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RADaR CROSS SECTION EVALUATION OF ARBITRARY CYLINDERS

INTRODUCTION

L7

The objective of this program has been to develop a 2D code and numeri-

cal technique for determining the Radar $ross Section (RCS) and other

electromagnetic scattering behavior of an infinite cylinder of arbitrary

cross-sectional shape and matecrial composition. Both monostatic and bis-

5 tatic RCS’'s need be obtained.

i~

%2 The technique we have used to meet this objective differs greatly from
P

e conventicnal methods of RCS evaluation. Rather than working in the fre-

quoncy domain, we have illuminated the target by an Electromagnetic Pulse

{(FMrj3 containing significant energy over all frequencies of incerest. We

have then solved the near-field problem by Time-Domain Finite Differencing

-

(TDFD), and Fourier transformed the result to obtain the desired RCS as a

S

fiinctzion of frequency. A near-field to far-field transformation is also

A

incorporated into our Fourier procedure.

Our technique has been tested with targets up to 5 m across t+n obtain

- e s

results from 50 tu 500 MHz. (These parameters correspond to a maximuvm of 8

free-space wavelengths.) There is nc reasor. we could not obtain information

!g up to 1 GHz, although we have not actually done this to date in the interest

¥ of conseiving computer resources,

&

ig We have run test cases using generalized lossy inhomogenecus media,
where the real and imaginary parts of the permittivity or permeability are

%‘é frequency and position dependent. Additicnally, the code is generalized to

> treat materials with anisotropy in the plane perpendiculer to the cylinder

P axis. The ccde can also treat generalized material discontinuities includ-

g% ing resistive, capacitive and conductive cards.

=~

;3 Additionally, we have obt:ined canonical solutions to several problems
with known frequency-domain solutions in order to evaluate the accuracy of

3 our  code. These problems 1include a circular cylinder composed of an ar-

ii bitrary number of concentric cylindrical shells, where the electrical

o
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parameters of each shell are arbitrary (but isotropic). VUe have 3lso com-

puted the scattering by a thin dielectriec strip of infinite extent, using
. - 1 s .

the technique of R<ichmond. Code-code comparisons between the canonical and

TDFD results for these two problems will be presented later.

Additjonally, we have derived the equaticns for scattering by a per-
fect, circular dielectric cylinder with anisotropy in the plane
perpendicular to¢ the cylinder axis. At present, we have not had time to

code up this canonical solution.

Also, we hav: worked out the Mathieu-function expansion for scattering
off a perfect, elliptic dielectric cvlinder. This solution has been coded,
and gives answers which, in the perfect-conductor limit, agree with known
results. We hava, as of yet, not run a comparative TDFD case. This
Mathieu-function expansion has been generalized to treat the case of a two-
media elliptical cylinder with the outer medium confocally coating the
inner. For our two-medium case, .he Jnner medium may hte perfectly
conducting. The two-medium solution h: not yet been coded, nor =~ compara-

tive TDFD run made.

In the following sections of this report, we will first docurent the
TDFD code. Then we shall describe the cancnical g-iutions and present code-

code comparisons for those cases where comparisons have been performed.
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ARCHITECTURE OF THE TIME-DOMAIN FINITE-DIFfERENCE RCS COLDE

Equations to be Solved

We assuwe in this study that electromagnetically linear conditions
prevail. Then the total field can be separated into an incident field
(which would be the field in the absence of the scatterer) and a scattered

field (the field modification caused by the scatterer’'s presence):

scat

HiNCy 4+ (gS°at, yseaty

(1)

Under the linearity assumption, both the incident and the scattered fields

individually satisfy Maxwell's equations.

) *

“f some background dissipation (ab, aL) is present, the incident fields
will obey

inc
v x B¢ - B ayine (2)
aEinc
inc = inc
Vv xH - €0 T3 *t o,k (3)

In the presence of an anisotropic scatterer with frequency dependent

properties. the total fields conform to

T T, .
V FT g * HT ft K* ’ 'a_H-—Ef_—?. d ] J* a
X g = - gw - at - gO hy o4 - = (t't ) ° at’ t e =f ( )
3
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Subtraction of the firsi pair of equacions from the second leaves us

the version of Maxwell’s equations obeyed by the scattered fields:

scat scat

dH .t 8H (")
scat = * scat * ' =
VXET e kgt T t2e tH !w Bt » 7% ¢
inc inc
1 A 1oy . nine ft ey - o 5D
= (Ew - _Pg) at - (20 - _ab) I - 5 ( = ) atc
J*
T =f
scat scat, ,
v x wSeat o o, 3E + 0. . pSCAt ft K(t-t') ig____ﬁf_l dt’
T = = at =0 = T ™ at'
aginc . & aginc(t,)
+ (e - Ieg) o + (g - Io,) » EMC 4 f K(t-t') o ———— dt’
£ 7 20 at 2o " %) " =2 ) = at’
T
+ 2

RNy RN R I R L R R TR T R Ge T 5 - 241 Lo A ek . R L e et el A LA LS A LA R B T A w672 Te RIS TRE DR =0 ST e B8 A R SRR T AR TR T

(3)

with

(6)

(7

It 1is convenient to represent the inhomogeneous parts (or incident

parts) of ags. (6) and (7) as

T *
o

(351 =-1lo }YHS] + [J;] + [V x Escac] _
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+ [, - pollH ine

* *. .
] + [00 - ab] ’(IA

t .
+ ] e e )ae + (3F] + (v x B2

-0

[07) = - [0o1E®] + 4] - [V x B°°%F) -

“inc

+ le, - €llE ine,

] + [og - oy ]lE

t .
+ [ mee-en 1 ES e et + 130 - [V x 502

-0

Thus, [HS] and [ES] become

-~ .s t .
15 = - A - Mmoo it ey e

-

.. t .
(£%) = - (e)(EMC) - R1EC) - T (ace-e) (BT (e jarr

-0

In the last pair of equations, we have defined

(7] = [o0] M u,- Bol

[R"] = [03) Moo oyl

(8)

(9

(10)

(11)

(12)

(13)




ey W

[A*] = [og) 1 (K") (14)
-1
%} [r] = [oo] "le, - €6l (15)
7
-1
é [R] = [00) oo - 0] (16)
o5
A )
5 [A] = [00] LIK] an
?

55

Substituting eqs. (8) - (17) back into (6) and (7) yields

’%; agSCat * scat It * aﬂscat(t') T*

B3 N . -t! o — L.

i £, ac * %o H + -mg (t-t') 3c’ dt J (18)
agscat ceat ¢ aEscat(t, ) T

; €. e + 0, * E + J- R(t-t') - T dt’! = - J (19)

-0

E:'-.

These are the scattered field equations we will be treating.
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Method of Solution

For now, we shall only concern ourselves with the 2D TM case. Thus,
Ex’ Ey and Hz will be present. Equation (18) reduces to a scalar equation,
but (19) remains a two-compcnent vector equation.

Figure 1 1illustrates a typical TDFD 2D unit cell, and shows w:ere the
three field components associated with that cell are located.

In Appendix 1, we will derive a technique for solving this equation
sysvem using first-order exponential differencing. The result of this
appendix 1is that, if we omit frequency dependence, HZ(I1,J) is advanced

according to

-p~la*At -p-la*At

2L )™ me 0 HZE, Y- (L e © Yoo T a,H™2 (0
and [E(I,J)] is advanced according to
a2 legl Moolae 1/2
(BT, ™2 - e (1, 1™
-1
el Moolat

-1 - e " oo Mt @™ (21)

(The complication of frequency dependence will be considered later.)

As we have said, [og] is permitted to be anisotropic. In the actual
code, it is represented by a total of five arrays:




5]

FA
h

%] .

Y,J
Yo(J+1)
EY(I,3) jY¥(J) ®
HZ(I,J)
EX(I,J)

TR . A O au TRAT A

.
Xo(I),Ye(J) X(I)

Xo(I+1)

‘b‘ X'I

Figure 1. Location of field components in a unit cell.
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SGX(1,J) is the bulk wvalue characterizing the xx component of the
conductivity tensor at cell (1,J)

gg SGY(I,J) 1is the bulk wvalue characterizing the yy component of the
conductivity temsor at cell (I,J)

§ SGXY(I1,J) 1is the bulk value characterizing the xy and yx components of
the conductivity tensor at cell (I,J) (azyrotropic materials are not

% permitted in the present ccde)

o

'R SGCX(1,J) 1is the surface conductivity in the x direction on the y-

e facing surface of cell (I,J)

%i SGCY(I,J) 1is the surface conductivity in the y direction of the x-
facing surface of cell (I,J)

%

R

= Thus, the actual conductivity seen by E, at cell (I,J) is given by

Eﬁ a°(I’J)xx = (SGX(I,J-1) + SGX(I,J))/2 + SGCX(I1,J) (22)

o

i ao(I,J)xy = (SGXY(I,J-1) + SGXY(I,J))/2 (23)

g o0 (L, 9) g = (SGXY(1,3-1)" + sexv(z,) H 1l . 2 (26)

&

%; 1 1,-1

) ao(I,J)yy =~ (SGY(I,J-1) " + SGY{I,J) ") ~ « 2 (25)

(=i

This arrangement occurs because Jx sees the xx and xy conductivities in

I

parallel, while Jy sees the yx and yy conductivities in saries,

The conductivity matrix for Ey at cell (I,J) {s analogeously described

o2 W

v

3t |

-
o
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i § -1 -1,-1
ao(I,J)xx = (SGX(I-1,J) ~ + SGX(I,J) ™) v 2 (26)
- ‘1 '1 '1
% c.vc,(I.J)xy = (SGXY(I-1,J) + SGXY(I,J) 7) . 2 (27)
g 00(1,3) = (SGXY(I-1,3) + S6X¥(1,3))/2 (28)
% 20(L1,3) o = (SGY(I-1,3) + SGY(1,3))/2 + SGCY(1,J) (29)

B

Note that, although the physical conductivity tensor is symmetric at
each cell (SGXY(I,J) = SGYX(I,J)), the mathematical conductivity just

described is not symmetric (a,,(I,J,‘xy » ao(I,J)yx).

The dielectric properties of the scatterer are regresented by five
analogous arrays, EFX, EFY, EPXY, EPCX and EPCY. These are combined in the
same way to form the mathematical permittivities e_(.,J )ij at the Ex and E
evaluation points of cell (I,J).

Sl .

Due to the anisotropic cross-terms, it is necessary to know Ey at the

48

E‘t evaluation points. This is done by simple linear interpolation,

e

;

E

E EY(I,J)x = (EY(Y,J) + BY(I+1,J) + EY(I,J-1) + EY(I+1,3-1))/4 (30)
2

E - Ex at the E_ evaluation points, EX(I,J) is obtained the same way. The

5 % matriz difference equation (21) is then solved twice at each cell and each

time step, once centered at and to advance EX(I,J), and once centered at and

2 to advance EY(1,J).

] iz

The following notation is also usaed:

W

| P
1y
b3t

e

10

R
=




e Moglat
QXX(1,J) 4is *he (1, 1) component of e evaluated at the Ex

points

. R

-le ) oolat
QxXY(I,J) 1is the (1, 2) component of e evaluated at the Ex

points

2

vm
.
!‘(xrh'a,\.

e 1 toglat

§§ QYX(1,J) 1is the (2, 1) component: of e evaluated at the Ey
. 5
& points

A

el ivolat
QYY(1,J) 1is the (2, 2) component of e ¢valuated at the Ey

roints

VAT ST el

Y

-1
le ] loolat
SNX(I,J), SXY(I,J), SYX(I,J) and SYY(I,J) are ([I] - e NC

correspondingly located and defined.

