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COMPARATIVE ACCURACY OF FIVE IDICES OF DIMENSIONALITY

OF BINARY ITEMS

Introduction

The standard method of testing the dimensionality of binary items is

to comoute tetrachoric intercorrelations, obtain the principal components,

and inspect the latent roots. If the items are unidimensional, one expects

the first root to describe a major although numerically uncertain propor-

tion of the total variance. One also expects a large difference in the

size of the second root relative to the first and no sizable gap subse-

quent to the first difference. These evaluations, however, have no firm

quantitative basis.

Tetrachoric correlations are used for the component analysis because

the size of product-moment correlations is affected by the difficulties of

the items. Everyone knows that these correlations (phi coefficients) pro-

duce difficulty level factors. If items were to produce a perfect Guttman

scale, the matrix of intercorrelations would be a perfect simplex, not a

Spearman hierarchy.

Even though the use of tetrachorics is more or less standard, the R-

matrix has two undesirable properties for purposes of factor analysis and

the determination of dimensionality. The matrix is very likely to be non-

Gramian, and the samplinq errors of the individual tetrachorics vary widely

as a function of the difficulty levels of the items correlated. The effects

of these properties become more severe as the spread of item difficulties

increases.

Importance of Dimensionality. The problem of dimensionality has come

to the fore with the increase o4 interest in Item Response Theory and the

use of that methodology in adaptive testing. Although dependable item and

. ... % . t .' *.*
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person parameters can be obtained from item pools that are not unidimen-

sional in the strict sense of that term--a dominant dimension defined by

correlated group factors is sufficient (Drasqow and Parsons, 1983) and more

valid in most applications (Humphreys, 1985)--a method of test administra-

tion that potentially provides a different set of items for each examinee

and reqularly provides a different set of items for subgroups of examinees

places a greater demand on the IRT assumption of unidimensionality.

It becomes important, therefore, to determine the accuracy with which

a decision contrasting unidimensionality with multidimensionality can be

made from the matrix of tetrachoric correlations. It is also important to

evaluate nontraditional ways of evaluatinq dimensionality. In order to do

this it is essential to have a model of known dimensionality, to sample

both items and examinees, and to compare possible indices of dimensionality

in the same data sets.

Characteristics of a Desirable Model

Our objective was to develop a model that could simulate realistically

psychological data, especially cognitive data. The starting point was the

model developed by Tucker, Koopman, and Linn (1969). Those authors discussed

both a "formal" factor model and a "simulation" model. The models differ

in that the latter adds a relatively small amount of variance from a large

number of small, overlapping factors. The added variance simulates the

large number of determinants of responses to test items. Neither items nor

tests are ever pure measures of a hypothetical factor. We plan to investigate

both models as they affect detection of multidimensionality, but we shall

initially report results for the formal model only.

A second requirement was that the model should furnish data realistic

in its psychometric properties. Distributions of item difficulties should

' ' T , C' )V .' ,V'.. .. , ,f: ,- ? ';' ',..,',/ 'V.o ,. *',%V ,
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approximate those that are encountered in practice. Item correlations

should be at levels encountered in most item pools. Product-moment corre-

lations among cognitive items in wide ranges of talent are rarely greater

than .25 and are frequently considerably lower. Differences in the size of

mean correlations between a rather heterogeneous intelligence test and a

homogeneous test of mechanical information are small. Tetrachoric corre-

lations are larger, but generally well below the maximum value of 1.00

expected in a perfect Guttman scale. Tetrachoric correlations of unity do

occur in samples of reasonable size but only when a very easy item is

correlated with a very difficult item. A zero frequency in one cell of the

four-fold table can readily occur by chance in such combinations.

A third requirement is that the model should be a compensatory one.

In this initial study, an item's variance is broken down into a

linear combination of loadings on major group factors and

random error. Intercorrelations are the sums of products of overlapping

factors. A compensatory model seems to fit osychological data rather well,

including the predictive validities of psycholoqical tests for practical

criteria.

Description of the Model

The data in this study were generated in such a way that the struc-

tural relations desired were known and prespecified. This was desired so

that the validity of the factor analytic design could be checked. With

such a generation method, a design plan can be adjusted by the experi-

menter in terms of the exact nature and quality of the data.

Basic Notions. The model used here specifies the existence of a major

domain, which represents the most important influences on individuals' observed



scores. Consider factor matrix B whose entries are the actual input loadings.

Every row (i) in B represents a variable, while every column (j) in B

represents a factor. Each element in B (Bij) is an input factor loading.

These elements are the conceptual loadings or values in the major domain

that represent ideas or theoretical notions concerning the makeup and

structural relations of the input variables under study.

The major domain was presumed to have simple structure. Further, a

restriction of the factor matrix to positive manifold was desired. This

latter characteristic was required because the data being simulated were

cognitive ability items.

Factor Intercorrelations. An initial step in the process of generating

the factor model was determining the phi matrix (0, intercorrelations among

factors). Significant control of this parameter was available to the experimenter.

A value is set by the experimenter in the range 0,1 that will indirectly

determine a minimum level of the factor correlations. A second, higher

value in the same range is then chosen from which the first is subtracted.

The difference is multiplied by a random number in the interval 0,1 and the

product added to the initial value. The procedure is repeated for each factor

in the model using, for the present, the same first and second values. The

result is a unique value for each factor.

The next step determines the correlation between pairs of factors.

This involves taking the square root of the values determined for each

factor in the preceding step and obtaining the cross-products among all

factors. In effect, the factor intercorrelations are the products of factor

loadings on a single general factor.
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The factor correlations used in the present application of the model were

determined by initial values of .20 and .40 for the low and .50 and .70 for the

high levels, respectively. Thus the random increments to the base were, on

average, the same size for the two levels of factor correlations.

