
RD-A72 ~ TRAINING): A CONNECTION.. (U) CALIFORNIA UNIV SAN DIEGO

I LA JOLLA INST FOR COGNITIVE SCIENCE.. M C NOZER AUG 8"

IUNCLASSIFIED ICS-86iB N00014-85-K-0459 F/G 9/2 UL

,Mofnllson .ffllf



1.0 " &

3b

III'.r

P:11 31



'~SM~ 

VPW~ 

- '.-r~wwvr.-rzr.

9r . qn.- *t~ 
,... 

-
'~r~w-r-.r-r-~ ~-r--,-, .

r--- 

~" -.

VA,?

''A',' *~ A~V *U~ '"

f. *. ?,7~? '

- ~'.a* 

*~'~~F& 4

1 
I

'ii

a 
.~-.. 

, A

A

'rn-t
-q

'C) 
S.

F 7, ft~*
4.  

~6I. 

'V.

4.

"A
Va 

''A'

-'4

X'S 2 'nt:*
'A

~zrN ,~- ~ r 
-

4~&t 7 ~ ~ 
A' 7'*v~aAtt 

-
F.;.'

.4~tAt.

4. 'A F 1' .. 4
C

0

-.

~ rz; *t.~ A.'I". -
0 r

(...

if'

04

~ ~I. -. 
. $ -



RAMBOT:

A CONNECTIONIST EXPERT SYSTEM THAT

LEARNS BY EXAMPLE

Michael C. Mozer

August 1986

ICS Report 8610

DTIC:LECTE

S P 2 2 M986U

Institute for Cognitive Science
University of California, San Diego

La Jolla, California 92093

I owe an eternal debt of gratitude to Paul Munro, who christened the system RAMBOT and even managed to make RAMBOT into
an acronym on the somewhat generic phrase "Restructuring Associative Memory Based On Training." I also wish to thank Paul
Smolensky and Dave Rumelhart for their thoughtful comments. The robots program available at UCSD was written by Allan R.
Black of Strathclyde University, and was modified by Stephen J. Muir at Lancaster University.

This research was supported by an IBM Graduate Fellowship, a grant from the System Development Foundation, and the Person-
nel and Training Research Programs, Psychological Sciences Division, Office of Naval Research, Contract No. N00014-85-K-0450,
Contract Authority Identification Number, Nil 667-548. The views and conclusions contained in this document are those of the
author and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the sponsoring
agencies. Approved for FJblic release; distribution unlimited. Reproduction in whole or in part is permitted for any purpose of the
United States Government. Requests for reprints should be sent to Michael C. Mozer, Institute for Cognitive Science, C-015;
University o( California, San Diego; La Jolla, CA 9209.
Copyright Z 1986 by Michael C. Mozer.

I D-3TMIBUON STATRM IT A
Approvod for public releoshit

Iw- ,-Disuibution Unlinsitod



nclassified
XCURITY CLASSIFICATION OF THIS PAGEAD /?01 9

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Snclassified J
Ra. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/ AVAILABILITY OF REPORT

Approved for public release;
b. DECLASSIFICATION / DOWNGRADING SCHEDULE Appriv utor ublicited.se

distribution unlimited.

PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

CS 8610
NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

nstitute for Cognitive Science (if applicable) Personnel & Training Research Programs

,niversity of California, San D ego Office of Naval Research (Code 1142PT)

k. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)
1-013 800 North Quincy Street
'.a Jolla, CA 92093 Arlington, VA 22217-5000

Ia. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

N00014-85-K-0450

Ic ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO

61153N RR04206 RR04206-OA NR 667-548

I1. TITLE (Include Security Classification)

AMBOT: A Connectionist Expert System That Learns by Example

12. PERSONAL AUTHOR(S)

ichael C. Mozer
13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
rechnical FROM 85 Ot TOh 1986 August 15
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FPELD GROUP SUB-GROUP Connectionism; .parallel distributed processing; learning by

05 in observation; artificial intelligence; expert systems;

,19. ASTRACT (Continue on reverse if necessary and identify by block number) d y : ;

"- Expert systems seem to be quite the rage in artificial intelligence, but getting expert knowledge into these
systems is a difficult problem. One solution would be to endow the systems with powerful learning procedures
which could discover appropriate behaviors by observing an expert in action. A promising source of such
learning procedures can be found in recent work on connectionist networks, that is, massively parallel networks
of simple processing elements. Ut this paper, I discuss a connectionist expert system that learns to play a simple
video game by observing a human player. The game, Robots, is played on a two-dimensional board containing
the player and a number of computer-controlled robots. The object of the game is for the player to move
around the board in a manner that will force all of the robots to collide with one another before any robot is
able to catch the player. The connectionist system learns to associate observed situations on the board with
observed moves. It is capable not only of replicating the performance of the human player, but of learning
generalizations that apply to novel situations. , .