§

LW ST AN LER T B

W MW ¥ e T

ATV R TINTAALY

) Additionally, if we refer back to egs. (15) - (17),
%
53
’! TAUXX(I,J), TAUXY(I,J), TAUYX(I,J) and TAUYY(I,J) are [00]-1[e°° - €]
# analogously located and defined, and
= )
g% RXX(I,J), RXY(I,J), RYX(I,J) and RYY(I,J) are [oo) {og - ab}
analogously located and defined,
!éf

el gt )1

It is necessary to evaluate ooth components of [ES} as given in eq.

(11) at both Ex and Ey points in each cell. The above conventions indicate

(s

how to combine the o, and ¢  tensors for an inhomogeneous scatterer so this

complete set of evaluations may be achieved. 1In particular, we denote Ei

as Ei evaluated at the Ex mesh point and E?

&

as Ei evaluated at the Ey mesh

point,

A

TN WV
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Thus, E)S__X(I,J) is, from eq. (11) with frequency dependence nct yet

g included,

: S ~inc ~inc
B I:xx(I,J) - 'l‘AUXX(I,J)Exx (1,3) - '1‘15.’UXY(I,J)Exy (1,3
o inc inc
- RXX(I, J)E (1,J) - RXY(I, J)E (1,J) (31)
inc . inc
% where E (I,J) 1is the analytically specified E field evaluated at E
3’}3 mesh po:mts, and Ei;C(I J) 1is ‘he analytically specified E;nc f1e1d
evaluated at Ex mesh points. Additionally, E;y(I’J) is
]
o2
) ~inc “inc
b E T,J) = - TAUYY(I,J)E I1,J TAUYX(I,J)E I,J
2 ( ) (r,J3) vy (1,3) - aI,n vx (L,
ﬁ ine ine
- RYY(T,INE 1,J3) - RYX(1,J)E I,J 32
T,n vy (1,3 (1,3) vx (1,3 (32)
-
By
- inc s inc .
where E (I,J) is the analytically specified Ey field evaluated at the Ey
mesh points and E;‘_;:c(l J) is the analytlcally specified Eim’ field evaluated
w3

at the Ex nmesh points. Finally, E (I J) and & "yx(I ,J) are, in analogy with
3 eq. (30},

2
ié? E (I J) = (E (I,J3) + E (I+1,3) + E> (I J 1) + E (I+1,3-1))/4  (33)

D

A

Egrx(l"]) - (E (L) + E (I J+1) + E < (I~ 1,3 + E (I 1,J+1))/46  (Z%)
&
)

» It is also necessary to evaluate both components of [JT] as given in
i eq. (9) at both Ex and Ey peints in each cell. Using the same convention as
el
& 12

’(-‘
I
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T

Xy
at the Ey points. Then equation (21), where [J ] is actually required uvses
%

(37} in the form

above, we let J_  be Jg evaluated at the E points and JT be JT evaluated

-1,.T S -1 -1 t
[00] 7137 ] = - [E°] + [00] (3] - [0o]7 [V x W) (35)
2 We have already descsibed how to find the [ES] contribution to [JT] . It is
:23 easy to evaluate [ao]'l{Jf] because Jf is a prescribed analytic forcing term
- which can readily be evaluated at either the E or the E_ points. The
a? troublesome term is [V X Hscat] . This will have both an x and a y com-
- ponent, each of which must be evaluated at the Ex and the Ey points.
%
ﬁ Let wus designate (V X gscat)xx as the x-component of this term
‘ evaluated at the Ex points:
3
> scat HZ(I.J) - HZ(3,J-1)
_ - -
i (VX H Dx Y(J) - Y(J-1) (36)
by The y-component evaluated at an Ex point is
i
B scat
8 (VxXH )xy
N
o
o)

1
2

(HZ(I+i,J) + HZ(I+1.J-1)) - (HZ(T,J) + HZ(I1.J-1))
2(X(I+1) - X(I)

]

g (‘A' yz?e',u,

s
»

(HZ(I,J) + HZ(I . J-1)) - (HZ(¥-1,J) + HZ(T-1.J-1)) (37)
5% 2(X(I) - X(I-1))
‘!&‘; The y compounent evaluated at an Ey peint is
o o uScaty _  HZ(1,J) - HZ(I-1,3)
§ T XET gy X(D) - X(I-1) (38)

@ 13
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and the x component evaluated at an Ey point is

v x scat
( H )yx
11821, J+1) + HZ(I-1 J+]1 - Z(1.2) + HZ
2 2(Y(J+1) -~ YWD
+ (HZ(1.,J) + HZ(I-1,J)) - (RZ(X.J-1) - HZ(I-

2(Y(J) - Y(J-1)) j (39)

Consequently, for example, eq. (21) for advancing EX(I,J) in all its
glory, becomes

EX(T,3)™12 & qxx(1,m)ex(x, ™ V2 4 qxy(1,3)EN(I, He 1/2

+ (1 - QRR(L, ) ER(LNT - QRY(T,NEL (1,0)"

n , scat\n
SXX(L, ) (T,NT - ¥ x B*HT )

]

n scat.n
SX.((I,J)(Jf(I,J)x - (VxH )xy> (40)

where QXX and QXY are defined after eq (30), EY(I1, J) is defined by eq.
(30), E (I J) is defined by eq. (31), E (I J) 1is derined by eq. (33), SXX
and SXY are defined after eq. (30}, f(I J) and Jf(I J) are the forcing
currents, (V x ﬂscat) < is defined by eq. (36 , and (V x Hs at)ty is defined

by eq. (37).

o

14
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Th: scalar equations for advancing HZ(I,J), eq. (20), is much easier to
implement than tLhe matrix equacion for advancing [E(I,J)]. We now need to
define

XMUZ{I,J) as the bulk permeability at cell (I,J), B, of eq. (&),

SGMZ(I,J) as the bulk magnetic conductivity at cell (I,J), at of eq.
(4),

e

4y

[ Y

-XMUZ(I,J)’l o SGMZ(I,J) = At

?é QMZZ(1,J) = e (41)
o

ﬁ SMZZ(I1,J) = (1 - QMZZ(I,J))/SGMZ(I,J) (42)
% TAUMZZ(I,J) = o9 “(p_ - Ho) (43)
< evaluated at the center of cell (7,J), and

i RKZZ(I,J) = 0y T(op - on) (64)

also evaluated at the center of cell (I,J)

Wik

The murderously cowmplicated interpolations involved in advancing E do not

occur in advancing Hz partly because Hz is the only component of H present,

5

W and partly because Hz is evaluated at the center, not on en edge of the
e cell.

Fg

i

From eq (10}, sz(I,J) is then, with frequency dependence still not
ﬁ% included,

&3 S Line « pinc

4 HZZ(I,J) = - TAUMZZ(I,J)HZz (1,J) - RMZZ(I,J)HZZ (1,0 (45}
%

% inc . . o inc . ..

5 wvhere sz (1,J) 1is the aralytically specified Hz field evaluated at the

cell centers.

*ﬂ
One also need only evaluate JZL(I,J) of eq. {8) at the cell centers.

*
%: Equation (20}, where JZT(I,J) actually appears, uses the form
p\s 15
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b S

09) NI = - B (1,9) + (60) LD,

+ (o9 1w x g5°8%) (46)

& 2z

*
Here, we already have found Hiz(I,J), J:(I'J)zz is a prescribed magnetic

%

2

current density (which would be zero on any physically real prohlem), and

5 (V x gscat)zz is just
i
{3 . EY(I+1,J) - EY(I,J) EX(I,J+1) - EX(I,J)
5 i (Vv x Esca"\ - - 47)
3 - = ‘zz Xo (I+1) - Xo(I) Yo (J+1) - Y (I
A
§ =
i s
é o Thus, eq. (20) for advancing HZ(I,J) becomes
2
g
E HZ(1,3)™ - Quzz(r,)uz(I,H™ + A - QMZZ(I,J))HZZ-(I,J)“”/Z
!1 %
s B - sMzz(1, J)(Jf(I J)“J’l/2 + (V x gscat)'z‘;“l/z) (48)
E &
% 3
f 3
%
c
E 3
E B
-
¥
3
& 16
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Introduction of Frequency Dependence

Let us assume the frequency-dependent term in eq. (19) has a kernel of
the form

4 By B
E(p) - } ae (49)
m=1

where a has (ie units of conductivity. This assumption is equivalent to
expanding the frequency-dependence of the material’s electrical properties
in a Prony series under the constraint that all the poles be on the real
axis. (Appendix 1 indicates how one may relax the real-poles-only

constraint.)

Equation (19) then becomes

aEscat M
= scat scat T
f0 " T3¢ * g - E +§_m-§.m --1 (50)
m=1
where
t
scat Bat gt B (e") Byt
gm (t) = e Py e dat’ (51)

-©

In eq. (50), J°
aQ
E° has the frequency-depe it term restored. In other words, gs ic now

is still given by eq. (35), but with the understamding that

represented by eq. (1l1), not eqs. (21) aund (32)',

scat
The J

“m

or as displacement currents. We shalli ~oin the name “"Prony currents” for

them. Equation (50) for é;cat

of eq. (50) are not clearly identifiable either as conduction

(t) is w.ch easier t-~ recognize if we dif-

ferentiate it once; its homogeneous soluticu is just a decaying exponential:

17
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scat scat
34 scat 3E
el B e R (52)

In the 2D TM case, the components of eqs. (50) and (52) then comprise

2(¥+1) coupled first-order differential equations for Escat and i:cat.

Ideally, these ecuations should all be advanced from (n-1/2)At to (n+l/2)At

G O N Ex
(1}
ot

28 simultanzously each cycle. A technique for doing this is also described in
£ Appendix 1.
§§
However, the present code actually implements a slightly less accurate

%‘;; algorithm where Escat alone is advancea first in each cycle, and then the
)
= 358t are advanced separately. Finally, a correction is made to the ad-

2 scat scat

vanced E

to account for the effects of the gm .

At this point, it is most instructive to go back to eq. (7) and perform

;?Xi
% a rearrangement.
i
% aESeat agine
scat - . . gpScat . . ——
3 vxH "Lt T 20k * (g - Leo) at
3
3
inc It aéT(t')
%‘: + (go = :I-Ub) * .E. + E(t't') . —_atl + lf. (53)
-0
'%
The inhomogeneous part of this equation can be written
5y
T P S P scat P P
(371 + [J7] = - [0ol[E"] + [J7] + [Jg] - [VXH 1+ [J7] (547

(§ 7

where [ES} and [JP] are

||

[ES] - [T][iinc inc]

] - [R}[E (55)

Tk d)
LA
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W =Sy

t
(0 = | kee-ey 1185 ¢e) 14t (56

-0

with [r] and [R] still respectively given by eqs. (15) and (16).

Substituting egs. (54) - (56) back into (53) then results in

a-}:iscalt: . >
T

scat _ _ 2. g (57)

+0g * E

This equation is just (19) with the frequency-dependent term transferred to

the right and represented as JP. It is advanced acccrding to eq. (21):

“Le ] M oolat

/2 e [E(1,3)]

[E(I,3)] n-172

-1
le 1 Moplae
(1) - e oo oY@, 3y + By ™ (58

The problem with direct application of this procedure is that we do not

sscat

know the portion of QP associated with E at nAt until we have advanced

the Prony currents, and we cannot, strictly speaking, do that until we have

advanced gscat.

As mentioned previously, the code does not presently utilize the proce-
scat

dure described in Appendix 1 for simultaneous advancement of E and
l;cat Rather, we first find an intermediate value of gscat obtained with

effects of the Prony currents omitted:

-1
int _ e-lew] [oo]1at n-1/2

(E(1,3)] [E(I,N)]

1%
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- (1) - e Yool tatcr,n " (59)

The procedure for obtaining this intermediate vaiue is identical to the
procedure described in the previous section for advancement through a total
cycle in the absence of frequency-dependent effects. Its implementation in

the code is also identical to what was described in the previous sention.

