AD-A172 113

UNCLASSIFIED

ULTRRSONIC SCATTERING BY PLRNRR AND NON-| PLRNﬁR CRACKS 1/4
U) COLORADO UNIV AT BOULDER DEPT OF MECHANICAL

NGINEERING
N89a14-86-K

DR TR ET AL. AUG 86 CUMER- 86 4
F/G 20/14

NL




E

E
CEEERE

|

|
|

N

(8

~
=
il

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963.A

S : %“"‘1*."'}."""‘1'!:\« R AVMET0 S0ty




o o o

AD-A172 113

ULATRASONIC SCATTERING BY
N PLANAR AND NON-PLANAR CRACKS

‘C
“ Subhendu K. Datta:

) Arvind H. Shah2

5 CUMER-86-4 August 1986

Contract NOOO14-86-K-0280

" lDepartment of Mechanical Engineering and

i Cooperative Institute for Research in Environmental Sciences
University of Colorado

Boulder, CO 80309, U.S.A.

Department of Civil Engineering DT!C
University of Manitoba

Winnipeg, Canada R3T 2N2 ) LA ECTE
o, SEP 2 41988

2

OTIC FILE COBY

cg g9 ¢ 08

FRE

o

9.

AN L ATRRRE T RE TR TRV T S N Vet T T W ey 8 s D 0 ! a0 U0 LU0 A0 0 W L O XX 90
LI AN "‘*"“-".“al“:*?‘-l".!’,‘»o".s".J!“.v".n'.‘.o!'.-"fe',".v"‘to"fs!i::"ﬁ'.“u'.'n's'.‘:\‘t.r"*.u.'ft?!::',ifn'imi.q",s*ﬁ.."l'l-ﬁ,«“«*fm‘z’af RN RO




and Non-Planar Cracks
St
o | A. H. Shah and Y. F. Chin |
B Department of Civil Engineering et

University of Manitoba, Winnipeg

s S. K. Datta ‘
S Department of Mechanical Engineering and CIRES .5t
: University of Colorado, Boulder !
b Fellow, ASME { /(
Abstract
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{
Scattering of elastic waves by surfacesbreaking planar and non/planar (branched) crack> A

y
has been studied in this paper. Attention has been focused on the near-field surface displace- 4

i , >

g:‘i: ments and the crackit.ip(s) stressjintensity factors. For planar normal cracks the stres#htensity
E:::; factors are shown to agree with earlier results. Numerical results showing normalized vertical
: Eiiﬁ surface displacements are presented for incident body and surface waves. It is shown that the
:g:: results for planar and branched cracks can be significantly different in some instances.

B - !

Introduction

St

:::E:‘ Problems of elastic wave scattering by surface-breaking and near-surface cracks are @ gq- /
‘0: ( ,si_deiaylja current interest for ultrasonic nondestructive evaluatio;Ultrasonic scattering by
» planar cracks near or at the free surface of a semi-infinite elastic homogeneous medium has been
:‘if: studied theoretically by many authors. References to recent papers on this subject can be found

.

"‘:ﬁ' in 1, 2] and ‘3. Some experimental works on surface-breaking normal planar cracks have also

:::‘ : appeared (4-6).

:2:‘;, Ultrasonic scattering by surface-breaking planar and branched cracks of arbitrary orienta-
Yy by

tion is the subject of this investigation. To our knowledge this problem has not received much

attention in the literature. An approximate solution that is valid at low frequencies was
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presented in [7) for SH wave diffraction by a canted surface-breaking planar crack. Subse-
TN quently, a hybrid finite element and eigenfunction technique was used in (8] to study SH wave
':%:é 4 diffraction by planar surface-breaking canted crack.

In this paper we use the same hybrid technique as in [8] to study the scattering of in-plane
body and surface waves by canted planar and normal surface-breaking branched cracks. We
A focus our attention to the near-field. Numerical results are presented for the vertical surface

displacement amplitudes near the base of the crack and crack-tip(s) stress-intensity factors.

