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INTRODUCTION

At present ultrasonic techniques.for characterizing defects are being explored vigor-
ously at various research centers aroumd the world. Currently, the ultrasonic approach to
defect sizing and characterization is beginning to find great favor for in- or out-of-service
use. Xwr,% recent review of practical ultrasonic nondestructive evaluation t-# erLs
referred,t&-Si-ll-' Because of recent advances in experimental ultrasonic technology,
increasing demands are being put on quantitative theoretical modeling of scattering of
ultrasonic (elastic) waves by cracks, cavities and other material inhomogeneities in an
elastic medium. With a view to obtain detailed information about signals scattered from
complex defects various analytical and numerical techniques have emerged. In this article
we present a combined finite element and eigenfunction expansion technique for solving
scattering problems involving multiple scattering as well as complex geometries. Numeri-
cal results obtained by this method are compared with recent experimental results. In the
following we first summarize the theoretical treatment. Then we present the finite element
and eigenfunction expansion technique (FEEET). Numerical and experimental results are
presented next. Although the results presented here are for homogeneous materials, the
method can readily be extended to composite materials.

GOVERNING EQUATIONS AND METHODS OF SOLUTION

For the development of the main concepts behind solution techniques for scattering in
an elastic medium we will assume that the medium is infinite in extent, is homogeneous,
isotropic, and linearly elastic with Lam6 elastic constants A, p, and density, p. An infinite
solid right cylinder with material constants Xj, A,, and pi is assumed to be embedded
in the infinite medium. For convenience it will be further assumed that the problem is
two-dimensional (plane strain) in planes perpendicular to the axis of the cylinder. Let
xy-plane be a plane perpendicular to the axis and let the boundary of the intersection of
this plane with the cylinder be C.

The equation of motion in the elastic medium is given by

V. r + PW2 u=0 (1)



where u(z, y)e -"" is the displacement of a point of the medium, r is the associated stress
tensor, and w is the circular frequency. r is related to the displacement gradients by the
relation

r = AI(V.U) + (VU+uV) (2)

where I is the identity tensor.

Now the scattering problem is to find the solution u of (1) such that

U = U(O) +u(),(z, y) outside C (3)

where u(°) is the incident field that satisfies (1) in the absence of the inclusion, and
u(I) is the scattered field that also satisfies (1) outside C and the radiation condition as
r = \/X 2 -+y2 --+ o. Furthermore, if the field inside C is denoted by uI, then uL satisfies

(1) and (2) with A, /&, and p replaced by AL, I.&, and p1, respectively. The boundary
conditions on C are,

u=u on C

n*r=n*r on C (4)

Here it has been assumed that the cylinder is perfectly bonded with the surrounding
medium and n is an outward unit normal to C. The solution, u("), has a surface integral
representation (See, Varatharajulu and Pao (2)),

(0) ( u(r);r outside C (5)u(°Cr) 0;r inide C S

Here is related to the Green's tensor G by the equation

=AIVG +(VG + GV) (6)

The primes indicate that the quantities are evaluated at points r' on C. The Green's
tensor C satisfies the equation

V. Z(,Ir') + pw2G(rfr') = -16(r - r') (7)

Note that if r approaches C then the left-hand side of (5) gives lu(r). Eq.,ation (5) is the
*. basis of the various boundary integral approaches that have been developed to solve scat-

tering problems involving arbitrary geometry of C. The common difficulty encountered
*" when using these methods is in treating multiple scatterers, scatterers with sharp edges,
,* and scatterers in inhomogeneous or anisotropic regions. For these reasons we have devel-

oped a hybrid method that combines the advantages of the finite element method with
those of the integral representation or of the eigenfunction representation. The hybrid
combined finite element and eigenfunction representation has been used by us in solving



several scattering problems that involve non-planar cracks, multiple cavities, and cracks
in a bounded medium

In this approach Equation (5) is solved by expanding u in a set of basis vector
functions that satisfy (1). For the two-dimensional problem under consideration these are
(Varatharajulu and Pao (2)), using plane polar coordinates r, e,

VLdH,(kLr)cosn] ; a = 1 (8)
H k; 2

and
=fV A [e34t H,1 (I 2r)cosnaj ; a = 1()(1 (9)

V [e.eAH,.(k 2r)sinn] ; a = 2

where eo = 1, and en = 2(n >.0); H,.(kr) is the Hankel function of the first kind.
The basis functions (8) and (9) are used to represent the scattered field u('). On the
other hand, the incident field u(0 ) is represented in terms of Reo', where Re denotes the
real part of H,., which is J,.. The quantities k2 , k1 are the longitudinal and shear wave
numbers,

k 1 = w/c , k2 = W/C 2  (10)

C1, c2 being the longitudinal and shear wave speeds outside C.

