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Facilitation of Scientific Concept Learning

by Interpretation Procedures and Diagnosis

Peter Labudde, Frederick Relf, and Lisa Quinn

University of California, Berkeley, California 94720

Abstract

Students' difficulties in learning and applying scientific concepts are often caused by knowledge that is

fragmented and Incorrectly Interpreted. To remedy such difficulties, we propose an explicit instructional

method that teaches a coherent procedure for interpreting a scientific concept, and that Induces students

to use this procedure for explicitly diagnosing and correcting defects In their preexisting knowledge. To

test this method, the concept -acceleration" was taught to individual students under conditions where

they could be observed in detail and tape-recorded during the entire learning process. As a result of such

instruction, students revised their highly deficient previous knowledge about acceleration and were able

to Interpret this concept almost flawlessly across a diverse set of problems.
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Introduction

The learning of scientific concepts, particularly in the physical sciences, presents severe difficulties for
many students. Recent research indicates that such difficulties are due to: (a) a knowledge base that Is
fragmented, incoherent, and prone to misconceptions (diSessa, in press; Green, McClosky & Caramazza
1985; Halloun & Hestenes 1985a, 1985b; Mcnqrmott 1984; Reif 1986); (b) unsystematic or inefficient

search and retrieval processes (Larkin 1981; Larkin, McDermott, Simon & Simon 1980); (c) an inability to
apply knowledge appropriately after it has been retrieved (Reif 1986); and (d) failure to distinguish
between concepts and reasoning modes used in science versus those used In everyday life (diSessa
1985; Reif 1986; Solomon 1984).

Common ways of teaching scientific concepts contribute to students' conceptual difficulties. First, a
scientific concept is usually Introduced by verbal or mathematical definitions that describe the concept by
some characterizing features, but do not specify the actual procedures necessary to identify or to
construct the concept. Hence students must infer such procedural knowledge themselves and are often
left with interpretation processes that are inadequate or faulty. Second, concepts are often introduced
without making explicit connections with students' previous conceptions, and without having students
adequately compare and contrast unfamiliar scientific concepts with preexisting notions. Yet, an adequate
comparison of new and preexisting knowledge appears to be necessary for restructuring knowledge to
achieve the integration and "accommodation needed for effective learning (Plaget 1970).

The preceding student difficulties and Inadequacies of current teaching methods suggest the
following Instructional principles for teaching scientific concepts more effectively: (a) Procedural
knowledge for Interpreting a scientific concept should be explicitly taught together with descriptive
knowledge about the concept. (b) New knowledge should be taught in a coherent form so that it can be
easily remembered, retrieved, and contrasted with preexisting fragmented knowledge. (c) Instruction
should be explicit to facilitate knowledge integration, as well as to minimize student errors caused by
Incorrect inductions from vague and incomplete information. (d) New knowledge should be explicitly
contrasted with prior knowledge In order to remove inconsistencies, to ensure the coherence of the
student's new knowledge, and to minimize interference from conflicting prior knowledge.

These Instructional principles can be viewed as theoretical hypotheses that can be translated into

specific methods for teaching scientific concepts. By Implementing these methods under controlled
conditions, one can then assess the efficacy of these methods and of the underlying principles upon
which they are based.

The remainder of this paper discusses a detailed investigation where these instructional principles
were tested by Implementing them to teach the physics concept "acceleration. The Instruction involved
primarily teaching an explicit procedure specifying the concept, and then providing practice whereby
students applied this procedure and compared the results with their previous knowledge. We
hypothesized that such instruction would lead to reliably accurate concept interpretations by the
students, would minimize the effects of Interference due to their prior notions, and would enable them to
detect, to diagnose, and to correct concept-interpretation errors committed by themselves or by others.

In the following pages we first outline the procedural specification of the concept acceleration. Next
we describe the experimental methods for investigating the teaching of this concept according to our
proposed principles. Then we discuss the resulting data regarding students' knowledge and
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performance, both before the Instructional intervention and afterwards. Finally, we summarize the main
conclusions and suggest some questions worthy of further investigation.

Acceleration and Its Procedural Specification

* As subject matter for our Investigation, we chose the concept of acceleration. This concept Is not only
very Important In physics and typical of concepts In other quantitative sciences, but Is also difficult to learn
(Trowbridge & McDermott 1981; Halloun & Hestenies 1985b).

The descriptive definition of acceleration can be found summarized In any textbook by the formula a -
dv/dt, where a Is the acceleration vector, v the velocity vector, and t the time. A less precise descriptive
definition Is provided by the corresponding verbal statement that "acceleration Is the rate of change of
velocity with time.

