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CORRELATION OF SAW COATING RESPONSES
WITH SOLUBILITY PROPERTIES AND CHEMICAL

STRUCTURE USING PATTERN RECOGNITION

INTRODUCTION

Surface acoustic wave (SAW) devices exhibit great potential as small,

very sensitive chemical sensors. The principles of operation have been

described in detail (1), but they are essentially mass sensitive detectors.

They consist of a set of interdigital transducers that have been micro-

fabricated onto the surface of a piezoelectric crystal. When placed in an

oscillator circuit, an acoustic Rayleigh wave is generated on the surface of

the crystal. The characteristic resonant frequency of the device is dependent

on transducer geometry and the Rayleigh wave velocity. Small mass changes or

elastic modulus changes on the surface perturb the wave velocity and are

readily observed as shifts in this resonant frequency. The extreme sensi-

tivity of these devices makes them attractive as potential gas sensors. The

112 MHz dual SAW devices routinely used in our laboratory, for example, have a

theoretical sensitivity of >17 Hz/ng/cm2 . Considering that the active area of

the device covers 0.17 cm2 and assuming a signal to noise ratio of three, this

sensitivity results in a minimum detectability of about 0.2 ng (1).

The ultimate performance of a SAW device as a chemical sensor is

critically dependent on the sensitivity and selectivity of the adsorbent

coating applied to the surface of the piezoelectric crystal. However, no

systematic investigation of adsorbent coatings on SAW devices has yet been

reported, and references to responses of specific SAW coatings to specific

vaoors are Few in number .2-5). The most closely related sensor tachnology is

ManUscnc a0proved Aoril IS. 1986.
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the bulk piezoelectric crystal sensor, which has been reviewed (6). Coatings

exhibiting selectivity to specific vapors have been identified in some cases,

but many coatings have been of ill-defined composition and, until recently,

selection has been largely empirical ,6-11). It is therefore essential to

identify coatings For SAW devices which respond to vapors of interest, and to

develop a rationale for the selection or design o: such coatings.

The development of absorbent coatings alone may not be sufficient for

some applications of these devices. It is unlikely that any given material

possesses sufficient selectivity to permit accurate detection and identi-

fication of a single chemical vapor of interest in the presence of multiple,

unknown interferences. A promising approach to this type of analytical

problem is the use of pattern recognition techniques in conjunction with an

array of sensors of varying selectivity. This approach has been applied to

vapor response data from electrochemical sensors (12) and to the selection of

coatings for piezoelectric crystal sensors (7).

Pattern recognition techniques, as applied to sensor data, can be

described as follows. The sensors encode chemical information about the

vapors in numerical form. Each sensor defines an axis in a multidimensional

space. Vapors can be represented as points positioned in this space according

to sensor responses. Vapors which produce similar responses from the set of

:oatings wi.i tend to cluster near one anocher in space. Pattern :ecogniion

uses multivariate statistics and numerical analysis to investigate such

clustering, and to elucidate relationships in multidimensional data sets

without human bias. In addition, the methods can reduce interference effects

and improve selectivity in analytical measurements.

In this study, we have generated a large data base consisting of the

responses of twelve SAW coatings to eleven vapors at various concentrations,

ano we iave analyzed tnese oats jsing pattern :ecognition tacnniques. Zur



objectives were twofold. First, we wished to gather sufficient data to

investigate and possibly identify the types of vapor/coating interactions

responsible for the observed SAW device responses. Pattern recognition

techniques assisted in this effort by clustering vapors with similar response

patterns, and by identifying similarities between coatings based on responses

to vapors. Secondly, we wished to determine the ability of pattern

recognition techniques in conjunction with SAW sensors to discriminate between

vapors of interest and chemically similar interferences. Such discrimination

is necessary for an array detector to be practical and effective.

EXPERIMENTAL

Materials. Solvents for vapor stream generation were commercial

materials of 99.99% purity, except diethyl sulfide (980-Aldrich) and dimethyl

methylphosphonate (97%-Aldrich). These materials are listed in Table I.

The following coating materials were obtained from Aldrich: abietic acid,

octadecyl vinyl ether/maleic anhydride copolymer, poly(epichlorohydrin),

cis-poly(isoprene), and acrylonitrile/butadiene copolymer (.45/.55).

