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Abstract

Scattering of elastic waves by surfac breaking planar and non4planar (branched) cracks,

has been studied in this paper. Attention has been focused on the near.field surface displace-

ments and the cracktip(s) stressintensity factors. For planar normal cracks the stres4intensity

factors are shown to agree with earlier results. Numerical results showing normalized vertical

surface displacements are presented for incident body and surface waves. It is shown that the

results for planar and branched cracks can be significantly different in some instances.

Introduction

Problems of elastic wave scattering by surface-breaking and near-surface cracks are con-

siderable current interest for ultrasonic nondestructive evaluation Ultrasonic scattering by

planar cracks near or at the free surface of a semi-infinite elastic homogeneous medium has been

studied theoretically by many authors. References to recent papers on this subject can be found

in '1, '2] and 3]. Some experimental works on surface-breaking normal planar cracks have also

appeared (4.6-).

Ultrasonic scattering by surface-breaking planar and branched cracks of arbitrary orienta-

tion is the subject of this investigation. To our knowledge this problem has not received much

attention in the literature. An approximate %olution that is valid at low frequencies was
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presented in [7] for SH wave diffraction by a canted surface-breaking planar crack. Subse-

quently, a hybrid finite element and eigenfunction technique was used in [8] to study SH wave

diffraction by planar surface-breaking canted crack.

In this paper we use the same hybrid technique as in [8] to study the scattering of in-plane

body and surface waves by canted planar and normal surface-breaking branched cracks. We

focus our attention to the near-field. Numerical results are presented for the vertical surface

displacement amplitudes near the base of the crack and crack-tip(s) stress-intensity factors.

Formulation and Solution

Consider a homogeneous, isotropic, and linearly elastic medium with a surface-breaking

crack of arbitrary orientation and shape as shown in Figure 1. Assume the displacement

!(z ,y ,t) at a point P to be time-harmonic of the form u(z ,y )e -iot where w is the circular

frequency. Then u satisfies the equation of motion in y > 0 (at points not on the crack)

/A i + (A +p)VV..=-p (1)

where A, ; are Lami constants, p the mass density and the factor e -"i has been dropped.

The solution of (1) can be expressed in terms of longitudinal and shear wave potentials, 6

and €, in the form

+ +V X(?l (2)
I

Furthermore, in a homogeneous half-space, 4 and 0 can be expressed in infinite series of mul-

tipolar potentials as [9].

(3)

a OP ;On
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where expressions for O., O', 0.8 and 0.', can be found in [9]. The coefficients a., b. are

found by satisfying the appropriate bouiidary conditions.

The representation (3) is not useful for satisfying the boundary conditions on the crack

surface. For this reason, a different representation is needed in this near-field region. In this

paper, the region inside the fictitious boundary B (Fig. 1) is divided into finite elements having

NI number of interior nodes and NB number of boundary nodes.

For the finite element representation in region II, the energy functional is taken to be

r=4. f f ,, - d,

(4)(f,, + P " d

where '*' indicates complex conjugate and a and e are column vectors defined as

U,{e)u (ff eZff Io T (5)

f{) (f c e Zc ) T  (6)

Superscript 'T' denotes transpose. The ?B and qB represent the traction and displacement on

B, respectively.

It is assumed that the displacement field within the jIh element is represented in terms of

the shape functions L, (z, y ) and elemental nodal displacements {q} as

N,
. Ljq (7)

where each 9 f has two components u and upj along the z and y directions, respectively.

-J 23

The N represents the number of nodes in each element.
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The a A'. and e ;" are computed by substituting Eq. (7) into strain-displacement relations

and these, in turn, into the stress-strain relations. Using these in Eq. (4), we get
F 9*T$ T T

q tTS 1 1 q + 1q* SI 1B ± q+ TY jB

(8)

+ ! T STE B - qp(1) _ p* T() B

in which q= 2), -qB 
f .' l)- p 2) and the elemental impedance matrices $ij are

defined as

[Ise] = f ([Bd]T[DI[B4I _ pw2!LIT[L1) dzdy .(9)

In Eq. (9),

a

TZ a [L 0 L 2  (IL

0 TY
[Be]= 0 I0 o=NL.

_ ay az

Note that ILI is a 2 x 2N. matrix.

