
AD-A172 110 UNCLASSIFIED	COMPARATI OF BINARY PSYCHOLOG	IVE ACCURA ITEMS(U)	CY OF F ILLINO CKER ET	IVE IN IS UNI AL. J	DICES V AT U RN 86	OF DII RBANA NOOQ14	IENSIO Dept 1-84-k F/g	MLITY)F -0186 L2/1	. 1/ NL	4	
	,										
										—	
											

HTTE FILE COPY

COMPARATIVE ACCURACY OF FIVE INDICES OF DIMENSIONALITY OF BINARY ITEMS

Ledyard R Tucker, Lloyd G. Humphreys, and Mary A. Roznowski University of Illinois, Urbana-Champaign

January 1986

This research was sponsored by

Personnel and Training Research Programs Psychological Sciences Division Office of Naval Research

Under Contract No. N00014-84-K-0186 Contract Authority No. NR 150-533/4-3-85

Approved for public release; distribution unlimited.

Reproduction in whole or in part is permitted for any purpose of the U.S. Government.

19

U4 (

Q

R AD-A172 110 La. REPORT SECURITY CLASSIFICATION Unclassified 3 DISTRIBUTION YAVALABILITY OF REPORT Ja. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION YAVALABILITY OF REPORT Approved for public release; distribution unlimited SEP 2 20 A PERFORMING ORGANIZATION Department of Psychology University of Illinois 66 OFFICE SYMBOL (# applicable) 7. NAME OF MONITORING ORGANIZATION Department of Psychology University of Illinois 66 OFFICE SYMBOL (# applicable) 7. NAME OF MONITORING ORGANIZATION Department of Psychology University of Illinois 66 OFFICE SYMBOL (# applicable) 7. NAME OF MONITORING ORGANIZATION Department of Psychology University of Illinois 66 OFFICE SYMBOL (# applicable) 7. NAME OF MONITORING ORGANIZATION University of Illinois 8. OFFICE SYMBOL (# applicable) 7. NAME OF MUSICAL Processity of State. and 21P Code) 7. NAME OF FUNDING: SPONSORING (# applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER NOOD14- 84-K-0186 RE. ADDRESS (City, State. and 21P Code) 8. OFFICE SYMBOL (# applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER NOOD14- 84-K-0186 RE. ADDRESS (City, State. and 21P Code) 8. OFFICE SYMBOL (# applicable) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER NOOD14- 84-K-0186 RE. ADDRESS (City, State. and 21P Code) 10. SUBJECT TERMS (Contine on reverse if necessary and identify by Mode number) 10. SUBJECT TERMS (Nontrino on reverse if necessary and identify by Mode number)	UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE		. ^ 172	110 -			
Unclassified 3 Distribution / Availability OF REPORT 28: SEQURITY CLASSIFICATION AUTHORITY 3 Distribution // Availability OF REPORT 38: DECLASSIFICATION AUTHORITY 3 Distribution // Availability OF REPORT 38: DECLASSIFICATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S) 36: NAME OF PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S) 36: NAME OF PERFORMING ORGANIZATION REPORT NUMBER(S) 7 MAME OF MONITORING ORGANIZATION REPORT NUMBER(S) 36: NAME OF PERFORMING ORGANIZATION 86 OFFICE SYMBOL 7 MAME OF MONITORING ORGANIZATION 30: DEDATES (Chy, State, and ZPCOde) 80 ONTO NUT Quincy Street Arlington, VA 22217-5000 38: NAME OF FUNDING / SPONSORING 86 OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 000014-84-K-0186 10 SOURCE OF FUNDING ANAMERS WORK UNIT NOT NOW 86: ADDRESS (Chy, State, and ZPCOde) 10 SOURCE OF FUNDING ANAMERS WORK UNIT NOT NOW 11: TITLE (Inducte Security Classification) Comparative Accuracy Of Five Indices Of Dimensionality Of Binary Items NOCK UNIT NO 12: PERSONAL AUTHOR(S) Tucker, Ledyard R; Humphreys, Lloyd G,; Roznowski, Mary A. 13a 'YPE (of REPORT 'WAR', MONTH, OPY) 5: PAGE COUNT 44 13a 'YPE (of REPORT TAV ORTATION 14b TME COVERED 'NO 14 D		$\stackrel{R}{-}$ AU ⁻	A1/2	· · · ·			
20. DECLASSIFICATION / DOWNGRADING SCHEDULE Approved for public release; distribution unlimited. SEP 2 2 3 4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) 6. NAME OF PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) 7. NAME OF MONITORING ORGANIZATION Personnel and Training Research (Code 1142PT) 6. ADDRESS (GR), State, and ZIP Code) 60. OFFICE SYMBOL (If applicable) 7b. ADDRESS (GR), State, and ZIP Code) 80. OFFICE SYMBOL (If applicable) 60. ADDRESS (GR), State, and ZIP Code) 8b. OFFICE SYMBOL (If applicable) 9 PROCUERMENT INSTRUMENT IDENTFICATION NUMBER 0. GRANIZATION 8b. OFFICE SYMBOL (If applicable) 9 PROCUERMENT INSTRUMENT DENTFICATION NUMBER 0. GRANIZATION 8b. OFFICE SYMBOL (If applicable) 10 SOURCE OF FUNDING NUMBERS WORK UNIT 0. GRANIZATION 8b. OFFICE SYMBOL (If applicable) 10 SOURCE OF FUNDING NUMBERS NOOI 14-84-K-0186 8c. ADDRESS (Cir), State, and ZIP Code) 8b. OFFICE SYMBOL (If applicable) 10 SOURCE OF FUNDING NUMBERS NOOI 14-84-K-0186 11. TITLE (Include Security Classification) Comparative Accuracy OF Five Indices Of Dimensionality OF Binary Items 11. TITLE (Include Security Classific			1			•. `	。
4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITÓRING ORGANIZATION REPORT NUMBER(S) 64. NAME OF PERFORMING ORGANIZATION Performent of Psychology University of lilinois 66. OFFICE SYMBOL (# applicable) 7a. NAME OF MONITORING ORGANIZATION Performent and Training Research (Code 1142PT) 66. OFFICE SYMBOL Department of Psychology University of lilinois 66. OFFICE SYMBOL (# applicable) 7a. NAME OF MONITORING ORGANIZATION Performent and Training Research (Code 1142PT) 60. Stast Daniel Street Champaign, IL 61820 7b. OFFICE SYMBOL (# applicable) 7b. DODRESS (Cr, State, and JP Code) 7b. ODRESS (Cr, State, and JP Code) 8c. ADDRESS (Cr, State, and ZP Code) 8b. OFFICE SYMBOL (# applicable) 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER NO0014-84-K-0186 8c. ADDRESS (Cr, State, and ZP Code) 8b. OFFICE SYMBOL (# applicable) 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER NO0014-84-K-0186 8c. ADDRESS (Cr, State, and ZP Code) 8b. OFFICE SYMBOL (# applicable) 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER NO0014-84-K-0186 11. Intle (include Security Classification) Comparative Accuracy Of Five Indices Of Dimensionality Of Binary Items No160204 12. PERSONAL AUTHOR(S) Tucker, Ledyard R; Humphreys, Lloyd G.; Roznowski, Mary A. 13a. JYPE OF REPORT NO0014-84-K-0186 14 DATE OF REPORT (New, Month, Day) 15. PAGE Count Accuracy In distinguishing one for the form of states, including 20, 30, 40, 40; and fo; (3) sample sizes of 125 and S00; (4)	2a. SECURITY CLASSIFICATION AUTHORITY	······································	3. DISTRIBUTION	AVAILABILITY O	FREPOR	RT	
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) 64. NAME OF PERFORMING ORGANIZATION Department of Psychology University of lilinois 6b. OFFICE SYMBOL (# applicable) 7a. NAME OF MONITORING ORGANIZATION Personnel and Training Research (Code 1142PT) 64. ODDERS (Cry, Stee, and ZP Code) 6b. OFFICE SYMBOL (# applicable) 7a. NAME OF MONITORING ORGANIZATION Personnel and Training Research (Code 1142PT) 7b. ADDRESS (Cry, Stee, and ZP Code) 7b. ODDERS (Cry, Stee, and ZP Code) 7b. ODDERS (Cry, Stee, and ZP Code) 8c. ADDRESS (Cry, Stee, and ZP Code) 8b. OFFICE SYMBOL (# applicable) 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER NO0014-84-K-0186 8c. ADDRESS (Cry, Stee, and ZP Code) 8b. OFFICE SYMBOL (# applicable) 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER NO0014-84-K-0186 8c. ADDRESS (Cry, Stee, and ZP Code) 8b. OFFICE SYMBOL (# applicable) 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER NO0014-84-K-0186 8c. ADDRESS (Cry, Stee, and ZP Code) 8b. OFFICE SYMBOL (# applicable) 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER NO0014-84-K-0186 8c. ADDRESS (Cry, Stee, and ZP Code) 8b. OFFICE SYMBOL (# applicable) 19 PACE Code NR 004204 NR 04204 8c. ADDRESS (Cry, Stee, and ZP Code) 8b. OFFICE SYMBOL (# applicable) 19 PACE Code NR 004204 NR 04204 8c. ADDRESS (Cry, Stee, and ZP Code) 8b. OFFICE SYMBOL (#	26. DECLASSIFICATION / DOWNGRADING SCHEDUL	.E				е;	SEP 2 2 19
64. NAME OF PERFORMING ORGANIZATION Department of Psychology University of Illinois 66. OFFICE SYMBOL (# applicable) 74. NAME OF MONITORING ORGANIZATION Personnel and Training Research (Code)142PT) 65. ADDRESS (CN, State, and ZP Code) 00	4. PERFORMING ORGANIZATION REPORT NUMBER	R(S)					
Department of Psychology University of Illinois (# applicable) Personnel and Training Research (Code 1142PT) 66. ADDRESS (City, State, and ZPCOde) (B) ADDRESS (City, State, and ZPCOde) (B) ADDRESS (City, State, and ZPCOde) 80. NOVE OF FUNDING /SPONSORING ORGANIZATION (B) OFFICE SYMBOL (# applicable) 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 86. ADDRESS (City, State, and ZPCOde) (B) OFFICE SYMBOL (# applicable) 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 86. ADDRESS (City, State, and ZPCOde) (B) OFFICE SYMBOL (# applicable) 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 86. ADDRESS (City, State, and ZPCOde) (B) OFFICE SYMBOL (# applicable) 9 PROCURAM (# applicable) 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 86. ADDRESS (City, State, and ZPCOde) (B) OFFICE SYMBOL (# applicable) 9 PROCURAM (# applicable) 9 PROCURAM (# applicable) 11. ITLE (include Security Classification) Comparative Accuracy OF Five Indices OF Dimensionality OF Binary Items 10 SOUNCE OF ELPONISK NUMBERS 12 PERSONAL AUTHOR(S) Tucker, Ledyard R; Humphreys, Lloyd G.; ROZIOWSKI, Mary A. 13 applicable) 13 Tucker, Ledyard R; Humphreys (Continue on reverse if necessary and identify by block number) 14. Data or prevents if necessary and identify by block number) 14 Off GOP (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII							E
603 East Daniel Street Champaign, IL 61820 800 North Quincy Street Arlington, VA 22217-5000 8a. NAME OF FUNDING SPONSORING ORGANIZATION 8b. OFFICE SYMBOL (If applicable) 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER NO0014-84-K-0186 8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBER PROCARAM ELEMENT NO Comparative Accuracy Of Five Indices Of Dimensionality Of Binary Items MORK UNIT NO Comparative Accuracy Of Five Indices Of Dimensionality Of Binary Items 12 PERSONAL AUTHOR(S) Technical Research 13b. TIME COVERED From Technical Research 13b. TIME COVERED From Technical Research 14. Date of REPORT (Year, Month, Day) 15. PAGE COUNT 44 17. COSATI CODES FIELD 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) dimensionality, binary items, factor analysis 18. ADTROT of terms of items, including 20, 30, 40, and 60; (3) sample sizes of 125 and 500; (4) near rectangular and highly peaked distributions of item difficulties; and (5) factor intercor- relations averaging in the thirties and in the fifties. Accuracy in distinguishing one fact from more than one was the criterion. An index involving variance-covariance matrices and hased on the unidimensional property of local independence of items was overall mos of item increase in accuracy as both sample size of all indices there is a increase in accuracy as both sample size and mumber of items was overall mos of item increase in accuracy as both sample size and number of items is increased; for all indices tantially more accurate in the peaked than in the rectangular distributions of item in a increase in accuracy as both sample size and mumber of items is increased; for all indi	Department of Psychology		Personne	el and Train	ing Re	esearch	
Champaign, IL 61820 Arlington, VA 22217-5000 Ba NAME OF FUNDING/SPONSORING ORGANIZATION 8b. OFFICE SYMBOL (# applicable) 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER N00014-84-K-0186 Bc. ADDRESS (City, State, and ZiP Code) 10 SOURCE OF FUNDING NUMBERS PROCEDENT ELEMENT NO 61153N N0014-84-K-0186 Bc. ADDRESS (City, State, and ZiP Code) 10 SOURCE OF FUNDING NUMBERS PROCEDENT ELEMENT NO 61153N N0014-84-K-0186 TI. TITLE (Include Security Classification) Comparative Accuracy OF Five Indices Of Dimensionality OF Binary Items N004204-01 NR 150-53 12 PERSONAL AUTHOR(S) Tucker, Ledyard R; Humphreys, Lloyd G.; Roznowski, Mary A. 13a JYPE OF REPORT Technical Research Ison Intervent Intervent Ison Ison Ison Ison Ison Ison Ison Ison	-	L		•			
ORGANIZATION (if applicable) N00014-84-K-0186 BC. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS PROGRAM ROAD PROJECT Task ACCESSION NO. NR. 150-53 11. TITLE (Include Security Classification) Comparative Accuracy OF Five Indices Of Dimensionality Of Binary Items No NR. 150-53 12. PERSONAL AUTHOR(S) Tucker, Ledyard R; Humphreys, Lloyd G,; Roznowski, Mary A, 13. TWE OF REPORT 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 13. JYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 14. JYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 14. SUPLEMENTARY NOTATION 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 44 15. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 16. SUPLEMENTARY NOTATION 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 44 16. SUPLEMENTARY NOTATION 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 17. A MONTE Carlo study of five indices of dimensionalit						0	
PROGRAM ELEMENT NO ELEMENT NO ELEMENT NO Comparative Accuracy Of Five Indices Of Dimensionality Of Binary Items Track North Notice RR04204 Mark UNIT RR04204 11. TITLE (Include Security Classification) Comparative Accuracy Of Five Indices Of Dimensionality Of Binary Items 130 NR 150-53 12. PERSONAL AUTHOR(S) Tucker, Ledyard R; Humphreys, Lloyd G.; ROZNOWSKI, Mary A. 131					ENTIFICA	ATION NU	MBER
ELEMENT NO NO RR04204 RR04204 RR04204-01 RR04204 R04204 R04204-01 RR04204-01 RR04204-01 RR04204-01 RR04204-01 RR04204-01 RR04204-01 RR04204-01 Red R04204-01 Red R04204-01 Red Red R04204-01 Red Red Red Red R04204-01 Red Red <td< td=""><td>8c. ADDRESS (City, State, and ZIP Code)</td><td></td><td></td><td>UNDING NUMBER</td><td>RS</td><td></td><td></td></td<>	8c. ADDRESS (City, State, and ZIP Code)			UNDING NUMBER	RS		
11. TITLE (Include Security Classification) Comparative Accuracy Of Five Indices Of Dimensionality Of Binary Items 12. PERSONAL AUTHOR(S) Tucker, Ledyard R; Humphreys, Lloyd G.; Roznowski, Mary A. 13a_JYPE OF REPORT Technical Research 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 16. SUPPLEMENTARY NOTATION // 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 05 09 05 09 06 09 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 07 A Monte Carlo study of five indices of dimensionality of binary items has been conduct using a computer model that allowed sampling of both items and people. Five parameters wer systematically varied in a factorial design: (1) number of common factors from one to five; (2) number of items, including 20, 30, 40, and 60; (3) sample sizes of 125 and 500; (4) near rectangular and highly peaked distributions of item difficulties; and (5) factor intercor- relations averaging in the thirties and in the fifties. Accuracy in distinguishing one fact from more than one was the criterion. An index involving var			ELEMENT NO.	NO.	NO.		ACCESSION N
Comparative Accuracy Of Five Indices Of Dimensionality Of Binary Items 12. PERSONAL AUTHOR(S) 12. PERSONAL AUTHOR(S) 13a_JYPE OF REPORT 13a_JYPE OF REPORT 13b_TIME COVERED 13b_TIME COVERED 13b_TIME COVERED 13b_TOPE OF REPORT 13b_SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 11b_TOPE OF REPORT 12b_COSATI CODES 13b_SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 12b_TELED 05 09 13b_SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 12b_GROUP dimensionality, binary items, factor analysis 13b_SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 12b_GROUP A Monte Carlo study of five indices of dimensionality of binary items has been conduct 12c_SIBJECT model that allowed sampling of both items and people. Five parameters were 12			61153N	RR04204	RR04	4204-01	NR 150-53