Polyvinylpyrrolidone and 0V210 were purchased from Alltech. The two poly-

phosphazines are proprietary materials and were obtained courtesy of Ethyl

Corp. Poly(ethylene maleate) was prepared as described by Snow and Wohltjen

':. ?oiy-amidoxime) was prepared oy reaction of the acryionicrile/butaaiene

4copolymer (Aldrich) with hydroxylamine. Subsequent IR analysis indicated a

S nitrile to amidoxime ratio of .38/.07 (13). Fluoropolyol was prepared using

methods described by O'Rear et al. (14). These materials and their structures

are given in Table II.

Analytical system. The 112 MHz dual SAW delay lines used in this study

were fabricated photolithogrsphically on polished S-T Quartz substrates '1 _-M

:4 3.38 :11 :hick". The eiectrodes mere mace of acid :00 Anastroms



thick) deposited onto titanium "about 200 Angstroms thick) to provide ad-

hesion. Eacn electrode array consisted of 50 'finger' pairs with each

electrode 7 microns wide and spaced 7 microns from the next finger. The

electrode arrays had an aperture of 0.224 cm. The devices were clamped into a

teflon holder using small pressure clics and screws. A lid attached to this

holder was fitted with inlet and outlet tubes to provide a vapor flow path.

The two delay lines used in this system were connected as shown in Figure 1.

Dilute solutions of the coating materials were prepared in volatile

solvents, usually chloroform, tetrahydrofuran, or a methanol/chloroform

mixture. To make chemical sensors, one delay line was coated with the

material under investigation using an airbrush. Coating deposition produced

frequency shifts of 75-200 KHz, which were recorded and used as a measure of

film thickness For normalization and comparison of data (1).

The uncoated delay line acted as a reference oscillator to provide

compensation for ambient temperature and pressure fluctuations. Each delay

line was connected to a TRW 2820 wideband RF amplifier to provide the ampli-

fication required for oscillation to occur. The frequencies obtained from

each oscillator were mixed in a double balanced mixer (Mini Circuits Labs

SRA-1) to provide the low frequency difference signal which was measured.

Freauency measurements were made using a Systron-Donner Frequency Counter

modei 6042A. The Frequency counter was interfaced to an Apple lie micro-

computer via an IEEE 488 bus and interface card.

Vapor generation system. Vapor streams were generated using an automated

gas handler system interfaced with an Apple le microcomputer. Plumbing

connections were made using 1/8" stainless steel or nickel tubing. The

carrier gas was compressed air that was dried by passage through Drierite.

Flow rates were controlled with mass flow controllers (Tylan).

4



Individual vapor streams were generated from one of up to eight bubblers,

or one of up to four permeation tubes. Air flow to bubblers was maintained at

39 ml,'min, while flow rates to permeation tubes varied from 39-200 nl/,-in,

depending on the desired concentration. Additional air for dilution could be

added downstream, up to a total volumetric flow of 1200 sccm. Based on tne

accuracy of the mass flow controllers, the uncertainties in the total

volumetric flow rates were 1.7%. A constant system output of 39 ml/min to the

sensor was maintained by a piezoelectric precision gas leak valve. This

system will be described in more detail elsewhere (15).

The bubblers consisted of stainless steel vessels containing approxi-

mately 100 ml of solvent, with inlet and outlet tubes of 1/8" stainless steel

tubing. Vapor mass flow rates were determined by adsorbing the vapor output

onto clean, dried charcoal traps. The traps were weighed after 15-20 min

collection periods, and mass flows were determined. Two traps in series were

periodically used to check for breakthrough. Multiple successive deter-

minations resulted in calculated mass flows (in mg/min) with errors of less

than 6%.

A calibrated permeation tube containing methanesulfonyl fluoride was

purchased from G.C. Industries (Chatsworth, CA). Permeation tubes containing

1-3 ml of dimethyl methylphosphonate or N,N-dimethylacetamide were prepared

ijusing * to 1 1/2 inch lengths of Teflon heatsnrin< tuoing (3/B" i.d., Cole-

Parmer) capped at both ends with teflon rod. These tubes were stored in a
4

dessicator for 1-3 weeks and then calibrated at operational temperatures

(DMMP-50*C, DMAC-250 C). The tubes were weighed every 2-3 days until constant

permeation rates (in ug/min) were obtained. Permeation rates had errors of

less than 10%.

