA2.PR 323584
EXCEP2
ELAPSED 0:07:48, CPU 0:00:20.795, I/O BLOCKS 582, PAGE SECS 1867
ELAPSED 0:11:08, CPU 0:00:30.822, I/O BLOCKS 791, PAGE SECS 2809

-EXCEP2.PR 323584
ADDSA3
ELAPSED 0:11:40, CPU 0:00:31.066, I/O BLOCKS 887, PAGE SECS 2832
ELAPSED 0:14:59, CPU 0:00:41.092, I/O BLOCKS 1065, PAGE SECS 3775

=ADDSA3.PR 323584
AKERA2
ELAPSED 0:15:32, CPU 0:00:41.335, 1/0 BLOCKS 1158, PAGE SECS 3798
ELAPSED 0:18:55, CPU 0:00:51.353, I/O BLOCKS 1335, PAGE SECS 4739

mAKERA2.PR 323584
AKERA3
ELAPSED 0:19:27, CPU 0:00:51.595, I/O BLOCKS 1432, PAGE SECS 4762
ELAPSED 0:22:54, CPU 0:01:01.592, I/O BLOCKS 1612, PAGE SECS 5702

mAKERA3.PR 323584
MULTAl
ELAPSED 0:23:25, CPU 0:01:01.836, I/O BLOCKS 1718, PAGE SECS 5725
ELAPSED 0:26:42, CPU 0:01:11.803, I/O BLOCKS 1893, PAGE SECS 6662

=MULTA1.PR 323584
MULT-
ELAPSED 0:27:14, CPU 0:01:12.045, 1/0 BLOCKS 1988, PAGE SECS 6684
ELAPSED 0:30:36, CPU 0:01:21.9a2, I/O BLOCKS 2166, PAGE SECS 7618

wMULTA2.PR 323584
MULTA3
ELAPSED 0:31:09, CPU 0:01:22.222, I/O BLOCKS 2264, PAGE SECS 7641
ELAPSED 0:34:27, CPU 0:01:32.154, I/O BLOCKS 2444, PAGE SECS 8575

-=ULTA3.PR 323584

CHSSA1
ELAPSED 0:35:00, CPU 0:01:32.399, I/O BLOCKS 2556, PAGE SECS 8598
ELAPSED 0:38:33, CPU 0:01:42.318, I/O BLOCKS 2731, PAGE SECS 9530

-CHSSAl.PR 323584
CHSSA2
ELAPSED 0:39:18, CPU 0:01:42.556, I/O BLOCKS 2824, PAGE SECS 9552
ELAPSED 0:42:39, CPU 0:01:52.453, I/O BLOCKS 3001, PAGE SECS 10483

xCHSSA2.PR 323584
CHSSA3
ELAPSED 0:44:37, CPU 0:01:52.694, 1/0 BLOCKS 3100, PAGE SECS 10505
ELAPSED 0:48:33, CPU 0:02:02.606, I/O BLOCKS 3277, PAGE SECS 11437

=CHSSA3.PR 323584

H-114

.-.- .,. .-.. .. ,...... . ..... ... .. -... ... ... '. , , .. .- *... .-' . . . = --- *''



APPENDIX H

Execution Results

DEC COMPILER DATA GENERAL COMPILER

TEST NAME CPU TIME CPU TIME

ADDSA1 0.93 0.17
ADDSA2 4.60 1.93
ADDSA3 4.30 1.93
AKERA2 1.60 0.25

AKERA3 1.70 0.25
MULTAl 3.84 1.72
MULTA2 4.40 2.06
RULTA3 4.11 2.06
CHSSA1 1.72 7.32
CHSSA2 ?11.54 32.90
CHSSA3 11.51 24.57
AOCEA1 1.84 1.15
AOCEA2 1.79 1.17

AOIEAl 1.89 1.15
AOIEA2 1.91 1.16
LOAEA1 3.51 2.11
LOAEA2 2.71 2.10
LOECAl 7.86 6.92
LOECA2 8.14 7.38
LOFCA1 1.79 0.84
LOFCA2 1.78 0.84
LONEAl 7.14 6.15
LONEA2 6.92 6.20
LOSCAl 13.32 12.34
LOSCA2 12.43 12.31
LOUIAl 7.54 6.93
LOUIA2 7.57 7.26
LOUSAl 7.12 6.08
LOUSA2 7.25 6.35
OPAEA1 0.99 0.38
OPAEA2 0.99 0.38
OPCEA1 1.13 0.42
OPCEA2 1.10 0.38
OPCFAI 1.19 0.50
OPCFA2 1.19 0.51
OPDSAI 1.4 0.49
OPDSA2 1.15 0.49
OPISAl 1.15 0.49
OPISA2 1.17 0.49
OPLEAl 1.38 0.67
OPLEA2 1.37 0.67
OPNFA1 0.83 0.18
OPNFA2 0.84 0.18

I-115



Ex~eution Results (Con't)