For an isotropic material [D] is given by

Ae + 214 A 0

D= Ae  At +2p e  0

0 0 M'e

where A. and u3 are the Lame's constant.

To find the constants a. , b. appearing in (3) and the nodal displacements in region 11, it

is necessary to use the continuity of displacement and traction on B. This is discussed in the

following.

.
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The incident displacement fields will be assumed to arise from the incident plane P and SV

waves, and their reflections from the free surface y = 0. The case of incident Rayleigh waves

will also be considered.

Let us suppose that in the absence of the crack the free field is the sum of the incident and

reflected fields, that is

U j(°} = U ( M + Uj(') (j=1,2) (10)

For the Rayleigh wave u (0) is the associated displacement.

The total field outside B then is

• a UP ?) + i;(° }  (j -1,2) (11)

where u,(' ) is given by (2) and (3).whr

Using (2) and (3), the displacements at the nodes on B can be written as

IC]{a)) - I G(!) (12)

where [G] is a 2 NB x 2N B matrix formulated in Appendix A and vector {a) is

{a}= [Gi'",aN n , b 1, " " bNB T T

Similarly, using (2) and (3) in the stress strain relation, the traction at the nodes on B can

*be expressed in tie form

(s')) - (FJ{.} (13)

where IF] is also a 2NB x 2NB matrix defined in Appendix A.

To express (Sk )} in terms of {qk )), we use the expression for the virtual work done on

the boundary B, which is

b - f {6 !B(T))7 {S))dr (14)

111111
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where superscript (1) denotes the total field in region I (outside B).

Because of the continuity of displacements and traction on B, we have

sk1) -p 4 2) 4 O + (16)

where superscript (2) denotes the total field in region IL.

Substituting (12), (13), (15), and (16) in Eqn. (14), and noting that 641) -q 6 ~ we

obtain from Eqn. (14)

{6 4 *}TPhl)}(17)

Vwhere ti)is given by

(60)-[i} + {1~)) (18)

Here

[g] = G*IT[Fldr (19)

and

AO)) - IT1 {40 )}dr (20)

Equations (19) and (20) are approximated by

[,l= [G*ITIF]*RAO (21)

and

f fO)} = 'G *IT{40k))*R A8 (22)

where R AP is the arc length between two adjacent boundary nodes on contour B. Note that

the first two rows and last two rows of Eqs. (21) and (22) are multiplied by R A~ instead of
2
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R W., because they correspond to the first and last boundary nodes, respectively.

Substituting Eqn. (12) in Eqn. (8) and taking the variation, we obtain a set of simultane-

ous equations which may be written in matrix form as

[ 1 SIB 01  [if I-SB (23)G*TST *T = [GSBB ) . (23)
1B SEEG''B

The first equation of Eqn. (23) can be written as:

I S- I j [SIB Ga + SIB .(24)

The second equation can be written as

G*Ts T q + G*TS a = - *rsBB o)+ 1) (25)

Substituting Eqs. (18) and (24) into Eq. (25), we obtain

(26)

- G*T (sBB _ SIBSIT-I IB)' +p

In Eq. (26), the generalized coordinates {a} are the only unknowns. Therefore. a} can be

evaluated. Once {a} are known, the near and far displacement and stress fields can be deter-

mined.

Numerical Results and Discussion

In this paper, the boundary B enclosing the interior region is not a complete circle, and so

the potentials O'P, 0 P, and 0.' , 0' cannot be expanded in cylindrical wave functions as was

done in [1]. So the integrals giving these potentials and their derivatives were evaluated numeri-

cally for every node on B. The details are discussed in I10j.

The hybrid method is employed to study scattering by P, SV, and Rayleigh waves by
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three types of surface breaking cracks: a vertical crack (Fig. 2 with a = 90" ), a- 45 inclined

crack (Fig. 2, with a = 45 ), and a vertical branched (Y) crack (Fig. 3). The Poisson's ratio of

the material is taken to be 1/3.

Stress intensity factors at the tips of the cracks were calculated and for the particular case

of a planar surface-breaking normal crack they were found to agree well with the results of [1].

