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ABSTRACT

[y

'This preliminary study investigated the magnetic field
radiated from a passing charge bunch ‘fraveling over a
finite path. Beginning with the infinite path case for a
ramp front charge distribution, limits were derived to
solve for the magnetic radiation field over a finite path.
Radiation pulses were computed and graphed for many
different positions of an observer with respect to the beam
line. Comparisons of results show that the similarity in
pulse shapes does not depend exclusively on the observer’s
position with respect to the Cerenkov region, but also on

certain time conditions in each case. T AN
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I. INTRODUCTION

A. HISTORY

Observations of a bluish-white 1light near a strong
radiocactive source had been recorded by workers before this
phenomenon was understood. This was during a time (circa
1910) when the electromagnetic theory of light was well
known and there was increased study in the area of optics
and luminesence. The _study of phosphoresence and
fluoresence dominated, and the discovery of Cerehkov
radiation was postponed due to the complexity of these
forms of luminesence and the fact that Cerenkov radiation
was wWeak in comparison. However, eventually the work on
Cerenkov radiation developed, and was brought about through
the study of phosphoresence and fluoresence. [Ref.1l: p.1]

In 1926, Mallet +took +the first steps to study this
phenomenon. He discovered that when a transparent material
is placed near a strong radioactive source, the same
bluish-white light would be emitted in a wide variety of
cases. This 1light spectrum was continuous and did not
contain the line spectrum characteristics of fluoresence.
He also discovered that it differed in other respects from
other forms of luminesence. The study of the phenomenon was
not pursued again until 1934, when Cerenkov began a series
of experiments which lasted until 1938. During this same

time, Frank and Tamm proposed their theory (1837); there

o
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was excellent correlation between this theory and
Cerenkov’'s experimental results. [Ref.l: pp. 1-2]

Research in this area continued and with the
development of the photomultiplier, the study in this area

became more active. [Ref.l: p. 2]

B. CERENKOV EFFECT

If a fast moving electron passes through a transparent
medium, the atoms around the electron will become distorted
and polarized. If the speed of the electron approaches
that of light in the medium, then the polarization field is
not symmetric. Symmetry is preserved in the azimuthal
plane, "but along the axis there is a resultant dipole
field which will be apparent even at large distances from
the track of the electron.” [Ref.1: p. 4] Because of this
field, each element along the electron track will radiate a
brief electromagnetic pulse. [Ref.1: p. 4]

Generally, these radiated wavelets from all parts of
the track will interfere destructively and there will be no
resultant field. Howeve;, if the particle velocity 1is
higher +than the phase velocity of light in the medium, the
wavelets will be in phase and there will be a resultant
field at a distant point of observation. This is observed
only at a particular angle ® with respect to the particle

path. [Ref.1: p. 5]

Figure 1 [Ref.1: p. 5] illustrates the coherence of the
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S wavelets formed from points P1, P2, and Pa. If fco is the
0 particle velocity, where co is the speed of light in a
o

I,

$: vacuum and n is the index of refraction and AT 1is time,
ﬁf ) then AB = (fco)(pT), the distance traveled by the particle,
", and AC = (co/n)(AT), the distance traveled by light. Thus,
K

.% we can obtain cos 8 = 1/8n, which is called the "Cerenkov
' relation”. [Ref.1: p. 5]

\:: There exists a threshold velocity, determined by the
) )

f relation fmin = (1/n), and below this, no radiation is
W

E emitted. When radiation is emitted, it occurs in the
{

- visible and the near visible. [Ref.1: p. 5-6]
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limited to the optical regions, these being favored over the
microwave region. The results from the optical radiation

are expressed in terms of Fourier components for both the

fields and the radiated power. [Ref.2: p. 3750]

Since all the electrons in an accelerator bunch radiate
coherently, microwave radiation can be important. The time
structure of the fields formed by elec >n bunches that are
radiated coherently was investigated by Professors
Neighbours and Buskirk of the Naval Postgraduate School in

their published paper of 1985. [Ref.2: p. 3750]
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I1I. THEORY AND OBJECTIVES

A. MAGNETIC RADIATION FIELD
Neighbours and Buskirk proceeded by  determining the
potential from the moving charge distribution and then

obtaining the B field (in cgs units) from the potential by
B=VXA (1)
The charge density function {% and the current density jv=

{;v/co (v, the velocity, 1is in the positive z direction)

have been assumed and concentrated along the z-axis so that

@(?,t) = Pz, )8 (08 (¥) (2)

Since the charge is assumed to move with constant shape,

the z and t dependence of the charge is

{(z,t) = «eo(z-vt) (3)

where -6% and _e are charge per unit length. [Ref.2: p.
3750]

EE The potential Z is found to be
o
N
'-::-. - - ¢ 1
A(r,t) = (v/co) fR-l f(r,t)dz (4)

” =.-.
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where R = T-¥ and t = t- ]r-fl/c (the retarded time) and c

is the speed of light in the medium. [Ref.2: p. 3750]
Equation (3) can be used in the potential equation and,

defining a new variable u(Z) = z-vt, with v defined as the

particle velocity, A can be written as

A(T.t) = (V/co) gR-l «{o(u)dz (5)
The function u(z) can be written as

u(2) = zZ-vt+(v/c)x2+y2+(z-2)2]1/2 (6)

since the motion of the charge is confined to the =z axis.
[Ref.2: pp. 3750-3751})

Because X has only a 2z component, the B field,
~alculated from (1), has only x and y components; thus Bx =
XAz)/Qy and By = - 0(Az)/ Jx. Considering the x component

only,

Bx=(v/co) f(BR-l /ay)€o (u)dz+(v/co )fR-l (3(% (W) AQyidz (7)

s At large distances, the first integral can be neglected
since it will fall off as R-2. Then the x-component of the

B field can be written as

:it Bx = (v2/cco)‘§(y/R2)-€o(u)d£ (8)
o
P
o0
Xa 10
-
R
e
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where foo(u) is the derivative with respect to u.

\

Similarly, the y-component can be written as
!
By = (v2/cco) S‘(-x/RZ)~€o(u)dz' (9)

Combining these two components and using cylindrical
coordinates, (s,®,2) where s = (x2+y2)1/2  the magnitude of

total magnetic field, B, is written as

B = (v2/cco)lg(s/R2)-<%(u)dz (10)

and occurs in the direction of @, i.e. tangential. [Ref.2:
p. 3751]

A similar derivation can be made in order to find the
magnitude of the E field. It is also true that, in the
Cerenkov case, E/B = c/co, which, for plane waves, is the
usual relation between the electric and magnetic fields.

(Ref.2: p. 3752]

B. TIME DEVELOPMENT

Considering the function u(z), as described in equation
(6), we can determine that the first two terms of the
equation are a straight line in the u-z' plane and the last
term is a hyperbola which opens in the positive u direction
and has asymtotic slopes of 1% (v/c). The straight line

part of this function has a unit slope and a time dependent
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intercept. The combination of these two curves results in
the curve u(2). Figure 2 [Ref.2: p. 3751] indicates what
this curve would look like for the Cerenkov case with v>c.
The time indicated in Figure 2 increases from ti to t3a. The
curve will move downward with increasing time due to the
negative second term of equation (6). [(Ref.2: p. 3751}

The contribution to the B fields of equation (10) is
due to changing currents (where {?3 is nonzero). A ramp
front current pulse, for example, will have a derivative
which is a constant square valued pulse whose magnitude is
!