S Formulation and Solution

e Consider a homogeneous, isotropic, and linearly elastic medium with a surface-breaking
K crack of arbitrary orientation and shape as shown in Figure 1. Assume the displacement
¢(z,y,t) at a point P to be time-harmonic of the form u(z,y )e " 9t where w is the circular

frequency. Then u satisfies the equation of motion in y > 0 (at points not on the crack)

i p%+ (A +4) Py- 1 = - pwly (1)

ey where A, 4 are Lamé constants, p the mass density and the factor ¢ ~*“? has been dropped.

The solution of (1) can be expressed in terms of longitudinal and shear wave potentials, &

il and ¥, in the form
=W +Yx(¥e,) (2)

) Furthermore, in a homogeneous half-space, ¢ and ¢ can be expressed in infinite series of mul-

i tipolar potentials as [9].

@ ¢ = f} e, ¢P +b ¢
i B (ensr 000)

v= B (e +b,0,]
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where expressions for ¢ P, v P, ¢ ! and ¢/, can be found in [9]. The coefficients a,, b, are
4;"‘9 found by satisfying the appropriate bouadary conditions.
h .
QQ.!“
.':: The representation (3) is not useful for satisfying the boundary conditions on the crack
"‘9
N surface. For this reason, a different representation is needed in this near-field region. In this
e
’;;;g paper, the region inside the fictitious boundary B (Fig. 1) is divided into finite elements having
E)
ki
f:: N, number of interior nodes and N B number of boundary nodes.
N For the finite element representation in region II, the energy functional is taken to be
)
l’ ¢
1.4 1
“ . F=zf f. ae* - pulues®) dzdy
i ]

| (9
% -1 Pp-ug + Pg-ug|ds
:‘: 2 -B -B ~B -B
}:'

e where ‘4’ indicates complex conjugate and ¢ and ¢ are column vectors defined as
oy

! T
§§;: g={o}= (":z’”vv"’zv) (5)
i;"
H 1
l:t‘
CH T

£ = (e gy ey ) (6)

', Superscript ‘T’ denotes transpose. The Pg and Up represent the traction and displacement on
' L

.l

e B, respectively.
A" It is assumed that the displacement field within the j"‘ element is represented in terms of
9.
Ll
1‘. the shape functions L ; (z, y) and elemental nodal displacements {¢ J?} as
i -

Nl

) e _ ¢

) W= X Llyg; (7)
" 7=
0

e\
N where each gj’ has two components Uy and v along the z and y directions, respectively.
BX3 The .V, represents the number of nodes in each element.
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The d'-;- and ¢ ‘;- are computed by substituting Eq. (7) into strain-displacement relations

and these, in turn, into the stress-strain relations. Using these in Eq. (4), we get

‘ *T *T *T
F=er Sy a+95 S8 *18 Sm0
(8)

0 +43Tspg g - TPV - PpTW 4

i in which ¢; = gl(z), i = 2152)’ fél) = f’g") and the elemental impedance matrices Sij are

defined as
.[s=]=f£ (817 1D11B¢) - o w17 (L)) dady . o)

In Eq. (9),

(B€] = = [N]IL] -

o, @
h|°’<|°’ o
[=]

-t

o

= ——
'¢l°’ ) nl°’

Note that [L]is a 2 x 2N, matrix.
" For an isotropic material [D] is given by

* A, + 2, A, 0

w D]=] A, A, +2, O

e
. 0 0 B,

where A, and u4 are the Lame’s constant.

To find the constants a_ , b, appearing in (3) and the nodal displacements in region I, it

' is necessary to use the continuity of displacement and traction on B. This is discussed in the

following.

L R T AR P S IR MR TR ‘hu"’ﬂe‘ Wl ‘a‘a AT A DA



e

KX,

4
RCAGY: 06 o35 oY

-

,,,,,,,

-5-

The incident displacement fields will be assumed to arise from the incident plane P and SV
waveé, and their reflections from the free surface y = 0. The case of incident Rayleigh waves
will also be considered.

Let us suppose that in the absence of the crack the free field is the sum of the incident and

reflected fields, that is
uJ-‘o) = uj(i) + uj(') (7 =1,2) . (10)
For the Rayleigh wave u j(O) is the associated displacement.
The total field outside B then is
s, = o) 00 (=12 (11)
where u j(.) is given by (2) and (3).
Using (2) and (3), the displacements at the nodes on B can be written as
{0 = 16}a) (12)

where (G| is a 2Ng x 2Np matrix formulated in Appendix A and vector {a} is
.. ce T
{‘.‘}= [ali' 9“N8’ bls ’bNB]

Similarly, using (2) and (3) in the stress strain relation, the traction at the nodes on B can

be expressed in the form
ef' )} = (Flig) (13)
where [F| is also a 2Np x 2Ng matrix defined in Appendix A.