Data collection and analysis. During coating testing, the difference

Srequency outout of :re sensor Nas :rccrdeo ever t.vo seconds at I H z
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resolution. In a typical experiment, the sensor was exposed to air for one

minute to establish a baseline response. This was followed by repeated

exposures f vapor/air/vapor/air, with each exposure of two minutes duration.

Each of the twelve coatings was exposed to eleven chemical vapors. Each

vapor was run at four different concentrations, with two experiments (four

vapor exposures) at each concentration. Frequency shifts caused by these

vapor exposures were determined by integrating the area under the signal peak

and averaging over the number of data points collected. An equilibration time

of 20 min. was scheduled at the beginning of each new vapor to allow the vapor

% stream to achieve equilibrium. At the completion of the experiments for a

given vapor, the gas handler system was flushed with clean air for ten

minutes.

Pattern recognition. Since dividing the sensor responses by concen-

tration is not possible for a field instrument measuring unknowns, it was

important for each sensor to be exposed to the same concentrations, and to

apply a closure method (such as pattern normalization) to the results. The

data were collected on individual sensors rather than an array. As a result,

the sensor data for a given vapor were not always collected at the same

concentration for each sensor. To get the same concentrations for each vapor

across a oattern vector, responses for some sensors were interpolated from the

calibration curves. For most of the eleven vapors, average frequency snifts

* were determined for two experiments at each of three concentrations. Only two

concentrations resulted in satisfactory responses for MSF, while all four

concentrations of DMMP were consistent for all of the sensors tested. These

Iresponse values, or descriptors, for the eleven vapors formed a 66 x 12 data

matrix. Each row in the matrix is a pattern vector, representing responses of

the :welve coatings to a given vaoor/concentration experiment.



These data were then analyzed on a VAX 11-750 using pattern recognition

routines included in ADAPT 16). The pattern vectors were normalized using

pattern normalization methods described previously '12). The normalization

procedure removes the effects of concentration and the sensitivity of one

vaor relative to another. This is necessary to obtain the maximum amount of

chemical information from vapors which give only weak responses. Each

descriptor for a given coating was then autoscaled to a mean of zero and a

standard deviation of unity. Although autoscaling alters the actual values of

the sensor responses, it does not alter the number of features or the basic

geometry of the clustering (16).

Multiple linear regression was used to investigate the uniqueness of each

sensor while testing for collinearities which could cause numerical

instabilities in the analysis. After checking the set of sensor responses for

collinearities, pattern recognition techniques for display and mapping,

clustering, and classification were implemented.

Because it is impossible to imagine the data points clustering in

n-dimensional space, a display method was used to transform the data into

two-dimensional space for easier visualization. The Karhunen-Loeve trans-

formation finds the axes in the data space that account for the major portion

of the variance while maintaining the least amount of error. A correlation

matrix for the stored data set is computed and the eigenvalues and elgen-

vectors are then extracted. The two-principal-component plot presents the

plane that best represents the data (17). For display purposes, a non-linear

mapping routine is used to separate vapors that overlap when projected onto

this plane, but are separated in the multidimensional space. The non-linear

mapping routine transforms a set of points from n-space to two-space by

maintaining the similarities oetween the points. !t does tiis by minimizing

an error Function '11.



Clustering techniques, which are unsupervised learning techniques because

the routines are given only the data and not the class membership of the

points, group compounds together according to some criterion. By examining

the different clustering results, a clearer insight is gained into the actual

clustering in n-space '17). ADAPT includes a variety of agglcmerative

hierarchical clustering routines which group the data by progressively fusing

them into subsets, two at a time, until the entire group of patterns is a

single set. The routines maintain a particular within-group homogeneity,

depending on the criterion and the fusing strategy used. Three dissimilarity

metrics were used: a) Euclidean distance squared, b) Euclidean distance, and

c) Canberra distance. The fusing strategies investigated were a) nearest

neighbor, b) median, c) average, and d) flexible fusion. Resulting data are

displayed in dendrograms (19).

Classification methods, which are also considered supervised learning

techniques because they are given both the data and the correct classification

"'C results, generate mathematical functions to describe the clustering. There

are two basic modes of operation For classification methods: a) parametric,

and b) nonparametric. Parametric techniques use statistical information based

on the underlying data to define the boundaries of the clusters. Their

performance is based on the assumptions made concerning the statistical

cnaracteristics of the cata. The nonparametric tecnniques use matnemaics :o

define the area between the clusters. The primary parametric programs used in

.these studies are 8ayes linear and quadratic (17), while the nonparametric

routines were the perception (17) and adaptive least-squares (ALS) (20).

