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A MIXED COMPUTATIONAL ALGORITHM BASED ON THE UPDATED
LAGRANGIAN DESCRIPTION FOR PLANE ELASTIC

CONTACT PROBLEMS

P. R. Heyliger and J. N. Reddy
Department of Engineering Science and Mechanics

Virginia Polytechnic Institute and State Universitty
Blacksburg, Virginia 24061

ABSTRACT

A mixed variational statement and corresponding finite element
model are developed for an arbitrary plane-body undergoing large
deformations (i.e. large displacements, large rotations and small
strains) under external loads using the updated Lagrangian
formulation. The mixed finite element formulation allows the nodal
displacements and stresses to be approximated independently.

Two algorithms are discussed for the analysis of a thin, uniformly
loaded plate with a circular hole in contact with a pin. The different
algorithms consider the separate cases of a rigid pin and a flexible
pin, and use different methods to account for the computational
difficulties that arise from the unknown contact area and the presence
of friction between the pin and the plate. A number of different
contact problems are solved using these two techniques.

A hybrid technique is presented that combines the numerical
technique of the finite element method with the experimental technique
of moire interferometry. The displacements at the pin-hole interface
are measured from physical experiments and are then used as prescribed
boundary conditions in the finite element analysis of the modeled
problem. Results of this algorithm are compared with solutions obtained
from strictly computational algorithms that are independent of the
experimental data. The agreement is found to be very good.
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1. INTRODUCTION

1.1 Motivation

The solution of contact problems generally involves the

determination of the states of displacement, strain, and stress acting

within the domains of two or more separate bodies pressing against one

another under external action. Unlike most problems in solid and

structural mechanics, where the critical regions of interest are usually

far removed from the point of application of the loads, the domain of

interest in contact problems is the area at or near the region of

contact, which is typically the region of load transfer. Contact

stresses are typically among the largest stresses found within the

contacting bodies.

The accurate numerical simulation of the response of two elastic

bodies in contact with one another under external load remains as one of

the most challenging problems of computational solid mechanics due to

several inherent complications. The region or area of contact between

the two bodies is changing continuously during the loading, and is

generally not known a-priori as a function of the applied loading. In

addition, the presence of friction between the two bodies creates

varying regions of stick and slip. Hence this type of problem is highly

nonlinear, and although some exact elasticity solutions exist, these are

typically for problems with simple geometrical shapes and frictional

conditions. Numerical techniques must therefore be used to solve

problems involving more complicated geometries and contact conditions.

The finite element method has long been established as a versatile

and powerful tool of analysis for solid and structural mechanics

problems and has recently been applied to numerous studies of elastic
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contact problems. Mixed finite element models, in which independent

approximations of displacements and stresses are introduced, have also

been developed and applied to problems in solid mechanics, but to a much

lesser extent. Mixed formulations would appear to be especially

applicable to contact problems since the stresses at the contact

boundary are computed as part of the solution rather than part of the

post-computation as practiced in displacement formulations. These

boundary stresses are of extreme importance in computing the regions of

stick and slip and are useful in other steps of the analysis as well.

Among the many different types of contact problems found in

engineering, the problem of a thin, pin-loaded plate has recently

received considerable attention, particularly due to the increasing use

of composite materials in modern structural applications [1-101.

Elasticity solutions and finite element approximations have dominated

the majority of these analyses, most of which have ignored the effects

of the pin by assuming that it is rigid and hence have only modeled and

subsequently analyzed the domain of the plate. A number of other

simplifying assumptions were invoked in many of these analyses,

including the assumptions of a cosinusoidal radial traction on the hole

boundary as well as a constant coefficient of friction acting between

the pin and the plate. In addition, various assumptions were made to

approximate the behavior of the contacting bodies at the contact region,

since this information is required in order to obtain a solution to the

problem, and is in general not known as a function of any of the

parameters of the problem.

A review of the pertinent literature is presented in the following

section to assess the gains made in the past and to indicate the

2



direction of recent research efforts in the analysis of elastic contact

problems. Since most contact algorithms are strictly numerical, a brief

review of geometrically nonlinear analysis is included, particularly

highlighting the lack of studies regarding applications of mixed methods

to nonlinear problems in plane elasticity in general, and contact

problems in particular.

1.2 Literature Review

The displacement finite element model, based on the principle of

minimum total potential energy, has been applied to many problems in

structural engineering and solid mechanics since the early 1960's. The

mathematical and numerical properties of the displacement finite element

method have been firmly established and numerous publications allude to

these advances. The textbooks by Reddy [111, Zienkiewicz [121, and

Bathe (131 contain a host of references regarding both the historical

development of and recent advances in most branches of finite element

analysis.

Although the mathematical properties of mixed finite element

approximations have seen extensive development in recent years [14-161,

the applications of mixed models to actual physical problems have been

relatively few. In linear, two-dimensional elasticity problems, the

mixed finite element equations can be developed using the Hellinger-

Reissner variational principle [171. Dunham and Pister [181 were among

the first to use this principle to introduce mixed finite element

approximations and present numerical results for plane elasticity

problems. They obtained displacements and stresses that were superior

to those obtained using an equivalent displacement model. Pitkaranta

and Sternberg 1191 analyzed several mixed finite element methods for the
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plane elasticity equations on a rectangular domain, while Mirza and

Olsen 1201 presented a more thorough study regarding the convergence and

performance of the mixed finite element method for linear plane

elasticity applications.

Contact problems are generally regarded as being highly nonlinear

for two major reasons. First, the body or bodies under analysis might

undergo large deformations, and hence must be modeled such that the new

geometry and the most recent state of stress in each body are accounted

for in an appropriate manner in the subsequent loading. Second, the

boundary conditions change continuously as a result of the changes in

the contact region with increasing load. The development of the

governing finite element models for the nonlinear response of a solid

body under external load has been developed by numerous investigators

%* i21- 32], but none of these have addressed mixed models for plane

elasticity problems. Horrigmoe and Bergen [331 presented an incremental

mixed variational principle and corresponding finite element model for

solid bodies, but gave no numerical examples or comments on

implementation.

Contact problems have challenged mathematicians and engineers for

over a century. In 1881, Hertz obtained a solution for the problem of

two elastic cylinders in contact with one another [34]. Numerous

attempts have since been made to accurately model the physics of contact

for more complicated problems using, among other methods, finite element

techniques. Due to the inherent nonlinearity of the contact problem,

all of the most successful of these algorithms contain several iterative

procedures to account for the varying regions of contact and of stick

and slip.
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Nearly all investigations of contact problems using the finite

element method have employed the more conventional displacement

formulations. Chan and Tuba [351 used conventional elements and

Iterative procedures to solve several different contact problems. Bathe

and Chaudhary [361 imposed the contact conditions by constructing the

total potential of the nodal contact forces for an element in contact

and adding this term to the original potential energy functional.

Campos, Oden and Kikuchi (37] solved discretized contact problems using

prescribed normal boundary tractions and nonlinear inequalities.

Francavilla and Zienklewicz [381 used the flexibility matrices of two

elastic bodies in frictionless contact along with iterative procedures

to check for penetration. This technique was later modified by Sachdeva

and Ramakrishnan [391 to include the effects of friction. Marks and his

colleagues [40-411 presented several solution techniques for contact

problems using the conjugate gradient technique integrated with the

finite element method for frictionless contact problems. Okamoto and

Nakazawa [421 presented a technique which used three-dimensional

elements and used the magnitude of load causing a change in the contact

status of one node as a load step. Fredrickson (43] used iterative

techniques to account for the contact conditions and also used a

superelement technique to reduce the number of degrees of freedom.

Past studies of contact problems using mixed finite element models

are not nearly as numerous as those using displacement models.

Haslinger and Hlavacek [441 presented a mixed formulation for the

Signorini problem with prescribed normal contact forces but gave no

numerical results. Tseng and Olsen [451 applied the mixed finite
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element method to several plane elasticity contact problems using the

equations of linear elasticity along with an iterative scheme.

The increasing use of composite materials in structural

applications has generated a great deal of interest in the problem

involving a bolt or pin in contact with an elastic plate. Although a

variety of techniques have been used to analyze this problem, most

studies have used either elasticity or finite element solutions to

obtain the states of displacement and stress in the plate [1-101. Most

analyses have neglected the elasticity of the pin by assuming that it is

perfectly rigid [4-91, while others have assumed a cosinusoidal radial

stress acting between the pin and the plate at the points of contact

[1,2,101. The validity of this latter assumption has been demonstrated

experimentally for isotropic plates [31, but was recently shown tu be

incorrect for orthotropic plates by Hyer and Klang [461. Of the

numerical studies of the pin-loaded plate problem, the only analysis

that accounted for the combined effects of nonlinearity, actual boundary

loading, friction, and orthotropy of the plate was developed by

Wilkinson, Rowlands, and Cook [47]. They presented a simple iterative

technique to compute the stresses around the hole of a pin-loaded

orthotropic plate. This method was later modified by Rahman et al.

[481. The results of these two techniques were also verified

experimentally by Wilkinson and Rowlands [491. A review of other

pertinent methods in the displacement finite element analysis of pin

joints is given by Rao [501.

1.3 The Present Study

Despite the gains made in recent years in the understanding of

contact phenomena between solid bodies, the extreme complexity of such
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problems has thwarted the development of a general and effective

computational method of analysis. In particular, mixed finite element

models, which contain stresses as nodal variables and hence would seem

to be particularly suited for the analysis of contact problems, have

seen extremely limited use, particularly in geometrically nonlinear

analysis.

Furthermore, all numerical algorithms, regardless of the

formulation used, are based on several key assumptions and

approximations when performing an analysis on two or more bodies in

contact. Various important quantities, such as the static and dynamic

coefficients of friction, are assumed to be constant as a function of

position and load. Hence it is difficult to isolate the effects of the

different assumptions made in most computational schemes that have been

developed in the past.

The present study will address each of these major difficulties or

limitations and will primarily be directed toward the development of a

computational technique for the analysis of two-dimensional contact

problems. Different strategies developed here will use a mixed updated

Lagrangian formulation as a basis for the analysis. This formulation

has seen little or no use as a tool of analysis for elasticity problems

in the past; however, it would be well suited for the analysis of

contact problems since the displacements and stresses are approximated

independently and each of the respective components appear as nodal

variables. This immediately introduces the primary computational

disadvantage of the mixed model compared to the displacement model in

that there are five degrees of freedom per node for the mixed model

whereas only two degrees of freedom per node in the displacement
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model. However, this disadvantage must be weighed against the positive

aspects of the mixed model. The computed nodal stresses are typically

more accurate for the mixed model and also appear as part of the

solution vector instead of requiring any post computations using the

gradients of the displacements and the stress-strain relations of the

material. This fact is of immediate value in the analysis of contact

problems since the boundary stresses are required to compute the state

of stick or slip at the nodes and also to compute tangential surface

tractions due to friction for a contacting body.

In the purely numerical analysis of contact problems, different

assumptions are made to approximate the behavior of the contacting

bodies at the region of contact. For example, in most analyses, the

material of one of the bodies is allowed to penetrate the domain of the

second contact body and is then pushed back out during a subsequent

portion of the analysis. In addition, the coefficients of friction used

in the analysis are those determined from physical tests of specimens
made of the materials in contact and are nearly always specified to be a

constant throughout the domain for the duration of the analysis. These

are two very basic but major assumptions frequently employed in the

1.g development of numerical schemes used to analyze contact problems.

Although these assumptions are necessary in order to develop a

relatively efficient algorithm, they may have drastic effects on the

A. results of the analysis.

Considering these observations, a new method of analysis will be

presented as a part of the present study that will attempt to eliminate

the effects of some of the approximations made in the analysis of

contact problems This technique involves the combination of an

I R'8



experimental technique, which determines the true state of the

displacements on the contact boundary, with a finite element technique,

which uses the information provided from the experimental technique to

determine the states of displacement and stress within the rest of the

domain under analysis.

The major objectives of the present study are three-fold. The

first objective involves the development of a mixed updated Lagrangian

formulation and corresponding finite element model of the plane

elasticity equations for large deformation analysis. Second, the

formulation will then be modified to develop several numerical

algorithms for the analysis of two-dimensional contact problems.

Finally, the mixed finite element model will be combined with the

experimental technique of moire interferometry to form a hybrid method

of analysis for the contact problem of a pin-loaded plate. The goal of

this final task is quite different from that of the second task in that

it is mainly being implemented to exclude the effects of the aforemen-

tioned computational assumptions on the stress distributions. On the

other hand, the numerical schemes are self contained in that they do not

depend on any experimental data, and will attempt to model the actual

behavior of physical problems.