ZO. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
93UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. E- DTIC USERS Unclassified

ia NAME OF RESPONSIBLE iNDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

Harold Hawkins I(202) 696-4323 ONR 1142PT
0 FORM 1473,84 MAR 83 APR edition may be used unti exhausted. SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete. Unclassified

U n% **ass I



Contents

INTRODUCTION ................................................................................... I
CONNECTIONIST (PDP) SYSTEMS ........................................................... 1

ROBOTS-THE GAME ........................................................................... 3I
Tricks of the Game........................................................................... 4

Hiding behind junk heaps ............................................................... 4
Forcing robots to collide ................................................................ 4

Lining up robots .......................................................................... 4
Teleporting................................................................................. 5

Collecting a Corpus of Moves .............................................................. 5
RAMBOT ......................................................................................... 5

Input Representation......................................................................... 5
Force player into upper-left quadrant of board ..................................... 6
Draw windows onto board............................................................... 7
Lay out grid ............................................................................... 7
Activate units.............................................................................. 7

Output Representation ...................................................................... 8
Overall Network Structure.................................................................. 8
Evaluation of Performance Using Corpus ................................................ 8
Examples From Play......................................................................... 9

Getting ready to teleport ................................................................ 9
Forcing robots to collide ................................................................ 9
Hiding behind a junk heap.............................................................. 9
Shortcomings ............................................................................. 10

Evaluation of Performance in Free Play .................................................. 10
Level of death............................................................................. 10
Average moves per completed level.................................................... 13

BEYOND RAMBOT ............................................................................... 13 L
REFERENCES .................................................................................... 14

Di t ibutioi t

Availability Codes

-Avji, a-d/or

DA4



RAMBOT:
A Connectionist Expert System That Learns by Example

MICHAEL C. MOZER

INTRODUCTION

Expert systems are prominent among the successes of artificial intelligence. In fact, expert systems
have become so popular that almost any program, if billed as an "expert" system, gains instant
notariety. It's not always clear what is or is not an expert system, but the most interesting systems
seem to operate in domains where the knowledge involved cannot be expressed in concise algorithms
(Charniak & McDermott, 1985). Consequently, the most difficult task in building these systems is
encoding the knowledge base (Duda & Shortliffe, 1983). Experts are often not as much help as one
would like, because it is hard for experts to specify exactly what it is they're doing that makes them
experts.

It would be desireable if expert systems could observe an expert in action and then discover rules of
the domain based on their observations. This would allow the experts to do what they do best-
perform-rather than what they do poorly--explain their own behavior. Of course, discovering the
rules of any domain based on observation is a difficult task and requires powerful learning procedures.
One promising source of such learning procedures can be found in the recent work on learning in mul-
tilayered connectionist networks (Ackley, Hinton, & Sejnowski, 1985; Barto & Anandan, 1985;
Rumelhart, Hinton, & Williams, 1986). These networks have the ability to learn arbitrary associations
from a set of known variables to a set of target variables or actions, say, from possible symptoms of a
disease to possible treatments. More importantly, the networks are able to generalize from a set of
examples to the broader class of situations they may be confronted with. While they generally do not
discover explicit, psychologically real rules of the sort that most expert systems use, the behavior of
these networks appears "rule governed" (Anderson & Hinton, 1981; Rumelhart & McClelland, 1986).

In this paper, I report on my initial efforts at constructing a connectionist expert system that learns to
play a simple computer game by observing a human player. I begin by discussing some relevant pro-
perties of connectionist networks. Next, I explain the rules of the computer game, called robots, and
present some strategy. I then describe my connectionist system, RAMBOT, which learns to play the
robots game. Finally, I look beyond RAMBOT to consider the applicability of connectionist techniques
to the design of expert systems in other domains.