To achieve the best classification results, each sensor response is

multiplied by a constant so that the contribution of each sensor is weighted.

The vector that is gener3ted is called a weight vector. The :outine itera-

rivei7 jocates :.e me-cnc vector. ano 3 3ecsion iurface can :e licacec
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between the classes. The weight vector for a linear decision surface can be

generated 'y one classifier, stored, an tnen used subsequently in another

classifier. zeight vectors can be improved by passing them between

classifiers.

-earning tachniques are used to train the algorithm on the correct

classification results. A discriminant Function is found that separates one

class from another. The width of the function is a measure of the separation.

Feature selection is used to reduce the number of sensors to the smallest set

while maintaining good classification results (14). One feature selection

method randomly removes vapors from the data set for each analysis in multiple

applications of the perception algorithm. As each vapor is removed, the

variance in the weight vector is determined. If the observed variance is

large, then the information from the corresponding sensor does not contribute

significantly to the observed separation of classes.

RESULTS

Vapors used during this study are given in Table I. These vapors were

cnosen to represent a variety of structural and Functional groups. In

addition, we were specifically interested in coatings that would be sensitive

to toxic organoohosohorous compounds. The set of vapors contains three vapors

selected as simulants of these materials. Methanesulfonyl fluoride is an

irreversible enzyme inhibitor and, as such, exhibits biological activity

similar to the organophosphorous insecticides (21). Dimethylacetamide has

solubility properties that are similar to these materials, as indicated by the

solubility parameter values in Table 1. Dimethyl methylphosphonate (DMMP) is

structurally similar to many of the organophosphorous pesticides. These three

iaoors are ;rouoed :ogether and laoeiec Class acors. The :emaining .acoCs

WI*



are called Class 2 and represent a very general set of potential inter-

ferences. Note that tributyl phosphate is also an organophosphorous compound.

:t has been included in Class 2 specifically to test the ability of the

coatings and pattern recognition techniques to distinguish between chemically

similar compounds. Included in the table are solvatochromic parameters, which

are a scale for comparing the solubility properties of these vapors (22,23).

These parameters are a measure of the dipolarity/polarizability (,r *),

hydrogen bond donor acidity (a), and hydrogen bond acceptor basicity (a).

The range of values in the tables are evidence of the generality of the set

of selected vapors. No data are available directly for DMMP or isooctane.

Values in the table for DMMP are based on values for a similar compound,

dimethyl ethylphosphonate (DMEP). Values for isooctane are based on values

for 2,4-dimethyl pentane. These parameters will be correlated with observed

response behavior in the discussion section.

Adsorbent coatings exhibited good response times, usually reaching 90% of

total response within I minute. At high vapor concentrations, the response

time was more a function of the system dead volume than of the coating

response behavior. At lower concentrations, however, responses may have been

affected by longer equilibration time between vapor and coating, or by

adsorption of vapor onto tubing walls. Upon removal of the vapor stream, a

rapid return to a stable baseline was usually observed. A typical response is

shown in Figure 2. Reversible responses were observed for all vapor/coating

pairs given in Table I1. Frequency shift data were used to generate cali-

bration curves. The slopes of these curves, in Hz/ppm (vapor), were then

normalized by dividing by the film thickness (in KHz). Normalized responses

are presented in Table I1.

Coating materials and their 3tructures are given in Table Il. Because we

were interested in detacting organoohosphorous comocunds, coatings -.ere

!0



selected based on preliminary tests which indicated a sensitivity to DMMP.

Coating sensitivities to other vapors in this study were not known, and

extreme selectivities to OMMP and other Class 1 vapors were not suspected. In

general, most of the coatings were more sensitive to Class 1 than to Class 2

vapors, and exhibited particularly good sensitivity to DMMP. Poly(ethylene

lialeate) and fluoropolyol were the most sensitive coatings for detecting DMMP

and other Class 1 vapors. The response of fluoropolyol to DMMP was the

response of greatest magnitude in the entire data set, and was at least 2000

times greater than its response to any Class 2 vapor. The coating which was

least sensitive to DMMP was polyvinylpyrrolidone. While it was the most

sensitive coating for water, its response to water was still 10 times less

than its response to DMMP.