These are shown in Figure 4.

Next, normalized stress-intensity factors are shown in Figures 5-7 for incident P, SV, and

Rayleigh waves. It is seen that for P and Rayleigh waves the stress-intensity factors at the

crack-tips of the three types of cracks are quite different, particularly at high frequencies. This

is particularly significant for the branched crack, even though the branches are quite small.

The surface displacements at y = 0 are calculated by using (3) in (2) after { 1 are calcu-

lated. Normalized values of u Y (') are presented in Figures 8-12. For each type of crack men-

tioned above five cases of incident waves were considered: plane P wave incident at 0 and 45 *,

plane SV wave incident at 0 and 45, and finally Rayleigh wave. Some representative results

are shown here.

Figures 8 and 9 show the scattered vertical surface displacement amplitudes for a Rayleigh

wave incident from the left on a normal planar and branched crack. It is seen that there are

large differences in the forward direction between the two cases as the frequency becomes large.

In the backward direction, however, the differences are not very significant. Figures 10 and 11

show the results for an incident SV wave moving vertically as well as at 45 " to the vertical.

Large differences are found for vertical incidence, but not in the other case. Finally, in Figure

12 is shown the case of a Rayleigh wave incident on a canted crack. This figure is to be con-

trasted with Fig. 8. The large contrast shown clearly distinguishes a canted crack from a nor-

mal crack.
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Conclusion

Model calculations of elastic wave scattering by surface-breaking planar and non-planar

cracks have been presented. These calculations show that near-field surface displacements due

to scattering by planar and branched cracks are quite different even when the branches are

small. Also, it is found that signatures of normal and canted cracks are very dissimilar. These

characteristic differences can be used to discriminate between the various cases.

Although the results presented here are for homogeneous medium, the technique can be

generalized to study cracks in a composite medium. These are presently under investigation

and will be reported later.
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APPENDIX A

Formulation of Matrices [G] and [F]

As mentioned before, the scattered nodal displacement vector, {qk ) , was formed by

evaluating u,(' ) and ( at NB number of points on contour B. Thus, we have:

= 10 (a}(A-1)

where,

{qk )hUzB ~UzBN8 ,UVB, t.. 9VBN, } (A-2)

(ej (a, bB )T (-3

If [C] is partitioned as,

GXA IGXB
-I [A-41

G YA G GYB 2 N'9x2N

then each of the NB x NB submatrix can be evaluated from Eqns. (2) and (3) at (zx ,yi) on B

as

(GXA )in = +O

(A-5)

(GYA )in = 0 ) 0

(GYB)in = (4 -0 i I to NB
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The parameter n in the summation series of Eqn. (3) is taken from (-NB,/ 2 - 1) to NB /2

for numerical purposes. Hence. na in the first column to the last column of each submatrix

corresponds to (-.%'B 2 - 1) to NB /'2, respectively.

To formulate the matrix ', the components T2 and T Vof the traction vector T were

calculated at each nodal point on B. If the radius vector of that point makes an angle /3 with

the x-axes. then

Tor zCsO+ o . sintl

(A-6)

T V z cost,+ o i sinP

Evaluating or a (') and a, at NB number of points on contour B and substitut-
ZZ fly Z7

ing in Eqn. (A-6), we have the scattered nodal stress vector, {4' )}, as in Eqn. (13),

{4k)} = [FJff) (A-7)

where

{T,'B}- TVNB .. I TVB I T* , (A-8)

and (1) is defined in Eqn. (A.3)

[F [ is partitioned as,

FXA FYAB

FYA FYB 2NB x2NB

Each of the NB x NB submatrix can be evaluated at (zi, y,) on B as,

(FXA )in [( I & +~z n yny ~

+ A 20P 0P P
n~x# VV n~z) in



p (2 o S - U. S - sn

- - COS3 -

(A 2,)(- P P ~oP P" p )] sin3
n y n zy n zr n zy]

(F IT)in u (2o 5  -Vs - LSI ) cns3 -n ~zy n yy n zz

(- 2A -ny - 0, nS zy + A 6n.z Sz) sin3

Parameter n ranges from - (NB /2 - 1) to NB /2 as discused before, and i I to NB.
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