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\\\. ABSTRACT

=) Ultrasonic waves provide an excellent means to
study the mechanical properties of both heterogeneous
and composite materials. Recently, both theoretically
and experimentally, we studied characteristics of
elastic wave propagation through fiber and particle
reinforced comosites. Theoretically we analyzed phase
velocities of longitudinal and shear waves propagating
through composite media with aligned continuous fibers
and ellipsoidal shaped particles. Alignment of rein-
forcing fibers (or particles) imparts anisotropy to
the effective mechanical and physical properties of the
composite. Theoretically, we modeled the anisotropic
phase velocities, which agree with experimental
measurements. One important feature of this comdbined
theoretical and experimental study is the possibility
of obtaining the (often uncertain) fiber (or particle)
elastic properties by comparing the model predictions
with the observations.

We show that one can use the theoretical model to
obtain effective properties of media containing voids
{pores). As examples, we consider porous olivine and
creep cavities in copper. In the latter case some ex-
perimental results are presented which show good agree-
ment with predictions.

Finally, we present some results for attenuation
in a particulate composite including the effect of non-
ideal interface properties.

C—

INTRODUCTION
Determination of effective elastic moduli and

damping properties of a heterogeneoys material by using
elastic waves (propagating or standing) is very effec-
tive. Several theoretical studies show that for long
wavelengths one can calculate the effective wave speeds
of plane longitudinal and shear waves through a com-
pogite material. At long wavelengths the wave speeds
thus calculated are non-dispersive and hence provide

* the values for the static effective elastic properties.
Refersnces to some of the recent theoretical and exper-
imental works can be found in (1-13). The scattering
formulations developed in (1-8) provide a means to
obtain not only the effective wave speeds but also the
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damping of wave amplitudes due to scattering.

In this paper we present results of some of our
recent investigations of phase velocity and attenuation
of plane longitudinal and shear waves propagating in a
medium with microstructure. Microstructures studied
were either inclusions or fibers. [n the former case,
we examined the effect of inclusion shape, orientation,
volume fraction, and elastic properties on wave speeds.
For fiber-reinforced materials we studied continuous !
aligned fibers. In either case the medium behaves y
anisotropically because of the alignment of the inclu-
sions or the fibers. .

The theoretical model used a wave-scattering
approach together with Lax's quasi-crystalline approxi-
mation and predicted the macroscopic isotropic elastic
properties for the case of random orientation of incly-
sfons and anisotropic elastic properties caused by
preferred orientation. Both homogeneous and non-horo-
geneous distributions of inclusions or fibers were
considered. The scattering approach led also to an
estimation of attenuation via the use of optical
theorem.

e experimental methods consisted of a pulse-echo
technique and the resonance method. These were chosen
to provide the advantages of small specimens and low
fnaccuracy. For details of the experimental technigues '
the reader is referred to (10-14,15). "

Both homogeneous and norhomogeneous distributions
of inclusions and fibers were considered. First, we
examined the case of a random homogeneous distribution
of randomly oriented spheroidal inclusions in a homo-
geneous matrix. Second, we considered a random homo-
geneous distribution of oriented spheroids. In the
first case the macroscopic properties of the composite
are isotropic. In the second aligned spheroidal inclu-
sions impart anisotropy to the composite. In order to
model the SiC-particle-reinforced composite shown in
Fig. 1 we used a two-step process combining the two
distributions described above. In this example the
material consists of "fslands” of oriented oblate R
spheroidal Al inclusions in a “sea™ of randomly oriented
SiC prolate spheroidal inclusions. We also examined by
the two-step process mentioned above the fiber-rein-
forced composite shown in Fig. 2 which consists of a t
nonhomogeneous distribution of aligned continuous \
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Fig. 1 Photomicrograph of Si1C/A2-alloy composite
formed from powders of SiC and At alloy. For
present. purposes we represent the SiC particles
as prolate ellipsoids with an aspect ratio of
3.0. We represent the large At "islands" as
oblate spheroids (aligned in the rolling plane)
with an aspect ratio of 0.33. The randomly

oriented SiC particles exist in a "sea” where
the SiC volume fraction is approximately double
that of the macroscopic average volume fraction.
The SiC particles range up to 5 um in their

The At "island” particles

largest dimension.

44 A0  ag¥ " e v d
Photomicrograph of A1203/A1 alioy composite.
Untaxial A1,0, fibers are 20 25 umin dia-
meter. Note homogeneous fiber distridution.

A1203 fibers in Al matrix.

