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1. INTRODUCTION 

A variety of problems of physical interest involving the deformation of elastic- 

plastic solids may require the admission of discontinuities in the gradients of 

stresses and velocities (weak discontinuities) or in these quantities themselves 

(strong discontinuities). Such discontinuities may occur within regions which 

are currently deforming plastically or at elastic-plastic boundaries. These possi- 

bilities have received wide attention for rigid - perfectly plastic solids in plane 

strain (Hill [3]) and in generalized plane stress (Hill [l]) in the presence of 

either the isotroptc Huber-von Mises or Tresca 34eld conditions in the plastic 

range. It is well-known that for such solids, strong discontinuities in stress eind 

velocity cannot be simultaneously present, and that velocity jumps occur across 

characteristic surfaces. It has been noted by Hill [l] that when a rigid-plastic 

generalized plane-stress theory is employed in the study of the extension of thin 

plates, two tjTjes of strong discontinuities must be considered. These arise 

because of the neglect of elastic deformation and the averaged nature of gen- 

eralized plcine stress. A consideration of the second of these factors has led to 

the mathematical idealization of the experimentally observed phenomenon of 

localized necking in thin sheets (Nadai [8]). 

In a recent paper [6], Drugan and Rice investigated strong discontinuities 

across quasistatically propagating surfaces in elastic-plastic solids under gen- 

eral three-dimensional conditions when all displacement components are 

assumed to be continuous. One important conclusion of the work reported in 

[6] is that all stress components are always continuous, a result that follows 

from certeun material stability postulates. 

Pan [7] has also discussed quasistatically moving strong discontinuities for 

elastic-perfectly plastic  Huber-von  Mises  materials  under generalized plane 
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stress. He assumes that a strong discontinuity can be replaced by a transition 

layer of elastic material in which all stress components are assumed to vary 

continuously. He subsequently demonstrates full continuity of stresses across 

propagating surfaces, by using the specific nature of the Huber-von Mises locus 

and arriving at a contradiction. 

In the present work quasistatic discontinuities are reexamined for the more 

general case of an anisotropic hardening solid using an integral form of the 

maximum plastic work inequality and the usual assumptions in the theory of 

generalized plane stress (Section 2). It is demonstrated in Section 5 that the 

use of the maximum plastic work inequality leads to full stress continuity for a 

broad class of solids which Includes some hardening materials and anisotropic 

behavior. Pan's assumptions and the limitations of his approach are discussed 

in Section 5. A complete analysis of all possible velocity jumps including sliding 

discontinuity and localized necks is carried out in Section 6 with some general- 

ity in constitutive behavior. These results are then specialized for the elastic- 

perfectly plastic Huber-von Mises solid. A simplified expression is obtained for 

positive plastic work accumulation due to the passage of a discontinuity surface. 

One important application of the results of this work is to quasistatic crack 

growth problems in elastic-plastic solids under conditions of generalized plane 

stress (Rice [9]). The stress and velocity fields near the tip of a growing crack 

may be constructed by assembling plastic and elastic unloading sectors eind by 

satisfying proper matching conditions, boundary conditions and material stabil- 

ity postulates. Some restrictions arising from the jump conditions on this 

assembly are pointed out in Section 7. 
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2. THE GENEEiAUZED PLANE-STRESS PROBLEH 

Consider an elastic-plastic body occup3ang an open cylindrical region R of 

height 2h (see Figure 1). 

Figure 1. Elastic-plastic body with discontinuity surf ace S. 

Let the boundary 9R of the above region be composed of two traction free 

planar surfaces Si and Sg and a lateral surface L 

Consider further a fixed orthonormal coordinate system fo'.e i,e g.e 3I such 

that e 3 is parallel to the generators of R. 

Generalized plane stress conditions require that the height of the cylinder 

(also referred later as the thickness of the cylindrical plate) be small as com- 

pared with any other dimension of the cylinder, and that the prescribed trac- 

tions t be such that: 

^ = 0      or   0-31 = 0     on Si and Sg 

and 

ta = 0,     ta = ta(xi,X2) on L. (2.1) 

Here ay are the components of the sjmimetric Cauchy stress tensor, Greek sub- 

script have the range 1, 2 while Latin subscipts take the values 1, 2, and 3.  (This 
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convention will be adopted through the following development.) 