The procedural specification of acceleration is outlined and Illustrated In Figure 1 in the form
presented to students in our experiment. It Includes the following four major steps: (1) Identify the
velocity v o1 the particle at the time t ot Interest. (2) Identify its velocity V' at a slightly later time r. (3) Find
the Change of velocity AV = v'-V by vector Subtraction of the two velocities. (4) Divide Av by the elapsed
time At to find the ratio AvIAt The result Is called the *acceleratlon" a, I the time interval At is sufficiently
small. [A more detailed description of the procedural specification, including the limiting process when At
approaches zero, can be found in Reif (1985).]

Insert Figure 1 about here

Since this procedure specifies explicitly how the acceleration can be determined In all cases, it
provides highly coherent knowledge about this concept. The implementation of the steps In this
procedure presupposes, however, adequate prerequisite knowledge about the descriptive definition of
acceleration, as well as about velocity, vectors, and vector subtraction.

Experimental Method

Overview
Six students, enrolled In an introductory physics course, were Individually questioned and taught,

while being tape-recorded In two sessions, each lasting about 45 minutes (see Figure 2). The first
session began with a pretest which assessed how students Interpreted the concept acceleration before
Instruction, i.e., what kind of knowledge they invoked, how they applied it, and what errors they made.
The second part of this session was then used to teach studei us the procedural specification of
acceleration.

Insert Figure 2 about here

The second session consisted of three distinct phases. The first was designed to assess the extent
to which appVction of the procedural specification helped students to detect and diagnose their own



(1) OriLginl yL.t (v)

Draw the vector v at the time of interest. V

t

(2) Now yeloft (v') v
Draw the vector v' at a slightly later time.

t te

(3) Changae of elocity (AV) V°
Draw a separate vector diagram so that the V
arrow tails of v and v' coincide. Construct
the vector Av which is the vector drawn from t AV
the head of the original velocity v to the
head of the new velocity v'.

(4) ration (a) V'
Divide the vector Av by At to obtain a new .
vector Av/At having the same direction as ,v
(but different magnitude and units). If the
time interval At Is sufficiently small, this vector
Is the acceleration a. Draw the vector a at
the time of Interest. a

Figure 1. Procedural specification of acceleration.
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Pretest
C Finding acceleration (by any method)

cn Teaching of procedural specification

Diagnosis of own mistakes
(by procedural specification)

CMJ

C Diagnosis of others' mistakes
0

W (by procedural specification)

Posttest
Finding acceleration and diagnosing others' mistakes
(by any method)

Figure 2. Experimental design.
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previous mistakes In the pretest. The second phase provided practice in detecting and diagnosing
others' concept-interpretation mistakes. The third phase was a posttest aiming to assess students' final
knowledge, concept-interpretation processes, and abilities to detect and diagnose mistakes in concept
Interpretation. The following sections describe each experimental phase In greater detail.

Pretest
The pretest, lasting about 10-15 minutes, used a questionnaire consisting of five questions. In each

question a specific situation was presented, using both prose and a diagram, and was followed by two
subquestions. The first of these asked whether the acceleration was zero or not; the second asked the
student to draw an arrow Indicating the direction of acceleration (If it was not zero). The five problems were
designed to present, roughly In order of Increasing complexity, cases of motion along the following kinds
of paths: straight line with Increasing speed, curved path with constant speed, straight line with
decreasing speed, curved path with increasing speed, and straight path with instantaneously zero speed.
The questions differed considerably in their surface structures: a car on a road (in two questions), a ball
tossed vertically upward. a swinging pendulum, a spring oscillating vertically up and down. A detailed
description ofrall questions can be found In the Appendix (questions 1.1-1.5).

The students worked through the questionnaire twice during the pretest. The first pass was intended
to elucidate a student's spontaneous thinking with minimal Intrusion by the experimenter (who intervened
only if the student misunderstood a given situation or forgot to think aloud By contrast, the second pass
was intended to probe the student's underlying reasoning more deeply. To this end, the experimenter
asked for further explanations, but did not comment on the merit of the student's responses.

Teaching of procedural specification
The teaching phase, lasting 20-25 minutes, used a specially designed summary sheet. This sheet

first stated a brief descriptive definition of acceleration and then outlined the procedural specification of
this concept. Figure 1 indicates how the four steps of the procedural specification were presented and
exempliie In the case of a particle mnoving with constant speed along a curved path.

The summary sheet was used as the basis for the entire instruction. The experimenter first asked the
student to read through each step of the specification procedure. Then he discussed each step briefly to
ensure the student's comprehension. For example, after the first step, he asked the student to explain
the difference between speed and velocity, and also to describe the significance of the length of the
arrow representing the velocity vector. If the student was unable to give a correct answer, the
experimenter would explain. Furthermore, the experimenter pointed out how each step of the procedure
was related to the descriptive definition of the acceleration. Finally, the experimenter answered any
question asked by the student, but avoided making comments beyond the scope of the question.