To express {gé‘ )} in terms of {g é‘ )), we use the expression for the virtual work done on

the boundary B, which is

5x = f g T ofthdr (14)
B
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where superscript (1) denotes the total field in region I (outside B).

:,tt‘f Because of the continuity of displacements and traction on B, we have
¥

4 - of? - of9 + ol e

i ofV) = oft) = o) + o ft) (16)
where superscript (2) denotes the total field in region II.

Substituting (12), (13), (15), and (16) in Eqn. (14), and noting that 6951) = JQA'). we

B obtain from Eqn. (14)

sv = (6a*}7 (P} (17)
e where f’él) is given by

L Py = (R){a} + (P} (18)
N Here

] R = £ [¢*T[FldT (19)
,sf»,.,‘ and

i = 16T efher (20)
Equations (19) and (20) are approximated by

i .
Y )= (G¥TFleR A (21)

and

> Py = M T g )R 00 (22)
where R A is the arc length between two adjacent boundary nodes on contour B. Note that

oy the first two rows and last two rows of Eqgs. (21) and (22) are multiplied by R % instead of
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. 1.

R AP, because they correspond to the first and last boundary nodes, respectively.

Substituting Eqn. (12) in Eqn. (8) and taking the variation, we obtain a set of simuitane-

ous equations which may be written in matrix form as

S 518 €1 [!1] -Sip1§”
¢*Tsf 6*Tspp6| Lel™ [-G*Tspgqf) + AV )
The first equation of Eqn. (23) can be written as:
9=~ S l[5113 Ga + Sip !1&0)] : (24)
The second equatién can be written as
G*TST ¢; +G*TsppGa=-G*Tsppf) + PV . (25)
Substituting Eqs. (18) and (24) into Eq. (25), we obtain
[G*T(SBB - S S 515) G* - 31 {a} =
(26)

*T Tce-1 0 0
-G (SBB = SigSn 513)!13 )+ B

In Eq. (26), the generalized coordinates {a} are the only unknowns. Therefore, {a} can be
evaluated. Once {g} are known, the near and far displacement and stress fields can be deter-
mined. |

Numerical Results and Discussion

In this paper, the boundary B enclosing the interior region is not a complete circle, and so
the potentials ¢ P, v, and ¢, ¢ ' cannot be expanded in cylindrical wave functions as was
done in [1]. So the integrals giving these potentials and their derivatives were evaluated numeri-

cally for every node on 8. The details are discussed in [10].

The hybrid method is employed to study scattering by P, SV, and Rayleigh waves by

.....
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L ) . . o1
B three types of surface breaking cracks: a vertical crack (Fig. 2 with @ = 90°), a~ 45° inclined
W crack (Fig. 2. with @ = 45°), and a vertical branched (Y) crack (Fig. 3). The Poisson’s ratio of
bty
Sy
S the material is taken to be 1/3.

.:§:i;_

‘p‘é‘ . . . 3

< Stress intensity factors at the tips of the cracks were calculated and for the particular case
:;;:: of a planar surface-breaking normal crack they were found to agree well with the results of [1].
Loy
«:k:“ These are shown in Figure 4.
i‘g'

O

Next, normalized stress-intensity factors are shown in Figures 5-7 for incident P, SV, and

BOIR)
3;;::‘ Rayleigh waves. It is seen that for P and Rayleigh waves the stress-intensity factors at the
R

;a:" crack-tips of the three types of cracks are quite different, particularly at high frequencies. This
“c‘

N is particularly significant for the branched crack, even though the branches are quite small.

4 The surface displacements at y = O are calculated by using (3) in (2) after {a } are calcu-
B )

i

e

hegd lated. Normalized values of uv(‘) are presented in Figures 8-12. For each type of crack men-
iy tioned above five cases of incident waves were considered: plane P wave incident at 0° and 45°,
] "1

ot

:";',' plane SV wave incident at 0° and 45 °, and finally Rayleigh wave. Some representative results
&

A

' are shown here.