Let us mnext turn to the advancement of the total Prony current QP as
given by eqs. (49) and (56):

M
P T
gt - } a - (60)
M=

where

T
-8 t ot GE"(t') B t'
n f “—527—' e n dc’ (61)

-0

gi(t) -e

Equation (61), like (51), is made more recognizable by differentiating with

respect to time:

3
[}

inc scat

Qs
aLa
QO
o]
@
~~
o]
+
(o]
St

(62)

QO
t
+
™
s
1
o
t
E
Q
ct

The equation for exponential-difference advancement of this result is

T nily2  Ppht

1,. ,\n-1/2
J.(1,3) -e I (7,0

20
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+(1-e P O)E™, + B, (63)

The incident field Einc is a specified analytic function. At present, the

code evaiuates £5°2%(1,1)™ as

E(1,Ht . ga,n™1/2

sscat e (614-)

E

IT,nt -

Equations (63) and (64) pay be combined to give an expression for
lz(I’J)n+l/2

as

in terms of known quantities. We can ther determine J?(I,J)n

n+l/2 n-1/2

M
Fa,n® - } [a,CT,9) 1 [IE(T,9) 1/2 (65)

m=1

T
+ Jm(I,J)

Subtraction of eq. (59) from eq. (58) then permits us to advance
[E(I,J)] from its intermediate wvalue to itc value at the new time step,
(n+l/2)At:

n+l/2

(ECT,)) - (BT, it

e 1 Hoolat

- (1) - e Yool ™t

ra,n® (66)

Frequency dependence in the magnetic properties of the material can be
treated in an exactly dual manner to what we have just described for the

electrical properties.
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At present, we have mnot coded up magnetic frequency dependence, nor
have we combined frequency dependence with off-diagonal type anisotropy.
Both these generalizations would be perfectly obvious extensions of what has
been done, but we cannot conceive a canon'zal problem we could check the

results against.

Not mixing off-diagonal anisotropy and frequency dependence mears we

only treat diagonal a, tensors. If eq. (65) is substituted in eq. (66), we

obtain
+1/2 int ‘[‘w]-l[%]‘:‘t
[ECL, )12 - (B0 - (1) - e
T n+l/2 T n-1/2
} [SAL (TN (LT + 3 (1,0) ] (67)
m=1
where
[SA,(1,0)] = [00(1,)] " [A (1,)] (68)

In the actual code, two arrays are used to describe the material ef-
fects of each term iIn the Prony series. Let Uo(I:J);i represent the xx
element of the inverse of the matrix described by eqs. (22) - (25) at cell
(1,3). Let ao(I,J);; similarly represent the yy element of the inverse of
the matrix described by eqs. (26) - (29) at cell (I1,J).

Moreover, 1let AAMX(I,J) represent the xx element of the mth Prony
tensor of the bulk materia® at cell (I,J), and let AAMY(I,J) represent the
corresponding yy element. Then the xx element of [SA (1,J)] which actually
relates the x component of J (I J) to the X component of E(1,J) is called

22
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SAMX(I,J) = ao(I,J);i (AAMX(I,J-1) + AAMX(I,J))/2 (69)

Similarly, the yy element of [SAm(I,J)] which actually relates the y com-
ponent gﬁ(I,J) to the y component of E(I,J) is called

SAMY(I,J) = ao(I,J);; (AAMY(I-1,J) + AAMY(I,J)),/2 (70)

In keeping with our simplification of not mixing off-diagonal anisotropy
with frequency dependence, we ignore any possible off-diagonal nonzero
values in [SAm(I,J)].

It turns out that only SAMX(I,J) and SAMY(I,J) need actually be stored.
That 1is, it 1s not necessary to assign arrays for keeping ao(I,J);i,
ao(I,J);;, AAMX(I,J) and AAMY(I,J).

Consequently, the actual equation used in the code for implementing the
x-component of the Prony correction is

EX(I,J)n+1/2 - EX(I,J)int
M
- (1 - QXX(I,J)) } SAMX(I,J) XIMSX(I,NH™ (71)
m=1
where
n_ T n+l/2 T n-1/2
XIMX(I,J) [3 (1,9 + 3 (1,07 1/2 (72)
23
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Similarly, the actual equation used for implementing the y-component of the
Prony correction is

EY(I,J)“H'/Z - EY(I,J)i‘nt
M
- (1 - QYY(I,3)) } SAMY(I,J) XIMY(I,n)" (73)
m=1
where
n_ ,T n+l/2 T n-1/2 .
XIMY(1,J) [Jm(I.J)y + Jm(I.J.\y 172 (74)
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Transformation from the Near-field Time Domain to the
Far-field Frequency Domain

N OO S

KR

The foregoing work described the determination of the scatterexr’s
electromagnetic response and associated near fields. We are actually inter-
ested in the RCS, which is a far-field quantity. Now we shall describe how
the code extracts ths RCS from the near-field results. In this process, we

also transform from time domain to frequency domain.

NN

Any electromagnetic field can be expressed in terms of an electric and

RIS et WU £ b 0 0 e S LA IR M SRR SRR Y AR WIS
R

=
e *
gf a magnetic vector potential, A and A . These vector potentials (in the
frequency domain) obey the inhomogeneous wave equations.
5]
“
é‘: V2A + K2A =~ -pod 5)
2 * * *
V24 + k24 = €, (76)

R

*
Here J is the fictitious magnetic current density often found useful in
manipulating Maxwell’s equations. Equations (75) and (76) can be general-

iz ized to apply tc any linear medium, although we shall find their free-space
form adequate for our uses.
!:““3

In 2D, we define the far field to be the region where all fields drop
off as r'l/z; i.e., where all the faster falling terms have vanished. We

. -y
Ak $1 Lii

can then separate the electric and magnetic fields into two parts,

e

{le]
]
=
+

an

REER

H=H + (78)

L A
i
I
®
a:ﬁ

25
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The e-subscripted parts are associated with the electric vector potential A,
and the m-subscripted parts are associated with the magnetic vector poten-
tial A*. In particular, if we call Y, and Z, the admittance and impedance
of free space, we can show in the far field that

B, =V XA/ = 1wYol X A (79)
E ~Vxa'/eg = f0Zod X N (80)
E, = ivp, = 1w(_1_¢A¢ +1.A)) (81)
B - - ieAl = - iw(i¢A: + 1A (82)

Here, a t subscript indicates that only the transverse components (¢ and z)
are retained. Equations (79) - (82) are analogous to 3D formulas, and
depend on the fact that

ei(kr-wt)
e 7 (83)

Jr

is a valid far-field frequency-domain 2D solution of the wave equation even

if the more general

f(t - x/¢)
Jr

(84)

is not a valid time-domain solution. These equations tell us that if we can

*
evaluate A and A , we can find the 2D RCS without undue complication.

26
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In two dimensions, the Green’s function for the scalar wave equation in

the frequency domain obeys

V26(zlr') + k*G(zrjxz’) = §(x-x') (85)

e

where r 1s the scatterer location and r’ is the observer lccation. This

equation has solution, with R = |z’ - x|,

3 Gziz’) = - tu$P aw) (86)
|
[

*
Thus, at least in cartesian coordinates, A and A become

11 (k)
i a0 = [~ 1w (87)
Ho
: ¥ iHél) (kR) *
4 Bt - - [P Fawa (88)
.
% For the far field region, G(z|r') asymptotically approaches
.
3y -13n/4 -
&Y ' e 2 ikR
G(ziz") /AR e (89)

This expression may be further manipulated by letting r' replace R in the

g
A

;5 denominator of the radical. The phase term requires a bit more care:
% kR -+ k(x' - ié e ) = kr' - (kx cos¢’ + ky sing’) (90)
& 27
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R0

where

—
L]

Lr' - ixcos¢' + iy sing’ (91)

is a unit vector pointing from the target to a far-field observer.

Using these expansions, we can rewrite the formula for A in the far

$ field as
:
. o

5“
W
E .A..(:., tw) -
: i e-3i1r/l+

d (o [ . [ '

E g ) - /11'102:' oIk J'J(Lw)e‘ik(x cosd’ + y sing )d_r_ (92)

*
A corresponding expression exists foxr A (r',w). The far-field expression

5 for Ee then becomes

-
",
%

L' ,w) =

E (z',0) = o A(

ry
i}

25

iwpo e -3 iﬁ'/4 ' ' ] '
i - /ﬂir' Gikr If it(z’w)e-ik(x cosg' + y sing )dz (93)

2]

e
2o

‘9’ 3

LD e s R T 3 Nl
LU
A &

4

Similarly, ﬂm becomes

yo

ré

o

T
H (x',0) = iwA (&', 0) -

S 28
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iwege 5 ] . R
2 ike! * -ik(x cos¢' + y sing’
o [ R [ Ppaye iR costt kY simdg (g

Analogous forxmulas exist f.r Em and Ee'

Equations (93) and (94) are not lirectly applicable to the output of
our 2D Maxwell solver as these egquations demand the frequency-domain J and

* . .
J , while the Maxwell solver outputs the time-domain currents.

Let us say we .ot Ee(zé’wq) where ;é points in one of N_ discrete
angles of interest and wq is one of Nq discrete frequencies of interest. We

can then write

-3in/4

iwqpoe "5“—""ik r!
_E(r',w)-- qup.
e'\™p’ q 8x v xqup
jo t ik! . x
[ ae [f I(x,t)e P ar (95)
-

where kéq is the wavenumber pointing towards the observer at location ;é and
frequency wq, and where we have interchanged the order of time and space

integration aftexr replacing Qt(;,w) with its inverse Fourier representation.

Analogously, ﬂu(gé,wq) becomes

iw €°e~3iw/4 7 ik x!
Hm(r',w ) = 8 v k'’ e 1P,
=p’ q % n rp
jw t ) ~ik’! . ¢
e O g ff Liree P4 T ar (96)
-0
29
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Equations {95) and (96), and the two companion equations for gm and ﬂe
are in a form which 1is compatible with our time-domain Maxwell solver.
Taking the time integration outside the space integration is vitally impor-
t:nt to the efficiency of our aigorithm. Were this not done, it(;,t) and
it(;,t) would have to be Fourier transformed at every point before being
integrated over space. Thz2 form of eqs. (95) and (96) replaces this enor-
mous computation with a single Fourier transform on the result of the space
integral.

t

If we let isca represent the tontal current (conduction, displacement

and Prony) associated with the scattered electromagnetic field (see eq.
(53)7y.

a.E_sca.t: ag1nc
scat - . . scat

(=1

ET(t')

s t
+ (_‘_7_0 - _I_Ob) * Elnc + j. I_S(t't’) * at’

-

dac’ 97)

and if we substitute lscat

for J_ in eq. (95), E
t
scat

e of eq. (95) becomes the

scattered field E of the first section unless magnetic materials are

present. That is, licat

ing to eq. (95) gives Escat in the absence of magnetic materials.

integrated over the scatterer cross-section accord-

2
ESC*T(x 0 ) - Jr!
RCS($',0 ) = 2x —B 4 b (98)
P’ q el et )
= Yp'q

. . *
In this convention, A and Em are zero.

However, it 1is possible to replace the area integral of eqs. (95) and

(96) with a contour integral by means of Huygens principle. In particular,

30
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let S be a closed contour which completely surrounds the target. For in-
stance, let S be a rectangle defined by x = %, ,x, and y = y;,y2.