Thus one writes
u(°)(r) = A ' + BERei] (11)

U (a)(r) =ZE ctfncn + Oi3~wJ (12)
fIW

Representations (11) and (12) are valid outside the scatterer(s). So they are valid also
outside an imaginary boundary B circumscribing the scatterer(s).

The field inside this boundary is represented by finite elements. The two solutions
are then matched by requiring the continuity of displacements and tractions across B. It
has been shown that this finite element and eigenfunction expansion technique (FEEET)
is quite versatile in solving scattering by cracks or multiple cavities in bounded media as
well as structure-medium interaction problems (Shah, Wong and Datta, (3); Abduljabbar,
Datta and Shah, (4); Shah, Wong and Datta, (5); Datta, Wong and Shah, (6); Wong,
Shah and Datta, (7)). In the following we describe the method and present numerical
results. We also present some experimental results.

The combined finite element representation inside B and the integral representation
(5) outside B was used in (8) to study dynamic amplification of surface displacements.
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HYBRID FINITE-ELEMENT AND EIGENFUNCTION TECHNIQUE

For the two-dimensional problem considered in this paper, the solution for the
displacement u can be divided into two parts: the anti-plane motion (SH) in which
U= = 0, u. :. 0, and the in-plane motion in which u. = 0, u. 5. 0, uY 9= 0.
The SH wave scattering in semi-infinite media and thick plates was studied by Datta,
Shah and Fortunko (9), Abduljabbar, Datta and Shah (4), and Abduljabbar (10).

Consider a surface-breaking crack of length D making an angle a with the x-axis (See,
Fig. 1). Note that the crack may be embedded in a material that has different material
properties from the surrounding homogeneous, isotropic elastic medium. Let a plane SH
wave be given by

u(1) = -a, ( eit (13)W~o e e in ,- rqos)-iw

be incident from infinity. Here c k2D, 2 = z/D, and = y/D. Figure 1 shows the
geometry. The incident field given by (13) will be reflected from the free surface so that
the total field incident on the crack is

u ,(°) = 2wocos(cgcos-y)e'dz4 = (° )  (14)

where we have dropped the time factor e- t . The scattered field will be denoted by
U\
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FIGURE 1. Geometry of a surface-breaking crack.



The solution w(°) outside an imaginary surface B enclosing the crack can be expanded
as,

0W(S)= A,,cosnO'H(k 2r') (15)
u=I

where r', 0' are defined as

r= (Z2 + 2) , r'cosa' = z

The surface B can be chosen as a semi-circle of radius r' = Ra. Note that w(") satisfies
the stress-free boundary condition on y = 0.

The region interior to B (including B) will be divided into finite elements. Thus the
displacement in the domain of an element can be written in the form

MV• i LC 17)w Ci 16)

i=L

where M is the number of nodes in the element, wi (i = 1,.., M) are the nodal displace-
ments and Li are the shape functions.

The variational formulation requires the minimization of the functional

f = Ur- Ip2 W z - At(17)2 fW&fY 2  P '

where pi(i = 1, ... , M) are the nodal forces and the integral is over the area of the element.
U is the strain energy given by

1 f fw6 6w6
In the above overbar indicates complex conjugation and subscript e denotes element

property. Minimization of J leads to the equation

[,K{W} = {p} (19)

where [KI is an MXM matrix whose elements are given by

__ 8 +4 L __

.. I

S= AQ,.((.a 12 + (8Lz) 2

IxgI
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1J1(Dza a17a

For the crack problem in the absence of body forces under consideration the interior
nodal forces are zero. So assembling the element equations we get the global equation

[Sr, SIB W } {oB} (21)Si Smy WB -PB

where subscripts I and B denote internal and boundary nodes, respectively. Here {pB }
denotes the column matrix of interaction forces at B between the regions interior and
exterior to B. Then we require that

{WB) = +

(AB) = {PB} (22)

where PB is a weighted average traction derived from w = o) + w('). Details of this
can be found in Datta and Shah (11). Using equation (20) in conjunction with (15) and
(21), one obtains equations for the determination of the coefficients A,,, and the nodal
displacements W1 and WE. Once A.'s are known, then the scattered displacement field
can be calculated. Figure 2 shows the amplitude of the scattered field (normalized with
respect to the amplitude of the incident field) on y = 0 for large k2 z when a = 900. The
incident field direction is parallel to the x-axis (-f = 90*). Also shown on this figure are
experimental results obtained on a number of calibration specimens using electromagnetic
acoustic transducers (EMAT). For details of the experimental set-up, reference may be
made to Datta, Shah and Fortunko (9).