12. PERSONAL AUTHOR(S) Tucker, Ledyard R; Humphreys, Lloyd G.; Roznowski, Mary A. 13a_TYE OF REPORT Technical Research 13b. TIME COVERED FROMTO 14 DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 44 16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 05 09 05 09 05 09 05 09 06 09 05 09 07 A Monte Carlo study of five indices of dimensionality, binary items, factor analysis 19. ABSTRACT (Continue on reverse if necessary and identify by block number) Five parameters were server systematically varied in a factorial design: (1) number of common factors from one to five; (2) number of items, including 20, 30, 40, and 60; (3) sample sizes of 125 and 500; (4) near rectangular and highly peaked distributions of item difficulties; and (5) factor intercorrelations averaging in the thirties and in the fifties. Accuracy in distinguishing one fact from more than one was the criterion. An index involving variance-covariance matrices and based on the unidimensional property of local independence of items was overall most accura This index and an index based on ratios of differences in successive Eigenvalues were sub-stantially more accurate in the peaked than in the rectangular distributions of item difficulties. An index	-	Indicas Of Dime					
13a. TYPE OF REPORT Technical Research 13b. TIME COVERED FROMTO 14 DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 44 16. SUPPLEMENTARY NOTATION // 44 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 44 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 44 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 44 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 4 A Monte Carlo study of five indices of dimensionality of binary items has been conduct using a computer model that allowed sampling of both items and people. Five parameters wer systematically varied in a factorial design: (1) number of common factors from one to five; (2) number of items, including 20, 30, 40, and 60; (3) sample sizes of 125 and 500; (4) near rectangular and highly peaked distributions of item difficulties; and (5) factor intercor- relations averaging in the thirties and in the fifties. Accuracy in distinguishing one fact from more than one was the criterion. An index involving variance-covariance matrices and based on the unidimensional property of local independence of items was overall most accura this index and an index based on the pattern of second principal factor loadings obtained in product-moment correlation matrices showed the reverse pattern. For all indices there is a increase in accuracy as both sample size and number of items is increased; for all indices 20. DISTRIBUTION/AVAILABILITY OF	COMPATALIVE ACCUIDCY UT FIVE	THUICES OF DIME	ensionality O	of Binary It	ems		
13a. TYPE OF REPORT Technical Research 13b. TIME COVERED FROMTO 14 DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 44 16. SUPPLEMENTARY NOTATION // 44 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 44 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 44 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 44 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 4 A Monte Carlo study of five indices of dimensionality of binary items has been conduct using a computer model that allowed sampling of both items and people. Five parameters wer systematically varied in a factorial design: (1) number of common factors from one to five; (2) number of items, including 20, 30, 40, and 60; (3) sample sizes of 125 and 500; (4) near rectangular and highly peaked distributions of item difficulties; and (5) factor intercor- relations averaging in the thirties and in the fifties. Accuracy in distinguishing one fact from more than one was the criterion. An index involving variance-covariance matrices and based on the unidimensional property of local independence of items was overall most accura this index and an index based on the pattern of second principal factor loadings obtained in product-moment correlation matrices showed the reverse pattern. For all indices there is a increase in accuracy as both sample size and number of items is increased; for all indices 20. DISTRIBUTION/AVAILABILITY OF							
16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 05 09 05 09 19. ABSTRACT (Continue on reverse if necessary and identify by block number) A Monte Carlo study of five indices of dimensionality of binary items has been conduct using a computer model that allowed sampling of both items and people. Five parameters wer systematically varied in a factorial design: (1) number of common factors from one to five; (2) number of items, including 20, 30, 40, and 60; (3) sample sizes of 125 and 500; (4) near rectangular and highly peaked distributions of item difficulties; and (5) factor intercorrelations averaging in the thirties and in the fifties. Accuracy in distinguishing one fact from more than one was the criterion. An index involving variance-covariance matrices and based on the unidimensional property of local independence of items was overall most accura this index and an index based on ratios of differences in successive Eigenvalues were substantially more accurate in the peaked than in the rectangular distributions of item difficulties. An index based on the pattern of second principal factor loadings obtained in product-moment correlation matrices showed the reverse pattern. For all indices there is a increase in accuracy as both sample size and number of items is increased; for all indices 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION 21. ADSTRACT SECURITY CLASSIFICATION 21. ADSTRACT SECURITY CLASSIFICATION 22a NAME OF RESPONSIBLE INDIVIDUAL 22b FELEPHONE (Include Area Code)	12 PERSONAL AUTHOR(S) Tucker, Ledyar		, Lloyd G.; R	loznowski, M	ary A.	•	
FIELD GROUP SUB-GROUP 05 09 dimensionality, binary items, factor analysis 19. ABSTRACT (Continue on reverse if necessary and identify by block number)	12. PERSONAL AUTHOR(S) Tucker, Ledyar 13a. JYPE OF REPORT 13b. TIME CO	d R; Humphreys	, Lloyd G.; R	Roznowski, M	ary A.	5. PAGE	
FIELD GROUP SUB-GROUP 05 09 dimensionality, binary items, factor analysis 19. ABSTRACT (Continue on reverse if necessary and identify by block number)	12. PERSONAL AUTHOR(S) Tucker, Ledyar 13a. JYPE OF REPORT Technical Research FROM	d R; Humphreys	, Lloyd G.; R	Roznowski, M	ary A.	5. PAGE	
05 09 dimensionality, binary items, factor analysis 19. ABSTRACT (Continue on reverse if necessary and identify by block number) A Monte Carlo study of five indices of dimensionality of binary items has been conduct using a computer model that allowed sampling of both items and people. Five parameters were systematically varied in a factorial design: (1) number of common factors from one to five; (2) number of items, including 20, 30, 40, and 60; (3) sample sizes of 125 and 500; (4) near rectangular and highly peaked distributions of item difficulties; and (5) factor intercorrelations averaging in the thirties and in the fifties. Accuracy in distinguishing one fact from more than one was the criterion. An index involving variance-covariance matrices and based on the unidimensional property of local independence of items was overall most accura This index and an index based on ratios of differences in successive Eigenvalues were substantially more accurate in the peaked than in the rectangular distributions of item difficulties. An index based on the pattern of second principal factor loadings obtained in product-moment correlation matrices showed the reverse pattern. For all indices there is a increase in accuracy as both sample size and number of items is increased; for all indices 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION 212. NAME OF RESPONSIBLE INDIVIDUAL 21. ABSTRACT SECURITY CLASSIFICATION 212. NAME OF RESPONSIBLE INDIVIDUAL 21. ABSTRACT SECURITY CLASSIFICATION 212. NAME OF RESPONSIBLE INDIVIDUAL 21. ABSTRACT SECURITY CLASSIFICATION 212. NAME OF RESPONSIBLE INDIVIDUAL 220-696-4318 0NR 1142PT <td>12. PERSONAL AUTHOR(S) Tucker, Ledyar 13a. JYPE OF REPORT Technical Research</td> <td>d R; Humphreys</td> <td>, Lloyd G.; R</td> <td>Roznowski, M</td> <td>ary A.</td> <td>5. PAGE</td> <td></td>	12. PERSONAL AUTHOR(S) Tucker, Ledyar 13a. JYPE OF REPORT Technical Research	d R; Humphreys	, Lloyd G.; R	Roznowski, M	ary A.	5. PAGE	
A Monte Carlo study of five indices of dimensionality of binary items has been conduct using a computer model that allowed sampling of both items and people. Five parameters wer systematically varied in a factorial design: (1) number of common factors from one to five; (2) number of items, including 20, 30, 40, and 60; (3) sample sizes of 125 and 500; (4) near rectangular and highly peaked distributions of item difficulties; and (5) factor intercor- relations averaging in the thirties and in the fifties. Accuracy in distinguishing one fact from more than one was the criterion. An index involving variance-covariance matrices and based on the unidimensional property of local independence of items was overall most accura This index and an index based on ratios of differences in successive Eigenvalues were sub- stantially more accurate in the peaked than in the rectangular distributions of item diffi- culties. An index based on the pattern of second principal factor loadings obtained in product-moment correlation matrices showed the reverse pattern. For all indices there is a increase in accuracy as both sample size and number of items is increased; for all indices 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT CULUNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS 21. ABSTRACT SECURITY CLASSIFICATION Unclassified 22a NAME OF RESPONSIBLE INDIVIDUAL Dr. Susan Chipman 22b OFFME 1473 CHASTRACT CONR 1142PT	12. PERSONAL AUTHOR(S) Tucker, Ledyar 13a. TYPE OF REPORT 13b. TIME CC Technical Research 13b. TIME CC 16. SUPPLEMENTARY NOTATION / 17. COSATI CODES	overed TO	, Lloyd G.; R 14. DATE OF REPO January 1	Roznowsk i, M DRT (Year, Month, 986	ary A. Day) 1	5. PAGE 44	<u> </u>
A Monte Carlo study of five indices of dimensionality of binary items has been conduct using a computer model that allowed sampling of both items and people. Five parameters wer systematically varied in a factorial design: (1) number of common factors from one to five; (2) number of items, including 20, 30, 40, and 60; (3) sample sizes of 125 and 500; (4) near rectangular and highly peaked distributions of item difficulties; and (5) factor intercor- relations averaging in the thirties and in the fifties. Accuracy in distinguishing one fact from more than one was the criterion. An index involving variance-covariance matrices and based on the unidimensional property of local independence of items was overall most accura This index and an index based on ratios of differences in successive Eigenvalues were sub- stantially more accurate in the peaked than in the rectangular distributions of item diffi- culties. An index based on the pattern of second principal factor loadings obtained in product-moment correlation matrices showed the reverse pattern. For all indices there is a increase in accuracy as both sample size and number of items is increased; for all indices 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT SUNCLASSIFIED/UNILIMITED SAME AS RPT. DTIC USERS 21. ABSTRACT SECURITY CLASSIFICATION Unclassified 22. AMME OF RESPONSIBLE INDIVIDUAL Dr. Susan Chipman 22. OPEN 1473. Chipman 23. APPE club a subproduct or based on the pattern and or based code and an accurate of the pattern 20. OPEN 1473. Chipman	12. PERSONAL AUTHOR(S) Tucker, Ledyar 13a. JYPE OF REPORT Technical Research 13b. TIME CO FROM 16. SUPPLEMENTARY NOTATION / 17. COSATI CODES FIELD GROUP SUB-GROUP	Pd R; Humphreys	, Lloyd G.; R 14. DATE OF REPO January 1 (Continue on revers)	Roznowski, Morth, 986 e if necessary and	ary A. Day) 1 d identif	5. PAGE 44	<u> </u>
using a computer model that allowed sampling of both items and people. Five parameters wer systematically varied in a factorial design: (1) number of common factors from one to five; (2) number of items, including 20, 30, 40, and 60; (3) sample sizes of 125 and 500; (4) near rectangular and highly peaked distributions of item difficulties; and (5) factor intercorrelations averaging in the thirties and in the fifties. Accuracy in distinguishing one fact from more than one was the criterion. An index involving variance-covariance matrices and based on the unidimensional property of local independence of items was overall most accura This index and an index based on ratios of differences in successive Eigenvalues were substantially more accurate in the peaked than in the rectangular distributions of item difficulties. An index based on the pattern of second principal factor loadings obtained in product-moment correlation matrices showed the reverse pattern. For all indices there is a increase in accuracy as both sample size and number of items is increased; for all indices 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION Unclassified 21. ADSTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION Unclassified 22. NAME OF RESPONSIBLE INDIVIDUAL 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNLIMITED 22. NAME OF RESPONSIBLE INDIVIDUAL 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNLIMITED 22. NAME OF RESPONSIBLE INDIVIDUAL 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNLIMITED 22. NAME OF RESPONSIBLE INDIVIDUAL 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNLIMITED 22	12. PERSONAL AUTHOR(S) Tucker, Ledyar 13a. JYPE OF REPORT 13b. TIME CC Technical Research 13b. TIME CC 16. SUPPLEMENTARY NOTATION / 17. COSATI CODES FIELD GROUP 05 09	d R; Humphreys DVERED TO 18. SUBJECT TERMS (dimensional)	, Lloyd G.; R 14. DATE OF REPC January 1 (Continue on revers ity, binary i	Roznowski, Morth, 986 e if necessary and	ary A. Day) 1 d identif	5. PAGE 44	<u> </u>
(2) number of items, including 20, 30, 40, and 60; (3) sample sizes of 125 and 500; (4) near rectangular and highly peaked distributions of item difficulties; and (5) factor intercorrelations averaging in the thirties and in the fifties. Accuracy in distinguishing one fact from more than one was the criterion. An index involving variance-covariance matrices and based on the unidimensional property of local independence of items was overall most accura This index and an index based on ratios of differences in successive Eigenvalues were substantially more accurate in the peaked than in the rectangular distributions of item difficulties. An index based on the pattern of second principal factor loadings obtained in product-moment correlation matrices showed the reverse pattern. For all indices there is a increase in accuracy as both sample size and number of items is increased; for all indices there is a increase in accuracy as both sample size and number of items is increased; for all indices there is a increase in accuracy as both sample size and number of items is increased; for all indices there is a increase of RESPONSIBLE INDIVIDUAL DT. Susan Chipman 20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION Unclassified 22a NAME OF RESPONSIBLE INDIVIDUAL DT. Susan Chipman 224. NAME OF RESPONSIBLE INDIVIDUAL DT. Susan Chipman 225. OFFICE SYMBOL ONR 1142PT	12. PERSONAL AUTHOR(S) Tucker, Ledyar 13a. JYPE OF REPORT 13b. TIME CO Technical Research 13b. TIME CO 16. SUPPLEMENTARY NOTATION / 17. COSATI CODES FIELD GROUP 05 09 19. ABSTRACT (Continue on reverse if necessary	d R; Humphreys DVERED TO 18. SUBJECT TERMS (dimensional) and identify by block	, Lloyd G.; R 14. DATE OF REPO January 1 (Continue on revers ity, binary i number)	Roznowski, M ORT (Year, Month, 986 e If necessary and tems, facto	ary A. Day) [1 d identify r ana]	5. PAGE 44	k number)