The following sections contain the formulation of and examples for

the different schemes alluded to in this section. Section 2 contains

the development of a mixed updated Lagrangian formulation and

computational scheme for the analysis of two-dimensional elasticity

problems. This formulation is extended in Section 3 to develop two

computational algorithms to analyze the contact problem of a pin-loaded

plate. These approaches are developed separately to consider the

9
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distinct cases of allowing for a rigid pin or an elastic pin. In

Section 4, a hybrid experimental/numerical technique is described that

combines the experimental technique of moire interferometry and the

numerical finite element method, again for the analysis of the pin-

loaded plate problem. The results of several numerical examples from

the algorithms developed in Sections 2-4 are presented in Section 5.

Finally, summary and conclusions of the present study are given in

Section 6.

'..
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2. GOVERNING EQUATIONS

2.1 Introduction

In this Section we begin with the statement of virtual work for an

arbitrary solid body under external load and derive the variational

statement that will be most convenient in applying the mixed finite

element model to the problem. The finite element approximations for the

displacements and stresses are then introduced into the variational

statement for two-dimensional bodies resulting in the final matrix form

of the finite element equations. The required specification of the

boundary conditions is discussed using the variational form of the

linear equilibrium and stress-displacement relations of the problem, and

an alternative formulation of the linear finite element matrices is

given as well. A brief discussion of the required order of polynomial

approximation for the mixed finite elements is also given.

2.2 Mixed Virtual Work Formulation

We begin our derivation by first assuming that the current

* configuration C1 is known at time t as well as all equilibrium

configurations previous to this time. We desire the solution, i.e. the

displacements, strains, and stresses, at the configuration C2 at time

t + At (see Figure 2.1). Using the principle of virtual displacements

(see 1511), we can write

w V 2Tlj6( 2eij)dV - 8(2F) = 0 (2.la)

where2

6(2F) 2 2f iuidV + f 2ti6uids (2.1b)
V2  S2 JV +

0 11



x3

C2

time = t 0 AtC1

C 0 time = t

time -0 
,- X2

Figure 2.1 Motion of an arbitrary continuum in Cartesian coordinates
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D2

2 tj = the Cartesian components of the Cauchy stress tensor in the

configuration C2 occupying the volume V2,

ui = the Cartesian components of the displacement vector in

going from configuration C1 to configuration C2,

2ejj = the Cartesian components of the infinitesimal strain tensor

associated with u, which is defined as

e = (1 " + u )  (2.2)

2 ~ j=2ax i x

xi = the Cartesian components of a point in configuration C2,

2fi = the Cartesian components of the body force vector measured

in configuration C2.

=ti - the Cartesian components of the surface stress vector

measured in configuration C2.

Here 6 denotes the variational operator and 6ui denotes the virtual

displacement vector (i.e. the variation of ui).

Although this statement is valid at time t + at, it is not

immediately useful since the integrations are performed over domains

that are not yet known. However, we may transform this equation into a

known configuration using appropriate stress and strain measures 1521.

To do this, we first define the second Piola-Kirchhoff stress tensor as

22 ax (2.3)
Iij - ix-m " mn * axn

where X, are the Cartesian coordinates of a generic point in

configuration C1, p0 is the density in C1 and p denotes the density in

C2. We have indicated in the notation that the second Piola-Klrchhoff

stress tensor is measured in C2 but is referred to CI. Since the Cauchy

stress tensor is defined as force per unit area of the deformed

13



configuration, it is always measured in and referred to the most current

configuration. Hence, we may write

2 Sj = ij = 2Tij (2.4)

We next define the components of the Green-Lagrange strain tensor

as

2Eij (j i+ + mm) (2.5)

Just as the Cauchy and second Piola-Kirchhoff stress tensors are related

by a kinematic transformation (2.3), the variation in the Green-Lagrange

strain tensor Ei and the variation in the infinitesimal strain tensor

eij are related by

2 e XmX (2.6)6(1 Eij) = ax1 aX 6(2emn)

Clearly, both of these strain tensors use the particle displacements ui

in going from configuration C1 to configuration C2.

We next note that the second Piola-Kirchhoff stress tensor is

energetically conjugate to the Green-Lagrange strain tensor and the

Cauchy stress tensor is energetically conjugate to the infinitesimal

strain tensor. In other words, if we use the definitions in Eqs. (2.3)

and (2.6) along with the identities

axi !!j = ,
aXj axm im(2.7)

and

PO dV, = PdV 2  (2.8)

then we may write the expression for the internal virtual work given in

Eq. (2.1) as

14



2s 2 (E)dV = 2 t 6 2eij)dV 2.9)
V 1  j I iV 2  6(

Substituting Eq. (2.9) into Eq. (2.1), we obtain our modified

statement of virtual work, which is now in terms of a known

configuration, and is given by

0 = f (S 6(2E13) dV - 6(1F) (2.10)

We have also implied the assumption that the applied loading is

independent of the deformation of the structure, and hence

6(2F) = 6(1F) (2.11)

Next, we use the incremental decompositions of the stresses and

strains to write

2~

• lSij =I j + Ij

2E = 1  + (2.12)
1Ij ij leij Inij

where

Sij = incremental components of 2nd Piola-Kirchhoff stress tensor

leij = (incremental) components of the infinitesimal strain tensor

1 au+ au.(1

au Um aura

inij - I aX 
(2.13)

Substituting Eq. (2.12) into Eq. (2.10) gives

15



0 f V (tj + 1S6j) 6(lejj + lnij) dV - 6( 1F) (2.14)

or

f V S Ij (leij + 1nj) dV + I l lj6(jilj)dV

1

= - f V1 tj 6(leij)dV + 6(1F) (2.15)

We next linearize the equations by assuming that

1Sij = Cijrs rs , 1E = 61el (2.16)

and thus obtain the approximate governing equation

f V 1 C jrs lers 6(leij) dV + f 'Tij 6(inij)dV

= - fV1 ij 6(leij)dV + 6(1F) (2.17)

The above linearization can be interpreted as a representation of

the nonlinear curve between two consecutive load steps by a linear line

segment, and must be solved iteratively.

A mixed (or stationary) virtual work statement that treats the

displacements and stresses as independent variables can be derived from

Eq. (2.17) as follows. First, we note that Eq. (2.17) is the first

variation of the functional

f 1  C le lej dV + 1 T(lej + -ij)dV F (2.18)

V21 ijrs rs1rjV ijlej 1 1 )V F

Next, we introduce the stresses as additional dependent variables by

treating the strain-displacement relations

16



e (2.19)

* as constraints. The increments in the 2nd Piola-Kirchhoff stress tensor

components 1Sij act as the Lagrange multipliers (see [511). The

modified functional for the mixed formulation becomes
*au au.

n = u - V I  - 1 (-u-+ n)]dV (2.20)
LV11ij 1 lij ~ ax~ ax1

where n is given by Eq. (2.18).

We next write the linearized expressions for the strain energy

density Uo and the complementary strain energy density Uo due to the

incremental displacements as

U = i Cjkt leij leki (2.21)

and

* U° = ' Oijkz 1Sij 1Skz (2.22)

where Dijkt are the components of the compliance tensor. The strain

energy density and the complementary strain energy densities are related

according to

-U o =Uo - 1Sij leij

SCi leij lek - 1Sij leij (2.23)

Using Eqs. (2.22) and (2.23) in Eq. (2.20), we obtain

*[1I au1  au

a= 1V 1iTj(leij + 1n1j) + 1 ij(a1+ n) - UojdV - 6(1F) (2.24)
L=fI j2 ax i ax1  0 (.4

Imposing stationarity on this functional with respect to the

displacements and the stresses, we obtain the two approximate

equilibrium equations

17



1 mIJ (inlj)dV + f 1Slj6U jdV = 6(1F) - fI T1j6(leij)dV (2.25a)/VI  VI  VI (1 (leljdV

f u 1 6(,Sij)dV - f D i kz lSkza6(Sij)dV = 0 (2.25b)Vi JaI~ v iV

These two equations are analogous to Eq. (2.17) for the displacement

formulation. Since these equations are a linearized version of the true

statement of equilibrium, they must be solved simultaneously and

repeatedly for a given load until the increments of the displacement and

stress components are within a preassigned tolerance. The final

solution vector, after convergence, will represent the true state of

equilibrium for a given load, and the iterations are therefore

frequently termed equilibrium iterations.

2.3 Finite Element Model

We next construct the finite element model of Eqs. (2.25) for the

two-dimensional case. We begin by assuming independent approximationts

of the displacements and stresses of the form

n

u1(xl9x2) = E !*4J(xllx 2) (.6

S= n s (2.27)

k=1lijkl2

where S k denote the value of 1Sij at the k-th node. Substituting

these expressions into the two equilibrium equations in Eq. (2.25) gives

[Kill [Kl]l uK2  = {FL} - {FNL} (2.28)[K1 IT [K22 I i)(1 0
where

[Kill = tf [BO]T[T]IBaJdA
A
1

18
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[K22] = tf [a] T[01[ adA
A1

[K 2] = tf [BLIT[*a]dA
A1

{F} = tf [~]TIf}dA
A1

{FNL} = tf [BLIT{ }dA
A1[ 1 0 0 *2 0 0 . n0 01

[,o] = 0 0 0 *2 0 . . . 0 *n 0
(3 x 3n) 0 0 *1 0 0 *2 . . . 0 0 *n

F 011 D 02D16]
[D] L 12 022 0261 (2.29)

D16 026 066-a

'1,1 0 '2,1 0 . . . *n,1 0L

[BL ]  0 01,2 0 2,2 0n,2
(3 x 2n) * 1,2 *1,1 *2,2 *2,1 " " n,2 *n,IJ

-*1,1 0 02,1 0 . . . On,l 0 1

(801 * 1 ,2 0 0 2 ,2 0 . . . O n ,2 0

(4 x 2n) 0 *1,1 0 *2,1 . . . 0 O n,l

L0 *1,2 0 '2,2 . . . 0 On,2

19



'r1 112 0 0

T12 T22 0 0

I[] = 0 0 T11 T12

0 0 T12 22

Here n is equal to the number of nodes in the element and Til represent

the Cauchy stress components that have been determined at the last known

configuration.

As mentioned in the previous section, the equilibrium equations are

only approximate since we have linearized the true equations of

motion. For this reason, there may be errors introduced into the

computed solution at each load level, particularly if the load increment

is large. To correct for this, we minimize the force imbalance that

results from the linearization process for a given load increment. We

do this by updating the stiffness matrices and force vectors to account

for the change in the nodal positions and the Cauchy stresses during a

given load step. The iterations are continued until the force

imbalance, represented by the right hand side vector, is reduced to

below some convergence limit. For example, the displacement and stress

component increments at the (i + 1)st iteration for the solution at time

t + at are calculated using

([KL] + [KNL])i[A}i+l = {F}L - [F} L  (2.30)

where the superscripts L and NL denote the linear and nonlinear

contributions, respectively, and the stiffness and force terms have been

computed using the displacements and stresses known from the previous

iteration i.
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Equation (2.30) must be solved repeatedly until the force imbalance

is reduced to below or within a fixed tolerance. This amounts to

measuring the percentage of the displacement and stress increments

(measured using the Euclidean norm of the incremental solution vector)

relative to the Euclidean norm of the total solution vector. When the

increase in the displacements and stresses has been reduced to below a

very small percentage of the total solution, the approximate state of

equilibrium has been obtained for the given load step, and the load may

then be increased or the analysis may be terminated.

The solution of Eq. (2.30) allows us to compute the total

displacements according to the equation

2ui = lui + ui  (2.31)

In the mixed formulation, there is no need to compute the Cauchy

stresses using the Almansi strains as is required in the displacement

formulation. Since the increments of the 2nd Piola-Kirchhoff stress

tensor are computed as nodal variables, we simply use our incremental

decomposition of the stress given in Eq. (2.12) as

I = Tij 
+ S (2.32)

0 1 .j 1j iij

To obtain the values of the Cauchy stresses within a given element as

required in the computations of the nonlinear stiffness matrix and force

vector, we may simply use nodal stress interpolation, or

n k
ij(Xl'X2) k= Tij k(Xlx 2) (2.33)

When the increment in the 1S ij terms is reduced to be within the

required tolerance, we have by definition of the second Piola-Kirchhoff

21



stress tensor

=2
2Sij 2ij (2.34)

and we have clearly obtained the desired configuration C2.