CONNECTIONIST (PDP) SYSTEMS

Connectionist, or parallel distributed processing (PDP), systems are networks of simple processing
elements that operate in parallel. The typical processing element has a large number of input lines and
a single output line. The output line conveys a scalar value, called the activation level, and is generally
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a function of the weighted sum of the input lines. The output of a unit serves as input to other units or
as an output of the system. Similarly, the inputs to a unit are received from other units or may be pro-
vided as input to the system.

A typical connectionist network architecture is shown in Figure 1. The network has three layers: an
input layer, an intermediate layer, and an output layer. The input units are turned on by an external
source, the input units then activate the intermediate units, and the intermediate units in turn activate
the output units. This type of network implements an associative memory: an input activity pattern is
mapped into an output activity pattern. Another way of conceptualizing the network is to imagine that
each input unit represents some feature of an external environment and each output unit represents a
possible action that could be taken. In this case, the network performs a stimulus-response mapping.
For instance, the input units could signify the political climate of the world, the output units the possi-
ble actions that a nation might take (e.g., launch a nuclear attack, bomb innocent children, and so
forth).

Learning in this network involves adjusting the strengths of connection, or weights, between units to
implement the desired mapping. Until recently, the only known weight-adjusting algorithms were for
two-layered networks, that is, networks with direct input/output connections, which are unable to learn
many sorts of mappings. However, Barto and Anandan (1985), Ackley, Hinton and Sejnowski (1985),
and Rumelhart, Hinton, and Williams (1986) have recently developed learning algorithms for multi-
layered networks like the one shown in Figure 1. I have been working with the back propagation algo-
rithm of Rumelhart et al.

Using back propagation, a network can be trained to associate a set of paired input/output patterns.
This training consists of two phases. In the activation phase, an input pattern is presented and is
allowed to flow through the layered network to produce an output pattern. This output pattern is then
compared with the target output pattern (the output that is to be associated with the given input) and a
measure of discrepancy or error is computed. In the back propagation phase, the error is passed back-
wards through the network so that each unit has an indication of its contribution to the error. The back
propagation algorithm implements gradient descent in the error measure; that is, it specifies a change in
the weights that is guaranteed to decrease the error.

Output Patterns

Input Patterns

S.

FIGURE 1. Typical connectionist network architectm.

oV, .. " ""1, ': -" - " " " .. . .' " , ' '
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Following learning, the network can perform arbitrary mappings between input and output patterns.
More importantly, it is capable of generalization: If novel input patterns are presented, the network
produces output patterns that appear reasonable in terms of the learned associations. To better under-
stand the nature of such generalizations, consider the simplified case of a network that behaves linearly.
Suppose this linear network has learned to associate input pattern A with output pattern A' and B with
B'. Then, presenting a pattern that is halfway between A and B will result in an output that is halfway
between A' and B. Thus, generalization in this case consists of linear interpolation and extrapolation
of learned patterns.

More realistically, multilayered networks require nonlinearities to achieve interesting sorts of
behavior; these nonlinearities complicate the generalization issue. With the sorts of nonlinearities that
are typical of back-propagation networks, it is still true that an input pattern composed of a mixture of
A and B will produce an output pattern composed of a mixture of A' and B', though only if A and B
are sufficiently similar. Unfortunately, "sufficiently similar" is difficult to define. A more sensible way
of looking at generalization in a network like the one shown in Figure I is as follows. Think of the
intermediate layer as performing a recoding of the input layer; that is, the intermediate layer constructs
an internal representation of the inputs, one that is useful for solving the problem at hand. Generaliza-
tion is then determined by the similarity among internal representations, not similarity among the actual
input patterns. Thus, the response to a novel input pattern is similar to the response to known input
patterns whose internal representations are similar to that of the novel pattern. Further, if the output
units are linear or semilinear (see Rumelhart et al., 1986), the network performs the sort of interpolation
and extrapolation described above, except it uses the internal representations of A and B, rather than A
and B themselves.

The advantage of generalization should be obvious: the system needn't be trained on every point in
the input space. If an unfamiliar input is presented, the system automatically determines its similarity
to known inputs and produces a response based on this similarity. In contrast, many systems with
explicit rules do not perform well in unfamiliar situations. Often, a missing or overspecified rule will
cause the system to grind to a halt.