In what follows field quantities such as a , e , u , and v will represent thick- 

ness averages of the stress and strain tensors and the displacement and velocity- 

vectors respectively.  It is also assumed that, 

(73i =0   on R. (2.2) 

The above assumptions result in solutions of the generalized plane stress 

problem which in general will not satisfy the exact three dimensional field equa- 

tions as discussed in detail by Timoshenko [5], and Hill [3]. This is because 

some of the compatibility equations are not generally satisfied and errors are 

involved in using the averaged quantities in the constitutive law and the 37ield 

condition. However if the plate thickness is sufficiently small, the generalized 

plane stress solution is expected to provide an accurate approximation. 

Let S be a planar surface, parallel to the Xg-Xg plane dividing the region R in 

two open subregions R'^ and R~ such that 

R = R* u R- u S 

We will define the normal n (x) to E at a point x° e S as the outward normal of 

the closed subregion R~(R* = R* u S) at the same point x . 

In what follows the surface S will be viewed as a potential surface of strong 

discontinuities (discontinuities in stresses and strains) and will be allowed to 

translate quasistatically with a normal velocity Vn . 

Since the approximate theory of generalized plane stress treats the thickness 

of the plate as vanishingly small, Hill [l] points out that every quantity whose 

gradient is of order (l/h) in a zone of breadth comparable to h shonjid be 

modeled as a discontinuity. Thus the experimentally observed formation of 

necks (Nadai [8]) in thin plates subjected to tension (rapid variation of thick- 
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ness of the plate in narrow zones) would be modeled as discontinuities in the 

out-of-plane displacement component Ug. 

The jump in a field quantity^ (x ), across the surface S, will be denoted by: 

gMx)=U.mg(x°± m(x"))   xeS   and   e>0 

3. SMOOTHNESS C0NSIDE31ATI0NS 

All field quantities will be referred to, with respect to an orthonormal frame 

JO,e i,e 2,e si translating with the surface E and such that OeE, 63 = 63 and 

e i=n ; see Figure 2. 

(2.3) 

y? 

M ~2 

3()        fc   » 6| 

Figure 2. Local coordinate system translating with the surface. 

In-plane displacement components Ua are required to have the following 

smoothness properties: 

Uo e C(R) and 

u„eC>(R-S) (3.1) 

with the understanding that   -— need not be continuous across S.   Then 

according   to   the   Hadamard  compatibility relations   [2]  for  jumps   in  the 
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derivatives of a continuous fionction, 

= \a n^   on   S (3.2) 

where X^ are arbitrary functions of position on E. The out-of-plane displace- 

ment component U3 will in general be allowed to suffer a jump across S, as dis- 

cussed in Section 2. Thus: 

Ug e Ci(R+) u C'{R-) (3.3) 

with the understanding that on E, Ug and its gradient need not be defined. On 

the other hand, [ug], the jump in the limiting value of Ug from R~ to R* will be 

assumed to be a continuous and continuously diflerentiable function of position 

onS. 

It is now possible to extend the Hadamard compatibility relations (3.2) for 

the treatment of jumps in the derivatives of discontinuous functions. This 

extension was first discussed by Thomas [4]. The following simpler version was 

later provided by Hill [2], 

9U3 

SXi 
= Xg n; + -r^   on S (3.4) 

where Xg is an arbitrary function of position on S and cp is an arbitrary continu- 

ous function together with its gradient on S and in one neighborhood, say R^, 

with the additioned restriction that 

(p = [ug] on E. 

One choice of cp in R* would be to consider cp continued analjrtically along the 

normals. Any other choice would merely change Xg which is given by 

Xg = [ V   Ug • n ] -V   99 ■ n 

Relations (3.2) and (3.4) allow definition of jumps in the strains across E con- 
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sistent with the assumptions of the approximate theory of generalized plane 

stress. 