2.4 Some Computational Aspects

If the element stiffness matrices shown in Eq. (2.28) are assembled

in the form shown, the matrix [K11j will be a null matrix for the first

iteration of the first load step since the Cauchy stresses are zero

everywhere in the domain for the undeformed configuration Co . The

global stiffness matrix counterpart of the submatrix [K11] will also be

a null matrix, resulting in an indefinite system of equations. The use

of pivoting will eliminate this problem but will generally destroy the

bandwidth of the system of equations. Mirza [531 has suggested

premultiplying the left and right hand sides of the global finite

element equation by the transpose of the global stiffness matrix, as in

.1 the least squares technique, to yield a positive definite system. In

the present study, the first node of the finite element mesh was

selected such that both of its displacements were specified to be

zero. This results in the value 1.0 being placed in the diagonal

position for the first two rows of the global stiffness matrix during

the imposition of the boundary conditions. As the Gauss elimination is

performed on each row of this matrix, the zeros on the diagonal

corresponding to the remaining displacement degree's of freedom are

eliminated. Hence, as long as the nodes are numbered as described here,

a conventional banded solver may be used to solve the global system of

equations.

22

, -.5. -, - , , #, - . -



An important note on the order of polynomial approximations used in

the mixed model is in order. The variational statements of the

governing differential equations for problems in plane elasticity given

in Eqs. (2.25) show that the stress components appear undifferentiated

whereas the displacement components u and v are each differentiated once
0

with respect to the x and y coordinate directions. Hence to ensure

continuity, the stress components must be approximated by at least a

constant within the element and the displacement components must be at

least linear in both x and y within an element. The approximation order

should also be such that the mathematical definitions of the

displacements and stresses are accounted for and are consistent with one

another, i.e. the stresses are a function of the gradients of the

displacements.

The continuity requirements of the variational statement of the

problem alone are not sufficient in guaranteeing that the mixed finite

element matrices will be acceptable for the analysis of a given

problem. Unless the displacement and stress approximations are of a

given order, the element matrices will contain more than the allowable

three zero eigenvalues corresponding to the three rigid body modes for

two-dimensional bodies. This point was examined in detail by Mirza and

Olsen [201 who proposed and verified a completeness criterion that

restricts the choice of the order of approximation for the displacements

and stresses. The completeness criterion was given as:

The strains from the stress approximations

should possess at least all the strain modes

• that are present in the strains derived from the

displacement approximations.
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When this criterion is violated, the global stiffness matrix in the

mixed model will be singular even after the imposition of the boundary

conditions. Isoparametric rectangular elements are used for all of the

examples considered herein and, to meet the requirements of the

completeness criterion, only linear-linear or quadratic-quadratic

combinations are used to approximate the distributions of displacements

and stresses in the mixed model.

A comment concerning the assembly of the element equations in a

mixed formulation deserves attention. The assembly of the element

stiffness matrices over the complete domain of the problem to construct

the global stiffness matrix requires that the stresses be continuous

across each interface between all elements. Although this assumption is

valid for many problems, there are cases where the material properties,

and hence one or more of the three stress components, are

discontinuous. Such an example can be found in the bending of a

composite beam. Clearly, mixed elements should not be used in the

analysis of such problems, since the stresses will be erroneous at the

points of material discontiuity.

One way to circumvent this difficulty is to condense out the stress

degrees of freedom at the element level so that the continuity of the

stresses across the element interface is no longer enforced. To do this

we recall from Eq. (2.28) that the finite element equations can be

written In partitioned form as

[Kil [02,1 lul = [Fjt(.5
[K2IT K22IJ S0 (2.35)

The second of these two matrix equations can be written as
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[K12 ]T{u} + [K22]{S} = {O} (2.36)

Hence the nodal stress vector for a given element becomes

{S} = - [K22]Fl[K12IT{ul (2.37)

Substituting Eq. (2.37) into Eq. (2.36), we obtain

[Kill{u} - [K12 [K22F-l[K 12 IT{ul = {F} (2.38)

or

[K*]I{ul = {F} (2.39)

where

[K*] = [Kill - [K12 ]lK 22]Fl[K12IT (2.40)

Equation (2.40) is assembled as usual, and is solved for the nodal

displacements (after applying the boundary conditions). The nodal

stresses that were condensed out are then computed at the element level

using Eq. (2.37). Since the stresses are no longer nodal variables,

they will be discontinuous between elements.

Two points regarding the condensation procedure using linear

elements merit some discussion. First, it can be shown that the matrix

[K*J in Eq. (2.40) is precisely the element stiffness matrix derived

from a displacement formulation. Second, computing the nodal stresses

using Eq. (2.37) yields exactly the same stresses as those computed

using the procedures typically followed in a displacement formulation,

i.e., computing the strains at the node points and then using the

constitutive relations to compute the stresses. As with the

condensation procedure, the stresses computed in a displacement

formulation are not continuous between elements due to the discontinuity

of the gradients of the displacements.

Although the condensation procedure results in the stiffness matrix

derived from a displacement formulation for the case of linear elements,
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this equivalence does not generally hold for elements containing higher-

order approximations. For example, a quadratic isoparametric element

will have the exact same stiffness matrices computed from Eq. (2.59) as

from a displacement formulation only if the element shape is

rectangular. If the element sides are not parallel with one another,

the entries in the two stiffness matrices will not be identically the

same, although they should be fairly close to one another. As the

element shape differs from that of a rectangle, the discrepancies

increase. Hence a quadratic element with curved sides will possess

larger differences between the entries of the stiffness matrices

computed from the two different approaches than will a quadratic element

with the shape of a quadrilateral.
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3. NUMERICAL ALGORITHMS

3.1 Introduction

In this section we discuss two techniques for the analysis of two-

dimensional elastic contact problems. Contact problems have a host of

computational difficulties since the regions of contact are typically

not known as a function of any of the parameters of the problem nor are

the regions of relative stick and slip between the two contacting bodies

due to the presence of friction. Most current numerical algorithms that

solve contact problems are relatively complex and use a number of

iterative schemes to account for the changing boundary conditions and

regions of contact.

The nonlinear mixed finite element model described in Section 2

forms the cornerstone of the methods described in this section. The

displacement finite element model has been used almost exclusively in

previous numerical analyses of contact problems. Mixed elements provide

the immediate advantage of computation of stresses as nodal variables,

which is ideal for contact problems since the stresses may be obtained

precisely on the contact boundary.

Although a number of contact problems may be analyzed by the two

methods to be described in this section, the basic problem of interest

involves a thin, pin-loaded plate under a uniform in-plane load, as

shown in Figure 3.1. The plate may be orthotropic or isotropic, and the

-o pin is generally considered to be isotropic. The first algorithm allows

for the assumption of a rigid pin, and the second algorithm is much more

general and allows for an elastic pin.
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Figure 3.1 Elastic plate restrained by a pin and subjected
to a uniform, in-plane load
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3.2 Rigid Pin Contact Algorithm

In general, contact problems involve two or more elastic bodies

pressing against one another under external or internal load. In the

case of a pin-loaded plate, the bodies of interest are the plate and the

pin. If the assumption of a rigid pin is used, the analysis is

simplified considerably. This assumption eliminates the need to analyze

the pin, which not only provides a known point of reference for the

ensuing contact (i.e. the surface of the pin), but also drastically

reduces the resulting global finite element system of equations since

there is no need to discretize the domain of the pin. The assumption of

a rigid pin is reasonable if the modulus of elasticity of the pin is

much higher than that of the plate. Analytical studies have also shown

that, in the contact analysis of composite plates, pin elasticity is not

an important variable and has a relatively small effect on the resulting

stress distributions [461.

One simple and effective method for analyzing thin, orthotropic,

pin-loaded plates was developed originally by Wilkenson, Rowlands, and

Cook [471 and was later refined by Rahman et al. [481 to capitalize on

the computational advantages that arise from the rigid pin assumption.

This method uses three separate iteration steps to account for the

incremental load level, the contact process, and the effects of

friction. Both the original and refined schemes use displacement finite

elements. In the load step iteration, the solution for a given load

increment was treated as a linear analysis, i.e. the equations of linear

elasticity were used. The stresses in the plate were computed for each

given load level using the original undeformed configuration of the

plate along with the final displacement vector.
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The computation of contact stresses using displacement elements in

the analysis of contact problems may create difficulties since the

contact action frequently results in very large displacement gradients

near the region of contact. Since the required stresses in a

displacement model are generally computed at the element interiors and

are then extrapolated to the contact boundary, some type of stress

smoothing is often necessary using, for example, a local least squares

routine [541 or Iterative improvement on the averaged nodal stresses

[551. Using mixed elements, this is not necessary since the stresses

are computed as nodal variables and no postcomputation is necessary to

modify the resulting nodal stresses. It is for this reason that mixed

elements would appear to be advantageous over displacement elements for

contact problems since the stresses on the boundary are required for

certain portions of the analysis.

The refined algorithm developed by Rahman [481 uses a mixed polar-

Cartesian coordinate system to fix the proper displacements of the nodes

of the plate that have come in contact with the circular pin. An

iterative scheme is used to ensure that all nodes that have come in

contact remain in contact for a given load step. In other words, after

every iteration the positions of all contact nodes of the plate that

have previously come in contact with the pin are corrected in the radial

direction so that they remain on the surface of the pin, which is

actually defined as a set of imaginary points that specify the region of

no penetration. If the resulting shearing stress for a given contact

node is larger than the induced radial stress multiplied by the nodal

coefficient of friction, the node is considered to be sliding, and it

may subsequently move in the tangential direction of the pin.
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Otherwise, the node is considered to be sticking to the pin due to

friction, and it is fixed to an interpolated position on the pin for the

remainder of the analysis. This iterative procedure is repeated until

the sum of the load steps has reached the required load level. The

details of this method are more completely described in reference [481.

3.3 Elastic Pin Contact Algorithm

The assumption of a rigid pin, which is reasonable for cases when

* the two bodies in contact have a very large difference in modulus of

elasticity, is not usually valid for contact between two generic

bodies. The algorithm described in the previous section, though useful

* for certain problems, was mainly developed to demonstrate the use and

accuracy of the mixed finite element method for the analysis of contact

problems. For general problems involving arbitrary bodies, it is

0 necessary to revise the analysis to include the effects of pin

elasticity, which may be significant if the two bodies are of similar

constitution. A second computational algorithm is described below for

• this more general type of contact problem.

3.3.1 General Concepts

To account for the complications arising from contact and the

presence of friction between two elastic bodies, we add a Lagrange

multiplier contribution to our original expression in Eq. (2.28) which

will represent the summation of the total potential of each of the

contact forces acting at the nodes on the discretized contact

boundary. In addition, the kineratics of the elements of the two bodies

at the contact interface must be monitored such that the nodal

displacements are compatible, i.e. the bodies must not overlap. We
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therefore will eventually invoke stationarity of the modified functional

k
I = - - WI (3.1)

1=1

where k represents the number of the contactor nodes on the boundary and

W represents the total potential for a given contact force acting at a

given contact node. This idea was originated and developed using a

displacement formulation by Bathe and Chaudhary [36].

To determine the total potential for a contact force at a given

contact node, we consider the local geometry of a contactor node K that

will penetrate the target domain whose boundary is defined by the nodes

A and B as shown in Figure 3.2. In our discussion, we will assume that

the two bodies have been discretized using linear elements. Although

the algorithm could be developed using higher-order elements, this

somewhat complicates the analysis, and linear elements were used in this

study because of their relative simplicity in many phases of the

subsequent analysis. For our problem, we define the pin to be the

contactor body and the plate to be the target body to remove the

ambiguity of analyzing two elastic bodies. Only the nodes on the pin

will be required to remain on or outside of the domain of the plate

during the loading of the plate, while the nodes of the plate are

allowed to be within the domain of the pin. This is a key assumption
Iand requires some care when modeling the problem to ensure that all

contactor nodes (i.e. contact nodes on the contactor body) are

originally outside the target body.

In the formulation that follows, we assume that (i - 1) iterations

have been performed in the quest for the equilibirum configuration C2 at

time t + at for a given loading. During the last iteration (i-I), the
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Node K

Contactor " Node B

Body

b) After elimination of overlap

Figure 3.2 Local geometry of contactor node
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displacements of the nodes K, B, and A have been such that the contactor
node K has penetrated the domain of the plate a distance CK, where

CK= ICKI K (3.2)

and

CK = 1Kx' + AKyJ (3.3)

The distance CK represents the minimum distance from the penetrated node

K to the surface segment of the target body, which is defined as the

line segment between the two nodes A and B of the target body.