EnsuringSimple Structure. The next step in the generation of the

major domain is deriving the first order B having simple structure with a

restriction to positive manifold. Values for the intial B are chosen by

selectinq a random value in the interval 0,1.

Several checks are carried out at this point to assure that the

structural relations and the general quality of the factor matrix are

known. These are listed here:

1. A cut off probability for establishing zeros in B is used at this

point to determine the actual number of zeros in each column of B (i.e., per

factor). In effect, this step establishes the simple structure aspect of

the factor matrix.

2. A second precaution is carried out to insure the presence of at

least one hiah (nonzero ) entry in each row (i.e., per variable) of the factor

matrix. If no nonzero loadinq is present, one is inserted in one of the

columns. The position of the nonzero entry is chosen randomly.

3. The third check concerns a count of the high loadings in each column

of the factor matrix (i.e., for each factor). Again, the investigator

determines a priori the minimum number of high loadings desired. As before,

hiah entries are inserted until the minimum number of high loadings

desired is achieved.

4. Lastly, all pairs of columns (,j and k, j # k) are compared to

determine whether there are the appropriate (specified a priori) number of

rows with a high entry on i and zero entry on k, aQain a further assurance
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that each variable is represented and that simple structure is achieved.

Adjustments are made when necessary.

Size of Factor Loadings. A final set of adjustments is carried out to

effect the actual size of the loadings in the factor matrix (loadings are

either 0.0 or .5 before this adjustment). The investigator again has input

into the absolute size of factor loadings. The investinator determines two

initial values which indicate the range from which loadinas for the nonzero

entries in the factor matrix are chosen. This process is the same as that

used for the generation of the 0 matrix. The procedure presented earlier for

second order Gl coefficients is used at this point also. A vector of such

coefficients is obtained, one coefficient for each variable, These

coefficients are random rectilinearly distributed from GlS to GlE. (GlS and

GlE are defined as above and are selected a priori by the investiqator).

The G1 coefficients are the hypothesized variance from the major conceptualized

domain of influences.

At this point, the matrix A, which is the factor weiqht matrix

transformed to uncorrelated factors, is obtained. The first step in this

process is computing the Cholesky decomposition (v) of the matrix phi (0)

determined as above. Matrix B is post multiplied by v to obtain an

initial A matrix. Next, rows of A and R are adjusted to take into account

the vector of computed Gl coefficients (again, the desired variance

attributable to the major domain of influences). After rows of A are

normalized, the same multiplier is applied to B to rescale B in accordance

with the transformation to A.

Application to Binary Scores. Up to this point the model has been

described in terms of continuous variates. The model in this section is

converted to binary measures. (Each individual has a measure (score) on each

0o
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of the k dimensions.) Definitions for scores on dimensions and their components

are as follows:

Xik = score or measure of individual i on dimension k.

Z.. = item score of individual i on item j.

W = weight for item j on dimension k.

A fundamental relation is:

(1) x EXw
ij k ik k

To qeneralize this relation, we can see that:

. (2) Z = X

* where: X is a vector of scores Xik, and Z is a vector of

scores Z.Q = matrix of weights W

A further look at the Q (weight) matrix reveals "common" factor weights,

"specific" factor weights, and "error of measurement" factor weights. Specific

and error factors are also considered together as uniqueness component or 11.

We designate the common factor weight matrix A as before.

The weight matrix Q can be decomposed from a super matrix to two separate

weiqht matrices, A and U representing weights from common influences and unique

influences, respectively. For the purposes of this study, the vector Xi can

be similarly partitioned into common and unique components a i, u i , respectively,

X (a, ui>. Expanding the above relation (2), we see:

(3) Zi j = a.A + u jU

With this basic factor model as a start, individual binary data (scores) are

derived that conform to the qualities of the simulation model in continuous form.

The factor model is a linear model involving the addition of the contributions

to item scores. The factor weight matrix A (common factor influences) is applied

to the underlying score distribution and combined with the unique components

to determine item scores. To compute Zij (item score of individual i on item j)

'C"
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from (1), a random normal deviate for individual i on each dimension k (Xik)

is chosen and multiplied by factor loading fromA for item j on dimension k (aJk).

For a three-factor model, the following holds:

(4) Zij =X ilajl Xi2aj2 +Xi3aj3

To the score Zij is added the uniqueness component. Again, a random

normal deviate is chosen (one for each item) which is multiplied by the uniqueness

for that item. This product is added to the Zij from the common factors.

Generation of Binary Responses. To generate item binary scores, an individual's

normally distributed continuous score for item j (Zi) is compared to a cutting

score or threshold for item j. The cuttinq score distribution is derived with

input from the investigator. The cutting score mean and standard deviation are

determined a priori and are used to set up the cutting score values (d.), one

for each item j. Further, a vector of guessing parameters (c.) is set up taking

into account a range of guessing probabilities specified by the investigator.

The equations that characterize the probabitistic model used for generating binary

responses follow. Sij represent the individual's binary response to item j.

Sij is initially set to 0.

5a) IF (Zij > d.) Sij = 1;

5b) IF (Zij < d.) P (Sij = 1) = cj

The event of Sij equalling 1 or 0 is independent from occasion to occasion.

Thus, if the score of individual i to item j is greater than, or equal to, the

cutting score for item j, the individual has correctly answered the item. If the

score (Zij) is less than the threshold, the individual receives a zero to indicate

an incorrect response. However, a guessing component is taken into account such that

the individual's wrong answer to item j is changed to a correct answer with

probability cj. This process is continued for all j items of the i individuals. The

model can be seen as a probabilistic model that involves eacn measure (item) as a

sampling of influences on the individual's behavior.

.A
e
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Independent Parameters

Five parameters were varied in a factorial design. The variations

defined a range of possible values for each parameter, but no attempt was

made at this stage to fill in the gaps. Cells in the design were filled

with 20 independent samples with the exception of those defined by the

largest number of items. Only 10 replications were obtained in the latter

case to conserve computer time.