Noise levels of 10-15 Hz are associated with the SAW devices. Assuming a

S/N ratio of 3, the minimum detectable signal is 45 Hz. For a 100 KHz film of

fluoropolyol, for example, this translates into detection limits of 0.03 ppm

for DMMP and > 2000 ppm for water. For a 100 KHz film of polyvinylpyrrol-

idone, these detection limits are 11 ppm and 100 ppm, respectively.

Individual bar graphs showing the relative responses of the twelve

coatings to six of the vapors are shown in Figure 3. For display, responses

are normalized to the coating with the greatest response, while the scale of

actuai :esponse 'in Hz/ppm/ KHz) are given on the y-axis. Similarly, bar

graphs showing the responses of four of the coatings to all eleven vapors are

shown in Figure 4. The solid bars shown are all normalized to the vapor

eliciting the highest response. In most cases, the Class 2 vapors elicited

much lower responses than Class 1 vapors. For this reason, the response

patterns for these vapors are not easily seen when plotted on the same scale

as the Class I vaoors. To display the relative responses of the Class 2 vapors

on the 3ame graoh, the Class 2 vacors mere normalized to the highest Class 2

b F J ' N V a 
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response. Cross-hashed bars have been superimposed in Figure 4 to show the

response pattern of the normalized Class 2 vapors.

Additional bar graphs illustrating the relative response patterns of

individual vapors and coatings are included in the Appendix.

Pattern recctnition. The multiple linear regression results indicate

that the correlation between sensors are not strong, so individual coatings

could not be eliminated on the basis of redundancy. According to eigen-

analysis, ten sensors account for 99% of the variance, indicating that at

least two of the sensors can be removed without reducing the separation

between compounds. The first two-principal-components from the Karhunen-Loeve

transformation were used to initialize the non-linear mapping routine. The

resulting plot is shown in Figure 5. Class 1 and Class 2 compounds are

labeled on the plot with a 1 or a 2, respectively. It is clear that

responses for individual vapors tend to cluster in discreet sectors of space

with well defined boundaries. In addition, Class 1 vapors tend to cluster

near one another. Vapors cluster in n-space based on similarities in response

patterns. These clusters may indicate similarities in vapor/ coating inter-

action mechanisms for these vapors.

Hierarchical cluster analysis produced similar results for each metric.

The fusion methods, however, produced different groupings. Flexible fusion

was selected for display because it is space conserving and does not change

the relationships between the groups of data (24). The dendrogram resulting

from hierarchical cluster analysis on one third of the data set is shown in

Figure 6. The original matrix was reduced to simplify visualization. Results

from the second experiment of the two highest concentrations were selected.

The y-axis of the dendrogram is a measure of the dissimilarity of response

patterns For given vapors. Thus, diethyl sulfide and toluene exhibit very

similar response pacl:-ns, and the lines reoresent ng t e response patterns

12

'y



for these vapors converge very low on the y-axis of the dendrogram. Con-

versely, the lines for water and isooctane don't converge, indicating very

dissimi-ar response patterns.

Similarities and dissimilarities in the coatings were examined by

applying cluster analysis on the transpose of the 66 x 12 matrix. Since no

structural information was available for the polyphosphazine coatings,

information derived from these coatings is of limited value. Disregarding the

response data for these coatings, cluster analysis was also applied to the

transpose of the resulting 66 x 10 matrix. These results are displayed in

Figure 7.

Using classification routines and feature selection to reduce the sensors

with the most variance, four coatings were found that could separate Class 1

from Class 2 vapors. These were poly(ethylene maleate), fluoropolyol,

octadecylvinyl ether/maleic anhydride copolymer, and polyvinylpyrrolidone.

The hyperplane between the two classes can be given a dead zone (or a width of

1000 times the normal width produced by the routines), which indicates that

the classes are well separated. Using all four coatings, 100% recognition of

vapors as Class 1 or Class 2 is possible. Eliminating octadecylvinyl

ether/maleic anhydride copolymer decreases this to 94%, wbich still represents

reasonably good discrimination. The weight vectors for these coatings are

given in Table IV. Of these coatings, fluoropolyol and polyvinylpyrrolidone

are most important for the correct classification of Class 1 vapors, while

poly(ethylene maleate) is important for Class 2 vapors.

The non-linear mapping plot from the two-principal-components using these

four coatings is shown in Figure 8. While the cluster spaces for some of the

vapors appear to overlap, the boundary for Class 1 compounds is still well

defined. The dendrogram Produced by Euclidean metrics and flexible fusion for

these coatings is given in Figure 9. Class I cMoounds are clustered very

12



closely, and except for butanone, are well separated from the interference

vapors.