In the following we describe the theoretical tezh-
nique first in connection with a composite consisting
of ellipsoidal shaped inclusions in a homogeneous
matrix. Specfalization to the two-cdimensional case ¢cf
fiber-reinforced materials is then briefly discussec.
Model predictions are then compared with experimenta!
results. Ffinally, we present some model calculatiors
for attenvation in a particle-reinforced composite a-~4
for elastic properties of materials with voids.

MULTIPLE SCATTERING BY A DISTRIBUTION OF ELLIPSOIDAL
INCLUSIONS

In this section the scattered field at any poir:
in the matrix is obtained in the presence of a distr--
bution of N ellipsoidal inclusions. We consider bo:~
aligned and nonaligned cases. The results obtained
are valid when the wavelength is long compared to tre
inclusion dimensions. The method represents an exte--
s;gn to the elastic case of the approach used in (1€,
17).
™ In expressing the scattered field in the presen:ce
of a number of ellipsoidal inclusions we must recal!
the results for a single ellipsoidal inclusion (18).
Let the center of the i-th ellipsoid be located at
(Xi, Yi, Zj) referred to a Cartesian frame of refererze
axes; let the principal axes of this ellipsoid be
obtained from the Cartesian axes (XYZ) by rotation
defined by the Eulerian angles aj, fj, vj. Llet
uE(Rlgy) denote the total field incident on the i-th
inclusion. In terms of vector spherical wave functions
that are regular at o, this "exciting” field may be
written quite generally as

uE(R]n,) = % T ot ) (rancien) o
< ST Lo meen  dmnsima T

(1 (1) s
tbim Nil”l (ri.oi .‘i) + Ycim Mim (ri 'Qi”i)] (1)
where ri, of, ¢; are the spherical polar coordinates
of the point P with
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Y ng * risine,sino1 (2)

position vector R referred to the center of the
ellipsoid. Thus, in writing Eq. {1) we assume that the
time dependence is through the factor e-iut, which has
been dropped. The vector wave functions appearing ir
Eq. (1) were given in (18). 1 is the ratio of the
longitudinal-wave and shear-wave speeds in the matrix.
The field given dy £q. {1) will be scattered by the
ellipsoid and this scattered field, denoted by

2 v
ol

va( yzey

ES(R|O,) . [AiuvL(3) (ryagia0,) ¢

juv
(3)
TR ALSILIEL) it
where L(3) and N(s) are the appropriat herical
<fuv “fuv pprop e sp ¢

vector wave functions that satisfy the radiation condi-
tions as rye=. Here ¢ = uc/cy, where c; denotes the
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longitudinal wave speed in the'matrix and the principa)
semiaxes of the ellipsoid are_a,b,c(a>b>c). Egquations
(1) and (3) keep terms to 0(cd).

The relationships between the scattered-field
coefficients A, B; , and the incident-field coeffi-
cients djgn, Digy, and Cjp, were derived in (18) when
the semiaxes of the ellipsoid were parallel to the
Cartesian axes XYZ. For aligned ellipsoids this choice
can be made without loss of generality. However, for a
nonaligned confiquration it is necessary to obtain
these relationships for arbitrary orientation. To

derive these general relations from the results of (18) °

it is necessary to refer both the incident field (1)
and the scattered field (2) to the ellipsoid axes.
This is done by using the rotationa) addition theorems
for spherical harmonics (19,20). One can show that

2 n
E s [ (l) . .
CIRIRD = B L B Linta (7005001 ¢

{1) Vo
imen Mimn (Fye85e0p) +

TCim:n '-qim'n (ri'o; DO;) ] ‘4)
In writing Eq. (4) the relations expressing the spheri-

cal vector wave functions referred to XYZ and the
ellipsoidal axes have been used. These have the form:

LD e T . -
Lim (r:8.0) = m.z-n 8(m,m'\n) Ly (rie',e') (5)
Similar expressions hold for US;A and gﬁi&. Here
. iy 172
s(mm n) » (-1 gfoempteem LTS oln) () (6
Using Eq. (5) in Eq. {1) it follows that
n

im'n " u2~n aimn

8(m,m',n), etc. (7

The scattered field referred to the new axes is then

2
gs(Rlii) * zo f LI Ega?v (reo'ae’) +

ve0 y'eey

8, ., M3 (et n (8)
Now
ng?v (r.e',0') = uz.v [ (s’ ou,v) Eg?“)’ (r.o,9)
where

- ] { l/z L]
B (0 uin) » ()0 R tasally T (0% (0g) ()

and the asterisk denotes complex conjugate. Thus,
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LT i, [} (v'-u-v)l,“-v (10)

But
—;—iv°c3Z I Tum( o, ) ()
A . = [ a + v
R A fupvy
where

s(v) = 3%, v = 0,2
®2t, vul
Explicit expressions for TH1U1 are given in (9).