DEC COMPILER DATA GENERAL COMPILER

TEST NAME CPU TIME CPU TIME

OPSCAl 0.80 0.19
OPSCA2 0.85 0.19
OPSEAl 1.33 0.67
OPSEA2 1.35 0.67
PUZZA2 8.42 11.65
PUZZA3 8.34 12.01
RENDA1 1.60 0.18
RENDA2 3.42 6.77
TPGTA2 3.37 11.48
TPGTB2 3.55 11.57
TPGTC2 3.76 12.11
TPGTD2 3.83 12.11
TPITAl 3.48 11.03
TPITA2 3.53 10.96
TPITB1 3.40 10.87
TPITB2 3.61 11.08
TPITC1 3.72 11.04
TPITC2 3.72 11.03
TPITD1 3.98 11.06
TPITD2 4.20 11.21
TPOTA2 19.60 54.70
TPOTB2 19.96 60.67
TPOTC2 152.31 431.38
TPSTA2 3.46 11.71
TPSTB2 3.48 15.71
TPUTE2 2.50 5.98
WHETA2 3.10 12.63
WHETA3 2.95 9.51

EXCEP2 4.55 1.94
LIDSAl ERROR DURING LINK COMPILE ERROR
LIDSA2 ERROR DURING LINK COMPILE ERROR

TEST-DEADLOCK UNDETECTED DEADLOCK UNDETECTED DEADLOCK

H-116



VITA

Donald J. Witt was born on 27 December 1946 in Cisco,

Texas. He graduated from Cisco High School in 1964 and

enlisted in the Air Force in June 1964. His twelve year

enlisted career included assignments in Japan, the

Philippine Islands, Vietnam and at Kessler AFB, Mississippi,

and Gunter AFS, Alabama. After receiving a Bachelor of

Science Degree in Business Administration from Troy State

University at Montgomery, Alabama, in 1976; he was

commissioned through Officer Training School in October

1976. His first assignment as an Air Force officer was to

the Manpower and Personnel Center at Randolph AFB, Texas.

While there, he was instrumental in designing, coding, and

implementing the Promotions and Placement Referral System of

the Civilian Automated Personnel Data System. In December

1980 he was assigned to the 6002 Computer Services Squadron,

Headquarters Pacific Air Forces (PACAF), Hickam AFB, Hawaii.

His duty was as Chief, Analysis and Programming Division,

with his primary responsibility being the transition of

PACAF unique software under the guidelines of the base level

capital replacement program, Phase IV. He left Hawaii when

asaigned to the Air Force Institute of Technology School of

Engineering at Wright-Patterson AFB, Ohio in May of 1984.

Permanent address: Rt 1, Box 246

Grand Bay, Alabama 36541

1i-li7



iIM lRW-.p lw

APPENDIX I

E&V POSITION PAPERS



Table of' Contents

Single Project/Multiple APSEs ....................... 1-

Ada Program Library Systems . . ........................-

Security in APSE. .............................. 1-16

1-2

Lim-ar - -- L "N.-1 -- :;I 'I



SINGLE PROJECT/MULTIPLE APSES

JERRY BROOKSHIRE
TEXAS INSTRUMENTS

6

1-3

ALW



POSITION PAPER: SINGLE PROJECT/MULTIPLE APSES

BAC 2OUN

Tne purpose of this paper is to propose a topic for exteyided
consideration at the next annual APSE E and V Workshop, current3i
scheduled for July 1985. The proposed topic has many facets, but the
fundamental underlying question is the concern for distributed APSEs
and their communication mechanisms Many of the issues and problems
of conventional distributed processing are encountered here, plus a
set of concerns unique to multiple APSEs.

It is apparent that most very large scale defense system developments
will include components of very large scale mission critical software
development requirements, requiring substantial concurrent design and
development activies, potentially over a variety of target computers
which have been selected for their functional characteristics as
matched against desired/required system performance needs. It is to
be expected that overall system operational requirements would often
dictate a large volume of multi-way concurrent communications be'tween
the various functional nodes.

While the integration of such software developments into a cohesive
effort would be a highly desirable and preferred goal, such a luxury
will most often be infeasible if not impossible. The concern then
becomes one of coordination, at least for those elements which, in
the operational environmmeit, will have to be made aware of each
other. What this in turn implies is a need to have (possibly)
heterogeneous APSEs communicating with each other as a side effect
during the software development phase of the project. When this
situation is encountered, what are the special requirements for APSE
E and V that result?

In the "moving-target" environment of a large-scale software system
development, another ugly problem candidate presents itself,
especially at this relatively early stage of the Ada language
lifetime - the concurrent use of different Ada compilers for the
different stages of a single system development. This same problem
might be expected at the point of phase-over from a development-host
based system to the development-station phase of the effort.