(h. This pulse is dépicted in the right side of Figure 2.

Only the positive pulse is considered. [Ref.2: p. 3751)]

u
T T‘T AU
2T.
////”4
\\\\__;,’4//// ,//i///
N A 7
~ _ 1S
\\\\- _—/’// N
r 4 —)
Z’ P,
Figure 2. Function u = z-vt

For this example, the function u(z) will be above the

{
nonzero portion of -Co for large negative times, and for
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small positive times. During these periods,-eg will be
zero and therefore, the B field will be =zero. When u(z)
becomes tangent to the upper part of the -eg pulse, namely
ul, then there is a nonzero contribution made by {?é to
the B field and it becomes nonzero. The magnitude of the B
field will continue to increase until u(Z) is tangent to
the lower part of -€£, called uz in Figure 2. At later
times the integral splits into two parts, and since f?é is
constant, the B field will decrease. This is due to the

fact that the u function is +turned upward and the area

under the curve will decrease. [Ref.2: p. 3751]

C. OBJECTIVES

The objective of this thesis 1is to solve for the
magnitude of the B field over a finite path. In order to do
this, the 1limits of integration for equation (10) must be
found and a computer program written to solve the integral
and graph +the magnitude of +the B field, for various
situations. For this calculation, time Dbegins at =zero,

when the beam is fired.

13
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III. EQUATION DEVELOPMENT

The derivation of equations in this chapter 1is based
upon unpublished and untitled notes by Professor J.R.

Neighbours.

A. CALCULATING THE B FIELD
Equation (10) can be written with finite 1limits of

integration as

B = (v2/cco) S‘

.
' ]
If v2/cco = nfA2 and o(u) = <?m = constant, then equation

Y

%; ,
(sR-2) fo(u)dz (11)

(11) becomes

.t
B = nnzs_@n fR-Zdz (12)
i
where s = (x2+y2)1/2 and R2 = s2 + (2-2')2 or R2 = s2+w2,
where w = z-2z. Substituting the variable w into equation

(12) and integrating with respect to w, the solution

becomes

!

B = nf2 (3m[tan'1(W1/s)~tan'1(w2/s) (13)

where wi= z-zi and w2= z-z¢. Thus, the problem is to find

the values of w1 and w2.

14
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B. CALCULATING THE LIMITS OF INTEGRATION
1. Si io ncountered For The Finite Path
There are three basic situations encountered in
this study of +the B field and each depends upon the

position of the observer in relation to the Cerenkov angle,

Qe . Figures 3, 4, and 5 illustrate the three different
situations. In each of these figures, the beam length 1is
L. and the point, P(z,s), is the position of the observer.

The three situations can be related to the position
of the minimum of the function u(z), i.e., the path can be
to the right, 1left, or centered about the minimum. If
v/c:ﬁ. and substituting the value of s, equation (6) can be

written as

u(z) = 2z - vt - B[s2+(z-Z)2]1/2 (14)

This function has a minimum at tan ®c = * s/(z-2);

therefore, the minimum occurs on the Cerenkov cone when z-2

is such that @ = éc.

The criterion for +the path to be to the right is
that 91 in Figure 3 must be greater than ®c¢; for the path
to be to the left, ®#2 in Figure 4 must be less than ®c; for
the path to be centered about the minimum, #1 must be less
than ®c¢ and ®©V2 must be greater than or equal to ®¢, as

shown in Figure 5.

15
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! Figure 3. Path To The Right
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Figure 4. Path To The Left
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The rectangle in the u-z'plane (Figure 6) is formed
by the path length, L, and the limits on the ramp function,
ut and u2; the corners are labeled ABCD.

a. Path To The Right

The relationship between the path and the
minimum of u(z) is shown in Figure 6. The B field will be
encountered first at time Ta and will go to zero again at
time Tp. The limits of integration for the curve, as it
passes through the rectangle bounded by Ta, Te, Tc,and Tp,
are the points of intersection of +the <curve and the

rectangle.

uzh
TA
///////ﬁa/ Tb
yd e D

Figure 6. Relation of u(z) to Path to the Right

For the path to the right, as well as the other
two cases, the values of these boundary times are found by
solving equation (14), having substituted the appropriate

values of 2z’ and u(z'). The results are

18
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Ta = [B'(s2+2z2)1 72 - ui]/v (15)
Ts = [B'(s2+z2)1/2 - uz2)/v (18)
Te = [L + f£'(s2+(z-L)2)1/2 - w1 )/v (17)

To = [L + f(s2+(2-L)2)1/2 - uzl/v (18)

The case illustrated in Figure 6 1is one in
which Tc¢ is greater than Ts. The condition for this case
to occur 1is that ui-uz < L + G%(52+(z~L)2)1/2 -
(s2+z2)1/72]. There are two other cases, namely, when Tc is
less than Ts and Tc is equal to Ts. The derivation of the
equations for the limits of integration for the first case
will be described; thé equations for the last two cases are
found in a similar manner.

Suppose Ta<T<TB and u(z) is positioned at time
T as 1illustrated in Figure 7a. The lower 1limit of

integration for eguation (12), Zi, is zers in this case and

‘TA( T Tc Y,
l

]
|
|
1

R i
T T K
L ] .
= BZ=0 Z, L'D
ﬁ Figure 7a. Tc>Te: Ta<T<Te
n.l
Y ) /
! 2t is found by solving equation (14). If zZ=Z¢, uiz)=ur,
i and a new variable, Al = u1+vt, 1is introduced, the

®
[

solution of this quadratic equation becomes

19
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de= ((R2z2-A1 )+ [(z-A1)2-52 (F2-1)]1/2}/(A2-1) (19)

Only the positive solution for the quadratic equation is
valid because of the position of the minimum for the path
to the right.

The 1last two situations for the Tc>Te case are
TB<T<Tc and Tc<T<Tp, which are illustrated in Figures 7b
and 7c, respectively. For these last two situations, a new
variable, A2, is used and defined as uz + vt. After
solving equation (14) for the lower and upper integral
limits, we find that for TB<T<Tc

zi = {(dzz-A2)+d[(z—A2)2-52(Nz-l)]1/2}/(d2-1) (20)

and zZf is calculated by using equation (13). For Tc<T<To,
zi is found by using equation (20) and zf= L.

As mentioned previously, there are two more
cases for the path to the right, where Tc<Ts and Tc=Te. For
the case of Tc<Te, the condition is that

ut ~uz >LH'[ (s2+(2-L)2)1/2-(s2+22)1/2]
and for Tc=Ts

ut ~uz =LA [ (s2+(2~L)2)1/2-(s2+22)1/2]
Figures 8 and 9 illustrate the last two cases for the path
to the right.

