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ABSTRACT

A mixed variational statement and corresponding finite element
model are developed for an arbitrary plane-body undergoing large
deformations (i.e. large displacements, large rotations and small
strains) under external loads using the updated Lagrangian
formulation. The mixed finite element formulation allows the nodal
displacements and stresses to be approximated independently.

Two algorithms are discussed for the analysis of a thin, uniformly
loaded plate with a circular hole in contact with a pin. The different
algorithms consider the separate cases of a rigid pin and a flexible
pin, and use different methods to account for the computational
difficulties that arise from the unknown contact area and the presence
of friction between the pin and the plate. A number of different
contact problems are solved using these two techniques.

A hybrid technique is presented that combines the numerical
technique of the finite element method with the experimental technique
of moire interferometry. The displacements at the pin-hole interface
are measured from physical experiments and are then used as prescribed
boundary conditions in the finite element analysis of the modeled
problem. Results of this algorithm are compared with solutions obtained
from strictly computational algorithms that are independent of the
experimental data. The agreement is found to be very good.
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1. INTRODUCTION
1.1 Motivation

The solution of contact problems generally involves the
determination of the states of displacement, strain, and stress acting
within the domains of two or more separate bodies pressing against one
another under external action. Unlike most problems in solid and
structural mechanics, where the critical regions of interest are usually
far removed from the point of application of the loads, the domain of
interest in contact problems is the area at or near the region of
contact, which is typically the region of load transfer. Contact
stresses are typically among the largest stresses found within the
contacting bodies.

The accurate numerical simulation of the response of two elastic
bodies in contact with one another under external load remains as one of
the most challenging problems of computational solid mechanics due to
several inherent complications. The region or area of contact between
the two bodies is changing continuousiy during the loading, and is
generally not known a-priori as a function of the applied loading. In
addition, the presence of friction between the two bodies creates
varying regions of stick and slip. Hence this type of problem is highly
nonlinear, and although some exact elasticity solutions exist, these are
typically for problems with simple geometrical shapes and frictional
conditions. Numerical techniques must therefore be used to solve
problems involving more complicated geometries and contact conditions.

The finite element method has long been established as a versatile
and powerful tool of analysis for solid and structural mechanics

problems and has recently been applied to numerous studies of elastic
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contact problems. Mixed finite element models, in which independent
approximations of displacements and stresses are introduced, have also
been developed and applied to problems in solid mechanics, but to a much
lesser extent. Mixed formulations would appear to be especially
applicable to contact problems since the stresses at the contact
boundary are computed as part of the solution rather than part of the
post-computation as practiced in displacement formulations. These
boundary stresses are of extreme importance in computing the regions of
stick and s1ip and are useful in other steps of the analysis as well.

Among the many different types of contact problems found in
engineering, the problem of a thin, pin-loaded plate has recently
received considerable attention, particularly due to the increasing use
of composite materials in modern structural applications [1-10].
Elasticity solutions and finite element approximations have dominated
the majority of these analyses, most of which have ignored the effects
of the pin by assuming that it is rigid and hence have only modeled and
subsequently analyzed the domain of the plate. A number of other
simpl1ifying assumptions were invoked in many of these analyses,
including the assumptions of a cosinusoidal radial traction on the hole
boundary as well as a constant coefficient of friction acting between
the pin and the plate. In addition, various assumptions were made to
approximate the behavior of the contacting bodies at the contact region,
since this information is required in order to obtain a solution to the
problem, and is in general not known as a function of any of the
parameters of the problem.

A review of the pertinent literature is presented in the following

section to assess the gains made in the past and to indicate the
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direction of recent research efforts in the analysis of elastic contact
problems. Since most contact algorithms are strictly numerical, a brief
review of geometrically nonlinear analysis is included, particularly
highlighting the lack of studies regarding applications of mixed methods
to nonlinear problems in plane elasticity in general, and contact

problems in particular.

1.2 Literature Review

The displacement finite element model, based on the principle of
minimum total potential energy, has been applied to many problems in
structural engineering and solid mechanics since the early 1960's. The
mathematical and numerical properties of the displacement finite element
method have been firmly established and numerous publications allude to
these advances. The textbooks by Reddy [11], Zienkiewicz [12], and
Bathe [13] contain a host of references regarding both the historical
development of and recent advances in most branches of finite element
analysis.

Although the mathematical properties of mixed finite element
approximations have seen extensive development in recent years [14-16],
the applications of mixed models to actual physical probiems have been
relatively few. In linear, two-dimensional elasticity problems, the
mixed finite element equations can be developed using the Hellinger-
Reissner variational principle [17]. Dunham and Pister [18] were among
the first to use this principle to introduce mixed finite element
approximations and present numerical results for plane elasticity
problems. They obtained displacements and stresses that were superior

to those obtained using an equivalent displacement model. Pitkaranta

and Sternberg [19] analyzed several mixed finite element methods for the




ol plane elasticity equations on a rectangular domain, while Mirza and

;éf Olsen [20]) presented a more thorough study regarding the convergence and
?k? performance of the mixed finite element method for linear plane

;@% elasticity applications.

;g;; Contact problems are generally regarded as being highly nonlinear

agi for two major reasons. First, the body or bodies under analysis might

gg: undergo large deformations, and hence must be modeled such that the new
Q%Q geometry and the most recent state of stress in each body are accounted
“ﬁi for in an appropriate manner in the subsequent loading. Second, the

%ﬁe boundary conditions change continuously as a result of the changes in

tﬁ&; the contact region with increasing load. The development of the

J‘x‘ governing finite element models for the nonlinear response of a solid
i*: body under external load has been developed by numerous investigators
E‘T {21-32], but none of these have addressed mixed models for plane

w.; elasticity problems. Horrigmoe and Bergen [33] presented an incremental
{i mixed variational principle and corresponding finite element model for
‘QL solid bodies, but gave no numerical examples or comments on

i implementation.

:%L Contact problems have challenged mathematicians and engineers for
iéﬁ over a century. In 1881, Hertz obtained a solution for the problem of

;E:: two elastic cylinders in contact with one another {34]. Numerous

;;'s attempts have since been made to accurately model the physics of contact
ég' for more complicated problems using, among other methods, finite element
o;i. techniques. Due to the inherent nonlinearity of the contact problem,

j?é% all of the most successful of these algorithms contain several iterative
:&ﬂ: procedures to account for the varying regions of contact and of stick

.3 ; and slip.
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Nearly all investigations of contact problems using the finite
element method have employed the more conventional displacement
formulations. Chan and Tuba [35] used conventional elements and
iterative procedures to solve several different contact problems. Bathe
and Chaudhary [36] imposed the contact conditions by constructing the
total potential of the nodal contact forces for an element in contact
and adding this term to the original potential energy functional.
Campos, Oden and Kikuchi [37] solved discretized contact problems using |
prescribed normal boundary tractions and nonlinear inequalities. ‘
Francavilla and Zienkiewicz [38] used the flexibility matrices of two
elastic bodies in frictionless contact along with iterative procedures
to check for penetration. This technique was later modified by Sachdeva
and Ramakrishnan [39] to include the effects of friction. Marks and his
colleagues [40-41] presented several solution techniques for contact
problems using the conjugate gradient technique integrated with the
finite element method for frictionless contact problems. Okamoto and
Nakazawa [42) presented a technique which used three-dimensional
elements and used the magnitude of load causing a change in the contact
status of one node as a load step. Fredrickson [43] used iterative
techniques to account for the contact conditions and also used a
superelement technique to reduce the number of degrees of freedom.

Past studies of contact problems using mixed finite element models

are not nearly as numerous as those using displacement models.

Haslinger and Hlavacek [44] presented a mixed formulation for the
Signorini problem with prescribed normal contact forces but gave no ;

numerical results. Tseng and Olsen [45] applied the mixed finite

|
|
|
|
|
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element method to several plane elasticity contact problems using the
equations of linear elasticity along with an iterative scheme.

The increasing use of composite materials in structural
applications has generated a great deal of interest in the problem
involving a bolt or pin in contact with an elastic plate. Although a
variety of techniques have been used to analyze this problem, most
studies have used either elasticity or finite element solutions to
obtain the states of displacement and stress in the plate [1-10]. Most
analyses have neglected the elasticity of the pin by assuming that it is
perfectly rigid [4-9], while others have assumed a cosinusoidal radial
stress acting between the pin and the plate at the points of contact
[1,2,10]. The validity of this latter assumption has been demonstrated
experimentally for isotropic plates [3], but was recently shown tu be
incorrect for orthotropic plates by Hyer and Klang [46]. Of the
numerical studies of the pin-loaded plate problem, the only analysis
that accounted for the combined effects of nonlinearity, actual boundary
loading, friction, and orthotropy of the plate was developed by
Wilkinson, Rowlands, and Cook [47]. They presented a simple iterative
technique to compute the stresses around the hole of a pin-loaded
orthotropic plate. This method was later modified by Rahman et al.
[48]. The results of these two techniques were also verified
experimentally by Wilkinson and Rowlands [49]. A review of other
pertinent methods in the displacement finite element analysis of pin

joints is given by Rao {50].

1.3 The Present Study

Despite the gains made in recent years in the understanding of

contact phenomena between solid bodies, the extreme complexity of such
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problems has thwarted the development of a general and effective
computational method of analysis. In particular, mixed finite element
models, which contain stresses as nodal variables and hence would seem
to be particularly suited for the analysis of contact problems, have
seen extremely limited use, particularly in geometrically nonlinear
analysis.

Furthermore, all numerical algorithms, regardless of the
formulation used, are based on several key assumptions and
approximations when performing an analysis on two or more bodies in
contact. Various important quantities, such as the static and dynamic
coefficients of friction, are assumed to be constant as a function of
position and load. Hence it is difficult to isolate the effects of the
different assumptions made in most computational schemes that have been
developed in the past.

The present study will address each of these major difficulties or
limitations and will primarily be directed toward the development of a
computational technique for the analysis of two-dimensional contact
problems. Different strategies developed here will use a mixed updated
Lagrangian formulation as a basis for the analysis. This formulation
has seen little or no use as a tool of analysis for elasticity problems
in the past; however, it would be well suited for the analysis of
contact problems since the displacements and stresses are approximated
independently and each of the respective components appear as nodal
variables. This immediately introduces the primary computational
disadvantage of the mixed model compared to the displacement model in
that there are five degrees of freedom per node for the mixed model

whereas only two degrees of freedom per node in the displacement
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model. However, this disadvantage must be weighed against the positive
aspects of the mixed model. The computed nodal stresses are typically
more accurate for the mixed model and also appear as part of the
solution vector instead of requiring any post computations using the
gradients of the displacements and the stress-strain relations of the
material. This fact is of immediate value in the analysis of contact
problems since the boundary stresses are required to compute the state
of stick or slip at the nodes and also to compute tangential surface
tractions due to friction for a contacting body.

In the purely numerical analysis of contact problems, different
assumptions are made to approximate the behavior of the contacting
bodies at the region of contact. For example, in most analyses, the
material of one of the bodies is allowed to penetrate the domain of the
second contact body and is then pushed back out during a subsequent
portion of the analysis. In addition, the coefficients of friction used
in the analysis are those determined from physical tests of specimens
made of the materials in contact and are nearly always specified to be a
constant throughout the domain for the duration of the analysis. These
are two very basic but major assumptions frequently employed in the
development of numerical schemes used to analyze contact problems.
Although these assumptions are necessary in order to develop a
relatively efficient algorithm, they may have drastic effects on the
results of the analysis.

Considering these observations, a new method of analysis will be
presented as a part of the present study that will attempt to eliminate
the effects of some of the approximations made in the analysis of

contact probiems. This technique involves the combination of an
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experimental technique, which determines the true state of the
displacements on the contact boundary, with a finite element technique,
w. which uses the information provided from the experimental technique to
determine the states of displacement and stress within the rest of the
#’ domain under analysis.

The major objectives of the present study are three-fold. The
first objective involves the development of a mixed updated Lagrangian
formulation and corresponding finite element model of the plane
7.. elasticity equations for large deformation analysis. Second, the

formulation will then be modified to develop several numerical

algorithms for the analysis of two-dimensional contact problems.
Finally, the mixed finite element model will be combined with the
experimental technique of moire interferometry to form a hybrid method
of analysis for the contact problem of a pin-loaded plate. The goal of
this final task is quite different from that of the second task in that
it is mainly being implemented to exclude the effects of the aforemen-
tioned computational assumptions on the stress distributions. On the
other hand, the numerical schemes are self contained in that they do not
depend on any experimental data, and will attempt to model the actual
behavior of physical problems.