A second sheet was designed to provide structured practice in applying the procedural specification.
This practice she used prose descriptions and diagrams to present examples of the following types of
situationis: a particle moving with Increasing speed along a straight tine, a particle moving with decreasing
speed along a straight line, and a particle moving with constant speed along an ellipse. Students were
asked to answer the questions by Implementing the procedural specification step-by-step, using the
given diagram of the sistlon. Nf a student applied the procedure Improperly, the experimenter corrected
the student I hints alone proved to be Inieffective.
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Diagnosis and correction ot own mistakes
A break of 2-8 days occurred between the teaching of the procedure and this next phase of the

experiment at the beginning of the second session. (The length of the break appeared to have no
differential effects across students.) To refresh a student's memory after the break, he or she was first
given a few minutes to review the previous Instructional materials. These materials then remained
accessible to the student for the entire duration (20-25 minutes) of this phase of the experiment.

After the review of the Instructional materials, the student was shown the original pretest with his or
her previous answers. For each question on this test, the student was then asked to find the correct
answer by using the procedural specification of acceleration. (Any mistakes in the student's
Implementation of the procedure were corrected by the experimenter, once again only if hints proved to
be ineffective.) Next the student was requested to determine if there was a discrepancy between the
answer obtained by the procedural specification and the student's own previous answer on the pretest. If
so, the student was asked to perform a diagnosis by identifying the reasons responsible for his or her
previous mistakes. (The experimenter did not intervene during this diagnosis task.) Finally, the student
was asked to formrulate any warnings that might help prevent similar mistakes in the future.

A minor variation In the experiment, tried with some of the students, involved giving the student a
special *checklist" containing brief descriptions of six common mistakes about acceleration (e.g.
confusing the lay and scientific meaning of acceleration, confusing velocity and acceleration, or confusing
the actual acceleration with that due to gravity alone). The purpose of this list was to help students Identify
underlying reasons for concept-interpretation mistakes. This checklist was given to 4 out of the 6
students, with only minimal special Instruction or explanations. The students were merely told that the
checklist mentioned some common mistakes Involving acceleration, and that it might be helpful in
diagniosingerrors detected by the students.

Diagnosis and correction of others' mistakes
This phase of the experiment, lasting only 5-10 minutes, aimed to give students practice in detecting,

diagnosing, and correcting another person's concept-interpretation mistakes. Such practice served as
preparation for similar diagnostic tasks used in the final posttest.

The questionnaire used In this phase of the experiment contained only two questions (detailed in the
Appendix, questions 2.1 and 2.2). Each of these questions was similar to those used in the pretest, I.e., it
described a specific situation and then asked for the magnitude of the acceleration (whether zero or not)
and Its direction. However, each question Included also an answer allegedly given by some other person.
(These whypotheicar answers were actually designed to reflect common misconceptions and to test the
students' diagnostic capabilities.) The hypothetical answers included with these two questions were both
wrong.

For each of these questions the student was asked to use the procedural specification to do the
following: (a) to determine whether the given answer was correct or wrong; (b) If wrong, to Identify
probable reasons accounting for the mistake; and (c) to give the correct answer.

Any mistakes In Implementing the procedural specification were again corrected by the experimenter
I hints alone were Insufficient. All students were allowed to refer to the Instructional materials from the
previus teaching sequence. The four students, who had access to the checklist In the previous phase,
could also use R during the present phase.
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Posttest
The posttest, lasting 1 0-15 minutes, contained five questions Identical in structure to the two

questions of the previous phase (see the Appendix, questions 3.1-3.5). The given hypothetical answers
were wrong In 4 out of the 5 questions, again in ways reflecting common mistakes or misconceptions.
Only the answer given for the second question was correct

In all other respects the questions in this posttest were fundamentally similar to those In the pretest. In
particular, the questions dealt with the same five types of cases: three straight-line cases with increasing,
decreasing, and Instantaneously zero speed, respectively; and two curved-path cases with constant and
changing speed, respectively. However, the same surface structures In the pretest corresponded to
different cases in the posttest. For example, in the pretest the ball tossed upward Illustrated the case of
decreasing speed along a straight line; but in the posttest the motion of this ball illustrated the case of
Instantaneously zero speed'. The posttest differed from the pretest primarily in its inclusion of given
hypothetical answers.

All students were requested to answer the questions by using whatever method was simplest for
them, ILe. with or without the procedural specification. Instructional materials, checklist, and previous
questionnaires were Wg accessible during the posttest. The experimenter intervened only to request
clarification of an Incomp~lete explanation.

Subjects and protocol analysis
The six subjects used in the experiment were unpaid volunteers enrolled as students in the first

semester of an introductory calculus-based physics course at the University of California at Berkeley. This
course, Intended for physical scientists and engineers, devotes its first semester to the study of
mechanics. The experiment was conducted in the second half of the semester, i.e. several weeks after
the students had learned and repeatedly applied the acceleration concept in the course. Grades received
on the midterm examination indicated that four of the students ranked near the middle of the class, one in
the top quarter, and one in the bottom quarter.