Within the contexts of a small strain formulation, 

eund the jumps in the in-plane strain component Sc^ can be expressed by (3.2) as: 

[£a/,] = jiK^p + Va) on S ' (3.6) 

On the other hand, the jump in the out of plane strain component £33 can be 

expressed by (3.2) and (3.4) as: 

[£g3]=X3n3+^   on E   , (3.7) 

where tp e C^(R*) and 50=[ug] on S. 

4. MATERIAL IDEALIZATION 

Within the context of the small-strain flow theory of plasticity, the total 

strain rate tensor can be decomposed into elastic and plastic parts: 

E =£:« + s^   onR (4.1) 
^•a f\i r^J 

where the dot denotes differentiation with respect to time. The elastic strain 

rate tensor e * is related to the stress rate tensor a through a constant, posi- 

tive definite four-tensor 5 (the inverse of the elasticity tensor C ). 5 is 

assumed to possess the usual major and minor sjTnmetries. For an anisotropic 

elastic-plastic solid, ^ * is given by; 

£" = 5 a      on R (4.2) 
f\j Chi     r**! 

The condition for the existence of non-zero plastic strain rates k ^, called the 

3?ield condition, is formulated on the basis of a scaleu: valued function of the 
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stresses and the total accumulated equivalent plastic strain (E^ ) denoted 

by f(cr ,£^) and on an appropriate definition of loading, unloading or neutral 

loading. The condition f(ff , e^)=0 defines a hypersurface in 6-dimensional stress 

space, called the yield surface. In this work, attention will be focussed on the 

particular class of materials obejang Drucker's stability postulate. A particular 

form of Drucker's postulate, known as the maximum plastic work inequality can 

be expressed as; 

(a   - a •) ■ £ P > 0 (4.3) 

Vf(CT ,£^)=0, and f(a ',£^)^ 0. The two most important implications of the above 

postulate are the following; 

a. The hypersurface f(CT ,£^)=0 is convex. 

b. The plastic strain rate e ^ is normal to the 3aeld surface, and the flow rule 

takes the following form; 

E^ = \P (4.4) 

where X> 0 and P = V „ f. k and P are scalar valued and symmetric tensor 

valued functions of CT respectively. In the following section, an integral form of 

(4.3) will be used in conjunction with equations (4.1) and (4.2) as well as the 

compatibility conditions for the jumps in total strains (3.6), (3.7) to define the 

jumps in the stresses and the plastic strains produced during the passage of a 

discontinuity E through a material point. 

5. STRESS CONTmunT ACROSS THE PROPAGATING SURFACE 

In this section it will be demonstrated that all stress components are con- 

tinuous across the surface S propagating quasistatically through the thin plate. 

It will be shown that this is true even if the out of plane displacement U3 suffers 

a discontinuity across S.  The following proof is based on the maximum plastic 
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work inequality and the positive definiteness of 5 . It is an extension of the 

proof given by Drugan and Rice [6] for the general three-dimensional case. In 

the present analysis, only the in-plane displacement components Ua are 

assumed continuous, and the proof is adapted to suit the assumptions of the 

theory of generalized plane stress. Also, unlike the discussion by Pan [7] and 

consistent with the assumptions of generalized plane stress, [l] our discussion 

treats necks as jumps and not as narrow transition layers. 

If inertia terms are neglected, the balance of linear momentum requires that 

across the quasistatically moving surface S the traction should be continuous. 

Thus 

[t„] = [a^n^] = 0   onE. 

With respect to the local orthonormal coordinate frame jO.e i,e g.e 3J moving 

with S, ni=£5ii and the above conditions become: 

[(7i<,] = 0   on   S (5.1) 

Equations (2.2) and (5.1) imply that the only stress component that can suffer a 

non-trivial jump is agg. The plastic work W^ accumulated discontinuously at a 

material point due to the passage of the surface S is given by: 

WP=   r    ff     deP (5.2) 

It should be observed here that some error is involved in using the averaged 

stress and strain quantities of generalized plane stress in the above integral. 