The following sections contain the formulation of and examples for
the different schemes alluded to in this section. Section 2 contains
le the development of a mixed updated Lagrangian formulation and
computational scheme for the analysis of two-dimensional elasticity
problems. This formulation is extended in Section 3 to develop two
leo computational algorithms to analyze the contact problem of a pin-loaded

plate. These approaches are developed separately to consider the
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@;ﬁ:ﬁ; distinct cases of allowing for a rigid pin or an elastic pin. In
e
:-575?& Section 4, a hybrid experimental/numerical technique is described that
g combines the experimental technique of moire interferometry and the
KRR,
D numerical finite element method, again for the analysis of the pin-
N
,“;' loaded plate problem. The results of several numerical examples from
EXRY the algorithms developed in Sections 2-4 are presented in Section 5.
Aoy
:? N Finally, summary and conclusions of the present study are given in
3 0
I:§, Section 6.
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2. GOVERNING EQUATIONS

2.1 Introduction

In this Section we begin with the statement of virtual work for an
arbitrary solid body under external load and derive the variational
statement that will be most convenient in applying the mixed finite
element model to the problem. The finite element approximations for the
displacements and stresses are then introduced into the variational
statement for two-dimensional bodies resulting in the final matrix form
of the finite element equations. The required specification of the
boundary conditions is discussed using the variational form of the
linear equilibrium and stress-displacement relations of the problem, and
an alternative formulation of the linear finite element matrices is
given as well. A brief discussion of the required order of polynomial

approximation for the mixed finite elements is also given.

2.2 Mixed Virtual Work Formulation

We begin our derivation by first assuming that the current
configuration C; is known at time t as well as all equilibrium
configurations previous to this time. We desire the solution, i.e. the
displacements, strains, and stresses, at the configuration Cz at time
t + at (see Figure 2.1). Using the principle of virtual displacements

(see [51]), we can write

Ivz zrijs(zeij)dv -s(%F) =0 (2.1a)

where

2

s®F) = [ Zrouav e [ 2t suds (2.1b)
Vv 1 hi 1

2 S,
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Tij = the Cartesian components of the Cauchy stress tensor in the
configuration CZ occupying the volume Vo,
u, = the Cartesian components of the displacement vector in
going from configuration C; to configuration C,,
Zeij = the Cartesian components of the infinitesimal strain tensor

associated with uj which is defined as

1,34 321
=% (— + .
Zeij 2 (axj axi) (2.2)
Xy = the Cartesian components of a point in configuration C,,

i = the Cartesian components of the body force vector measured
in configuration C,.

ti = the Cartesian components of the surface stress vector
measured in configuration Co.

Here & denotes the variational operator and su, denotes the virtual

displacement vector (i.e. the variation of uy).

Although this statement is valid at time t + at, it is not
immediately useful since the integrations are performed over domains ;
that are not yet known. However, we may transform this equation into a
known configuration using appropriate stress and strain measures [52]. |
To do this, we first define the second Piola-Kirchhoff stress tensor as

e B S | (2.3)
pAXy mn axn *

where X; are the Cartesian coordinates of a generic point in
configuration Cl, % is the density in Cl and p denotes the density in
Cy. We have indicated in the notation that the second Piola-Kirchhoff
stress tensor is measured in C, but is referred to C;. Since the Cauchy

stress tensor is defined as force per unit area of the deformed

13




configuration, it is always measured in and referred to the most current

configuration. Hence, we may write

2 2 2
25” N TRE T, (2.4)

We next define the components of the Green-Lagrange strain tensor

as

2 1 8U1 ?ii aum 3Um
tf13 7 2 Gx * ) o ) (2.5)

e

Just as the Cauchy and second Piola-Kirchhoff stress tensors are related
by a kinematic transformation (2.3), the variation in the Green-Lagrange
strain tensor Eij and the variation in the infinitesimal strain tensor
ey are related by

ax

ax
m ﬁ? 8(,8nn) (2.6)

s(fEij) = 52;
Clearly, both of these strain tensors use the particle displacements uj
in going from configuration C, to configuration C,.

We next note that the second Piola-Kirchhoff stress tensor is
energetically conjugate to the Green-Lagrange strain tensor and the
Cauchy stress tensor is energetically conjugate to the infinitesimal

strain tensor. In other words, if we use the definitions in Eqs. (2.3)

and (2.6) along with the identities

ax, aX.

A R

aXj Xy = Sim (2.7)
and

podv1 = pdV2 (2.8)

then we may write the expression for the internal virtual work given in

Eq. (2.1) as




Ivl 25,4 s(CGE v = IVZZT,J 8(,8, )0V

(2.9)

Substituting Eq. (2.9) into Eq. (2.1), we obtain our modified

statement of virtual work, which is now in terms of a known

configuration, and is given by

0={
1

fsij s(fEij) av - s(iF) (2.10)

We have also implied the assumption that the applied loading is

independent of the deformation of the structure, and hence

s(%F) = s(}F) (2.11)

Next, we use the incremental decompositions of the stresses and

strains to write

where

1543

184

1"j

incremental components of 2nd Piola-Kirchhoff stress tensor

(incremental)

au
i

(=~

an

up L

313Xj

au .
+'—'1)’
aXi

Nfr—= N[
Q

2 _1
1345 % Ti3 * 1345
2 -

components of the infinitesimal strain tensor

(2.13)

Substituting Eq. (2.12) into Eq. (2.10) gives

15




1 1
0= + ,S..) §(je,, + dv - §(°F 2.14
IVI ( r"j 1 ij 1543 lnij) ( ) ( )
or

I 1

- - [ by stgegpav + s(le) (2:19)
v
1

hL We next linearize the equations by assuming that

- 2 . |
R 1513 = 1C4grs ®rs * 41845 = 41845 (2.16)

EaK and thus obtain the approximate governing equation

' 1
N [, 1Cagrs 1805 808y OV + [ “oqg 6(pnig)dv
1

3 Vi

1 1
! = - IV *ij 5(1eij)dv + §(°F) (2.17)
Al 1

X The above linearization can be interpreted as a representation of
the nonlinear curve between two consecutive load steps by a linear line

Tl segment, and must be solved iteratively.

W A mixed (or stationary) virtual work statement that treats the
displacements and stresses as independent variables can be derived from

A Eq. (2.17) as follows. First, we note that Eq. (2.17) is the first

e variation of the functional

- _ 1 1 1
i 1= f 3 1Cgrs 190 1915 OV *+ [ Tryglieyy ¥ qnyydav -
Ve Vl V1

ogd Next, we introduce the stresses as additional dependent variables by

F (2.18)

-— treating the strain-displacement relations
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1815 = 7 % (2.19)

Cde
(-]
xlf
-l
~

as constraints. The increments in the 2nd Piola-Kirchhoff stress tensor
components 1S1j act as the Lagrange multipiiers (see [51]). The

modified functional for the mixed formulation becomes

171§ 2 “aX

Cde

au.
m o= - fv Siyli8yy - L&, —xl)]dv (2.20)
1

where 1 is given by Eq. (2.18).
We next write the linearized expressions for the strain energy
density Uy and the complementary strain energy density U; due to the

incremental displacements as

=1
Yo = 2 Cijka 1815 1% (2.21)

and

»
—

Uo = 7 Dijke 15415 15ke (2.22)

where Dijkz are the components of the compliance tensor. The strain
energy density and the complementary strain energy densities are related

according to

*
-U =U

0 o 1S

ij 1%43

=1
S 2 c13k2 1% 1% - lsij 1%ij (2.23)

Using Eqs. (2.22) and (2.23) in Eq. (2.20), we obtain

T L5 (ol o 20y - y*jav - ol

o = Iv CrisCieiy + 1nig) + 2 lsij(axj *axy) - Yoldv - s(CF) (2.24)
1

Imposing stationarity on this functional with respect to the

displacements and the stresses, we obtain the two approximate

equilibrium equations
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i
i 1 - 1 1
R su, .dv = §(°F) - 8 dv (2.25a
f" IV 1136(1n1j)dV+J'V 151\1 1,j (°F) .fv i3 (leij) ( )
] 1 1 1
- -
e fv ui’jc(lsﬁ)dv Iv n”mL 1Skz“(151j)dv 0 (2.25b)
5 1 1
;ﬁgf These two equations are analogous to Eq. (2.17) for the displacement
> formulation. Since these equations are a linearized version of the true
l’
;2? statement of equilibrium, they must be solved simultaneously and
W
ﬁﬁ, repeatedly for a given load until the increments of the displacement and
At stress components are within a preassigned tolerance. The final
gél solution vector, after convergence, will represent the true state of
'ﬁg equilibrium for a given load, and the iterations are therefore
;& frequently termed equilibrium iterations.
LI
ny
":?E 2.3 Finite Element Model
At

We next construct the finite element model of Eqs. (2.25) for the
e
W two-dimensional case. We begin by assuming independent approximatiomns
)
:§ﬁ of the displacements and stresses of the form
l"‘:

A

oy ui(xl,xz) = I uiwj(xl,xz) (2.26)
':;\‘. J=1
'.!"'.
‘::‘a' n K
Lt = .
e 1Sij(xl.xz) kil lSuwk(xl,xz) (2.27)
Ao
LW where Sk denote the value of .S.. at the k-th node. Substituting
Y 174] 174
:3: these expressions into the two equilibrium equations in Eq. (2.25) gives
“‘b'ﬂ
T oty o2 (qu) (F) (PN
o 12,7 22 ) ) (2.28)
) (K] (x*°1] s} {0} {0}
A
. where
i,
g (K] = tf (8% [<]18%]dA
g A
e
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(k%2] = t, [°1T (D] [4°1dA i
" 1

(k}2] = tf (8-17[4°1dA
A

{FY} = tf  [v1T{f}dA
A

(" =t (8417 {<}eA
A

*1 0 O *2 o 0 ... wn 0 0
v =0 %, 0 0 %, 0 ...0 % 0
(3 x 3n) 1 2 n
0 01 0 O *2 ...0 O wn
D11 D12 D6
D] = [0, D, Dy (2.29)
D16 026 Des
W1 0 ¥ O ¥n,1 O
L -
(3[5 ;n) =10 ¥ 0 5.0 ¥,
1,2 *1,1 Y2,2 Y2,1 ¢ Vn,2 Ynn
mhL 0 v 0 bn,1 O 7]
V1,2 0 ¥, 0 n,2 0
(8° =1| g 0 0
(4 x 2n) 1,1 V2,1 ° * ¢ ¥n,1

0. ‘bl 2 0 ‘1’2’2 o« o 0 wn’z-—
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iy Here n is equal to the number of nodes in the element and rij represent
"

ggi the Cauchy stress components that have been determined at the last known
ﬁgf configuration.

s As mentioned in the previous section, the equilibrium equations are
éﬁ. only approximate since we have linearized the true equations of

?ﬁg motion. For this reason, there may be errors introduced into the

:,‘ computed solution at each load level, particularly ff the load increment
<ﬁgs is large. To correct for this, we minimize the force imbalance that

s&; results from the linearization process for a given load increment. We
2 do this by updating the stiffness matrices and force vectors to account
%? for the change in the nodal positions and the Cauchy stresses during a
%g? given load step. The iterations are continued until the force

o imbalance, represented by the right hand side vector, is reduced to

§g§ below some convergence limit. For example, the displacement and stress
a§§ component increments at the (i + 1l)st iteration for the solution at time
EEE t + at are calculated using

%&3 L NL L NL

535:53 ([K1 + (K751 {abyy = (F} - {FH (2.30)
55{' where the superscripts L and NL denote the linear and nonlinear

§;~ contributions, respectively, and the stiffness and force terms have been
i computed using the displacements and stresses known from the previous
;ﬁi fteration 1.
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Equation (2.30) must be solved repeatedly until the force imbalance
is reduced to below or within a fixed tolerance. This amounts to
measuring the percentage of the displacement and stress increments
(measured using the Euclidean norm of the incremental solution vector)
relative to the Euclidean norm of the total solution vector. When the
increase in the displacements and stresses has been reduced to below a
very small percentage of the total solution, the approximate state of
equilibrium has been obtained for the given load step, and the load may
then be increased or the analysis may be terminated.