1-14



X7. ..- .- - , - • -

SINGLE PROJECT / MULTIPLE APSEs or NETWORKED APSEs

Anoter oi the many circumstances that are to be encountered in the
field of large-scale projects requiring the development of
significant amounts of mission-critical software, one particular type
stands out as representing special and unique problems fo-
multiple-APSE evaluation and validation. This is the case where a
large host computer is used for primary embedded software
development, but the total effort also calls for the concurrent
development of a deliverable work station/development station with
some variety of APSE, to be used by the customer in the life-cycle
software support for the project. This circumstance places a special
emphasis on the above-mentioned communication problem earlu in tne
system development phase - how can the transition from large-scale
m-lti-user host to smaller-scale, fewer-user development stations be
madc while insuring compatibility of the software products beanQ sc
generated-

The speci .i issues that this situation brings to E and V include

• Original-host Development-station processor compatibility"

Stoula the Development station APSE be fully compatible with that
of the large-scale host- If not. how would the minimum APSE

subset be definedT

* Should these problem types be treated as two separate conceyns!
with two possibly independent APSEs and related E and V effort--
All of the interface/who-does-what questions are just postponed

slightly by this position

One of the most significant aspects of all of the anticipated

issues is the question of the database - its structure, its
residence, and its distribution over the development network
How can a remote development station have access to the necessary
information to support link- and run-time data confirmation,
etc.?

* Development station selection/specification criteria the
MAKE/BUY decision processes for the system developer. If a good
development station exists for the target, this may be a trivial
question - but can such an eventuality be used to drive the
selection of the target processors?

* The possibility of having different compilers on the host and on
the supporting development station. At which level do we place
the integration and test debugging; where to provide the
simulation support; how to handle the potential incompatibilities
of PRAGMAs and target-processor dependent representation
specifications.

• Assuming at some stage an established working relationship
between the original development host computer, and the
used-destined development station Should the host be accessed
by the workstation in order to provide the user with a consistent

1-5



interface:'

PROFOSED APPROACH - ISSUE STUDIES

If this proposal is accepted as a topic for the workshop, we would
propose the development of a set of studies based on the refined and
final issues to be delineated as a result of the workshop. The most
direct way of conducting such studies would seem to be in conjunction
with preparations for large-scale mission-critical software
developments, such as the TI (ATmY) LHX development, just underway.
Other projects would have even more source for support, as they would
initially involve two or more major undertakings by different
organizations/contractors (eg., WIS and SDI).

i

1-6

e a!-~'



vl'.777 %77 1. 1.- k-.1- Wt- ~-

APPENDIX A

REFEREN-CES

-.T;, Te foiiowing references are listed in alphabetical oroer by
icenOing year

[T177A 3 Equipment Group Software Development Guide
(SF24-EG77), December 1977

rTI77E I Equipment Group Software Management Standard
(SP23-EG77), December 1977

[TIS&A I Mocel 990 Computer TI Pascal User's Manual, Texas
Instruments, Part 94b=90-9 701, 15 January 1980

[TISOL I The Microprocessor Pascal System (User's Manual),
Texas Instruments, 1980.

[TISOC I Survival Kit For Software Producers, Texas
Instruments, March 1980.

EMS6OA 3 Sixteen-Bit Computer Instruction Set Architecture,
MIL-STD-1750A, 2 July 1980.

[SOF1A] SofTech Inc., "Draft Ada Language System VAX-11/763
VAX/VMS Runtime Support Library B5 Specification,"
Waltham, MA, July 1981.

[SOF81B] SofTech Inc., °"Preliminary Draft Ada Language System
KAPSE B5 Specification," Waltham. MA, August 1981

[TI81A 3 Texas Instruments, "Ada Integrated Environment,"
Lewisville, TX, March 1981. Prepared for Rome Air
Development Center (RADC) under DoD Contract
F30602-80-C-0293.

[TIBIB 3 Equipment Group Programming Standards for Computer
Programs, Advanced Computer Systems Laboratory.
Texas Instruments, July 1981.

1-7

-- %



[ (NOSC.2A] Kernal Ada Programming Support Environment (KAPSE)
Interface Team Public Report Volume 1, Naval Ocean
Systems Center San Diego, Ca, 1 April 1982.

[NOSC92B] kernal Ada Programming Support Environment (KAPSEi
Interface Team Public Report Volume 2, Naval Ocean
Systems Center San Diego, Ca, 28 October 1982.

[SOF2C 3 So+Tech Inc., "Draft Ada Language System
Specification," Waltham, MA, August 1982.

. [TI62A I Texas Instruments, Advanced Computer Systems
Laboratory, "Proposal for Development of Ada
Software Tools and Interface Standards," Lewisville,
TX, February 1982.

[TI68iE 3 Texas Instruments, Advanced Computer Systems
Larjoratory, "A Training Program for Ada Issues and
Motivations", Lewisville, TX, 29 July 1982

[MS63A 3 Nebula Instruction Set Architecture, MIL-STD-1862D,
3 January 1923.

[AJF063] Evaluation and Validation (E and V) Test Plan,
Version 1.0, November 1983

[BOE3 I Booch, Grady, Software Engineering With Ada,
Benjamin/Cummings Publishing Co, Inc Menlo Park,
Ca, 1983.

[DAY23 3 JD Day and H Zimmerman, "The OSi Reference
Model". Proceedings of the IEEE, v.71, n. 1C,
December, 1983, pp 1334-1340

[HOU83 3 "A Taxonomy of Tool Features for the Ada
Programming Support Environment (APSE)", U.S
Department of Commerce, National Bureau of
Standards, December 1982, Issued February 1983

[TI83A 3 Texas Instruments, "AIM (APSE Interactive Monitor)
Program Performance Specification," Lewisville, TX,
19 September 1983. Prepared for Naval Ocean Systems
Center (NOSC) under contract N66001-82-C-0440.