rectangular and highly peaked distributions of item difficulties; and (5) factor intercor- relations averaging in the thirties and in the fifties. Accuracy in distinguishing one fact from more than one was the criterion. An index involving variance-covariance matrices and based on the unidimensional property of local independence of items was overall most accura This index and an index based on ratios of differences in successive Eigenvalues were sub- stantially more accurate in the peaked than in the rectangular distributions of item diffi- culties. An index based on the pattern of second principal factor loadings obtained in product-moment correlation matrices showed the reverse pattern. For all indices there is a increase in accuracy as both sample size and number of items is increased; for all indices 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT SUUNCLASSIFIED/UNLIMITED SAME AS RPT. DIC USERS 22a NAME OF RESPONSIBLE INDIVIDUAL Dr. Susan Chipman Dr. Susan Chipman Dr. Susan Chipman Dr. Susan Chipman Dr. Susan Chipman	12. PERSONAL AUTHOR(S) Tucker, Ledyar 13a. JYPE OF REPORT 13b. TIME CO Technical Research 13b. TIME CO 16. SUPPLEMENTARY NOTATION 17. COSATI CODES FIELD FIELD GROUP SUB-GROUP 05 09 19. ABSTRACT (Continue on reverse if necessary of A Monte Carlo study of fivusing a computer model that all	d R; Humphreys DVERED TO 18. SUBJECT TERMS dimensionali and identify by block e indices of di owed sampling of	, Lloyd G.; R 14. DATE OF REPO January 1 (Continue on revers ity, binary i number) imensionality of both items	Roznowski, M ORT (Year, Month, 986 e If necessary and tems, facto y of binary and people	ary A. Day) 1 d identify r anal items . Fix	y by block lysis has be ve para	k number) een conduct meters wei
from more than one was the criterion. An index involving variance-covariance matrices and based on the unidimensional property of local independence of items was overall most accura This index and an index based on ratios of differences in successive Eigenvalues were substantially more accurate in the peaked than in the rectangular distributions of item difficulties. An index based on the pattern of second principal factor loadings obtained in product-moment correlation matrices showed the reverse pattern. For all indices there is a increase in accuracy as both sample size and number of items is increased; for all indices 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION Unclassified 22a NAME OF RESPONSIBLE INDIVIDUAL 21. ABSTRACT SECURITY CLASSIFICATION Unclassified 22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) ONR 1142PT DD SORM 1473 asked 83 APR edition matrices may be used until approximated	12. PERSONAL AUTHOR(S) Tucker, Ledyar 13a. JYPE OF REPORT Technical Research 13b. TIME CO FROM 16. SUPPLEMENTARY NOTATION // 17. COSATI CODES FIELD GROUP 05 09 19. ABSTRACT (Continue on reverse if necessary of A Monte Carlo study of fivusing a computer model that all systematically varied in a fact	d R; Humphreys DVERED TO 18. SUBJECT TERMS dimensional and identify by block e indices of di owed sampling co orial design: (, Lloyd G.; R 14. DATE OF REPO January 1 (Continue on revers ity, binary i number) imensionality of both items (1) number of	Roznowski, M PRT (Year, Month, 986 e If necessary and tems, facto y of binary and people common fac	ary A. Day) 1 d identify r anal items . Fiv tors 1	y by block y by block lysis has be ve para from on	en conduct meters wer to five
based on the unidimensional property of local independence of items was overall most accura This index and an index based on ratios of differences in successive Eigenvalues were sub- stantially more accurate in the peaked than in the rectangular distributions of item diffi- culties. An index based on the pattern of second principal factor loadings obtained in product-moment correlation matrices showed the reverse pattern. For all indices there is a increase in accuracy as both sample size and number of items is increased; for all indices 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT SUNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS 21. ABSTRACT SECURITY CLASSIFICATION Unclassified 22. NAME OF RESPONSIBLE INDIVIDUAL Dr. Susan Chipman 23. APR editor may bauted until arbaysted	12. PERSONAL AUTHOR(S) Tucker, Ledyar 13a. JYPE OF REPORT Technical Research 13b. TIME CO FROM 16. SUPPLEMENTARY NOTATION // 17. COSATI CODES FIELD GROUP 05 09 19. ABSTRACT (Continue on reverse if necessary of a Monte Carlo study of five using a computer model that all systematically varied in a fact (2) number of items, including rectangular and highly peaked d	d R; Humphreys DVERED TO 18. SUBJECT TERMS dimensional and identify by block e indices of di owed sampling c orial design: (20, 30, 40, and istributions of	, Lloyd G.; R 14. DATE OF REPO January 1 (Continue on revers ity, binary i number) imensionality of both items (1) number of d 60; (3) sam f item diffic	Roznowski, M PRT (Year, Month, 986 e If necessary and tems, facto tems, facto of binary and people common fac uple sizes o culties; and	ary A. Day) 1 d identify r anal items . Fix tors f f 125 (5) 1	y by block y by block lysis has be ve para from on and 50 factor	k number) een conduct meters wer le to five 10; (4) near intercor-
This index and an index based on ratios of differences in successive Eigenvalues were substantially more accurate in the peaked than in the rectangular distributions of item difficulties. An index based on the pattern of second principal factor loadings obtained in product-moment correlation matrices showed the reverse pattern. For all indices there is a increase in accuracy as both sample size and number of items is increased; for all indices 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION WINCLASSIFIED/UNLIMITED SAME AS RPT. 22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL 202-696-4318	12. PERSONAL AUTHOR(S) Tucker, Ledyar 13a. JYPE OF REPORT 13b. TIME CO Technical Research 13b. TIME CO 16. SUPPLEMENTARY NOTATION / 17. COSATI CODES FIELD GROUP 05 09 19. ABSTRACT (Continue on reverse if necessary A Monte Carlo study of fiv using a computer model that all systematically varied in a fact (2) number of items, including rectangular and highly peaked d relations averaging in the thir	d R; Humphreys DVERED TO 18. SUBJECT TERMS (dimensionali and identify by block e indices of di owed sampling (orial design: (20, 30, 40, and istributions of ties and in the	, Lloyd G.; R 14. DATE OF REPO January 1 (Continue on revers ity, binary i number) imensionality of both items (1) number of d 60; (3) sam f item diffic e fifties. A	Coznowski, M ORT (Year, Month, 986 e If necessary and tems, facto y of binary and people common fac iple sizes o ulties; and accuracy in	ary A. Day) 1 d identify r anal items f 125 (5) 1 distin	y by block y by block lysis has be ve para from on and 50 factor nguishi	en conduct meters wer to five 0;(4) near intercor- ng one fac
culties. An index based on the pattern of second principal factor loadings obtained in product-moment correlation matrices showed the reverse pattern. For all indices there is a increase in accuracy as both sample size and number of items is increased; for all indices 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION Image: Strange of the st	12. PERSONAL AUTHOR(S) Tucker, Ledyar 13a. JYPE OF REPORT Technical Research 13b. TIME CO FROM	d R; Humphreys DVERED TO 18. SUBJECT TERMS (dimensionali and identify by block e indices of di owed sampling c orial design: (20, 30, 40, and istributions of ties and in the erion. An inde	, Lloyd G.; R 14. DATE OF REPO January 1 (Continue on revers ity, binary i number) imensionality of both items (1) number of d 60; (3) sam f item diffic e fifties. A ex involving	Coznowski, M ORT (Year, Month, 986 e If necessary and tems, facto y of binary and people common fac uple sizes of ulties; and ccuracy in variance-co	ary A. Day) 1 d identify r anal items . Fiv tors f f 125 (5) f distin variar	y by block y by block lysis has be ve para from on and 50 factor nguishi nce mat	en conduct meters wer to five 0;(4) near intercor- ng one fac crices and
product-moment correlation matrices showed the reverse pattern. For all indices there is a increase in accuracy as both sample size and number of items is increased; for all indices 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION 22. DISTRIBUTION/AVAILABILITY OF ABSTRACT 22. NAME OF RESPONSIBLE INDIVIDUAL Dr. Susan Chipman 22. DESCRECTION 22. DISTRIBUTION CONTRACT 22. DISTRIBUTION CONTRACT 22. DISTRIBUTION	12. PERSONAL AUTHOR(S) Tucker, Ledyar 13a. JYPE OF REPORT Technical Research 13b. TIME CC FROM	d R; Humphreys DVERED TO TO 18. SUBJECT TERMS dimensional and identify by block e indices of di owed sampling co orial design: (20, 30, 40, and istributions of ties and in the erion. An inde perty of local n ratios of di	, Lloyd G.; R 14. DATE OF REPO January 1 (Continue on revers ity, binary i number) imensionality of both items (1) number of d 60; (3) sam f item diffic e fifties. A ex involving independence ifferences in	e if necessary and tems, facto of binary and people common fac ple sizes of culties; and ccuracy in variance-co of items was	ary A. Day) 1 d identify r anal items . Fiv tors f 125 (5) f distin variar as ove Eiger	y by block y by block lysis has be ve para from on and 50 factor nguishi nce mat erall m nvalues	en conduct meters wer to five 0;(4) near intercor- ng one fac rices and ost accura were sub-
increase in accuracy as both sample size and number of items is increased; for all indices 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT Image: String of the	12. PERSONAL AUTHOR(S) Tucker, Ledyar 13a. JYPE OF REPORT 13b. TIME CO Technical Research 13b. TIME CO 16. SUPPLEMENTARY NOTATION	d R; Humphreys DVERED TO 18. SUBJECT TERMS dimensional and identify by block e indices of di owed sampling co orial design: (20, 30, 40, and istributions of ties and in the erion. An inde perty of local n ratios of di peaked than in	, Lloyd G.; R 14. DATE OF REPO January 1 (Continue on reverse ity, binary i number) imensionality of both items (1) number of d 60; (3) sam f item diffic e fifties. A ex involving independence ifferences in n the rectang	e if necessary and tems, facto of binary and people common fac ple sizes of ulties; and ccuracy in variance-co of items was successive ular distri	ary A. Day) 1 d identify r anal items . Fiv tors 1 f 125 (5) f distin variar as ove Eiger butior	y by block y by block lysis has be ve para from on and 50 factor nguishi nce mat erall m ivalues is of i	en conduct meters wer to five 0; (4) near intercor- ng one fac rices and ost accura were sub- tem diffi-
Image: Second	12. PERSONAL AUTHOR(S) Tucker, Ledyar 13a. JYPE OF REPORT Technical Research 13b. TIME CO FROM	d R; Humphreys DVERED TO 18. SUBJECT TERMS (dimensionali and identify by block e indices of di owed sampling (orial design: (20, 30, 40, and istributions of ties and in the erion. An inde perty of local n ratios of di peaked than in pattern of sec ices showed the	, Lloyd G.; R 14. DATE OF REPO January 1 (Continue on revers ity, binary i number) imensionality of both items (1) number of d 60; (3) sam f item diffic e fifties. A ex involving independence ifferences in n the rectang cond principa e reverse pat	Roznowski, M PRT (Year, Month, 986 e if necessary and tems, facto r of binary and people common fac ple sizes of ulties; and ccuracy in variance-co of items was successive ular distril l factor lo	ary A. Day) 1 d identify r anal items . Fiv tors f 125 (5) 1 distin variar as ove Eiger butior adings all ir	y by block y by block lysis has be ve para from on and 50 factor nguishi nce mat erall m ivalues is obtai ndices	en conduct meters wer to five 0;(4) near intercor- ng one fac rices and ost accura were sub- tem diffi- ned in there is a
Dr. Susan Chipman 202-696-4318 ONR 1142PT	12. PERSONAL AUTHOR(S) Tucker, Ledyar 13a. JYPE OF REPORT Technical Research 13b. TIME CO FROM	d R; Humphreys DVERED TO 18. SUBJECT TERMS (dimensionali and identify by block e indices of di owed sampling (orial design: (20, 30, 40, and istributions of ties and in the erion. An inde perty of local n ratios of di peaked than in pattern of sec ices showed the	, Lloyd G.; R 14. DATE OF REPO January 1 (Continue on revers ity, binary i number) imensionality of both items (1) number of d 60; (3) sam f item diffic e fifties. A ex involving independence ifferences in n the rectang cond principa e reverse pat	Roznowski, M PRT (Year, Month, 986 e if necessary and tems, facto r of binary and people common fac ple sizes of ulties; and ccuracy in variance-co of items was successive ular distril l factor lo	ary A. Day) 1 d identify r anal items . Fiv tors f 125 (5) 1 distin variar as ove Eiger butior adings all ir	y by block y by block lysis has be ve para from on and 50 factor nguishi nce mat erall m ivalues is obtai ndices	en conduct meters wer to five 0;(4) near intercor- ng one fac rices and ost accura were sub- tem diffi- ned in there is a
DD 50PM 1472 de teap 92 APP editor may be year until exhausted	12. PERSONAL AUTHOR(S) Tucker, Ledyar 13a. JYPE OF REPORT Technical Research 13b. TIME CO FROM	d R; Humphreys DVERED TO 18. SUBJECT TERMS (dimensionali and identify by block e indices of di owed sampling c orial design: (20, 30, 40, and istributions of ties and in the erion. An inde perty of local n ratios of di peaked than in pattern of sec ices showed the mple size and r	(Continue on revers ity, binary i number) imensionality of both items (1) number of d 60; (3) sam f item diffic e fifties. A ex involving independence ifferences in n the rectang cond principa e reverse pat number of ite 21. ABSTRACT SE Unclass	e if necessary and tems, facto of binary and people common fac ple sizes of ulties; and ccuracy in variance-co of items we successive ular distril factor lo tern. For ems is increa	ary A. Day) 1 d identify r anal items . Fiv tors f 125 (5) f distin variar as ove Eiger butior adings all ir ased; ATION	y by block y by block lysis has be ve para from on and 50 factor nguishi nce mat erall m values ns of i s obtai ndices for al	en conduct meters wer to five to five 0; (4) near intercor- ng one fac rices and ost accura were sub- tem diffi- ned in there is a l indices
All other editions are obsolete.	12. PERSONAL AUTHOR(S) Tucker, Ledyar 13a. JYPE OF REPORT Technical Research 13b. TIME CO FROM	d R; Humphreys DVERED TO 18. SUBJECT TERMS (dimensionali and identify by block e indices of di owed sampling c orial design: (20, 30, 40, and istributions of ties and in the erion. An inde perty of local n ratios of di peaked than in pattern of sec ices showed the mple size and r	(Continue on revers ity, binary i number) imensionality of both items (1) number of d 60; (3) sam f item diffic e fifties. A ex involving independence ifferences in n the rectang cond principa e reverse pat number of ite 21. ABSTRACT SE Unclass	e if necessary and tems, facto of binary and people common fac ple sizes of ulties; and ccuracy in variance-co of items we successive ular distril factor lo tern. For ems is increa	ary A. Day) 1 d identify r anal items . Fiv tors f 125 (5) f distin variar as ove Eiger butior adings all ir ased; ATION	y by block y by block lysis has be ve para from on and 50 factor nguishi nce mat erall m values ns of i s obtai ndices for al	en conduct meters wer to five to five 0; (4) near intercor- ng one fac rices and ost accura were sub- tem diffi- ned in there is a l indices