ROBOTS-THE GAME

I now return to the particular problem I've been working on: teaching a connectionist network to
play the game robots.

The game is played on a CRT screen. The version I've worked with uses a 20x20 cell board. A
sample board is shown in Figure 2A. The player is represented by an "I" and takes up one cell on the
board. There are a varying number of robots, each represented by an equal sign. At the start of the
game, the robots are placed on the board at random. On each turn, the player can move to an adjacent
cell, remain at tie current location, teleport, or wait. Teleport means that the player is lifted from the
current location to a random location on the board; wait means that the player stays at the current loca-
tion for the remainder of the game. The utility of these commands will be explained shortly.

After the player moves, each of the robots is allowed to move to an adjacent cell. The robots follow
a simple algorithm. They march directly towards the player.

robotdelta-x - sign(player_x - robot.x) and
robot delta.y , sign(playery - roboty).

If two robots land in the same cell, they collide and are replaced by a junk heap. Junk heaps are inert
and harmless to the player. The player must walk around junk heaps, but if robots collide with a junk
heap, they are destroyed and become part of the heap. Figure 2B shows the game state one move after
Figure 2A, where the player has moved left. As one can see, the two robots nearest to the player have
collided ani formed a junk heap, represented by an "@."

NAS' %
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FIGURE 2. A sample board before the player's move (A), and the board following one move by player and robots (B). The
player moved to the left.

The player is forbidden from moving off the board, moving onto a cell with a junk heap or a robot,
or moving adjacent to a robot. The player can die in one of three ways: by teleporting onto a robot, by
teleporting onto a cell adjacent to a robot (in which case the robot moves over and crushes him), or by
using the wait command when there is a robot directly in the line of sight (in which case the robot

- marches to the player and crushes him).
The object of the game is to kill off the robots by forcing them to run into each other or into junk

heaps. When this happens, the game restarts at a higher level of difficulty, meaning that there are more
robots on the board. The game begins at level I with 10 robots, and the number of robots increases to
nearly 200 by level 9.

Tricks of the Game

Hiding behind junk heaps. If the player hides to one side of a junk heap and robots are approach-
ing from the other side, the robots will march into the heap. For instance, the robot on the same row as
the player in Figure 2B will eventually hit the junk heap. If in fact all robots are on the opposite side
of the heap, the player can use the wait command and wipe them out in a single turn.

Forcing robots to collide. Whenever two robots are aligned in a column or row (i.e., having the
same x- or y-coordinate), the player has the opportunity to force the robots to collide with one another.
In the case of two horizontally aligned robots, the player must be positioned in between the two robots,
and either above or below. As long as the player remains above or below the robots, the robots will
attempt to converge on the player, and will collide in the process. (The same applies to two vertically
aligned robots.) For example, there are two horizontally aligned robots in the lower right-hand corner
of Figure 2B. If the player remains at the current location or moves down and to the left, the robots
will run into one another before they reach the player. Further, the player can control exactly where
the robots will collide by manipulating their speed of convergence. The robots will converge fastest if
the player is between the two robots, half as fast if the player is aligned with one of the robots, or not
at all if the player is off to one side of the pair.

Lining up robots. Because it is so useful to have robots aligned horizontally or vertically, a good
strategy is to try forcing the robots to line themselves up. Even if lining up the robots will not help in
the present situation, it may be that after teleporting, the player will be in a position where robots will
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collide as they converge on him. One simple heuristic for lining up the robots is to march towards the
center of mass of the robots. As the robots approach, their movement strategy will tend to place them
along the horizontal and vertical axes centered on the player's location.

Teleporting. If the player becomes trapped by robots, teleporting is the only option. However,
because there is no guarantee that teleporting will land the player in a "safe" position, the player should
avoid teleporting unnecessarily, especially at higher levels of the game.

Collecting a Corpus of Moves

Robots is an addicting game. With practice, it also becomes fairly automatic. One can play while
carrying on a conversation or eating. Over a period of several weeks, I played nearly 300 games, and
recorded the games to use as examples for RAMBOT. "Recording a game" means saving an image of
the board at the start of every turn, along with my move in response to that situation. In the end,
18,200 of these "situation-response" pairs were saved. This corpus did not, of course, represent optimal
play; it represented my abilities and included occasional errors, which were not screened out.