Data were collected in sessions where individual students answered the questionnaires, or were
taught the procedural interpretation, while being asked to talk aloud about their thinking. Except in the
teaching phase, the experimenter Intervened minimally. All sessions were audio-recorded and afterwards
transcribed into protocols. To maximize objectivity and ease of analysis, protocols were encoded
according to an explicit standardized procedure, as recommended by Ericsson and Simon (1984). To
minimize subjective Interpretations, two of us separately encoded and interpreted half of the protocols.
Since a comparison of these encodings and analyses showed no major differences, the other half of the
protocols were encoded by only one person. Our final analysis of thie data involved group discussions
about the interpretation of the individual protocols and of the aggregate data.

Students' Initial State: Data and Discussion

Accuracy of answers
Across students, only 40% of the pretest questions were answered completely correctly. Since each

of the 6 students answered 5 questions, there were altogether 30 answers. Of these, 22 reflected a
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correct specification of the magnitude of acceleration (whether zero or not), and only 12 reflected a correct
specification of the direction of acceleration.

Nearly all students had difficulties with the same three questions. In question 1.2 (car moving with
constant speed along a curve), three students answered incorrectly "zero acceleration" and one claimed
wrongly that the acceleration, while non-zero, was directed along the velocity. In question 1.4 (horizontal
pendulum) all students answered "nion-zero acceleration", but Indicated a wrong direction: four students
answered "straight down", one "toward the center", and one "curved along the arc". In question 1.5
(oscillating spring at the iowest point), five students claimed Incorrectly that the acceleration Is zero; the
one student who claimed otherwise was unable to Identify its direction.

Note that only 40% of students' answers were correct, although all our questions required only
qualitative answers, and although all students had used acceleration for several weeks in their current
physics class. In particular, most students were unable to apply the acceleration concept properly in
situations deviating from the standard cases ordinarily discussed in physics courses (cases dealing with
motion along a straight line or with circular motion with constant speed). Students had greater difficulty in
Identifying the direction of the acceleration than in deciding whether its magnitude was zero or not.
Although the students' poor performance is disillusioning, it is consistent with data reported by other
Investigators (Halioun & Hestenes 1 985b; Trowbridge & McDermott 1981).

Students' conceptual knowledge
Through detailed examination of students' verbal statements, we made inferences about the nature

of students! conceptual knowledge about acceleration. For example, from a student's statement that *the
car Is moving with increasing speed, so it has an acceleration", we inferred the underlying knowledge that
"if the speed Is increasing, the acceleration is non-zero". Similarly, from the statement "the particle is
moving with constant speed along a circle in a counterclockwise sense, so its acceleration is towards the
center", we inferred the knowledge that "if an object moves with constant speed along a circle, the
acceleration Is directed toward the center".

Students appear to retrieve such "knowledge elements" directly from memory and then apply them
with little additional processing. These knowledge elements have generality transcending specific
situations or surface features (e.g., they deal with objects moving along certain kinds of paths, rather than
with cars moving along roads). However, the extent of their generality can vary and is typically much less
than that of a general definition of the concept.

The underlying knowledge elements reflected by students' statements can be classified as being
either sound or deficient. "Sound elements" are those which are not only corr ect according to physics,
but which were also applied properly and with confidence. "Deficient elements" can be subdivided into
three types: those specifying Incorrect physics, those which were Incorrectly appled, and those about
which the student was uncertain. (Such deficient elements must be remedied by appropriate teaching
Interventions.)

Across students, we identified a set of 27 distinct knowledge elements, of which 7 were sound and
20 deficient. Altogether, we could Identify a total of 21 sound elements and 33 deficient elements,
Including nommon elements used by several students. Each student invoked, on average, about 10
different knowledge elements (ranging from 8 to 15). At least half of these were deficient (80% of them
were deficient In the case of one student). Of the 33 deficient knowledge elements, 20 were used
directly as the basis for an answer. The other 13 were Invoked, but then not used.
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Examples of sound knowledge elements include the following: "if the speed is increasing or
decreasing, the acceleration is non-zero" (invoked by all students); "if the speed is increasing along a
straight line, the acceleration is directed along the velocity" (invoked by four students).

Examples of deficient knowledge elements include the following: "if the velocity is zero, the
acceleration is zero" (5 students); "if an object moves with constant speed, the acceleration is zero" (2
students). Some of the deficient knowledge elements appear to derive from the everyday notion of
acceleration which describes merely increases of speed. Other deficient knowledge elements, although
correct, either could not be interpreted in particular situations, or could not be related to a more general
definition of acceleration, or were applied without heeding restrictive applicability conditions. The
following three quotes illustrate some of these characteristics of deficient knowledge elements.

Quote 1 (Student 4)
(Question 1.5, spring at lowest point: Knowledge element with wrong physics content.)
"Since the speed is instantaneously zero at the lowest point A, then the acceleration is zero."