Sample Sizes. These were set at 125 and 500, providing a 2 to 1 ratio

of expected sampling errors. Because this parameter is under the control of

the research person, an adequate sample size (N) can usually be established

in advance. All indices of dimensionality should vary in accuracy as a

function of this parameter.

Number of Items. This parameter Ln) was varied as follows: 20, 30, 40,

and 60. Number of items can also be directly controlled by the research

person. For a given number of factors one expects to be able to define

factors more accurately the larger the number of items.

Item Difficulties. Two distributions were used, one relatively flat,

the other peaked. These were defined in normal deviate units as follows:

mu = .10, (- .80; mu = -.13, = .32. The positive sign of the mean

indicates a central tendency of p-values less than .50 in the absence of

guessinn. The mean n-values for, both are greater than .50 after the

guessing Darameter has been applied. An experienced test constructor can

exercise an approximate degree of control over this parameter. More import-

antly, item difficulties are always knowable before a decision concerning

diriensionality has to be made. Note that variation in the distribution of

item difficulties affects the size of the item product-moment intercorrela-

tions. It affects only the sampling variability of tetrachorics.

I . .--- " #', '-,. -, - ' ,- '-,% , .z" , .- --- ," " ,- - .- . , , , -
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Factor Intercorrelations. The manipulation of this parameter produced

mean correlations of approximately .35 and .55. This difference in size did,

of course, produce variation in size of item intercorrelations of both types.

For purposes of determining dimensionality factor intercorrelations are not

knowable, but one can obtain the mean item correlation in advance of a decision.

For a given set of items the mean product-moment correlation is readily computed

from an internal consistency statistic for the total score.

Number of Factors. This parameter was varied from 1 through 5. A test

constructor can only control it approximately by adherence to item specifications.

However, good test construction practices will not increase the number of major

factors as the number of items is increased. On the other hand, the size of

the correlations among the multiple factors that remain, when unidimensionality

is not achieved by the item writer who is working toward that goal, is likely

to be high. If unidimensionality can be rejected, it is also important to

decide on the number of group factors, but this decision is not central to

the present research. It should also be noted that variation of this parameter

in our model results in some degree of variation of the level of item inter-

correlations. In this case there is variation in both product-moment and

tetrachoric correlations.

Given the oblique factors that are characteristic of cognitive data, one

expects increasing difficulty in distinguishing between unidimensionality and

multidimensionality as the number of factors increases. Positively correlated

first-order factors determine one or more second-order factors, but in our

present model there is only one second-order factor. It describes an increasing

amount of total variance as the number of factors increases. When the general

factor is held constant, the total contribution of five factors is less than

the total contribution of two factors In an important sense, as the number

V-..-



of homogenously correlated group factors increases, the more nearly do the

data appear to be unidimensional and the more difficult the task becomes

in both our model and real data.

Dependent Variables

In addition to the use of indices based on nontraditional approaches

to dimensionality using covariances and product-moment correlations, we

also used indices based on the Eigenvalues of R-matrices composed of

tetrachoric correlations. The principal factors model, substituting the

highest correlation in a column for the unity of the R-matrix, was used

for these indices in place of the principal components. This decision

was based on preliminary research in which the differences between the

two models were trivial in size, but on average favored the principal factors.

Eigenvalue Differences. The size of the difference between the first

two Eigenvalues may represent most closely the basis for a decision concerning

dimensionality obtained by "root staring", i.e., by inspection of the pattern

of the latent roots. Because the size of the roots is a function of the

level of item intercorrelations, the absolute size of the difference must

be standardized. Each difference, therefore, was divided by the mean of

the first of the two Eigenvalues. This standardized difference approximates

the information that would be furnished by an index consisting of the ratio

of the first two Eigenvalues for each sample in the cell.

Ratios of Differences. A ratio of the intial difference to later

differences better represents the shape of the curve of the Eigenvalues.

In this research we computed the ratio of the difference between the first

two roots to the mean of the following two differences. If a set of items

is measuring a single dimension, not only should there be a large drop in

size from the first root to the second, but subsequent decreases should be

small.
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Local Independence Criterion. If unidimensionality is present, the

intercorrelations of items in the population of persons who are at the same

level of the latent trait are equal to zero. Local independence can be

approximated in fallible data by restricting analyses to those who have the

same total score on the set of items. One cannot hope to find an index of

dimensionality by analyzing n different matrices independently, one for each

level of total score, so the following procedure was developed:

1) An aggregate variance-covariance matrix is formed from the separate

matrices computed in samples of persons having the same total score. Each

sub-matrix is weighted by its sample size in forming the aggregate.

2) Signs of the aggregate covariances are changed in accordance with the

sign-changing procedure of centroid factor analysis to maximize the algebraic

sum of the C-matrix. Because this C-matrix held total score constant, there

are approximately equal numbers of positive and negative signs in the

aggregate matrix.

3) The ratio of the algebraic sum of covariances following the sign

change to the absolute sum is formed. Ratios that approach unity indicate

the presence of more than one factor among the original item covariances;

i.e., there is structure remaining in the matrix although one factor has

been removed.

4) The ratio in step 3 is then compared with the ratio of algebraic

to absolute sum of the values in the covariance matrix of raw scores in

which total score is not held constant. For this ratio the sign change was

placed in the program so that the technique would be applicable to matrices

composed of both positive and negative correlations among noncognitive items.
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5) The comparison at this point in our research involves subtracting (3)

from (4). Among reliable cognitive items the ratio in (4) will closely

approach unity whatever the dimensionality may be. The presence of multiple

factors is indicated, therefore, by small differences.