DISCUSSION

In the course of discussing these results we will attempt to develop a

rationale to be used in future coating design and/or selection. The solva-

tochromic parameters in Table I represent a relative scale for comparing

solubility properties of the vapors. By correlating observed responses with

these parameters we hope to identify the vapor/coating interaction mechanisms

which are responsible for our results. Since no quantitative scale is

available to characterize the solubility properties of the coating materials,

qualitative estimates of relative hydrogen bond acceptor (HBA) and hydrogen

bond donor (HBD) strengths were made based on the weight percentages of HBA

and HBD functional groups in their structure. These percentages are reported

in Table II. Materials lacking any hydrogen bonding functional groups were

labeled non-hydrogen bonding (NHB). All these materials are polymers with the

exception of abietic acid, which is a crystalline organic material. Since no

structural information was available for the polyphosphazines, results for

these coatings will not be included in the discussions of structure/response

correlations.

The vapor/coating interaction could be modeled as the dissolution of a

solute vapor in a solvent coating. In this model, the response should be

determined by solubility interactions, e.g. dipole-dipole and hydrogen bond

interactions. The data set as a whole indicates that the solubility

properties represented by the parameters in Table I are important in deter-

mining SAW device responses. The six vapors whose response patterns are

illustrated by the bar graphs in Figure 3 are representative of various

classes of vapors, based on solubility properties. water is a strong H8 and

:4



a weak HBA; n-butanol is both HBO and HBA; DMMP and tributyl phosphate are HBA

but not HBD; isooctane is a NHB vapor with little or no dipolarity/polar-

izability; and dichloroethane is a NHB vapor with significant dipo-

larity/polarizability. The bar graphs in Figure 3 show that vapors with

different solubility properties elicited different coating response patterns.

Vapors with similar solubility properties, such as DMMP, dimethylacetamide and

2-butanone have more similar response patterns (see data in Table III). DMMP

and tributyl phosphate, however, have easily distinguishable response patterns

but have similar solubility properties. Closer examination shows that this is

primarily due to polyvinylpyrrolidone, fluoropolyol, and 0V210, while the

remaining coatings give a more similar pattern for these vapors.

The reason for which all the coatings were most sensitive to DMMP is not

clear. Examination of the solubility parameters in Table I indicates that

DMMP is exceptional in neither its hydrogen bonding ability nor its dipo-

larity/polarizability. Therefore, the extremely high response of these

coatings to DMMP must be due to some solubility property which has not been

characterized in Table I, or to a fortuitous combination of solubility

properties.

Hierarchical cluster analysis provides a more systematic determination of

the similarity or dissimilarity of the various vapors, as determined by SAW

sensor responses. The resulting dendrogram in Figure 4 sorts the vapors in a

* manner which is consistent with their solubility properties. Starting from

the top of the plot and working down (toward increasing similarity), the NHB

vapors on the right are separated from the HBA and HBD vapors on the left.

Isooctane is separated from the other NHB vapors, a result consistent with the

unique character of isooctane as indicated in Table I. It is the only vapor

with near zero dipolarity/polarizability. The NHB vapors with significant

dipolarity/polarizaoility 1,2-dichloroethane, toluene, and diethyl suiice)
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are more similar to one another than they are to isooctane or the HBA and HBD

vapors. In this cluster, dichloroethane stands out in the dendrogram and in

Table I as the NHB vapor with the greatest dipolarity/polarizability.

Among the HBA and HBD vapors on the left of the dendrogram, water is the

least similar to any other vapors. Accordingly, water is seen in Table I to

have extremely high dipolarity/polarizability. It is also unusual in its

relatively high HBD character. The other HBD vapor, n-butanol, has signi-

ficantly greater HBA character and less dipolarity/polarizability than water,

and is shown in the dendrogram to be more similar to the other HBA vapors. In

general, the HBA vapors cluster together, with DMMP and dimethylacetamide

being the most similar. These results demonstrate that the solubility

properties in Table I should be considered as important factors affecting SAW

sensor responses.

Exceptions to these general trends must also be considered. For example,

methanesulfonyl fluoride clusters with the other HBA vapors, but it is a weak

HBA vapor and may be more similar to that of diethyl sulfide, a NHB vapor.