[TI83B 3 Texas Instruments, "AIM (APSE Interactive Monitor)
Interim Report on Interface Analysis and Software
Engineering Techniques" Lewisville, TX, 16 May 1983
Prepared for Naval Ocean Systems Center (NOSC) under
contract N66001-82-C-0440.

[TI83L 3 Texas Instruments, "APSE Interactive Monitor (AIM)
Interim Report on Interface Analysis and Software
Engineering Techniques II (IR2)". Contract
N66001-82-C-0440. 01 December 1983.

I-8



ECAISE-4J IIT/KITIA CAIE Working Group, "Proposed Military~
Standard Common APSE Interface Set (CAIS)", 01
August 1984

1-9



ADA PROGRAM LIBRARY SYSTEMS

THOMAS LEAVITT
BOEING

1-10



POSITION PAPER

Ada Program Library Systems

After the compiler proper, the most important Ada Programming Support
Environment (APSE) design issue Is the program library system. The library
system provides the structure in which operations take place. Its major
properties are not revealed by listing the explicit library management
functions that can be performed. Most of the references to the library will
be implicit with the operation of the compiler: such as finding "with"ed
units and the parents of subunits; or storing objects. However, the
library system is not part of the compiler. Libraries exist independent of
a particular compilation, and there are operations performed on them not
related to compilation, like deletions of objects. and status inquires.

With validated Ada systems. running the ACVC test suite shows that it is
possible to get the separate compilation facility to work. This is a
minimal demonstration of sufficiency of a library system and does not imply
that the system is easy to use. or even practical to use in a production
env.rrnment. Various suppliers have taken very different approaches to
libra.y system design. When evaluating an APSE. it is important to consider
how the library system will affect the program development process. Even
with the limited experience to date. it has been clear that some library
systems are awkward to use. and would be impractical on all but small
projects.

The criteria for evaluating a library system are somewhat subjective. The
criteria include ease of use, effort required to learn, economy of use of
disc storage. elegance. efficiency of operations, robustness of operations.
and adaptability to project requirements. A good library system should
encourage controlled sharing. It must be easy to keep modules private and
to share them. A programmer constructing a test version of a program should
not impact other users of the library until explicit steps are taken to make
the updated version(s) visible to other users. When a shared unit is
updated. all the affected users should see the new version without requiring
any special action: in particular. It should not be necessary to send a
message to every user telling them to copy the new version into their
private libraries.

A good way to evaluate the library system of a proposed Ada system is to
require each supplier to respond with how their system will operate to
perform a list of scenarios. Each scenario would be rated with respect to
ease of use. and a minimum level determined. Systems which do not perform
up to the minimal level would be rejected (or at least be noted as
unacceptable without repair). Care should be taken that the minimum
standards do not unnecessarily disqualify off-the-shelf systems which are
workable if unpleasant. When actually procuring an APSE it is not desirable
to find that the lowest cost bidder. who has proposed what would have been
an acceptable system, has been disqualified, or worse that all bidders have
been disqualified.

Requesting such a list is important. Experience has shown that trying to
determine the capability of a suppliers library system from a less specific
request for information is frustrating. Proposals can be very unclear.
probably in part because the suppliers ore so familiar with their systems

I-ii



thaz they think their descriptions are obvious: they know what the
descriptions mean, but readers unfamiliar with the system can find the
wording extremely cryptic. The main Insue to consider is that the system is
straightforward and simple to use. Some consideration should be given to
other issues like apace usage, similarity to existing systems familiar to
users. and execution time overheadm.

The following list of thirteen operations should be stated in an RFP and
each supplier would respond with a description of how their system would
perform them.

1. Create a new main program '' which "with"s a preexisti-g unit 'A',
.Q where 'A' is shared by several programs and is visible to several

accounts. The new program '' is to be local in visibility to the
creating account. Outline the steps to be taken to edit. compile and
execute the program.

As in STONEMAN 4.A.4, every version in a library should be accessible.
The suppliers need to explain how this is done. In particular. where
units are named by "with" clauses, how do programmers indicate which
versions and variations are desired? There are at least three ways this
might be done: (a) by a directory structure and associated search
strategy such that programmers can place objects in the directory
structure where they will be found before other versions or variations of
the object (this might work implicitly through host OS directory
structure. or explicitly by having the programmer provide a list of
directories as a compiler parameter); (b) by some form of JCL or
compiler options which specify for each Ada unit name the identity of the
version and variation to use; or (c) by forcing the programmer to copy a
version of the desired object into a local structure before invoking the

compiler.

2. Create a new library unit 'C'. which "with"s no other units. Outline
the steps to be taken to compile the program and place it into a local
library so that it could be "with"ed by another unit at a later time.