Using Eqs. {7) and (11) in Eq. (10) it is found
that

.o 3
iv,c
.0« v
Aiuv 4nc 61 §i o (‘i"iv:'ﬁ(V) biuivl)
iv°:3 -uivl
. . ,
Biuv ;::3- A(v) 51 Ei Tuv (ai"l'“l S(v) b'"i"l)
(12)
where
. v T
IRTPRRY v ) S 171
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p'sey y 2y
11
12 val
a(v) =

32, veo,2

This complietes the derivation of the scattered field
due to 3 single ardbitrarily oriented ellipsoid.

We now seek the scattered field due to a number of
arbitrarily oriented ellipsoids. It is necessary to
expand the scattered field due to the j-th ellipsoid
in vector wave functions regular near the i-th one.
Using transiational addition theorems (2]) the exciting
field on the i-th ellipsoid is

2
ERiey = oo T 2 (D,
- T - n=0 m=-n  imn -im

Bim N * hon Mo (1)
where
2 L w'v
2 = A,
imn J;i g u'g-v Ju'v “mn

4 M u'v
b = B, , 8
imn J;i g U'Z'V Ju'v “mn

Here u{1) is the incident field and A;;“ and B;; are
defined 1n (2).

The incTdent wave wil) be taken as a plane wave
propagating along the 2-axis. Thus, it may be written
as

(1) 1klZ 1k22
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Using Eqs. (15) and (16) in 5 (12) the scattered-
field coefficients correct to 0(c”) due to a number of
arbitrarily oriented ellipsoids.are obtained. In this
study the calculations are simplified if we assume that
the distribution of particles is random and homogeneous.
We assume further that the particles have the same

shape and size.

Frequently, the processing of these composites
produces a material that contains nonhomogeneities, for
example matrix islands devoid of particles (see Fig. 1).
This fact is considered in a second-step calculation
that assumes that there is a distribution of aligned
oblate-spheroidal matrix-material inclusions in the
composite.

EFFECTIVE WAVE SPEEDS IN A COMPOSITE OF RANDOM
DISTRIBUTION OF DISORIENTED ELLIPSOIDS

To calculate the effective wave speeds of plane
waves, we take an ensemble average of Eq. (12). For
this purpose, the probability density of finding the
scatterers at Rl' Rz. ... 1s denoted by p(Rl""’RN)'

which can be written

p(!lp-o-y BN) - P (Bl) P(an--o BN'RI)

* PURY P(RYIRY) P (Ryoees RyIR Ry (a7

Assuming the distribution to be uniform it follows that

=0, glgv (18)

where V is the volume of the composite. Furthermore,
following the analyses of (3), the conditional density
p(RZIR ) will be taken

<0, IRy- R <2 (19)

This 1s the "well-stirred” approximation whose validity
for high concentrations 1s open to question (7). How-
ever, the results obtained in (2) under this Fssumption

-
‘ i ) )
AP R IR R AT T AL RN LR

coincide with the lower (upper) bound of Hashin and
Shtrikman (22). (See Ref. (1) ) Although this is no
justification for adopting £q. (19}, we use it here for
simplicity.

In taking the ensemble average ef £q. (12), for
random orientation, the average of T 1 1 over all

orientations is simply

uiv v ")
11 . 1M
<Tuv > *3 Pv z v+l Tulv (20)
'Jl"\‘
Thus,
Yo 339 de 1 jvaue) 6
igv 3 i
"M
"o g E (RN LR I
LRI N
ik
1 271 v 2vel
6(V)(T e i sorery (6, - v 18 '_1) +
"W oo
gl I 8y [ Do si B | Ry (2D
1" R
l_j e i|:?°

Here, "o {s the number density of the SiC particles.

Equation (21) has the same form as derived in (2)
for a distribution of spherical particles. It contains
the conditional expectations with two particles held
fixed. An approximation to <A1uv’i is obtained by

assuming the Lax (23) quasi-crystalline approximation.
This approximation assumes that

<Ajulv1>ji = <Ajulvl>j (22)
Substitution of Eq. (22) into Eq. (21) leads to an
integral equation for the determination of ‘Aiuv’i' To

find the effective wave speeds of plane-wave propaga-
tion, we assume a solution to the integral equation:

- 1Kz,
<Aiuv>i Xuv e (23)

where K is the effective wavenumber and x , are
constants.