The solution of Eq. (2.30) allows us to compute the total

displacements according to the equation

2 _1
Uy = U+ (2.31)

In the mixed formulation, there is no need to compute the Cauchy

stresses using the Almansi strains as is required in the displacement
formulation. Since the increments of the 2nd Piola-Kirchhoff stress
tensor are computed as nodal variables, we simply use our incremental

decomposition of the stress given in Eq. (2.12) as

2. _1
1555 = Tij * 154 (2.32)

To obtain the values of the Cauchy stresses within a given element as
required in the computations of the nonlinear stiffness matrix and force

vector, we may simply use nodal stress interpolation, or
A
Tij(xl’xz) = kfl Tijwk(xl’XZ) (2.33)

When the increment in the lsij terms is reduced to be within the

required tolerance, we have by definition of the second Piola-Kirchhoff
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. ] stress tensor
i 2 2
.‘ ‘ Zsij = Tij (2’34)
ﬁa _
%?5‘ and we have clearly obtained the desired configuration Cz.
>
s
2.4 Some Computational Aspects
A8
ﬁ'p' If the element stiffness matrices shown in Eq. (2.28) are assembled
0
kﬁﬁ in the form shown, the matrix [Klll will be a null matrix for the first

iteration of the first load step since the Cauchy stresses are zero

.ﬁi everywhere in the domain for the undeformed configuration C,. The

;ﬁg global stiffness matrix counterpart of the submatrix [K11] will also be
;j; a null matrix, resulting in an indefinite system of equations. The use
Qigz of pivoting will eliminate this problem but will generally destroy the
EE;S bandwidth of the system of equations. Mirza [53] has suggested

n; ’ premultiplying the left and right hand sides of the global finite

;};ﬁ element equation by the transpose of the global stiffness matrix, as in
}ﬁ% the least squares technique, to yield a positive definite system. In
;ﬁi the present study, the first node of the finite element mesh was

Eig selected such that both of its displacements were specified to be

E&s. zero. This results in the value 1.0 being placed in the diagonal

,T:' position for the first two rows of the global stiffness matrix during
isg the imposition of the boundary conditions. As the Gauss elimination is
;Eté performed on each row of this matrix, the zeros on the diagonal

:z;7 corresponding to the remaining displacement degree's of freedom are
'Ef; eliminated. Hence, as long as the nodes are numbered as described here,
Ei; a conventional banded solver may be used to solve the global system of

equations.




w Y R TR TR TR Y Y VTRV TV P T TR

An important note on the order of polynomial approximations used in
the mixed model is in order. The variational statements of the
governing differential equations for problems in plane elasticity given
in Eqs. (2.25) show that the stress components appear undifferentiated
whereas the displacement components u and v are each differentiated once
with respect to the x and y coordinate directions. Hence to ensure
continuity, the stress components must be approximated by at least a
constant within the element and the displacement components must be at
Teast linear in both x and y within an element. The approximation order
should also be such that the mathematical definitions of the
displacements and stresses are accounted for and are consistent with one
another, i.e. the stresses are a function of the gradients of the
displacements.

The continuity requirements of the variational statement of the
problem alone are not sufficient in guaranteeing that the mixed finite
element matrices will be acceptable for the analysis of a given
problem. Unless the displacement and stress approximations are of a
given order, the element matrices will contain more than the allowable
three zero eigenvalues corresponding to the three rigid body modes for
two-dimensional bodies. This point was examined in detail by Mirza and
Olsen [20] who proposed and verified a completeness criterion that
restricts the choice of the order of approximation for the displacements

and stresses. The completeness criterion was given as:

The strains from the stress approximations
should possess at least all the strain modes
that are present in the strains derived from the

displacement approximations.
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When this criterion is violated, the global stiffness matrix in the
mixed model will be singular even after the imposition of the boundary
conditions. Isoparametric rectangular elements are used for all of the
examples considered herein and, to meet the requirements of the
completeness criterion, only linear-l1inear or quadratic-quadratic
combinations are used to approximate the distributions of displacements
and stresses in the mixed model.

A comment concerning the assembly of the element equations in a
mixed formulation deserves attention. The assembly of the element
stiffness matrices over the complete domain of the problem to construct
the global stiffness matrix requires that the stresses be continuous
across each interface between all elements. Although this assumption is
valid for many problems, there are cases where the material properties,
and hence one or more of the three stress components, are
discontinuous. Such an example can be found in the bending of a
composite beam. Clearly, mixed elements should not be used in the
analysis of such problems, since the stresses will be erroneous at the
points of material discontiuity.

One way to circumvent this difficulty is to condense out the stress
degrees of freedom at the element level so that the continuity of the
stresses across the element interface is no longer enforced. To do this
we recall from Eq. (2.28) that the finite element equations can be
written in partitioned form as

My w2 ) (F)

= 2.35
2T k221 )is) {0} (2.3)

The second of these two matrix equations can be written as
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®
(K!21T(u} + (k#){s} = {o) (2.36)
Hence the nodal stress vector for a given element becomes
° (s} = - k221112 T {y) (2.37)
Substituting Eq. (2.37) into Eq. (2.36), we obtain
M) - (k211622122 ) = (F) (2.38)
o
or
[k*]{u} = {F} (2.39)
where
° (k*] = (kM - (k12 B2t d2)T (2.40)
Equation (2.40) is assembled as usual, and is solved for the nodal
displacements (after applying the boundary conditions). The nodal
¢ stresses that were condensed out are then computed at the element level
using Eq. (2.37). Since the stresses are no longer nodal variables,
° they will be discontinuous between elements.
Two points regarding the condensation procedure using linear
elements merit some discussion. First, it can be shown that the matrix
° [K*] in Eq. (2.40) is precisely the element stiffness matrix derived
from a displacement formulation. Second, computing the nodal stresses
using Eq. (2.37) yields exactly the same stresses as those computed
® using the procedures typically followed in a displacement formulation,
i.e., computing the strains at the node points and then using the
constitutive relations to compute the stresses. As with the
Py condensation procedure, the stresses computed in a displacement
formulation are not continuous between elements due to the discontinuity
of the gradients of the displacements.
® Although the condensation procedure resuits in the stiffness matrix
derived from a displacement formulation for the case of linear elements,
® 25
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this equivalence does not generally hold for elements containing higher-
order approximations. For example, a quadratic isoparametric element
will have the exact same stiffness matrices computed from Eq. (2.59) as
from a displacement formulation only if the element shape is
rectangular. I[f the element sides are not parallel with one another,
the entries in the two stiffness matrices will not be identically the
same, although they should be fairly close to one another. As the
element shape differs from that of a rectangle, the discrepancies
increase. Hence a quadratic element with curved sides will possess
larger differences between the entries of the stiffness matrices
computed from the two different approaches than will a quadratic element

with the shape of a quadrilateral.
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3. NUMERICAL ALGORITHMS
3.1 Introduction

In this section we discuss two techniques for the analysis of two-
dimensional elastic contact problems. Contact problems have a host of
computational difficulties since the regions of contact are typically
not known as a function of any of the parameters of the problem nor are
the regions of relative stick and slip between the two contacting bodies
due to the presence of friction. Most current numerical algorithms that
solve contact problems are relatively complex and use a number of
iterative schemes to account for the changing boundary conditions and
regions of contact.

The nonlinear mixed finite element model described in Section 2
forms the cornerstone of the methods described in this section. The
displacement finite element model has been used almost exclusively in
previous numerical analyses of contact problems. Mixed elements provide
the immediate advantage of computation of stresses as nodal variables,
which is ideal for contact problems since the stresses may be obtained
precisely on the contact boundary.

Although a number of contact problems may be analyzed by the two
methods to be described in this section, the basic problem of interest
involves a thin, pin-loaded plate under a uniform in-plane load, as
shown in Figure 3.1. The plate may be orthotropic or isotropic, and the
pin is generally considered to be isotropic. The first algorithm allows

for the assumption of a rigid pin, and the second algorithm is much more

general and allows for an elastic pin.
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Figure 3.1

Elastic plate restrained by a pin and subjected
to a uniform, in-plane load
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3.2 Rigid Pin Contact Algorithm

In general, contact problems involve two or more elastic bodies
pressing against one another under external or internal load. In the
case of a pin-loaded plate, the bodies of interest are the plate and the
pin. If the assumption of a rigid pin is used, the analysis is
simplified considerably. This assumption eliminates the need to analyze
the pin, which not only provides a known point of reference for the
ensuing contact (i.e. the surface of the pin), but also drastically
reduces the resulting global finite element system of equations since
there is no need to discretize the domain of the pin. The assumption of
a rigid pin is reasonable if the modulus of elasticity of the pin is
much higher than that of the plate. Analytical studies have also shown
that, in the contact analysis of composite plates, pin elasticity is not
an important variable and has a relatively small effect on the resulting
stress distributions [46].

One simple and effective method for analyzing thin, orthotropic,
pin-loaded plates was developed originally by Wilkenson, Rowlands, and
Cook [47] and was later refined by Rahman et al. [48] to capitalize on
the computational advantages that arise from the rigid pin assumption.
This method uses three separate jteration steps to account for the
incremental load level, the contact process, and the effects of
friction. Both the original and refined schemes use displacement finite
elements. In the load step iteration, the solution for a given load
increment was treated as a linear analysis, i.e. the equations of linear
elasticity were used. The stresses in the plate were computed for each

given load level using the original undeformed configuration of the

plate along with the final displacement vector.




The computation of contact stresses using displacement elements in
e the analysis of contact problems may create difficulties since the
contact action frequently results in very large displacement gradients
near the region of contact. Since the required stresses in a
displacement model are generally computed at the element interiors and
are then extrapolated to the contact boundary, some type of stress

smoothing is often necessary using, for example, a local least squares

routine [54] or iterative improvement on the averaged nodal stresses

iﬁﬁf [55]. Using mixed elements, this is not necessary since the stresses
g&h are computed as nodal variables and no postcomputation is necessary to
%&R modify the resulting nodal stresses. It is for this reason that mixed
g§~ elements would appear to be advantageous over displacement elements for
23;& contact problems since the stresses on the boundary are required for

; o certain portions of the analysis.

el The refined algorithm developed by Rahman [48] uses a mixed polar-
%;g Cartesian coordinate system to fix the proper displacements of the nodes
Rl of the plate that have come in contact with the circular pin. An

ﬁ?v iterative scheme is used to ensure that all nodeé that have come in

%%} contact remain in contact for a given load step. In other words, after
ggg« every iteration the positions of all contact nodes of the plate that

have previously come in contact with the pin are corrected in the radial
direction so that they remain on the surface of the pin, which is
actually defined as a set of imaginary points that specify the region of
no penetration. If the resulting shearing stress for a given contact
node is larger than the induced radial stress multiplied by the nodal
coefficient of friction, the node is considered to be sliding, and it

may subsequently move in the tangential direction of the pin.
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Otherwise, the node is considered to be sticking to the pin due to
friction, and it is fixed to an interpolated position on the pin for the
remainder of the analysis. This iterative procedure is repeated until
the sum of the load steps has reached the required load level. The

details of this method are more completely described in reference [48].

3.3 Elastic Pin Contact Algorithm

The assumption of a rigid pin, which is reasonable for cases when
the two bodies in contact have a very large difference in modulus of
elasticity, is not usually valid for contact between two generic
bodies. The algorithm described in the previous section, though useful
for certain problems, was mainly developed to demonstrate the use and
accuracy of the mixed finite element method for the analysis of contact
problems. For general problems invoiving arbitrary bodies, it is
necessary to revise the analysis to include the effects of pin
elasticity, which may be significant if the two bodies are of similar
constitution. A second computational algorithm is described below for

this more general type of contact problem.

3.3.1 General Concepts

To account for the complications arising from contact and the
presence of friction between two elastic bodies, we add a Lagrange
multiplier contribution to our original expression in Eq. (2.28) which
will represent the summation of the total potential of each of the
contact forces acting at the nodes on the discretized contact
boundary. In addition, the kineratics of the elements of the two bodies

at the contact interface must be monitored such that the nodal

displacements are compatibie, i.e. the bodies must not overlap. We




A therefore will eventually invoke stationarity of the modified functional
R k

" Ie = 0 - 1:1 w1 (3.1)

; s where k represents the number of the contactor nodes on the boundary and
%&ﬁ W represents the total potential for a given contact force acting at a
bt given contact node. This idea was originated and developed using a

§§‘ displacement formulation by Bathe and Chaudhary [36].