3. Consider a main program 'H' which "with"s units 'A' and 'B'. which
are all globally visible. Outline the steps a programmer would follow to
create a test version of the program which uses a modified version of the

library unit 'A'. Assume that the only changes are to the body of 'A'.
* not to the specification: this should permit the user to avoid

recompiling 'H' in some cases and these steps should be described in the
proposal. Vhere the specification and body of 'A' are separate (i.e.
there is a subunit for the body of 'A') and the specification is
unchanged. recompilation of "'' should not be required unless the body
contains a subprogram specified "Inline". An optimizing compiler might
note when specifications are unchanged even when the body is not a
subunit. and so avoid obsoleting 'H'. The modified library unit 'A'
should be local, and so should the resulting executable program. This
new executable program version must not obsolete the preexisting version
visible to other users. The modifying programmer must be able to access
both the new local version and the preexisting external version. The

supplier should describe how this Is done.

1-12



4. Consider the situation similar to 3. above when. after re,n
convinced of the correctness of the modification. the global version or
'A' in to be updated. When done. is any notification given about units
which depended on 'A' and are now obsolete? Or Is such notification only
given when a reference to an outdated unit is made?

5. Outline what steps would be taken to see if a unit I. "curren-t"

that is* if it has been compiled more recently than the units on which i-

depends and they in turn are also current. If versions or variations are
supported. how does the user identify the ones to use when integrating
the library system? It is not tolerable to recompile a unit just to see
if the compiler generates any "obsolete unit" error messages.

6. For a program 'P', for each unit, list all other units which depend

on the unit. Also. for each unit, list the unite which it depends on.
The context of the program is important, mince with units shared between
programs the programmer could be swamped by extraneous unit names. A
popular unit such as a math library may be used in hundreds of different
programs.

In a similar manner. it is desirable to list all the units which directly

or indirectly depend on a specified unit, within a program. Such a list
indicates the units which would be made obsolete if the specified unit
were modified.

Such lists of dependent units might be provided by annotations in a link
map or by a separate library inquiry utility.

7. Delete a unit 'A' from the library. If there are other units which

depend on 'A'. does the system indicate at this time that units have been
obsoleted. or does it wait until programmers reference the obsoleted
unite?

STONEMAN requirement 4.A.6 calls for a mechanism to insure that "all the
database objects needed to recreate a specified object will continue to
be maintained in the database as long as the specified object itself

remains in the database". If such a mechanism is provided, how will the
"system respond to an improper delete request? In particular. will it

list the units which depend on the specified unit?

8. List the items in a library and their properties. The minimal

properties include: names: disc space occupied by the items: the Ada
unit names associated with the items (also the operating system source
file names should also be given mince an Ada compilation can contain
several Ada compilation units, and the name of the source file need not
be related to any of the contained units); the time of creation or last
update; and the time of last reference.

9. Trace back a machine address to the corresponding Ada source text.
Addresses may come from target machine assembly level debuggers. post
mortem dumps, hardware performance monitors, or test panel operations.
The expected mode of operation will be to refer to a link map to isolate
to an Ada unit, and If finer resolution to required, use a compiler
option to produce a assembly code listing. It Is desirable for the link
map provided to isolate address ranges to the Ada subprogram name level.

1-13



even 21 these names are not visible outside the units they are declared
in.

This may seem to reflect a linker requirement rather than a library
management system issue. However, many APSE'. have integrated linking
into the compilation process and all linking may be done a. a side effect
of compiling the main program, making linking a compiler/library issue.

This conflicts somewhat with STONEMAN 2.B.7 which encourage. the use of
Ada source terms, rather than assembly or machine level terms. However.
it is doubtful that APSE'. which will become available in the near future
will be able to satisfy this STONEMAN goal. Some may argue that the
availability of a source level debugger will remove the nee' for mapping
from addresses to source. However. If the debugger requires any
information in the object code to identify unit names or line numbers. or
if the use of the debugger involves a compiler option which produces any
different code (e.g. inhibits some optimization). the user is still
faced with the possible problems of debugging a program which works when
the "DEBUG" compile option is specified, but does not work when it is not
specifaed.

10. Copy a set of items in a library to another library.

It must be possible to create an ANSI interchange tape of source texts to
ship to another site which may be running an APSE of a totally different
design philosophy. It is highly desirable to be able to transfer
intermediate objects to other sites which run the same APSE so that it is
not necessary to recompile everything. It is also desirable to be able
to transfer objects between library systems in different accounts on the
same host system.

11. Some systems support versions of items. If the system supports
them, outline what steps are taken to restore a library to a prior
version. In particular, is this any different than creating a new
version of source of a unit. which happens to correspond to the text of a
prior version. and compiling it?

12. For a particular executable program it is necessary to be able to
determine the identity of the units from which it is constructed. This
includes the version and variation of the unit and the date of each
unit's creation or last modification.

This information may be provided on a link map. It should be possible to
retrieve this information without relinking. since users may have deleted
some of the objects used in the creation of the executable.

13. How much time does it take for typical users familiar with other
high level languages and with the Ads Language Reference Manual (LRM). to
learn to do all of the operations listed above from the user guide and
other supplied documentation?

It in not sufficient that the system developers can operate their own
system. It must be assured that programmers using the system can make it
work. It should not be necessary for the supplier to provide hands on
training for users to discover how to effectively use a system. The

1-14



issues involved relate to the clarity of the documentation and to the
complexity of the system.