The limits of integration for these last cases

are found in the same way as for the first case. A summary
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) Figure 9. Path To The Right: Tc=Tsa
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of the limits of integration for the path to the

listed in Table 1,

a =

and

LIMITS OF

Tc>Te:
zi
zt

Tc<TB:
2i
13

Te =Tc:
Zi
zt

b. Path
The

and the path is s

where

TABLE 1
INTEGRATION:
Ta<T<Ts T <T<Tc

0 b

a a
Ta<T<Tc Tc<T<Ts

0 0

a L
TA<T<Ts Ts<T<Tp

0 b

a L
To The Left

[l R fing e gie At Bl a s bie 0 0 0 o

Clind el Al As Al 3

right 1is

{(B2-A2) B[ (2-A: )2-s2 (B2-1)]1/2}/(K2-1)

((F2z-A2)+'[(z-A2)2-s2 ('2-1)]1/2}/(('2-1).

PATH TO THE RIGHT

Te <T<Tp

b
L

Ts<T<To

relationship between

hown in Figure 10.

uezh

.

Figure 10.

AN

b
L

“nhe minimum of u(z)

Relation of u(z) to Path to the Left
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left are

respect to

Cases
Ta>Tp
Ta<Tp
Ta=Tp

aa =
and
bb =
Ta<Tp:
b 2i
By zZt
8
b Ta>Tp:
b z'.
¢ N
kﬁ 2f
'ﬁ‘ Ta=Tp:
zt
Eg
L}
>
%
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The limits of integration for the path to
found

right. However,

quadratic solution will be used.

path to the left are summarized in Table 2;

These cases are

{(('ez-A1) - ril[(z—Al)2

LIMITS OF INTEGRATION:

the

in the same manner as in the path to the

due to the position of the minimum with
the path, only the negative part of the
The three cases for the

the conditions

for each are included.

TAELE 2

CASES AND CONDITIONS FOR THE PATH TO THE LEFT

, Conditions
ur ~uz<B[(s2+z2)1/2~(s2+(z-L)2)1/23-L
ur ~uz >’[ (s2+z2)1/2~(s2+(z-L)2)1/2]-L
ur -uz =A’[(s2+22)1/2-(s2+(z-L)2)1/2]-L

shown in Figures 1la, b, and c;

the limits of integration are listed in Table 3 with

- sI(R2-1)]Y/(RE-1)

((p2z2-A2) - ' [(z-Az)2 - s2(R2-11]}/12-1)

TABLE 3
PATH TO THE LEFT

Tc<T<TA Ta<T<Tp Tp<T<Ts

aa 0 0

L L bb
Tc<T<Tp To <T<Ta Ta<T<Ts

aa aa 0

L bb bb
Tc <T<Ta Tp <T<Ts

aa 0

L bb
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W Figure 1la. Path To The Left: Ta>Tp

Figure 11b. Path To The Left: Ta<Tp




Figure 1le¢. Path To The Left: Ta=Tp
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¢. Centered About The Minimum
This case is slightly different from the first
two, as can be seen in Figure 12. The minimum occurs
between 0 and L at ze, so that as shown in Figure 5, the
position of the observer makes the Cerenkov angle with

respect to the direction of the beam. For this case, new

/u(z’)
o
/TZ
//
Ta 6 U,
T
T N P e '
~ B
B 7 7 TD UZ

Figure 12. Centered About the Minimum

times must be introduced: Ti, when the minimum just
contacts the ui line, T2, when the minimum ccntacts the wu2
line and T3, the final time. Calculating the times from
equation (14), we find that the results are

Tt = {zc + 6'[82 + (z-26)2]1/2 - w1 }/v

T2 = {2zt + A'[s2 + (z-Ze)2]1/2 - uz}/v
and T3 will be the larger of the T or Tp, as previously

defined in equations (16) and (18), respectively.
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Considering the
shown in Figure 13, it can be

the quadratic equation may be

2v = {(A2z-A1) + ('[(z-A1)2 -
and
2 = {((A2z-A1) - £ [(z2-A1)2 -

situation where
seen that both
utilized, such that

sz (f2-1)11/2}/(6'2-1)

sz (p2-1)11/2}/(f2-1)

) T.
| \ - ‘ //- 2
1’/’
| “
1 / { U2
[] '
o zv yARS
Figure 13. Ti1<T«T2

With +these two solutions,

in Table 4, are imposed .in o

limits of integration.

the fcllowing conditions,

rder to choose

the

T1<T<T2, as

solutions to

(21)

(22)

listed

proper
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TABLE 4
CONDITIONS FOR THE LIMITS OF INTEGRATION: Ti<T«T2

Condition zi 2t
z! <0 0
z' >0 2"
z+2L
z+ <L, 2

For the last case, T2<T<Ta, there are two

integrals to solve, as shown in Figure 14.

T
A u,

) <
Y T
OEQA\ /A\\\‘ L ” Us

ZU) Z0) —ZIW)  ZY)

Figure 14. T2<T«<Ta

-t AR . . ot~ . = .
-
.

NG AN LNt L AN NN S
B A A NI A IO I O A IR TR, |




O AARANKN, P,

L g ol
« eV

-

For the first integral, 2’ (w) is found by

using equation (22) and

zZv(uz) = {62z-A2)-B'[(z-A1)2-s2(R2-1)]1/2}/(p2-1) (23)

In this case 2t will always be 2z’ (uz). However, zi will
equal 2’ (u1) when the latter value is greater than =zero;
otherwise, zi will equal zero.

Similarly, the limits for the second integral,
z;(u1) and z+(uz2) will be the corresponding solutions to
the above equations in which the second term is positive.
In this case, zi will always be 2z%(uz), whereas 2t will
equal z%*(uw1) if the latter is less than L, otherwise z%
will equal L.

The total B field will be the sum of these two
integrals.

Table 5 1lists a summary of the limits of
integration for the path centered about the minimum.

TABLE 5
LIMITS OF INTEGRATION: PATH CENTERED ABOUT THE MINIMUM

.

2. <0 z_ >0 2+ > L 2+ < L
T1 <T«<T2
Zi 0 2
zt L P

T2<T<Ts
FIRST INTEGRAL:
Zi 0 2
2t = z' (uz2)
SECOND IﬂTEGRAL:
21 = z+(uz2)
2t L z's (ut)

31




C. SUMMARY

In each of the above situations. if the values for zi

and zf are

substituted into the equations for wi and wz,

respectively, the limits of integration can be calc .ated

and used to

field.

solve

equation (13), the magnitude of the B
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IV. CALCULATIONS AND ANALYSIS

A. CALCULATIONS

Having derived the formaulas for  .the limits of
integration, the next step was to write a computer program
to calculate the B fields and graph it against time.

The FORTRAN program is interactive and has a variable
input for the values of ui, uz, 8, n, {%, s, 2 and L. The
values for the first five quantities were chosed to be:
u1 =100 cm, u2=50 ¢cm, #=.99, n=1.111111 and ;zl. Various
values for s, z and L were used.

Based on the input, this program will choose what type ;
of situation 1is occurring, whether right, left or center.
It will calculate the B field during thz time the wu(2)
curve transits the rectangle 1in the u—z'plane, and will
graph B vs time(nsec).

The graphics part of this program is based on a code
written by Professor J.R. Neighbours for use on a
Textronix computer; the main part of the program is an
original work.