83 APR edition may be used until ex	haus
All other editions are obsole	te.

19. Abstract (continued)

there is a decrease in accuracy as factor intercorrelations are increased and as the number of factors is increased. Although the effect on accuracy of the index as a function of the last four parameters named is in the same direction, the indices are differentially sensitive to the levels of treatment. The interaction between parameter and index, however, is largest for the distribution of item difficulties.

\$!\$!\$!\$!\$!\$!\$!\$!\$!\$!\$!\$!\$!

Accession For 8 NTIS GRA&I DTIC TAB Π Unannounced Justification By-Distribution/ Availability Codes Avail and/or Special Dist

COMPARATIVE ACCURACY OF FIVE INDICES OF DIMENSIONALITY OF BINARY ITEMS

Introduction

The standard method of testing the dimensionality of binary items is to compute tetrachoric intercorrelations, obtain the principal components, and inspect the latent roots. If the items are unidimensional, one expects the first root to describe a major although numerically uncertain proportion of the total variance. One also expects a large difference in the size of the second root relative to the first and no sizable gap subsequent to the first difference. These evaluations, however, have no firm quantitative basis.

Tetrachoric correlations are used for the component analysis because the size of product-moment correlations is affected by the difficulties of the items. Everyone knows that these correlations (phi coefficients) produce difficulty level factors. If items were to produce a perfect Guttman scale, the matrix of intercorrelations would be a perfect simplex, not a Spearman hierarchy.

Even though the use of tetrachorics is more or less standard, the Rmatrix has two undesirable properties for purposes of factor analysis and the determination of dimensionality. The matrix is very likely to be non-Gramian, and the sampling errors of the individual tetrachorics vary widely as a function of the difficulty levels of the items correlated. The effects of these properties become more severe as the spread of item difficulties increases.

<u>Importance of Dimensionality</u>. The problem of dimensionality has come to the fore with the increase of interest in Item Response Theory and the use of that methodology in adaptive testing. Although dependable item and person parameters can be obtained from item pools that are not unidimensional in the strict sense of that term--a dominant dimension defined by correlated group factors is sufficient (Drasgow and Parsons, 1983) and more valid in most applications (Humphreys, 1985)--a method of test administration that potentially provides a different set of items for each examinee and regularly provides a different set of items for subgroups of examinees places a greater demand on the IRT assumption of unidimensionality.

It becomes important, therefore, to determine the accuracy with which a decision contrasting unidimensionality with multidimensionality can be made from the matrix of tetrachoric correlations. It is also important to evaluate nontraditional ways of evaluating dimensionality. In order to do this it is essential to have a model of known dimensionality, to sample both items and examinees, and to compare possible indices of dimensionality in the same data sets.

Characteristics of a Desirable Model

Our objective was to develop a model that could simulate realistically psychological data, especially cognitive data. The starting point was the model developed by Tucker, Koopman, and Linn (1969). Those authors discussed both a "formal" factor model and a "simulation" model. The models differ in that the latter adds a relatively small amount of variance from a large number of small, overlapping factors. The added variance simulates the large number of determinants of responses to test items. Neither items nor tests are ever pure measures of a hypothetical factor. We plan to investigate both models as they affect detection of multidimensionality, but we shall initially report results for the formal model only.

A second requirement was that the model should furnish data realistic in its psychometric properties. Distributions of item difficulties should

LAND REVENUES

approximate those that are encountered in practice. Item correlations should be at levels encountered in most item pools. Product-moment correlations among cognitive items in wide ranges of talent are rarely greater than .25 and are frequently considerably lower. Differences in the size of mean correlations between a rather heterogeneous intelligence test and a homogeneous test of mechanical information are small. Tetrachoric correlations are larger, but generally well below the maximum value of 1.00 expected in a perfect Guttman scale. Tetrachoric correlations of unity do occur in samples of reasonable size but only when a very easy item is correlated with a very difficult item. A zero frequency in one cell of the four-fold table can readily occur by chance in such combinations.

A third requirement is that the model should be a compensatory one. In this initial study, an item's variance is broken down into a linear combination of loadings on major group factors and random error. Intercorrelations are the sums of products of overlapping factors. A compensatory model seems to fit osychological data rather well, including the predictive validities of psychological tests for practical criteria.

Description of the Model

The data in this study were generated in such a way that the structural relations desired were known and prespecified. This was desired so that the validity of the factor analytic design could be checked. With such a generation method, a design plan can be adjusted by the experimenter in terms of the exact nature and quality of the data.

<u>Basic Notions</u>. The model used here specifies the existence of a major domain, which represents the most important influences on individuals' observed

scores. Consider factor matrix B whose entries are the actual input loadings. Every row (i) in B represents a variable, while every column (j) in B represents a factor. Each element in B (B_{ij}) is an input factor loading. These elements are the conceptual loadings or values in the major domain that represent ideas or theoretical notions concerning the makeup and structural relations of the input variables under study.

The major domain was presumed to have simple structure. Further, a restriction of the factor matrix to positive manifold was desired. This latter characteristic was required because the data being simulated were cognitive ability items.

<u>Factor Intercorrelations</u>. An initial step in the process of generating the factor model was determining the phi matrix (Ø, intercorrelations among factors). Significant control of this parameter was available to the experimenter.

A value is set by the experimenter in the range 0,1 that will indirectly determine a minimum level of the factor correlations. A second, higher value in the same range is then chosen from which the first is subtracted. The difference is multiplied by a random number in the interval 0,1 and the product added to the initial value. The procedure is repeated for each factor in the model using, for the present, the same first and second values. The result is a unique value for each factor.

The next step determines the correlation between pairs of factors. This involves taking the square root of the values determined for each factor in the preceding step and obtaining the cross-products among all factors. In effect, the factor intercorrelations are the products of factor loadings on a single general factor.

4

٦,

The factor correlations used in the present application of the model were determined by initial values of .20 and .40 for the low and .50 and .70 for the high levels, respectively. Thus the random increments to the base were, on average, the same size for the two levels of factor correlations.

Ensuring Simple Structure. The next step in the generation of the major domain is deriving the first order \tilde{B} having simple structure with a restriction to positive manifold. Values for the initial \tilde{B} are chosen by selecting a random value in the interval 0,1.

Several checks are carried out at this point to assure that the structural relations and the general quality of the factor matrix are known. These are listed here:

1. A cut off probability for establishing zeros in \widetilde{B} is used at this point to determine the actual number of zeros in each column of \widetilde{B} (i.e., per factor). In effect, this step establishes the simple structure aspect of the factor matrix.

2. A second precaution is carried out to insure the presence of at least one high (nonzero) entry in each row (i.e., per <u>variable</u>) of the factor matrix. If no nonzero loading is present, one is inserted in one of the columns. The position of the nonzero entry is chosen randomly.

3. The third check concerns a count of the high loadings in each <u>column</u> of the factor matrix (i.e., for each factor). Again, the investigator determines <u>a priori</u> the minimum number of high loadings desired. As before, high entries are inserted until the minimum number of high loadings desired is achieved.

4. Lastly, all pairs of columns (j and k, $j \neq k$) are compared to determine whether there are the appropriate (specified <u>a priori</u>) number of rows with a high entry on j and zero entry on k, again a further assurance

that each variable is represented and that simple structure is achieved. Adjustments are made when necessary.

Size of Factor Loadings. A final set of adjustments is carried out to effect the actual size of the loadings in the factor matrix (loadings are either \emptyset . \emptyset or .5 before this adjustment). The investigator again has input into the absolute size of factor loadings. The investigator determines two initial values which indicate the range from which loadings for the nonzero entries in the factor matrix are chosen. This process is the same as that used for the generation of the \emptyset matrix. The procedure presented earlier for second order Gl coefficients is used at this point also. A vector of such coefficients is obtained, one coefficient for each variable. These coefficients are random rectilinearly distributed from Gl_S to Gl_E. (Gl_S and Gl_E are defined as above and are selected <u>a priori</u> by the investigator). The Gl coefficients are the hypothesized variance from the major conceptualized domain of influences.

At this point, the matrix A, which is the factor weight matrix transformed to uncorrelated factors, is obtained. The first step in this process is computing the Cholesky decomposition (\underline{v}) of the matrix phi (\emptyset) determined as above. Matrix B is post multiplied by \underline{v} to obtain an initial A matrix. Next, rows of A and R are adjusted to take into account the vector of computed Gl coefficients (again, the desired variance attributable to the major domain of influences). After rows of A are normalized, the same multiplier is applied to B to rescale B in accordance with the transformation to A.

Application to Binary Scores. Up to this point the model has been described in terms of continuous variates. The model in this section is converted to binary measures. (Each individual has a measure (score) on each

of the k dimensions.) Definitions for scores on dimensions and their components are as follows:

 X_{ik} = score or measure of individual i on dimension k.

 Z_{ii} = item score of individual i on item j.

 W_{ik} = weight for item j on dimension k.

A fundamental relation is:

(1) $Z_{ij} = \frac{\Sigma}{k} X_{ik} W_{jk}$

To generalize this relation, we can see that:

(2) $\underline{Z}_{i} = X_{i}\Omega'$

where: X_{i} is a vector of scores X_{ik} , and \underline{Z}_{i} is a vector of scores Z_{ij} . Ω = matrix of weights W_{jk} .

A further look at the Ω (weight) matrix reveals "common" factor weights, "specific" factor weights, and "error of measurement" factor weights. Specific and error factors are also considered together as uniqueness component or U. We designate the common factor weight matrix A as before.

The weight matrix Ω can be decomposed from a super matrix to two separate weight matrices, A and U representing weights from common influences and unique influences, respectively. For the purposes of this study, the vector X_i can be similarly partitioned into common and unique components \underline{a}_i , \underline{u}_i , respectively, $X_i = \langle \underline{a}_i, \underline{u}_i \rangle$. Expanding the above relation (2), we see:

(3) $Z_{ij} = a_{i}A + \underline{u}_{j}U$

With this basic factor model as a start, individual binary data (scores) are derived that conform to the qualities of the simulation model in continuous form. The factor model is a linear model involving the <u>addition</u> of the contributions to item scores. The factor weight matrix A (common factor influences) is applied to the underlying score distribution and combined with the unique components to determine item scores. To compute Z_{ij} (item score of individual i on item j) from (1), a random normal deviate for individual i on each dimension k (X_{ik}) is chosen and multiplied by factor loading from A for item j on dimension k (a_{jk}) . For a three-factor model, the following holds:

(4) $Z_{ij} = X_{il}a_{jl} + X_{i2}a_{j2} + X_{i3}a_{j3}$

To the score Z_{ij} is added the uniqueness component. Again, a random normal deviate is chosen (one for each item) which is multiplied by the uniqueness for that item. This product is added to the Z_{ij} from the common factors.

<u>Generation of Binary Responses</u>. To generate item binary scores, an individual's normally distributed continuous score for item j (Z_{ij}) is compared to a cutting score or threshold for item j. The cutting score distribution is derived with input from the investigator. The cutting score mean and standard deviation are determined <u>a priori</u> and are used to set up the cutting score values (d_j) , one for each item j. Further, a vector of guessing parameters (c_j) is set up taking into account a range of guessing probabilities specified by the investigator. The equations that characterize the probabilistic model used for generating binary responses follow. S_{ij} represent the individual's binary response to item j. S_{ij} is initially set to 0.