:;;*,i Figures 8 and 9 show the scattered vertical surface displacement amplitudes for a Rayleigh

)

v

::a wave incident from the left on a normal planar and branched crack. It is seen that there are
|',‘| E

% large differences in the forward direction between the two cases as the frequency becomes large.
m\?‘. In the backward direction, however, the differences are not very significant. Figures 10 and 11
oA

R show the results for an incident SV wave moving vertically as well as at 45° to the vertical.
e

i Large differences are found for vertical incidence, but not in the other case. Finally, in Figure
~

::, 12 is shown the case of a Rayleigh wave incident on a canted crack. This figure is to be con-
il

4

‘:z trasted with Fig. 8. The large contrast shown clearly distinguishes a canted crack from a nor- ‘
by,

n‘,: |
~ mal crack.
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e Conclusion

S Model calculations of elastic wave scattering by surface-breaking planar and non-planar
i

l;“i? cracks have been presented. These calculations show that near-field surface displacements due
'yt

to scattering by planar and branched cracks are quite different even when the branches are

*:n small. Also, it is found that signatures of normal and canted cracks are very dissimilar. These
20

oy

;t: characteristic differences can be used to discriminate between the various cases.

Although the results presented here are for homogeneous medium, the technique can be
) generalized to study cracks in a composite medium. These are presently under investigation

" and will be reported later.
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- APPENDIX A
Formulation of Matrices [G] and (F]

As mentioned before, the scattered nodal displacement vector, {¢ é‘) }, was formed by

s evaluating uz(') and uy(’) at Ng number of points on contour B. Thus, we have:

4fh =16 (A-1)

where,
: : _ T
& (@h = {"zBl’ AR NRLVRELE "VBN,,} (A-2)

h
* {a} = {a,, ""“Nn’bl""’bNB}T (A-3)
If [C] is partitioned as,

GXB
(A-4]

) —_—_—— | —_———

GYA GYB |2Np x 2Ny

o then each of the Ny x Np submatrix can be evaluated from Eqns. (2) and (3) at (z;,y;) on B

“J as

L]

y (GXA),, (¢P +¢P

R (GXB),',, = ¢"S‘z + ’/’ns’y

I (A-5)
) (GYA )y, = ¢nP,y - 'pnp,z

i (GYB);, = ¢ns,v - wns,z » i =1toNp
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The parameter n in the summation series of Eqn. (3) is taken from (-Npg /2 - 1) to Ng /2

for numerical purposes. Hence. n in the first column to the last column of each submatrix

corresponds to (-Npg 2 - 1) to Np /2, respectively.

To formulate the matrix 'F’, the components T, and Tv of the traction vector T were
calculated at each nodal point on B. If the radius vector of that point makes an angle 3 with
the x-axes, then

Tz =0, cosf + 2y siné

(A-6)
. Ty = azycosﬂ + awsino .

Evaluating o z(; ), o y(; ), and ¢ z(;) at Ng number of points on contour B and substitut-

ing in Eqn. (A-6), we have the scattered nodal stress vector, {gé' )}, as in Eqn. (13),
€f' = (Flia) (A7)
where

{dé‘ )} = {TzBl’ e TVBN,’ e TVBBI’ e TVBNB} (A-8)

and {a} is defined in Eqn. (A-3)
[F] is partitioned as

FYAB

l
|
l

FYa | FYB |;np x2NB

Each of the NB x NB submatrix can be evaluated at (z'-. y'-) on B as,

(FXA), = [0 +2m)0F +of )+ 26, - wn”‘,y)] cos3

n,zy

+p(2¢P +u)P -wP ) sin8

n.,ry n.,yy n,xz
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(FYA),,

[(A o) P —wP yiao? )] sin8

n.yy n.ry n.r1z n .2y

Vg 4 = S ”S — ,,5 3 -
'i::‘. (F)B)in - ”(2mn,:y T Fn,yy V' ogz) €083

Ltk . N
‘t‘:’:: [('\ + 24) (¢n v~ ¥n zy) + ’\(on az T wns.zy)] sind

e Parameter n ranges from —(Np /2 — 1) to Ng /2 as discused before, and i = 1 to Np.
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