35% To determine the total potential for a contact force at a given

5$w contact node, we consider the local geometry of a contactor node K that
é&g will penetrate the target domain whose boundary is defined by the nodes
{§§ A and B as shown in Figure 3.2. In our discussion, we will assume that
;i’ the two bodies have been discretized using linear elements. Although
‘Jz% the algorithm could be developed using higher-order elements, this

35? somewhat complicates the analysis, and linear elements were used in this
5-3 study because of their relative simplicity in many phases of the

:%E subsequent analysis. For our problem, we define the pin to be the

‘Eﬁ‘ contactor body and the plate to be the target body to remove the

S&% ambiguity of analyzing two elastic bodies. Only the nodes on the pin
im{ will be required to remain on or outside of the domain of the plate

ggg during the loading of the plate, while the nodes of the plate are

29 allowed to be within the domain of the pin. This is a key assumption
gia and requires some care when modeling the problem to ensure that all

Q{%; contactor nodes (i.e. contact nodes on the contactor body) are

§§?' originally outside the target body.

’gg: In the formulation that follows, we assume that (i - 1) iterations
0 have been performed in the quest for the equilibirum configuration C, at
ng time t + at for a given loading. During the last iteration (i-1), the
2
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Figure 3.2 Local geometry of contactor node
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‘
%3{ displacements of the nodes K, B, and A have been such that the contactor
1\ node K has penetrated the domain of the plate a distance CK, where

" CK = |CK| = (3.2)
%SS and
e CK = 8, T + 83 (3.3)
W The distance CK represents the minimum distance from Fhe penetrated node
;%ﬁ K to the surface segment of the target body, which is defined as the
35. line segment between the two nodes A and B of the target body.

o The intermediate configuration defined by the updated Cartesian
%;? coordinates of the nodes after iteration (i - 1) is clearly not in an
*:i acceptable state of equilibrium since the contactor body has penetrated
‘:; the target body at node K. This node must eventually lie exactly on the
;.EE boundary of the plate, i.e. on the target segment defined by the nodes A
;g and B, and its relative position g8 between nodes A and B must be a
e function of the coefficient of friction between the two bodies. In

}E order for this to occur, the displacements of the nodes A, B, and K must
F.t be adjusted accordingly during the following iteration and a contact
‘;q force must develop at the contactor node K as a result of the
§|$ elimination of the overlap distance. We denote the latest estimate to
~i§x this contact force at node K in configuration C, as
f%% ZIK(i'l) = xé;'l)? + xé;'l)j (3.4)
Uif' This contact force is equal to zero after iteration (i - 1) and is
f:é; developed as the overlap distance is eliminated during iteration (i).

3& Although the contact force acts alone at node K, it must be

o

balanced by equivalent nodal forces at nodes A and B of the target

segment. Imposing moment and force equilibrium on the discretized
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target segment defined by the contactor node K and the target nodes A
and B and solving these equations simultaneously gives the expressions

for the target segment nodal forces as

2:(1-1) =-(1- 8(1-1)) Zxéi-l)

ziéi-l) = - gli-1) 2;&1-1) (3.5)

As these nodal forces are generated, the displacement increments at the

nodes A, B and K, which are given by Augi), Auéi) and Auéi),

respectively, must occur such that the overlap distance CK is eliminated

during iteration (i). Hence, the total potential of the contact force

at node K may be written as

b = BT}« BT

k

+ (B e} + (B aul ™) (3.6)

where the first term is due to the contactor body and the remaining
three terms are due to the target body.

Since the contact force is originally equal to zero and is
developed during the elimination of the overlap distance, we may write

the incremental decomposition of the contact force at node K as

ziéi) . Ziéi-l) N A;ﬁi) (3.7)

We note that if the two bodies are in sticking contact, the contact

force components may be written as in Eq. (3.4). However, if the bodies

in contact are sliding, the contact force component increment in the

direction tangent to the target segment is equal to zero, or
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ﬁik Bxy argng (3.8)
;,u~ where ﬁs is the unit vector acting normal to the target segment as shown
l.(

gﬁk in Figure 3.3. This expression is true because g acts as a workless
inh constraint force and only the normal contact force component may act in
;}51 eliminating the overlap distance. In addition, the value of 8 will

RO

??‘ change during the iteration due to the relative slip between the two
e

A bodies. This value change is assumed to be negligible for each

o iteration.

o

,ﬁi In order to impose stationarity on the contact functional M. We
W need the first variation of W, . Using the Equations (3.5)-(3.7), we may
;f; write the first variation of the total potential of the contactor node K
8

2% due to sticking contact as

'u_,,“

R . . ) .

. -6W = -{zxé’)}T{sauéT)} + (1 - 5(1'1)){21é')}T{5au£1)}

y

< (=12, (N Tr o0 O _ o N T (1)

N +8 {("a 7  {saug '} - {aag 7} {saug

€

. + (1 - 5(1'1)){Axé1)}T{sau£‘)} + 8(1-1){Ak£i)}T{6AUB}

K :

"Q':'\ . . . s
K00 inT i inT i-1
53: - {saxé )} {Aué )} - {SAxé )} {Aué )}
0

-(1- e(i'l)){SAxéi)}T{Auﬁi)} + s(i'l){sAxﬁi)}T[Auéi)}
(3.9)

where the vector notation has been used to imply that the x and y
components of the terms given within the braces are represented and the
T superscript represents the transpose of the vector. We note that only
the displacement increments and the contact force increments are allowed
to vary, but the contact force components and the overlap distance

components are fixed scalar quantities.
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Similarly, we may write the components of the target segment unit

normal vector as

A = nsxT + nsyj (3.10)

and using Eqs. (3.5)-(3.6) and Eq. (3.8) we may write the expression for
the first variation of the total potential for the contact force at node

K due to sliding contact as
-GNK - -{Zxéi'l)}T{sAuéi)} + (1 - 8(1-1)){21'((1-1)}T{6Au}(\1)}

+ 3(1-1){27"((1-1)}1-{“"&1)} + Algi)nsxﬁduﬁi) + Ax;(;insysAué;)

- (1 - 8(1'1))Ax§1)nsstu£1) - (1 - 3(1'1))A1§1)ns caug;)

Y

. g(i‘l)axgi)nsstuél) - e(i'l)axgi)nsysauBy

(). (1) (1) (i-1) (i-1)
- S8 [ MsxUx - nsyAuKy = MexKx - nsyAl(y

(1- 8(1-1))nsxAu ;) + (1 - 3(1'1))nsyAu£;) + nsxs(i'l)Auél)

(
A

+

+

g e“'l)Aug;)l (3.11)

Y

Here we have written out the components of the terms involving the
contact force increments to aid in showing the origin of the terms in
the sliding contact matrix and force vector. These are developed in the

following section.

3.3.2 Finite Element Matrices

Our ultimate objective in constructing the total potential of each

X of the contact forces is to impose stationarity on the modified
o functional in Eq. (3.1) with respect to the displacement, stress, and
{: contact force component increments. Hence, we must separate the
'J 38
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o
coefficients of the variations in the contact force increments and the
displacement increments of nodes A, B, and K for the expressions in Eq.
[
(3.9) and Eq. (3.11). The resulting contact equations can then be
written in matrix form as
° , (st T (o) o1 1k \flevt}}
-8 = +
k O (s 3T 3 [ YD)
- 3.12)
2,(i-1)
(2011
° where the entries of the [Kcl:3] and [Kg3] matrices and the contact force
vector {zRéi'l)} for the cases of sliding and sticking contact are given
in the Appendix. These components are then added to the existing finite
® element matrices resulting from the stationarity of o (see Section 2).
Performing this step allows us to write the final finite element matrix
representation of the stationary constraint imposed on the modified
® functional expressed in Eq. (3.1):
) wt? o] [ o iy (el
12T (k) [o1] + lo} [0l o] (st
(ol (o] [o] (LI CTR TS VA AP
®
. 2,(i-1)
{ZR} {2 F(1-1) { RC }
o = ({0} - {o} + {0} (3.13)
{o} {0} {t+AtAéi—1)}
The nature of the contact matrices will depend on the state of
® stick or slip between each contactor node and its corresponding target
segment, and the contact matrix and contact force vector must represent
® 39
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this current state. The entries in the contact matrices and force
vectors are shown to be added to the standard mixed finite element
stiffness matrix of a typical element in Eq. (3.13) as a matter of
convenience. It should be understood that the constraint equations were
derived for a generic contact node and its target segment, and the
contact matrix and contact force vector entries must only be added to
the existing values corresponding to the proper global degree's of
freedom of the standard stiffness matrix for these contactor and target
segment nodes.

Once the proper contact matrix and contact force vector
corresponding to stick or slip for each of the contactor nodes have been
added to the global finite element matrix and total force vector, the
solution procedure is similar to that of the standard nonlinear
analysis. The global system of equations is solved repeatedly for the
increments in the displacements, stresses, and contact forces until the
Euclidean norm of the incremental solution vector and/or the total force
vector are within a preassigned tolerance. During the iterations, the
entries in the contact matrices and the contact force vectors are
updated to reflect the most current state of the geometry and loading.
Once the solution has converged, another load increment may be applied

or the analysis may be terminated.

3.3.4 Determination of Stick and Slip

An important facet of the analysis is the determination of the
state of stick or slip between each of the contact nodes and their
corresponding target regions after each iteration. This step indicates

whether the sliding or sticking contact matrices should be imposed for

the next iteration. In Reference [36], which uses a displacement
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formulation, the total distributed tractions along the contactor
elements are computed after several intermediate steps and are compared
to determine the state of stick or slip for a given element. Using the
mixed formulation, this part of the analysis is simplified considerably
since the state of stress is known precisely at the nodes and hence may
be computed for each contactor node rather than for an element side.
Using the stress transformation equations along with the relative angle
(with respect to the fixed Cartesian reference frame) of the target edge
of the target segment, the normal stress component % and the shearing
stress component Tht MY be computed for each of the contact nodes.
Clearly, if the two bodies are in contact, the normal stress component
of the contact node acting on the target body should be compressive. If
we designate the static or dynamic coefficient of friction as u, we say
that if, for a given contactor node,

|rnt| > u|0n| (3.14)
then the node is in sliding contact, and if

wlogl 2 lepel (3.15)
then the node is in sticking contact. It should be noted that these
expressions are the computational equations used to determine the state
of stick or slip for a given node. Physically, however, Eq. (3.14)
would be an equality since the node begins to slide as soon as the
tangential stress just exceeds the frictional capacity of the node.
Equation (3.15) would then be changed to a strict inequality. This
physical situation is a very minor factor, however, since this
bifurcation point would rarely be realized computationally.

Specifying u to be the static or dynamic coefficient of friction in

these equations will depend on if the node was sliding or sticking

&
e
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during the previous iteration. This comparison is made for all nodes in
contact after each iteration, and the correct contact matrix is
implemented for the next iteration. Since the state of stress is not
known for the first iteration after the nodes have come in contact, the
state of sticking contact was assumed so that a non-recoverable

tangential displacement was avoided.

3.3.5 The Computation of Contact Forces

In the case of sticking contact, the increments in the contact
force vector components are both nonzero since a force ma& develop in
both the normal and tangential directions of contact along the target
segment due to the two bodies sticking together. In the case of sliding
contact, the only nonzero incremental contact force component is that in |
the direction normal to the target segment, which is automatically
accounted for by the contact matrices given in Eq. (3.13). However,
there is also a force component that opposes the relative tangential
motion of the contactor node due to the presence of friction acting
along the target segment containing the contactor node. Although this
force component does not exist for frictionless problems, meaning that

the sliding contact matrices may be imposed for all iterations with no

corrections, this is not true in general. This section addresses the
jssue of the computation of these tangential forces that must be applied ‘
to the contactor nodes with nonzero coefficients of friction that are in
s1iding contact along their corresponding target segments for a given
iteration.

According to the criteria given in Section 3.2.4 to determine the
state of stick or slip for a given contactor node, we observe that there

are four possible combinations of stick and slip for the triplet of
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L

nodes neighboring and including the contactor node K. These four cases

are shown in Figure 3.4. The first and fourth cases are relatively

L T—————

‘ ® simple to handle computationally. In case 1, all three of the nodes are

K in sticking contact, and there are no additional force contributions due

‘5 to friction resistance since the nodes do not slide. In case 4, where

. o all nodes are sliding, the only forces that need be applied in the

; tangential directions are those due to friction. To compute these

:. forces, we need to compute the tangential tractions acting on the

. ¢ contactor segment that corresponds to the total frictional capacity.
This step must be performed for each of the two contactor segments.