(At this point, it may be welli to digress a moment and present a map of
the problem space we are using. Let us refer to Figure 2. The entire
problem space is described by 1 < 1T = NX, 1 =J < NY or X,(1) = x < X,(NX),
Yo(l) = y S Yo(NY), where NX and NY are typically around 250. The working
volume aztually occupied by the scatterer is (NXB - 1) by (&4YB 1) cells
centered in the overall problem space where NXB and NYB are typically on
the orilevr of 75. Thus, the working olune is separated from the problem
space bowudary by (1/2)‘NX - NXB) cells along x and (1/2)(NY - NYB) cells
along v. This separation, which is on the order of 80 cc¢lls, is necessary
to decouple the outer boundary from the reactive fields of the scatterer.
The Huygens surface S is normally placed rcne cell outside the actual working
volume, at T = ILOW ox IHIGH and J = JLCW or JHIGH. Then x; is X, (ILOW),
etc.)

scat scat

let = and H be the scattered fields which our Maxwell solver
predicts will exist on S due to the time-domain illumination. Let n be an
outward-pointing unit normai on S. If we then remove the scatterers and its

currents, but let an electric surface current

K - n x g5°2t (99)

and a magnetic surface current

K - - nx g5t (100)

flow ou &, the scattered electromagnetic field will be replicated outside S.

This means the area integral of eq. (95) may be replaced by
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scat

. “pq =i . rseat
2 (a X B0 IERES W ON (101)

cell edges which lie on S and ﬂscat(_r_i,t) is ﬂscat evaluated at the middle

of As g This summation is represented by I because it has the dimension of

amperes. In the actual code, it goes by the name XIESTI.‘q if one is computing

g where the summation over i represents integration over the finite difference
ﬁ a monostatic RCS or XIESTBP if one iz computing a bistatic RCS. Figure 1
scat

indicates that Hz is actually evalu:ted at the cell centers, not on the

- cell edges. Thus, an interpolation is necessiry .o obtain ﬂscat(;_i,t). For
% instance, on the y = Y,(JLOW) portion of S, we have
kgj (a x Bz, €)= - i, sin ¢} (HZ(I,JLOW) + HZ(L,JLOW - 1))/2  (102)

Analogously, the area integral present in eq. (96) for ﬂm(% ,wq) can be

g written
3

Pty
i

L

scat 'ik{)q * L scat
? (-n X E (xg,t)) e bsg = lpq (V)% (103)

oo

2

(Remember the t subscript on I, I%*, or anything else implies evaluation with
the r component omitted.) In the code, this variable is called XIMS'].‘q or
XIMSTB .  Since gseat

interpolation is necessary to obtain E

is evaluated at the middle of the cell edges, no
S°a%(r,,t).  On the y = Yo (JLOW)

portion of S, the equation analogous to (102) is

2

(-n x E°*%(x,,0)) = - 1, EX(I,JLOW) (104)

5

o™
o~
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Equations (95) and (101) indicate the z-component of ﬂscat

sociated with the ¢'-component of Ee(;,wq). The ¢-component of [
as the cross with lr in eq. (80) proves.
These scattered fields are the TM solution.

is as-

scat 4o eq.

{i03) has the same association

Analogously, the ¢-component of Escat in eq. (101) and the z-component

of Escat in eq. (103) relate to the (decoupled) TE solution, which we are
not treating in detail at this time.

cat .
Let us use I° (t): to denote this "current" evaluated from the

“Pq
finite-difference code at nAt. Let us analogously denote L::at(t):n+1/2.
As the finite-difference calculation progresses, we can then keep running

summations of each scattering direction zé and each frequency Wy

n jw mAt
scat(t)n -3 Iscat(t)m e 1 At (105)
1 t =1l P4 t

n j +1/2)At
Q;:at(t)*nﬂ./Z -3 Iscat(t)*m+1/2 erq(m /2)

At (106)
€ m=1 “Pq t

When the time-domain £’nite difference calculation is complete, these Q's
will then respectively coulain quantities which are directly proportional to
the electric and magnetic contribution to the RCS in direction x! or at wq.
Note that it is only necessary to back store 2(Np + Nq) complex quantities
during the time-domain finite-difference calculation in order to preserve
all the information necessary to generate a monostatic RCS as a function of

w and a bistatic RCS as a function of scattering direction.

The symbol Q is used in eq. (105) because it represents a quantity with
units of coulombs. In the code, it is written SIESTq if one is computing a
monostatic RCS or SIESTBp if one is computing a bistatic RCS. The scattered

electric field associated with Q;:at(t)t is

34
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M=

fw poe-Bi"/4

- ik r'
scat - q 2 r scat w )
Eg Ny ey = V ez © SR ON (107)

Lo

The code tracks the ¢'-component of this quantity as EPESq or EPESB_, when
Jr! is normalized out. Analogously, the scattered magnetic field associateil

*
N i th scat o is
g% wi qu (t)
:3 3inx/4
by -3ix
iw e e ik
seat q? /.2 ;cat
o ﬂm (;é,wq) - Bn \ "qué e qu t (108)

[ i~?

In the code, the z-component of this quantity is HZMSq or HZMSBp when /ré is
normalized out. The scattered electric field associated with the magnetic

¥ current is obtained by combining eqs. (80) and (108),
Y
&
’ -3in/4
iw e ik r!
i scat - q 2 qp scat, .%o
BTN 0 ) e VT e Ly % 9575 (109)

9P

P

In the code, the ¢'-component of this quantity, less the /ré factor, is
EPMS or EPMSB .
q p

&

Q? The radar cross section then becomes

5

- scat scat,_, L

& (E (x',0 ) + E (r!,0 ))Jx

& D B /S E— (110)

1
E-(x’',
E (Ep wq)

N

(

In the code, SCATXEq oY SCATXEBp is the EScat contribution to the ratie

inside the absolute value signs, and SCATXMq or SCA'IXMBp is the Escat

contributions.

;R

L
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CANONICAL SOLUTIONS AND CODE-CODE COMPARISCNS

Scattering from a Layered Dielectric Cylinder

e 2N

Let us first discuss scattering of a plane wave by a circular

(X |

dielectric cylinder composed of concentric layers of different materials.
Assume there are N layers, with layer i characterized by €4s Byr ¢g a: and

P

outer radius a;. We shall here treat the TM case (H along the cylinder
axis; E transverse), although the TM problem 1is nearly identical
mathematically.

k’a

77

Assume the incident wave is at angular frequency wq, and is propagating
in the + y direction,

s

: ine i(ko r sin ¢ - w_t)
; Bz, t) =4, Yoe % d (1)

. ik, r sin ¢ - w_t)

inc - 3 Oq q
W E 7 (x,t) i e (2)
o
. 6o
-~ Here, Yo =, ;— is the admittance of free space. The same symbol will sub-

o
ey sequently be used to designate Neuman functions, but context should keep the
g; meaning unambiguous. Additionally, kOq is the free space wavenumber,
N wqjeopo - wq/c.
& Equation (1) may be expanded in cylindrical harmonics,
‘-3 @
N inc . ing
H (qu) =1, Y } Jn(koqr)e
n=-

::._

36

b |




e BT Wk e tab A ML P B L R REY g LR TARL AT & T T L ART T AT e R e m R

3
& © °
- Yoiz Jo(koqr) + } 2Jn(kcqr)cos né + } ZiJn(koqr)sin ne 3
g n=2,2 n=1,2

In the future, it will be useful to designate the coefficients of these
inc
harmonics as a

&
%‘,’g ainc -1
3 ;g ainc -2 n >0, even
AR
9 .
q alf® =« 21 n odd (&)

Since V X _}_l_lnc - - jwqeoginc, the cylindrical harmonic expansion for _E_lnc
becomes
& B rw ) = o - = 3 al™; (k. r)n sin né - 3 ine; (g
%:3: E _,wq o €q T n In¥oq n sin n a n( qu)n cos n¢
et ! n=0,2 n=1,2
:5:: © ©
R ine,, , ine,, "
[{:2 j_.¢kq } a Jn(koqr)cos ne + } a, Jn(koqr)sin n¢g (5)
N3 n=0,2 n=1,2
%
2 The innermost material will include the cylinder axis. Thus, only

Bessel functions of the first kind are permitted in the solution there:

gﬂ -] [-+}

N

N 1 - ; 1 1 z

2 H (;‘_,wq) qug_._z E aann(qur)cos n¢ + } aann(qur)51n n¢ (6)
o n=0,2 n=1,2

b
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ng n nqn
0,2 n=l,2

iy if <
E1(_x;,w)-‘—l'g'{~§£ } al J (k r)nsnn¢ } al J (k1 r)n cos n¢g
1R

(o] o

- l¢k1q } ann(k r)eos nd + E a;qJn(k r)sin n¢ (7N
n=0,2 n=1,2

where qu is the admittance of medium 1

!e‘ + Jo, /2,

Y, =" — (8)
*
la By + j“z/wq

and qu is the wavenumber of medium 1 at wq,

L —
g = ol + 303/0)) Gy + Jor/a) ®

The N-1 concentric shells will permit solutions of both kinds. Thus,
in region i, 1 < i < N, a;qJn(qur) of egs. (6) - (9) becomes replaced by

b4
aanr(k r) - aann(k r) + bann(k T) (10)

Finally, in free space outside the cylinder, the first Hankel function
is the only permitted solution for the scattered field. Thus, in this

. inc :
region, a_ Jn(koqr) is replaced by

scat
nq

1nc

Tplkgge) + a H(l)lk 2 (11)
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in egs. (3) - (5).

The boundary conditions at each interface are that eEr, E¢ and Hz be
continuous. It turns out that the first and third of these conditions are
equivalent. Thus, matching of coefficients at the innermost interface lead:
to

1 - 2 - b2 -
aanqun(qual) anqy2q3n(k20a1) banZan(qual) 0

1 ' - a2 ’
al J (qual) az J'(k

2 [a% -
a’n ¥1(ky o)) = 0 (12)

ng ' n anl) ) bnq n

Matching nf coefficients at any other interface except the outer bound-
ary of the cylinder gives

i- i-
a I (6 q 3 * bnqlYi_l’an(ki_l,qai_l)

i i
aanqun(kiai-l) ) banqun(kiqai-l) =90

a1y k.

i-
nqg n l-l,qai-l) + bnqle'x(k'

1-1,qai-1)

i i
- ap Ji(k; a; 1) - by ViCk; a g) =0 (13)

Finally, the boundary condition at the outermost surface is

N N . sca (L
aanNqJn(quaN) + bng ‘an(quaN) " %nq tY°Hn (kOan)
inc
= a,"¥,d, (kg a)
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scat ine

A (koqoy) = 3

nq Jalkygen) * bnq n{kygaN) - Inlkoqay) (14)

For each azimuthal harmonic and each frequency, eqs. (12) - (14) com-
prise a set of 2N linear equations in 2N unknowns. The associated matrix is
five-banded, and extremely easy to solve by Gaussian elimination. (The main
diagonal and first diagonal off each side of the main is full. The second
diagonal off each side of the main is half zeros.)

The quantities of interest in RCS evaluation are the aicat's, A two-
dimensional bistatic RCS is defined by

E5%C (4! 0 ) /x| 2

P

. 1lim
ROS(41,0 ) = 2n x'Hl r}““ (15)

The scattered electric field (nmeglecting the reactive radial component) is

F_‘“scat:(]___.l,)'wq)
<« -]
= - i¢ } a:;atﬂil)'(koqré)cos n¢é + } igatﬂ(l) (k r )51n n¢' (16)
n=-0,2 n-1:2

Here, use is made of the identity kquo - wqeo.

For large arguments, Hankel functions have the asymptotic limit

2n + 1

i(kré -5 )

(1)
Hy o (kory o [—2—

> nk r' a7
07p

40




Substitution of egs. (16) and (17) in (15) then yields the RCS in terms of
the ascat:

R 25

-
\| g @ g 2

x 4 scat, ..n scat n

! - -1) 4 -
RCS(¢p,wq) ko } anq (-i) cos n¢p + } anq (-1) 'sin n¢é (18)

i §§ n=0,2 n=1,2 ]
N

gg A total of six code-code comparisons have been made between the

cylindrical-harmonic frequency-domain algorithm and out TDFD code. First we

examined a solid dielectric circular cylinder of €. - 2. The cylinder was
inc

GBS

given a radius a = .5 m. Ve used an angle of incidence of ¢ = + 45° from
the x-axis. Meshing was square, with each cell .04 m on a side. Figure 3

illustrates the TDFD cross-sectional model for the cylinder.

j

ey

Figure 4 is a linear comparison of the monostatic result, and Figure 5

ot

g

is a dB comparison. Figure 6 is a linear comparison of the bistatic result

of 250 MHz, and Figure 7 is a dB comparison. Figures 8 and 9 are bistatic

L

comparisons at 500 MHz.