Calculations were caéried out for various beam lengths,
using different values for s; numerous values of =2z were
used and the corresponding B field graphs were obtained.
After studying these curves, a beam length of 1500 was

chosen with s values of 15800 and 3000. Graphs for selected
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fﬁ; values of z were compared; these graphs are shown in
3‘{ Figures 20 through 42, found in Appendix A.
¥ N
! 1=
I B. MINIMUM TIME
q-- In analyzing the three situations, the minimum time
12' taken for the radiation to reach the observer was
203
L. determined. Figure 15 shows the situation which will be
“F. used to find the time in each of the three cases.
‘.l':'
b P(Z S)
:;- 4 )
L)
C»
J-_'_.-
et S
oy
| S
° |
._}‘.'
;:?C Figure 15. Path of Beam and Radiation (z and R)
Eo1s
o
‘fﬂ The beam emerges at 0 and travels to L at constant
2
'«j velocity v, where v = ffco. Radiation is emitted when the
5 »
12427
WG4 head of the beam is at z’ The radiation then travels at
:ﬁ: a constant velocity, c, to the observer at P.
el
AN The time it will take the radiation to reach the
g
;f% observer is given by
2, "
L% t(z) = z/(Bco) + (nR)/c (24)
Ly
0y Since R2=(z-2)2, equation 24 can be written as
oo
b le
L-. 34
ko
\\,’ N I e LI S TS S P - e, ey _ s =
L W .'.-..- -‘.‘.“..- .'1 ‘.1-."‘\-_' LR .“--\"'-\‘..'. _”.‘ - .._ T S

. s - «”
PO L R I
v Caa PR DL PR F P °




S T E s AN TN T

Ldiats Sl -
el Sud Sad Sl ab - '8 82 k<2 A Al i doa Ava fia Aty g%y aug 4 A et aba gt tah |

t(2) = z/8co) + n/co)[(z-2)2 + s2]i/2 (24a)

As can be seen in Figure 16, *there is a minimum

time
for the path centered about the minimum. - It occurs at the
point zC (at the Cerenkov angle, ¢#c. The values wused in
this case are z=4000, L=1500 and s=1500. This graph

verifies the following calculation for the minimum time

occuring at the Cerenkov angle.

dt/dz' = 1/8co + (1/2)(n/co)[(z-2)2 + s2)-1/22(z2-2)

1/6co + (n/co){(z-2)/R]

1/Aco + (n/co)cos & = 0

This equation will equal zero when the value of cos 9 is
1/nf; this implies that ® = wc¢.

Figures 17 and 18 show that there is not minimum time
over the  length of the beam, L=1500, for the paths to the
right and left.

Although this analysis confirms that the minimum occurs
at the Cerenkov angle, there is no correlation between the
time in Figures 17, 18 and 13, and the time in the B field
radiation graphs. The problem stems from the fact that Ta
through Tp depend on the values of ui1 and u2, and Tc and Tp

also depend on L, while equation (24) depends on neither of

these quantities.
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PATH TO THE RIGHT
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C. ANALYSIS OF THE B FIELD GRAPHS

In analyizing the B field graphs, it was decided to
look for similar characteristics and shapes. In this
analysis two cases were considered, each with L=1500; the
comparison was made between the graphs for s=3000 and
s=1500.

Figure 19 1is a graph of s/L wvs =2z/L. This graph
indicates the boundary regions for time, i.e.,line #1 1is
Tc=Te, and line #2 is TA=Tp:. these values are based on a Au

of 50 cm and the ratio Au/L =.03333, where Au-u1i -uz. The

time region to the left of line #1 is Tc>Ts, and the region
to the right of line #2 is Ta>Tp. The region between line
#1 and #2 contains the times Tc<Te and Ta<Tp. The graph
also indicates the Cerenkov region, the area between the
dashed lines. The regions labeled RIGHT, CENTER and LEFT
~osrrespond to the position of the observer as previously
iescribed. The boundary 1lines between these regions are
*re iashed lines. Each of the B fields graphs can be

.azted in different time regions as indicated in Figure 19.
Figures 20 through 28 are all graphs of the path to the

right for which Tc>Te: these graphs lie to the left of line

#1 and are indicated by the symbol x in Figure 19. Figures

-'."'J:

20 thro- -h 26 are for s5:=1500, while Figures 27 and 28 are

for s=300U. Comparing these graphs, it can be seen that

P

3y v
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*
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there 1is a similarity in shape; as the z value gets closer

to the Cerenkov region, for each s case, the initial peak
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increases in magnitude. This 1is expected, since the
radiation should be greatest in the Cerenkov region. The
duration of the pulse decreases as z gets farther from the
source (L=0); also, it is first seen at a later time.
Figures 29 through 34 (29-31: s=1500; 32-34: s=3000)
show the B field 'in the Cerenkov region. The
characteristics of the curves shown in Figures 30 through
34 are such that the field increases, levels off and
decreases; there are no distinctive peaks. However, Figure
29 shows characteristics of the path to the right, where
Tc>Ts, and z is close to the Cerenkov region. Although this
curve falls into the Cerenkov region, it is also in the
time region for Tc>Te, to the left of 1line #1 and 1is
indicated by the symbol x in Figure 19. 1Its shape is
dependent on the relationship between Tc and TB. The other
graphs in the Cerenkov region fall in the time regions
Tc<Ts and Ta<Tp, between lines #1 and #2. These are
indicated by the symbol O in Figure 19. Other examples of
the shape being dependent on the time region are shown in
Figures 35 and 36, which indicate a B field for the path to
the right and path to the left, respectively. The shape of
these curves 1is very similar to that of the graphs in the
Cerenkov region between lines #1 and #2. The field in
Figure 35 falls into the time region Tc<Ts and the field in
Figure 36 falls into the time region Ta<Tp. Both of these

cases are indicated by the symbol © in Figure 19,since they
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fall between line #1 and #2. Thus it would seem that the
placement of each case in relation to the time boundaries
is very important in determining the shape of the B field
curve.

Figure 37 (path to the left) shows a field which is
extremely close to the time boundary Ta=Tp. Because this
is almost on the boundary, the flat part of the curve is
jJust coming to a point. The other graphs for the path to
the left (Figures 38 through 42) show characteristics
similar to those of the path to the right. For these
graphs, there is an ihitial peak and then the field falls
off; again the magnitude is greater closer to the Cerenkov
region. The first time the field is seen 1increases as =z
increases; however, unlike the path to the right, the
duration of the field increases slightly as 2z increases.
This 1increase in uuration would be expected since, in the
path to the left, the beam is coming toward the observer
and not traveling away. Figures 38 through 42 all fall to
the right of line #2, and are indicated by the symbol TJ in
Figure 19.