F To do this, we must first compute the normal and tangential surface

. ¢ tractions using the nodal stress values computed during the previous

f jteration, along with the equations

; PY t"n * %™ T nt"t

; tt = Ty * T (3.16)

;{ For segment 1, which contains two sliding nodes, the tangential surface

§ traction is given by

®

; t; = E-;-—l th-l o }Z;—K tK (3.17)
where the subscripts t and n indicate the tangential and normal

,.‘ directions, respectively, and u1 is the static or dynamic coefficient of

f, friction at node i, depending on if the node was in sticking or sliding

:' contact during the previous iteration. To compute the tangential force

p ¢ corresponding to these surface tractions, we use the formula for the

: equivalent nodal force given for plane elasticity probiems as

" Fy, ° ﬁstzwids (3.18)

i where S represents the boundary of the given element. Since we are
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Figure 3.4 Possible combinations of nodal stick and slip
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e

working with linear elements, the frictional force corresponding to the
modified tangential traction t:, which in this case is constant along
the segment, will be divided evenly between the two nodes of the
segment. This procedure is repeated for the second contactor segment,
which borders the contactor node K on the opposite side, and the total
summed force of these two friqtional force components is applied to the
contactor node K as an external load for the next iteration.

The remaining possible cases involve a contactor segment with one
node sticking and one node sliding. If the neighboring segment is
completely siipping (case 2) or sticking (case 3), the contact forces
for this segment only are computed using the procedures described
previously for the first and fourth cases. Hence the remaining case
that we need to concern ourselves with is the situation shown in Figure
3.5. Clearly, the basic problem involves accounting for the transition
between the zones of stick and slip, including the computation of the
tangential contact force due to the appropriate tractions along the

segment between the sticking node and the sliding node.

In order to determine the force due to friction along a segment

acting on the sliding node, we first need to determine how much of the |
element segment is in sliding contact and how much is in sticking
contact. For the sticking node, the frictional capacity of the node
exceeds the corresponding shear stress, while this inequality is
reversed for the sliding node. Since linear elements are being used, we
assume that the frictional capacity and the shearing stress both vary
linearly along the contactor segment. Hence there is a point m whose

position is defined by the parameter a, which denotes the point of

transition between the zones of sticking and s1iding contact. Using the
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assumption of linear stress variation and similar triangles allows us to

compute the value o as

.= (“|°nn| - 'nt:)K-1
- K-1
(“|°nn| - Tnt)

(3.19)
* gy - ul"'nnl)K

where the superscripts outside the parentheses indicate the node at
which the enclosed quantities are measured. Since the terms computed
within the parentheses are all positive, the value of a must be between
zero and one.

Using a to define the transition point, we next modify the
tangential surface tractions to account for the portion of the contactor
segment that is sliding. We note that the normal tractions are not
changed since they do not explicitly depend on the state of stick or
slip. At the transition point, the tangential traction is reduced to

the value t;, where

(3.20)

where m represents the transition point. The values of the tangential
tractions in the sticking regions remain the same as computed using the
nodal stress values. Using this equation and the modified values given
in Figure 3.5, we may write the final distribution of the tangential
traction t as a function of the length along the segment, denoted by x,
as

t, -t
z(—g;a——l)x +t; if 0<x

IA

ad

(3.21)

t if ad < x

1A
Q.

3

where the values of tl, tss and ty are given in Figure 3.5.
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W
Eiggi To compute the equivalent nodal forces corresponding to these
::.'::3; tractions, we use Eq. (3.21) and substitute in the value of t given by
W ‘ Eq. (3.18) for t:. The tangential traction is no longer a constant
i-f across the length of the contactor segment, and the force will no longer
:, be divided evenly among the two nodes of the contactor segment.
KLY Performing the required integrations yields the desired tangential force
é » ,:E components for the contactor nodes K - 1 and K as
R
Feop = £00(3 - ) + tyed(z - 9 + tdl + a(§ - 1))
“*:?5; 2 2 (3.22)
bor ad a‘d 1 od
o fk=t 78 "3 * G- 7))
{-_: The component of force FK-I is already incorporated into the contact
-" force acting at node K - 1 as part of the analysis. The magnitude of
" the force Fy, however, must be added to the tangential contact force at
-‘:‘ node K computed from the tractions acting on segment 2. This second
::E:,:' force is equal to zero if the node K + 1 is not in contact, and is
e computed using Eq. (3.17) if the node K + 1 is in sliding contact.
ii'::':i"i As in the case of computing the state of stick or slip for a given
:.EEE:.:" contact node, it is evident that having stress as a nodal variable is
33:1‘.0! quite advantageous. The normal and tangential surface tractions may be
-".: readily computed using the nodal stress values instead of using the
?"t nodal contact forces or other techniques to compute these quantities.
0
i
Mol
e
i
B
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4. A HYBRID NUMERICAL/EXPERMENTAL TECHNIQUE

4.1 Introduction

The primary difficulty in the numerical analysis of contact
problems is the lack of knowledge regarding the region of contact and
the state of stick or slip between the two bodies. If the regions of
contact and the state of stick or slip are known for a given load level,
the analysis is greatly simplified. A hybrid experimental/numerical
technique is presented in this section that combines the experimental
technique of moire interferometry with the numerical finite element
method to form a hybrid technique. The new method uses the advantages
of each of the two separate methods to create an accurate and powerful
tool of analysis.

In this section, the basic concepts of moire interferometry, the
experimental portion of the hybrid technique, are presented. The
details of the hybrid technique are discussed, and the geometric and
material properties of the physical specimens and the finite element
models are given in preparation of the presentation of the numerical

results given in the following section.

4.2 Moire Interferometry

A search for the origins of the French word "moire" would lead to a

fabric known as watered silk, which displays varying patterns of light

and dark bands. For this reason, the so-called moire effect occurs
whenever two similar but not identical arrays of lines or dots are
arranged such that one array can be viewed through the other [56].

Moire methods have been used in the field of solid mechanics for several

decades to analyze deformed bodies. During recent years, the

sensitivity of these methods has been improved dramatically.
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Moire interferometry is an experimental technique which may be used

in solid mechanics problems to measure in-plane displacements of
deformable bodies under external action. The method is unique in that
it is not dependent upon the geometrical or material nonlinearities of
the specimen under analysis. All moire techniques use two bar-and-space
gratings, one as a reference and one that is attached to the specimen.
As the specimen is deformed, the specimen grating deforms along with it,
and a contour map of moire fringes is formed due to the deformed
specimen grating contrasting with the undeformed reference grating.
Since the displacements in a given direction are directly proportional
to the fringe order, the corresponding displacements may be computed by
the analyst by counting the number of fringes on the contour map.
Stresses may then be calculated using the gradients of the displacements
and an assumed constitutive model, though this can become quite tedious
and is not as accurate as the displacements themselves.

Moire interferometry provides the required sensitivity that is
needed to accurately measure the small in-plane displacements of the
two-dimensional pin-loaded plate contact problem. In particular, this
method provides valuable information on the state of the displacements
(not stresses) at the interface boundary between the pin and the
plate. This eliminates the need for theoretical assumption on exactly
what is occurring at the contact boundary that is so common in most
numerical simulations of this problem. As mentioned previously, it is
the complex state of contact, stick, and slip that makes this problem so
difficult to model numerically, and the use of an experimental technique

to determine the contact conditions greatly simplifies the computational

effort.




Only the salient features of moire interferometry have been
discussed in this section, and interested readers are urged to consult

the more detailed references by Post [57-59].

4.3 The Hybrid Technique

The two basic components of the hybrid technique are the nonlinear
mixed finite element method and moire interferometry. By far, the more
demanding portion of the hybrid technique is the experimental portion of
the analysis. Although not discussed in this study, the experimental
details of the hybrid technique will be reported by Joh [60]. Despite
the effort required to obtain accurate experimental data and the
relatively large computational time involved in the finite element
analysis, the steps involved in the execution of the hybrid method are
quite simple in concept and are outlined as follows.

The exact displacements around the hole boundary of a physical
specimen may be measured for a sequence of increasing load steps using
moire interferometry. These displacement increments, along with the
loads applied to the plate, are input as a sequence of nonhomogeneous
boundary conditions for the simulated problem analyzed by the nonlinear
mixed finite element model. These steps can be represented
mathematically by considering the global finite element matrix of the

plate written in partitioned form as

—

G G S (F1}
KT w22 kB () = (R (4.1)
e L TG LN T I B APY (F?)

where the vector {ul} contains the degrees of freedom corresponding to
known zero displacements (for example, along lines of symmetry of the

plate), {“2} contains the degrees of freedom corresponding to the nodes




-

o o -

of the plate that are in contact with the pin, and {A} contains the
degrees of freedom corresponding to the remaining unknown nodal
displacements and stresses throughout the domain of the plate.

The imposition of known boundary conditions on the global finite
element matrix is a relatively straightforward task and only the major
points will be described here. Further details of this procedure may be
found in any textbook on structural analysis or the finite element
method (e.g. see [11]). The specification of homogenecus boundary
conditions, or in this case the known zero displacements, results in the

modification of Eq. (4.1) which may then be written as

(ol (o] (u,} {0}
o1 k21 B gl = {(F (4.2)
()N CCS LI TSs | N Y (7}

where [I] and [0] represent the identity matrix and the null matrix,
respectively, and {0} is the null vector. This step is typically
performed in all analyses of the plate regardless of whether a hybrid
technique or a numerical technique is being used in order to remove the
rigid body motion of the plate and to account for the symmetry of the
structure. The primary difficulty in the execution of the numerical
contact algorithms described in section 3 is the determination of the
vector {uz} for a given load step such that there is no penetration
between the nodes of the pin and the plate and that the regions of stick
and slip are accounted for. Hence in a strict computational contact
algorithm the vector [uz} is solved for in an iterative fashion for a
given load step. Each iteration involves significant computation in

order to eventually obtain a solution to the problem.
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In the hybrid technique, the vector {uz} is given by the
experimental technique and contains the true displacements of the plate
boundary as it has come in contact with the pin. Imposing the known
displacement boundary conditions on the global system of equations is
slightly more complicated than the procedure described in Eq. (4.2) for
the homogeneous boundary conditions since the specified displacements
are no longer equal to zero and hence have an effect on the remaining
equations of the system. The force vector must therefore be modified to
reflect this condition. If the vector {62} represents the known
displacement of the contact nodes around the boundary of the plate
determined by the experimental technique, then the modified global

matrix equation after imposition of all boundary conditions may be

written as
(11 (o] [o] {uy} {0}
[ol (11 (o] uh = {{u,} (4.3)
(o] o1 (k31 {{a) (F3)

We note that the remaining force vector has been modified to account for
the nonzero specified displacements. The components of this vector may
be written as

£3 _ 3 33 ~j
Fi= Fi - K§j 92 (4.4)
where the indicial subscripts and superscripts indicate the appropriate
vector or matrix entries. Solving the modified matrix equation in Eq.
(4.3) will result in the correct boundary displacements as well as the

corresponding displacements and stresses throughout the rest of the

plate.
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%ﬁ} Since the solution of the incremental displacement and stress

_334 vector is an iterative process, the vector {GZ} is nonzero only for the
;qu first iteration of the solution procedure for the given load step, and
ﬁ?: is specified to be zero for the subsequent iterations. Hence for a

gkif given load step, the prescribed contact boundary displacements are

5&% applied to the plate along with the appropriate force vector resulting
%g? from the uniform, in-plane load that is applied to the plate. The

ﬁﬁ nonzero displacements throughout the rest of the plate along with all

ﬁf nodal stresses are then solved for using Eq. (2.40) until acceptable
;§3 convergence criteria have been met. As in the case of the rigid pin

E;g algorithm described in Section 3.2, the pin is completely eliminated

;ﬁ: from the finite element analysis and therefore only the domain of the
1%&5 plate is discretized and analyzed.

e The only approximations involved in this technique are those due to
N the physical and mathematical limitations of moire interferometry and
:'E the finite element method. The numerically solved problem is simply a
%kﬁ special boundary-value problem with specified displacements, and no

Qﬁﬁ other assumptions are involved.