5a) IF $(Z_{i,i} \ge d_i)$ S_{i,i} = 1;

5b) IF $(Z_{i,j} < d_j)$ P $(S_{i,j} = 1) = c_j$.

The event of S_{ij} equalling 1 or 0 is independent from occasion to occasion. Thus, if the score of individual i to item j is greater than, or equal to, the cutting score for item j, the individual has correctly answered the item. If the score (Z_{ij}) is less than the threshold, the individual receives a zero to indicate an incorrect response. However, a guessing component is taken into account such that the individual's wrong answer to item j is changed to a correct answer with probability c_j . This process is continued for all j items of the i individuals. The model can be seen as a probabilistic model that involves eacn measure (item) as a sampling of influences on the individual's behavior.

8

Independent Parameters

Five parameters were varied in a factorial design. The variations defined a range of possible values for each parameter, but no attempt was made at this stage to fill in the gaps. Cells in the design were filled with 20 independent samples with the exception of those defined by the largest number of items. Only 10 replications were obtained in the latter case to conserve computer time.

<u>Sample Sizes</u>. These were set at 125 and 500, providing a 2 to 1 ratio of expected sampling errors. Because this parameter is under the control of the research person, an adequate sample size (N) can usually be established in advance. All indices of dimensionality should vary in accuracy as a function of this parameter.

<u>Number of Items</u>. This parameter (n) was varied as follows: 20, 30, 40, and 60. Number of items can also be directly controlled by the research person. For a given number of factors one expects to be able to define factors more accurately the larger the number of items.

Item Difficulties. Two distributions were used, one relatively flat, the other peaked. These were defined in normal deviate units as follows: mu = .10, $\alpha = .80$; mu = -.13, $\sigma = .32$. The positive sign of the mean indicates a central tendency of p-values less than .50 in the absence of guessing. The mean p-values for both are greater than .50 after the guessing parameter has been applied. An experienced test constructor can exercise an approximate degree of control over this parameter. More importantly, item difficulties are always knowable before a decision concerning dimensionality has to be made. Note that variation in the distribution of item difficulties affects the size of the item product-moment intercorrelations. It affects only the sampling variability of tetrachorics.

<u>Factor Intercorrelations</u>. The manipulation of this parameter produced mean correlations of approximately .35 and .55. This difference in size did, of course, produce variation in size of item intercorrelations of both types. For purposes of determining dimensionality factor intercorrelations are not knowable, but one can obtain the mean item correlation in advance of a decision. For a given set of items the mean product-moment correlation is readily computed from an internal consistency statistic for the total score.

<u>Number of Factors</u>. This parameter was varied from 1 through 5. A test constructor can only control it approximately by adherence to item specifications. However, good test construction practices will not increase the number of major factors as the number of items is increased. On the other hand, the size of the correlations among the multiple factors that remain, when unidimensionality is not achieved by the item writer who is working toward that goal, is likely to be high. If unidimensionality can be rejected, it is also important to decide on the number of group factors, but this decision is not central to the present research. It should also be noted that variation of this parameter in our model results in some degree of variation of the level of item intercorrelations. In this case there is variation in both product-moment and tetrachoric correlations.

Given the oblique factors that are characteristic of cognitive data, one expects increasing difficulty in distinguishing between unidimensionality and multidimensionality as the number of factors increases. Positively correlated first-order factors determine one or more second-order factors, but in our present model there is only one second-order factor. It describes an increasing amount of total variance as the number of factors increases. When the general factor is held constant, the total contribution of five factors is less than the total contribution of two factors In an important sense, as the number

Furnition

Party and

of homogenously correlated group factors increases, the more nearly do the data appear to be unidimensional and the more difficult the task becomes in both our model and real data.

Dependent Variables

In addition to the use of indices based on nontraditional approaches to dimensionality using covariances and product-moment correlations, we also used indices based on the Eigenvalues of R-matrices composed of tetrachoric correlations. The principal factors model, substituting the highest correlation in a column for the unity of the R-matrix, was used for these indices in place of the principal components. This decision was based on preliminary research in which the differences between the two models were trivial in size, but on average favored the principal factors.

1. 1. 1. 1. 1. 1. 1.

Eigenvalue Differences. The size of the difference between the first two Eigenvalues may represent most closely the basis for a decision concerning dimensionality obtained by "root staring", i.e., by inspection of the pattern of the latent roots. Because the size of the roots is a function of the level of item intercorrelations, the absolute size of the difference must be standardized. Each difference, therefore, was divided by the mean of the first of the two Eigenvalues. This standardized difference approximates the information that would be furnished by an index consisting of the ratio of the first two Eigenvalues for each sample in the cell.

<u>Ratios of Differences</u>. A ratio of the intial difference to later differences better represents the shape of the curve of the Eigenvalues. In this research we computed the ratio of the difference between the first two roots to the mean of the following two differences. If a set of items is measuring a single dimension, not only should there be a large drop in size from the first root to the second, but subsequent decreases should be small.

Local Independence Criterion. If unidimensionality is present, the intercorrelations of items in the population of persons who are at the same level of the latent trait are equal to zero. Local independence can be approximated in fallible data by restricting analyses to those who have the same total score on the set of items. One cannot hope to find an index of dimensionality by analyzing \underline{n} different matrices independently, one for each level of total score, so the following procedure was developed:

1) An aggregate variance-covariance matrix is formed from the separate matrices computed in samples of persons having the same total score. Each sub-matrix is weighted by its sample size in forming the aggregate.

2) Signs of the aggregate covariances are changed in accordance with the sign-changing procedure of centroid factor analysis to maximize the algebraic sum of the C-matrix. Because this C-matrix held total score constant, there are approximately equal numbers of positive and negative signs in the aggregate matrix.

3) The ratio of the algebraic sum of covariances following the sign change to the absolute sum is formed. Ratios that approach unity indicate the presence of more than one factor among the original item covariances; i.e., there is structure remaining in the matrix although one factor has been removed.

4) The ratio in step 3 is then compared with the ratio of algebraic to absolute sum of the values in the covariance matrix of raw scores in which total score is not held constant. For this ratio the sign change was placed in the program so that the technique would be applicable to matrices composed of both positive and negative correlations among noncognitive items.

THERE I

5) The comparison at this point in our research involves subtracting (3) from (4). Among reliable cognitive items the ratio in (4) will closely approach unity whatever the dimensionality may be. The presence of multiple factors is indicated, therefore, by small differences.

These ratios were computed with and without the diagonal entry. Results have been highly similar, but ratios from which diagonals were omitted had a slight edge in accuracy. Our results section will present data only for the latter alternative.

Pattern in Factor Loadings. The first and second principal components of the product-moment intercorrelations of items comprising a perfect Guttman scale have distinctive patterns. The loadings on the first component are all positive with the largest loadings being associated with items of moderate difficulty level and the smallest with the easiest and the most difficult items. The loadings on the second component form a curve that approximates an onive with easy and difficult items having high loadings of opposite sign and with items of moderate difficulty having loadings close to zero. Because a perfect Guttman scale is also a perfect index of unidimensionality, it was our hypothesis that patterns of loadings in the first two principal factors of the product-moment R-matrix could be used as an index of dimensionality in fallible item data. A critical assumption in the application of this hypothesis is that there is orthogonality of item difficulties and factor content when more than one factor is present in the items.

ALASSAN SALASSAN

というという

One index made use of the signs of the second principal factor of the R-matrix of product-moment correlations.

 The matrix is factored after replacing the unities in the diagonal with squared multiple correlations.

2) Items are ranked in order of difficulty and the preponderance of signs

of the loadings on the second principal factor in the easy and difficult halves of the items determined.

VIII III

3) Each aberrant item, e.g., one with a negative sign in the easy half when most items in that half have positive signs, is given a numerical value based on the number of ranks by which it is removed from the center of the distribution of difficulties.

4) These numerical values are summed over all aberrant items. Small sums, in accordance with our hypothesis, should be associated with unidimen-sionality.

A second index that is sufficiently independent of the first to be given separate consideration is based on information obtained from both the first and second principal factors among the product-moment correlations.

Steps (1) and (2) are the same as for the first index.

3) Each aberrant item is given a numerical value representing the product of its first and second factor loadings.

4) These numerical values are summed without regard to sign over all aberrant items. Small sums are again associated with unidimensionality.

The rationale for this index is that items so unreliable as to have little in common with other items in the test should not influence the decision concerning dimensionality. On the other hand, items that do have something in common with at least a subset of other items and have large, aberrant second factor loadings should strongly influence the dimensionality decision.

Results

Levels of Intercorrelations. Before presenting the results from the various indices of dimensionality, it will be useful to have as background the levels of intercorrelations (phis) produced by the three parameters for which effects were expected. Typical product-moment correlations in the samples appear in Table 1.

Table 1 Representative Mean Item Correlations

As a Function of Three Parameters

Number of Factors

	1	2	3	4	5
		High Low	High Low	High Low	High Low
Wide	.215	.18 .17	.16 .14	.16 .135	.16 .13
Narrow	.30	.24 .22	.23 .20	.225 .19	.225 .18

Table 2 shows the Kuder-Richardson coefficients for several selected levels of item intercorrelations that cover the range of values in Table 1.

Table 2Kuder-Richardson Coefficients As a FunctionOf Items and Selected Values of Mean ItemMean ItemNumCorrelations2030.30.90.93.25.87.91.20.83.88.15.78.84.12.73.80 Kuder-Richardson Coefficients As a Function of Number of Items and Selected Values of Mean Item Correlations Number of Items 60 40 .96 .94 .95 .93 .94 .91 .91 .88 .89 .84

Although we tried to maintain a fairly constant level of item correlations for factors 2 through 5 by manipulating the proportion of items loaded on a single factor, we were not quite successful. The large gap, however, is between one factor and multiple factors because there were no zero loadings in the one factor model. The distribution of item difficulties has a large effect as required by the nature of the correlations. The typical item correlation changes least as a function of the amount by which we manipulated the intercorrelations of the factors in the continuous bivariate model. Even so, as will be seen later, the differences in size of the factor intercorrelations have important consequences for the accuracy of the indices.

The range of Kuder-Richardson coefficients demonstrates that our item correlations are in the appropriate ball park for most cognitive tests. Varying the number of items compensates for low levels of item correlations. Perhaps the value that is most out of line is for one factor in the narrow distribution of item difficulties. Mean item correlations of .30 in cognitive tests are rare.

<u>A Measure of Overlap</u>. The accuracy with which one can reject a particular null hypothesis depends on the overlap of two sampling distributions. In the present research we obtained sampling distributions of indices in item intercorrelations that were based on major factors varying from one through five. Because the distributions of several indices were skewed, we realized belatedly that means and standard deviations of these distributions were inadequate for determining overlap. In this initial report we obtained our measure from hand-tallied distributions. The procedure is as follows:

In the distribution of a given index for one factor we select the value that represents one factor least well. If low values of the index are expected, this is the highest value. We then count the number of values in

each of the distributions of multiple factors that were equal to or lower than our critical first factor value. Next we select in the distributions of each of the multiple factors the value that represents the presence of more than one factor least well. Again, if high values for multiple factors are expected, this is the lowest value. We count the number of one-factor values equal to or higher than the multiple factor critical value. Skewness results in asymmetry of the two measures of overlap, so we add them together to obtain a single value that can vary from zero to 40 (20 for 60 items).

<u>Arrangement of the Tables</u>. Tables are arranged in accordance with a standard pattern. Small sample size is in the upper half, large in the lower half. Columns are defined in the first instance by the number of items in the test and secondarily by the two levels of factor intercorrelations. One factor data, of course, do not vary along this parameter. Rows are defined in the first instance by the comparisons of one factor in turn with two, three, four, and five. A second distinction within each of these comparisons involves the two levels of item difficulties.

Standardized Difference in Eigenvalues. Overlap information for this index is presented in Table 3. It is clear that this index represents a highly unreliable method of drawing inferences concerning dimensionality. In only a small number of the most favorable combinations of parameters did we obtain zero overlap in 20 replications. Although the results would not be identical, the ratio of the first two Eigenvalues, for which the present index is an approximation, can also be considered to have little promise.

<u>Ratio of Differences</u>. This index, for which overlap information is summarized in Table 4, is moderately effective for the restricted distribution of item difficulties, but quite ineffective in the wide range. In contrast to the standardized differences in Eigenvalues, ratios of differences reflect

Amount of Overlap in Each Cell

Based on the First Difference in Roots

		20)	30)	40)	60)*
		High	Low	High	Low	High	Low	High	Low
1 vs. 2	Wide	39	38	38	33	35	31	30	22
	Narrow	33	27	33	29	31	28	16	22
1 vs. 3	Wide	38	38	38	29	34	31	38	22
	Narrow	32	25	35	27	33	20	22	20
1 vs. 4	Wide	37	37	35	31	36	28	38	30
	Narrow	38	29	34	31	30	20	26	20
1 vs. 5	Wide	37	38	39	36	37	32	34	30
	Narrow	31	30	35	31	32	27	30	26
				N=500					
		20		30		40		60	*
		High	Low	High	Low	High	Low	High	Low
1 vs. 2	Wide	39	37	31	12	33	27	32	0
	Narrow	20	9	17	1	2 2	0	6	0
1 vs. 3	Wide	38	39	34	29	34	28	34	18
	Narrow	24	14	26	9	26	8	12	8
1 vs. 4	Wide	40	40	35	30	36	32	32	28
	Narrow	29	20	28	2	33	14	20	12
1 vs. 5	Wide	40	36	33	33	39	36	32	32
	Narrow	28	25	30	17	31	13	24	8
*Ennon fue									

N=125

777.7.

Ş

Provention in account

Ę

*Error frequencies doubled.