Similarly, tributylphosphate does not cluster as closely to DMMP as might be

expected based on the fact that both are organophosphorous compounds with

similar HBA strength. Individual comparisons, therefore, emphasize the

importance of factors in addition to the solubility properties in Table I.

The roles of coating properties and structures in determining sensor

responses cannot be fully determined by these data. Coating responses will be

influenced by a mixture of interactions with various structural features such

as double bonds, conjugation, aliphatic side chains, and heteroatomic Func-

tional groups. The relative importance of these interactions is difficult to

determine, and relevant solubility properties For these coatings have not yet

been identified.

i6
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We can, however, explore the role of hydrogen bonding interations by

using the relative scale of HBA and HBD strengths in Table II. With the

exception of poly( isoprene), all of the coatings contain heteroatoms capable

of accepting hydroben bonds. HBA strength should be significant For those

coatings containing carbonyls or nitrogen-containing groups. Weaker HBA

strength is expected for those coatings containing only ether linkages. Three

of the coatings also contain HBD groups (fluoropolyol, poly(amidoxime), and

abietic acid). Water and butanol are the only HBD vapors in our data set. Of

these, trends in the response to water vapor are most likely due to HBA

strength of the coatings because water has stronger HBD than HBA strength, and

has no aliphatic character. For this reason, coatings were listed on the

x-axis of Figure 3 in order of decreasing response to water.

The results in Figure 3 show that the relative coating responses to water

tend to follow the relative HBA strengths estimated from the weight percen-

tages of the HBA functional groups in the coating structures. This confirms

that hydrogen bonding interactions are important and justifies consideration

of the simple scale in Table II. While water also has considerable dipo-

larity/polarizability properties, the data indicate no correlation with

polarity. Nonpolar isooctane does not exhibit a trend opposite to that

exhibited by water, nor does polarizable dichloroethane follow any apparent

trend. The other HBD vapor, n-butanol, exhibits a different response pattern.

This may be due to greater HBA strength and more organic character relative to

water.

On the low end of this scale, poly(isoprene) is the only NHB coating in

this study. It exhibits a much larger response to the NHB vapor isooctane

than any other coating, with the exception of abietic acid. In addition, the

responses of poly(isoprene) to other NHB vapors (dichloroethane, toluene, and

17



diethyl sulfide) are larger than for the HBA and HBD vapors in Class 2. In

general, the other coatings exhibit higher responses to Class 2 HBA vapors,

particularly TBP and butanol, than to the NHB vapors.

The bar graphs in Figure 4 and the data in Table III indicate that all

:he coatings, except polyvinylpyrrolidone, have a fundamental similarity.

They are more sensitive to Class 1 than to Class 2 vapors. Cluster analysis

helps to more clearly identify similarities and dissimilarities among the

coatings. In the dendrogram in Figure 7, fluoropolyol, poly(ethylene

maleate), and PVP stand out as being most dissimilar to other coatings, and

also dissimilar to one another. These results can be related to the data by

examining the bar graphs in Figure 3. Relative to the other coatings,

fluoropolyol has very strong response to DMMP, a weak response to water, and

average responses to tributyl phosphate and isooctane. Poly(ethylene maleate)

exhibits strong response to DMMP, water and tributyl phosphate, and an average

response to isooctane. Polyvinylpyrrolidone has strong responses to water and

tributyl phosphate, but gives the weakest responses to DMMP and isooctane. In

relating the dendrogram results to structure, it is worth noting that poly-

vinylpyrrolidone may be the most basic of the coatings in the data set.

Poly(ethylene maleate) may be the most polar, since it has polar groups in the

backbone and no side chains. Fluoropolyol is distinctive in its combination

of structural features, auch as Fluoroaliphatic, aromatic, ether, and hydroxyl

groups.

Similarities among the coatings are shown in the dendrogram by the

clustering of poly(isoprene), octadecylvinyl ether/maleic anhydride copolymer,

and 0V210. These all have substantial hydrophobic character. The cluster

containing poly(epichlorohydrin), abietic acid, acrylonitrile/butadiene

copolymer, and poly(amidoxime) is of interest because poly(amidoxime) is a

% %



modification of the acrylonitrileibutadiene copolymer. The modification

created a small percentage (.07) of HBD groups. As a result, poly(amidoxime)

clusters slightly closer to abietic acid, which also has HBD groups, than to

its parent polymer. A previous study of 27 coating materials on piezoelectric

sensors demonstrated that clustering of these materials may be influenced by

structural similarities (7). Fewer coatings were used in our data set, and

the coatings employed were structurally more diverse. As a result, such

clustering is not as evident.