Substitutin (23) into Eq. (21) it can be
shown following ?2) that for plane-longitudinal and
plane-shear waves “the respective wavenumbers K1 and Kz
are

2 . . 3. 2,.2

Kp  (1488P,) (1438Rg) (1 + 3 &y (20362/K2)) "
3 ¢ o 3o, i) Y
kl 1‘15CP2 (1’3CP°) + z [ 2 ( 2/ 1)

k2 (1498P.) (1 + 3 2P, (2+3k2/k2))
_% . 1 . 2 g . 2’1 (25)
K5 1+ &, (4-9k5/k2)
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where

= % rabeny.
u'll

Using the expressions for T * (9) it is found that
lil‘

9, = (0'/o- 1) (26)

Now writing

L -

Kl s n;/cl . Kz s u/cz

where cl'. ‘2' are the effective longitudinal-wave and

and shear-wave speeds, the effective Lame constants a*

and u*® are obtained from the equations

- 3 - 2,2

e T - - (27)
T 1sp, (143ERg) + % cpz(z+3n§/¢§)
3- 2,2
. 1+ 3, (20338)
L. - —- (28)

14§ 2P, (4-9K5/K3)
The expressions given above can be simplified by

using the expressions for 7:1: in (20). The effective

bulk modulus and shear modulus are

1 -
* -k, 3 € Tomen
MELINEI ) Vs T (2
It %u mmnn
and
| 1
oy, 5075503 3 ! ()
RN PRI T2 g THETC S R
A - LR AR W AL TR I Y
The tensor T,,,, has been defined in (9). It is noted

that in the low-volume concentration 1imit these agree
with the expressions obtained by Boucher (24).

EFFECTIVE WAVE SPEEDS IN A COMPOSITE OF RANDOM
DISTRIBUTION OF ORIENTED ELLIPSOIDS

When the ellipsoids are aligned, effective wave
speeds of plane waves can be calculated in the same
manner as in the previous section by taking the
ensemble average of €q. (12). Howaver, for propagation
in an arditrary direction the dispersion equation is
complicated. The equation simplifies for propagation
along the ellipsoidal axes. Results for this particu-
lar case are given here. Details of the derivation are
omitted.

When an incident plane wave propagates along one
of the ellipsoid axes, c-axis say, the XYZ axes can be
chosen tobe paraliel to the ellipsoidal abc-axes. Then

f"i“l . T”i“l
v

uv

(31)

- M AT APt 1 - R P .
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Fotrom” o= I et ,
AWM SR AT ALY

Taking now the ensemble average of Eq. (12) one finds
3

fvne 1k,¢

0 m 1 _"71% n
‘A'lu\)’i ] —3—‘ i T (< e ]

we’ am W

(2n+1)8.5 + ng E E I Ajuv’ it
P 1Ryegy 1220
P e TP B SR SN
mn o .j Vi 2n(n*]) “°m ~
n(nel)é, ) *+ n, 71 elv)) J
’ v

IRy-R; 1222

g!
Auur's o ORy)) (32)

As before, the quasi-crystalline approximation is
made to derive an integral equation for ‘Aiuv’i' Consi-
dering now a longitudinal-plane-wave solution of this
equation (<Aiw>i = x“veiKl‘i; us0,v=0,1,2) a
set of linear homogeneous equations in X00° xOl' and
xoz is obtained. Keeping only the lowest-order terms

in Ki/k% and equating the determinant of the coeffi-
cients of XOO' xox, and x02 to zero one finds

2
K .
1. - 100 - 00 . .02
:{ {1+ 3 701) ((1+ETo) (1+¢ Toz (1+

0 - 20+ 3803 12 By - s

02 - 00 - 3 2,2, ;02 - 02
To2 (1+¢ Too) * € (1+ 3 kz/kl) Toz * € (5 Tgo

00, ¢ = {02 ;00
* To2 * 5 ¢ Tog To2!! (33)

For a plane shear wave polarized in the X-direc-
tion and propagating along the Z-direction the disper-
sfon equation is obtained by taking
Koty

fuv’i ¢ xuv e

<A ;H”lol;v.lpz

It is found that

2 s qllyry,egl2 , (o-12 3,2,2

Ky (143 Tll)lxoiirlz + 67,7 )(1 + 3 k5/k)) (30)
2 = LW IR

k2 1-e (T v 677 (Fhg/ky - 1)

. It is easily shown that for a shear wave polarized

along the Y-axis and propagating along the 2-axis the
effective wavenumber Kz {s obtained by replacing
12 -12 12 -12
le +6 le with le - 6T12 in Eq. (234).
The above derivation is for propagation along the
Z-axis. Results for propagation along the X-axis and



Y-axis are obtained by cyclic interchange of abc. It
1s shown easily that the speed of propagation of a
shear wave polarized along the X-direction and moving
along the l-direction is the same as that of a shear
wave polarized along the Z-direction and moving aiong
the X-direction.