The method described above can be used also to analyze scattering in a thick plate.
Then the representation (15) for the scattered field is replaced by

(s= Bcoa 3,yeik"" , z)O
fmO

- k C",1cosI3ve-ik"" , z(0 (23)

where p,, = ni/h, k. = (k - 0.)f, h being the thickness of the plate. The fictitious
boundary B is now replaced by vertical lines at z = -zl, and r ZR that join the
horizontal surfaces y = 0 and y = h. Figure 3 shows backscattered amplitude due to a
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FIGURE 2. Scattered SH wave far-field amplitude for a normal surface-breaking crack.
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FIGURE 3. Scattered SH wave amplitude in a thick plate. a is the length of the crack,
h the thickness of the plate and k. = W/C 2 .

normal surface crack (a = 90o). Also shown in the figure are the experimentally-measured
values. In the experiment both the transmitters and receivers were sensitive to n = 0 and
1 modes only.



Scattering by buried canted crack (a 0 900) in a thick plate has also been analyzed
using the above technique. Experiments have also been performed. Details of the analyt-
ical and experimental procedures are discussed in (12). Figure 4 shows the experimental
configuration and the geometry of the crack. In this case several plate modes (n=O, ...,
4) were generated and received by the transducers. Figures 5 and 6 show the reflected
and transmitted transient signals at different receiver locations for the same transmitter
location. It is seen that for certain locations the agreement between theory and exper-
iment is quite good. However, there are other locations at which there is significant
discrepancy. There may be several reasons for this: finite transducer size, crack lengths
in the experimental configuration not being exactly the same as that assumed for analy-
sis, and, perhaps, the most important fact being that the cracks in the experiments were
surface-breaking.

We now present some results for the plane strain case. In this case the scattered field
u($) can be represented in the form (12) with

Os

= V A + V A . C) (24)

ddi

i\iT I
1%

FIGURE 4. Experimental configuration.

For convenience, and V. are now defined as 0,e'"e, Oein #, and the sum in (12)
is over n only, but from -co to oo. The functions OP, tP, 03, and to are such that u(s)
satisfies the stress-free boundary condition on y = 0. Their expressions can be found in
Datta and EI-Akily (13). The boundary B in Figure 1 can be chosen to intersect the free
surface as shown, if the scatterer is very close to y = 0, or it can be wholly within the
half-space if the scatterer is embedded deep in the half-space. The latter was the case
discu sed by Shah, Wong and Datta (5), and Wong, Shah and Datta (6). More recently,
scattering from surface-breaking cracks has been discussed by Shah, Chin and Datta (14).



......... experimental

D/" = 0.3 - calculated

d'=9Omm.

0 - I I

. Ii Id =80rm

O
O 0

d'= 13Omm50 5 102 15

- I . . .. I o

50 75 10 125 150

Time (yis)
* I

H 16mmIr

N FIGURE 5. Transmitted pulse for a 300 canted buried crack.

In Figure 7 we show the results of normalized scattered vertical surface displacements
due to a buried circular cavity. Results of experiments and earlier asymptotic calculations
are also shown. Figure 8 shows the corresponding results for a buried circular elastic
inclusion. It is seen that in both cases there is very good agreement between theory
and experiment. Finally, Figures 9-11 show the results for surface-breaking straight and
branched cracks for an incident Rayleigh wave propagating in the x-direction.
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FIGURE 6. Reflected pulse for a 300 canted buried crack.

0 .8 1 1 , 1 1 1 1 1 1 1-- .5
-- I (MAE)

' 0.6 .U (Experiment),error - i (MSR)C -"Jl ( Present )

c 0.

-20 -16 -12 -8 -4 0 4 8 12 16 20

k 2 x

FIGURE 7. Scattered vertical surface displacement amplitude due to a Rayleigh wave

propagating in the x-direction. H = depth of cavity center = 2.6A, k2 A = 0.6.
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FIGURE 11. Scattered vertical surface displacement amplitude due to a normal
branched surface-breaking crack.

CONCLUSION

Results presented above show the versatility and success of the hybrid modeling
technique to solve ultrasonic scattering by single or multiple defects in unbounded and
bounded media. Comparison of theoretical and experimental results shows excellent agree-
ment. These studies show that the hybrid modeling technique is capable of describing the

- scattering process in a variety of situations that involve more than one defect and non-
planar defects.

The analysis that has been presented above for a homogeneous isotropic plate can be
extended to layered and anisotropic plates modeling laminated composites. That work is
in progress and will be reported later.
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