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Abstract. The spectral approach to first passage time distributions

for Markov processes requires knowledge of the eigenvalues and

eigenvectors of the infinitesimal generator matrix. We demonstrate

that in many cases knowledge of the eigenvalues alone is sufficient

to compute the first passage time distribution.

1. Introduction and Summary. Consider a continuous time Markov

process with state space N = {0,1,2,...}. For j < n define

T. to be first passage time from j to {k: k > n}. Definej ,n

A(n)  to be the n x n matrix obtained from the first n rows and

columns of the infinitesimal matrix A, i.e. the matrix of transi-

tion rates among the states 0,1,...,n-l. If A(n) is similar to

a diagonal matrix then spectral analysis of A(n) leads to the

representation:

n -it
(1.1) Pr(T ,n >t) Y Yie

i-1

In (1.1), , are the eigenvalues of A(n) and

Yl,...,yn depend on the right and left eigenvectors of A(n) .

Convenient references for this algebraic approach are Cinlar (1975),

Karlin (1966), Keilson (1975) and Kemeny and Snell (1960).

In general in order to apply (1.1) a complete spectral analysis

of A(n) is required. The computational difficulties in performing

this analysis limit the applicability of the spectral approach.
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We consider a class of Markov processes in which upward jumps

may only be of size 1 (Ai,i+ >0 , Ai j -0, j>i+2) with no

restriction on downward jumps. This class includes birth and

death processes. For these Markov processes the coefficients

19...,yn can be computed from the eigenvalues of A(n), without

computation of right or left eigenvectors. This result should

simplify computation and render the spectral approach more attrac-

tive. A sumary of the results now follows.

If X1, n.,n  are distinct then A(n)  is similar to a diagonal

matrix and (1.1) holds. In section 2 it is shown that:

(1.2) Pr(T0 > t) e Iii
i-l j j-ie

From (1.2) it follows that if l*,.,n are real then T0 ,n

is the convolution of exponentially distributed random variables

with parameters Xl,...,"n. If the Xi's are real but not distinct,

say X r,...,X are distinct with multiplicities ml,...,mr, then

T0,n  is distributed as the convolution of r(milxi), i-l,...,r,

where r(m,x) is the ga-ma distribution with parameters m and X.

For convolutions of gammas we know of no nice analogue of (1.2) for

representing the survival function.

For general j < n ((1.2) had J-0), let wl,...,wj be the

eigenvalues of A(j). Consider the case where w.,... ,wj are

distinct and 'l..A are distinct. Define D {i:Xiln{w 1,...,wr}=n4
1

and E - {i:wA {X1,...,An}}. Then:

(1.3) Pr(T Jn>t) W l Xj I T1 e
icD Ci XJ-Xi CE -i
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The class of processes under consideration can be described

as birth and death processes with multiple deaths (but not multiple

births) allowed. Birth and death and related processes have signifi-

cant application in queueing, reliability, inventory and biological

models. Good references for these applications are Cinlar (1975),

Gertsbakh (1984), Karlin (1966), Keilson (1975), and Ross (1983).

In section 3 we attack the problem of identifying y1,.., n

in (1.1) for a general Markov process.

2. Derivation of Results. Consider a Markov process {X(t), t> 0}

with state space N - {0,1,2,...}. The infinitesimal generator

matrix A is defined by Aij f lim [Pr(X(h)=jjX(O)-i)/h] for
h-0

i#j, and A - lim {[Pr(X(h)=iIX(o)=i)-l]/h}. We consider
h-0

processes which satisfy:

(i) A bi > 0

(ii) Ai,j - 0 for j > i+2

(iii) -A ii < - for all i

The n x n matrix A(n) is the submatrix of A consisting of

the first n rows and first n columns, i.e. those corresponding

to states 0,1,...,n-l. It is not hard to show that under (i),

(ii) and (iii) above, A is similar to a diagonal matrix if and
(n)

only if its eigenvalues A.,l...,A n  are distinct. Thus the spectral

representation (1.1) holds if and only if A1 'P'''An are distinct.

4
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Proof of (1.2). In order for state n to be reached there must be

at least one transition from i to i+l for i0 0,1,...,n-1.

Thus TO,n  is stochastically larger than the convolution of n

exponentially distributed random variables with parameters

bo,...,9bnl which in turn is stochastically larger than M, the

maximum of n independent exponentially distributed random variables

with parameters b0 ,... ,b . Define F(t) . Pr(T -

n-l* O~,n On<0 hn

(2.1) F( t ) < Pr(M < t) - t n [ bi j +(n) as t 0.2 .)O , n - -- ) a st0

Assume that ll,...,n are distinct, and thus that (1.1) holds.

Then F(t)  is an analytic function which by (2.1) is 0(tn- )
O,n

as t - 0. It is clear from the Taylor series expansion of F(t)
O,nF (t) = O(tn- ) impis

around zero that n implies:
* 0 ,n

(2.2)dk F(t) 0 for k -,...
dtk  On trO

From (1.1) and (2.2):

n k for k - 0
(2.3) 1 Y i X

ii 0 for k -l,...,n-1

Define Y' - (y1,...,Yn), W to be an nxn matrix with

components Wi - k-l, i,kil,2,...,n, and 6 to be an nxl

vector with 61 - 1, 6 - 0, i-2,...,n. Rewrite (2.3) as:

5
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(2.4) Y*W

Now W is the well-known Vandermonde matrix (Cullen (1967)

p. 72). For A ,...,A n  distinct W is invertible. From (2.4)

we see that y' concides with the first row of W , thus:

(2 .5) Y i =  w -- ) n =,~ 11 A

Substituting _ into (1.1) yields (1.2) .