The above integral is evaluated according to the assumptions of Section 2. On 

applying equation (2.2), the plastic work accumulation in (5.2) reduces to, 
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(5.3) 

Using (5.1) the above becomes: 

wP = -a„[£ri]-2ai2[£r2]+ /   aggdela (5.4) 

Also, by using the fact that n^ = 6^^, (3.6) implies that: 

[egg] = 0 on S or [£|g] = - [£23]   onE (5.5) 

By setting  d£ ^ = de - d£ ",  using  the continuity of  £22  across  S   (5.5)   and 

integrating by parts, (5.4) becomes 

WP = -ff„[£ri]-2cri2[er2]-/   (^zzdEiz. (5.6) 

The integral in (5.6) can now be evaluated by using equations (2.2), (5.1), and 

the constitutive law, to give: 

f     C^33dE|2 = - -5-32222 (a2^2 + Cr2~2)[CT22] (5-7) 
,6+ '^ 

In addition, from (2.2), (5.1), and (5.5), 

[els] = - [£22] = - 32222 [^22]   on E (5.8) 

Thus equations (5.6) and (5.7) give: 

W^ = - a„[£fi] - 2ai2[Ef2\ - ^(j^z + ff2-2) [£12] 

or, 

wP = -|-(ai[ + air)[£i?]. (5.9) 

The above equation is of the same form as the corresponding result obtained by 

Drugan and Rice [6] for the three-dimensional case.   It should, however, be 
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borne in mind that unlike the equivalent expression in [6], (5.9) was obtained by- 

requiring that only the in plane displacement components are continuous and 

by using the assumptions of generalized plane stress. It should also be observed 

that the restrictions imposed on the path in stress space in the evaluation of 

the integral in (5.6) are the plane stress conditions and the continuity of trac- 

tions across S. This effectively implies a straight line path in stress space from 

a22 to azz- 

The integral form of the plastic work inequality (4.3) can. now be used by set- 

ting a '=a * where f(a *^) < 0. Thus, J, '^ is constrained to remain always at or 

Inside the jaeld surface during passage of S. Thus by using (2.2), (5.1), and (5.9): 

p_ 

f     ((7ij - ffij-)dEif = -j- ((72*2 + <72"2)[£22] + oU^^z] ^   0 

which by (5.8) gives 

|-[CTa2][e|2]^ 0   or   ^ {[a22]^ S^zzz^ 0 (5,10) 

(5.10) now requires that [a22] = 0 since 82222 > 0- 

Bemarks 

The following remarks are relevant: 

1. Under generalized plane stress conditions, aU stress components are con- 

tinuous across the slowly propagating surface E even if the out of plane dis- 

placement U3 sxiffers a discontinuity. Drugan and Rice [6] establishes full 

stress continuity under general three-dimensional conditions, with all dis- 

placement components assumed continuous. 

2. The present discussion applies to general anisotropic elastic-plastic harden- 

ing solids obeying a flow rule of the associated type. The proof of full stress 
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continuity is based on an integral form of the maximum plastic work Ine- 

quality and the positive defimteness of the elastic potential. The initial yield 

surface can be anisotroplc but should be convex. All types of hardening in 

which the subsequent jn.eld locus fully encloses eill previous yield loci can be 

included. 