The curves 1in Figures 20 through 29 all fall in the
time region Tc>TB. There are four distinct points in these
curves: the initial and final points, with two
intermediate points. In each of these cases, the points
correspond to Ta, Ts, Tc and Tp, in that order. This

indicates that the initial rapid increase in the field is
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due to the u function traveling through the distance Au.
This same thing occurs in Figures 38 through 42, in which
the time region is TA>Tp. However, these points correspond
to Tc, Tp, Ta and Ts, the case for the path to the left.
Figures 30 through 33, show B fields for cases which
fall well within the Cerenkov region. In each of these
cases, there are six distinct points: the initial and
final points, with four intermediate points. In Figure 30,
for example, these points correspond to Ti, Ta, Tc, Tz, Ts
and Ta=Tp. Figure 34 shows only four distinct points,
corresponding to Tc, Ta, Tp and TB. This case is almost on
the boundary for the Cerenkov region; it shows the four
points corresponding to the path to the left, with Ta<Tp,

rather than the six points for the center case.
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V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

From this preliminary study, it would seem that the
shape of the B field is determined by its placement within
a time region, rather than exclusively by the position of
the minimum, i.e., path to the right, left or centered
about the minimum. In Figure 19, the boundary line #1 and
#2 are the cutoffs :or determining the characteristic
shapes of the B field graphs. Between these two lines, the
graphs show a period during which the radiation levels off.
On either side of these lines, there is a radiation peak
and the field falls off to a secondary peak and then
continues to zero. When the study was undertaken, it was
expected that the cutoff for characteristic shapes would be
the position of the observer in relation to the Cerenkov
region. Since the ime regions play such an important
role, it would be simpler to study the radiation fields
from graphs similar to that in Figure 19.

The maximum value of the B field, for a given s and L,
is found to be in the path centered about the minimum,i.e.,
in the Cerenkov region.

The duration of the pulse decreases throughout the
path to the right and well into the Cerenkov region. This
is due to the fact that the beam i1s traveling away from the

observer. For situations occurring close to the boundary

44
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of the Cerenkov region and the path to the left, and
continuing into the region for the path to the left, the
duration of the pulse increases slightly. For these cases,
the beam is traveling toward the observer.

In each case studied, as =z increases, 1i.e., as the
observer gets farther from the source, the pulse first
appears at a later time.

It is difficult to predict the characteristics of a
curve whose 2z value falls on or close to a boundary lire
(Figure 19), whether that be a +time or path boundary.
These characteristics include shape, flat topped or peaked,
and the number of distinct points on the curve.

In analyzing graphs for different values of Au/L, it
was determined that as Au/L gets very small, i.e., esquals
0.0001, all the time lines coincide. This would mean that
all the graphs would have a peaked shape and the flat top
curves would disappear, since there would be no region

between the time line boundaries.

B. RECOMMENDATIONS

Since +the shape of the B field curve is so closely
related to the time regions in Figure 19, it is recommended
that several other values of Au be used for analysis,

along with different values for s, the vertical coordinate

of the observer’s position, P(z,s), in the z-s plane, and

for L, the beam length.
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It is also recommended that some universal time scale
be found to use in graphing the radiation fields. For this
study, each graph begins at a different time, the time the
u curve begins to transit the rectangle in the u-z plane.
If each graph indicates the same time scale, it would be
easier to conduct an analysis and comparison of the
radiation fields.

Since there was a problem in correlating the minimum
time with the B field graphs, it 1is recommended that
further study be conducted in this area

In order to make it easier to study the graphs for the
case centered about the minimum, it is recommended that the
program Fields (Appendix B) be changed so that the print
out of the graphs indicate the relationship between TA and
To, and T and Tc. Also, a listing of all the appropriate

boundary times in each case would be valuable.
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APPENDIX A

FIGURES: B FIELD CURVES
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Figure 20: s=1500, z=1; Tc>Ts
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APPENDIX B
FORTRAN PROGRAM: FIELDS

Cxxkxkxx PROGRAM FIELDS *xkkxxk

Cxxxxxx THIS PROGRAM WILL CALCULATE THE FIELDS FROM A
PASSING CHARGE BUNCH. IT WAS WRITTEN BY LCDR
KATHLEEN M. LYMAN, USN; THE GRAPHICS PORTION OF THE
PROGRAM IS BASED ON CODE WRITTEN BY PROF. J.R.
NEIGHBOURS OF THE NAVAL POSTGRADUATE SCHOOL.

REAL N,U1,02,BETA,CO,ROE,A,G,CE,V,BPRME,R1,R2,Al
REAL A2,D,E,DD,EE,Q,TA,TB,TC,TD,F, ZPI, ZPF,WPI, WPF
REAL Ww1,w2,2C,RC,ZPC,T1,T2,T3,DELR, ZPM, ZPM2, B1, B2
REAL E1,E2,S51,XX,YY,S,L,Z, TPRME, B, BMAX, TMAX, XMAX
REAL SDYY,SDXX,SCALEY, SCALEX, SDX, SDY, SN, YN, YMIN, X, Y
REAL YMAX, XMIN, TMIN,GPRME, THETA1, THETA2

DIMENSION TPRME(9000),B(9000)

INTEGER I,J,JXMAX,JYMAX, IMAX

CHARACTER*1 AXCH, PRE

CHARACTER*6 PATH

CHARACTER*8 TIME

300 WRITE(6,2000)

2000 FORMAT(® U1 = ’,8)
READ(5, *)U1
WRITE(6,2001)

2001 FORMAT(® U2 = ',3)

READ(5, x)U2
WRITE(6,2005)

2005 FORMAT ('BETA = ',8§)
READ(5,*)BETA
WRITE(6,2007)

2007 FORMAT (’ N= "'.,98)
READ (5, *)N
WRITE(6,2009)

2009 FORMAT(’' ROE = ’',8)

READ(5, *)ROE
Cxxkxkkx INITIAL VALUES »kxkxxxxx

An

- v
] l‘ n. 'l -

Sul’. | j=JANANLRL NN
R SRS RPLE

DO 900 I = 1,9000
e TPRME(I) = 0.0
!& 900 CONTINUE
)
U
e DO 910 I = 1,9000
- B(I) = 0.0

910 CONTINUE




TMAX=0.0
TMIN=0/0

IMAX=0
BMAX=0.00000000
C0=29.997250

Cxxxxkx CALCULATE THE VELOCITY V AND BETA PRIME (BPRME)
V=BETA*CO
BPRME=NxBETA

Q=BPRME**2 . -1.

Cxxxxxx CALCULATE THE CERENKOV ANGLE (CE) xxkxxxx
CE = ACOS(1/BPRME)
F = TAN(CE)

WRITE(6,1002)
1002 FORMAT(’ENTER S VALUE FOR GRAPH ,®) j
READ(5,x)S ‘

WRITE(6,1003)
1003 FORMAT('ENTER L VALUE FOR GRAPH "8)
READ(5,*)L

WRITE(6,1004)
1004 FORMAT(’ENTER Z VALUE FOR GRAPH "V8)

R1
R2

SQRT (S%*2. +Z%x2 )
SQRT(Sx*2. +(Z-L)xx%2.)

o

S1

(Skx%x2 . )*Q

Cxxxxxx CALCULATE THE BOUNDARY TIMES xkxkxkxkx
TA = (BPRMEx*R1-U1)/V
WRITE(6,3013)TA

3013 FORMAT(’'TA:’,4X,F9.4)

TB = (BPRME*R1-U2)/V
WRITE(6,3014)TB
3014 FORMAT(’TB:',4X,F9.4)

re

TC = (L+(BPRME*R2)-U1)/V
WRITE(6,3015)TC

f 3015 FORMAT (' TC: ', 4X,F9.4)
v

2 TD = (L+(BPRME*R2)-U2)/V
- WRITE(6,3016)TD

s 3016 FORMAT(’TD:’,4X,F9.4)
ka3
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Cxxxx**x CALULATE THE VALUE OF TAN(THETA 1), (A), AND
Cxxxxxkx THE VALUE OF TAN(THETA 2), (G)

A=S/Z

IF(Z.LT.L)GO TO 500

IF(Z2.EQ.L)GO TO 501

G=8/(2-L)

GO TO 502

Cxxx*xxx COMPARISON TO DETERMINE ON WHICH SIDE THE MINIMUM
Cxxxxxx LIES
500 GPRME=ATAN((L-2)/5)+90.