AT S e MR T ML S s e e BT Wi LY 0 A 5 B 0 M T & e it .
f A

S

The second comparison was an identical cylinder except that €. was
increased to €. = 9. Figures 10 - 15 compare the same data as Figures 4 - 9
did for the first example.

&3
i,

Figure 16 is a four-way dB comparison of the monostatic RCS computed by

Y

%g both techniques for both values of €

57.5 ” . :

A Good agreement occurs for all the €. = 2 comparisons, but discrepancies

f

accur above 300 MHz when €. = 9. For instance, agreement is not good in the

bistatic result at €. - 9 when frequency is 500 MHz (Fig. 15). 1If € = 9,

§=2

300 MHz corresponds to a wavelength in the cylinder of .33 m, or about 16

R cells per wavelength. The conclusion that a wavelength must be resolved

%3 into 16 segments to get good finite-difference results is neither new nor
surprising.

&2

3
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CHRE

The third comparison was for a perfectly magnetically conducting

g-

cylinder of a = .5 m radius. Meshing was again square, but with each cell
now .04 m on a side. Figure 17 illustrates this TDFD model.

(TM scattering off a perfectly magnetically conducting cylinder will

give identical RCS results as the more familiar problem of TE scattering off

P |

a perfectly electrically conducting cylinder.)

g& Figure 18 shows a linear comparison of the two monostatic RCS calcula-

= tions, and Figure 19 gives a dB comparison. Figure 20 is a linear

f@ comparison of the bistatic result at 250 MHz, and Figure 21 is a dB

62 comparison. Figures 22 and 23 are bistatic comparisons at 500 MHz.

»

i% Although all these magnetic-cylinder results show good agreement be-
tween the two techniques an interesting minor difference does appear,

gﬁ especially in the second and fourth quadrants, of Figures 21 and 23. 1In

Y particular, the cylindrical-harmonic bistatic RCS results are exactly sym-
metrical about the main diagonal (¢ = 45°), while the TDFD result is not.

i We Dbelieve a low-grade bug is present in the TDFD coding, but that this bug
was undetectable until bistatic capability was added to the TDFD code in the

iﬁ final days of the effort.

LY

The fourth comparison was for a perfectly magnetically conducting rod

of the same radius, but coated by a damper .5 m thick. Thus, the overall

) radius of the composite rod was now 1 m. The damping material had
Eﬁ properties €. - 1, B, = l, 0 = ¢ o*/u=4 X 10'3. These values were
- selected to give a skin depth on the order of the damper thickness at fre-
s quencies (50 - 500 MHz) for which calculations were run. Squére cells .04 nm
&. on a side were again used.

Figure 24 illustrates the TDFD model of the damped cylinder. Figures

Mz

25 - 36 compare the same data as Figures 18 - 23 did for the bare cylinder.

2 ¥
t O It is important to note that damping the rod reduces the RCS in all but
plng
ﬁs the forward direction, where it enhances the RCS. This occur because the
'\
2 6
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forward direction lies in the scatterer'’s shadow; that is, Elnc ~ . gScat

the fcrward directiorn.

in

Figure 31 is a four-way dB comparison of the monostatic RCS computed by
both technicues for the bare and coated magnetic cylinder. It may be seen
that the coating reduces the cylinder’s RCS by about 13 dB over the fre-
quencies of study.

The f£ifth and sixth comparisons were the same as the third and fourth,
but for a perfectly electrically conducting rod. All other parameters were
unchanged between the two pairs of comparisons. Figure 32 gives the four-
way dB comparison of the monostatic RCS for the bare and coated electrically
conducting cylinder. It may again be seen that the coating results in about
a 13 dB reduction of the RCS.
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Scattering from a Thin Dielectric Strip

e

ot

Richmond1 has worked out a solution for scattering of a plane wave by
an infinite dielectric strip. The strip may be of any width, but its opti-

e

cal thickness should not exceed a tenth of a wavelength.

33

This approximate solution is based on superimposing arbitrary combina-
tions of the 1incident wave and the two zero-order waveguide modes a strip
can support propagating in its width direction. The coefficients of the
three waves are then optimized by a slight variation on Galerkin's method.

o I

It is an intrinsic property of the Richmond solution that the total
scattered current (conduction, displacement and Prony) is symmetric with
respect to the center line of the strip's thicknes< dimension. Thus, bis-
tatic cross-sections computed from this algorithm will always have a plane
b of symmetry coincident with the plane of the strip.

=7

Two code-code comparisons have been run between the Richmond
ii frequency-domain algorithm and our TDFD code. We first did a strip of
: €. - 2 which was .04 m thick and 2 m wide. Cells .02 m square were used, so
the TDFD model was 2 x 100 cells, Illumination at ¢inc = 45° with the
Poynting vector in the first quadrant was assumed. Monostatic RCS com-

parisons were performed from 50 MHz to 500 MHz, and bistatic RCS comparisons

gg were performed at 250 MHz and 500 MHz.

Q% Figure 33 shows the TDFD model. Figure 34 is a linear comparison of
' the monostatic result, and Figure 35 is a dB comparison. Figure 36 is a
o~ linear comparison of the bistatic result at 250 MHz, and Figure 37 is a dB
5} comparison. Figures 38 and 39 are bistatic comparisons at 500 MHz.

Q; The second comparison was a strip of €. - 9 with .02 m thickness and
- 2 m width, Cells were again .02 m square, so the TDFD model was 1 x 100
& c¢:1lls. All other parameters were the same as for the first example.
o Figures 40 - 46 compare the same data for this case as Figures 33 - 39 did

for the first example.

e

74

2/l




‘oxenbs w Zo° 918 STI3) °UOFIDI5-SSOID
uf w z x w 40° dyIas OTIOSTITP ® Fo Topour (JIAL ~¢E SIn3TJ

w 200 = AV =XV

75

Y

-5 mg=M

373
AR TR TR T JF® R EEAR T T e N Gl TR S Dolle FLIE T8 N3 ol 0 N0 M WA R AR ud R L8

~ NOLLDJS SS04D dI41S 2i¥10dTIId

T s B 2
G @S GRe A AT OER o B S SR B WA IR Yo EE




) mmmmmmmmlws AT TR ST T R A TR R e ek

R TA oﬁﬁ qe uoplBUTUNTTY

uo paseq ST 23014  IInsad qidr @4z st dull
paysep pLe ‘3[NSal puomydTy aya ST °2Aand PITIVS

-dja3s oTI0[AIP ¢ =~ % ayy 10 SOY 913BISOUOy “HE 2an81a
(zH) badd
0t Qe 01 00
....._...._/..\. OOOO
-200°0
- $00°0
s s,
Q
ﬁ ()]
Pramy
r =)
- 900°0
5
gee = aud
Sy =1wd |
00 =9 u=l
g =3

: 100
GOT100g SSOI) Jepey olje}SoUol didis 05023%

ol

76

PRy WER O Wk |

Y S




=3

“9/% - o:% 3e uojjeUTUNITY

uo paseq sy 23074 °‘I[NS8A  (QIAL Y3 ST 3UIl
paysep puw ‘I[NSel puowydTy Yyl ST 2AIND PIIOS

+dya3s OFIA309TIIP T =~ 15 ayy 103 §O¥ OTILISOUON ‘GE °IndTd

T NF STt T BT e 2R

205

OT« (zH) dIYL
0'S oy oe o2 01 00
PP U VPP UENUr SR TN SUNIT VT VRS VUM YT WY ST U NPT T R S | o.om —_

RS AR WS R M AL v Lt e T S

)
T

T
<
[=]
0

!

77

P g Vac s B Sk £ W X NS =S g

i

cos.uvm SS0X) Jepey Olje}souocyy dLns 9.5029% 0=

A D MR OGP R OB JEn N R R TS WD SR 3 THY O dee R oo R

- ” 5 ~ ook

—— o PNW I WOV N R T S o ST gy * 1 T, g i o ) o SR W L W o g g



TR R e T IR R U TR N TR LS R LTRRT W B

=W

&

& Y

fEe w s

/% - ocaﬁ 3® uoTIeUTMUI]T U0 PISEQq

‘ansex QJ4dl @Yl ST SUTT Peysep pue
‘3Insax puomydsTy 9Y3l ST dAIND PITOS ‘ZHH 062
x

ae dy13s oya30919fp ¢ = 2 oYl I0F SO¥ OFITISIE  "9¢

ST 301d

- GG2'0
.. I ZHN ocmmm@ M Um.w
e A.og.o SV = yd
: 00 =9 ue}
R g =93

~G80°0

i

4620 oLT0 S80°0 X G800 0L10 6520

el o e o 4 oo asVa b 2 o PSR IT SN TO0 Y ST U Y Y VO S T

UOI109G SSOI) JTepey ole)sig dLIlg dLIosRId

e s o
L [ vartit

T eEmn Sl weE

78

g e
LT

L
3
ot




74 uﬂw# qe uofjeUTUNIT] Lo peseq

ST 3074 °3Insex (Jdl °Yy3 ST SUIT Ppaysep pue
‘31nse1 puowyoly 9yl ST °AINd PITOS  ZHW 052

38 d113s OTI0ITOIP T = 15 oy x03 SO¥ oT13EISIE LE 9N 31

-0SY  gpaQ'T = Jo1o8d
UOT1}eZI[eULION
ZHW 0°0Ge = balj
w0y =P
SF =1d
00 =9 ue}
2 =3

-
3

e® Tallh § dme T de TN AT e BAASE A RAA-SAR SR TR T, T o T

79

e e e e auk

LINNC I N B RN B B )

“

w NGy 00e 0'st ocy ooe oc¥y
,m PO DT IFUET W SOUR ST TR VRN S UK AT Y S \-L-.f"a-._.—h’-..-_
@ [

h -

* i

; -0'0]

m 3

: i w

! [ /] =

i Res jan

| hote

u -

i -ogy

M TOT0ag SSOX) Jepey orje}s'g dLIg JLIa[eI(
h

:

3

‘

A

A

W

22 MV aah B S R S @R K R Rl W IR SO BY




R R ittt

PR Lot o SR FLI TR Tl PR AR Tl 1 Tl DIl i T e TVl T B T IR Sl VIR o sl Nl e IO, Sl Ll L 2l Bk e 5TV W f iy S B VTR L

/% - oaus 38 uojlRUTUMIIT U0 Paseq

s7 3074 °3InSel @44l °Y3 ST Surl psysep pue
‘31nsex puowydTy 9yl S} °AInd PIIOS  “ZHR 00S

e dyaas o3a300TsIp T = ol oy3 103 So¥ oI3LaSIg ‘8¢ 2Ind1d

-8’1
[ ZHN cnmwmo M @w.um
-2t v =1yd
[ 00 = ¢ ueyl
. N =3
[ 90 3

81 el Co90 N\ %0 &%
u.m.c -
I a
[ ta

i o "f.ww

L g

UOI}0aS SSOJ) Jepey opeIstg dLg oLosPlq

R 35 M B BN S8 s A WL MR ooy, & D0 YWn wEl) W SR 33 M

R SR pp——




v AT et e A SN e T B R e e

il LR LT T B SN A M Tl BE e TE 5 S ol i S5 o S, KON S S Lo N St o W NN - 2 S W Ll VM M X P T - TN AR RS Ty N S S LR A e B W Wrke e e T Re s e WReR

/U - ocas e uoljBUTUMIIT UO pPISE]

ST 301d -3INSex 44l Y3 ST °OuIl paysep pue
‘3Insex puomr{oly °ya ST 2AINd  PIIOS *ZHW 00§