The intermediate configuration defined by the updated Cartesian

coordinates of the nodes after iteration (i - 1) is clearly not in an

acceptable state of equilibrium since the contactor body has penetrated

the target body at node K. This node must eventually lie exactly on the

boundary of the plate, i.e. on the target segment defined by the nodes A

and B, and its relative position B between nodes A and B must be a

function of the coefficient of friction between the two bodies. In

order for this to occur, the displacements of the nodes A, B, and K must

be adjusted accordingly during the following iteration and a contact

force must develop at the contactor node K as a result of the

elimination of the overlap distance. We denote the latest estimate to

this contact force at node K in configuration C2 as

2-0 (1-1) = x(il1). +1 x(i-1)3 34
XK XKx I Ky (34

This contact force is equal to zero after iteration (i - 1) and is

developed as the overlap distance is eliminated during iteration (i).

Although the contact force acts alone at node K, it must be

balanced by equivalent nodal forces at nodes A and B of the target

segment. Imposing moment and force equilibrium on the discretized
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target segment defined by the contactor node K and the target nodes A

and B and solving these equations simultaneously gives the expressions

for the target segment nodal forces as

2e(I-1) = ~-1

X(1 - ) 2(i-1

2i-1) = 8(1) 2 Xi-) (3.5)

As these nodal forces are generated, the displacement increments at the

nodes A, B and K, which are given by Au(i) Aui) and au(i)
A a K

respectively, must occur such that the overlap distance CK is eliminated

during iteration (i). Hence, the total potential of the contact force

at node K may be written as

Wk XK K2~)TA~) K

* + [2X~i)}T[Au,~i)} + f2i)Tfu~i)i (3.6)

where the first term is due to the contactor body and the remaining

three terms are due to the target body.

Since the contact force is originally equal to zero and is

developed during the elimination of the overlap distance, we may write

the incremental decomposition of the contact force at node K as

2.(1) = 21(i-1) + A.(i)(3)
XK K XK(37

We note that if the two bodies are in sticking contact, the contact

force components may be written as in Eq. (3.4). However, if the bodies

in contact are sliding, the contact force component increment in the

direction tangent to the target segment is equal to zero, or
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XK = nis (3.8)

where 's is the unit vector acting normal to the target segment as shown

in Figure 3.3. This expression is true because Axs acts as a workless

constraint force and only the normal contact force component may act in

eliminating the overlap distance. In addition, the value of s will

change during the iteration due to the relative slip between the two

bodies. This value change is assumed to be negligible for each

iteration.

In order to impose stationarity on the contact functional nc, we

need the first variation of Wk. Using the Equations (3.5)-(3.7), we may

write the first variation of the total potential of the contactor node K

due to sticking contact as

,SwK = {2X(i)lTfSAu(i)j + (1 _ S(i-i))t2X(i)}Tt6Au~i)j

+4 B(il1) I2X(i)}TSAu(i)l _ {~x(i)}T[6Au(i)}

+ (1 -~ 4 )A~~T&C~ + S(i-1){AX(i)}T{&Au}B

- (i1)AX(i) ~~~~ +

(3.9)

where the vector notation has been used to imply that the x and y

components of the terms given within the braces are represented and the

T superscript represents the transpose of the vector. We note that only

the displacement increments and the contact force increments are allowed

to vary, but the contact force components and the overlap distance

4. components are fixed scalar quantities.
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* Target Body

Note: The bodies are apart only for illustrative purposes.
Points K and C actually coincide.

Figure 3.3 Direction of developed contact force after
elimination of overlap
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Similarly, we may write the components of the target segment unit

normal vector as

ns = nsxT + n sy (3.10)

and using Eqs. (3.5)-(3.6) and Eq. (3.8) we may write the expression for

the first variation of the total potential for the contact force at node

K due to sliding contact as

-6WK = 2X(i-1)}T{6Au(i)} + ( ~ 4 ) 2 ~l}{A~)

+ 8(i-I){ 214i-1)}T{6 Au~i)I + AX(i)n sAu )+ axinsyaAUMr)

(1 - -) n 6Aui )  - (1 - °(l) ^s sy Ay

s(l1)x(i)n 6Au(i) _ -S sx Bx )nsy aBy

6a('- (iM ( nA ) n A('-') - (nI6-1)

- 6ast)[-nsxaUx) - nsyAUKy - Kx - nsyKy

+ (1- B(-1 ))n Au 1 + $ ( -B(A) " + nu ( I)! 'sx Ax +  "nsyAy nsxS-1 Bx

+ n -(i1)Au()I (3.11)

sy By

Here we have written out the components of the terms involving the

contact force increments to aid in showing the origin of the terms in

the sliding contact matrix and force vector. These are developed in the

following section.

3.3.2 Finite Element Matrices

V Our ultimate objective in constructing the total potential of each

of the contact forces is to impose stationarity on the modified

functional in Eq. (3.1) with respect to the displacement, stress, and

contact force component increments. Hence, we must separate the
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coefficients of the variations in the contact force increments and the

displacement increments of nodes A, B, and K for the expressions in Eq.

(3.9) and Eq. (3.11). The resulting contact equations can then be

written in matrix form as

•_Wk /F6AU(i)T 1o1 F11  [131 [
L {0} t 5 bX(i)T + [3]T  [K 3 1(i)

(iC (3.12)

12Ai-1
1 c

where the entries of the [K13 and [K3 matrices and the contact force

vector R(i-I)" for the cases of sliding and sticking contact are given

in the Appendix. These components are then added to the existing finite

element matrices resulting from the stationarity of nR (see Section 2).

Performing this step allows us to write the final finite element matrix

representation of the stationary constraint imposed on the modified

functional expressed in Eq. (3.1):

r[K11 1 [K 12 1 1Oi 101 [01 [Kc1 AM

[Kl 2IT 1K221 101 + [01 1 lcl {0X0)

[01 [O 0 [01 [K13 1T 1 [K33 (i)

2I F((l)
0[o} 0{o} +0 (3.13)

10} 10} {t+AtA~i-l)j

The nature of the contact matrices will depend on the state of

stick or slip between each contactor node and its corresponding target

segment, and the contact matrix and contact force vector must represent

* 39



this current state. The entries in the contact matrices and force

vectors are shown to be added to the standard mixed finite element

stiffness matrix of a typical element in Eq. (3.13) as a matter of

convenience. It should be understood that the constraint equations were

derived for a generic contact node and its target segment, and the

contact matrix and contact force vector entries must only be added to

the existing values corresponding to the proper global degree's of

freedom of the standard stiffness matrix for these contactor and target

segment nodes.

Once the proper contact matrix and contact force vector

corresponding to stick or slip for each of the contactor nodes have been

added to the global finite element matrix and total force vector, the

solution procedure is similar to that of the standard nonlinear

analysis. The global system of equations is solved repeatedly for the

increments in the displacements, stresses, and contact forces until the

Euclidean norm of the incremental solution vector and/or the total force

vector are within a preassigned tolerance. During the iterations, the

entries in the contact matrices and the contact force vectors are

updated to reflect the most current state of the geometry and loading.

Once the solution has converged, another load increment may be applied

* or the analysis may be terminated.

3.3.4 Determination of Stick and Slip

An important facet of the analysis is the determination of the

state of stick or slip between each of the contact nodes and their

corresponding target regions after each iteration. This step indicates

whether the sliding or sticking contact matrices should be imposed for

the next iteration. In Reference 1361, which uses a displacement
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formulation, the total distributed tractions along the contactor

elements are computed after several intermediate steps and are compared

to determine the state of stick or slip for a given element. Using the

mixed formulation, this part of the analysis is simplified considerably

since the state of stress is known precisely at the nodes and hence may

be computed for each contactor node rather than for an element side.

Using the stress transformation equations along with the relative angle

(with respect to the fixed Cartesian reference frame) of the target edge

of the target segment, the normal stress component an and the shearing

stress component T nt may be computed for each of the contact nodes.

Clearly, if the two bodies are in contact, the normal stress component

of the contact node acting on the target body should be compressive. If

we designate the static or dynamic coefficient of friction as v, we say

that if, for a given contactor node,

lentl > 1lII (3.14)

then the node is in sliding contact, and if

* 1InI 1- nt1  (3.15)

then the node is in sticking contact. It should be noted that these

expressions are the computational equations used to determine the state

of stick or slip for a given node. Physically, however, Eq. (3.14)

would be an equality since the node begins to slide as soon as the

tangential stress just exceeds the frictional capacity of the node.

Equation (3.15) would then be changed to a strict inequality. This

physical situation is a very minor factor, however, since this

bifurcation point would rarely be realized computationally.

Specifying u to be the static or dynamic coefficient of friction in

these equations will depend on if the node was sliding or sticking
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during the previous iteration. This comparison is made for all nodes in

contact after each iteration, and the correct contact matrix is

implemented for the next iteration. Since the state of stress is not

known for the first iteration after the nodes have come in contact, the

state of sticking contact was assumed so that a non-recoverable

tangential displacement was avoided.

3.3.5 The Computation of Contact Forces

In the case of sticking contact, the increments in the contact

force vector components are both nonzero since a force may develop in

both the normal and tangential directions of contact along the target

segment due to the two bodies sticking together. In the case of sliding

contact, the only nonzero incremental contact force component is that in

the direction normal to the target segment, which is automatically

accounted for by the contact matrices given in Eq. (3.13). However,

there is also a force component that opposes the relative tangential

motion of the contactor node due to the presence of friction acting

along the target segment containing the contactor node. Although this

force component does not exist for frictionless problems, meaning that

the sliding contact matrices may be imposed for all iterations with no

corrections, this is not true in general. This section addresses the

issue of the computation of these tangential forces that must be applied

to the contactor nodes with nonzero coefficients of friction that are in

sliding contact along their corresponding target segments for a given

iteration.

According to the criteria given in Section 3.2.4 to determine the

state of stick or slip for a given contactor node, we observe that there

are four possible combinations of stick and slip for the triplet of
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nodes neighboring and including the contactor node K. These four cases

are shown in Figure 3.4. The first and fourth cases are relatively

simple to handle computationally. In case 1, all three of the nodes are

in sticking contact, and there are no additional force contributions due

to friction resistance since the nodes do not slide. In case 4, where

Sall nodes are sliding, the only forces that need be applied in the

tangential directions are those due to friction. To compute these

forces, we need to compute the tangential tractions acting on the

contactor segment that corresponds to the total frictional capacity.

This step must be performed for each of the two contactor segments.

To do this, we must first compute the normal and tangential surface

tractions using the nodal stress values computed during the previous

iteration, along with the equations

tn a nnnn + Tntnt

tt = Tntnn + ottnt (3.16)

For segment 1, which contains two sliding nodes, the tangential surface

traction is given by

* K-i -
t 2 n 2 n (3.17)

where the subscripts t and n indicate the tangential and normal
SI

directions, respectively, and u is the static or dynamic coefficient of

friction at node i, depending on if the node was in sticking or sliding

contact during the previous iteration. To compute the tangential force

corresponding to these surface tractions, we use the formula for the

equivalent nodal force given for plane elasticity problems as

Ft = sttlds (3.18)
t i S

where S represents the boundary of the given element. Since we are
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working with linear elements, the frictional force corresponding to the

modified tangential traction tt, which in this case is constant along
0

the segment, will be divided evenly between the two nodes of the

segment. This procedure is repeated for the second contactor segment,

which borders the contactor node K on the opposite side, and the total

summed force of these two frictional force components is applied to the

contactor node K as an external load for the next iteration.

The remaining possible cases involve a contactor segment with one

node sticking and one node sliding. If the neighboring segment is

completely slipping (case 2) or sticking (case 3), the contact forces

for this segment only are computed using the procedures described

previously for the first and fourth cases. Hence the remaining case

that we need to concern ourselves with is the situation shown in Figure

3.5. Clearly, the basic problem involves accounting for the transition

between the zones of stick and slip, including the computation of the

tangential contact force due to the appropriate tractions along the

segment between the sticking node and the sliding node.