Quote 2 (Student 6)
(Question 1.4, horizontal pendulum: Wrong application of knowledge element "if gravity is acting, then

the acceleration is downward".)
"Since, hm, the pendulum is released from A (the highest point of the arc) and going downward in, hm,

this, hm, circular motion, it's going, well there's a gravitational pull, so it's going down, and gravitation itself
is some kind of acceleration and therefore, hm, the acceleration of the pendulum bob is not zero and it's
going downward."

Quote 3 (Student 5)
(Question 1.2, car moving with constant speed along a curve: Uncertainty about knowledge element "if

an object Moves with constant speed along a curve, the acceleration is directed inward toward the center.)

"The car, since it is at a constant speed, it doesn't have an acceleration, a linear acceleration, but
because it's going around a curve, it has centripetal acceleration. And so the acceleration would not be

zero, since it is accelerated. And, hm. the acceleration is inward towards the inside of the curve, hm,

because ft's counteracting ... The force that causes it accelerating inward is counteracting, hm, momentum,
I think, that Is moving the car towards the outside of the curve. I think that's why. But I remember it pointing

insid, from class."

Reasoning processes
Students used a similar pattern of reasoning in approaching all questions. After reading a question,

they usually represented the problem by summarizing its salient features. Then they tried to retrieve an
appropriate knowledge element that would match the given situation. Finally, they directly applied this
element, with little additional processing, to determine their answer.

In some cases a student perceived inconsistencies between the different knowledge elements
retrieved to answer a particular question. Some inconsistencies were due to contradictions between
everyday experience and knowledge acquired in school. For example, in the case of motion with constant
speed along a curve, everyday knowledge suggested zero acceleration due to constant speed, but
school knowledge suggested a non-zero acceleration due to a changing direction of velocity. Other
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perceived Inconsistencies resulted from apparent contradictions between different knowledge elements
acquired in physics courses. For example, in the case of the horizontal pendulum, one knowledge
element about gravity suggested that the acceleration should be directed downward, but a second
knowledge element about circular motion suggested that the acceleration should be directed toward the
center.

Students never resolved their perceived Inconsistencies, but decided on a particular answer fairly
arbitrarily, usually without giving an explicit reason for choosing one knowledge element rather than
another. Indeed, because of the fragmented nature of their knowledge, students appear to lack the
coherent conceptual framework necessary to determine whether a specific knowledge element Is
appropriate or niot. It Is worth noting that students rarely invoked any general definition of acceleration.

Students' Final State: Data and Discussion

The following data and discussion are based on the students' performance after being taught the
procedural specification of acceleration. This performance includes students' diagnoses of their own and
others' mistakes, and their answers to questions on the posttest.

Diagnostic abilities
Detection of discrepnancies. Students reliably detected the discrepancies between two answers -

either between the correct answer and their own wrong answer In the pretest, or between the correct
answer and the given hypothetical answer in the other questionnaires. Thus students exhibited the
prerequisite skills for diagnosing detected mistakes.

Diagnosis of own mistakes. As mentioned previously, 18 of 30 pretest questions (across all subjects)
led to wrong answers requiring a subsequent diagnosis of mistakes. The explicit reasons and warnings
given by the students Indicate that they diagnosed their own mistakes properly in 15 out of the 18 cases.
ANl students' reasons were judged to be "rear because they were consistent with the students' reasoning
previously exhibited in the pretest. For example, a student provided the following diagnosis of his
previous answer to the question about the horizontal pendulum: *My answer was perpendicular... The
Increasing speed I forgot to taken In (sic) account". Sometimes students cited a reason derived from the
procedural specification of acceleration. For example, In diagnosing answers to the question about the
oscillating spring at the lowest point, several students said that they should have compared two velocities
Instead of focusing merely on the single "zero" velocity. In 3 of the 18 cases, the students' diagnoses
were wrong. ILe., they gave reasons that did not reflect their previous reasoning In the pretest. (All of
these *artfficlaI" reasons can be attributed to thoughtless use of the checklist.)

The diagnostic reasons given by students were described at aj, appropriate level of generality. They
were neither too vaguely general (e.g., no student merely said *1 didn't understand the concept
acceleration"), nor were they too situation-specific (e.g., no student talked merely about "the acceleration
of a horizontal pendulum", but rather spoke about *acceleration In a curved path").

Qiagnouls of others' mistakes. Since the 6 students had altogether to diagnose 6 given hypothetical
wrong answers, there were a total of 36 wrong answers to be diagnosed. Students provided sensible
reasons for 34 of these. In one of the remaining two cases, a student failed to come up with a plausible
reason because the right answer was "so obvious" to him: In the other case, a student felt no need to
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detect or diagnose a mistake because she herself agreed with the given hypothetical wrong answer. All of
the reasons given by the students were plausible, iLe. consistent arguments based on these reasons*1 would lead to the midstakes reflected in the hypothetical answers.