WAVE PROPAGATION IN A FIBER-REINFORCED COMPOSITE

The analysis given above can be modified easily to
treat wave propagation in 2 plane perpendicular to the
fibers. Propagation of longitudinal and shear waves
polarized and propagating in this plane was considered
in (1). Although the treatment there was for isotropic
fibers, the extension to transversely isosropic fibers
is made easily. This was done in {25). In that study
the problem of a shear wave polarized along the fibers
and propagating perpendicular to them was also con-
sidered.

Taking the Z-axis along the fiber axes and
denoting the five independent elastic constants charac-
terizing the fibers as Cll' CIZ’ C13. C33. and G4y it

was shown (25) for SH-wave propagation that the effec-
tive wave number 8* is

'2 -

where m = Cpo/u, 8% = w| o'/uLT). o* the effective
density, and uT the effective axial shear modulus.

For propagation of longitudinal and shear waves polar-
ized and propagating in a plane perpendicular to the
fidbers it was found that the corresponding wavenumbers
are

Ny

SRR P+ & 92(1+k§/k§)1 %)
2" - 22 <
K ll - & Pyl1-k5/kS) - 28 P p,)
2
5% - o%*/o
Kk 2¢ (Cop - A+2
2 R ( 66 u)(A+2y) ()

2u(a02u) + (1-E)(a+3u)(Cgq-u)

Ke - (r*
P..-T—u P, = -

[+] KT’\I ¢

U(c56 'U)

css( A+3u) + u(at)

Ki is the plane-strain bulk modulus of the fiber

Although the above derivation is for transversely
isotropic fidbers in an isotropic matrix, it is easily
generalfzed to the case of isotropic fibers in a trans-
versely tsotropic matrix with the symmetry axes
parallel to the fiders. This §s needed to deal with
the situation shown in Fig. 2. As in the case of the
inclusion prodlem described above, it is necessary
first to calculate the moduli of the effective trans-
versely isotropic composite medium formed by a random
homogeneous distridbution of fibers in a homogeneous
fsotropic matrix. In the second step we introduced a
distribution of homogeneous isotropic matrix “fibers"
into the composite constructed in the first step.

M AT AN S

EXPERIMENT

Silicon-Carbide/Aluminum

The photomicrograph shown in Fig. 1 represents an
SiC-reinforced Ar composite. The ma2terial was obtained
from a commercial supplier in the form of l-cm plates.
Nominally, the plate contained 30 volume percent SiC.

Sound velocities were determined by a pulse-echo
method described in detail previously (15). Briefly,
1-cm cubes were prepared by grinding so that opposite
faces were flat and parallel within 5 ym. Quartz
piezoelectric crystals with fundamental resonances
between 4 and 7 MHz were cemented with phenyl sali-
cylate to the specimens. An x-cut transducer was used
for longitudinal waves and an ac-cut for transverse
waves. Ultrasonic pulses 1 to 2 cycles long were
launched into the specimen by electrically exciting the
transducer. The pulses propagated through the spec:-
men, reflected from the opposite face, and propagated
back and forth. The pulse echoes were detected by tre
transducer and displayed on an oscilloscope equipped
with a time delay and a microprocessor for time-
interval measurements. The sound velocity was computed
by

v =2/t

where t denotes specimen length, and t the round-trip
transit time. On the oscilloscope, t was the time
between adjacent echoes, the first and second echoes
usually being measured, and within these the time
between leading cycles. Elastic constants were
computed from the general relationship

C’nv2

where p denotes mass density.