In order to determine the force due to friction along a segment

acting on the sliding node, we first need to determine how much of the

element segment is in sliding contact and how much is in sticking

contact. For the sticking node, the frictional capacity of the node

exceeds the corresponding shear stress, while this inequality is

reversed for the sliding node. Since linear elements are being used, we

assume that the frictional capacity and the shearing stress both vary

linearly along the contactor segment. Hence there is a point m whose

position is defined by the parameter a, which denotes the point of

transition between the zones of sticking and sliding contact. Using the
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assumption of linear stress variation and similar triangles allows us to

compute the value as
(ulonnI - Tnt)K-1

(laInnl - tnt) K-I + (tnt - ulcnnl)K (3.19)

where the superscripts outside the parentheses indicate the node at

which the enclosed quantities are measured. Since the terms computed

within the parentheses are all positive, the value of a must be between

zero and one.

Using a to define the transition point, we next modify the

tangential surface tractions to account for the portion of the contactor

segment that is sliding. We note that the normal tractions are not

changed since they do not explicitly depend on the state of stick or

slip. At the transition point, the tangential traction is reduced to

the value tm, where0 mtm ktk

* n n (3.20)
tm 2 2

where m represents the transition point. The values of the tangential

tractions in the sticking regions remain the same as computed using the

nodal stress values. Using this equation and the modified values given

in Figure 3.5, we may write the final distribution of the tangential

traction t as a function of the length along the segment, denoted by x,

as

t2 - t1
*( x + t if 0 5 x ! ad

t = (3.21)
t3 if ad < x 5 d

where the values of t1 , t2 , and t3 are given in Figure 3.5.
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To compute the equivalent nodal forces corresponding to these

tractions, we use Eq. (3.21) and substitute in the value of t given by

Eq. (3.18) for t. The tangential traction is no longer a constant

across the length of the contactor segment, and the force will no longer

be divided evenly among the two nodes of the contactor segment.

Performing the required integrations yields the desired tangential force

components for the contactor nodes K - 1 and K as

K-1 t tacd ( - -S) +1 tcd( -S) tdf! + ca(S - 1)]

(3.22)
V2 2 1 d

FK = t1 2d + t ad + t d(I -
K 1 6 2  3 32 2f T

The component of force FK_1 is already incorporated into the contact

-; -. force acting at node K - 1 as part of the analysis. The magnitude of

the force FK, however, must be added to the tangential contact force at

node K computed from the tractions acting on segment 2. This second

force is equal to zero if the node K + 1 is not in contact, and is

computed using Eq. (3.17) if the node K + 1 is in sliding contact.

As in the case of computing the state of stick or slip for a given

contact node, it is evident that having stress as a nodal variable is

quite advantageous. The normal and tangential surface tractions may be

readily computed using the nodal stress values instead of using the

nodal contact forces or other techniques to compute these quantities.

m4

48



4. A HYBRID NUMERICAL/EXPERMENTAL TECHNIQUE

4.1 Introduction

0 The primary difficulty in the numerical analysis of contact

problems is the lack of knowledge regarding the region of contact and

the state of stick or slip between the two bodies. If the regions of

contact and the state of stick or slip are known for a given load level,

the analysis is greatly simplified. A hybrid experimental/numerical

technique is presented in this section that combines the experimental

technique of moire interferometry with the numerical finite element

method to form a hybrid technique. The new method uses the advantages

of each of the two separate methods to create an accurate and powerful

tool of analysis.

In this section, the basic concepts of moire interferometry, the

experimental portion of the hybrid technique, are presented. The

details of the hybrid technique are discussed, and the geometric and

material properties of the physical specimens and the finite element

models are given in preparation of the presentation of the numerical

results given in the following section.

4.2 Moire Interferometry

* A search for the origins of the French word "moire" would lead to a

fabric known as watered silk, which displays varying patterns of light

and dark bands. For this reason, the so-called moire effect occurs

4 whenever two similar but not identical arrays of lines or dots are

arranged such that one array can be viewed through the other [561.

Moire methods have been used in the field of solid mechanics for several

* decades to analyze deformed bodies. During recent years, the

sensitivity of these methods has been improved dramatically.
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.Moire interferometry is an experimental technique which may be used

in solid mechanics problems to measure in-plane displacements of

deformable bodies under external action. The method is unique in that

it is not dependent upon the geometrical or material nonlinearities of

the specimen under analysis. All moire techniques use two bar-and-space

gratings, one as a reference and one that is attached to the specimen.

As the specimen is deformed, the specimen grating deforms along with it,

and a contour map of moire fringes is formed due to the deformed

specimen grating contrasting with the undeformed reference grating.

Since the displacements in a given direction are directly proportional

to the fringe order, the corresponding displacements may be computed by

the analyst by counting the number of fringes on the contour map.

Stresses may then be calculated using the gradients of the displacements

and an assumed constitutive model, though this can become quite tedious

and is not as accurate as the displacements themselves.

Moire interferometry provides the required sensitivity that is

needed to accurately measure the small in-plane displacements of the

two-dimensional pin-loaded plate contact problem. In particular, this

method provides valuable information on the state of the displacements

(not stresses) at the interface boundary between the pin and the

plate. This eliminates the need for theoretical assumption on exactly

what is occurring at the contact boundary that is so common in most

numerical simulations of this problem. As mentioned previously, it is

the complex state of contact, stick, and slip that makes this problem so
difficult to model numerically, and the use of an experimental technique

to determine the contact conditions greatly simplifies the computational

effort.
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Only the salient features of moire interferometry have been

discussed in this section, and interested readers are urged to consult

the more detailed references by Post [57-591.

4.3 The Hybrid Technique

The two basic components of the hybrid technique are the nonlinear

mixed finite element method and moire interferometry. By far, the more

demanding portion of the hybrid technique is the experimental portion of

the analysis. Although not discussed in this study, the experimental

details of the hybrid technique will be reported by Joh [601. Despite

the effort required to obtain accurate experimental data and the

relatively large computational time involved in the finite element

analysis, the steps involved in the execution of the hybrid method are

quite simple in concept and are outlined as follows.

The exact displacements around the hole boundary of a physical

specimen may be measured for a sequence of increasing load steps using

moire interferometry. These displacement increments, along with the

loads applied to the plate, are input as a sequence of nonhomogeneous

boundary conditions for the simulated problem analyzed by the nonlinear

mixed finite element model. These steps can be represented

mathematically by considering the global finite element matrix of the

plate written in partitioned form as

r- K"I [K12] [K13 ( full) {Fl})

[K121T [K221 [K23] u2i [F2} (4.1)

L [K 13]1 T  [K23]T [K33] Al {F3}

where the vector ful} contains the degrees of freedom corresponding to

known zero displacements (for example, along lines of symmetry of the

plate), {u2} contains the degrees of freedom corresponding to the nodes
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of the plate that are in contact with the pin, and {A} contains the

degrees of freedom corresponding to the remaining unknown nodal

displacements and stresses throughout the domain of the plate.

The imposition of known boundary conditions on the global finite

element matrix is a relatively straightforward task and only the major

points will be described here. Further details of this procedure may be

found in any textbook on structural analysis or the finite element

method (e.g. see [111). The specification of homogenecus boundary

conditions, or in this case the known zero displacements, results in the

modification of Eq. (4.1) which may then be written as

[1] [01 [01 ] (f{ull) 0O}

1 01 [K 22J 1 [K231 1u21~ F { 2} (4.2)
-101o [K 23 1T [K 33  1&1 IF3})

where [I] and [01 represent the identity matrix and the null matrix,

respectively, and {0} is the null vector. This step is typically

performed in all analyses of the plate regardless of whether a hybrid

technique or a numerical technique is being used in order to remove the

rigid body motion of the plate and to account for the symmetry of the

structure. The primary difficulty in the execution of the numerical

contact algorithms described in section 3 is the determination of the

vector {u2} for a given load step such that there is no penetration

* between the nodes of the pin and the plate and that the regions of stick

and slip are accounted for. Hence in a strict computational contact

algorithm the vector fu2} is solved for in an iterative fashion for a

given load step. Each iteration involves significant computation in

order to eventually obtain a solution to the problem.
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In the hybrid technique, the vector {u2} is given by the

experimental technique and contains the true displacements of the plate
0

boundary as it has come in contact with the pin. Imposing the known

displacement boundary conditions on the global system of equations is

slightly more complicated than the procedure described in Eq. (4.2) for

the homogeneous boundary conditions since the specified displacements

are no longer equal to zero and hence have an effect on the remaining

equations of the system. The force vector must therefore be modified to

reflect this condition. If the vector {u2} represents the known

displacement of the contact nodes around the boundary of the plate

determined by the experimental technique, then the modified global

matrix equation after imposition of all boundary conditions may be

written as

*[[1] [01 [0]1 (full) ( o1
10] [1] [01 ] fu}= 1 fU21~ (4.3)

.JOi [01 [K331 I {} 1 (
We note that the remaining force vector has been modified to account for

the nonzero specified displacements. The components of this vector may

be written as

F i = F3 -_ K33 uj (4.4)1 I ij2

where the indicial subscripts and superscripts indicate the appropriate

vector or matrix entries. Solving the modified matrix equation in Eq.

(4.3) will result in the correct boundary displacements as well as the

corresponding displacements and stresses throughout the rest of the

plate.
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Since the solution of the Incremental displacement and stress

vector is an iterative process, the vector {u2} is nonzero only for the

first iteration of the solution procedure for the given load step, and

is specified to be zero for the subsequent iterations. Hence for a

given load step, the prescribed contact boundary displacements are

applied to the plate along with the appropriate force vector resulting

from the uniform, in-plane load that is applied to the plate. The

nonzero displacements throughout the rest of the plate along with all

nodal stresses are then solved for using Eq. (2.40) until acceptable

Aconvergence criteria have been met. As in the case of the rigid pin

algorithm described in Section 3.2, the pin is completely eliminated

from the finite element analysis and therefore only the domain of the

plate is discretized and analyzed.

The only approximations involved in this technique are those due to

the physical and mathematical limitations of moire interferometry and

*the finite element method. The numerically solved problem is simply a

special boundary-value problem with specified displacements, and no

other assumptions are involved.

Since, in theory, the one half of the plate acts as the mirror

image of the other half of the plate, only one half of the plate domain

is modeled for the finite element analysis. This will significantly

9reduce the computational time involved. Experimental data have shown

that the displacements around the hole of the plate are not exactly

symmetric, even for an isotropic material. This is most probably due to

the limitations of creating a perfectly symmetric specimen and applying

a perfectly symmetric load. The displacements are therefore averaged in

both of the coordinate directions of the plate to yield one pair of

54

- ;~.



S

displacement values for a given point of the contact boundary for the

modeled half of the plate.

4.4 Description of the Plate

In this section the physical dimensions and material properties are

* given for the plate and the pin used in the experimental portion of the

hybrid technique. Also given are the different finite element meshes

used in the numerical portion of the analysis of the plate.

* A diagram of the plate used in the experiments performed to

determine the boundary displacements between the plate and the pin is

shown along with the dimensions used in Figure 4.1. The plate and the

* pin were both constructed of 7075-T6 aluminum (E = 10,400 ksi and V =

0.33). The thickness of the plate was taken to be 0.061 inches. The

restraining pin, with a radius of 0.3745 inches, was fixed to a

* structure exterior to the plate and hence its center did not deform

except for a very small displacement due to the bending of the pin

fixture. The plate was loaded by means of pins passing through the two

* 0.5 inch diameter holes.

Several assumptions were made in the finite element modeling of the

plate domain for use in the hybrid technique. The assumption of

*symmetry was used along the length of the plate in order to reduce the

total number of degrees of freedom of the problem, thereby reducing the

cost of the finite element analysis. In addition, St. Venants principle

* was invoked near the loaded end of the plate to eliminate the localized

effects of the pins loading the plate. Hence only the first 8.5 inches

of the plate were discretized, and the applied load was assumed to act

as a uniform in-plane load to the shortened end of the plate (i.e. the

left end of the plate in Figure 4.1).
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Several different mesh configurations were used in the finite

element analysis in order to determine the effect of element size and

approximation order and also to compare results for a variety of domain

and variable approximations. The first mesh used is shown in Figure 4.2

and contains 191 linear isoparametric elements and 228 nodes,

representing 1140 total degrees of freedom. As indicated by the type of

element used to approximate the geometry, both stresses and

displacements were assumed to vary linearly in the finite element

approximations. Since the inner boundary of the plate is circular, the

use of linear elements introduces some domain approximation error into

the solution for this mesh and any other mesh constructed of linear

elements.

The second finite element mesh used to model the plate was

constructed of quadratic elements and is shown in Figure 4.3. The use

of quadratic elements minimizes the domain approximation error in the

analysis of this problem. This second mesh contains 104 elements and

367 nodes, which corresponds to 1835 total degrees of freedom. Although

the quadratic elements do represent an improvement over linear elements

in terms of modeling the circular boundary of the plate, their use does

tend to increase the bandwidth of the global finite element matrix, and

hence the computational effort.