3e djizs O1a09[AIP T - 15 oys 103 SO¥ ©OI2EISTY 6E aand1y

r0'SL 9o’ = 10308
i UOIeZI[RULION
. ZHN 000G = baJ

81

L oaL

AW N W S DO KK WA v G e W WP Wiy BE) M S Sy By

o T gy N TR SATI R TYC R A DWW L TR L Yo (5




()

AL TR A s AR T R e s ek Tl T L M ek

QSIS L SAROY VW WL T £ A

A L R e

s TR W S R B e S e B

Ao AT BT R RS

FIR AL TR

‘axenbs w gQ° 918 STI9) ‘UOTIDIS-SS0ID

up mw g x w go- dyz3s oyAIPRTRTP ® JO Topow @IAL 0% 2INZNd

w 20°0 = AV = XV

Y

wZ=M

A

S e enasaonianaainiorsssutesscadsintasnasedaaiasnasaissnsentocsaes st s

[eeeannavasnnvassannansnssans

NOILOTS SS0UD dIULS JIALOTTIIA

o 3 , 50 s - .
2B B B B B BEA iy BB S0 R RN @R RS W

82

W) s2e il WS Y




P L A Fme Rede ¥ G Nadd By Wi Vs Naat St Mo durs Vg Toile AL Tdle Mt Telor Vi T < Dl - e, MR 2B == =0 =0 7 70 2 =

L e S TR AR S

T e e

S TA T A e

Tt

Spr i OF Bl b s e

/% = yp® 3T UOTIBUTIMITE

uo poseq s} 30Td ‘IINsex (J4L °YI ST SUIL
peysep pue ‘3[nsea puowyoly @yl ST dAINd  PIICS

X

-d113s OTI30RTAIP 6 = ~? Y3 10 SOY DIITISOUOK

"1y @an31d

00
el 000
- G0'0
, g
ﬁ @)
-01'0 wb/
. 8
I
-GT'0
wo Qg =P ]
See =-1ud |
Sy =wd }
00=9¢ue} |
6 =2

UOT}0ag SSOI) Jepey O1je}SOUo) diiis o_bomﬁmﬂ% 20




oo cnFp o ve i AL RO AL TR Cns S B I ablioald Sp il oty gf Bty Ko 2o rabe gt b s Vo e P p b By R afa i RS St AY LR S S e SR R S oo B R e e e I e e e e I B

2%

/U - ocaﬁ ae uogyeufuMTIY

uo peseq ST 230T1d ‘3nsex (@iQl eyl ST °ull
peysep pue ‘3[nsel puouwydly 8yl ST 2AIND PITCS

-djzas O1I109T9IP 6 = 15 aya 103 SO oTIBISOUOK

Ol (zH) dIYd

0'S 04 0t oe 01 00
PSR SN DHUE Y ST SHUUT YUT FUV ST YORU VY W SV THDUEN TP S S SN SO S SO | Q.Owl
- 0'08—
- 002
-0'0T—

wo 02 =P |

oG =aud

GF =1ud |

00=guey |

6 =3

UOI1098 SSCI) Jepey OIje}SOUoH dlIlS o_boﬁo_% 0

HE RS ol NN MR on B T MRR

B M SN [ R T

"gh 9IndLg

84

(@p) sod




Pk W T iAW mOA_ £ 3

T . P 2 S, PN B8 - T AT s B Rl RS B

LS

¥y

ROl S SRR SRS BT R R TR L TR T PN UM R U TOCTR D U s Mk TR TR P R

/% - osas 38 UOT3IBRUTUMITT UO paseq

ST 2074 °3Ins9X (44l °Yy3 ST °ul] Ppeysep pue
‘3{nse1 puomyoTd oY ST 9AINd PTIOS  "ZHH 062

ae dJI3s OTIOYIIP 6 = 15 oya 103 §OY 9OT3ITISIE €Y 2an814

-
X ZHN oﬁmmmu M vw.w
F0€ Sv =1wd
I . 0’0 = ¢ ue}
6 =3
-G'1 0
Sv oe g1 oe Sy
ol 2 s a2 2. 1 2 s o oo boa v e a1 el
L4 ¢ -
Q
o
ﬁo.m /m\
Loy

UOI109S SSOI) Jepey one}sig dIIS oMoePId

Sl 2 EE OSR B w0 o A e R SR s s RS SN GBS G S B

L ? i




PV L S _wn .t e mn e e ms o g e m—

s Y T RIS A LR IR S ML SR, T 2 i TR . AT TS A e . DUV W, 087 D

/% - ocav e UOTJRUTUMIT] U0 PISeBq

ST 307d ‘3[nSe1 QJQL 943 ST OUFT Ppoysep pue
‘3TNSa1 PUOWYOTY Y3l ST 9AIND PITOS  ZHH 06T

X

ae dyI3ls OTA309T9IP 6 =~ 2 OY3 103J SHY OrIv3sSId

"4y 2103141

\/

LINNEJRNE Bt BN UK MR M

0oy 002

U BN ST TN U VR SN TR Y NN SHNT SO SO SO

[003 gpaQ'] = J0%08]

Uoljezl[euLIoN
ZHW 0052 = baJjj

TI LIRS
<
te
)
i
=
ok,

ooy 009

LOSILEREL SN A S B MR RNt

ﬂodm

UOIO9g S0 Jepey orje)sig dLiig OLIos[Rl]

AL

86

W BN SKE TR WRR

¥




R

B T o Bt o Fa VI L PR T, S NIV L P R

‘% - oﬁﬂﬂ 18 UOT3IBUTUMTTT Uo pPaseq

ST 3014 '3INSeX Q4L 9yl ST SUTT PIYseEP pue
‘3Tnse1 puowyoTy oyl ST 2AIND PITOS  ZHW 00S

e dyaas o7I309T9IP 6 = 1 ey3 I0J SOY OTITISIE °GY 2an314

~ 021
X ZHN o%wmo.w wmzm
F =
[08 oG = 1ud
S I 00 = ¢ ue}
B @ =
P>y
het 08 02

021
ToT1995 S50 Tepey onelstg ding oMioeRld




o e R M A P Any WA B Bens n b ada e hon, Bemimaclie miurs it xolum Ui S Foan € = W

. - uo peose
v/% oﬁﬁ 38 uoljzBUTUMTTY peseq

3 3014 -3INSex (44l Sy3 ST OUTT peysep pue
‘3Insex puowyoTd 2Yy3 ST eaInd PITOS  "ZHW 00S

2e djI13s OFII0E[OTIP 6 = % ay3 xo3y SoW ©°T3IBISIE "9V aand1g

-009  ppeQ'] = J0j08]
i UO0[18Z][8ULION
X ZHN o%wmow wm.w.
- 00r gy =1wd
! 0’0 =9 ue}
R m = 3
) [}
[~ o0
I ooy 008
N u
) @)

.wo oy @
L 000

UOI103G SSOx) Jepey olje}sig dLIjg 01130991

I ZFE W B B O &P PR o S wRE ol NEREYOKIS - PSSR i

e . e e, & A



=Wz lf - =2¥trr 4, —m R e, e = - = =~/ = 0 - - =

T
i
W

(=

It may again be seen that the two results are in excellent agreement

"I

for all frequencies in the €. - 2 case, but that some discrepancies occur

above 300 MHz in the €, = 9 case. For instance, the €. = 9 bistatic com-

parison at 500 MHz (Figure 46) again does mnot show particularly good
agreement, especially at the minor 1lobes. To get really good finite-

difference results, especially away from field maxima, we again see that a

-

wavelength must be resolved into 16 segments.

]

%ﬁ The TIDFD and frequency domain solutions are probably less discrepant
] R here in Figure 46 than they were for the € = 9 dielectric rod at 500 MHz
1 E; (Figure 15) because we are here only violating the 16 cells per wavelength
;7 rule in one direction. Figure 15 is bascd or. a calculation where the rule
: A was violated in two directions.

é

&
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Elliptic Cylinder Scattering

The transformation from Cartesian to elliptic cylinder coordinates is

X =1/2 d cosh ucos v L
y = 1/2 d sinh u sin v (2)
zZ =z (3)

where d 1is the distance between the foci of the ellipse. Additionally, we

sometimes denote

€ = cosh u (&)
N = COS V (5)
so that

sinh u = J¢2 - 1 (6)

In this section, we shall use the notation of Uslenghi and Zitran,2
that of Blanch3 where it does not conflict with the first notation, and that
of Stratton4 where it does not conflict with either of the above. (Lack of
a standardized notation greatly compounds the inherently difficult problems
associated with elliptic cylinder coordinates.)

For all cylindrical coordinate systems, the TM solution for Hz obeys
V2H_+ k?H_ =0 (7)
z z

In elliptic cylinder coordinates, this equation takes the form

2 2 2
. [a H, 9 HZ] . 924,

1 o
(3/2)2(cosh?u - cosZv) |auz T “gvz) t gz t KH, =0 (8)

Let us now assume this equation can be solved by separation of vari-

ables,

90




Hz = U(WV(V)Z(2) ¢))

Substitution of (9) in (8) ylelds

1 Uil I AP :
§ (d/2)2 (cosh?u - cos?v) [U + v] tz tkE=0 (10;
% Let C be the first separation constant,
gl

% +C=0 (11)
ﬁ
;’!; Then U and V must obey
i U" - (a - 1/8 » d2(k? - C) cosh 2u)U = 0 ‘ (12)
§E V"' + (a+ 1/8 « d2(k? - C) cos 2v)V = O (13)

where a is the second separation constant.

7]

,:Ag
In the rest of this report, we shall assume there is no z dependence,
= so
F !‘:‘:
i X
5%1;
L k2 - C - k2 (14)

BEE

and we shall denote

c=1/2 « (kd) (15)
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where ¢ is not the speed of light, but is the number of radians at the
frequency of interest between the ellipse center and one of its foci. Then
eqs. (12) and (13) become

2 ER PP e

gﬁ U" - (a - 1/2 » ¢2? cosh 2u)U = 0O (16)

o

¢ V" + (a+ 1/2 « ¢c2 cos 2u)V = 0 (17)
j - Equation (17) 1is Mathieu’s equation and (16) 1is the modified Mathieu
2
Y equation.

The ¢ of eqs. (15) - (17) corresponds to coA in Stratton and Js in

Blanch. In some more modern works, such as Abramowitz and Stegun,5 and

&
o

Hodge,6 it corresponds to 2/q.

.