3. An earUer discussion by Pan [7] LS limited to elastic- ideally plastic solids of 

a Huber-von Mises type under generalized plane stress conditions. His argu- 

ment, which does not make use of the maximum plastic work inequality, fol- 

lows from Hill's [3] statement that the stress state from a^s to (J22 can be 

bridged only by a succession of elastic states. This assumes a smooth varia- 

tion of stresses in a 'transition layer." Such an assumption is questionable 

for generalized plane stress since, as pointed out in Section 2, any field 

quantity whose gradient is 0(—) in a zone of breadth comparable to h 

should be modelled as a discontinuity. Even if this assumption is accepted, 

Pan's argument clearly does not apply to arbitrary yield surfaces or general 

hardening solids. For instance, in elastic-perfectly plastic solids character- 

ized by a Tresca yield condition when the neck (discontinuity in U3) coincides 

with a principal stress direction and CTH = ± OQ, the stress component aga 

can have any value between 0 and ± CTQ and still lie on the yield surface (Hill 

[3]). Hence X in equation (4.4) is not necessarily zero in the transition from 

CT "^ to a ~ (HiU [1]) and the argument fails. Also for any type of hardening 

solid, the consistency condition requires the stress state to lie on the yield 

surface during the process from a '^ to a ~ and no elastic unloading is possi- 

ble. 
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6. DISCONTINUITIES IN STRAINS A^fD VELOCITIES 

In this section, the earlier result pertaining to continuity of stresses across S 

will be used to provide restrictions on the nature of admissible jumps in strains 

and material particle velocities across S for a general einisotropic hardening 

solid. Attention will then be turned to plastically incompressible, generally 

anisotropic, elastic-perfectly plastic solids with smooth but otherwise arbitrary 

yield surfaces. Specialized results will be given for Huber-von Mises solids at the 

end of the discussion. 

General Caiisideratians: 

The jumps in the in-plane velocity component Vg are given ([2], [6]) by: 

[va] = -V[^]on2 (6,1) 

where Vn  is the normal velocity of S. Making use of (3.2) and (3.6) the velocity 

jumps may be expressed as: 

[V,]  = -V[£„] 

[vs] = - 2V [e,3]  °^^ ^^-^^ 

Full stress continuity and (4.2) require the elastic part of the strains to be con- 

tinuous across S 

[s^] = 0   on   S (6.3) 

The above, and equation (5.8), therefore imply 

[ela] = 0   on E (6.4) 

As a result, the expression for the positive plastic work accumulation in (5.9) 

becomes 

W*^ = -'Tu[£fi]-2ffi2[er2]^ 0 (6.5) 
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and the jumps in the velocity components Vj and Vg are given by: 

[v,] = -V[efJ 
[v3] = -2v[.r,] °^^ (^-6) 

The plastic work W^ can now be expressed in terms of velocity jum.ps as follows: 

WP= ^CTii[vi] + ai2[v2])> 0 (6.7) 

No specific restrictions on the constitutive model other than the general 

assumptions made in Section 4 have been imposed in the derivation of equa- 

tions (6. l)-(6.7). 

For the specific class of plastically incompressible solids: 

[e|3] = -[£ri]-[£|2]   onE (6.8) 

which by use of equation (6.4) simplifies to: 

[el'a] = - [efi]   onS (6.9) 

Equation (6.9) serves to determine the jump in the out of plane plastic strain 

component ej'g in terms of the jump in the in-plane plastic strain component efi 

for plastically incompressible solids. 

If the displacement component U3 happens to be continuous across E as in 

[6], then £33 and hence £^3 would also be continuous. Equations (6.8) and (6.6) 

will then imply that sf^ and Vi should also be continuous across S. Thus it fol- 

lows that for a plastically incompressible solid, when the surface E does not 

coincide with a neck (jump in Ug) only a sliding velocity discontinuity (jump in 

Vg) is permissible. 

Elastic-Perfectly Hastic Solid 

For such solids, the yield surface is represented by 
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f(ff ) = 0   on R (6.10) 

where f(CT ) depends symmetrically on CT and a '^. It will also be assumed here 

that the yield surface is smooth (has a continuous normal) 

Under such circumstances the flow rule takes the following form: 

s^ = \P     onR (6.11) 

where A> 0 is an undetermined scalar function of position, and 

P (a ) = Vj_ f(a )   onR (6.12) 

is a s3Tiimetric tensor-valued function of CT . Under conditions of generalized 

plane stress, equations (6,10) and (6.12) should be used in conjunction with the 

constraint (2.2). Inside regions which are currently deforming plastically, it can 

be shown from the two in-plane equilibrium equations, the yield condition and 

the plane stress assumption (2.2) that along stress characteristic directions the 

direct components of PQ^ should vanish (Hill [3]). 