THETA1=ATAN(A)

THETA2=ATAN(GPRME)

IF(THETAl1.GT.CE)GO TO 10

IF(THETA2.GE.CE)GO TO 15

GO TO 20

501 GPRME=90.
THETA1=ATAN(A)
IF(THETA1.GT.CE)GO TO 10
GO TO 15

502 IF(A.GT.F)GO TO 10
IF(G.GE.F)GO TO 15
GO TO 20

Cxxxxxx PATH TO THE RIGHT x¥k¥kxkxk

10 WRITE(6,2050)

2050 FORMAT (' PATH TO THE RIGHT’)
PATH=’RIGHT’
TMIN=TA

303 DO 701 I=1,8000

TPRME(I)=TA+(REAL(I))/100.
IF(TPREM(I).GE.TD)GO TO 800

-

~ TMAX=MAX(TMAX, TPRME (1))

EZ IMAX=MAX (IMAX, 1)

>

- A1=U1+VXTPRME(I))

+ A2=U2+(VXTPRME(1))

: D= ( (BPRMEx%x2 YxZ)~-Al
03 DD= ( (BPRMEX*2 . ) %7 ) A2
% El=((Z-A1)**2.)-~S1

o) E2=((2-A2)%x2.)-S1

ﬁ IF(TC.GT.TB)GO TO 25
4 IF(TC.LT.TB)GO TO 30
g IF(TC.EQ.TB)GO TO 35
~
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Cxxxxxx TC > TB: CALCULATION OF LIMITS OF INTEGRATION

25 TIME="TC >TB’
IF((TA.LT.TPRME(I)).AND. (TPRME(I).LT.TB))GO TO 28
IF((TB.LT.TPRME(I)).AND. (TPRME(I).LT.TC))GO TO 27
IF((TC.LT.TPRME(I)).AND. (TRPME(I).LT.TD))GO TO 28

Cxxxkxxx TA <T'<TB

26 ZPI=0.
IF(E1.LT.0.)GO TO 200
E=BPRME*SQRT(E1)
ZPF=(D+E)/Q
IF(ZPF.LT.0.)GO TO 303
GO TO 101

Cxxxx¥xx TB<KT’<TC

27 IF(E1.LT.0.)GO TO 200
E=-BPRMEX*SQRT (E1)
IF(E2.LT.0.)GO TO 220
EE=BPRME*SQRT(E2)
ZPI=(DD+EE)/Q
LPF=(D+E),/Q
IF(ZPI.LT.0.)GO TO 303
IF(ZPF.LE.0.)GO TO 303
GO TO 101

Cxodxxkkx TC<T’<TD

28 IF(E2.LT.0.)GO TO 220
EE=BPRMEXSQRT (E2)
ZPI=(DD+EE)/Q
ZPF=L
IF(ZPI.LT.0.)GO TO 303
GO TO 101

Cxxxx*xx TC < TB: CALCULATION OF LIMITS OF INTEGRATION

30 TIME="TC < TB’
IF((TA.LT.TPRME(I)).AND. (TPRME(I).LT.TC))GO TO 31
IF((TC.LT.TPRME(I)).AND. (TPRME(I).LT.TB))GO TO 32
IF((TC.LT.TPRME(I)).AND. (TPRME(I).LT.TD))GO TO 33

Cxxxx*xx TA<T'<TC

31 ZPI=0
IF(E1.LT.0.)GO TO 200
E=BPRMEXSQRT (E1)
ZPF=(D+E)/Q
IF(ZPF.LT.0.)GO TO 303

GO TO 101
Cxxxkxx TC<T'<TB
32 ZPI=0.

ZPF=L

GO TO 101
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Cxok kKKK
33

CAKHKKK
35

CH KKK kK
36

CHKKK KK
37

CHRK KKKk
101

701

CHRXAKKK
15
2051

CRRR KKK

TB<T’'<TD
IF(E2.LT.0.)GO TO 220
EE=BPRME*SQRT(E2)
ZPI=(DD+EE)/Q

ZPF=L

IF(ZPI.LT.0.)GO TO 303
GO TO 101

TC = TB: CALCULATION OF LIMITS OF INTEGRATION

TIME="TC = TB’

IF((TA.LT.TPRME(I)).AND. (TPRME(I).LT.TB))GO TO 36
IF((TB.LT.TPRME(I)).AND. (TPRME(I).LT.TD))GO TO 37

TA<KT’ <TB

ZPI=0.

IF(E1.LT.0.)GO TO 200
E=-BPRME*SQRT(E1)
ZPF=(D+E)/Q
IF(ZPF.LT.0.)GO TO 303
GO TO 101

TB<T’<TD
IF(E2.LT.0.)GO TO 220
EE=BPRME*SQRT(E2)
ZPI=(DD+EE)/Q

ZPF=1L

IF(ZPF.LT.0.)GO TO 303
GO TO 101

CALCULATION OF THE FIELD
WPI=Z-ZPI

WPF=Z-ZPF

W1=WPI/S

W2=WPF/S

YY=ATAN(W1)

XX=ATAN(W2)
B(I)=(ROE*NX(BETA%*2))*(YY-XX)
BMAX=MAX(BMAX,B(I))
CONTINUE

GO TO 800

PATH CENTERED ABOUT THE MINIMUM X*%xx%xX
WRITE(6,2051)

FORMAT ('’ CENTER’ )

PATH="CENTER’

ZpPC=2-(S/F)
RC=SQRT(S**2. +( (Z-2PC)**2.))