;ﬁﬁg Since, in theory, the one half of the plate acts as the mirror

h§§ image of the other half of the plate, only one half of the plate domain
g:s is modeled for the finite element analysis. This will significantly
:;‘: reduce the computational time involved. Experimental data have shown
{“-i that the displacements around the hole of the plate are not exactly |
§‘EE symmetric, even for an isotropic material. This is most probably due to
Eﬁ%ﬂ the limitations of creating a perfectly symmetric specimen and applying
s a perfectly symmetric load. The displacements are therefore averaged in
é" both of the coordinate directions of the plate to yield one pair of
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displacement values for a given point of the contact boundary for the

modeled half of the plate.

4.4 Description of the Plate

In this section the physical dimensions and material properties are
given for the plate and the pin used in the experimental portion of the
hybrid technique. Also given are the different finite element meshes
used in the numerical portion of the analysis of the plate.

A diagram of the plate used in the experiments performed to
determine the boundary displacements between the plate and the pin is
shown along with the dimensions used in Figure 4.1. The plate and the
pin were both constructed of 7075-T6 aluminum (E = 10,400 ksi and v =
0.33). The thickness of the plate was taken to be 0.061 inches. The
restraining pin, with a radius of 0.3745 inches, was fixed to a
structure exterior to the plate and hence its center did not deform
except for a very small displacement due to the bending of the pin
fixture. The plate was loaded by means of pins passing through the two
0.5 inch diameter holes.

Several assumptions were made in the finite element modeling of the
plate domain for use in the hybrid technfque. The assumption of
symmetry was used along the length of the plate in order to reduce the
total number of degrees of freedom of the problem, thereby reducing the
cost of the finite element analysis. In addition, St. Venants principie
was invoked near the loaded end of the plate to eliminate the localized
effects of the pins loading the plate. Hence only the first 8.5 inches
of the plate were discretized, and the applied load was assumed to act

as a uniform in-plane load to the shortened end of the plate (i.e. the

left end of the plate in Figure 4.1).
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Several different mesh configurations were used in the finite
element analysis in order to determine the effect of element size and
approximation order and also to compare results for a variety of domain
and variable approximations. The first mesh used is shown in Figure 4.2
and contains 191 linear isoparametric elements and 228 nodes,
representing 1140 total degrees of freedom. As indicated by the type of
element used to approximate the geometry, both stresses and
displacements were assumed to vary linearly in the finite element
approximations. Since the inner boundary of the plate is circular, the
use of linear elements introduces some domain approximation error into
the solution for this mesh and any other mesh constructed of linear
elements.

The second finite element mesh used to model the plate was
constructed of quadratic elements and is shown in Figure 4.3. The use
of quadratic elements minimizes the domain approximation error in the
analysis of this problem. This second mesh contains 104 elements and
367 nodes, which corresponds to 1835 total degrees of freedom. Although
the quadratic elements do represent an improvement over linear elements
in terms of modeling the circular boundary of the plate, their use does
tend to increase the bandwidth of the global finite element matrix, and
hence the computational effort.

The nodes of both finite element meshes used in this example were
renumbered using the Cuthill-McKee ordering strategy [65] to reduce the
size of the bandwidth and thereby decrease the cost of the analysis. As
mentioned in Section 2, the nodes must still be numbered such that the

first node has specified (zero or nonzero) displacements. Several

different contact nodes were selected as the initial node in the
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g: renumbering scheme and it was found that selecting the node of initial
3%‘ contact (i.e. the node at x = 7.375 and y = 0.0) gave the node numbering
R with the smallest resulting corresponding bandwidth.

;fj The displacements around the boundary of the hole obtained by moire
;ﬁ: interferometry are eventually expressed in Cartesian components as a

{sa function of the angular position around the inside of the hole. The

5&: displacements were given every 0.5 degrees for each load step. In order
%%’ to retain as much of the accuracy of these displacements as was

9t possible, the contact nodes of the plate were located exactly at a point
*‘ where the experimental displacements were computed, i.e. on the degree
5&} or half-degree. Due to the storage restrictions of the finite element
§{. model, only a finite number of nodes could be specified on the plate

;f; boundary, which necessitated ignoring many of the data points from the
bﬁ experimental analysis. Hence for the half-plate model, the contact

;;, nodes of the linear element mesh were located at the following (degree)
Vo

:’j locations: 0.0, 1.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.5, 15.0, 20.0, 25.0,
o 30.0, 35.0, 40.0, 45.0, 54.0, 63.0, 72.0, 90.0, 99.0, 108.0, 117.0,

5ji 126.0, 135.0, 144.0, 153.0, 162.0, 171.0, and 180.0. In an attempt to

\ N incorporate some of the different data point displacements and to

o determine if this _nange affected the resulting stress distributions,
Y the nodes for the quadratic element mesh were placed at slightly

§: different locations: 0.0, 1.5, 3.0, 4.5, 6.0, 7.5, 9.0, 10.5, 12.0,

bt

14.0, 16.0, 19.0, 22.0, 27.0, 32.0, 38.5, 45.0, 50.0, 55.0, 62.5, 70.0,
8o0.0, 90.0, 101.0, 112.0, 123.5, 135.0, 246.5, 158.0, 169.0, and 180.0.
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5. NUMERICAL EXAMPLES AND RESULTS
5.1 Introduction

In this chapter, the results are presented for a number of
numerical examples to demonstrate the accuracy and efficiency of the
methods described in the previous sections. The next three sections
contain results for several elastic contact problems, and in particular
the pin-loaded plate problem, using the rigid pin algorithm, the elastic
pin algorithm, and the hybrid experimental/numerical technique.

It is again emphasized that all of the contact algorithms contain
the nonlinear mixed formulation described in Section 2 as a foundation,
and the only procedures that vary in these different computational
schemes are the assumptions and computations that account for the
regions of contact and the zones of stick and slip. Throughout the
presentation of the results, the effectiveness of having stress as a

nodal variable is demonstrated and highlighted.

5.2 Rigid Pin Algorithm Examples

The contact algorithm proposed by Rahman in [48] was implemented
using the three basic iterations of load, contact, and friction using a
geometrically nonlinear formulation along with mixed finite elements.
Here the results of several example problems involving contact between
an elastic body and a rigid pin are presented not only to demonstrate
the accuracy of the algorithm but also to highlight the effectiveness of
having stress as a nodal variable. The results of the example problems

are compared with available analytical and numerical solutions.
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Figure 5. 1 Modeling used for infinite cylinder resting on rigid plane
under uniform line load
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5.2.1 Infinitely Long Cylinder Under Uniform Load
As a first example we consider an infinitely long cylinder of
o radius r = 1 inch resting on a rigid plane and under a uniform line
load. This problem was modeled using the assumptions of plane strain
le and a thickness of 1 inch. One quarter of the circular domain was used

to model the problem and was approximated by 84 linear elements. The

mesh is shown in Figure 5.1. The load was assumed to act at the center

of the cylinder and was applied in 12 increments with the initial

increments smaller than the later increments. The problem was modeled {
by assuming that the cylinder was in contact with a rigid pin of very ‘
large radius (R = 1000 in.) to model the rigid plane. A tolerance of ‘
F. 0.001 (i.e. 0.1 percent) was used for the equilibrium iterations. The j
modulus of elasticity used was 21,000 psi and the Poisson's ratio used
was 0.3.

The results of the analysis are shown if Figures 5.2 and 5.3. The
numerical results are compared with the Hertz analytical solution J
[63]. Figure 5.2 shows the contact pressure distribution plotted
against the distance from the original point of contact and corresponds
to a total applied load of 56 1bs. Figure 5.3 shows the load plotted
against the total contact area, the data points of which can only be
H. determined when each successive node comes in contact with the pin. The

results from the contact algorithm appear to be quite good.

ﬁ 5.2.2 Orthotropic, Pin-Loaded Plate

The second example considers a thin, orthotropic, pin-loaded plate
with a hole of radius r under a uniform in-plane load, similar to the

b situation shown in Figure 3.1. The modeled plate is shown in Figure 5.4

along with the geometrical and material properties of the plate. Due to
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Figure 5.2 Contact pressure distribution for infinite cylinder
using rigid pin algorithm
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Figure 5.3 Contact area for infinite cylinder using
rigid pin algorithm
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symmetry, one half of the plate was modeled using 124 linear elements
with 156 nodes for a total of 780 degrees of freedom. The material
properties given in the figure are averaged properties from a number of
species of wood. The pin was assumed to be rigid and of radius R. The
plate was loaded to a final load of 400 pounds per inch of plate
thickness, and was applied in 18 unequal increments. A constant
coefficient of friction of 0.7 was assumed at all points of contact
between the plate and the pin for all load levels and is a typical value
for wood on steel. No equilibrium iterations were performed for this
problem.

Figure 5.5 shows the radial stress distribution as a function of
the angular position around the pin for the nodes that have come in
contact at the final load step. These results are compared with the
results obtained by Wilkenson [64] using a finer mesh (385 nodes) and

quadratic displacement elements. The comparison is very good.

5.3 Elastic Pin Algorithm Examples

The method of analyzing contact problems developed in Section 3.3
is much more general than the algorithm described in Section 3.2 which
uses the assumption of a rigid pin. Although this assumption greatly
simplifies the analysis, it also restricts the number of problems to
which this technique may be applied, since one of the bodies must be
rigid and have a circular shape. This second requirement is certainly
valid for the present study, as the primary problem of interest is that
of a pin-loaded plate, but it should be pointed out that the scheme
developed in Section 3.3 is much more versatile and may be applied to a

much larger variety of contact problems.
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5.3.1 Infinitely Long Cylinder Under Uniform Load

As a first example of the so-called elastic pin algorithm, we
consider the Hertz contact problem analyzed by the rigid pin algorithm
in the previous section. This problem was modeled using the three
different mesh configurations shown in Figure 5.6. The geometry and
material properties of the cylinder are identical to those shown in
Figure 5.1. The rigid plane in this case is modeled as a square block
of very high stiffness with its displacements specified to be zero and
would be defined as the target body according to the terminology
introduced in Section 3.3.

Instead of applying the load to the quarter cylinder by means of a
point load along the vertical centerline, as done in the previous
section, we instead require the upper horizontal mid-plane of the
cylinder to deform a uniform amount. Hence, we specify the vertical
displacements of each of the nodes along this horizontal mid-plane to be
a certain distance for each successive load step. The total load may
then be computed by summing each of the nodal forces corresponding to
the specified vertical displacements. For this example, the load was
applied in 14 non-uniform displacement increments until a final
displacement of 0.014 inches was reached. Since this problem involves
frictionless contact, sliding matrices are always imposed for a node in
contact, even for the first iteration.

Figures 5.7-5.9 show the contact pressure distributions computed by
the elastic pin algorithm, shown by the dotted lines, between the
cylinder and the rigid plane for the cases corresponding to the total
applied displacements of 0.006 and 0.014. We note that the smaller

displacement level corresponds to an applied loading of approximately P
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Figure 5.8 Contact pressure distribution for infinite cylinder
using elastic pin algorithm and mesh 2
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= 56 1bs. which is near the final load level reached for the same
problem analyzed by the rigid pin contact algorithm and hence may be
compared with the results given in Figure 5.2. The computed stresses
are compared with the Hertz analytical solution which is again
represented by the solid line in the figure. The agreement is quite
good for both load levels and improves as the mesh is refined.

The stress distributions have been plotted on different graphs due
to the change in the Hertz solution resulting from the differences in
the total applied load. As the mesh is refined, the force required to
displace the horizontal mid-plane of the cylinder decreases since the
cylinder is generally becoming more flexible. This change in load is
relatively small, but makes a large enough difference in the Hertz
solutions to warrant separate figures.