It is also clear that, Py should be continuous across S from assumed smooth- 

ness of the >leld surface and the requirement of full stress continuity. Then, 

from (6.11) the jumps in the plastic strain component £y becomes: 

[£i^] = -^PiiOnE (6.13) 

x~ 
where V - f '^^^ 0 is ein undetermined scalar function of position on E. 

\* 

Since [ela] = 0 across S, equation (6.13) implies that either ?7=0 or P32=0 or 

both. If 77=0, (6.13) requires all strain components to be continuous. Thus the 

necessary condition for non-trivial jumps in strains to exist across S is that P22 

should vanish on S. In other words, S should coincide with a stress characteris- 

tic direction of its plastic side. 
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This condition is less restrictive than the necessary condition for non-trivial 

jumps in the plastic strain components derived by Drugan and Rice [6] when all 

displacements were continuous across S. The corresponding necessary condi- 

tion derived in [6] states that P22=P33=P23=0 on S. 

From the above, the following important observation can be made: 

Consider at least one side of S (which coincides with a neck, say R*) to 

currently be deforming plastically.   If in addition, S coincides with one of the 

stress characteristic directions, say direction A (see Figure 3). 
Choracteristic 
•Directions 

/?■ 

Figure 3.     Moving  discontinuity surface and characteristic  directions  of  the 
plastically deforming side. 

then the velocity component along the other characteristic direction B, is con- 

tinuous across S.  Thus 

[VB] = 0    on S. (6.14) 

The above follows by first observing that since S coincides with a stress 

characteristic direction, P22 vanishes on S.   Also, if the other characteristic 

direction makes an angle 5 {6?^ ± —) with the Xj axis, then by the fact that 

P3B=0 and the transformation relation, we have 
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p 
tan <5 = - ^^  for Pi2 ^^ 0. (6,15) 

In addition, combining (6.6) and (6.13) and noting that Pia^^O the following is 

true: 

[vj = ^vd   onS. ,      (6.16) 

The velocity jump [vg] along the other characteristic direction will be given by: 

[VB] = cos5([vi] + [vaJtand),   <5 ?* i f-. 

which vanishes by use of (6.15) and (6.16). This general result was also noted by 

Pan [7] for the special case of an isotropic Huber-von Mises solid and it also 

holds for stationary necks in a rigid-plastic solid (Hill [l]). 

If in addition Pi2=0, both the stress characteristics merge along S {6=± —) 

and as a result S becomes a "paraboUc line." Equations (6.6) and (6.13) then 

imply that if Pi2=0, 

[vg] = 0   on E. (6.17) 

Thus when E coincides with a "parabolic line," the tangential velocity is continu- 

ous and only the normal velocity has a jump. 

When S coincides with a neck and the two characteristic directions do not 

merge along S (see Fig. 3) then the accumulation of plastic work (6.7) due to the 

passage of E becomes: 

V ariz 

Also the fact that Ji] sf^ ^ 0 implies that 

aijPy>0 (6.19) 
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By (2.2) and P22=0 along S, (6.19) becomes: 

cTiiPu +2ai2Pi2& 0 (6.20) 

Inequalities (6.18) and (6.20) result to 

when the two characteristics merge along E ((5=± — and P22=Pi2=0) it follows 

from (6.7) and (6.17) that 

^[vi]>0. (6.22) 

Isotropic HubeT-von Mises solids 

The above results can now be specialized for an isotropic elastic-perfectly 

plastic solid which obej's the Huber-von Mises yield condition. For such a solid, 

the }T.eld condition states 

iiz) = J^-^-^o=0   onR (6.23) 

where S   = cr   - —tra  1  is the deviatoric stress tensor and T„ is the yield stress 

in pure shear. For such a solid 

P (ff ) =V^ f(CT ) = S   onR (6.24) 

All the results and corresponding remarks from (6.3)-(6.22) hold for this solid 

with P replaced by S . In particular (6.16) takes the form (Pan [7]): 