Mass density was determined by Archimedes's method
using distilled water as a standard. ;gr 30 volume-
percent SiC/Al, we found o = 2.838 g/cmv,

Using quantitative-metallographic equipment we
verified the overall SiC volume fraction to be

€ = 28.1 + 1.9 percent and the Ae-island concentration
to be c¢* = 48.5 percent. This means that within the
sed the SiC volume fraction was 54.6 percent. For the

calculations reported below, we took ¢ = 0.30 and
varied ¢* from 0.0 to 0.5. Metallography showed that
the SiC particles represented as prolate spheroids
possess an asepct ratio of approximately 3.0. Simi-
larly, the aluminum islands represented as oblate
3pg§roids possess an aspect ratio of approximately

Sapphire (A1203)/Aluminum and Boron/Aluminum

Figure ¢ shows the microstructure of sapphire
fiber-reinforced aluminum material, which was obtained
from a commerical suppliier as 6-mm plates. The matrix
consists of a 2%Li-At alloy. The fibers, 55% by
volume, consist of 99+% a-alumina, 20+5 um diameter,
with a manufacturer-reported mass density of 3.95 g/cm3.
Sound velocities, volume fraction, and mass density of
;?Eliomposite were determined as described above for

L.

Elastic constants of the fiber were estimated from
Tefft's (26) monocrystal trigonal-symmetry elastic
constants. These were averaged to the quasi-isotropic
polycrystal case by a Voigt-Reuss-Hill arithmetic
average. The polycrystalline values were then scaled
downward sifghtly to agree with the observed 533. the

reciprocal Young's modulus along the fiber direction.
For this scaling down, Poisson's ratio was kept fixed.
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This gave a fiber Young's modulus of 358 GPa, within the
340-380 GPa range specified by the fiber manufacturer.
This estimate assumes isotropic elastic properties in
the fiber. In addition to the pulse-echo method we

also used the resonance method with a three-component
(Marx) oscillator to measure the elastic properties of
B8oron-Aluminum composite. The details of this can be
found in (27).

Creep-Cavities in Copper
UTtrasonic pulse-echo method was used to measure

longitudinal sound-wave velocities along and perpendic-
ular to the axis of stress applied to produce creep in
polycrystalline copper. The creep cavitation produced
is shown in Fig. 3.

RESULTS: CALCULATIONS AND OBSERVATIONS

Effective Elastic Praperties
Tor SiC/AL, Table 1 shows the principal results

of the study represented as elastic-stiffness coeffi-
cients, Cij in Voigt's notation. Columns 2 and 3 give

the properties of the constituents: aluminum alloy
6061 (measured in this study) and SiC (reported by
Schreiber and Soga (26) ). Colum 4 contains the
observed elastic constants of 30-volume-percent SiC/Al.
Colum 6 gives the prediction based on the assumption
of homogeneously distributed SiC particles. Finally,
colum 7 gives predictions based on the present model
for the nonhomogeneous case shown in Fig. 1. The
co-ordinate system is Xq perpendicular to plate, Xy in

plate in rolling direction, X5 in plate perpendicular
to rolling direction.

Table 2 - Observed and Predicted Static Elastic

Stiffness, cij' of 55-volume-percent Sapphire-

Fiber/Aluminum at Ambient Temperature.

Al Sapphire{i Obs. ! Homoa. ' Nonhomog.
i | '

pec. !

grav., 2.706 | 3.95 3,22, 3.39 3.39
iy 1.094 4.193 ] 1.924 1.971 . 1.985
C2 0.560 | 1.273 | 0.66| 0.855 . 0.857
¢y | 0.560 | 1.273 : 0.67 | 0.780 0.782
Cas 1.094 | 4.193 . 2.65| 2.730 2.730
Caa 0.267 | 1.46 . 0.64 | 0.593 0.603
Ceo 0.267 | 1.46 ; 0.61] 0.558 0.564

|

PPN PUUI—

Predictions in this table are based on ¢ = 0.55 and
c* = 0.10. Units are 10!ln/m?.

Table 2 gives similar results for the AIZOJ/;:

fiber-reinforced composite. The co-ordinate system is
X4 in fiber direction. For comparison with theory, we

“forced" a transverse-isotropic symmetry on the obser-
vations by the relationships €y = (€} + CZZ)obs /2,

€13 = (Cy3* Coalons./2: Cag = (Caq * Cs5lops. /2 2™
c66 = (2C66 + Cll - c12)obs./4'

Table 1 - Observed and Predicted Elastic Stiffnesses, C.., of 30-Volume-Percent SiC/6061 Al at Room Temperature.