These ratios were computed with and without the diagonal entry. Results

have been highly similar, but ratios from which diagonals were omitted had a

slight edge in accuracy. Our results section will present data only for the

latter alternative.

Pattern in Factor Loadings. The first and second principal components

of the product-moment intercorrelations of items comprising a perfect Guttman

scale have distinctive patterns. The loadings on the first component are all

positive with the largest loadings being associated with items of moderate

difficulty level and the smallest with the easiest and the most difficult

items. The loadings on the second component form a curve that approximates

an oqive with easy and difficult items having high loadings of opposite sign

and with items of moderate difficulty having loadings close to zero. Because

a perfect Guttman scale is also a perfect index of unidimensionality, it was

our hypothesis that patterns of loadings in the first two principal factors

of the product-moment R-matrix could be used as an index of dimensionality

in fallible item data. A critical assumption in the application of this

hypothesis is that there is orthogonality of item difficulties and factor

content when more than one factor is present in the items.

One index made use of the signs of the second principal factor of the

R-matrix of product-moment correlations.

1) The matrix is factored after replacing the unities in the diagonal

with squared multiple correlations.

2) Items ere ranked in order of difficulty and the preponderance of signs

' " ' t ''' ,..'"" . %i',r. % .€, 2, q " :'' -Ii
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of the loadings on the second principal factor in the easy and difficult

halves of the items determined.

3) Each aberrant item, e.g., one with a negative sign in the easy half

when most items in that half have positive signs, is qiven a numerical value

based on the number of ranks by which it is removed from the center of the

distribution of difficulties.

4) These numerical values are summed over all aberrant items. Small

sums, in accordance with our hypothesis, should be associated with unidimen-

sionality.

A second index that is sufficiently independent of the first to be given

separate consideration is based on information obtained from both the first

and second principal factors among the product-moment correlations.

Steps (1) and (2) are the same as for the first index.

3) Each aberrant item is given a numerical value representina the product

of its first and second factor loadings.

4) These numerical values are summed without regard to siqn over all

aberrant items. Small sums are again associated with unidimensionality.

The rationale for this index is that items so unreliable as to have little

in common with other items in the test should not influence the decision

concerning dimensionality. On the other hand, items that do have something

in common with at least a subset of other items and have large, aberrant

second factor loadings should strongly influence the dimensionality decision.

Results

Levels of Intercorrelations. Before presenting the results from the

various indices of dimensionality, it will be useful to have as background

the levels of intercorrelations (phis) produced by the three parameters for

which effects were expected. Typical product-moment correlations in the

samples appear in Table 1.

! ".. .
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Table 1

Representative Mean Item Correlations

As a Function of Three Parameters

Number of Factors

1 2 3 4 5

High Low High Low High Low High Low

Wide .215 .18 .17 .16 .14 .16 .135 .16 .13

Narrow .30 .24 .22 .23 .20 .225 .19 .225 .18

Table 2 shows the Kuder-Richardson coefficients for several selected

levels of item intercorrelations that cover the range of values in Table 1.

Table 2

Kuder-Richardson Coefficients As a Function of Number

of Items and Selected Values of Mean Item Correlations

Mean Item Number of Items

Correlations 20 30 40 60

.30 .90 .93 .94 .96

.25 .87 .91 .93 .95

.20 .83 .88 .91 .94

.15 .78 .84 .88 .91

.12 .73 .80 .84 .89

.49
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Although we tried to maintain a fairly constant level of item correla-

tions for factors 2 through 5 by manipulating the proportion of items loaded

on a single factor, we were not quite successful. The large gap, however,

is between one factor and multiple factors because there were no zero

loadings in the one factor model. The distribution of item difficulties has

a large effect as required by the nature of the correlations. The typical

item correlation changes least as a function of the amount by which we

manipulated the intercorrelations of the factors in the continuous bivariate

model. Even so, as will be seen later, the differences in size of the factor

intercorrelations have important consequences for the accuracy of the indices.

The range of Kuder-Richardson coefficients demonstrates that our item

correlations are in the appropriate ball park for most cognitive tests.

Varying the number of items compensates for low levels of item correlations.

Perhaps the value that is most out of line is for one factor in the narrow

distribution of item difficulties. Mean item correlations of .30 in cognitive

tests are rare.

A Measure of Overlap. The accuracy with which one can reject a partic-

ular null hypothesis depends on the overlap of two sampling distributions.

In the present research we obtained sampling distributions of indices in item

intercorrelations that were based on major factors varyinq from one through

five. Because the distributions of several indices were skewed, we realized

belatedly that means and standard deviations of these distributions were

inadequate for determining overlap. In this initial report we obtained our

measure from hand-tallied distributions. The procedure is as follows:

In the distribution of a given index for one factor we select the

value that represents one factor least well. If low values of the index are

expected, this is the highest value. We then count the number of values in

.~ *.. .Z.
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each of the distributions of multiple factors that were equal to or lower

than our critical first factor value. Next we select in the distributions

of each of the multiple factors the value that represents the presence of

more than one factor least well. Aqain, if high values for multiple factors

are expected, this is the lowest value. We count the number of one-factor

values equal to or hiqher than the multiple factor critical value. Skewness

results in asymmetry of the two measures of overlap, so we add them together

to obtain a single value that can vary from zero to 40 (20 for 60 items).

Arrangement of the Tables. Tables are arranged in accordance with a

standard pattern. Small sample si7e is in the upper half, large in the lower

half. Columns are defined in the first instance by the number of items in

the test and secondarily by the two levels of factor intercorrelations. One

factor data, of course, do not vary along this parameter. Rows are defined

in the first instance by the comparisons of one factor in turn with two, three,

four, and five. A second distinction within each of these comparisons

involves the two levels of item difficulties.

Standardized Difference in Eigenvalues. Overlap information for this

index is presented in Table 3. It is clear that this index represents a

highly unreliable method of drawing inferences concerning dimensionality.