It is aiso of interest to compare the changes in the contact
pressure distributions for different frictional conditions. The plot of
the contact pressure along the rigid plane measured at the final load

step for mesh 3 is shown in Figure 5.10 as a function of the distance

away from the vertical centerline of the cylinder for various values of
the coefficient of friction, u. The plot of the Hertz analytical
solution is shown by the solid line in the figure. We note that as the
coefficient of friction increases, the total load required to displace
the horizontal centerline of the cylinder a uniform amount also
increases. Hence in Figure 5.10, even though each of the total applied
forces corresponds to the same uniform displacement of 0.014 inches, the
Hertz solution is given for the load that is computed from the finite

element solution for the case of an infinite coefficient of friction.
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Figure 5.10 Contact pressure distribution for infinite
cylinder at maximum load with different
frictional conditions(u = coefficient of friction)
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The contact pressure distributions shown in Figure 5.10 agree
fairly well with the analytical solution. As the coefficient of
friction is increased, the contact pressure also increases, especially
for the initial nodes of contact. The pressures computed from the
computational algorithm for all frictional conditions are generally
higher than the pressures computed from the analytical solution due to
the stiffening effect of the cylinder as it deforms. Although not shown
in this figure, the contact area decreases as the coefficient of
friction increases. The contact area may only be determined as each
successive contact node on the boundary of the cylinder comes in contact
with the rigid plane. For example, for the load level corresponding to
the horizontal centerliine displacement of 0.011 inches, the seventh
contactor node is in contact with the rigid plane for the case of
frictionless contact, but this node has not come in contact for the
cases where y = 0.3 and y = =,

A second means of computing the total applied load required to
displace the horizontal centerline may be implemented by integrating the
contact stresses along the length of the contact area of the rigid
block. This not only provides a check on the total applied force, but
it also gives some indication as to the accuracy of the nodal stresses
computed from the mixed finite element model. The resulting forces
calculated by integrating the contact pressures using a consistent
formulation for each of the displacement increments are shown for mesh 3
in Figure 5.11, denoted by the dashed 1ine, and are plotted against the
total specified displacement of the cylinder mid-plane. These forces
are compared with the forces computed from summing the equivalent nodal

forces at the points of specified displacement, shown by the dotted line
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in the figure. Also shown are the forces computed from the exact
solution which are denoted by the solid line. Clearly, the applied
loads calculated from the two methods within the finite element solution
are in excellent agreement with the forces computed using the pressure
integration being somewhat higher than those computed from the nodal
forces. Both of these loads are larger than the corresponding exact
loads computed for a given displacement, and again this is due to the

stiffening effect of the cylinder.

5.3.2 Orthotropic, Pin-Loaded Plate

We next consider the orthotropic, pin-loaded plate previously
analyzed by the rigid pin algorithm in Section 5.2.2. The allowance for
an elastic pin requires that the domain of the pin be analyzed as well
as the domain of the plate. Since the elastic pin algorithm was
developed using linear elements, this discretization introduces another
source of error into the problem since the approximation of the curved
boundaries of both the plate and the pin must be approximated by a
series of straight 1ine segments. As with any finite element
discretization, however, this approximation error decreases as the mesh
is refined.

The location of the boundary nodes at the pin/plate interface,
though not difficult to model, does require special attention to ensure
that the limitation of straight line segment boundaries does not result
in the nodes of the contactor body (i.e., the pin) being initially
within the domain of the target body (i.e., the plate). The mesh
generation was performed such that the nodes on the boundaries of both

the plate and the pin were located on the correct geometric locations on
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the appropriate circular boundaries, while all nodes of the pin were

located outside the domain of the plate.

A major disadvantage of this algorithm in the analysis of the pin-
loaded plate problem is that the pin must be discretized as well as the
plate. While this does not increase the total number of degrees of
freedom to an unreasonable extent, it does hinder the effectiveness of
the bandwidth reduction scheme mentioned in Section 4. As the nodes of
the pin come in contact with the target segments of the plate, the
global influence of the degrees of freedom corresponding to the given
contactor node extends to the corresponding target node degrees of
freedom of the plate. Care must therefore be taken in the numbering of
the nodes of the pin and the plate to ensure that the resulting
bandwidth does not exceed the allowable maximum as new contactor nodes
of the pin come in contact with the plate.

The domain of this problem was modeled using three different mesh
configurations where the symmetry of the plate was used to advantage.
The initial coarse mesh is shown in Figure 5.12 along with the
appropriate specified zero displacements. Most of the subsequent mesh
refinement was restricted to the region of probable contact to increase
the number ofcontact points between the pin and the plate. This region
is shown by the darkened area in Figure 5.12. The three element meshes
corresponding to this sub-region are shown in Figure 5.13. In general,
the region of contact was estimated to be within 0° and 45°, where 0°
represents the initial point of contact between the pin and the plate.
The coarse mesh (mesh 1 in Figure 5.13) consisted of 99 elements and 132

nodes and contained 6 specified contactor nodes. Hence the total number

of degrees of freedom corresponding to his mesh is 672 (132 x 5 + 6 x
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2). The refined domain approximations resulted in 1085 and 1433 total
degrees of freedom for mesh 2 and mesh 3, respectively.

The plate was loaded to a final load of 400 pounds per inch of
plate thickness, and was applied in 12 unequal increments using an error
tolerance per load step of 0.0l. The material properties used for the
plate are identical to those of the orthotropic plate shown in Figure
5.4, but the material properties for the pin were taken to be those of
steel, and were assumed to be given by £ = 29,000 ksi and v = 0.3. The
physical dimensions of the plate and the pin are identical to those
given in Figure 5.4,

The radial stress distributions around the hole of the plate are
shown as a function of angular position in Figure 5.14 for P = 0.32 Pmax
and in Figure 5.15 for P = P, . In Figure 5.15 the stresses from each
of the three different meshes are represented by dashed lines and are
compared with the results obtained by Wilkenson [64] which are shown by
the solid line and were obtained using the assumption of a perfectly
rigid, circular pin. The results are fairly reasonable even for the
coarse mesh, although the stresses are significantly underestimated near
the initial points of contact. As the mesh is refined, however, both
the shape of the stress distribution and the maximum stress values
approach the so1ution obtained by Wilkenson, yielding fairly good
agreement for the final refined mesh.

An important point to note is that the maximum stress given by the
elastic pin algorithm is not given at the point of initial contact. In

tact, the nodal stresses do not follow a regular pattern of decreasing

as the angular position away from the initial contact point increases,

2?5 as reported by Wilkenson. It is unknown if the pattern shown is a
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result of the modeling of the problem, the contact algorithm used, or as
a consequence of using mixed elements. It should be pointed out,
however, that the results given in [64] were plotted using a smoothing
routine, and in the actual analysis of this problem, reported in [47],
this phenomena of increasing stress with increasing angle was recorded
at several points around the boundary of the plate. Furthermore, in one
of the few other contact analyses that used mixed elements, this effect
is also shown rather dramatically in the anmalysis of the Hertz contact
problem [45].

In this example problem, the results of the elastic pin algorithm
are compared with the results obtained by means of a different technique
using the assumption of a perfectly rigid pin. To simulate this rigid
pin, the material properties of steel were used. To investigate the
effect of higher pin stiffness on the resulting stress distributions,
the analyses in this section were repeated using a pin modulus of
elasticity one order of magnitude larger than that of steel. Poissons
ratio was kept as 0.3. For both mesh configurations, the displacements
near the contact region decreased approximately one order of magnitude
from the displacements using the steel pin. This discrepancy decreased
rapidly away from the contact region, with the displacements at the
loaded end of the plate differing by only one percent. More
importantly, the increase in pin stiffness had a very small effect on
the radial stress distributions as all computed stresses around the
plate were within two percent of one another. Hence within the context
of this example, the rigid pin was adequately modeled by having a
modulus of elasticity approximately one order of magnitude higher than

that of the plate.
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5.3.3 Aluminum, Pin-Loaded Plate

We next consider a second example problem involving a pin-loaded
plate. The specimen used in this example is the aluminum plate shown in
Figure 4.1. The plate is restrained by an aluminum pin that is assumed
to be of the same thickness (0.061 inches) as the plate. The mesh used
to model the p1d£e and the pin is shown in Figure 5.16 and contains 236
elements, 286 nodes, and has a total of 16 possible contact nodes, which
accounts for 1462 total degrees of freedom. The mesh used to discretize
the plate is very similar to the mesh of linear elements used in the
implementation of the hybrid technique shown in Figure 4.2. Only the
region of initial contact contains siightly fewer elements and nodes.

In contrast to the previous example, the initial clearance between
the pin and the plate is very small for this problem. Hence even for a
very smél] jnitial load increment several nodes will come in contact at
the same time. The algorithm used to analyze this problem was written
such that the specified displacement increments corresponding to the
penetration of a contactor node are imposed one at a time to ensure that
the effects of each of these displacement increments do not subsequently
alter the penetration distance of subsequent contactor nodes. The
loading for this problem was applied in 6 increments with initial small
load steps giving way to much larger load steps until a final load of
1037 pounds was applied to the plate. The material properties used for
this plate were the same as those given in Section 4.4.1. A coefficient
of friction of 0.15 was used in this example.

Figures 5.17 and 5.18 show the radial and shearing stress

distributions computed at the end of the third and sixth load steps,

respectively. In each of the figures, the results are compared with the
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‘
f corresponding results from the hybrid technique described in Section 4
J: (see Section 5.5). The radial stress distributions are in quite good

i; agreement with one another where the differences can probably be

fl attributed to the linear domain approximation of the pin, the

X approximation of the restraining pin using the assumptions of plane

A stress, and the effects of the relatively large load steps that force
;§ several nodes to come in contact for a given increment due to the very

v small clearance for this problem. The shear stress distribution

(H computed from the elastic pin algorithm increases during the initial 15
; degrees of contact and then abruptly drops to near zero. This peak in
Py fact indicates the termination of the zone of sticking contact, and all
;ﬁ nodes in contact past this point are in sliding contact. The results
% from the hybrid technique also show this pattern to a slightly lesser

; extent, and the shearing stress does not approach zero quite as

. abruptly.

.i We also note that in general the displacements in the direction of

' the load computed by the elastic pin algorithm are larger than those

P given by the experimental data from the hybrid technique. The
Z* differences are largest near the initial points of contact and then
?g dissipate away from this region. This behavior is almost certainly
o caused by modeling the pin as a two-dimensional body under plane stress
'%' conditions when in reality this fixture is much more three-dimensional
;: than is the plate.

{f 5.4 Results of Hybrid Numerical/Experimental Technique
;i This section contains the results of the impliementation of the

!

hybrid technique described in Section 4. A1l analyses were performed

using either the mesh of linear elements shown in Figure 4.2 or the mesh
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of quadratic elements shown in Figure 4.3. The loading was typically
applied in 9 increments where the values used were given as foilows (all
values in pounds): 225, 467, 667, 855, 1037, 1240, 1458, 1670, and
1840. This load was assumed to be uniformly distributed along the
bottom of the plate. A1l u displacements (i.e. the displacements in the
direction perpendicular to the load) along the centerline of the plate
were specified to be zero due to the symmetry of the plate. A1l nodal
displacement increments around the hole interior were specified using
the displacement values from the moire analysis, except for the known
zero u displacements for the two nodes located on the centerline of the
plate.

Several representative radial contact stress distributions are
shown in Figure 5.19. In all plots containing the results from the
hybrid technique, the angular positions of the data points correspond to
the diagram of the truncated plate shown in this figure. The stresses
shown here correspond to the second 1oad level and the ninth or final
load level. The stresses shown are taken from the mesh of linear
elements, represented by the dotted 1ine, and from the mesh of quadratic
elements, represented by the solid 1ine. The compressive radial
stresses are at a maximum near the initial nodes of contact near 90° and
then decrease to near zero for the lower quarter of the hole boundary.
This is as expected since the points of initial contact on the plate
have normals that are closer to the direction of applied load than the
later contact nodes, and would therefore be expected to balance the
majority of the load in the radial direction. The stress free condition
is well shown in the region from -90° to 0° with the small variations

most likely due to numerical and experimental scatter. In general, good
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Figure 5.19 Radial contact stress distributions around hole boundary
for linear and quadratic element meshes at 2nd and
final load steps




agreement exists between the stresses computed using the mesh of linear

elements and the mesh of quadratic elements.

It should be stressed that all of the results presented from the
hybrid technique in this section are based on the experimental data from
a single experiment and should be viewed with this in mind. Since the
results are so highly dependent on the experimental data, it is
necessary to avoid making sweeping generatlizations based on the results
presented in this section. Nevertheless, several preliminary
observations can be made from these results. First, the region of
contact is very large, even for the lower load steps, but never exceeds
90 degrees. This is most 1ikely due to the very small initial clearnace
between the plate and the pin. Second, there are obvious fluctuations
in the compressive stress in the initial 15 degrees of contact for both
levels, and in fact this pattern exists for each load step. This is a
consequence of an unexplained sequence c¢f sign changes in the v-
displacement increments of the experimental data that appear in this
region for each load step. These pecularities may be due to surface
flaws, a lacalized stick/slip effect, or some other unexplained physical
phenomenon. Figure 5.20 shows the radial stress distribution from 0 to
90 degrees for the final load step using the mesh of quadratic elements
for a series of increasing radii inside the plate domain. As the
distance from the hole boundary is increased, the fluctuations become
much smaller and are nearly eliminated altogether for a radius of 0.6
inches. Hence these oscillations are quite localized and are most
likely due to a surface effect.