This is an important point. A proposal for a system which supports a

required capability but does not provide sufficient documentation to
enable users to invoke it Is not acceptable an it stands. Similarly, a
function in an APSE which serves no immediately obvious purpose should be
explained.

Although a long learning time is not desirable. a successful APSE will be

used for a long time on several projects allowing a programmers learning
time to be amortized over years of use. Even then. unnecessary
complexity will complicate operations. If programmers do not understand
a system. they will not use it well.

As in STONEMAN 3.C. simplicity is desirable. A good design will use the
minimum number of additional concepts which still satisfy all
requirements. New arbitrary operations and unclear utilities should be
avoided if possible.

It is important that an Ada program library system be easy to use and
powerful enough to provide support for the program development process. By
requiring suppliers to describe how to perform a number of specific

operations it is possible to determine how easy programmers will find their
systems to use. It is required that the library system support controlled

sharing. Even though a system which doesn't share might be made very easy
to use it would not satisfy project requirements. Projects need to have
programmers create test versions of a system without impacting other users,
and programmers should pick up the most current version of shared units. In

all cases. users need to specify what units to use. These are some
capabilities associated with a library system which will facilitate use but
which may be packaged in several ways - either as separate tools. as part of
a linker, or as part of the compilation system proper, No matter where they

are packaged. they form an important part of the operations of an APSE and
are critical to the evaluation of an APSE. These capabilities include:
dependency list creation; identification of sources (including version
identification and creation dates) which went into t~ae construction of an
executable program; currency checking: and the user documentation of the
system.

1-15



SECURITY IN APSE

M.B. SURY and E.W. MARTIN
LOCKHEED MISSILES AND SPACE COMPANY

1-16

bl. *. -. *. -. * %~ **** ~~*% '



SECURITY IN APSE
M. B. SURY and E. W. MARTIN

Lockheed Missiles And Space Company
AUSTIN Division, Austin Texas

1.0 POSITION STATEMENT

SINCE software security is an essential
feature of mission critical applications,
the Evaluation and Validation (E&V) Task
should include software security
considerations in evaluating Ada*
Programming Support Environment (APSE)
Components and interfaces.

Section 2 elaborates on the above position statement along
with supporting arguments. A brief overview of software
security is also included. Section 3 presents an overview of
the approaches to security in the proposed Common APSE
Interface Set (CAIS), Ada Integrated Environment (AIE), Ada
Language System (ALS), and ALS/NAVY (ALS/N). Impacts on E&V
Requirements are briefly discussed. We conclude with the
observation that the access control mechanisms described in
CAIS Version 1.4 are supportive of the various security needs
and recommend that validation of an APSE be contingent on
conformance to CAIS in this regard.

2.0 BACKGROUND AND DISCUSSION

2.1 Relevant Security Concepts

Security can be described in general terms as the protection

of valuable assets. It is a recognized fact that software is
a valuable asset having a direct value (such as proprietary
material) as well as an indirect value (such as in the case of
software which controls a mission critical system). Mission
critical (Tactical) systems have stringent requirements for
information security and system availability. Specific
measures are required to ensure the privacy, reliability and
integrity of the system - while it is being developed as well
as after it is operational. The software must resist
penetration, malicious damage and possible takeover. There is
a need to protect software from unauthorized modifications and
destructions, whether accidental or malicious. Two proven
approaches to prevent unauthorized access are (i) isolation
and (ii) mediation. Isolation means separating the object

* Ads is a Registered Trademark of the Department of Defense, Ada
Joint Program Office. 1-17

* I' pP *~-* dfZ r



being protected from its threat. Mediation means that a
protecteb object can be accessed only via a mediating entity
called the 'reference monitor'. When a user (or a process)
wishes to access some data, the user makes an 'access request*
to the reference monitor after properly identifying himself.
The reference monitor verifies that the user is allowed the
requested access and if all the necessary checks have been
successful, then - and only then - the request is granted.
The reference monitor uses a prespecified authorization policy
to determine a user's capabilities and access permissions. It
is to be noted that a 'user* in this context, may be a person
in an interactive session with a computer or a process within
one computer acting on behalf of a user or a computer
communicating with another.

We classify security concerns into two categories: (1) those
that are related to the development environment and (2) those
related to the operational environment.

We observe that the software to be protected involves both
data and the routines (modules). We believe that the privacy
and integrity of the data (as opposed to the routines) are
more critical during operations than during development.
Thus, during development we emphasize the protection of the
code more than the test data. This is because an unauthorized
modification of the software might be the insertion of a
'trojan horse*, which makes the soft*are behave unpredictably.
The concern is compounded by the possibility that the
unpredictable behavior of the software might happen at the
most inopportune moment.

Mission critical applications involve the basic functions of
collection, processing, distribution and storage of data.
However, these functions (collection etc.) might be
distributed over a wide geographical area, involving a
multitude of processors of different types connected by
various types of communication links. Furthermore, these
functions have to be performed more securely, more reliably,in shorter durations and in hostile environments.