Next note that if , n are distinct then from (1.2):

n6T[ n ni n A i

(2.6) P(s) - Ee-  "  A = p(s) 11 +s

where

n +S
(2.7) p(s) I T

Now p(s)-I is a polynomial of degree n-i with n distinct

roots All,...,Ix n. Thus p(s)-i R2 0 and it follows from (2.6) that:

n A
(2.8) TP(s) _ I .

i-l i+s

When n,...,n  are real they must be strictly positive (since

(Pr(T 0,n> t)-0), thus if n....,n  are real and distinct it

follows from (2.8) that TO,n  is distributed as a convolution of

exponentials with parameters A1 ,... ,.

6



Now consider the case of distinct real eigenvalues X 1l..X r

with multiplicity ml,...,mr. We can obviously construct a sequence

of vectors X(k ) converging to this vector X with each X(k)

having distinct components. This can be done through a sequence of

matrices A (k) converging to A For the process corresponding()

to A k) the distribution of T(k) is the convolution of nO,n

exponentials and thus has Laplace transform:

n I ( k)

(2.7) (s) - .

Letting k =, T(k) converges in distribution to T and
O,n O,n

(2.7) converges to:

r
(2.8) p(s) - lim k(S) +- ]

1=i

Since for Xl,...,x r real (2.8) is the Laplace transform of a

convolution of r(mi,Xi) random variables, we see that T O  has

this distribution.

We next look at general j < n and prove (1.3).

Proof of (1.3). Consider the Markov process with the restrictions

previously imposed and assume that A1,...,n are distinct as are

Wl,...,w j  the eigenvalues of A (j). Define D and E as in section

1, and D* (l,...,n}-D. Since Ai j = 0 for j > i+2, it follows

that

(2.9) TOn = TO'j * Tj n

7



where * denotes convolution. Applying (2.8) to both T0,j  and

TO,n  and (1.1) to TJ, n  we obtain:

n ~ j w n

(2.10) l + kirul r P -1 k"

As some Xr  and w may coincide we divide both sides of

(2.10) by these common terms obtaining:

(2.11) [+ E k
reD Xr +s 'tE s)k~l s

n
Multiply both sides of (2.11) by jTl (A +s) to obtain:

(2.12) (n X) H (X-+s) [ 1 x-- n (X+)reD r JcD* teE .+ k.kk j k s

Set s - -Xi  in (2.12). For ieD we obtain:

(2.13) Y7 U 1 Xt / w.- for ieD
joi i ZeE 2C i

JcD

For icD*, when we set s - -X in (2.12), the left side
* i

vanishes while the right side equals yi multiplied by a non-zero

quantity. Thus:

(2.14) Yi = O for ieD*.

Combining (2.13) and (2.14) we obtain (1.3) .

8



In the case where either the A's or w's are not distinct we

can obtain the Laplace transform of TJ, n  (the Laplace transform

of TO, n  divided by that of T ,j) but have no convenient repre-

sentation for the distribution function.

3. Further Comments.

(3.1) Our method worked well because the first n-l derivitives

of were equal to zero for the class of processes considered.
O,n

Applying the method to a general Markov process we obtain a represen-

tation for F(t) but it is not usually as computationally simple.
O,n

Assume that A n,...,1n are distinct which implies that (1.1)

holds. Note that:

dk n k
(3.1a) vk dt Pr(T < , t) k= x•dt n- t 0 i l i i

Note that v o- and v k=O if it requires at least k+1

changes of state to go from j to {k > n}. If v' = (vo,...,vn1 )

is known then:

(3.1b) fv W-  .

The problem reduces to computing vk. Toward this end consider

the lossy process with state space O,...,n-l. The states {k > n}

are made absorbing and the Markov process restricted to 0,...,n-1

steadily loses probability mass (E n-1 Pr(X(t)fJ)< 1) and thus called

9



lossy. Since Pr(T ,n > t) = Pr(X(t) < n-i) (recall that states

{k:k > n} are absorbing):

(3.1c) er(Tj,n > t) =(e(n)

where 1 is a column vector of n l's.

It follows that:

d Pr(T. > t) 1 (Ak 1)
dtk j,n (n)-

and thus:

kdkkk

(3.1d) vk = (-1) -k Pr(T >t) I = (-)k (A k 1)
dtk n t0 (n)

Thus vk equals (-1) k multiplied by the sum of the entries in

the j th row of the matrix 
A k(n)"

(3.2) Keilson (1975) proves, using different methodology, that

for a birth and death process with birth and death rates strictly

positive, the eigenvalues of A(n ) are indeed distinct and real

and that T0, n  is distributed as the convolution of n exponentials

with parameters Al1""n"

(3.3) For the class of processes considered we proved that for

Xl' ' ' ''Xn real T0,n  is a convolution of exponentials with not

necessarily distinct parameters. Such a distribution belongs to

10
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the class PF (Polya frequency function of order n). This classn

enjoys lots of nice properties (see Barlow and Proschan (1975)).

The pdf. is log concave which leads to many interesting inequalities.

It is also a subclass of IFR distributions thus all IFR inequalities

are applicable.

(3.4) For the class of processes considered we do not know of any

convenient to check conditions which insure that the eigenvalues

are distinct or real.

'
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