RAMBOT

RAMBOT's goal was to learn associations between situations from the corpus and the corresponding
responses. That is, given a board image as input, RAMBOT was to produce as output the correspond-
ing move that I made. Following learning, RAMBOT should be capable not only of replicating my
performance, but also of generalizing its learning to novel situations: when presented with a situation
"similar" to ones it has observed, RAMBOT should suggest a response "similar" to the observed
responses.

As in most connectionist networks, input and output representations play a critical role in determin-
ing the notion of "similarity," and hence, in determining the sort of generalizations that will be made
and the overall difficulty of the learning task. In principle, input and output representations are not
important, because with sufficient units in the intermediate layer, any input/output mapping can be
achieved. However, practical limitations on the number of intermediate units demand careful selection
of input ard output representations. With appropriate representations, some of the similarity structure
of the game can be built explicitly into the network.

Input Representation

The simplest input representation would be to have two units for each cell on the board. One unit
would be turned on if there was a robot in the corresponding cell, the other would be turned on if there
was a junk heap, and perhaps both would be turned on if the player was in that cell. However, this
scheme has a serious drawback, which can be seen by considering the representations that would be
generated for the situations shown in Figures 3A-D. The set of units activated in one situation does not
overlap with the set activated in another. Because overlap among input patterns is necessary for the
explicit representation of similarity, this encoding does not suggest that the four situations are related,
when in fact they are extremely similar, the appropriate response to each situation is to move away
from the robots and then stay put, allowing the robots to collide with one another. More generally, a
player's response should, for the most part, depend only on the relative location of the robots with
respect to the player and each other, not on the absolute location of the player, nor strictly on the abso-
lute distance of the player to the robots, nor on the absolute orientation of the player with respect to the
robots (see Figure 3E for an exception). An input representation is required that captures the location,
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Draw windows onto board. Two windows are drawn on the board: a fine-scale window, which is
centered on the player's location and covers a 13x13 region (6 cells to either side of the player), and a
coarse-scale window, which is fixed with respect to the player's location and covers a 29x29 region (9
cells to the left of the player, 19 to the right). Because the player is located in the upper-left quadrant,
the coarse-scale window is guaranteed to enclose the entire board.

Lay out grid. Within each window, a 7x7 grid of equally spaced points is laid out to span the
region within the window. For the fine-scale window, this means that grid points fall on every other
cell; for the coarse-scale window, grid points fall on every fourth cell.

Activate units. Each grid point represents the receptive-field center of two input units. One unit is
activated by robots in its immediate vicinity, the other by junk heaps. More specifically, the receptive
fields of the fine-scale and coarse-scale units are as follows:

0.15 0.19 0.20 0.25 0.20 0.19 0.15
0.19 0.25 0.31 0.50 0.31 0.25 0.19

0.25 0.50 0.25 0.20 0.31 0.45 0.75 0.45 0.31 0.20
0.50 1.00 0.50 0.25 0.50 0.75 1.00 0.75 0.50 0.25
0.25 0.50 0.25 0.20 0.31 0.45 0.75 0.45 0.31 0.20

4 0.19 0.25 0.31 0.50 0.31 0.25 0.19
0.15 0.19 0.20 0.25 0.20 0.19 0.15

These numbers represent the amount of activation that will be assigned to a unit given that a robot or
junk heap appears in various locations with respect to the unit's receptive-field center. For example, if
a robot is located at the center of a fine-scale robot-detecting unit's receptive field, 1.0 units of activa-
tion will be added to that unit's activation level, If the robot is located in the cell to the immediate
lower right of the unit's receptive field center, 0.25 units of activation will be added. Because receptive
fields overlap, any object on the board may produce activation in several units. However, the receptive
fields are designed to guarantee that the net activity produced by any object is constant, independent of
the object's location or the number of receptive fields it lies within.

The walls around the playing field are treated like junk heaps. For practical purposes, they behave
the same way-they are inert and the player is not allowed to walk into them. However, because of the
large number of points defining each wall, the activity of a wall point was set to only 5% of that pro-
duced by a junk heap. The aim was to prevent the presence of walls from overwhelming information
about junk heaps.