In diagnosing the given hypothetical mistakes, students would commonly attribute to the hypothetical
person the same kinds of mistakes which they themselves had committed on the pretest. Indeed, In 11
out of 13 cases, a student's diagnosis of another person's mistakes matched almost verbatim the reasons
previously cited for the student's own past mistakes. Sometimes students explicitly recognized such
similarities. For example, one student said: 01 made that mistake earlier (laughing). Yeah, that's the same
prolemn ... So, yeah, I can see how they would make that mistake."

Chclit Our checklist, as used in the experiment, was not of much help - and perhaps even
harmful. Of the 4 students who had access to the checklist, only 2 actually used it in the diagnosis of their
own mistakes. Even these subjects, In more than half of the cases, first cited their own reasons for
detected mistakes, and only afterwards tried to match these with the reasons on the checklist. In those
cases where the checklist did cue possible reasons, almost half of these were misleading and did not
reflect the real reasons. By contrast, the four students, who did not use the checklist for diagnosis of their
own mistakes, never mentioned artificial reasons but traced their mistakes to causes consistent with their
previous defective reasoning.

In the diagnosis of hypothetical mistakes, almost no differences could be observed between users
and nonusers of the checklist. The only exception was the previously mentioned case where one
nonuser failed to give a possible reason because he could not Imagine one for so obvious an answer.

Accuracy of answers
Recall that the posttest contained 5 questions fundamentally similar to those on the pretest, except

that each question was accompanied by a given hypothetical answer. (Only 1 of the 5 answers was
correct.) Students were requested to give correct answers to the questions and to suggest reasons for
any mistakes found In the hypothetical answers.

In 95% of the posttest questions, the students correctly determined both the magnitude and
direction of the acceleration. In only one question did one student fagl: In question 3.5 (the ball at the
highest point of the arc) the student answered zero acceleration, since "the ball Is just sitting there In
space for a second". This answer is rooted in a deeper misconception about motion and Is not directly
related to an understanding of the acceleration concept.

Students' conceptual knowledge
Students' knowledge about acceleration, reflected In performance on the posttest, was markedly

different from that exhibited In the pretest. Previously deficient knowledge elements were now Invoked In
revised form. Some "new" knowledge elements, not evident previously, were also Invoked.
Furthermore, there were no Instances In which a knowledge element was Invoked without being actually
used as the basis for an answer. We discuss these observations In greater detal below.

Invocation of revised knowledne elaents. The revision of an initially deficient knowledge element
can be traced across three steps: Initial use of the deficient element In the pretest; revision of the element
during application of the procedural specification or during diagnosis; and final use of the revised element
in diagnosin mistakes or In fining the acceleration. The following quotes Illustrate students revisions of
illy deficient knowledge elements.
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Quote 4 (Student 4)

latia &- (See quote 1: Wrong knowledge element 'If the velocity is zero, the acceleration Is zero'.)
iavision. 1 was confusing velocity with acceleration. I thought, since the velocity was zero, the

acceleration should be zero also. But I didn't consider that.... I was just taking in my one velocity, and to
find the acceleration is the change of velocities. So I should have taken two vectors Instead of one.'

Fialum- (The student did not make the same mistake in the similar question 3.5 dealing with a bal at
the highest point. Furthermore, the student gave the following reason accounting for someone else's wrong

answer.) =The answer is wrong: Acceleration Is zero, probably because, since the velocity Is zero, ... he

didn't take into account that the acceleration Is the change of velocity with respect to time.'

Quote 5 (Student 6)

Initialuse (See quote 2: Wrong application of knowledge element 'if gravity Is acting, the acceleration
is downward".)

Revia n. 'From this method (the procedural specification) I understood it should be the other direction
than last time. I guess, I was thinking that, hm, the gravity Is pulling the bob down, and I guess, I didn't

really think about it going in the circular motion.... (Circular motion) produces an acceleration towards the

Inside of the circle. And, but this Is not really directly toward inside because there's also gravitational force,

gravity, so this is, hm, the gravity vector, and this Is the acceler-, well the centripetal one. And as a result it

goes lke this direction, which is what I got from this ... procedural specification."

Fnal use. (Proper performance and correct arguments for all curved paths and all questions involving

gravity.)

Quote 6 (Student 5)

Initla- (See quote 3 reflecting uncertainty about rationale for the Inward direction of acceleration In

a curved path.)
Reviin (After working through an illustration In the summary sheet, the experimenter asked If the

example makes sense.) *Yeah, it makes perfect sense. Yeah, that explains to me, why that goes In. I

didn't realize why it did before." (Continuing to explain why the acceleration Is exactly perpendicular to the

velocity:) 'As this angle (between v and v') becomes smaller and smaller, those two (vectors v and v)

become closer to be parallel and the vector between two parallel lines would be a perpendicular."