In only a small number of the most favorable combinations of parameters did

we obtain zero overlap in 20 replications. Although the results would not

be identical, the ratio of the first two Eigenvalues, for which the present

index is an approximation, can also be considered to have little promise.

Ratio of Differences. This index, for which overlap information is

summarized in Table 4, is moderately effective for the restricted distribution

of item difficulties, but quite ineffective in the wide range. In contrast

to the standardized differences in Eiqenvalues, ratios of differences reflect

" - *7 .- . \.. , *w*' , -.. .. . .. ... , .. pj * . *. -,.. . . .. . . . . . . . , - . . . . ,- -



18

Table 3

Amount of Overlap in Each Cell

Based on the First Difference in Roots

N=125

20 30 40 60*

High Low High Low High Low High Low

l vs. 2 Wide 39 38 38 33 35 31 30 22

Narrow 33 27 33 29 31 28 16 22

1 vs. 3 Wide 38 38 38 29 34 31 38 22

Narrow 32 25 35 27 33 20 22 20

1 vs. 4 Wide 37 37 35 31 36 28 38 30

Narrow 38 29 34 31 30 20 26 20

1 vs. 5 Wide 37 38 39 36 37 32 34 30

Narrow 31 30 35 31 32 27 30 26

N=500

20 30 40 60*

High Low High Low High Low High Low

1 vs. 2 Wide 39 37 31 12 33 27 32 0

Narrow 20 9 17 1 22 0 6 0

l vs. 3 Wide 38 39 34 29 34 28 34 18

Narrow 24 14 26 9 26 8 12 8

l vs. 4 Wide 40 40 35 30 36 32 32 28

Narrow 29 20 28 2 33 14 20 12

l vs. 5 Wide 40 36 33 33 39 36 32 32

Narrow 28 25 30 17 31 13 24 8

*Error frequencies doubled.



Table 4

Amount of Overlap on Each Cell

Based on the Ratio of Successive Differences

N=125

20 30 40 60*

High Low High Low High Low High Low

l vs. 2 Wide 36 32 35 25 38 31 0 0

Narrow 3 0 6 6 0 0 0 0

1 vs. 3 Wide 36 39 35 25 37 36 20 0

Narrow 14 0 6 0 0 0 0 0

1 vs. 4 Wide 39 35 39 27 40 32 38 28

Narrow 18 6 8 6 4 0 0 0

l vs. 5 Wide 40 33 39 35 40 34 34 36

Narrow 16 2 22 6 9 2 0 0

N=500

20 30 40 60*

High Low Hiqh Low High Low Hiqh Low

l vs. 2 Wide 31 25 27 6 14 0 22 4

Narrow 0 0 0 0 0 0 0 0

1 vs. 3 Wide 32 31 40 9 34 4 32 10

,Narrow 0 0 0 0 0 0 0 0

l vs. 4 Wide 39 32 38 28 40 38 32 24

Narrow 8 0 0 0 0 0 0 0

1 vs. 5 Wide 39 37 39 26 40 32 34 26

Pla r row 3 0 0 0 9 0 0 0

*Error frequencies doubled.

;, \.- ~S
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a smooth reductionin size from the second to subsequent Eigenvalues in the

unidimensional case when tetrachoric correlations can be reliably determined.

As item difficulty distributions become more widespread, however, the sampling

errors of tetrachorics also become more variable. Values associated with very

easy and very difficult items are huge.

In addition to the substantial sensitivity to the distribution of item

difficulties, this index shows increasing overlap with small N, small n,

large factor intercorrelations, and large number of factors. With 60 items

and the narrow range of item difficulties, overlap is zero even with five factors

and high factor correlations.

Local Independence Index. Summary information appears in Table 5.

This index is affected similarly by the five parameters, but at generally

lower amounts of overlap, than the ratio of differences index. The local

independence index is especially effective for large N, large n, narrow range

of difficulties, and for the distinction between one and two factors.

Pattern of Second Factor Signs. Table 6 contains the overlap information

for this index. Overall, errors in the detection of multidimensionality are

more frequent for this index than for the ones based on ratios of Eigenvalue

differences and on local independence, but the effect of one parameter is

quite different. The two indices named were less effective in the wide than

in the narrow range of item difficulties, but the pattern of second factor

loadinqs reverses that effect. The latter index is at least as effective as b

the others in the wide range of item difficulties and presumably would become

more effective in a still wider ranqe.

Size of First and Second Factor Loadings. The information in Table 7

indicates that this index is only partially redundant with the pattern of

4P
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Table 5

Amount of OverlaD in Each Cell

Based on the Local Independence Index

N=125

20 30 40 60*

High Low Hiqh Low High Low High Low

1 vs. 2 Wide 24 11 26 16 17 3 4 0

Narrow 22 11 18 0 0 0 0 0

1 vs. 3 Wide 32 29 22 10 18 17 28 0

Narrow 25 18 22 11 7 6 0 0

1vs. 4 Wide 31 21 30 25 25 7 22 10

Narrow 35 13 22 4 22 0 8 8

1 vs. 5 Wide 30 25 26 31 34 17 36 16

Narrow 34 18 31 24 33 19 10 8

N=500

20 30 40 60*

High Low High Low High Low High Low

l vs. 2 Wide 5 0 0 0 0 0 0 0

Narrow 0 0 0 0 0 0 0 0

l vs. 3 Wide 8 2 5 0 1 0 0 0

Narrow 0 0 0 0 3 0 0 0

l vs. 4 Wide 23 13 7 0 2 1 0 0

Narrow 2 0 5 0 2 10 0 0

1 vs. 5 Wide 32 10 18 5 16 2 2 0

Narrow 16 0 11 0 22 1 0 0

*Error frequencies doubled.
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Table 6