It turns out that Mathieu’s equation only permits periodic solutions

B
‘

£
e
Laalal

for discrete eigenvalues of a, where these eigenvalues depend on c. If we

assume

<
V= } Dezk(c) cos 2kv (18)
k=0

By B

bt

Sk

we obtain even solutions of period n. The rth eigenvalue of this equation

) is denoted a2r’ and the rth eigenfunction is denoted

B

i @

e 2r

¥y V= } DeZk(c) cos 2kv (19)
k=0
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I£ we normalize these functions to be unity at v = 0, we obtain the even

Mathieu functions of period «

-}

Sezr(c,n) - } Degi(c) cos 2xv (20)
k=0

Alternatively, if we let

-}

V = } De2k+1(c) cas{2k + L)v (21)
k=C

we obtain the even solutions of period 2x. The rth eigenfunction of tais

system, also normalized to be unity at v = @, is

©
- + ,
Se, ,1(ca) = 2 De§§+i(c) cos(2k + 1)v (22)

k-0
Now let us consider odd solutions of pevriod =,

«©
V= } Do?k(e) sin 2& (23)
k=1

The rth eigenvalue of this equation is denoted b2r and the rth eigsnfunc-

tion, normalized to have unity derivative at v « 0 is
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-]

g S0, (c,n) = § Dob¥(e) sin Zkv (24)
k=1

Finelly, the rth odd eigenfunction of nericd 2x is

; : 2r+1

% 50, ,1(c,n) = 2 Dogy,1(e) sin(2ic + 1)v (23)
k=0

2]

2.3

XY

[
«

,
¥

Ary even Mathieu function is orthogonal to auny odd Mathieu function ou
the 1{interval (0,2x). Likewlse, Jdifferent even or odd HMathisu fuactions are
crthogonal. ‘lhe noymalizatien factors are

1

b
o
&
. 2r
a Néf_) (e) -{ Sezr(c.,cos v)?2 Jdv
= I 2r 2r
- x[Z(Deo {c)? + (De2 (e))2 + ] (25)
- -]
B 2
(e) - S el vy5 ‘
2 Nyspled == !/ (Degy 11 (N 27
k=0
=
- o]
o (0) (e = \ 2r, yy2 :
NZI (e) LS L (DOZ!:(V)) (28)
b kol
= ©
(9 (v ww O 2r+l .,
% Naenafed = m g (Roy(en) @9
k~0

o“w o w

w
Xedhite

24

g
-
¥ -

».m:
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The four types of Mathieu fuuctions defined by egs. (17) - (29)
describe the azinothal depondence of the elliptic-cylinder harmonies.
Equation (16), on the sther hand, descriles the radial dependence. There
are a total}l of 16 kinds of radial Mathieu functions.

let Zé;)(x) denote the kth Bes.:el function of the jth kind. For ex-
zmple,

zf{”m = TG0 + £Y (%) (30)

Then the four radial Mathieu functions corresponding to Sezr(c,n) may be

&4
shown »3 to te

2 1) e (c)
(i} x 2k
Reyr’(e.8) =/3 E 2t ‘
k=0 esDezs(c)

[ e0zfileen + oy, ce0zl)en) 1)
where

€~ 2; €, - 1 for s = 1,2.... (32)

g = (c/e™ (33)

£y = (c/2)e" (34)

and s is any acbitrary interger, but is best selacted if
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S W=

negzcc) - mla;x(Da%;’;(c)} (35)

g

Similarly, the four radial Mathieu functions corresponding to

Se2r+1(c,n) are

RS

% ) /5 3 Depa ()
A 3 /= . r+k k+1
8 Regra(e©) =/ } D peZftlicy
k=0 2 +1
e
7
3
D) (3)
% [ (5 )Zk+s+1 $2) + Jk+s+l(€1)zk 3(62 ] 26
%S The radial Matnieu functions corresponding to 802r+ (c,n) are
2 P
2r
i Do,. (¢}
Ro(JEC.€) -/ } (-1)*** 2& ’
- K= DOZS(C)
N
" ezl - g enzidleen] <
3 -~ e
T
4 Do2I*2(cy
- Ro{d) (e.e) = /% } HTH %‘Eﬁ '
3 ég k=1 2 +1( <)
p & [Jk-s(el)zl(c:]i-;-t-l(ez) } Jk+s+l(61;zl(gi(52)] e

o,
a7

Let us now consider the expansion of a plane wave in elliptic-cylinder
ine

S harmonice. If we have a plane wave propagating at an angle ¢ from the
, %i + X axis,
7
£
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) . inc . ine

ﬁinc - —i-z Yoel(kx cos ¢ + ky sin ¢ ) (39)
@ then the desired expansion 154
5’.‘3 «©

ine inc (@¢D)
o5 H i, YOLE a " Re "(c,§) Se (c,n)
=0
b 2.
* } bire ro(Mic ¢y so (c,n)] (40)
£y m m m
’ﬁ% m=}
g% where
i
- aIf | r L se (c.cos 179 (41)
. m N(e) m !
o
g binc - /E; i Se_{c,cos ¢inc) (42)
i m N(o) m !
ﬁri m
%= The associated electric field is
)
R . N
- & = Joeh |2a v T A Tau (43)
;‘h
where h is the elliptic cylinder metric

ﬁ

. 2 23 1/2

n - hu - hv = (d/2)(cosh?u - cos?v) (44)
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Expansion of eq. (43) yields

-3

le2

tne | k14 [mzo 2l 2o{D (e gy selte,6)

(]
inc , (1)
+ } bm Rom (c,é)Sol;l(c,r;)}
m=1
o0
i : 1 I} ,
. Y [ alre peD’ (e )56 _te,m
m=0
454
o
@
inc (L’ -
g + } " Ro_ (c,e)Som(c,q)] (43)
m=1
ry
'gﬂ
1
We shall first assume this plane wave is scattered by a perfectly
% conducting elliptic cylinder. Thus, the scattered soluticn must be an
&

infinite series of outgoing Mathieu-Hankel functioms.

o

g e L} 2222 Re{? (e, 8250 (c,m)

&t =0

g + } pooar Rof)(c,g)st;m(c,n)} (46)
] m=-1
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A
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o

P

|

-]
scat kjlp T } cat 3
e R 2_ e Ro{P (c,8) sel(c.m)

M=

(-]

scat (3)
+ ) R Rol <c.e>So;<c.n>]
m=1

- i, [ } azcat Re;B)'(C.e)Sem(c,n)
m=0

bscat
m

Ro;3"<c.e>So;(c.n>]

+
?P\“18

n
L

The requirement that on £ = ¢,

then yields formulas for a:cat and bscat-

', .
— 30 Re, (tjgl) 1nc)

a — T Se (c,cos ¢
n Née) ReéB) (c.&,) ©
(L',
__ ;@ Ro (c,&,)
bS°at o . Jgx 1o B So_(c,cos ¢77°)
m N ol (e gy T 0

99
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(48)

(49)
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We are now in possession of enocugh information to evaluate the RCS sof
the elliptic cylinder. At large arguments, Reé‘”(c,ﬁ) and Rol?)(c,E) both
; approacha

7.

2
2m + 1
al (3)( 5) 1 i(C€ i &4 )ﬂ
iy o ¢ .,/c&
e
Y
1 i(c cosh u - =& Z 1)1r
; Y S — 5
: P Jc cosh u € (31)
?": Uslenghi an 7.:°Lt:ran2 then define che scattering function
4 nkr’ i(kr! - x/4)
P(v’) =\/—R e P A C TR 52
i ( p) 7 2 (rp Ve (52)
» where +v:@ approaches ¢' at large r’. In view of eqs. (1), (2), and (15), we
¢ P P 8 Tp
! can show that
- krl') + ¢ cosh u (53)

Substitution of ({46), (49) - (51), and (53) into (52) then yields the bis-

W tatic scattering Zunction.

© (1)'

P(vi) = - 2x | } L 81 e (e,008 67) se )
o V') = - 2n : ; e (c,cos e (c,cos v!
a% P éo ée) Re( >) (c,&) ™ n p
. o Ro(’
" } ¢ SELLPAY $17) so ( oo se)

+ ; o _(c,cos Y So (c,cos v/
“ mel N;O) R°(3) (¢, €y " " P
”
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We can then evaluate the bistatic RCS,

HEE

scat

% 1HSS® (1 vty Jr! |2
g RCS(V!) w 27 +mZer——B P D
P |Hinc5’
z 4
;&5
. 4 |B(v))|?
: Sl e

A
4%

.
’
b

Uslenghi and Zitran2 have published curves for |P(v1'))|2 as functions of

% ¢inc’ ¢{; and tanh u;. The quantity
b cé, = (1/2) + kd cosh u, (56)

L)

o
Vi,

7]

is the number of free space radians at the frequency of interest along one
half of the major axis of the ellipse.

Additionally,

- tanh u, =2 - 1/¢, (57)

§§ is zero if the ellipse is reduced to a conducting strip, and is unity in the
= special case where the ellipse fattens to a circular cylinder,
E% . inc |
i Figures 47 - 49 illustrate our results for [P(v}'})[2 when ¢ is 0,n/4
- and x/2 and vé is ¢inc + x (the backscatter case). These figures agree
5% exactly with previously published result32 and confirm the correctness of
our analysis and Mathieu function routines.

i

We have also reproduced the Uslenghi and Zitran2 results for TE scat-
g% tering by an elliptic cylinder, although this calculation is only relevant
b
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to our present work in that it tests our Mathieu function routines under

different circumstances.

It is interesting to note that in the case of scatteriig by a conduct-
' .
ing strip, wu; is zero, £; is unity, Reél) (c,1) is zero, and all the a;cat

vanish.

For scattering by a dielectric cylinder, we encounter a strange com-

bEses

plication which will probably be new to anyone who has previously only used
Bessel functions and spherical harmonics. The incident and scattered fields

can still be represented by eqs. (40) - (47). However, we must now also

o

] consider the fields which penetrate the cylinder,

| A

. bt

r ;é ztrans _ 1,Y [;2 a;:lrans Re;l)(cl,g) Se_(c1,m)

E - -0

% g + } b;rans Roxfll) (c,,€) SOm(cx:ﬂ)) (58)
g me=1

.M...-
e
%%

5 O

m

k. ©
t 1], t 1
E rans - _i_ﬁ i |: } a rans Reé, )(01.5) se;n(cl'ﬂ)

g
!

K

m=0

A

fhtn
LAY

m

+ } prrans Ro;n(cl.f) So;l(cl,rl)]
m=1

-1, } atans ge (L' (cy,6)se (e, ,m)
=0

‘_
Flod ‘;2.4
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=

«

+ }
45

Me=

ptrans Ro,ﬁl"(cl,e)Som(cxm} (59)
1

22

Here Y, is the characteristic admittance of the dielectric

R |

X, '\/—‘x/ﬂo (60)

EIEEY

k; is the wavenumber in the dielectric

LA

ky = w\/;;;;)— (61)

a4
hens

and c¢; is the number of radians between the ellipse center and a foci for a

LY
S

N

vave travelling in the dielectric,

™
;
i - A

ey = (1/2) * k,a (62)

2

AN

b5

H

The houndary conditions at € = £, are now the continuity of Hz and E_,

il

3

;_fz H:lnc + Hscat - Ht:ra.ns (63)
& Z z Z
w2
LS E:i.nc + Escat: - Et:rans (65)
v v v

(B

These conditions lead to the relationships

T

B 3 ine 1) scat {3)

i Y, } (elmn Re ""(c,&;) + a_ """ Re ""(c,§;)) Se (c.,m)
m=0

]
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it

-}

tra 1 :
- v, } atrens pe(l) e, £1) se (ey,m) (65)
m=0
]
- 1 ' & £ [
k } (a:lnc Reé ) lc,€1) %'a:c ¢ Re;3) (e,£,)) Se_(c,n)
m=0
(-]
T 1)’
- k. } a;ra"s Reé‘ Y (e, 80) se_(cy,n) (66)
n 0 —

plus an additional pair of relationships connecting the odd elliptic
harmcaics.

The coaplication now arising is that Sem(c,n) and Sem(ct,ﬂ) are mnot
equal, since ¢ and ¢, are dJdifferent. “ua other words, the dielectric
cylinder c iuses each incident elliptic harmonic to couple to every scattered
elliptic harmonic. Thus, unlike the case £for a ~irzcular cyliwler or a
sphere, eqs (65) and (66) do not separate out into decoupied equation pairs
fcr each value of m.

It 1Is necessary tc substitute egs., (20) and (22) for Sem{c,n) and
Sem(cl,n) into (65) and (6{&). Doing this, rearranging terms, and facroring
out the trigonometric functions yialds

[~ ] «Q
E a4t v, Del(eyre’P te,4y) - } a8 v, pel(e el oy, 6,)
m=0 =0
@
- } a;nc Yo Dez(c)aeél)(c,fl) (67}
m=0
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(4] -]
scat n 2y > o trans n, . 1)
} a_ e Cem(c)Reé ) {e,gy) - } a c, Dém(cliRe; {c1.§y)
M= (J i D
oc
irnc n 1.
- S A" e pel(eyrelt (e ¢,) (68)

n=0

These equations must bhe satisfied for all n, as must a siwilar family of
equations for the odd elliptic harmonic~ Once such a sclution has been
persormed, the KCS is still given b, eqs. (46) - (05). We have noi yet
programmed this solution, ®hut _certainly have all the necessary bits aid
pieces of Mathieu programs on tue shelf, and coulé quickly assemble tiem.