The nodes of both finite element meshes used in this example were

renumbered using the Cuthill-McKee ordering strategy [651 to reduce the

size of the bandwidth and thereby decrease the cost of the analysis. As

mentioned in Section 2, the nodes must still be numbered such that the

first node has specified (zero or nonzero) displacements. Several

different contact nodes were selected as the initial node in the
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renumbering scheme and it was found that selecting the node of initial

contact (i.e. the node at x = 7.375 and y = 0.0) gave the node numbering

with the smallest resulting corresponding bandwidth.

The displacements around the boundary of the hole obtained by moire

interferometry are eventually expressed in Cartesian components as a

function of the angular position around the inside of the hole. The

displacements were given every 0.5 degrees for each load step. In order

to retain as much of the accuracy of these displacements as was

possible, the contact nodes of the plate were located exactly at a point

where the experimental displacements were computed, i.e. on the degree

or half-degree. Due to the storage restrictions of the finite element

model, only a finite number of nodes could be specified on the plate

boundary, which necessitated ignoring many of the data points from the

experimental analysis. Hence for the half-plate model, the contact

nodes of the linear element mesh were located at the following (degree)

locations: 0.0, 1.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.5, 15.0, 20.0, 25.0,

30.0, 35.0, 40.0, 45.0, 54.0, 63.0, 72.0, 90.0, 99.0, 108.0, 117.0,

126.0, 135.0, 144.0, 153.0, 162.0, 171.0, and 180.0. In an attempt to

incorporate some of the different data point displacements and to

determine if this -range affected the resulting stress distributions,

the nodes for the quadratic element mesh were placed at slightly

different locations: 0.0, 1.5, 3.0, 4.5, 6.0, 7.5, 9.0, 10.5, 12.0,

14.0, 16.0, 19.0, 22.0, 27.0, 32.0, 38.5, 45.0, 50.0, 55.0, 62.5, 70.0,

80.0, 90.0, 101.0, 112.0, 123.5, 135.0, 246.5, 158.0, 169.0, and 180.0.
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5. NUMERICAL EXAMPLES AND RESULTS

5.1 Introduction

In this chapter, the results are presented for a number of

numerical examples to demonstrate the accuracy and efficiency of the

methods described in the previous sections. The next three sections

contain results for several elastic contact problems, and in particular

the pin-loaded plate problem, using the rigid pin algorithm, the elastic

pin algorithm, and the hybrid experimental/numerical technique.

It is again emphasized that all of the contact algorithms contain

the nonlinear mixed formulation described in Section 2 as a foundation,

and the only procedures that vary in these different computational

schemes are the assumptions and computations that account for the

regions of contact and the zones of stick and slip. Throughout the

presentation of the results, the effectiveness of having stress as a

nodal variable is demonstrated and highlighted.

5.2 Rigid Pin Algorithm Examples

* The contact algorithm proposed by Rahman in [48] was implemented

using the three basic iterations of load, contact, and friction using a

geometrically nonlinear formulation along with mixed finite elements.

* Here the results of several example problems involving contact between

an elastic body and a rigid pin are presented not only to demonstrate

the accuracy of the algorithm but also to highlight the effectiveness of

*having stress as a nodal variable. The results of the example problems

are compared with available analytical and numerical solutions.
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b) Finite element mesh used for quarter cylinder

Figure 5. 1 Modeling used for infinite cylinder resting on rigid plane
under uniform line load
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5.2.1 Infinite1y Long Cylinder Under Uniform Load

As a first example we consider an infinitely long cylinder of

radius r = 1 inch resting on a rigid plane and under a uniform line

load. This problem was modeled using the assumptions of plane strain

and a thickness of 1 inch. One quarter of the circular domain was used

to model the problem and was approximated by 84 linear elements. The

mesh is shown in Figure 5.1. The load was assumed to act at the center

of the cylinder and was applied in 12 increments with the initial

increments smaller than the later increments. The problem was modeled

by assuming that the cylinder was in contact with a rigid pin of very

large radius (R = 1000 in.) to model the rigid plane. A tolerance of

0.001 (i.e. 0.1 percent) was used for the equilibrium iterations. The

modulus of elasticity used was 21,000 psi and the Poisson's ratio used

was 0.3.

The results of the analysis are shown if Figures 5.2 and 5.3. The

numerical results are compared with the Hertz analytical solution

[631. Figure 5.2 shows the contact pressure distribution plotted

against the distance from the original point of contact and corresponds

to a total applied load of 56 lbs. Figure 5.3 shows the load plotted

against the total contact area, the data points of which can only be

determined when each successive node comes in contact with the pin. The

results from the contact algorithm appear to be quite good.

5.2.2 Orthotropic, Pin-Loaded Plate

The second example considers a thin, orthotropic, pin-loaded plate

with a hole of radius r under a uniform in-plane load, similar to the

situation shown in Figure 3.1. The modeled plate is shown in Figure 5.4

along with the geometrical and material properties of the plate. Due to
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Figure 5.2 Contact pressure distribution for infinite cylinder
using rigid pin algorithm
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Figure 5.3 Contact area for infinite cylinder using
rigid pin algorithm
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symmetry, one half of the plate was modeled using 124 linear elements

with 156 nodes for a total of 780 degrees of freedom. The material

properties given in the figure are averaged properties from a number of

species of wood. The pin was assumed to be rigid and of radius R. The

plate was loaded to a final load of 400 pounds per inch of plate

thickness, and was applied in 18 unequal increments. A constant

coefficient of friction of 0.7 was assumed at all points of contact

between the plate and the pin for all load levels and is a typical value

for wood on steel. No equilibrium iterations were performed for this

problem.

Figure 5.5 shows the radial stress distribution as a function of

the angular position around the pin for the nodes that have come in

contact at the final load step. These results are compared with the

results obtained by Wilkenson [641 using a finer mesh (385 nodes) and

quadratic displacement elements. The comparison is very good.

5.3 Elastic Pin Algorithm Examples

* The method of analyzing contact problems developed in Section 3.3

is much more general than the algorithm described in Section 3.2 which

uses the assumption of a rigid pin. Although this assumption greatly

* simplifies the analysis, it also restricts the number of problems to

which this technique may be applied, since one of the bodies must be

rigid and have a circular shape. This second requirement is certainly

valid for the present study, as the primary problem of interest is that

of a pin-loaded plate, but it should be pointed out that the scheme

developed in Section 3.3 is much more versatile and may be applied to a

* much larger variety of contact problems.
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5.3.1 Infinitely Long Cylinder Under Uniform Load

As a first example of the so-called elastic pin algorithm, we

consider the Hertz contact problem analyzed by the rigid pin algorithm

in the previous section. This problem was modeled using the three

different mesh configurations shown in Figure 5.6. The geometry and

material properties of the cylinder are identical to those shown in

Figure 5.1. The rigid plane in this case is modeled as a square block

of very high stiffness with its displacements specified to be zero and

would be defined as the target body according to the terminology

introduced in Section 3.3.

Instead of applying the load to the quarter cylinder by means of a

point load along the vertical centerline, as done in the previous

section, we instead require the upper horizontal mid-plane of the

cylinder to deform a uniform amount. Hence, we specify the vertical

displacements of each of the nodes along this horizontal mid-plane to be

a certain distance for each successive load step. The total load may

then be computed by summing each of the nodal forces corresponding to

the specified vertical displacements. For this example, the load was

applied in 14 non-uniform displacement increments until a final

displacement of 0.014 inches was reached. Since this problem involves

frictionless contact, sliding matrices are always imposed for a node in

contact, even for the first iteration.

Figures 5.7-5.9 show the contact pressure distributions computed by
0

the elastic pin algorithm, shown by the dotted lines, between the

cylinder and the rigid plane for the cases corresponding to the total

applied displacements of 0.006 and 0.014. We note that the smaller

displacement level corresponds to an applied loading of approximately P
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• Figure 5. 7 Contact pressure distribution for infinite cylinder
using elastic pin algorithm and mesh 1
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Figure 5.8 Contact pressure distribution for infinite cylinder
using elastic pin algorithm and mesh 2
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= 56 lbs. which Is near the final load level reached for the same

problem analyzed by the rigid pin contact algorithm and hence may be

compared with the results given in Figure 5.2. The computed stresses

are compared with the Hertz analytical solution which is again

represented by the solid line in the figure. The agreement is quite

good for both load levels and improves as the mesh is refined.

The stress distributions have been plotted on different graphs due

to the change in the Hertz solution resulting from the differences in

the total applied load. As the mesh is refined, the force required to

displace the horizontal mid-plane of the cylinder decreases since the

cylinder is generally becoming more flexible. This change in load is

relatively small, but makes a large enough difference in the Hertz

solutions to warrant separate figures.

It is also of interest to compare the changes in the contact

pressure distributions for different frictional conditions. The plot of

the contact pressure along the rigid plane measured at the final load

step for mesh 3 is shown in Figure 5.10 as a function of the distance

away from the vertical centerline of the cylinder for various values of

the coefficient of friction, u. The plot of the Hertz analytical

solution is shown by the solid line in the figure. We note that as the

coefficient of friction increases, the total load required to displace

the horizontal centerline of the cylinder a uniform amount also

increases. Hence in Figure 5.10, even though each of the total applied

forces corresponds to the same uniform displacement of 0.014 inches, the

Hertz solution is given for the load that is computed from the finite

element solution for the case of an infinite coefficient of friction.
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The contact pressure distributions shown in Figure 5.10 agree

fairly well with the analytical solution. As the coefficient of

friction is increased, the contact pressure also increases, especially

for the initial nodes of contact. The pressures computed from the

computational algorithm for all frictional conditions are generally

higher than the pressures computed from the analytical solution due to

the stiffening effect of the cylinder as it deforms. Although not shown

in this figure, the contact area decreases as the coefficient of

friction increases. The contact area may only be determined as each

successive contact node on the boundary of the cylinder comes in contact

with the rigid plane. For example, for the load level corresponding to

the horizontal centerline displacement of 0.011 inches, the seventh

contactor node is in contact with the rigid plane for the case of

frictionless contact, but this node has not come in contact for the

cases where u = 0.3 and u = -.

A second means of computing the total applied load required to

displace the horizontal centerline may be implemented by integrating the

contact stresses along the length of the contact area of the rigid

block. This not only provides a check on the total applied force, but

it also gives some indication as to the accuracy of the nodal stresses

computed from the mixed finite element model. The resulting forces

calculated by integrating the contact pressures using a consistent

formulation for each of the displacement increments are shown for mesh 3

in Figure 5.11, denoted by the dashed line, and are plotted against the

total specified displacement of the cylinder mid-plane. These forces

are compared with the forces computed from summing the equivalent nodal

forces at the points of specified displacement, shown by the dotted line
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in the figure. Also shown are the forces computed from the exact

solution which are denoted by the solid line. Clearly, the applied

loads calculated from the two methods within the finite element solution

are in excellent agreement with the forces computed using the pressure

integration being somewhat higher than those computed from the nodal

forces. Both of these loads are larger than the corresponding exact

loads computed for a given displacement, and again this is due to the

stiffening effect of the cylinder.

5.3.2 Orthotropic, Pin-Loaded Plate

We next consider the orthotropic, pin-loaded plate previously

analyzed by the rigid pin algorithm in Section 5.2.2. The allowance for

an elastic pin requires that the domain of the pin be analyzed as well

as the domain of the plate. Since the elastic pin algorithm was

developed using linear elements, this discretization introduces another

source of error into the problem since the approximation of the curved

boundaries of both the plate and the pin must be approximated by a

series of straight line segments. As with any finite element

discretization, however, this approximation error decreases as the mesh

is refined.

The location of the boundary nodes at the pin/plate interface,

though not difficult to model, does require special attention to ensure

that the limitation of straight line segment boundaries does not result

in the nodes of the contactor body (i.e., the pin) being initially

within the domain of the target body (i.e., the plate). The mesh

generation was performed such that the nodes on the boundaries of both

the plate and the pin were located on the correct geometric locations on
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the appropriate circular boundaries, while all nodes of the pin were

located outside the domain of the plate.