CONCLUSIONS

Solubility properties were systematically demonstrated to be an important

factor in determining SAW sensor responses, and currently provide the best

rationale for selecting or designing coatings for specific applications. A

more detailed investigation of the relationship between structure and observed

solubility properties would also facilitate the selection and design

processes.

Pattern recognition techniques were valuable in extracting information

regarding vapor/coating interactions from this multidimensional data set. In

addition, it is clear that the combination of multiple sensor arrays of coated

SAW devices and appropriate pattern recognition software will provide a sensor

system which can be selective as well as sensitive for a broad spectrum of

compounds.
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Table I - Test Vapors and Solubility Parameters

Permeation Tubes - Class 1 a*

methanesulfonyl fluoride (MSF) --

N,l4-dimethylacetamide (DNAC) .88 .76 0.0

(dimethyl) sethyiphosphoriate (DMO4P)& --- (.81) (0)

Bubblers - Class 2

1,2-dichioroethane (DCE) .81 .00 0.0

water 1.09 .18 1.17

isooctan. (ISO)$ (0.0) (0.0) (0.0)

toluene (TOL) .54 .11 0.0

diethyl sulfide (DES)8  .36 .2s 0.0

tributyl phosphate (TBP)a .65 .77 0.0

2-butanone (BTN) .67 .48 0.0

n-butanol (BTL) .47 .88 .79

a These values are unpublished data from Abraham (25). Values in table

* for DJOI? are taken from similar compound, DMEP; values for isooctane are taken

from 2,4-dimethyl pentane.
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Table 2 - Coating Mtaterials and Structures

HYDROGEN BONO ACCEPTOR-OONORCOATING STRUCTURES (% OF TOTALI

0 0
POLY 'ETHYLENE 11 1 1 CARBONYL tHSA).20%
MALEATE) rPEMI (-O-C-CH.CH-C-O-C12-CHN4 0-LINKAGE ,wNSA)- I I%

OCTAOECYL VINYL. E7hER t.C---c --- CCH,; CARBONYL HBAI. 14%
VIALEIC ANHYDRIDE I I0-LINKAGE (wHBAP-8%
COPOLYMER OVERMAC) C 0.CM 7

t-CN2*CH. CARBONYL iNBAI-25%

I ~N H3A)- 13%
C--N

k\ )\
C 0

ACRYLONITRILE NITRLE 2-A-22
BUTAIDIENE COPOLYMER (PBAN) [C 2 Cxc-CH15 5'C 2-CH 2 j 4 5  IRL(HA.2

C-N

CN(CN.-CH-C-CH 2 -( 5 6)

4-Cx2 -CHlJ36 1  NITRILE (HBA)- 9%

POLY (AMIDOXIME) MAOX) CI

L CH2 C -1 071  
AAM OXIM E NBA-O .3%

H2N-C-N-ON

POLY (EP"IHRONYOR4) f-O-CH2-C- O.UNICAGE (wMBA).1 7%

ASIETIC ACID (ABACO) 9 3CH1 CARBOXYL (HBA.O)- IS%

H COON

OV210 CH3  0-UINKAGE (wH8AI- 10%

CNICJH3 CHj)

FLUOROPOLYOL :FPOU F3C CF2  CF3  CF3  HYDROXYL (HBA-0)-4%

!-CII 2CMCM2OC COC2H2C2CMCC-

I I I I I I
ON F3C CF3  0O4 CF3  CF3

POLY ISOPRENE) (PIP) [.C-CN-C-C 2 .1 NIONlE NH8BI

CM3

*LYP40SP4AZINES
POZN? APZN2)
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Table 4 - Weight Vector Components for 4 Best Coatings

Coating Weight Vector 0 wrong Recognition

Value Class 1 Class2

0 0 100%

OVD(AC -0.06783 3 1 93.9%

PEN4 0.11633 2 8 84.9%

PVP -0.80966 18 0 72.7%

PPOL 0.20978 14 6 69.7%
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Fig. I - 112 MI-z SAW device and associated electronic circuit diagram
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Fig. 2 - Typical SAW device reversible response
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Appendix
ADDITIONAL SENSOR RESPONSE FIGURES
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