In either of the environments - development and operations -
certain issues arise due to the distributed nature of the
processing. Distributed processing is supported by APSEs and
has the benefits of improved performance, protection through
physical separation and confinement of sensitive information
within selected boundaries. However, it should be noted that
security controls on any one node in the network become
irrelevant if the information is available to other hosts that
do not have effective controls. Thus, security in a
distributed system is only as strong as its weakest link.

1-18



2.2 Security Issues In The Development Setting

The complex software needed for today's tactical systems is
usually developed by several vendors in a combined cooperative
effort. Besides the usual issues of integration, such an
environment raises sensitive security issues. To provide
accountability, maintainability, privacy, and integrity of the
software, standard physical and administrative security
controls need to be imposed in a way similar to a data
processing environment.

The development environment needs to be secured using standard
physical and administrative controls. All changes to
development software should be traceable and the tracking
should be automated. The measures to ensure functionality of
the software can also ensure the integrity and thus the
security of the software. We need to adopt good software
engineering practices. Object oriented design is one such
process that supports the principles of information hiding,
traceability, and maintainability. We need to verify also the
design and code of the developed software to ensure that the
software behaves as it is expected to. Towards this, program
verification techniques might be employed using tools such as
the Gypsy language. To control the costs, these techniques
may be applied to verify only the critical parts of the
software (e.g. KAPSE) rather than the entire software.

Tools are needed to prevent the penetrator from (i) exploiting
known vulnerabilities, (ii) recovering information from the
system, (iii) subverting security controls, (iv) denying
service to legitimate users, and (v) reprogramming the
operating system to do similar functions. The system must
provide a privileged set of commands that can be executed only
by well-controlled 'critical' processes. Most users and
user-processes will not have access to these privileged
instructions.
The system must prevent users from directly accessing or
executing critical functions such as resource allocation,

ma.ntenance routines, utilities, and data transfer control.
The system should have exclusive control over these critical
functions and it should be able to detect and report to the
system security officer any unauthorized attempts to execute
any of the above. The system should be able to detect all
error conditions that might jeopardize the system's integrity.

Rigorous procedures should be implemented to identify and
authenticate users and remote terminals. These access checks
would be performed at least once at the beginning of a session
and might be repeated (or augmented by additional checks)
several times during the session.

1-19



2.3 Security Issues In The Operational Setting

Data has to be protected while it is stored (dormant) in a
processor and while it is being processed. Data resident in a
processor might influence future transactions and
user-decisions and so the integrity and privacy of this data
is very critical.

Unauthorized access to mission critical data might be passive
(mere retrieval of data) or active (modification of data).
Passive access results in a loss of privacy and active access
results in a loss of integrity. This loss of integrity might
adversely influence future transactions. Access attempts (of
both passive and active types) can be thwarted by ensuring
that the operating system performs frequent integrity checks
on the data. Furthermore, stringent identification and
authentication measures should be implemented for database
updates.

The level of access control imposed on change-requests should
vary (and be commensurate) with the level of software in the
system that is being changed. For example, changes to the
operating system will be allowed only to the super-user and
only from the system console located at a predetermined,
physically secure location and only after the user passes
stringent authentication procedures. All changes to the
operating system should be recorded on a hard-copy or a
non-erasable medium.

2.4 Ada Programming Support Environment (APSE)

In the previous subsection, the need for security in the
development and operational environments has been detailed.
This section discusses the APSE approach to security.

The purpose of APSE is to provide an environment for the
design, development, documentation, testing, management, and
maintenance of embedded computer software written principally
in the Ada Programming Language. In particular, the
management and maintenance aspects warrant integrity,
reliability, robustness, and correctness of the software.
Major emphasis in the current work on APSE has been on
increasing the inter-operability and user-friendliness of the
software. Inter-operability makes an application more
user-friendly, but it creates a security vulnerability in
terms of unauthorized (uncontrolled) use of the software.
Also, increased access potential implies increased exposure to
threats, and this warrants a need to place more trust in the
software during the design and development phase. A 2trojan
horse' might be incorporated during the early development of
the mission critical software which goes unnoticed and which
might surface in an entirely unexpected and unsuspected
manner. This might be triggered by an unusual combination of
the events such as voltage surges and memory overloads. Such
trojan horses can be best caught by a close scrutiny of the

... .1-20 1b



developed code by a group of individuals that has the least
chance of collusion. This means that the APSE has to support
the policing of the use of the environment.

There are several features of the current APSEs that support
the auditing, monitoring or simply organizing development
activities. By supporting good software engineering
practices, Ada and APSEs can support and contribute to good
security.

It is our position that these features be given at least as
much value as those that make the environment user-friendly.
For example, the auditing features would discourage the
occasional perpetrator and at the same time can also aid the
detection and isolation of undesirable events such as
maintenance problems.

Some of the features that would aid in monitoring the code
development are: (i) Capabilities to identify the user and
the module; (ii) Logging of all activities on critical
objects (i.e. modules critical to the success of the
mission); (iii) Analysis and Data Reduction techniques to be
applied to the audit reports; (iv) Query capability to
investigate patterns of unauthorized access; and (v) Negative
testing (where the software is tested to check that it does
not do what it is not supposed to).