This representation has many virtues. First, the player can be in various locations on the board, yet
the input patterns will look similar if the local arrangement of robots and junk heaps is similar;
nonetheless, activations from the walls serve to disinguish cases in which the player is trapped in a
corner. Second, because the receptive fields of the units are so broadly tuned, a certain amount of scale
invariance is built in. Third, the locations of objects are coarse coded (Hinton, McClelland, &
Rumelhart, 1986), meaning that each object activates several nearby units. This helps to define the
two-dimensional structure of the board by way of correlations in activity among neighboring units.
Fourth, by coding the player's location with respect to the nearest corner, important orientation invari-
ances are captured. Fifth, the two windows onto the board provide both a foveal and global view of the
situation, with high resolution in the foveal view.'

I Two ideas for improving the input representation seem promising but have not been implemented. First, the coarse-scale window
P wastes a large proportion of its units because they lie off the board. If the window "wrapped around" from one edge of the board

to the other, the number of units could be reduced and the remaining units would be better utilized. Second, additional units could
p, be added to the input pattern to represent a temporal context (a time-decaying trace) of previous moves (Jordan, 1985). Thus, the

input pattern would specify not only the current board but also a recent history of moves; this would give the network the ability to

learn plans extending over time.

|~~~ •~e "% -. ' .-, " .-.-... """ "- - . - , , . ,""" ""' . "" "-"•"•"
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Output Representation

The output representation is straightforward. There is one unit for each of the eight "directional"
moves, one unit for remaining in the current location, and one unit each for teleport and wait. To pro-
vide RAMBOT with explicit information about the arrangement of the directional moves, target output
patterns showed activation not only for the selected move, but also for its two "neighbors" (the direc-
tional moves to either side of the selected move). For example, when the player responded by moving
directly upwards in a given situation, RAMBOT learned to associate that situation with an activity level
of 1.0 for the "up" unit, and also with an activity level of 0.2 for the "up-left" and "up-right" units.

Overall Network Structure

The input layer had 196 units, the intermediate layer 74 units, and the output layer 11. The number

of intermediate units selected was based on a guess of sufficiency conditions; little work has been done
to estimate the necessary number of units. There was full connectivity from one layer to the next, but
no direct connections from input to output layers. There were a total of 15,318 connections. The inter-
mediate and output units were semilinear units with a logistic activation function, as described in
Rumelhart, Hinton, and Williams (1986).

Evaluation of Performance Using Corpus

RAMBOT has been presented with nearly a million learning trials. This amounts to innumerable
hours on our Sun-2's, but only on the order of 12 hours of Cray CPU time. Figure 4 shows perfor-
mance as a function of learning trial. The bottom line indicates the percent of trials in which the most
active output unit corresponded the stored response; the middle line indicates the percent of trials in
which either the most active output unit or, if it was a directional move, one of its neighbors
corresponded to the stored response; and the top line indicates the percent of trials in which either the
most active or second most active output unit corresponded to the stored response.

* .. Performance continues to improve, though the bottom line appears to be approaching an asymptote
around 73%. This turns out to be quite impressive, for the following reason. I wrote a program that
randomly selected boards from the corpus, displayed them for me, and allowed me to make a new
response without knowledge of my original response. Replaying over 10% of the corpus in this
fashion, I was able to match my original responses on only 66% of the trials. Thus, RAMBOT is at
least as good at predicting my moves as I am.

The graph also shows RAMBOT's ability to generalize. Points labeled with xs immediately follow
the addition of new moves to the corpus. (The corpus started with only about 4,000 moves and was
gradually built up to 18,200.) Performance was barely affected when new moves were added. Thus,
RAMBOT is able to respond to unfamiliar moves with almost the same degree of accuracy as to fani-
liar moves. (The drop in performance following a rearrangement of the learning trials, the r points, is
due to the use of momentum in the back-propagation rule; see Rumelhart et al., 1986.)

In addition to replaying old games, RAMBOT can, of course, play new games. For this purpose,
RAMBOT was set up to interact with the robots game. At the start of each turn, an image of the board
was encoded on the input units of the network. Activation was allowed to flow through the network to
the output units, and the most active output unit was selected as RAMBOT's move. If this move was
invalid (i.e., it involved walking into a wall, robot, junk heap, or adjacent to a robot), the move was
discarded and the next most active move was considered. The selected move was then fed back to the
robots game, the robots were allowed to move, and this cycle repeated.