Amount of Overlap in Each Cell

Based on Pattern of Second Factor Loadings

SN=125

20 30 40 60*

High Low High Low High Low Higih Low

l vs. 2 Wide 32 18 33 26 21 3 0 4

Narrow 39 38 36 36 35 35 24 24

1 vs. 3 Wide 36 31 25 16 19 6 12 0

Narrow 38 40 37 33 36 36 32 24

1 vs. 4 Wide 35 20 16 17 10 15 16 6

Narrow 40 39 35 33 40 35 24 26

Ivs. 5 Wide 39 22 28 19 19 5 10 6

Narrow 39 38 37 39 36 35 26 24

N=500

20 30 40 60*

High Low High Low High Low High Low

1vs. 2 Wide 6 6 0 0 3 3 0 0

Narrow 31 32 27 27 4 6 0 0

1 vs. 3 Wide 11 8 0 0 15 0 0 0

Narrow 34 32 27 32 7 5 0 0

Ivs. 4 Wide 27 0 8 0 23 2 4 0

Narrow 25 25 36 27 0 3 0 0

Ivs. 5 Wide B 0 19 0 19 0 6 0

Narrow 25 29 32 27 7 2 0 0

*Error frequencies doubled.
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Table 7

Amount of Overlap on Each Cell

Based on Pattern of First and Second Factor Loadings

N=125

20 30 40 60*

High Low High Low High Low High Low

I vs. 2 Wide 38 23 30 23 13 0 0 0

Narrow 24 26 25 26 22 16 6 8

l vs. 3 Wide 40 29 27 24 14 0 4 0

Narrow 36 37 30 27 32 26 22 12

1 vs. 4 Wide 39 36 16 21 14 15 6 0

Narrow 40 35 35 32 33 27 16 14

1 vs. 5 Wide 40 34 30 14 15 5 6 0

Narrow 40 38 36 37 32 34 28 22

N=500

20 30 40 60*

High Low High Low High Low High Low

l vs. 2 Wide 6 0 0 0 2 0 0 0

Narrow 11 3 2 0 0 0 0 0

1 vs. 3 Wide 24 19 0 0 9 0 0 0

Narrow 15 14 2 1 3 0 0 0

l vs. 4 Wide 23 3 20 0 20 0 14 0

Narrow 11 13 9 0 2 2 0 0

1 vs. 5 Wide 18 4 25 3 24 0 22 0

Narrow 18 16 7 4 2 0 0 0

*Error frequencies doubled.
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second factor signs. Overlap for the fifth index also tends to be greater

in the narrow distribution of difficulties than in the wide, but the effect

is smaller than for the fourth. For other combinations of parameters there

is no substantial advantage for one or the other. In those cases where #5

does appear to be superior to #4, it tends to be inferior to #3. Overall,

it is intermediate in its characteristics to the third and fourth indices

and seems to have no unique advantage.

Main Effects of the Five Indices. Because we have a complete factorial

design, it is possible to summarize the data for each index for each parameter

by adding across all other parameters as in an analysis of variance. This

will reveal more clearly the comparative strengths and weaknesses of the five

indices. This information appears in Table 8.

Indices can first be compared by notinq the sheer amount of overlap for

each of the 15 main effects. Neglecting the fact that we do not, at the

moment, have an error term, it is seen that the standardized difference in

the size of the first two Eigenvalues does not discriminate best for any level

of any parameter and has the largest total amount of overlap. The local

independence index has the lowest total amount of overlap and is most effec-

tive for all n, m, N, and both levels of factor correlations. It is not at

the top, however, for either the wide or narrow distributions of item

difficulties. For the narrow distribution the ratio of differences in

Eigenvalues is most effective and for the wide distribution the pattern of

second factor signs is at the top. The latter index, however, is second only

to the standardized difference in total number of errors.

It is also useful to compare proportions of errors of inference

within a given parameter across the five indices. The two indices based on

Eigenvalues are least sensitive to the increase in N, the ratio of differences

OM 0 J
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Table 8

Main Effects of Number and Proportion of Errors

Within Treatments for Each Index

Number of Items

Standardized Ratio of Local Patterns of Loadings

Difference Differences Independehe Factors 1 and 2 Factor 2

20 1025 .289 626 .311 490 .378 753 .418 843 .363

30 901 .254 533 .265 369 .285 506 .281 728 .313

40 897 .253 514 .255 285 .220 362 .201 485 .209

60 724 .204 340 .169 152 .117 180 .100 268 .115

Number oF Factors

1 vs. 2 771 .217 341 .169 157 .121 304 .169 549 .236

1 vs. 3 863 .243 440 .219 264 .204 447 .248 592 .255

1 vs. 4 931 .262 599 .298 348 .269 496 .275 587 .253

1 vs. 5 982 .277 633 .314 527 .407 554 .308 596 .256

Samnle Size

N=125 1992 .562 1128 .560 1072 .827 1430 .794 1654 .712

N=500 1555 .438 885 .440 224 .173 371 .206 670 .288

Difficulty Distribution

Wide 2108 .594 1859 .924 795 .613 792 .440 733 .315

Narrow 1439 .466 154 .076 501 .387 1009 .560 1591 .685

Factor Correlations

High 2012 .567 1205 .599 874 .674 1078 .599 1309 .563

Low 1535 .433 808 .401 422 .326 723 .401 1015 .437

Total Overlao 3547 2013 1296 1801 2324

All Treatments

& - % - . .\
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is most sensitive by far to the distribution of item difficulties. The local

independence index is most sensitive to an increase in the number of factors

and comes close to losing its #1 position for five factors. The pattern of

second factor signs stands out from the rest for the wide distribution of

item difficulties and is relatively insensitive to the number of factors

being compared.