1J
6061 sic? 30-vol ume-percent SiC/6061 Al
Gbs. | R-o-m Homog. | Nonhomog.
éﬁ& 2.706 3.181 { 2.838 ' 2.849 | 2.849 | 2.849
¢y 1.105 | 4.742 1.659 | 2.195 1.583 | 1.727
€5 1.105 | 4.742 1.651 |- 2.195 1.583 | 1.727
Cy3 1.105 | 4.742 1.483 | 2.195 1.583 | 1.480
Caq 0.267 1.881 | 0.433 | 0.751 | o0.443 | 0.429
Ceg 0.267 1.881 | 0.487 | 0.751 | o0.4a3 ! 0.429
Ce6 0.267 1.881 | 0.487 | 0.751 | o0.443 | 0.513
¢z 0.571 | 0.980 | 0.685 | 0.693 | 0.697 | 0.701
€3 0.571 | 0.980 | 0.662 { 0.693 | 0.697 | 0.677
Cay 0.571 | 0.980 { 0.662 | 0.693 | 0.697 | 0.677°

® From Schreiber and Soga (28). Predictions in
b
We assume C23 * Cxa'

Units on Cij
<
We assume ch . C23 = (.966 ch‘

this table are based on ¢ = 0.30, c* = 0.50,

SiC-particle aspect ratio = 3.0, Az-island aspect ratio = 0.33.
are 1011n/m,
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For a fiber-reinforced Boron-Aluminum resuylts of
observation and predictions of the random-distribution
mode! used in (1) and two other periodic distribution
models are shown in Table 3. In the model calculations
both constituents were assumed to be isotropic. For
the Aluminum matrix this assumption was verified exper-
imentally. However, for Boron fibers the elastic con-
stants are less certain, a wide range of values being
reported in the literature. The values shown in Table
3 arose from fitting a linear rule-of-mixtures to our
observed 533 value combined with Gschneider's (29)

recommended values of Boron's bulk modulus. It may be
noted that one can derive the properties of Boron by
using the observed values and the predictions of the
random distribution model. If that is done then it is
found that Boron fibers are slightly anisotropic with

the properties (all in units of lollN/mz):
ky = 2.693, brt 1.891, vyp * 2.014

EL = 3.72, Vir *t 0.13, vy = 0.121, E; = 4.515

Young's modulus of cast iron has been studied experi-
mentally in (33). Similar studies were also reported
in (34,358). Fig. 5 shows this dependence using our
model. Also shown in this figure are the results of
various experimental studies. We made two model calcu-
lations corresponding to the properties of graphite by
the lower and upper bounds (36). As seen from this
figure lower bound properties of graphite give results
closer to the experimental observations.

Attenuation
n this section we derive expressions for the

attenuation coefficients in a medium containing a
distribution of spherical inclusions with thin inter-
face layers through which the elastic properties vary
rapidly from those of of the inclusions to those of the
matrix. Such interface layers are often present due to
processing (see for example (237,38) ).

Consider a distribution of spherical inclusions of
elastic properties xl, vy, and density ) embedded in a

matrix material with properties xz. ug» and o,. Let

Table 3 - Observed and Predicted Static Elastic Properties of 48% Boron Fiber/Aluminum Composite at Ambient

Temperature
At Boron Observed Square Hexagonal Random Full Random

Mode1® | Modei® Mode1® Model
Cll 1.107 4.116 1.852 1.856 1.872 1.790 1.790
ch 0.573 0.590 0.779 | ----- 0.661 |  ee--- 0.745
clJ 0.573 0.590 0.606 | ----- 0.578 |  -e--- 0.583
C33 1.107 4.116 2.450 2.480 2.551 | e-e-- 2.560
Cas 0.267 1.763 0.566 0.451 0.561 0.559 0.559
C66 0.267 1.763 0.526 | ~-e-- 0.606 0.523 0.523

2 After Achenbach (30)
b After Hlavacek (3})
€ After (1)

Wave velocities along the c-axis of orfented ellipsoidal
inclusions as given by £qs. (33) and (34) are dependent
on the shapes and elastic properties of the ellipsoids.
From these one can derive the results for a medium with
oriented ellipsoidal shaped cavities. Such is the case
depicted in Fig. 3. We show calculated longitudinal
wave velocity in the Xq direction in Fig. 4. It is

assumed that the void aspect ratio is 1:10 (c/a).
Results for spherical voids are also shown together
with the experimentaily measured velocities in the X3

(stress axis) and xy directions. This figure shows

that the material had some initial anisotropy due to
texture which has not been taken into account in the
modeling. Assuming completely oriented disc shaped
voids one can estimate their aspect ratio by determin-
ing which matches the observed curves. Ffor vy we
obtain 1:7; for vy we get 1:12; thus an effective
estimate is 1:9. More details of the experiment can
be found in (32).