0 A major disadvantage of this algorithm in the analysis of the pin-

loaded plate problem is that the pin must be discretized as well as the

plate. While this does not increase the total number of degrees of

freedom to an unreasonable extent, it does hinder the effectiveness of

the bandwidth reduction scheme mentioned in Section 4. As the nodes of

the pin come in contact with the target segments of the plate, the

global influence of the degrees of freedom corresponding to the given

contactor node extends to the corresponding target node degrees of

freedom of the plate. Care must therefore be taken in the numbering of

the nodes of the pin and the plate to ensure that the resulting

bandwidth does not exceed the allowable maximum as new contactor nodes

of the pin come in contact with the plate.

The domain of this problem was modeled using three different mesh

configurations where the symmetry of the plate was used to advantage.

The initial coarse mesh is shown in Figure 5.12 along with the

appropriate specified zero displacements. Most of the subsequent mesh

refinement was restricted to the region of probable contact to increase

the number ofcontact points between the pin and the plate. This region

is shown by the darkened area in Figure 5.12. The three element meshes

corresponding to this sub-region are shown in Figure 5.13. In general,

the region of contact was estimated to be within 00 and 450, where 00

represents the initial point of contact between the pin and the plate.

The coarse mesh (mesh 1 in Figure 5.13) consisted of 99 elements and 132

nodes and contained 6 specified contactor nodes. Hence the total number

of degrees of freedom corresponding to his mesh is 672 (132 x 5 + 6 x
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2). The refined domain approximations resulted in 1085 and 1433 total

degrees of freedom for mesh 2 and mesh 3, respectively.

The plate was loaded to a final load of 400 pounds per inch of

plate thickness, and was applied in 12 unequal increments using an error

tolerance per load step of 0.01. The material properties used for the

plate are identical to those of the orthotropic plate shown in Figure

5.4, but the material properties for the pin were taken to be those of

steel, and were assumed to be given by E = 29,000 ksi and v = 0.3. The

physical dimensions of the plate and the pin are identical to those

given in Figure 5.4.

The radial stress distributions around the hole of the plate are

shown as a function of angular position in Figure 5.14 for P = 0.32 Pmax

and in Figure 5.15 for P = Pmax* In Figure 5.15 the stresses from each

of the three different meshes are represented by dashed lines and are

compared with the results obtained by Wilkenson [641 which are shown by

the solid line and were obtained using the assumption of a perfectly

rigid, circular pin. The results are fairly reasonable even for the

coarse mesh, although the stresses are significantly underestimated near

the initial points of contact. As the mesh is refined, however, both

the shape of the stress distribution and the maximum stress values

p. approach the solution obtained by Wilkenson, yielding fairly good

agreement for the final refined mesh.

An important point to note is that the maximum stress given by the

elastic pin algorithm is not given at the point of initial contact. In

tact, the nodal stresses do not follow a regular pattern of decreasing

as the angular position away from the initial contact point increases,

as reported by Wilkenson. It is unknown if the pattern shown is a
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result of the modeling of the problem, the contact algorithm used, or as

a consequence of using mixed elements. It should be pointed out,

however, that the results given in [641 were plotted using a smoothing

routine, and in the actual analysis of this problem, reported in [471,

this phenomena of increasing stress with increasing angle was recorded

at several points around the boundary of the plate. Furthermore, in one

of the few other contact analyses that used mixed elements, this effect

is also shown rather dramatically in the analysis of the Hertz contact

problem [451.

In this example problem, the results of the elastic pin algorithm

are compared with the results obtained by means of a different technique

using the assumption of a perfectly rigid pin. To simulate this rigid

pin, the material properties of steel were used. To investigate the

effect of higher pin stiffness on the resulting stress distributions,

the analyses in this section were repeated using a pin modulus of

elasticity one order of magnitude larger than that of steel. Poissons

ratio was kept as 0.3. For both mesh configurations, the displacements

near the contact region decreased approximately one order of magnitude

from the displacements using the steel pin. This discrepancy decreased

rapidly away from the contact region, with the displacements at the

loaded end of the plate differing by only one percent. More

importantly, the increase in pin stiffness had a very small effect on

the radial stress distributions as all computed stresses around the

plate were within two percent of one another. Hence within the context

of this example, the rigid pin was adequately modeled by having a

modulus of elasticity approximately one order of magnitude higher than

S that of the plate.

85



5.3.3 Aluminum, Pin-Loaded Plate

We next consider a second example problem involving a pin-loaded

plate. The specimen used in this example is the aluminum plate shown in

Figure 4.1. The plate is restrained by an aluminum pin that is assumed

to be of the same thickness (0.061 inches) as the plate. The mesh used

to model the plate and the pin is shown in Figure 5.16 and contains 236

elements, 286 nodes, and has a total of 16 possible contact nodes, which

accounts for 1462 total degrees of freedom. The mesh used to discretize

the plate is very similar to the mesh of linear elements used in the

implementation of the hybrid technique shown in Figure 4.2. Only the

region of initial contact contains slightly fewer elements and nodes.

In contrast to the previous example, the initial clearance between

the pin and the plate is very small for this problem. Hence even for a

very small initial load increment several nodes will come in contact at

the same time. The algorithm used to analyze this problem was written

such that the specified displacement increments corresponding to the

penetration of a contactor node are imposed one at a time to ensure that

the effects of each of these displacement increments do not subsequently

alter the penetration distance of subsequent contactor nodes. The

loading for this problem was applied in 6 increments with initial small

load steps giving way to much larger load steps until a final load of

1037 pounds was applied to the plate. The material properties used for

this plate were the same as those given In Section 4.4.1. A coefficient

of friction of 0.15 was used in this example.

Figures 5.17 and 5.18 show the radial and shearing stress

distributions computed at the end of the third and sixth load steps,

respectively. In each of the figures, the results are compared with the

86

'am



rnnrr.rnnrnr ~~flWWWWmrnflflflfl

* K -

* a)

0.

S

S*
0

U,

9-*
C
C

U,

*
U,a)
S
4-)
Ca)
S
a)

* a)

4~)

C

U-

'.0

* U-)

a)

0~

U-

81



70- ----- n --.-

5.0

0.0

-5.0

E- \ N
' -10.0- e'

(UL
4 -3 -15.0L"L -

-20.0

0

-25.0

a from numerical/experimental technique%r

-30.0-------a rr from elastic pin algorithm

T re from numerical/experimental technique

-35.0 Tre from elastic pih algorithm

--- --- -- - -

-40.0 . . I I I " I

-90.0 -60.0 -30.0 0.0 30.0 60.0 90.0

Angular position, theta (deg.)

Figure 5.17 Normal and shearing stress distributions for
aluminum plate example at 3rd load step

88



* 5.J

0.0 - . . - " . .......... ".. .. ,

-5.0

• -10.0

CU -15.0

*-20.0

.- -25.0
o a from numerical/experimental technique=o rr

-30.0 - arr from elastic pin algorithm

T re from numerical/experimental technique

-35.0 7r from elastic pin algorithm

~~-40.0 ,

-90.0 -60.0 -30.0 0.0 30.0 60.0 90.0

Angular position, theta (deg.)

Figure 5.18 Normal and shearing stress distributions for aluminum
*p plate example at 6th load step

89



corresponding results from the hybrid technique described in Section 4

(see Section 5.5). The radial stress distributions are in quite good

agreement with one another where the differences can probably be

attributed to the linear domain approximation of the pin, the

approximation of the restraining pin using the assumptions of plane

stress, and the effects of the relatively large load steps that force

several nodes to come in contact for a given increment due to the very

small clearance for this problem. The shear stress distribution

computed from the elastic pin algorithm increases during the initial 15

degrees of contact and then abruptly drops to near zero. This peak in

fact indicates the termination of the zone of sticking contact, and all

nodes in contact past this point are in sliding contact. The results

from the hybrid technique also show this pattern to a slightly lesser

extent, and the shearing stress does not approach zero quite as

abruptly.

We also note that in general the displacements in the direction of

the load computed by the elastic pin algorithm are larger than those

given by the experimental data from the hybrid technique. The

differences are largest near the initial points of contact and then

dissipate away from this region. This behavior is almost certainly

caused by modeling the pin as a two-dimensional body under plane stress

conditions when in reality this fixture is much more three-dimensional

than is the plate.

5.4 Results of Hybrid Numerical/Experimental Technique
This section contains the results of the implementation of the

hybrid technique described in Section 4. All analyses were performed

using either the mesh of linear elements shown in Figure 4.2 or the mesh

90



of quadratic elements shown in Figure 4.3. The loading was typically

applied in 9 increments where the values used were given as follows (all

values in pounds): 225, 467, 667, 855, 1037, 1240, 1458, 1670, and

1840. This load was assumed to be uniformly distributed along the

bottom of the plate. All u displacements (i.e. the displacements in the

direction perpendicular to the load) along the centerline of the plate

were specified to be zero due to the symmetry of the plate. All nodal

displacement increments around the hole interior were specified using

the displacement values from the moire analysis, except for the known

zero u displacements for the two nodes located on the centerline of the

plate.

Several representative radial contact stress distributions are

shown in Figure 5.19. In all plots containing the results from the

hybrid technique, the angular positions of the data points correspond to

the diagram of the truncated plate shown in this figure. The stresses

shown here correspond to the second load level and the ninth or final

load level. The stresses shown are taken from the mesh of linear

elements, represented by the dotted line, and from the mesh of quadratic

elements, represented by the solid line. The compressive radial

stresses are at a maximum near the initial nodes of contact near 900 and

then decrease to near zero for the lower quarter of the hole boundary.

This is as expected since the points of initial contact on the plate

have normals that are closer to the direction of applied load than the

0P later contact nodes, and would therefore be expected to balance the

majority of the load in the radial direction. The stress free condition

is well shown in the region from -90o to 0° with the small variations

most likely due to numerical and experimental scatter. In general, good
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agreement exists between the stresses computed using the mesh of linear

elements and the mesh of quadratic elements.

It should be stressed that all of the results presented from the

hybrid technique in this section are based on the experimental data from

a single experiment and should be viewed with this in mind. Since the

results are so highly dependent on the experimental data, it is

necessary to avoid making sweeping generatlizations based on the results

presented in this section. Nevertheless, several preliminary

observations can be made from these results. First, the region of

contact is very large, even for the lower load steps, but never exceeds

90 degrees. This is most likely due to the very small initial clearnace

between the plate and the pin. Second, there are obvious fluctuations

in the compressive stress in the initial 15 degrees of contact for both

levels, and in fact this pattern exists for each load step. This is a

consequence of an unexplained sequence cf sign changes in the v-

displacement increments of the experimental data that appear in this

region for each load step. These pecularities may be due to surface

flaws, a localized stick/slip effect, or some other unexplained physical

phenomenon. Figure 5.20 shows the radial stress distribution from 0 to

90 degrees for the final load step using the mesh of quadratic elements
S

for a series of increasing radii inside the plate domain. As the

distance from the hole boundary is increased, the fluctuations become

much smaller and are nearly eliminated altogether for a radius of 0.6

inches. Hence these oscillations are quite localized and are most

likely due to a surface effect.

Figure 5.21 shows the shearing stress distributions calculated

using the two different mesh configurations measured at the final load
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step. The trends are generally the same for both meshes except for

several obvious kinks that are due to the differences in the data point

displacements used and the differences in the two meshes. The values of

the shearing stresses are quite small and are in fact nearly an order of

magnitude smaller than the corresponding radial stresses for this same

load step. Although the stresses are of the proper negative sign, they

remain negative and slightly nonzero even in the region of supposed non-

contact. It is difficult to ascertain if these patterns are due to the

actual behavior of the plate or if either numerical or experimental

difficulties are affecting the solution.

The circumferential stress distributions for the final load level

are shown in Figure 5.22 for both mesh configurations. These two curves

are in very good agreement and, except for the samll jumps in the region

of initial contact which are again probably due to the discrepancies in

the v-displacement data, this stress distribution is quite smooth. This

stress component is of little interest in terms of the contact problem

and is mainly shown here for completeness.

In the preceeding discussion, the region of contact was always

assumed to be determined by the region of compressive stress. Where the

radial stress went to approximately zero, the contact region was assumed

to have ended. In terms of the hybrid technique, this is the only means

that is available for computing the angle or region of contact between

the pin and the plate for a given load step.

Fortunately, the experimental data provides a second means of

computing the contact area. A cursory glance at the u-displacements

from the moire results shows a positive displacement increment for all

of the boundary nodes from 900 down to some angle . All data points
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past this angle have a negative u-displacement increment up to the final

boundary node located at 180 degrees. The angle # decreases as the

loading is increased. Intuitively, one would expect that the only

constraint that would cause a positive u-displacement for the nodes on

the hole boundary of the plate is the presence of the pin, and that the

point of the sign change would correspond to the end of the contact

region. This conclusion is reinforced by viewing the resulting radial

stress distribution from the hybrid technique and noting that the nodes

bounding the change in the sign of the u-displacement increments also

bound the change in the sign of the radial stress component from

negative to positive (or near zero).