All indices show the expected sensitivity to sample size, albeit somewhat

differentially, to obliquity of the factors, and to the number of items. An

investigator can control N and usually n as well without increasing the number

of major factors in the items. Given the low level of item correlations found

typically in cognitive tests, large samples and a very large ratio of number

of variables to number of factors by ordinary factor analytic standards are

important design considerations. The level of factor correlations, on the

other hand, cannot be controlled by the investigator except indirectly and

inversely with respect to the desired direction. As mentioned earlier, if

a test is not unidimensional in spite of the item writer's best efforts,

the multiple factors will probably be highly intercorrelated.

Discussion

This research has documented the complexity of the problem of dimen-

sionality in binary items. No one index of the five we have tried works

best in all combinations of our parameters. Only one index of the five we

have tried can be rejected in toto: namely, the difference in size of

Eiqenvalues of the first two principal factors.

Development of a corpus of Monte Carlo runs allowinq choice of an index

of dimensionality that is contingent on knowable parameters will be difficult.

The important parameters of factor intercorrelations and item difficulties

were set at only two levels each, yet each varies continuously. Distributions

p
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of item difficulties vary alonq more than one dimension as well, makinq

generalization from several fixed distributions hazardous. A priori

difficulty distributions can be approximated by skillful item writers, but

factor intercorrelations cannot be kept at low levels by skilled test

construction practices. Positive correlations among factors are intrinsic

to the cognitive domain and are not trivial in size between group factors

that are widely recoqnized as being truly different.

In spite of the difficulties we believe that useful recommendations can

be developed. In a preliminary way we are offering to readers in Appendix A

means and standard deviations of the three nontraditional methods used in the

current research for each cell in the factorial design. Readers have a feel

for the Eigenvalues of tetrachoric matrices, but lack this feel for the new

indices. Readers should note that the skewness of the distributions limits

the value of the standard deviations.

Because the new indices are quick and inexpensive makes further work on

them attractive. On the basis of present information, full information factor

analysis of Bock, Gibbons, and Muracki (1985) solves the problem of

dimensionality in binary items, but it does so at a substantial cost.

Computer time for this method increases rapidly as the number of items

increases.

For the present we are working on several possible modifications of the

indices that are dependent on raw score and standardized variance-covariance

matrices. We have established that the attractive statistical properties of

such matrices outweigh their dependency in binary items of percent passing.

'I
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Table Al

Means and Variances of the Local Independence Index

N=125

One Factor

Wide Narrow

Hiqh Low Hiah Low

n X Sx  X Sx  X Sx  X Sx

20 .57 .06 .57 .06 .58 .05 .58 .05

30 .61 .04 .61 .04 .64 .03 .64 .03

40 .63 .05 .63 .05 .64 .03 .64 .03

60 .67 .04 .67 .04 .70 .03 .70 .03

Two Factors

20 .46 .09 .36 .09 .39 .11 .30 .14

30 .48 .10 .34 .10 .44 .12 .32 .12

40 .46 .09 .40 .10 .42 .08 .29 .13

60 .50 .08 .38 .07 .41 .05 .32 .12

Three Factors

20 .51 .06 .44 .11 .48 .08 .41 .10

30 .52 .07 .44 .10 .51 .08 .42 .08

40 .53 .06 .48 .08 .55 .04 .43 .10

60 .57 .08 .46 .06 .54 .05 .44 .08

table continues
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Table A1 (cont.)

N=125

Four Factors

Wide Narrow

High Low Hiqh Low

n X Sx  X Sx  X Sx  X Sx
20 .52 .06 .45 .08 .55 .07 .42 .07

30 .54 .05 .49 .07 .54 .07 .47 .07

40 .56 .06 .50 .06 .56 .04 .49 .06

60 .62 .03 .56 .05 .58 .07 .52 .08

Five Factors

20 .50 .05 .44 .09 .55 .07 .44 .07

30 .54 .05 .51 .09 .57 .06 .51 .08

40 .60 .05 .53 .07 .59 .05 .53 .07

60 .65 .02 .56 .07 .62 .04 .56 .05

N=500

One Factor

Wide Narrow

High Low High Low

n X Sx  x Sx x S X Sx

20 .70 .04 .70 .04 .71 .03 .71 .03

30 .71 .03 .71 .03 .71 .02 .71 .02

40 .72 .02 .72 .02 .72 .03 .72 .03

60 .75 .02 .75 .02 .75 .01 .75 .01

table continues
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Table Al (cont.)

N=500

Two Factors

Wide Narrow

High Low High Low

n X Sx X Sx  x X Sx

20 .45 .10 .33 .10 .29 .10 .18 .06

30 .36 .07 .28 .06 .24 .07 .14 .06

40 .33 .07 .26 .08 .23 .08 .13 .04

60 .32 .08 .20 .06 .21 .06 .13 .04

Three Factors

20 .54 .06 .45 .07 .47 .09 .41 .09

30 .52 .07 .44 .10 .43 .09 .36 .08

40 .51 .07 .39 .07 .43 .11 .36 .10

60 .50 .07 .43 .05 .46 .07 .40 .09

Four Factors

20 .60 .05 .55 .08 .52 .08 .46 .07

30 .57 .06 .48 .07 .54 .08 .48 .08

40 .58 .04 .51 .06 .52 .07 .44 .09

60 .58 .04 .48 .04 .51 .06 .47 .06

Five Factors

20 .61 .06 .57 .05 .59 .07 .54 .06

30 .59 .06 .52 .06 .60 .05 .54 .06

40 .63 .04 .55 .06 .59 .05 .51 .05

60 .63 .05 .56 .06 .58 .06 .52 .06
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Table A2

Means and Variances of the Index Based on the Pattern of Signs

of the Second Principal Factor

N=125

One Factor

Wide Narrow

High Low Hiqh Low

n X S X S X S X Sx x x x
20 17 11 17 11 36 12 36 12

30 37 21 37 21 84 33 84 33

40 43 21 43 21 147 37 147 37

60 70 57 70 57 270 85 270 85

Two Factors

20 30 14 41 7 39 7 39 7

30 68 29 88 24 100 14 96 14

40 133 46 154 25 174 26 170 28

60 360 66 357 69 400 41 362 61

Three Factors

20 34 10 36 9 40 8 36 11

30 76 29 89 15 87 20 95 11

40 144 48 144 30 172 29 166 30

60 287 87 380 42 350 74 375 55

table continues
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Table A2 (cont.)