Amount of Overlap on Each Cell

Based on the Ratio of Successive Differences

	N=125										
		20		30		40		60	*		
		High	Low	High	Low	High	Low	High	Low		
1 vs. 2	Wide	36	32	35	25	38	31	0	0		
	Narrow	3	0	6	6	0	0	0	0		
1 vs. 3	Wide	36	39	35	25	37	36	20	0		
	Narrow	14	0	6	0	0	0	0	0		
1 vs. 4	Wide	39	35	39	27	40	32	38	28		
	Narrow	18	6	8	6	4	0	0	0		
1 vs. 5	Wide	40	33	39	35	40	34	34	36		
	Narrow	16	2	22	6	9	2	0	0		
N=500											
		20)	30		40	1	60	*		
		High	Low	High	Low	High	Low	High	Low		
1 vs. 2	Wide	31	25	27	6	14	0	22	4		
	Narrow	0	0	0	0	0	0	0	0		
1 vs. 3	W ide	32	31	40	9	34	4	32	10		
	Narrow	0	0	0	0	0	0	0	0		
1 vs. 4	Wide	39	32	38	28	40	38	32	24		
	Narrow	8	0	0	0	0	0	0	0		
1 vs. 5	Wide	39	37	39	26	40	32	34	26		
	Narrow	3	0	0	0	9	0	0	0		
*Error fi	*Error frequencies doubled.										

Line Lines in

a smooth reduction in size from the second to subsequent Eigenvalues in the unidimensional case when tetrachoric correlations can be reliably determined. As item difficulty distributions become more widespread, however, the sampling errors of tetrachorics also become more variable. Values associated with very easy and very difficult items are huge.

In addition to the substantial sensitivity to the distribution of item difficulties, this index shows increasing overlap with small \underline{N} , small \underline{n} , large factor intercorrelations, and large number of factors. With 60 items and the narrow range of item difficulties, overlap is zero even with five factors and high factor correlations.

Local Independence Index. Summary information appears in Table 5. This index is affected similarly by the five parameters, but at generally lower amounts of overlap, than the ratio of differences index. The local independence index is especially effective for large <u>N</u>, large <u>n</u>, narrow range of difficulties, and for the distinction between one and two factors.

Pattern of Second Factor Signs. Table 6 contains the overlap information for this index. Overall, errors in the detection of multidimensionality are more frequent for this index than for the ones based on ratios of Eigenvalue differences and on local independence, but the effect of one parameter is quite different. The two indices named were less effective in the wide than in the narrow range of item difficulties, but the pattern of second factor loadings reverses that effect. The latter index is at least as effective as the others in the wide range of item difficulties and presumably would become more effective in a still wider range.

<u>Size of First and Second Factor Loadings</u>. The information in Table 7 indicates that this index is only partially redundant with the pattern of

Amount of Overlap in Each Cell

Based on the Local Independence Index

	N=125								
		20	I	30		40	I	60	*
		High	Low	High	Low	High	Low	High	Low
1 vs. 2	Wide	24	11	26	16	17	3	4	0
	Narrow	22	11	18	0	0	0	0	0
1 vs. 3	Wide	32	29	22	10	18	17	28	0
	Narrow	25	18	22	11	7	6	0	0
1 vs. 4	Wide	31	21	30	25	25	7	22	10
	Narrow	35	13	22	4	22	0	8	8
1 vs. 5	Wide	30	25	26	31	34	17	36	16
	Narrow	34	18	31	24	33	19	10	8
				N=500	i				
		20	I	30	1	40	I	60	*
		High	Low	High	Low	High	Low	High	Low
1 vs. 2	Wide	5	0	0	0	0	0	0	0
	Narrow	0	0	0	0	0	0	0	0
1 vs. 3	Wide	8	2	5	0	1	0	0	0
	Narrow	0	0	0	0	3	0	0	0
1 vs. 4	Wide	23	13	7	0	2	1	0	0
	Narrow	2	0	5	0	2	10	0	0
1 vs. 5	Wide	32	10	18	5	16	2	2	0
	Narrow	16	0	11	0	22	1	0	0

*Error frequencies doubled.

Amount of Overlap in Each Cell

Based on Pattern of Second Factor Loadings

					11-12	5					
			20)	30)	40)	60)*	
			High	Low	High	Low	High	Low	Hiah	Low	
1 vs.	2	Wide	32	18	33	26	21	3	0	4	
		Narrow	39	38	36	36	35	35	24	24	
1 vs.	3	Wide	36	31	25	16	19	6	12	0	
		Narrow	38	40	37	33	36	36	32	24	
1 vs.	4	Wide	35	20	16	17	10	15	16	6	
		Narrow	40	39	35	33	40	35	24	26	
1 vs.	5	Wide	39	22	28	19	19	5	10	6	
		Narrow	39	38	37	39	36	35	26	24	
					N=500)					
			20)	30		40		60	*	
			High	Low	High	Low	High	Low	High	Low	
1 vs.	2	Wide	6	6	0	0	3	3	0	0	
		Narrow	31	32	27	27	4	6	0	0	
1 vs.	3	Wide	11	8	0	0	15	0	0	0	
		Narrow	34	32	27	32	7	5	0	0	
1 vs.	4	Wide	27	0	8	0	23	2	4	0	
		Narrow	25	25	36	27	0	3	0	0	
1 vs.	5	Wide	8	0	19	0	19	0	6	0	
		Narrow	25	29	32	27	7	2	0	0	
*	£		4								

للالدالالدالالالال

N=125

*Error frequencies doubled.

The fail and a state of the second and the second state of the second state of the second state of the second s

Amount of Overlap on Each Cell

Based on Pattern of First and Second Factor Loadings

	N=125								
		20	i	30		40		60	*
		High	Low	High	Low	High	Low	High	Low
1 vs. 2	Wide	38	23	30	23	13	0	0	0
	Narrow	24	26	25	26	22	16	6	8
1 vs. 3	Wide	40	29	27	24	14	0	4	0
	Narrow	36	37	30	27	32	26	22	12
1 vs. 4	Wide	39	36	16	21	14	15	6	0
	Narrow	40	35	35	32	33	27	16	14
1 vs. 5	Wide	40	34	30	14	15	5	6	0
	Narrow	40	38	36	37	32	34	28	22
				N=500					
		20)	30		40)	60	*
		High	Low	High	Low	High	Low	High	Low
1 vs. 2	Wide	6	0	0	0	2	0	0	0
	Narrow	11	3	2	0	0	0	0	0
1 vs. 3	Wide	24	19	0	0	9	0	0	0
	Narrow	15	14	2	1	3	0	0	0
1 vs. 4	Wide	23	3	20	0	20	0	14	0
	Narrow	11	13	9	0	2	2	0	0
1 vs. 5	Wide	18	4	25	3	24	0	22	0
	Narrow	18	16	7	4	2	0	0	0

*Error frequencies doubled.

second factor signs. Overlap for the fifth index also tends to be greater in the narrow distribution of difficulties than in the wide, but the effect is smaller than for the fourth. For other combinations of parameters there is no substantial advantage for one or the other. In those cases where #5 does appear to be superior to #4, it tends to be inferior to #3. Overall, it is intermediate in its characteristics to the third and fourth indices and seems to have no unique advantage.

<u>Main Effects of the Five Indices</u>. Because we have a complete factorial design, it is possible to summarize the data for each index for each parameter by adding across all other parameters as in an analysis of variance. This will reveal more clearly the comparative strengths and weaknesses of the five indices. This information appears in Table 8.

Indices can first be compared by noting the sheer amount of overlap for each of the 15 main effects. Neglecting the fact that we do not, at the moment, have an error term, it is seen that the standardized difference in the size of the first two Eigenvalues does not discriminate best for any level of any parameter and has the largest total amount of overlap. The local independence index has the lowest total amount of overlap and is most effective for all \underline{n} , \underline{m} , \underline{N} , and both levels of factor correlations. It is not at the top, however, for either the wide or narrow distributions of item difficulties. For the narrow distribution the ratio of differences in Eigenvalues is most effective and for the wide distribution the pattern of second factor signs is at the top. The latter index, however, is second only to the standardized difference in total number of errors.

It is also useful to compare proportions of errors of inference within a given parameter across the five indices. The two indices based on Eigenvalues are least sensitive to the increase in N, the ratio of differences

Main Effects of Number and Proportion of Errors

Within Treatments for Each Index

Number of Items Standardized Ratio of Patterns of Loadings Local Difference Differences Independence Factors 1 and 2 Factor 2 20 1025 .289 626 .311 490 .378 753 .418 843 .363 30 901 .254 533 .265 .285 506 369 .281 728 .313 514 .255 40 897 .253 285 .220 362 485 .209 .201 .204 340 .169 60 724 152 .117 180 .100 268 .115 Number of Factors 1 vs. 2 771 .217 341 .169 157 .121 304 .169 549 .236 1 vs. 3 863 .243 .219 .204 440 264 447 .248 592 .255 1 vs. 4 931 .262 599 .298 348 .269 496 .275 587 .253 1 vs. 5 982 .277 633 .314 527 .407 596 554 .308 .256 Sample Size N=125 1992 .562 .560 1128 1072 .827 .794 1654 .712 1430 N=500 1555 .438 885 .440 224 .173 371 .206 670 .288 Difficulty Distribution Wide 2108 .594 1859 .924 795 .613 792 .440 733 .315 154 .076 501 .387 1439 .466 1009 1591 .685 Narrow .560 Factor Correlations 1205 .599 1309 .563 High 2012 .567 874 .674 1078 .599 723 1015 Low 1535 .433 808 .401 422 .326 .401 .437

1296

1801

2324

All Treatments

Total Overlap

3547

2013

is most sensitive by far to the distribution of item difficulties. The local independence index is most sensitive to an increase in the number of factors and comes close to losing its #l position for five factors. The pattern of second factor signs stands out from the rest for the wide distribution of item difficulties and is relatively insensitive to the number of factors being compared.

All indices show the expected sensitivity to sample size, albeit somewhat differentially, to obliquity of the factors, and to the number of items. An investigator can control <u>N</u> and usually <u>n</u> as well without increasing the number of major factors in the items. Given the low level of item correlations found typically in cognitive tests, large samples and a very large ratio of number of variables to number of factors by ordinary factor analytic standards are important design considerations. The level of factor correlations, on the other hand, cannot be controlled by the investigator except indirectly and inversely with respect to the desired direction. As mentioned earlier, if a test is not unidimensional in spite of the item writer's best efforts, the multiple factors will probably be highly intercorrelated.

Discussion

This research has documented the complexity of the problem of dimensionality in binary items. No one index of the five we have tried works best in all combinations of our parameters. Only one index of the five we have tried can be rejected in toto: namely, the difference in size of Eigenvalues of the first two principal factors.

Development of a corpus of Monte Carlo runs allowing choice of an index of dimensionality that is contingent on knowable parameters will be difficult. The important parameters of factor intercorrelations and item difficulties were set at only two levels each, yet each varies continuously. Distributions

26

of item difficulties vary along more than one dimension as well, making generalization from several fixed distributions hazardous. <u>A priori</u> difficulty distributions can be approximated by skillful item writers, but factor intercorrelations cannot be kept at low levels by skilled test construction practices. Positive correlations among factors are intrinsic to the cognitive domain and are not trivial in size between group factors that are widely recognized as being truly different.

In spite of the difficulties we believe that useful recommendations can be developed. In a preliminary way we are offering to readers in Appendix A means and standard deviations of the three nontraditional methods used in the current research for each cell in the factorial design. Readers have a feel for the Eigenvalues of tetrachoric matrices, but lack this feel for the new indices. Readers should note that the skewness of the distributions limits the value of the standard deviations.

Because the new indices are quick and inexpensive makes further work on them attractive. On the basis of present information, full information factor analysis of Bock, Gibbons, and Muracki (1985) solves the problem of dimensionality in binary items, but it does so at a substantial cost. Computer time for this method increases rapidly as the number of items increases.

For the present we are working on several possible modifications of the indices that are dependent on raw score and standardized variance-covariance matrices. We have established that the attractive statistical properties of such matrices outweigh their dependency in binary items of percent passing.

References

Bock, R., Gibbons, R., and Muraki, E. (1985) <u>Full-information item factor</u> analysis. Chicago: National Opinion Research Center.

Drasgow, F. and Parsons, C. K. (1983) Application of unidimensional item response theory models to multidimensional data. <u>Applied Psychological</u> Measurement, 7, 189-199.

Tucker, L., Koopman, R. F., and Linn, R. L. (1969) Evaluation of factor analytic research procedures by means of simulated correlation matrices. Psychometrika, <u>34</u>, 421-459.

Table Al

ĿŧĿĿĊĸĿĿŎŦĹĿĹŦĹĿĿĿĹĊĿĬŢĹŦĹŦĹŦĹŦĹŦĹŦĹŦĹŦĹŦĹŦĹŦĹŦĹŦĹŦĹŦĹŦĹŦĹ

Means and Variances of the Local Independence Index

N=125

One Factor

		Wio	le		Narrow			
	Hi	qh	Lo	WC	Hic	ih	L	W
n	x	s _x	X	s _x	X	s _x	X	s _x
20	.57	.06	.57	.06	.58	.05	.58	.05
30	.61	.04	.61	.04	.64	.03	.64	.03
40	.63	.05	.63	.05	.64	.03	.64	.03
60	.67	.04	.67	.04	.70	.03	.70	.03
			Tw	o Fac	tors			
20	.46	.09	. 36	.09	.39	.11	.30	.14
30	.48	.10	.34	.10	.44	.12	. 32	.12
40	.46	.09	.40	.10	.42	.08	.29	.13
60	.50	.08	. 38	.07	.41	.05	. 32	.12
			Thr	ee Fa	ctors			
20	.51	.06	.44	.11	.48	.08	.41	.10
30	.52	.07	.44	.10	.51	.08	.42	.08
40	.53	.06	.48	.08	.55	.04	.43	.10
60	.57	.08	.46	.06	.54	.05	.44	.08

table continues

Table Al(cont.)

N=125

Four Factors

		Wie	de		Narrow				
	Hi	gh	L	ow	Hid	ŋ h	L	W	
n	X	s _x	X	s _x	X	s _x	X	s _x	
20	.52	.06	.45	.08	.55	.07	.42	.07	
30	.54	.05	.49	.07	.54	.07	.47	.07	
40	.56	.06	.50	.06	.56	.04	.49	.06	
60	.62	.03	.56	.05	.58	.07	.52	.08	
			Fiv	e Fact	ors				
20	.50	.05	.44	.09	.55	.07	.44	.07	
30	.54	.05	.51	.09	.57	.06	.51	.08	
40	.60	.05	.53	.07	.59	.05	.53	.07	
60	.65	.02	.56	.07	.62	.04	.56	.05	
				N=500)				

One Factor

		Wio	ie		Narrow						
ł		High		Low		gh	Low				
n	X	s _x	X	s _x	X	s _x	X	s _x			
20	.70	.04	.70	.04	.71	.03	.71	.03			
30	.71	.03	.71	.03	.71	.02	.71	.02			
40	.72	.02	.72	.02	.72	.03	.72	.03			
60	.75	.02	.75	.02	.75	.01	.75	.01			

table continues

30

The second s

Table Al (cont.)