Although the time required for learning was substantial, play proceeds in real time. Move selection
takes about 1-2 seconds on a Sun-2 with a floating point board. Watching RAMBOT play is impres-
sive. Most of the time it does just what I would have done-a clever program indeed.

-. .'-
4q,-
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FIGURE 4. Performance as a function of learning trial. The bottom line indicates the percent of trials in which the most active
output unit corresponded to the stored response; the middle line indicates the percent of trials in which either the most active cut-
put unit or, if it was a directional move, one of its neighbors corresponded to the stored response; and the top line indicates the
percent of trials in which either the most active or second most active output unit corresponded to the stored response. x - new
moves added to corpus; r - reordered presentation sequence.

Examples From Play

What follows are several typical examples from actual play.

Getting ready to teleport. Figure 5 shows the board at the start of a turn, as well as the activation
levels of the output units in response to that board. The 3x3 array of numbers indicates the activity
levels of the eight directional moves and the remain-in-current-location move, arranged by direction.
The letter t stands for the teleport unit, w for the wait unit. Activation levels range from 0-1. The
activation level of the selected move is flagged by an asterisk. In Figure 5, RAMBOT is trapped and
its only valid move is to teleport. This is the move with the highest activation level. It is interesting to
note that three other moves receive some activation: down, down-left, and left. These are the moves
that one would consider if the wall were not present. Thus, this example shows that RAMBOT has
learned certain facts about the game: walking into walls and robots is not an option, and when being
chased by robots, move away from them.

Forcing robots to collide. Figure 6 shows a sequence of moves in which RAMBOT comes around
from the right of two horizontally aligned robots and forces them to collide with one another.

Hiding behind a junk heap. Figure 7 shows a sequence of moves in which RAMBOT uses a junk
heap to protect itself. RAMBOT first moves towards the junk heap, forcing the robot to its right to
crash into the heap, then moves above the heap, forcing the robots below to crash into the heap.
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output units and are explained in the text.

Shortcomings. In observing RAMMOT at play, only two strategic shortcomings were evident to me.
Firt, RAMBOT tended to teleport when being chased by robots and a wall was approaching as shown
in Figure 8A. Generally, this is a reasonable strategy, but in the example shown, it appears that RAM-
BOT teleported too soon. It could have forced the two aggressor robots to collide instead, thereby
altering the game state radically. Unfortunately, the tendency to teleport prematurely has serious conse-
quenccs: one teleport often leads to another, and each teleport is life threatening.

~Second, RAMBOT appears to have overgeneralized the conditions under which the wait command
- , applies. Waiting is a good move when the player is protected by a junk heap and all robots are lined

-u: .up on the other side of the heap. However, as shown in Figure 8B, RAMBOT did not pay serious
~enough attention to the presence of robots elsewhere on the board. I should confess that "waiting in the

face of danger" is an error I occasionally make, and several instances of this behavior appear in the
learning corpus.

~Evaluation of Performance in Free Play

In order to evaluate RAMBOT's performance in free play, two statistics were collected over a
thousand game sample. These statistics were (a) the level at which the player died and (b) the average

-- number of moves required to successfully complete a level. For comparison, statistics were also col-
lected on my play in the 300 game learning corpus and a random strategy over a thousand game sam-

i I  ple. The random strategy, RANDOM, chose its move entirely at random from the set of valid moves.

m~i .Level of death. When all robots on the board are destroyed, the game restarts at a higher level of
, " difficulty, with an increasing density of robots at higher levels. On average, RANDOM reached level
--- 2.10, RAMBOT level 2.97, and I managed to get to level 4.33. To determine the effect of RAMBOT's
i erroneous "waiting in the face of danger" (see Figure 8B), the wat command was replaced by the

remain-still-for-one-move command and another thousand games were run with this modified strategy.
On average, RAMBOT without the wait command reached level 3.57, significantly better than with
wait. Clearly, overgeneralization of the conditions under which this command applies had a dramatic
effect on performance.
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Average moves per completed level. Table I shows, by level, the average number of moves per
successfully completed level. RANDOM never got past level 5 and required over twi-ce as many moves
as either RAMBOT or myself, but RAMBOT's performance was comparable to mine. Because suc-
cessful completion of a level is often prevented by the two shortcomings noted earlier (see Figure 8),
Table I provides some indication of RAMBOT's playing abilities when such basic errors are not made.