N=125

Four Factors

Wide Narrow

High Low High Low

n X S x X S x X S x X S

20 34 12 40 11 39 10 42 9

30 90 18 86 15 91 13 98 12

40 128 35 164 38 155 26 169 21

60 211 66 316 75 400 35 394 34

Five Factors

20 30 10 38 11 38 11 39 8

30 73 31 86 19 92 18 96 20

40 139 42 143 34 171 29 170 29

60 267 109 316 103 371 49 403 47

N=500

One Factor

Wide Narrow

Hiqh Low High Low

n X S x X S x X S x X S

20 6 4 6 4 23 12 23 12

30 9 6 9 6 46 29 46 29

40 14 16 14 16 51 28 51 28

60 28 18 28 18 74 37 74 37

table continues
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Table A2 (cont.)

N=500

Two Factors

Wide Narrow

High Low High Low

n x Sx X Sx  x Sx  X Sx

20 33 13 37 11 40 9 42 9

30 88 20 88 22 98 15 95 16

40 143 44 152 39 164 27 165 30

60 344 90 375 45 392 43 396 38

Three Factors

20 25 13 30 12 39 10 41 13

30 74 28 90 21 101 15 92 19

40 105 58 157 31 156 29 171 29

60 313 120 367 39 384 47 389 43

Four Factors

20 25 16 35 11 40 8 41 7

30 50 28 82 22 88 21 93 15

40 101 50 144 37 163 19 172 27

60 217 109 342 44 405 29 351 48

Five Factors

20 31 13 40 8 39 7 38 7

30 48 35 76 23 93 18 94 15

40 78 50 155 25 154 28 177 26

60 124 91 333 92 390 43 377 49
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Table A3

Means and Variances of the Index Based on the

Products of the First and Second Principal Factor Loadings

W 125

One Factor

ide Narrow

High Low High Low

n X Sx  X S X Sx  X Sx

20 .24 .16 .24 .16 .60 .18 .60 .18

30 .32 .15 .32 .15 .86 .38 .86 .38

40 .27 .12 .27 .12 1.07 .35 1.07 .44

60 .38 .13 .38 .13 1.38 .58 1.38 .58

Two Factors

20 .47 .24 .71 .23 .84 .21 .86 .31

30 .68 .36 .98 .35 1.32 .20 1.32 .34

40 1.15 .50 1.23 .25 1.77 .36 1.88 .44

60 1.87 .46 2.26 .38 2.98 .49 2.92 .60

Three Factors

20 .42 .19 .53 .18 .78 .21 .75 .29

30 .70 .37 .84 .29 1.09 .32 1.27 .32

40 1.08 .39 1.16 .24 1.45 .32 1.61 .39

60 1.30 .48 1.96 .47 2.21 .53 2.58 .40

table continues
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Table A3 (cont.)

N=125

Four Factors

Wide Narrow

High Low High Low

n X S x X S X Sx X Sx

20 .47 .23 .61 .16 .66 .23 .76 .22

30 .77 .26 .77 .24 1.06 .28 1.12 .19

40 .88 .36 .98 .36 1.42 .29 1.54 .33

60 .90 .44 1.45 .36 2.42 .32 2.47 .32

Five Factors

20 .36 .19 .52 .20 .56 .19 .70 .19

30 .62 .30 .75 .22 1.01 .28 1.10 .27

40 .87 .37 .94 .30 1.41 .28 1.30 .29

60 1.14 .42 1.43 .50 1.96 .35 2.29 .29

I'.. N=500

Olne Factor

Wide Narrow

Hinh Low Hi'ih Low

n X Sx X S xX Sx X Sx

20 .07 .04 .07 .04 .24 .15 .24 .15

30 .08 .05 .08 .05 .25 .17 .25 .17

40 .10 .06 .10 .06 .24 .16 .24 .16

60 .16 .08 .16 .08 .29 .10 .29 .10

table continues
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Table A3 (cont.)

N=500

Two Factors

Wide Narrow

Hiqh Low High Low

n X Sx  X Sx  X Sx  X Sx

20 .46 .22 .57 .20 .78 .28 .88 .18

30 .82 .26 .91 .29 1.29 .29 1.40 .19

40 1.04 .45 1.22 .38 1.61 .25 1.79 .27

60 1.70 .48 2.33 .34 2.76 .42 3.02 .40

Three Factors

20 .32 .20 .47 .22 .62 .23 .68 .18

30 .58 .24 .75 .27 1.10 .17 1.07 .26

40 .67 .42 1.14 .24 1.27 .35 1.55 .29

60 1.36 .50 1.80 .22 2.01 .35 2.10 .36

Four Factors

20 .27 .19 .42 .16 .64 .16 .60 .19

30 .37 .24 .70 .22 .86 .25 1.13 .19

40 .61 .40 .94 .32 1.30 .24 1.38 .20

60 .70 .41 1.42 .33 1.84 .30 2.19 .25

Five Factors

20 .42 .17 .46 .13 .53 .14 .58 .16

30 .28 .25 .61 .24 .84 .18 .94 .19

40 .39 .28 .89 .27 1.06 .18 1.28 .19

60 .48 .46 1.40 .44 1.73 .25 2.00 .33

'jaiL
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