10. Non

ł

Į

N=500

Two Factors

Wide					Narrow			
Hi	gh	L	Low		High		Low	
X	s _x	X	s _x	X	s _x	x	s _x	
.45	.10	.33	.10	.29	.10	.18	.06	
.36	.07	.28	.06	.24	.07	.14	.06	
. 33	.07	.26	.08	.23	.08	.13	.04	
. 32	.08	.20	.06	.21	.06	.13	.04	
Three Factors								
.54	.06	.45	.07	.47	.09	.41	.09	
.52	.07	.44	.10	.43	.09	. 36	.08	
.51	.07	. 39	.07	.43	.11	.36	.10	
.50	.07	.43	.05	.46	.07	.40	.09	
Four Factors								
.60	.05	.55	.08	.52	.08	.46	.07	
.57	.06	.48	.07	.54	.08	.48	.08	
.58	.04	.51	.06	.52	.07	.44	.09	
.58	.04	.48	.04	.51	.06	.47	.06	
Five Factors								
.61	.06	.57	.05	.59	.07	.54	.06	
.59	.06	.52	.06	.60	.05	.54	.06	
.63	.04	.55	.06	.59	.05	.51	.05	
.63	.05	.56	.06	.58	.06	.52	.06	
	X .45 .36 .33 .32 .54 .52 .51 .50 .60 .57 .58 .58 .58 .58 .58 .58 .58	High X S _x .45 .10 .36 .07 .33 .07 .32 .08 .54 .06 .52 .07 .51 .07 .51 .07 .50 .07 .51 .07 .50 .07 .51 .07 .51 .07 .51 .07 .51 .07 .51 .07	High L X S _X X .45 .10 .33 .36 .07 .28 .33 .07 .26 .32 .08 .20 Thr .54 .06 .45 .52 .07 .44 .51 .07 .39 .50 .07 .43 .51 .07 .43 .50 .07 .43 .51 .07 .43 .50 .07 .43 .50 .07 .43 .50 .07 .43 .50 .07 .43 .50 .07 .43 .50 .07 .43 .51 .07 .43 .52 .06 .55 .57 .06 .48 .58 .04 .51 .58 .04 .51 .59 .06 .52 .63 .04 .55	HighLowX S_X X S_X .45.10.33.10.36.07.28.06.33.07.26.08.32.08.20.06Three Fac.54.06.45.07.52.07.44.10.51.07.39.07.50.07.43.05Four Fact.60.05.55.08.57.06.48.07.58.04.51.06.58.04.48.04Five Fact.61.06.57.05.59.06.52.06.63.04.55.06	HighLowHighX S_x X S_x X.45.10.33.10.29.36.07.28.06.24.33.07.26.08.23.32.08.20.06.21Three Factors.54.06.45.07.47.52.07.44.10.43.51.07.43.05.46Four Factors.60.05.55.08.52.57.06.48.07.54.58.04.51.06.52.58.04.48.04.51Five Factors.61.06.57.05.59.59.06.52.06.60.63.04.55.06.59	HighLowHighX S_X X S_X X S_X .45.10.33.10.29.10.36.07.28.06.24.07.33.07.26.08.23.08.32.08.20.06.21.06Three Factors.54.06.45.07.47.09.52.07.44.10.43.09.51.07.43.05.46.07Four FactorsFour FactorsFive Factors.60.05.55.08.52.08.57.06.48.07.54.08.58.04.51.06.52.07.58.04.51.06.52.07.59.06.52.06.60.05.63.04.55.06.59.05	HighLowHighLX S_X X S_X X S_X X.45.10.33.10.29.10.18.36.07.28.06.24.07.14.33.07.26.08.23.08.13.32.08.20.06.21.06.13Three Factors.54.06.45.07.47.09.41.52.07.44.10.43.09.36.51.07.43.05.46.07.40Four Factors.60.05.55.08.52.08.46.57.06.48.07.54.08.48.58.04.51.06.52.07.44.58.04.51.05.59.07.54.59.06.52.06.60.05.54.61.06.52.06.60.05.54.63.04.55.06.59.05.51	

Table A2

Means and Variances of the Index Based on the Pattern of Signs of the Second Principal Factor

N=125

One Factor

. . . .

	Wide					Narrow			
	Hig	jh	Lov	W	Hig	h	Lo	W	
n	X	s _x	X	s _x	X	s _x	X	s _x	
20	17	11	17	11	36	12	36	12	
30	37	21	37	21	84	33	84	33	
40	43	21	43	21	147	37	147	37	
60	70	57	70	57	270	85	270	85	
			Two	Fac	tors				
20	30	14	41	7	39	7	39	7	
30	68	29	88	24	100	14	96	14	
40	133	46	154	25	174	26	170	28	
60	360	66	357	69	400	41	362	61	
	Three Fa								
20	34	10	36	9	40	8	36	11	
30	76	29	89	15	87	20	95	11	
40	144	48	144	30	172	29	166	30	
60	287	87	380	42	350	74	375	55	

table continues

2012121200

60

28 18

28

18

74

37

74 37

N=125

Four Factors

		Wio	le		Narrow			
	Hi	gh	L	w	Hig	High		W
n	x	s _x	X	s _x	X	s _x	X	s _x
20	34	12	40	11	39	10	42	9
30	90	18	86	15	91	13	9 8	12
40	128	35	164	38	155	26	169	21
60	211	66	316	75	400	35	394	34
Five Factors								
20	30	10	38	11	38	11	39	8
30	73	31	86	19	92	18	96	20
40	139	42	143	34	171	29	170	29
60	267	109	316	103	371	49	403	47
				N=500)			
			0n	e Fact	or			
		Wie	de			Nari	row	
	Hi	ąh	L	.ow	Hig	h	Lo	W
n	X	s _x	X	s _x	X	s _x	X	s _x
20	6	4	6	4	23	12	23	12
30	9	6	9	6	46	29	46	29
40	14	16	14	16	51	28	51	28

table continues

N=500

Two Factors

	Wide				Narrow				
	Hig	gh	Lo	W	Hig	h	Lo	W	
n	X	s _x	X	s _x	X	s _x	X	s _x	
20	33	13	37	11	40	9	42	9	
30	88	20	88	22	9 8	15	95	16	
40	143	44	152	39	164	27	165	30	
60	344	90	375	45	392	43	396	38	
Three Factors									
20	25	13	30	12	39	10	41	13	
30	74	28	9 0	21	101	15	92	19	
40	105	58	157	31	156	29	171	2 9	
60	313	120	367	39	384	47	389	43	
			Fou	ır Fac	tors				
20	25	16	35	11	40	8	41	7	
30	50	28	82	22	88	21	93	15	
40	101	50	144	37	163	19	172	27	
60	217	109	342	44	405	29	351	48	
			Fiv	e Fact	cors				
20	31	13	40	8	39	7	38	7	
30	48	35	76	23	93	18	94	15	
40	78	50	155	25	154	28	177	26	
60	124	91	333	92	390	43	377	49	

34

SALARS SELECTION SALARSAN STRUCTURE SALARSA

Table A3

Means and Variances of the Index Based on the

Products of the First and Second Principal Factor Loadings

N=125

One Factor

		M	ide			Narrow				
	Hi	gh	Lo	Low		High	Lo	W		
n	X	s _x	X	s _x	X	s _x	х	s _x		
20	.24	.16	.24	.16	.60	.18	.60	.18		
30	. 32	.15	. 32	.15	.86	. 38	.86	. 38		
40	.27	.12	.27	.12	1.07	.35	1.07	.44		
60	. 38	.13	.38	.13	1.38	.58	1.38	.58		
Two Factors										
20	.47	.24	.71	.23	.84	.21	.86	.31		
30	.68	.36	.98	.35	1.32	.20	1.32	.34		
40	1.15	.50	1.23	.25	1.77	. 36	1.88	.44		
60	1.87	.46	2.26	.38	2.98	.49	2.92	.60		
Three Factors										
20	.42	.19	.53	.18	.78	.21	.75	.29		
30	.70	.37	.84	.29	1.09	. 32	1.27	.32		
40	1.08	. 39	1.16	.24	1.45	. 32	1.61	. 39		
60	1.30	.48	1.96	.47	2:21	.53	2.58	.40		

table continues

Table A3 (cont.)

N=125

Four Factors

		Wide				Narrow			
	Hi	gh	Lo	W	Higl	h ·	Lo	W	
n	Х	s _x	X	s _x	X	s _x	X	s _x	
20	.47	.23	.61	.16	.66	.23	.76	.22	
30	.77	.26	.77	.24	1.06	.28	1.12	.19	
40	.88	. 36	.98	.36	1.42	.29	1.54	.33	
60	.90	.44	1.45	.36	2.42	. 32	2.47	. 32	
			Fiv	e Facto	ors				
20	.36	.19	.52	.20	.56	.19	.70	.19	
30	.62	. 30	.75	.22	1.01	.28	1.10	.27	
40	.87	. 37	. 94	.30	1.41	.28	1.30	.29	
60	1.14	.42	1.43	.50	1.96	.35	2.29	.29	
				N=500					

One Factor

	Wide				Narrow				
	High		Low		High		Low		
n	X	s _x	x	s _x	X	s _x	X	s _x	
20	.07	.04	.07	.04	.24	.15	.24	.15	
30	.08	.05	.08	.05	.25	.17	.25	.17	
40	.10	.06	.10	.06	.24	.16	.24	.16	
60	.16	.08	.16	.08	.29	.10	.29	.10	

table continues

36

Table A3 (cont.)

N=500

Two Factors

		Wide				Narrow			
	Hi	gh	Lo	W	Hi	gh	Lo	W	
n	Х	s _x	Х	s _x	X	s _x	X	s _x	
20	.46	.22	.57	.20	.78	.28	.88	.18	
30	.82	.26	.91	.29	1.29	.29	1.40	.19	
40	1.04	.45	1.22	.38	1.61	.25	1.79	.27	
6 0	1.70	.48	2.33	.34	2.76	.42	3.02	.40	
			Thr	ee Fa	ctors				
20	.32	.20	.47	.22	.62	.23	.68	.18	
30	.58	.24	.75	.27	1.10	.17	1.07	.26	
40	.67	.42	1.14	.24	1.27	.35	1.55	.29	
60	1.36	.50	1.80	.22	2.01	.35	2.10	.36	
			Fou	r Fac	tors				
20	.27	.19	.42	.16	.64	.16	.60	.19	
30	.37	.24	.70	.22	.86	.25	1.13	.19	
40	.61	.40	.94	.32	1.30	.24	1.38	.20	
60	.70	.41	1.42	.33	1.84	.30	2.19	.25	
			Fi	ve Fa	ctors				
20	.42	.17	.46	.13	.53	.14	.58	.16	
30	.28	.25	.61	.24	.84	.18	.94	.19	
40	.39	.28	.89	.27	1.06	.18	1.28	.19	
60	.48	.46	1.40	.44	1.73	.25	2.00	.33	

の言いというです。

いてもので

VIIII

University of Illinois/Humphreys

Personnel Analysis Division, AF/MPXA 5C360, The Pentagon Washington, DC 20330

Air Force Human Resources Lab AFHRL/MPD Brooks AFB, TX 78235

Dr. Earl A. Alluisi HQ, AFHRL (AFSC) Brooks AFB, TX 78235

Dr. Erling B. Andersen Department of Statistics Studiestraede 6 1455 Copenhagen DENMARK

Dr. Phipps Arabie University of Illinois Department of Psychology 603 E. Daniel St. Champaign, IL 61820

Technical Director, ARI 5001 Eisenhower Avenue Alexandria, VA 22333

Dr. Eva L. Baker UCLA Center for the Study of Evaluation 145 Moore Hall University of California Los Angeles, CA 90024

Dr. Isaac Bejar Educational Testing Service Princeton, NJ 08450

Dr. Menucha Birenbaum School of Education Tel Aviv University Tel Aviv, Ramat Aviv 69978 ISRAEL

Dr. Arthur S. Blaiwes Code N711 Naval Training Equipment Center Orlando, FL 32813 Dr. R. Darrell Bock University of Chicago Department of Education Chicago, IL 60637 Cdt. Arnold Bohrer Sectie Psychologisch Onderzoek

Rekruterings-En Selectiecentrum Kwartier Koningen Astrid Bruijnstraat 1120 Brussels, BELGIUM

Dr. Robert Breaux Code N-095R NAVTRAEQUIPCEN Orlando, FL 32813

Dr. Robert Brennan American College Testing Programs P. O. Box 168 Iowa City, IA 52243

Dr. Patricia A. Butler NIE Mail Stop 1806 1200 19th St., NW Washington, DC 20208

Mr. James W. Carey Commandant (G-PTE) U.S. Coast Guard 2100 Second Street, S.W. Washington, DC 20593

Dr. James Carlson American College Testing Program P.O. Box 168 Iowa City, IA 52243

Dr. John B. Carroll 409 Elliott Rd. Chapel Hill, NC 27514

Dr. Robert Carroll NAVOP 01B7 Washington, DC 20370

Dr. Norman Cliff Department of Psychology Univ. of So. California University Park Los Angeles, CA 90007

University of Illinois/Humphreys

Director, Manpower Support and Readiness Program Center for Naval Analysis 2000 North Beauregard Street Alexandria, VA 22311

Dr. Stanley Collyer Office of Naval Technology Code 222 800 N. Quincy Street Arlington, VA 22217-5000

Dr. Hans Crombag University of Leyden Education Research Center Boerhaavelaan 2 2334 EN Leyden The NETHERLANDS

CTB/McGraw-Hill Library 2500 Garden Road Monterey, CA 93940

Dr. Dattprasad Divgi Center for Naval Analysis 4401 Ford Avenue P.O. Box 16268 Alexandria, VA 22302-0268

Dr. Hei-Ki Dong Ball Foundation 800 Roosevelt Road Building C, Suite 206 Glen Ellyn, IL 60137

Defense Technical Information Center Cameron Station, Bldg 5 Alexandria, VA 22314 Attn: TC (12 Copies)

Dr. Stephen Dunbar Lindquist Center for Measurement University of Iowa Iowa City, IA 52242

Dr. James A. Earles Air Force Human Resources Lab Brooks AFB, TX 78235 Dr. Kent Eaton Army Research Institute 5001 Eisenhower Avenue Alexandria, VA 22333

Dr. John M. Eddins University of Illinois 252 Engineering Research Laboratory 103 South Mathews Street Urbana, IL 61801

Dr. Richard Elster Deputy Assistant Secretary of the Navy (Manpower) OASN (M&RA) Department of the Navy Washington, DC 20350-1000

Dr. Susan Embretson University of Kansas Psychology Department Lawrence, KS 66045

ERIC Facility-Acquisitions 4833 Rugby Avenue Bethesda, MD 20014

Dr. Benjamin A. Fairbank Performance Metrics, Inc. 5825 Callaghan Suite 225 San Antonio, TX 78228

Dr. Leonard Feldt Lindquist Center for Measurement University of Iowa Iowa City, IA 52242

Dr. Richard L. Ferguson American College Testing Program P.O. Box 168 Iowa City, IA 52240

Dr. Gerhard Fischer Liebiggasse 5/3 A 1010 Vienna AUSTRIA

ς,

٠.