CALCUATION OF T1 AND T2
T1=(ZPC+(BPRMEXRC)-U1)/V
T2=(ZPC+(BPRMEXRC)-U2)/V
DELR=R1-R2
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WRITE(6,6000)T1
6000 FORMAT(’'T1= ’,F9.4)

WRITE(6,6001)T2
6001 FORMAT(’T2= ’,F9.4)

Cxxxxxx DETERMINING THE VALUE OF T3
IF( (BPRME*DELR).GT.L)GO TO 16
IF( (BPRMEXDELR).LE.L)GO TO 17

16 T3=TB
TIME="T3 = TB’
GO TO 18
17 T3=TD
TIME="T3 = TD’
18 WRITE(6,6002)T3

6002 FORMAT(’'T3= ’',F9.4)

TMIN=T1

DO 702 I=1,9000
TPRME(I)=T1+(REAL(I))/100.
IF(TPRME(I).GE.T3)GO TO 800
TMAX=MAX(TMAX, TPRME(I))
IMAX=MAX(IMAX,I)

IF((T1.LT.TPRME(I)).AND. (TPRME(I).LT.T2))GO TO 60
IF((T2.LT.TPRME(I)).AND. (TPRME(I).LT.T3))GO TO 70

Cxxxxx*x CALCULATION OF LIMITS OF INTEGRATION (T1<T’'<T2)
80 A1=U1+(V*TPRME(I))

A2=U2+(VXTPRME(1))

D=( (BPRME**2. )xZ)-Al

DD=( (BPRME*%2, )*xZ)-A2

E1=((Z-Al1)%*%x2,)-S1

E2=((Z-A2)%x%*2,)-S1

IF(E1.LT.0.)GO TO 200
E=BPRME*SQRT(E1)
ZPM=(D-E)/Q
ZPF=(D+E)/Q
IF(ZPM.LE.O.)GO TO 61
IF(ZPM.GT.0.)GO TO 62

61 ZPM=0.
62 ZPI1=ZPM
63 IF(ZPF.GE.L)GO TO 64
IF(ZPF.GT.L)GO TO 110
64 ZPF=L
Cxxxxxx CALCULATION OF THE FIELD
110 WPI=Z-Z2P1
WPF=Z-7ZPF
W1=WPI/S
W2=WPF/S

YY=ATAN(W1)
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L8
.»:;
L83
‘3 o
-t XX=ATAN(W2)
o B(1)=(ROE*N*(BETA**2.))*(YY-XX)
£ BMAX=MAX ( BMAX,B(I))
ok GO TO 702
R L.
1008 Cxxxxxk CALCULATION OF LIMITS OF INTEGRATION (T2<T’<T3)
+ Cxxxxxx FIRST INTEGRAL
AN 70 A1=U1+(VXTPRME(I))
oA A2=U2+(VXTPRME(I))
s D= ( (BPRME¥%2. )*2) -Al
o DD= ( ( BPRME**2. ) ¥Z) -A2
' E1=((Z2-A1%%2.)-51

E2=((Z-A2%%x2.)-51

R

‘ IF(E1.LT.0.)GO TO 200
'Q ‘ E=BPRME*SQRT (E1)

o IF(E2.LT.0.)GO TO 220
rs EE=BPRME*SQRT (E2)

A 7PM=(D-E)/Q

5 7PM2= (DD-EE) /Q
IF(ZPM2.LE.0.)GO TO 73
IF(ZPM2.GT.0.)TO TO 74

Py 73 ZPF=0.
~ GO TO 75

NG 74 ZPF=2PM2
e 75 IF(ZPM.LE.0)GO TO 71
A IF(ZPM.GT.0)GO TO 72
N 71 ZPI1=0.
XN GO TO 80

R 72 ZPI=ZPM
Pl
;:cg Cxxkkx* CALCULATION OF THE FIELD FROM THE FIRST INTEGRAL
S 80 WPI=Z-ZPI

A WPF=Z-ZPF
o W1=WPI/S

it W2=WPF/S
e YY=ATAN(W1)
5 XX=ATAN(W2)
-.§ B1=(ROEXN*(BETA**2.))*(YY-XX)
e Crxxvxx SECOND INTEGRAL
o IF(E1.LT.0.)GO TO 200
Y E=BPRME*SQRT(E1)

M IF(E2.LT.0.)GO TO 220
W EE=BPRME*SQRT (E2)
o) ZP1=(DD+EE)/Q
) ZPF=(D+E)/Q
)
!
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IF(ZPI.GE.L)GO TO 83
GO TO 84

ZPI=L

IF(ZPF.GE.L)GO TO 82
IF(ZPF.LT.L)GO TO 81
ZPF=L

CALCULATION OF THE FIELD FROM THE SECOND INTEGRAL
WPI=Z-ZPI

WPF=2-ZPF

W1=WPI/S

W2=WPF/S

YY=ATAN(W1)

XX=ATAN(W2)

B2=(ROEXN*( BETAX%2. ) )*(YY-XX)

TOTAL FIELD
B(I)=B1+B2

BMAX=MAX(BMAX,B(I))
CONTINUE
GO TO 800

PATH TO THE LEFT
WRITE(6,2052)

FORMAT(’PATH TO THE LEFT’)
PATH='LEFT’

TMIN=TC

DO 700 I=1,9000
TPRME(I)=(TC+REAL(I))/100.
IF TPRME(I).GE.TB)GO TO 800
TMAX=MAX (TMAX, TPRME(I))
IMAX=MAX (IMAX, I)

A1=U1+(VXxTPRME(I))
A2=02+(VXTPRME(I))
D=( (BRPME**2. )*Z)-Al
DD=( (BPRME**2 . )%Z)-A2
E1=(2-A1)*x%2 -S1
E2=(2-A2)%*%2, -S1

IF(TA.LT.TD)GO TO 40
IF(TA.GT.TD)GO TO 45
IF(TA.EQ.TD)GO TO 50

TA < TD: CALCULATION OF LIMITS OF INTEGRATION
TIME='"TA < TD’

IF((TC.LT.TPRME(I)).AND. (TPRME(I).LT.TA))GO TO 41
IF((TA.LT.TPRME(I)).AND. (TPRME(I).LT.TD))GO TO 42
IF((TA.LT.TPRME(I)).AND. (TPRME(I).LT.TB))GO TO 43
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C Rk kKK
41

C koK %KX
42

CxA KK KK
43

CHKK AKX
45

Cxk kKK
46

CR*RKKK
47

TC<T’<TA
IF(E1.LT.0.)GOTO 200
E=BPRME*SQRT (E1)
ZPM=(D-E)/Q

ZPF=L

ZPI=72PM
IF(ZPI.LT.0.)GO TO 304
GO TO 100 ‘

TA<T’<TD

ZPI=0.

ZPF=L

GO TO 100

TA<KT’<TB

ZPI=0.

IF(E2.LT.0.)GO TO 220
EE=BPRMEX*SQRT (E2)
ZPM2=(DD-EE)/Q
ZPF=7ZPM2
IF(ZPF.LT.0.)GO TO 304
GO TO 100

TA > TD: CALCULATION OF LIMITS OF INTEGRATION |
TIME="TA > TD’

IF((TC.LT.TPRME(I)).AND. (TPRME(I) .LT.TD))GO TO 486
IF((TD.LT.TPRME(I)).AND. (TPRME(I).LT.TA))GO TO 47
IF((TA.LT.TPRME(I)).AND. (TPRME(I).LT.TB))GO TO 48

TC<T'<TD
IF(E1.LT.0.)GO TO 200
E=BPRME*SQRT(E1)
ZPM=(D-E)/Q

ZPF=L

ZPI=72PM
IF(ZPI.LT.0.)GO TO 304
GO TO 100

TD<T’<TA
IF(E1.LT.0.)GO TO 200
E=BPRME*SQRT (E1)
[F(E2.LT.0.)GO TO 220
EE=BPRME*SQRT(E2)
ZPM=(D-E)/Q
ZPM2=(DD-EE)/Q

ZP1=72PM

ZPF=ZPM2
IF(ZPI.LT.0.)GO TO 304
IF(ZPF.LT.0.)GO TO 304
GO TO 100
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CHRRKKKXK
48

CHoRk kKX
50

CHk Kk kK
51

C Kk Xk KK
52

C XXk KK XK
100

700

200
201

220
221
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TA<T'<TB

ZP1=0.