If the above argument holds, one could recall the boundary

conditions of the mixed method given in Eqs. (2.50) and (2.51) and note

that only the displacements on the contact boundary need be specified

since the remaining portion of the hole boundary is stress free. Using

the criterion given in the preceeding paragraph, only those

displacements corresponding to nodes thought to be on the contact

boundary were specified using the experimental data. The resulting

radial and shearing stress distributions are shown in Figures 5.23 and

5.24, respectively using the mesh of linear elements. The radial stress

distributions are in very good agreement with one another, indicating

that the change in sign of the u-displacement increments most likely

does represent the end of the contact region. There is a small but

sharp jump in the stress at the node located at 00 which is most

probably caused by specifying the displacements for one node and not

specifying the displacements for the adjacent node. The numerical

scatter is much smaller from -900 to 00 and the revised stress is
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slightly more compressive from 00 to 900, indicating that the specified

displacements somewhat restrain the motion of the plate using this

particular mesh.

The shearing stress distributions are also in good agreement except

near the end of the contact region, where the stress values resulting

from the specification of only the contact boundary node displacements

dips slightly more negative and then goes to near zero before following

the original stress distribution for the remainder of the hole

boundary. Again, the shearing stresses remain much smaller than the

corresponding radial stress components.

A final analysis was performed to determine the effects of

geometric nonlinearity for this particular specimen. The final load

step was applied along with the corresponding specified boundary

displacements as a single load step in contrast to the incremental

analysis that had been performed for the preceeding examples. The

resulting stresses and displacements were in excellent agreement with

the results from the incremental solution, with all values within 1

percent of each other and most values much closer. The single load step

analysis converged in three iterations whereas the incremental analysis

converged in two iterations for each of the 9 applied load increments.

Hence it appears that for this example, the effects of geometric

nonlinearity are quite small. This is no doubt due to the relatively

stiff material being used and the very small initial clearance between

the plate and the pin.

In summary, the hybrid technique provides a useful alternative to

strictly computational schemes for the analysis of the pin-plate problem

in that no approximations are involved regarding the location of the
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contact region or the regions of stick and slip. Since this information

is provided by an actual physical test there are several unfortunate

drawbacks to this method that have yet to be resolved. First, although

the region of contact can be computed using the results of the hybrid

technique with what appears to be good accuracy, the regions of stick

and slip are still unknown since the relative displacements between the

points of the pin and the plate in the tangential direction are not

known. Second, the resulting radial and circumferential stress

distributions on the hole boundary of the plate are relatively smooth

and appear to be reasonable. The shear stresses, however, are very

small compared to the radial stresses, have no uniform pattern around

the hole boundary and are nonzero in the regions of no contact. Since

the material used in the experiment was isotropic, this may mean that

the extensional strains e rr and e are measured with good accuracy but

either there is some problem in experimentally capturing the true

shearing strains or numerically modeling the shearing stresses along the

contact boundary of the plate. Other conclusions must await the

computation of the boundary stresses using the moire fringe patterns and

the results of additional experiments, which are to be reported by Joh

[601.

,4
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6. SUMMARY AND CONCLUSIONS

6.1 Summary

A mixed variational statement and corresponding finite element

model were developed for plane elastic bodies undergoing large

deformations using the updated Lagrangian formulation. The mixed finite

element formulation allows independent approximation of the

displacements and stresses and both of these quantities appear as nodal

variables. This formulation was applied to several plane elasticity

contact problems to assess the efficiency and accuracy of this approach.

Using the mixed formulation, two separate computational algorithms

were developed for the analysis of contact between two bodies

considering the effects of friction. The first algorithm assumed that

one of the bodies was perfectly rigid and circular in shape. The second

algorithm was much more general and allowed for two bodies of arbitrary

shape and constitution. Both techniques required the use of several

iterative procedures to account for the accurate computation of the

regions of contact and the regions of stick and slip betwen the two

bodies. The mixed formulation yields stresses on the boundaries of the

two bodies in contact since these components are nodal variables. This

facet is a key advantage of this formulation since the contact stresses

are not only part of the desired solution to the problem but are also

used in several intermediate steps of the analysis. Both of these

algorithms were applied to several example contact problems, including

the well known Hertz problem and several examples involving contact

between a plate under in-plane load containing a hole and a circular pin

located within this hole.
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A hybrid numerical/experimental method of contact analysis was

developed using the mixed finite element formulation and the

experimental technique of moire interferometry. This approach is unique

in that there are no approximations required to determine the contact

regions or the states of stick and slip as required by all strictly

computational algorithms since the displacements on the contact

interface are provided by the moire analysis. The only approximations

involved in this technique are those due to the physical and

mathematical limitations of the experimental and numerical techniques.

This hybrid approach was applied to the problem of an aluminum plate

with a hole restrained by a pin and subjected to an in-plane load.

6.2 Conclusions

The displacements computed from the mixed formulation applied to

several linear and nonlinear plane elasticity problems are in good

agreement with values computed using the more conventional displacement

finite element model. The stresses computed using the mixed method,

however, are not only slightly more accurate than those computed from a

displacement formulation, but they are also computed precisely at the

nodes. This is a valuable characteristic when applying this formulation

to problems with stress concentrations or contact problems since the

displacement formulation typically requires that the stresses be

computed within the elements which are then somehow extrapolated to the

boundaries.

Both contact algorithms yield reasonably accurate results for the

contact problems analyzed in this study. The stress distributions and

area of contact for the Hertz problem are in very good agreement with

the analytical solution. The pin-loaded plate examples are generally
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much more difficult to analyze in a computational sense. This is

particularly true for the second algorithm, which must approximate the

domains of both the plate and the pin. The results of the two

algorithms are compared with results reported by other investigators

using both numerical and experimental methods. The results are

generally in good agreement with existing solutions, but at times the

points of maximum stress computed by the second algorithm are not at the

points of initial contact, which is typically the case for this type of

problem. This might be due to the fact the approximation of the contact

boundaries of two circular bodies using linear elements necessitates

careful modeling of these bodies to ensure that they do not initially

overlap. This phenomenon does not occur in the analysis of the Hertz

problem, where the target body is modeled by a straight line, and for

most contact problems analyzed here the results were consistent with

those reported elsewhere. Care must be taken when applying these

contact algorithms to problems with known stress discontinuities or

singularities, since by definition the stresses must be continuous at

the nodes.

The stress distributions computed from the hybrid algorithm for the

analysis of an aluminum plate shows very large regions of contact for

the example problem considered. This is due to the very small initial

clearnace between the pin and the plate. There is a very distinct jump

in the radial contact stress distributions near the initial region of

contact for all load steps, which appears to be due to several

unexplained patterns in the displacement data. The shearing stresses

are very small relative to the normal stresses, and the distributions

0 have no uniform patterns. The contact stresses were computed by the

105
0



hybrid technique using two separate approaches: 1) specifying all

displacement increments around the hole boundary, and 2) specifying only

the displacement increments corresponding to the region of assumed

contact. The assumed contact region was determined using the

displacement data of the plate hole boundary nodes in the direction

perpendicular to that of the applied load direction. The results of

these two approaches are in good agreement with one another.

For the example problem considered, the contact stress

distributions are similar regardless of whether a mesh of linear or

quadratic elements is used, indicating that the mesh refinement yields

little change in the stresses. Although the contact stresses computed

by the hybrid technique are in fairly good agreement with the results of

9the second computational contact algorithm, no other comparisons are

currently available.

*Although the hybrid technique provides a unique way of obtaining

the stress distributions within the plate domain with minimal

*computational effort compared with the numerical contact schemes, the

technique unfortunately does not yield the regions of stick and slip

between the plate and the pin. Such information could provide valuable

information on the bounds of the static and dynamic coefficients of

friction for the contacting bodies. It should be noted, however, that

the moire technique does not involve measuring stresses; the stresses

are computed from the measured displacements/strains using a stress-

strain law that is assumed to be valid for the situation.

The computational algorithm for the contact analysis between two

. elastic bodies of arbitrary shape could be extended to higher order

elements to allow the accurate modeling of two bodies with curved
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boundaries in contact, such as in the case of the pin-loaded plate.

This task is more complicated than it first appears since general

expressions must be developed for the contact force potentials and the

forces due to friction considering curved element sides and normal

surface vectors that are constantly changing. This approach would beS
relatively straightforward to apply to problems such as that of Hertz,

where the target body can be defined by a straight line. This would

greatly simplify the formulation.
S

The mixed finite element model could also be modified to include

the effects of material nonlinearity. This could be of significance in

the analysis of contact problems since large stresses commonly occur at

or near the region of contact, and nonlinear material response could

have a dramatic effect on the contact stress distributions.

The hybrid technique consisting of the finite element method and

moire interferometry may be applied to additional isotropic or

anisotropic plates. It may be of use to consider specimens with a

larger initial clearance between the pin and plate than was used in this

study. This would decrease the total contact region and increase the

region of sticking contact as well as help to minimize the effects of

minor surface flaws near the initial points of contact.
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APPENDIX

The finite element equations (2.28) can also be written in more

explicit form as

(K111 [01 1011 [01 [K(15 {u} {F111 FNLl}

(01 [K12,] [01 [K(241 [K25 I [VI {FL2i IFNL2 I

*[K 11 101 [K(331 [K(341 [K(351 {sxx} 101 - 101

(01 [1K421 [K(431 [K441 [1K451 is1 t) (01

where

K 13 J '0 O =xd K(31

K(15j - iIjdxdy K 151*

K(24j 3 4
*ij y o-4Idxdy K 1(4i

K 25 ~ '* i y K52

K 33 D dd
-j -fD 1141 4i xd

K 34= 0 o 2 IiIdxdy K143
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K35 .- f D 1 xy-K53

K 4 - f D16 1*dxdy

ij eD 22*1i~dxd

Ki 45 - f D dxdy -xdY 54

K 55 . - .f 0 *14idxdy

K 11  K K22 - T 30' 1' a4*j + -3*
ij i x 1 x xy ax ay ay ax

+ Tyy ay ay Jdxdy

F l f *ixdy + #(Txxr'x + .rxyny)*idS

F L f f 4Didxdy + (Txyn + Tyy*d

FNL 2  f * 0
i (.1. ax Txy aryxd

vN12 f alP1 a~
ax + y j-)dxdy

Note: The Cauchy stresses Tjare computed using nodal stress

interpolation and not using the Almansi strains. For the first

iteration, the Cauchy stresses are zero and hence [K 11 1 is a null

matrix. This yields an indefinite system and an equation solver should

be selected accordingly for this first iteration.

The contact matrices and contact force vectors given in Eq. (3.13)

can be expressed in explicit form as follows:
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Sticking Contact

[[01 [K 13 ]

[0~3 T [K 33 J

* 0 0 0 0 0 -1 0

0 0 0 0 0 0 0 -1

0 0 0 0 0 0 (1-0 (11) 0

0 00 0 0 0 0 0 (B1)

0 0 0 0 0 0 B(1-1) 0

0 0 0 0 0 0 0 il

-1 0 (1-8 (i1)) 0 (1) 0 0 0

L0 -1 0 (1-1)) 0 8(1 0 0

2 X (1-1)

Ky

{2Ri'1) 2 -( (-1

Ky

c B (i 2 x~ - 1)

Ky
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AUBXI

Au (')By

The above two vectors are the same in the case of sliding contact,

AS (1(1-1)
I'XM Kx It+At A (i1)1 I {AK)i

Sliding Contact

K Z13 T [K:~ 33
00 0 0 0 0 0 sC

0 0 0 0 0 0 n 0

0 0 00 0 -(10 )nsx0

0 0 0 0 0 0 -(1-$( 1)ns 0

0 0 0 0 0 0 -sn sx 0

0 0 0 0 0 0 -s y 0

nsx nsy -(1-0 11)) ~sx (- 1-1) )n 5y -Bn5, -o 0 0

0 0 0 0 0 0 0 1

AXx~ 1 ) -n 2 ( 1 -1 )- n ( -1

Ax ))S2(d ) sx Kx sy Ky
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a

Note that in the case of sliding contact, we must compute the increments

* in the contact forces in Cartesian coordinates using the equations

Ax(i) AXi)nx
fKx s sx

& (i) -(i)n
Ky s sy

6
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