Final us. (The revised knowledge element was subsequently used properly four times without any

signs of uncertainty.)

In the pretest, 33 deficient knowledge elements were identified across all students; 20 of these

knowledge elements were actually used to answer questions. As a result of the subsequent diagnosis
tasks, 16 of these 20 deficient knowledge elements were revised (as Indicated by students' verbal

statements) and four were never reinvoked. The remaining 13 deficient knowledge elements were

Invoked In the pretest without actually being used to answer any questions. Of these 13 knowledge
elements, 3 became revised, 9 were never invoked In the posittest, and one was reinvoked as the basis

for a wrong answer. These data suggest that those knowledge elements which had originally been

Invoked without being used as the basis for an answer, were much less likely to become revised than

those elements which had actually been used.
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Emergence of *new" knowledge elements. Some correct new knowledge elements, which had
never appeared In the pretest, were Invoked In the posttest. For example, In the diagnostic tasks three
students Invoked the knowledge element *the acceleration can be determined by comparing two
vectors3 . Three other students invoked the element *net acceleration Is the vector sum of acceleration
along velocity and acceleration perpendicular to velocity", as illustrated by the following quote:

Quote 7 (Student 1)
(During diagnosis task in question 1.4, dealing with the horizontal pendulum:) "Actually it seems that

Ike this is a combination of the ... problem ... (car with constant speed along curve) and the first problem
with the car on the Ilne (with Increasing speed)."

(Further invocation In question 2.1, particle with increasing speed along circle:) 'It does have a linear
component because irs changing in speed; at the same time it has a centripetal acceleration due to the
rotation.'

The data are Insufficient to determine whether such new knowledge elements were acquired as a
result of learning during the instruction, or whether they had already existed without being Invoked In the
pretest. However, the second possibility seems unlikely since students tended to Invoke any and all
possibly relevant knowledge In their attempts to answer the questions in the pretest.

No needless Invocation of knowlede elements In the posttest, unlike In the pretest, no knowledge
elements were Invoked without actually being used. Instead, all Invoked knowledge elements were
correct and served a specific purpose: either to determine the correct acceleration (in 8 out of 30
questions), or to diagnose a given hypothetical wrong answer (in 22 out of 24 questions).

Reasoning processes
Students answered each poettest question In the following sequence: They first figured out the right

answer (i.e., the correct acceleration), then determined I the given hypothetical answer was correct or
wrong, and afterwards gave probable masons accounting for detected mistakes in the hypothetical
answer.

To determine the correct answer, a student used one of the following three approaches, depending
on available knowledge elements and on his or her confidence In them. (a) If a student could retrieve a
readly available knowledge element which matched the given situation and about which he or she felt
certain, the student merely plipled this knowledge element as the sole basis for the answer (in 8 out of
the 30 questio answered by the students). (b) If a student had a knowledge element that matched the
given situation but about which he or she felt uncertain, the student applied t tentatively and then
checked the resulting answer by using the procedural specification (in 4 out of the 30 questions). (c) In all
other cas t student used the procedural specification as the sole basis for the answer (in 18 out of the
30 questions).

Each student applied the pmcedural specification In at least three of the five questions of the
pouell-. indeed, two skt usedft for g questions. AN students used the procedural specification to
enwer Ie two difficult pottest estions (3.3, changing speed on a circle; 3.5, Instantaneously zero
speed) which were sirAr to those which had been answered Incorrectly by all students in the pretest

When slenis usd the procedual specllica, they did so property and obtained correct answers
-aough they did not always Implement steps explicitly and resorted to some shortcuts. For

..... .. . . :1
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example, students often determined the change of velocity without explicitly sketching the vector diagram
specified in the third step of the procedure.

Students' combined use of knowledge elements and of a general procedural specification is an
effective and efficient way of interpreting a concept. Indeed, the invocation of special knowledge
elements makes concept Interpretation fast and effortless, while the reliance on a procedural specification
ensures generality and reliable correctness.

Conclusions and Discussion

Teaching the procedural specification of a scientific concept, and requiring students to compare
explicitly such conceptual knowledge with preexisting notions, led to the following results:

(a) The accuracy of answers requiring concept Interpretation increased from 40% In the pretest to
95% in the posttest.

(b) Across students, 80% of the deficient knowledge elements used in the pretest were explicitly
revised and were afterwards invoked only In corrected form. Furthermore, almost no Incorrect or needless
knowledge elements were Invoked in the posttest.

(c) Students' concept-interpretation processes became reliable and efficient, without apparent
interference from prior deficient knowledge or misconceptions. In particular, students Invoked and
Implemented correctly the procedural specification of the concept in order to answer questions about the
concept or to check their answers.

(d) Students diagnosed properly the reasons for about 85% of their own previous mistakes. They
could also give plausible reasons for 95% of others' concept-interpretation mistakes.