BEYOND RAMBOT

~RAMBO0T appears to have captured at least some of my expertise in the game of robots. RAMBOT
could no doubt be improved, perhaps by adding moves to the learning corpus, by modifying the input
representation (see Footnote 1), by increasing the number of intermediate units, or by adding direct
input/output connections. Further possibilities include constructing a connectionist network that learns
by experience using reinforcement learning techniques (Barto & Anandan, 1985; Barto, Sutton, &
Brouwer, 1981); or constructing an optimal robots-playing program which uses brute force search tech-
niques and teaching RAMBOT with examples from this optimal program. While both of these
approaches are feasible for the relatively simple game of robots, they are far less so for complex
domains such as chess playing and medical diagnosis. The goal of RAMBOT was not to build an
optimal robots-playing system, but to build a system that started with litte knowledge about a domain
and could learn general rules of the domain by observing a human expert.

i TABLE I

Level RANDOM RAMBOT NUKE

1 57.1 21.9 18.0
2 48.9 21.2 19.6
3 44.6 21.1 18.7

4 43.3 20.6 20.8
5 47.0 21.7 22.8
6 . 19.8 28
7 00 20.0 20 . .
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What are the costs and benefits of building such a system with connectionist techniques? To begin
with, domain experts must specify every source of information that is potentially relevant to their deci-
sion processes (though they need not specify how the information is used). This information serves as
the input to the connectionist net. Further, experts must provide a corpus of performance data, suffi-
ciently large to sample the input space well. Without representative sampling, the system will not have
solid ground on which to base generalizations.

The one serious drawback to a connectionist expert system is that the system itself has little power of
explanation. It is possible to examine the outputs of the intermediate units, and to use the "internal
representations" developed by the system as a justification for decisions, but generally these internal
representations are so complex and highly distributed that they simply add to confusion rather than help
to explain the system's behavior. A more reasonable means of increasing the explanatory power of the
system is to break down its decision process. For example, in the case of medical diagnosis, the
appropriate input/output mapping would not be from symptoms to diseases, but from known symptoms
to possible diseases and further tests that could be performed to discover additional symptoms. Thus,
the system could be used iteratively, performing tests suggested by the network and then feeding results
of these tests back into the system. This approach at least provides a sequence of steps taken by the
system to reach a decision.

RAMBOT does illustrate several important and unique properties. First and foremost, the system is
able to generalize from training examples. Second, the system is able to learn behavior that is depen-
dent on an extremely large number of variables-the robots playing board contains 400 cells-and is
able to learn despite inconsistent expert behavior, as my inability to reproduce moves in the learning
corpus attests to. Third, the system is able to suggest multiple hypotheses with varying degrees of cer-
tainty, as embodied by the activation levels of the output units. Fourth, the system allows for the non-
linear combination of evidence, unlike many expert systems that use numerical methods (Charniak &
McDermott, 1985).

Beyond these generalities, what does the success of RAMBOT have to suggest for the construction of
learning connectionist expert systems in other domains? One problem with the robots game is that it
can easily be thought of as a perceptual, pattern-matching task. Connectionist systems are commonly
held to be good at this sort of task, but it is not as clear that connectionist techniques will prove useful
in "higher-level," symbolic domains. As an argument against this point of view, consider a domain far
removed from perception: using a computer operating system, say UNIX. A connectionist expert sys-
tem for this domain is feasible. The idea would be to build a UNIX apprentice program (UNIXBOT?.)
that could learn to predict what command the user was likely to type next based on a recent history of
commands and some contextual information, such as the time of day or the current working directory.
If the system could make strong enough predictions, it could correct user errors, or even anticipate com-
mands.

In principle, a system that learns to predict what command will be typed next is no different than one
that learns to predict the next move of a game. It seems that much of cognitive behavior can be framed
in terms of pattern recognition, even though we don't ordinarily think of that behavior as being percep-
tual. Experts in a domain just "see" solutions (Rumelhart, 1984). If this is indeed true, connectionist
techniques may have application to a wide range of expert systems applications.

02
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