Figure 5.21 shows the shearing stress distributions calculated

using the two different mesh configurations measured at the final load
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i o step. The trends are generally the same for both meshes except for
% ' ‘ several obvious kinks that are due to the differences in the data point
displacements used and the differences in the two meshes. The values of
the shearing stresses are quite small and are in fact nearly an order of
* magnitude smaller than the corresponding radial stresses for this same
load step. Although the stresses are of the proper negative sign, they
remain negative and slightly nonzero even in the region of supposed non-
contact. It is difficult to ascertain if these patterns are due to the
actual behavior of the plate or if either numerical or experimental
difficulties are affecting the solution.

The circumferential stress distributions for the final load level
2 are shown in Figure 5.22 for both mesh configurations. These two curves
N are in very good agreement and, except for the samll jumps in the region
of initial contact which are again probably due to the discrepancies in
the v-displacement data, this stress distribution is quite smooth. This
) stress component is of 1ittle interest in terms of the contact problem
A and is mainly shown here for completeness.
. In the preceeding discussion, the region of contact was always
N assumed to be determined by the region of compressive stress. Where the
o radial stress went to approximately zero, the contact region was assumed
to have ended. In terms of the hybrid technique, this is the only means
" that is available for computing the angle or region of contact between
the pin and the plate for a given load step.

Fortunately, the experimental data provides a second means of
N computing the contact area. A cursory glance at the u-displacements
from the moire results shows a positive displacement increment for all

- of the boundary nodes from 90° down to some angle ¢. A1l data points
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past this angle have a negative u-displacement increment up to the final

R boundary node located at 180 degrees. The angle ¢ decreases as the
ﬁg& loading is increased. Intuitively, one would expect that the only

?3 constraint that would cause a positive u-displacement for the nodes on
iGHE the hole boundary of the plate is the presence of the pin, and that the
§$§ point of the sign change would correspond to the end of the contact

*ﬁ: region. This conclusion is reinforced by viewing the resulting radial
ﬁﬁﬁ stress distribution from the hybrid technique and noting that the nodes
‘ﬁﬁg bounding the change in the sign of the u-displacement increments also
:iﬁf bound the change in the sign of the radial stress component from

fﬁﬁf negative to positive (or near zero).

$5$ If the above argument holds, one could recall the boundary

gg? conditions of the mixed method given in Eqs. (2.50) and (2.51) and note
hﬁ? that only the displacements on the contact boundary need be specified
;¢ﬁ' since the remaining portion of the hole boundary is stress free. Using
gﬁg the criterion given in the preceeding paragraph, only those

5%%5 displacements corresponding to nodes thought to be on the contact

et boundary were specified using the experimental data. The resulting

é%g radial and shearing stress distributions are shown in Figures 5.23 and
gﬁg 5.24, respectively using the mesh of linear elements. The radial stress
— distributions are in very good agreement with one another, indicating

that the change in sign of the u-displacement increments most likely

Lqﬁh does represent the end of the contact region. There is a small but
:ﬁg sharp jump in the stress at the node located at 0° which is most
l‘l'
ﬂg probably caused by specifying the displacements for one node and not
’:|‘. ff
jgeg specifying the displacements for the adjacent node. The numerical
Wb
3 i scatter is much smaller from -90° to 0° and the revised stress is
e
K
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slightly more compressive from 0° to 90°, indicating that the specified
displacements somewhat restrain the motion of the plate using this
particular mesh.

The shearing stress distributions are also in good agreement except
near the end of the contact region, where the stress values resulting
from the specification of only the contact boundary node displacements
dips slightly more negative and then goes to near zero before following
the original stress distribution for the remainder of the hole
boundary. Again, the shearing stresses remain much smaller than the
corresponding radial stress components.

A final analysis was performed to determine the effects of
geometric nonlinearity for this particular specimen. The final load
step was applied along with the corresponding specified boundary
displacements as a single load step in contrast to the incremental
analysis that had been performed for the preceeding examples. The
resulting stresses and displacements were in excellent agreement with
the results from the incremental solution, with all values within 1
percent of each other and most values much closer. The single load step
analysis converged in three iterations whereas the_incrementa1 analysis
converged in two iterations for each of the 9 applied load increments.
Hence it appears that for this example, the effects of geometric
nonlinearity are quite small. This is no doubt due to the relatively
stiff material being used and the very small initial clearance between
the plate and the pin.

In summary, the hybrid technique provides a useful alternative to
strictly computational schemes for the analysis of the pin-plate problem

in that no approximations are involved regarding the location of the
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contact region or the regions of stick and slip. Since this information
is provided by an actual physical test there are several unfortunate
drawbacks to this method that have yet to be resolved. First, although
the region of contact can be computed using the results of the hybrid
technique with what appears to be good accuracy, the regions of stick
and slip are still unknown since the relative displacements between the
points of the pin and the plate in the tangential direction are not
known. Second, the resulting radial and cjrcumferential stress
distributions on the hole boundary of the plate are relatively smooth
and appear to be reasonable. The shear stresses, however, are very
small compared to the radial stresses, have no uniform pattern around
the hole boundary and are nonzero in the regions of no contact. Since
the material used in the experiment was isotropic, this may mean that

the extensional strains ¢__ and €gp OT€ measured with good accuracy but

rr )

either there is some problem in experimentally capturing the true
shearing strains or numerically modeling the shearing stresses along the
contact boundary of the plate. Other conclusions must await the
computation of the boundary stresses using the moire fringe patterns and
the results of additional experiments, which are to be reported by Joh

(60].
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6. SUMMARY AND CONCLUSIONS

6.1 Summary

A mixed variational statement and corresponding finite element
model were developed for plane elastic bodies undergoing large
deformations using the updated Lagrangian formulation. The mixed finite
element formulation allows independent approximation of the
displacements and stresses and both of these quantities appear as nodal
variables. This formulation was applied to several plane elasticity
contact problems to assess the efficiency and accuracy of this approach.

Using the mixed formulation, two separate computational algorithms
were developed for the analysis of contact between two bodies
considering the effects of friction. The first algorithm assumed that
one of the bodies was perfectly rigid and circular in shape. The second
algorithm was much more general and allowed for two bodies of arbitrary
shape and constitution. Both techniques required the use of several
iterative procedures to account for the accurate computation of the
regions of contact and the regions of stick and slip betwen the two
bodies. The mixed formulation yields stresses on the boundaries of the
two bodies in contact since these components are nodal variables. This
facet is a key advantage of this formulation since the contact stresses
are not only part of the desired solution to the problem but are also
used in several intermediate steps of the analysis. Both of these
algorithms were applied to several example contact problems, including
the well known Hertz problem and several examples involving contact
between a plate under in-plane load containing a hole and a circular pin

located within this hole.
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A hybrid numerical/experimental method of contact analysis was

developed using the mixed finite element formulation and the
experimental technique of moire interferometry. This approach is unique
in that there are no approximations required to determine the contact
regions or the states of stick and slip as required by all strictly
computational algorithms since the displacements on the contact
interface are provided by the moire analysis. The only approximations
involved in this technique are those due to the physical and
mathematical limitations of the experimental and numerical techniques.
This hybrid approach was applied to the problem of an aluminum plate

with a hole restrained by a pin and subjected to an in-plane load.

6.2 Conclusions

The displacements computed from the mixed formulation applied to
several linear and nonlinear plane elasticity problems are in good
agreement with values computed using the more conventional displacement
finite element model. The stresses computed using the mixed method,
however, are not only slightly more accurate than those computed from a
displacement formulation, but they are also computed precisely at the
nodes. This is a valuable characteristic when applying this formulation
to problems with stress concentrations or contact problems since the
displacement formulation typically requires that the stresses be
computed within the elements which are then somehow extrapolated to the
boundaries.

Both contact algorithms yield reasonably accurate results for the
contact problems analyzed in this study. The stress distributions and
area of contact for the Hertz problem are in very good agreement with

the analytical solution. The pin-loaded plate examples are generally
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much more difficult to analyze in a computational sense. This is
particularly true for the second algorithm, which must approximate the
domains of both the plate and the pin. The results of the two
algorithms are compared with results reported by other investigators
using both numerical and experimental methods. The results are
generally in good agreement with existing solutions, but at times the
points of maximum stress computed by the second algorithm are not at the
points of initial contact, which is typically the case for this type of
probiem. This might be due to the fact the approximation of the contact
boundaries of two circular bodies using linear elements necessitates
careful modeling of these bodies to ensure that they do not initially
overlap. This phenomenon does not occur in the analysis of the Hertz
problem, where the target body is modeled by a straight line, and for
most contact problems analyzed here the results were consistent with
those reported elsewhere. Care must be taken when applying these
contact algorithms to problems with known stress discontinuities or
singularities, since by definition the stresses must be continuous at
the nodes.

The stress distributions computed from the hybrid algorithm for the
analysis of an aluminum plate shows very large regions of contact for
the example problem considered. This is due to the very small initial
clearnace between the pin and the plate. There is a very distinct jump
in the radial contact stress distributions near the initial region of
contact for all load steps, which appears to be due to several
unexplained patterns in the displacement data. The shearing stresses
are very small relative to the normal stresses, and the distributions

have no uniform patterns. The contact stresses were computed by the
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*32 hybrid technique using two separate approaches: 1) specifying all
displacement increments around the hole boundary, and 2) specifying only
!:::;ré the displacement increments corresponding to the region of assumed

:‘!{ contact. The assumed contact region was determined using the

;’“’-‘5 displacement data of the plate hole boundary nodes in the direction
:;:g:* perpendicular to that of the applied load direction. The results of
':‘s(* these two approaches are in good agreement with one another.

:‘?’ For the example problem considered, the contact stress

Lt distributions are similar regardless of whether a mesh of linear or
i quadratic elements is used, indicating that the mesh refinement yields
e 1ittle change in the stresses. Although the contact stresses computed
-?'t;' by the hybrid technique are in fairly good agreement with the results of
‘ : the second computational contact algorithm, no other comparisons are
:‘:"52‘ currently available.

oo Although the hybrid technique provides a unique way of obtaining
: the stress distributions within the plate domain with minimal

.@_ computational effort compared with the numerical contact schemes, the
"’i‘ : technique unfortunately does not yield the regions of stick and slip
i between the plate and the pin. Such information could provide valuable
Ig_: information on the bounds of the static and dynamic coefficients of
Al friction for the contacting bodies. It should be noted, however, that
g the moire technique does not involve measuring stresses; the stresses
x'-,g; . are computed from the measured displacements/strains using a stress-
TR strain law that is assumed to be valid for the situation.

% The computational algorithm for the contact analysis between two

¢

; . elastic bodies of arbitrary shape could be extended to higher order

Yoy elements to allow the accurate modeling of two bodies with curved

2

106

By e S Y B T ot T ¥ T e Tt A R LA R L N L A L T R R



boundaries in contact, such as in the case of the pin-loaded plate.
This task is more complicated than it first appears since general
expressions must be developed for the contact force potentials and the
forces due to friction considering curved element sides and normal
surface vectors that are constantly changing. This approach would be
relatively straightforward to apply to problems such as that of Hertz,
where the target body can be defined by a straight line. This would
greatly simplify the formulation.

The mixed finite element model could also be modified to include
the effects of material nonlinearity. This could be of significance in
the analysis of contact problems since large stresses commonly occur at
or near the region of contact, and nonlinear material response could
have a dramatic effect on the contact stress distributtions.

The hybrid technique consisting of the finite element method and
moire interferometry may be applied to additional isotropic or
anisotropic plates. It may be of use to consider specimens with a
larger initial clearance between the pin and plate than was used in this
study. This would decrease the total contact region and increase the
region of sticking contact as well as help to minimize the effects of

minor surface flaws near the initial points of contact.
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APPENDIX

The finite element equations (2.28) can also be written in more

explicit form as
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g& Note: The Cauchy stresses r; are computed using nodal stress
l“l.
;;k interpolation and not using the Almansi strains. For the first
if? iteration, the Cauchy stresses are zero and hence [Klll is a nul
e matrix. This yields an indefinite system and an equation solver should
e be selected accordingly for this first iteration.
i The contact matrices and contact force vectors given in Eq. (3.13)

can be expressed in explicit form as follows:
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The above two vectors are the same in the case of sliding contact,
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E Note that in the case of sliding contact, we must compute the increments
“ ® in the contact forces in Cartesian coordinates using the equations
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