The two-medium elliptic cylinder problem is a fairly sctraightforward
extension of eqs. (67) and (68). Unlike Bessel functions of the second
kind, radial Mathleu functions of the second kind do not gc to infinity at
u = 0. However, they do have both nonzero values and nonzero derivativ-s
there. This weans elliptic-cylinder harmonics with radial Mathkieu functions
of the second kind have either a sharp ri¢ge or a step discontinuity on the
tine connecting the coerdinate system foci., <Ccnsequently, their appearance
itz forbidden in the case of scattering from U uniform single-medium elliptic

cylinder. Such 1is not the case, however, for the outer medium in the two-
medium case,

Subject tu this undergtanding, th: elliptical-cylinder harmonic coeffi-
cients for the two-medium cyli~der cbey

aterfl (1 ter (2} 2
§ (a;L er(l) YQRA&L)(cz,é‘) + a;“ er(2; sze; Y(cg.€4)) Deg<c,>
m~C

-
ianer ( . (1
s } ’.’,mme th{&m )(C) ,{1) Dei(cl) (69)
m=C
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Z ( 0dter(l’ Ca n(‘l) (cglfi) + 80uter(2)C2Reé‘2)'(cz )61))DGE(C2)
=
- } aliner c,ne;”'(cl,e,)ne;(cl) (79)
=0

E (al%® yore{ (c,8,) + a5%2° y el (c,£,)) Del(e)
w=0
- } (@2t eT D)y re (e, 6,) + 2290 (D) y e (D (c, 6,)) Delltey) (1)

m=0

inc )’ t (33’ .
} (amnc c Reé ) (c,é,) + a:ca < Rem / {c,€,)) De;(c)
m={

©

- } (a:luter(l) CQRQ;I'\'(C;;.Q) + a;ut:er(Z) CZRel(n2)'(c2’£2)) De;(cz) (72)
w=Q

The odd elliptic-cylinder harmonic coefficients chey a similar equation
family.

If the inrer region is a perfect conductor, we need only be concerned
with the wvanishing of the total tangential electric field at its surface.

Thus. in that case, we can ignore eq. {69) which pertains to continuity of

inner
Hz' Murenver, we know that a

perfect conducter. This has tle PFfect of decoupling the elliptic harmonics
from each other at the inner interface; eq. (79) reduces to

will vanish if the inner material is a
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Vre{l)’ (c;,80) + 2245 g (e, 61y = 0 (73)

Equations (71) and (72) do not simplify.

The probler of a perfectly conducting ellipse or strip confocaily
coated by a dielectrie 1is probably by far the closest replication of a
stealth wing vwhich. there 1s any chance of solving canonically. As such,
this problem is cf greac impurtance in testing out numerical codes for RCS

reduction.
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SUMMARY

. In this report, we have presented canonical soluticns for 2D TM
§§ electromagnetic scattering by lossy, layered circular cylinders; thin
dielectric strips; thir perfectly conducting strips; and lossless, confo-
cally layered elliptic cylinders.

s

These canonical solutions have been wused to check vut a TCFD code

b

designed to give the monostatic and bistatic RCS of a generalized cylinder.

(The TDFD result undergoes a Fourier and a near-field to far-field transfor-

N
Sy

&

mation before yielding an RCS which can be checked against the canonical
results,)

s

The TD"D code can handle cylinders containing abrupt electrical discon-

tinuities, including conducting or resistive cards, anisotropy in the plane

R

of the cylinder, and frequency dependence in ¢, p and o.

The only major limitation we have found on the TDFD code is that about
16 cells are required to resolve the shortest wavelength of interest. Also,

i

about 80 cells must be interrosed between the scatterer and the outer bound-

MR LR
TS

ary to isolate the reactive f£field of the scatterer from outer boundary
effects.

ey

o,

LI
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APPENDIX 1

TIME-DOMAIN TREATMENT OF MAXWELL'S EQUATIONS
IN FREQUENCY DEPENDENT MEDIA

Introduction

Consider a medium with anisotropic, frequency-dependent electrical
rcoperties, The electrical response of such a material may be fairly
generally described by

Rl
s

a5

Vx H=J(t) + () (L

iy
ol

where gf(t) is a forced current and

T
‘w"‘.‘id“ﬁft:‘f

/

: t
I I(t) = 34" E(t) + & * DE(®) + | K(e-t') * DE(e')de’ )
.
)
3 :
i with D indicating the time-derivative operator. In this formulation, g,,

£, and K{t-t') are second-rank tensors.

e |

The frequency-domain form of eq. (2) is

i

1

4

ait

»
ud

m»

J{w)} = {Zo + lwg o+ iw j:e-iwug(u)du] * E(w) (3)

&

[ $32

Separation of eq. (3) into real and imaginary parts gives representations
for the frequency-dependent conductivity and permittivity tensors,

e

-
by

z(w) = gg + Re[iwf:e.iwug(u)du] (4)
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ew) = ¢+ Re[fje’iwug(u)du] (5)

Longmire and Longley/ have considered the scalar version of this for-

mulation for the special case when K(u) can be expressed as an exponential

series,
M
—ﬁmu
K(u) = ae (6)
m=1

For this sicuation, eq. (2) may be rewritten

M
J(t) = 0E(t) + € DE(t) +} el (€ )
ML
with
-8 tet Bt
J(t)=e T f DE(t')e ™ at’ (8)

-

Equation (8) is equivalent to the differential equation

DJ (t) = DE(t) - p J (t) (9}

Longmire and Longlev assuned that materials could be represented by the
exponential series of eq. (6) with one term for each decade of frequency

over the spectrum of interest. ‘ihis is equivalent to doing « Prony expan-

sion of K(u) [or o(w) and e(w)] wizh “he poles forced to be spaced at
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mHm,

(10)

While this assumption has been claimed to be reasonably accurate for wet
soil, it would seem generally more correct to determine the poles from a
Prony anzl,.is of the medium’s measured frequency-dependent characteristics.
This 1is especially likely tc be true if the material exhitits rapid varia-

tion in ¢ and € with frequency.

State Theory Applications
Let us first assume the Prony analysis reveals no complex-conjugate

pole pairs. In general, the a will be second rank tensors, but the ﬂm will

only be scalars. Then for every pole, each component of gm will obey
DE

g -y By =9 m-1-M i=1-3 (11)

Additionally, the tensor form 2f eq. (7) give.

M
-— - - L
ewijDEj + °°ijEj + Z—lamij Jnlj Jj i3 1 3 (125
where
Jj - (VxH- .lf)j (13)

Equations (l1) and (12) constitute a set of 3(M+l) coupled first order
differential equations.
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If anisotropy and frequency dependence were not present, the usual

method of numerical solution would be explicit time-domain finite

differencing. In this method, E and H evaluation points alternate bnth
spatially and temporally using a well-tested leapfrog arrangement.s-lo 1n
this arrangement, mno two equations are coupled, and En+1/2

< (1,3,K) means Ex

evaluated at ((I + 1/2)AX, JAY, KAZ, (n + 1/2)At).

However, the present system of equations requires the three Ej's and 3M

ij’s all to be evaluated simultaneously. While this cannot be done using

conventional time-domain finite differencing, state theory does indicate an

appropriate generalization of time-domain finite differencing.

First, let us consider the case where anisotropy, but not frequency

dependence, is present,

(e,] DIE] + [oo][E] = (J] (14)

This matrix differential equation has a homogeneous solution

“le ] M oolt
[E], - e [A) (15

and a particular solution

1

[E], = [oe] "[J) (16)

giving a general solution

-le 1 oole 1
[E] - e [(a] + {oo] 7 191 an
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The constant vector [A] may be evaluated at (n - 1/2)At:
(B1™H2 = [A] + [00]7 M (31" (18)

This gives the new E-field vector in terms of the old,

-1 .
n+l/2 _ e'[em] [UO]At[E]n-l/z N [ ~legl

[E] T )

Similar exponential matrix techniques have been reported for time-
domain solution of generalized multi-conducto:r transmission lines.11 In the
previous work, one may see how to evaluate eq, (19) if [o,] is singular or
if [ew]-l[oo]At has arbitrarily large elements. Basically, matrices are

exponentiated using the power-series representation of an exponential.

If frequency dependence is present, the [E] vector of egqs. (14) - (19)
becomes replaced by

E
[B] » [I,]| = [E’] (20)

.

The [e_] matrix becomes

[e,] +[e, 0 0] = [e'] (21)
I -1 1
I -1 1
and the [o,] matrix becomes
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[oo] = [go a Tt gy |=le') (22)
9 BT 0
_'9' 9. -ﬁM}'_

Lastly, the forcing vector becomes

(=]
]

—

(e

(7] - (23)

o

Then the matrix equation for simultaneous advancement of E and the im is
ntl/2  -[e'] Yo']At,., n-1/2 ( -[e'l'l[a']Ac] -1, n
[E'] ~-e (E'] + UI] - e (o] “[37] (24)

In the past, time-domain finite differencing has not often considered
anisotropy. Frequency-dependent effects have been included by using the old
Jn°1/2 to find the new §n+1/2‘ (This decouples E from the gm‘in eq. (12).)

I
Then the new §n+1/2 have been used to find the new g$+1/2 from eq. (11).

Treatment of Complex Poles
If Prony analysis of the material’s frequency dependence reveals com-

plex pole pairs, a more general treatment becomes necessary. In this case,
K(u) will contain terms of the form
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- ﬁmu
R(u) = Emsin(vmu + ¢m)e
-ﬁmu . 'ﬁmu
- Emcos¢msin1mue + Em sxn¢mcosymue (25)

B X R S e

The im(t) of eq. (8) now becomes

it

[“ogce: | =Bpl-t)
lm(t) = | DE(t )(cos¢m§1n1m(t-t e

-0

KR &3

-8 (t-t")

m '
+ sin¢mcosym(t-t')e ydt
by
- gmc(t)cos¢m + g_ms(t)sin¢m (26)

where J and J are the parts of J associated with cos¢ and sing_,
“mc s “m m m

respectively:
g
t By (t-t')
® 1 () = J:QD_E,(t')sin'ym(t-t')e dt (27)
5 ]
t -B_(t-t')
& 3 (t) = f DE(t')cosy (t-t')e de’ (28)

-0

g

Differentiation of J (t) and J__(t) yields
“mec “ms

5

§ DI (&) = I (£) + 7.1 (%) (29)
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DI () = DE(t) - B I (£) + v I () (30)

These equations can be solved for gmc(t) and ims(t) using Heavyside algebra:

[(D+B)2 + 2] & (t) = v DE(t) (31)
((D+ )% +42] I (t) = (D + B )DE(t) , (32)

Thus, gm(t) obeys the differential equation

[(D+ 8% + 92] I () = [sing (D + B ) + cosd_v_]DE(E) (33)

in principle, equations 1like (33) could be added to the set of equa-
tions given by (11) and (12), and the entire ensemble solved by state
theory. This approach, however, requires treatment of second-order matrix
differential equations of the form

[A]D?[E] + [B]D[E] + [C][E] = [F] (34)

The homogeneous solution of this equations includes square roots and complex
exponents of matrices; it is much more complicated than eqs. (14) - (19).
(To the best of our knowledge, exponential differencing has never been

applied even to scalar second-order differential equations.)

Consequently, when Prony analysis of the material data yields complex

pole pairs, our present strategy is to fall back to the old technique for

n+l/2 n-1/2

dealing with real poles: First find E using the old lm Then use
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new

Jn+1/2

~m

n+l/2

3

and the finite-difference form of eq. (33) to find tha nrew
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