[v,] = ^[v2]   if Si2^ 0 (6.25) 

and (6.18) reduces to 

V        (7i2 
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(6.26) 

Su.Tnmary of Results 

The results of Section 6 can now be summarized as follows: 

a. For a general anisotropic hardening solid which is also plastically 

incompressible the following is true: When the propagating surface S does 

not coincide with a neck (fuU displacement continuity), only a jump in the 

tangential velocity component (sliding discontinuity) is admissible. 

b. If, however, the solid is perfectly plastic, S coincides with one characteristic 

direction (P22=0)- In addition, full displacement continuity together with 

plastic incompressibility also give P33=Pii=0. This states that the direction 

normal to E is also a characteristic direction. Unlike plane strain, this 

occurs under plane stress condition only under exceptional circumstances 

(Hill [3]). In particular, for Huber-von Mises solids this is true when the sur- 

face coincides with a plane of maximum shear stress and the latter is equal 

in magnitude to the yield stress in pure shear. 

c. For a general anisotropic elastic-perfectly plastic solid, when a surface coin- 

cides with a neck (discontinuity in Ug) both tangential and normal velocities 

have jumps. This requires that the neck should lie along one characteristic 

direction. Then the component of the velocity along the other characteristic 

direction (not generally perpendicular to S) is continuous (see equation 

(6.14)). Thus necks cannot form if the plastically deforming side of the sur- 

face is in an elliptic state of stress. 

d. For an elastic perfectly plastic solid if in addition to (c), Pi2=0. both the 

characteristics merge along the neck and this results in a parabolic stress 

state.  Then, the tangentieil velocity is continuous and only the normal veto- 
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city has a jump. For the special case of a Huber-von Mises solid, Pi2=Sia=0 

and the characteristic surface coincides with a principal stress direction. 

7. REMARKS AND APPLICATIONS 

The jump conditions discussed here have some relevance to the stress and 

strain fields near the tip of a quasistaticaUy growing crack in an elastic-plastic 

solid under generalized plane stress conditions. For instance, in the elastic- 

perfectly plastic Huber-von Mises material (Rice [9]) a "constant stress" (asymp- 

totic) plastic sector cannot occur directly behind a "centered fan" plastic sector 

because the condition for positive plastic work accumulation (6.21) will be 

violated at the interface. This renders the asjTnptotic solution for the plane 

stress stationary crack by Hutchinson [10] unacceptable when the crack begins 

to grow. From the preliminary asymptotic analysis by Rice [9], it then follows 

that only an "elastic unloading" sector can occur behind the centered fan. 

Hutchinson's stationary crack solution also has a jump in the in-plane stress 

component between two constant stress sectors. This LS also inadmissible when 

the crack begins to propagate. 

No solution for this problem which satisfies all the conditions set forth in the 

present paper has yet been constructed. An open question that arises, for which 

detailed experimental and numerical studies may provide an answer, is whether 

necking occurs near the growing crack tip. Otherwise, except in special cir- 

cumstances (like a fan angle of 90°), no strong discontinuities near the growing 

crack tip can be admitted. In view of the fact that the (fully yielded) stationary 

crack tip solution [10] has a strong discontinuity, one wonders whether the con- 

dition of full continuity in both stress and velocity near the propagating crack 

tip may be too restrictive to satisfy. 
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8. CONCLUSION 

Strong discontinuities across quasistatically propagating surfaces in aniso- 

tropic elastic-plastic solids under generalized plane stress have been reexam- 

ined allowing for some generality in constitutive response and taking into 

account the phenomenon of necking. Jumps in stresses have been ruled out on 

the basis of material stability postulates and a previous approach (by Pan [7]) 

has been discussed. It has been noted that for elastic-perfectly plastic solids, 

sliding velocity discontinuities occur under restrictive and exceptional condi- 

tions (when both the surface and its normal are stress characteristics) for gen- 

eralized plane stress as compared to plane strain. Necks may form along 

(stress) characteristic directions with the relative velocity vector orthogonal to 

the other family of characteristics. 
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