IF(E2.LT.0.)GO TO 220
EE=-BPRMEXxSQRT (E2)
ZPM2=(DD-EE)/Q
ZPF=7PM2
IF(ZPF.LT.0.)GO TO 304
GO TO 100

TA = TD: CALCULATION OF LIMITS OF INTEGRATION

TIME="'TA = TD’

IF((TC.LT.TPRME(I)).AND.(TPRME(I).LT.TA))GO TO 51
IF((TD.LT.TPRME(I)).AND. (TPRME(I).LT.TB))GO TO 52

TC<T’<TA
IF(E1.LT.0.)GO TO 200
E=BPRME*SQRT (E1)
ZPM=(D-E)/Q

ZPF=L

ZPI=2PM
IF(ZPI.LT.0.)GO TO 304
GO TO 100

TD<T’<TB

ZPI=0.

IF(E2.LT.0.)GO TO 220
EE=BPRMEXSQRT(E2)
ZPM2=(DD-EE)/Q
ZPF=2PM2
IF(ZPF.LT.0.)GO TO 304
GO TO 100

CALCULATION OF THE FIELD
WPI=2-ZPI

WPF=Z-ZPF

W1=WPI/S

W2=WPF/S

YY=ATAN(W1)

XX=ATAN(W2) .
B(I)=(ROE*N*(BETA%x*2.))*(YY-XX)
BMAX=MAX (BMAX,B(I))

CONTINUE

WRITE(6,201)

FORMAT(’VALUE OF E1 IS NEGATIVE.

AGAIN. ")
GO TO 300

WRITE(6,221)

FORMAT (’ VALUE OF E2 IS NEGATIVE.
AGAIN.")

GO TO 300

PROGRAM WILL BEGIN

PROGRAM WILL BEGIN

Rl Ry

LS

b

Iﬁkﬂi



R S S A Al o A dr s ok Bte aide Bk gk

LI T N g e v e Gl Ml A i o

Cxkxkkxk BEGIN GRAPHICS okkkdk k¥ kkKkX

Cxxxxx%x INPUT SCALING VALUES *k#kxx

800 WRITE(6,1510)BMAX

1510 FORMAT(/’' THE MAXIMUM VALUE OF B IS 'L,EF16.8)
WRITE(6,1520)

1520 FORMAT(/’ENTER THE MAXIMUM HEIGHT ON THE B AXIS’.$)
READ(5, *¥)YMAX :
WRITE(6,15630)

1530 FORMAT(/’ENTER THE B AXIS MARKING INCREMENT ' ,3)
READ(5, x)SDYY
CALL INETYPE(IPAT)
CALL COLORLIN(ICOLCR)

WRITE(6,1560)
1560 FORMAT(’DO YOU WANT INFORMATION PRINTED ALONGSIDE
THE GRAPH? ", 8)
READ(5,1570)AXCH
L NAY FORMAT (A1)

CALL INSTR1
PAUSE’' #1°

XMAX=TMAX

XMIN=TMIN
SDXX=(TMAX-TMIN)/3.0
SCALEX=60.0/(XMAX-XMIN)
SDX=SDXX*SCALEX
XN=(XMAX-XMIN) /SDXX
JXMAX=INT(XN)

YMIN=0.0
SCALEY=80.0/(YMAX-YMIN)
SDY=SCALEY*SDYY
YN=(YMAX-YMIN)/SDYY
JYMAX=INT(YN)

Cxxxxxx BEGIN TO PLOT *%k%x¥k%xx
CALL GRSTRT(4105,1)
CALL NEWPAG
CALL VAXES
CALL VXMARK(JXMAX, SDX)
CALL VYMARK(JYMAX,SDY)

GO Cxxxxx%x PLOT GRAPH *%x%xxXx
e CALL MOVE(18.0,19.0)
s CALL DASHPT(IPAT)
S CALL LINCLR

-

DO 540 I=1,IMAX
Cx*x*xx SCALING OF VALUES *xxxxx
X=18.0+60.0%( (TPRME(I)-TMIN)*100.)/IMAX
¥=19.0+80.0%B(I)/YMAX

.
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CALL DRAW(X,Y)

CONTINUE

DECISION TO LABEL GRAPH xXxk%kx
CALL GRSTOP

CALL INSTR2

PAUSE' #3'

CALL LINE

CALL INSTR1

PAUSE’ #4’

CALL GRSTRT(4105,1)

CALL XLABEL(JXMAX, SDX, SDXX, XMIN)

CALL YLABEL(JYMAX,SDY,SDYY, YMIN)

AXES LABELS AND PARAMETER LEGEND **%xxx
IF(AXCH.EQ. 'Y’ )GO TO 556

GO TO 651

CALL MOVE(50.0,10.0)

CALL TXICUR(8)

CALL TEXT(11,'TIME (NSEC)')

CALL MOVE(5.0,83.0)

CALL TXICUR(3)

CALL TEXT(1,’B’)
REL=REAL(L)

RES=REAL(S)

REZ=REAL(Z)

CALL MOVE(85.0,95.0)

CALL TXICUR(1)

CALL TXFCUR(2)

CALL TEXT(15,’BEAM LENGTH
CALL RNUMBR(REL,1,8)

CALL MOVE(85.0,85.0)

CALL TEXT(1S5,’ zZ =)
CALL RNUMBR(REZ,1,8)

CALL MOVE(85.0,75.0)

CALL TEXT(15,’ 5 =)
CALL RNUMBR(RES,1,8)

CALL MOVE(85.0,65.0)

CALL TEXT(6,PATH)

CALL MOVE(85.0,55.0)

CALL TEXT(8,TIME)

I
~

CALL GRSTOP
CALL INSTR2
PAUSE’ #5'
GO TO 440

DECISION TO PRINTOUT, RE-RUN, PLOT VALUES OR EXIT

WRITE(6,445)

FORMAT(//’ 1: PRINTOUT VALUES'/’ 2: RUN PROGRAM
AGAIN")
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N WRITE(6,450)
i 450 FORMAT(’ 3: PLOT  VALUES’/’4: EXIT’//’ENTER
N CHOICE’,3)
e READ(5,460)PRE
o 460 FORMAT (A1)
Mo IF(PRE.EQ.’4’)GO TO 301
IF(PRE.EQ.’3’)GO TO 800
e IF(PRE.EQ.’2’)GO TO 300
oL IF(PRE.EQ.’1')GO TO 680
SN GO TO 440
ﬂ-‘.
WY Cxxkxxx PRINT OUT VALUES #Xkixx
660 WRITE(6.,670)
S8 670 FORMAT ('’ TIME B’ /28('-")/)
o DO 690 I=1, IMAX
o WRITE(6,680)TPRME(I),B(I)
o 680 FORMAT(F16.8,2X,F10.8)
Y 690 CONTINUE
, & GO TO 440
o
- 301 END
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