The aspect ratio dependence of elastic velocities
in particulate composites as predicted by equations

(24) and (25) was studied further in the context of
cast fron. Effect of graphite particle shape on

each inclusion be separated from the mat. .x by a
uniform thin layer of thickness h (<<a) znd veriable
material properties a(r), u{r), and o(r). Here r is
the distance from the center of the sphere and a is its
radius. Because of the symmetry the scattered field due
to a single sphere can be calculated in an exact form.
For the incident field given bv (14) it can be shown

that, correct to 0{r”), the scattered field is given by
(3) with

- 1e3
Aiuv ic [P“O

+Q ]

juv vxiuv

. §42.3 (38)
By, = 7% (Rvo‘.w * S X

(no sum over v)

)

where " 3;2 + Zuz
3, +2u, - (N, + 20,01 -~ = —<4—FC.}
2 2 1 1 CRVINP 1
P ol 1 1
o 3

h 2
4u2 + (3*1 + Zul)(l + 4a ri—.—z:ll- Kl}

'
L]
.
. *atn® LRSS % )
K '-'- K X Y o,

“.-(y: [ % -vy- \'.-‘.



-

s
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Fig. 5. Vvariation of Young modulus with graphite-
particle aspect ratio. Symbols represent meas-
urements. Curves represent predictions based
on present model. Predictions occur for two
volume fractions: ten and twelve percent.
Upper curves represent upper bounds on graph-
ite's elastic stiffnesses; lower curves repre-
sent lower bounds.
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Fig. 4. Longitudinal sound velocity, v, versus volume fraction of voids, c. Lines 1 and 3 represent

velocities in directions x| and «3, where x3 corresponds to the tensile-stress axis and x is
perpendicular to x3. Lines A, B, and C represent calculations: A for spheres, B and C for
oblate spheroids {discs) with a 1:10 aspect ratio, where B corresponds to randomly oriented
discs and C to discs oriented perpendicular to x3.
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* * oeT 2 3,15 2,25 ,3.5
: fs ——— (P (1+217) + =5 P {1+ 5 7))
; K S gead 1 3 2 ?
. Asl-ugfuy+2 (2 (u/u ,6)4.!‘___,_(_?,, (40)
1172 a V1T 7] duy '
by where v, = %1 al. The attenuation coefficients a, and
T'lTZT;' S a are then given by

v - L (41)
8*—-(8-1002)*7-502-;(;-(7-1102)-
K. v2 Note that attenuation coefficients derived here
- ' are for lossless inclusions and matrix. [f there is
- - ._. 2, - dissipation in either of these materials then there
& Zal(Sc 2 —f ( 2 Kl) (50 7 will be additional attenuation which may be derived
2 from (24) and (25) by assuming that X and u are corzlex
v (see, for example, (40} }.
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" DISCUSSION AND CONCLUSION

u ¥,

1 1
-r (KZ - m Kl)? / [2(7 - 1001) +

v A two-step multiple-scattering formalism has been
dseoyr2bliin, (7420 + used to predict the anisotropic elastic constants of
Prizgo i3k 1

! ¥2 au 3 both particle-reinforced and fiber-reinforced composite
! materials. Static effective properties are obtained by
4 u taking the long-wavelength limit. For both materials,
i K the present model, involving a simple nonhomogeneous
5 M M 201 1) ) distribution of particles or fibers, both explains the
» elastic anisotropy and gives better absolute predic-

sk /k, , €= k,a tions of the elastic constants.
. 2’71 1 ) , In addition we have presented results for phase
. a1 USLE velocities in a fiber-reinforced material with
*m (2n + 1) i T Smo © anisotropic fibers. These indicate that using mogeiing
19 1 . and observations it is possible to infer the properties
' Ll ) ikaty of fibers which are sometimes hard to obtain. This
e Vi nin + 1) .1 & aspect of the present study is very useful in other
. 2 contexts as well, like cast iron with graphite parti-
cles.
Pp* Q=R =S5, =0,n>3 The modeling reported here is also found to be
[ applicable to medium with oriented or disoriented voids.
g In writing the expressions for A, and B,  we Finally, we have presented expressions for atten-
fmn im yation in a medium reinforced by spherical particles
followed the notation of (1) for easy comparison It with interface layers.
was assumed in (1) that K™= 0 and K, ¥ 0. In the case
considered here ACKNOWLEDGMENTS
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