University of Illinois/Humphreys

Prof. Donald Fitzgerald University of New England Department of Psychology Armidale, New South Wales 2351 AUSTRALIA

Mr. Paul Foley Navy Personnel R&D Center San Diego, CA 92152

Dr. Carl H. Frederiksen McGill University 3700 McTavish Street Montreal, Quebec H3A 1Y2 CANADA

Dr. Robert D. Gibbons University of Illinois-Chicago P.O. Box 6998 Chicago, IL 69680

Dr. Janice Gifford University of Massachusetts School of Education Amherst, MA 01003

Dr. Robert Glaser Learning Research & Development Center University of Pittsburgh 3939 O'Hara Street Pittsburgh, PA 15260

Dr. Bert Green Johns Hopkins University Department of Psychology Charles & 34th Street Baltimore, MD 21218

Dr. Ronald K. Hambleton Prof. of Education & Psychology University of Massachusetts at Amherst Hills House Amherst, MA 01003

THE REAL PROPERTY OF LACE AND A DECKER OF LACE AND

Ms. Rebecca Hetter Navy Personnel R&D Center Code 62 San Diego, CA 92152 Dr. Paul W. Holland Educational Testing Service Rosedale Road Princeton, NJ 08541

Prof. Lutz F. Hornke Universitat Dusseldorf Erziehungswissenschaftliches Universitatsstr. 1 Dusseldorf 1 WEST GERMANY

Dr. Paul Horst 677 G Street, #184 Chula Vista, CA 90010

Mr. Dick Hoshaw NAVOP-135 Arlington Annex Room 2834 Washington, DC 20350

Dr. Lloyd Humphreys University of Illinois Department of Psychology 603 East Daniel Street Champaign, IL 61820

Dr. Steven Hunka Department of Education University of Alberta Edmonton, Alberta CANADA

Dr. Huynh Huynh College of Education Univ. of South Carolina Columbia, SC 29208

Dr. Robert Jannarone Department of Psychology University of South Carolina Columbia, SC 29208

Dr. Douglas H. Jones Advanced Statistical Technologies Corporation 10 Trafalgar Court Lawrenceville, NJ 08148

University of Illinois/Humphreys

Dr. G. Gage Kingsbury Portland Public Schools Research and Evaluation Department 501 North Dixon Street P. O. Box 3107 Portland, OR 97209-3107

Dr. William Koch University of Texas-Austin Measurement and Evaluation Center Austin, TX 78703

Dr. Leonard Kroeker Navy Personnel R&D Center San Diego, CA 92152

Dr. Michael Levine Educational Psychology 210 Education Bldg. University of Illinois Champaign, IL 61801

Dr. Charles Lewis Faculteit Sociale Wetenschappen Rijksuniversiteit Groningen Oude Boteringestraat 23 9712GC Groningen The NETHERLANDS

Dr. Robert Linn College of Education University of Illinois Urbana, IL 61801

:

Dr. Robert Lockman Center for Naval Analysis 4401 Ford Avenue P.O. Box 16268 Alexandria, VA 22302-0268

Dr. Frederic M. Lord Educational Testing Service Princeton. NJ 08541

Dr. James Lumsden Department of Psychology University of Western Australia Nedlands W.A. 6009 AUSTRALIA Dr. William L. Maloy Chief of Naval Education and Training Naval Air Station Pensacola, FL 32508

Dr. Gary Marco Stop 31-E Educational Testing Service Princeton, NJ 08451

Dr. Clessen Martin Army Research Institute 5001 Eisenhower Blvd. Alexandria, VA 22333

Dr. James McBride Psychological Corporation c/o Harcourt, Brace, Javanovich Inc. 1250 West 6th Street San Diego, CA 92101

Dr. Clarence McCormick HQ, MEPCOM MEPCT-P 2500 Green Bay Road North Chicago, IL 60064

Mr. Robert McKinley University of Toledo Department of Educational Psychology Toledo. OH 43606

Dr. Barbara Means Human Resources Research Organization 1100 South Washington Alexandria, VA 22314

Dr. Robert Mislevy Educational Testing Service Princeton, NJ 08541

Headquarters, Marine Corps Code MPI-20 Washington, DC 20380

Dr. W. Alan Nicewander University of Oklahoma Department of Psychology Oklahoma City, OK 73069

 \mathcal{A}

٩,

University of Illinois/Humphreys

Dr. William E. Nordbrock FMC-ADCO Box 25 APO, NY 09710

Dr. Melvin R. Novick 356 Lindquist Center for Measurement University of Iowa Iowa City, IA 52242

Director, Manpower and Personnel Laboratory, NPRDC (Code 06) San Diego, CA 92152

Library, NPRDC Code P201L San Diego, CA 92152

Commanding Officer, Naval Research Laboratory Code 2627 Washington, DC 20390

Dr. James Olson WICAT, Inc. 1875 South State Street Orem, UT 84057

Office of Naval Research, Code 1142PT 800 N. Quincy Street Arlington, VA 22217-5000 (6 Copies)

Special Assistant for Marine Corps Matters, ONR Code 00MC 800 N. Quincy St. Arlington, VA 22217-5000

Dr. Judith Orasanu Army Research Institute 5001 Eisenhower Avenue Alexandria, VA 22333

Made Martin

Wayne M. Patience American Council on Education GED Testing Service, Suite 20 One Dupont Circle, NW Washington, DC 20036 Dr. James Paulson Department of Psychology Portland State University P.O. Box 751 Portland, OR 97207 Dr. Roger Pennell Air Force Human Resources Laboratory Lowry AFB, CO 80230 Dr. Mark D. Reckase ACT P. O. Box 168 Iowa City, IA 52243 Dr. Malcolm Ree AFHRL/MP Brooks AFB, TX 78235 Dr. Carl Ross CNET-PDCD **Building 90** Great Lakes NTC, IL 60088 Dr. J. Ryan Department of Education University of South Carolina Columbia, SC 29208 Dr. Fumiko Samejima Department of Psychology University of Tennessee Knoxville, TN 37916 Mr. Drew Sands NPRDC Code 62 San Diego, CA 92152 Dr. Robert Sasmor Army Research Institute 5001 Eisenhower Avenue Alexandria, VA 22333 Dr. Mary Schratz Navy Personnel R&D Center San Diego, CA 92152 Dr. W. Steve Sellman OASD(MRA&L)

2B269 The Pentagon Washington, DC 20301

it is the task of the second second

1. 1. 2. 4 A 1. 1. 1.

1. T. C. C. C. S. W.

「日本市大学」「「「「「「「「「「」」」」」「「「「「」」」」」」

University of Illinois/Humphreys

Dr. Kazuo Shigemasu 7-9-24 Kugenuma-Kaigan Fujusawa 251 JAPAN

Dr. William Sims Center for Naval Analysis 4401 Ford Avenue P.O. Box 16268 Alexandria, VA 22302-0268

Dr. H. Wallace Sinaiko Manpower Research and Advisory Services Smithsonian Institution 801 North Pitt Street Alexandria, VA 22314

Dr. Richard Sorensen Navy Personnel R&D Center San Diego, CA 92152

Dr. Paul Speckman University of Missouri Department of Statistics Columbia, MO 65201

Dr. Martha Stocking Educational Testing Service Princeton, NJ 08541

Dr. Peter Stoloff Center for Naval Analysis 200 North Beauregard Street Alexandria, VA 22311

Dr. William Stout University of Illinois Department of Mathematics Urbana, IL 61801

Maj. Bill Strickland AF/MPXOA 4E168 Pentagon Washington, DC 20330

Dr. Hariharan Swaminathan Laboratory of Psychometric and Evaluation Research School of Education University of Massachusetts Amherst, MA 01003

and the the the the the test of te

Mr. Brad Sympson Navy Personnel R&D Center San Diego, CA 92152

Dr. Kikumi Tatsuoka CERL 252 Engineering Research Laboratory Urbana, IL 61801

Dr. Maurice Tatsuoka 220 Education Bldg 1310 S. Sixth St. Champaign, IL 61820

Dr. David Thissen Department of Psychology University of Kansas Lawrence, KS 66044

Mr. Gary Thomasson University of Illinois Educational Psychology Champaign, IL 61820

Dr. Robert Tsutakawa The Fred Hutchinson Cancer Research Center Division of Public Health Sci. 1124 Columbia Street Seattle, WA 98104

Dr. Ledyard Tucker University of Illinois Department of Psychology 603 E. Daniel Street Champaign, IL 61820

Dr. Vern W. Urry Personnel R&D Center Office of Personnel Management 1900 E. Street, NW Washington, DC 20415

Dr. David Vale Assessment Systems Corp. 2233 University Avenue Suite 310 St. Paul, MN 55114

Dr. Frank Vicino Navy Personnel R&D Center San Diego, CA 92152

University of Illinois/Humphreys

Dr. Howard Wainer Division of Psychological Studies Educational Testing Service Princeton, NJ 08541

Dr. Ming-Mei Wang Lindquist Center for Measurement University of Iowa Iowa City, IA 52242

Mr. Thomas A. Warm Coast Guard Institute P. O. Substation 18 Oklahoma City, OK 73169

Dr. Brian Waters Program Manager Manpower Analysis Program HumRRO 1100 S. Washington St. Alexandria, VA 22314

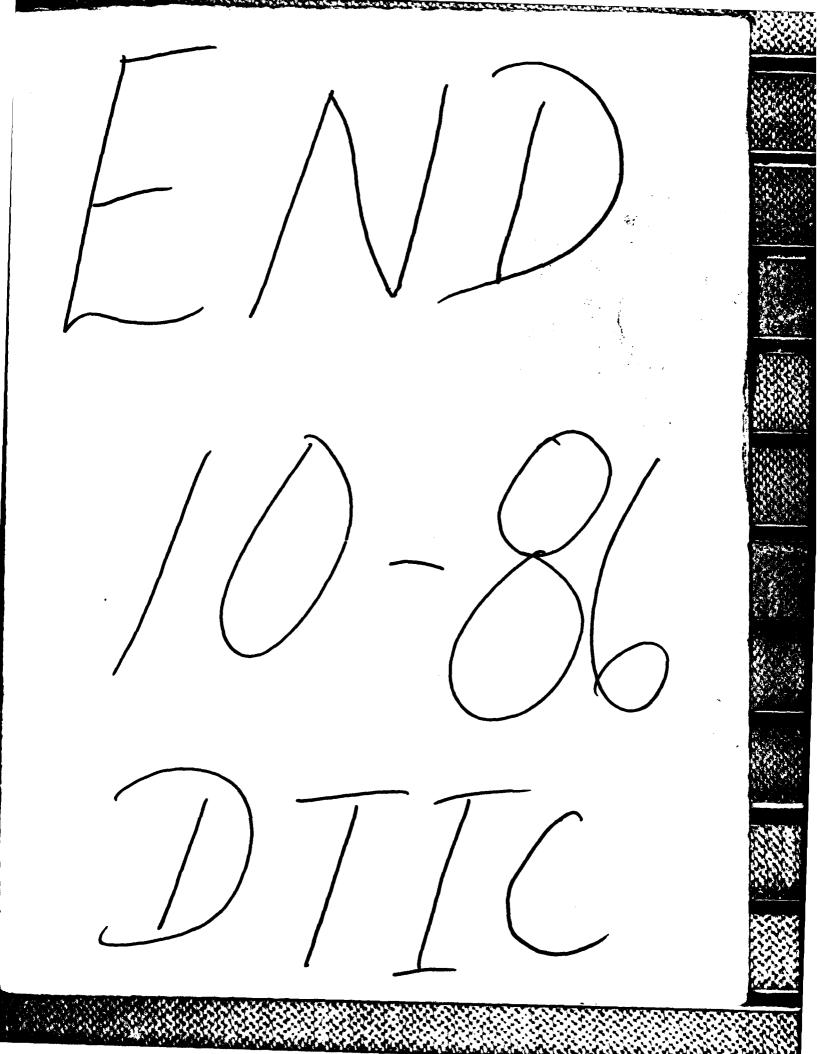
Dr. David J. Weiss N660 Elliott Hall University of Minnesota 75 E. River Road Minneapolis, MN 55455

Dr. Ronald A. Weitzman NPS, Code 54Wz Monterey, CA 92152

Major John Welsh AFHRL/MOAN Brooks AFB, TX 78223

Dr. Rand R. Wilcox University of Southern California Department of Psychology Los Angeles, CA 90007

German Military Representative ATTN: Wolfgang Wildegrube Streitkraefteamt D-5300 Bonn 2 4000 Brandywine Street, NW Washington, DC 20016 Dr. Bruce Williams Department of Educational Psychology University of Illinois Urbana, IL 61801


Dr. Hilda Wing Army Research Institute 5001 Eisenhower Ave. Alexandria, VA 22333

Dr. Martin F. Wiskoff Navy Personnel R & D Center San Diego, CA 92152

Mr. John H. Wolfe Navy Personnel R&D Center San Diego, CA 92152

Dr. George Wong Biostatistics Laboratory Memorial Sloan-Kettering Cancer Center 1275 York Avenue New York, NY 10021

Dr. Wendy Yen CTB/McGraw Hill Del Monte Research Park Monterey, CA 93940