These marked Improvements in students' abilities to interpret a difficult scientific concept provide
evidence for the validity of the basic principles underlying our instructional design: the teaching of explicit
concept-Interpretation procedures, the emphasis on the coherence of newly acquired knowledge, and
the explicit comparison of such knowledge with preexisting knowledge.

To Investigate these Instructional principles and their implementation In specific teaching methods,
we focussed our attention on the concept of acceleration. However, these principles and teaching
methods should be applicable to a far broader range of scientific and mathematical concepts. Thus it
would clearly be desirable to investigate such applications to other concepts. In addition, it would be
useful to address the following specific questions left unanswered by our work.

What is the long-term effectiveness of learning a coherent procedural specification of a concept? Our
study Investigated learning outcomes only shortly after the instruclional intervention. But what would be
the results a few weeks later? We surmise that a generally applicable and readily interpretable procedural
concept specification should make students' conceptual knowledge more coherent and stable than the
typical novice's reliance on fragmented knowledge elements. However, even initially coherent
knowledge might become fragmented and unreliable after some lapse of time.

What specific features of our instructional Intervention are necessary and sufficient to lead to reliably
correct interpretations of scientific concepts? Our study emphasized both the teaching of a procedural
concept Interpretation aMd explicit comparisons between new and preexisting knowledge. But to what
extnt am both of these features necessary, and what would be the effectiveness of either one by itself?
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How might our teaching method be Implemented in practical settings? In our Investigation each
student was taught Individually In order to engage the student actively and to provide him or her with
immediate feedback. Such Individualized instruction might be difficult to achieve In ordinary classroom

environments. However, properly programmed computers could be used quite effectively to provide
such instruction. Accordingly, we are planning to use computers for our further work on concept learning
and teaching, both to facilitate the practical implementation of our teaching methods and to achieve better
control of the experimental conditions In our Investigations.
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Appendix: Questions used in the Experiment

Questions In pretest
Pmtob. question (Question 1.41. A pendulum, consisting of a heavy bob attached to a ml Is

released from rest at the point A Indicated in the diagram (Figure 3). As the bob descends with IJreaslin
speed along a circular arc, t passes the point P where the rod is horizontal. (a) What is the acceleration ot
the pendulum bob at the point P? (a) Circle your answer (zero or not zero). (b) If the acceleration is not
zero, Indicate its direction as precisely as possible by an arrow drawn from the point P.

Insert Figure 3 about here

Summaries of the other ouestions. The following paragraphs describe the situations specified in the
four other questions. Each question was accompanied by a diagram and requested the same kinds of
information (parts a and b) as the preceding prototype question.

Question 1.1: A car is traveling with increasing speed along a straight mad to the right.
Question 1.2: A car is traveling with constant speed along a curved road.
Question 1.3: After being thrown vertically up, a ball passes a point P while moving up with

decreasing speed.
Question 1.5: A particle, attached to a spring, oscillates vertically up and down. Its speed is

instantaneously zero at the lowest point A (where the acceleration is to be found).

Other questions (including those In posttest)
Pmtotva quMtion (Question 2-1., The following problem was given to a student: *A particle moves

around a horizontal circle with Iraaaeng speed in a clockwise sense. What is the direction of the
acceleration of the particle when it passes the point P on the circle?* [A diagram illustrated this situation.]
The studenra answer was: "The acceleration at the point P is not zero. Its direction is parallel to the
velocity (see arrow in diagram)." (a) Is the answer correct or wrong? (b) If the answer is wrong, give the
probable reasone accounting for the studenrs mistake. (c) Give the correct answer.

Rumrnade of ther alMsiona- The following paragraphs describe the situations specified in the
other questlons, along with the given hypothetical answers. The structure of all questions was the same
n tIo of the preceding prototype question.
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Question 2.2: Particle attached to oscillating spring; point of interest is where particle moves up with
decreasing speed. Given (wrong) answer: Acceleration is not zero; its direction Is vertically upward.

Question 2.1: A particle moves around a horizontal circle with Increasing speed. Given (wrong)
answer: Acceleration Is not zero; its direction Is along the velocity.

Question 3.1: A particle moves around a horizontal circle with constant speed. Given (wrong) answer:
Acceleration is zero.

Question 3.2: After being given an initial push, a sled travels with decreasing speed up along a
straight hill Inclined relative to the horizontal. Given (correct) answer: Acceleration is not zero; ts direction
is downward along the hill.

Question 3.3: A car is traveling with decreasing speed along a horizontal curved road. Given (wrong)
answer Acceleration is not zero; its direction Is perpendicular to the velocity, pointing Inward.

Question 3.4: Particle attached to oscillating spring; point of interest is when particle Is moving
downward with decreasing speed. Given (wrong) answer. Acceleration is not zero; its direction is vertically
downward.

Question 3.5: Ball thrown vertically up, at highest point of its path. Given (wrong) answer:
Acceleration is zero.

t
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