These features are included in the discussion on Access
control in the recent CAIS Document (Revision 1.4). Further
discussion on current work on APSEs is given in the next
section.

3.0 CURRENT STATUS

Based on a review of CAIS, ALS, ALS/N, E&V Requirements draft
documents, it is seen that CAIS (Rev. 1.4) had the most
comprehensive consideration of security. Following is an
overview of the security discussion in each of these efforts.

3.1 CAIS

Section 4.4 of the CAIS document discusses access control in
detail and meets all the needs briefed in section 2.]. In
particular, for each unauthorized access request (whether
accidental or not), an Ada exception is raised. By reviewing
,he audit log (that provides the details of this activity),
the system administrator can determine whether there is a
threat to the software and possibly the extent of the threat.

One aspect that needs elaboration here is the capability to
change the CAIS Access Control Package. It is our
recommendation that-only te system administrator be able to

1-21
'Ki



- , . . W . .W . - -:.

modify this package and that all changes be logged on a
nor.-erasable medium.

3.2 Ada Integrated Environment (AIE)

The AIE database is a collection of objects that have
attributes and content. Some of these objects, called 'window
objects', provide a cross reference to a partition of another
object in the database. This mechanism permits access to
relevant parts of the database to authorized users and
processes. The attributes of an object that are system
defined include access control information (as defined in
STONTEAN).

Independent and modular program development is supported by
the Program Integration Facility (PIP). The PIF provides
functions to allow the compiler to access the program library
during the processing of single compilation units. Security
concern in this case is that the units in the library might
have been tampered with. This would be a possible entry for a
trojan horse.

AIE has a APSE Command processor that allows commands to be
interrupted and restarted by the user. This can be used by
the System administrator to selectively terminate the sessions
of unauthorized users before substantial damage is done.

3.3 Ada Language System (ALS)

The ALS environment database is self contained and independent
of the host file system. It stores all the project-relevant
information and allows the tracking of changes to it. Access
control in ALS is provided by setting attributes to objects in
the database. Initially, when an object is created, the
creator and everyone in his 'team' have privileges to read and
execute. The creator can then set additional restrictions.

3.4 Ada Language System/NAVY Description (ALS/N)

The ALS/N is implemented as an extension of ALS and it
includes a functional area for user access support. Included
in the program support environment are configuration
management, report generator, and inter-host
telecommunications interface. These tools can be used by the
system administrator to monitor system activity, detect
unauthorized accesses, and take corrective actions.

1-22



3.5 EkV Requirements.

The EkV Task Force adopted the Taxonomy of tool features for
APSE and divided an APSE into Components and Interface sets.
Among the components that could help enforce security (e.g.
by monitoring the system activity), are the Command Language
Interpreter (CLI), the Configuration Management (CM), Control
Flow Static Analyzer, Set-Use Static Analyzer, and the Dynamic
Analysis Tool. There are four interface sets (CAIS, Ada
Packages, Inter-Tool Data interface, and User-to-APSE
interface). The E&V requirements (as detailed in October 1984
issue) do not emphasise following security related attributes
of components: integrity, reliability, robustness,and
correctness. We recommend the inclusion of these attributes
among those to be evaluated for the Compiler and CLI.

Security falls in the Category A of APSE E&V Categories since
no standard for the security of an APSE component is available
and no technique for evaluating conformance has been
developed. In other words, the security of a component needs
to be evaluated subjectively. In this context, the E&V Team
needs to interface with the DoD Computer .Security Center. Our
proposal is that the KAPSE part of an APSE should be a trusted
system as per the Trusted Computer System Evaluation Criteria.

4.0 CONCLUSION

We presented an overview of the security needs in the
development and operations of mission critical systems. We
feel that the current work on APSEs is not providing adequate []

emphasis on software security. We believe that the access
control mechanism described in the proposed CAIS document .
(Version 1.4) can serve as a preliminary standard for
evaluating the security (i.e. robustness, correctness,
integrity, and reliability) of the software in the APSE
Components and Interface sets.

..

1-23 'U.S. Government Prntin Office: 1986 646-067/40923



G 
i...

%

,. *./,*

, a,:.

.- .. ,., ,,- ,.,' ,, . _ " 
.' ." - • r . ' * . , ,@ , '.- .. .,, ,'. 

. ,. ." -,.- "- ". ". ..- .- . - -. ,..- ,- -,,- .. ,.- ." %i.

• ,.,';. 
.... .- , . .. . ..... 

.. : , :..-*..

-=.-.,'.. ,,... .. .,'..." ., .. ,'..-....,-,,... . ..,; .- .-.. ,.. .,. ... ".." ,." , ,.,,, ... .. .. .. ,. - .... , . ,.-.... -.... '-'"..':. " ':,.''; '':. .. '-.:'..

:. . . . . . .. ,,.,. .. .. . ',-. 
,- .. . ., . . ,...,. ,, .- .- . ,, .. . . .- . '.. .,, ,-,,- - . .', .'' '- '. .. '-.,-'.. .[ -,'..' .',4

,? 1..?


