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-Abstract. The spectral approach to first passage time distributions
for Markov processes requires knowledge of the eigenvalues and

eigenvectors of the infinitesimal generator matrix. We demonstrate
that in many cases knowledge of the eigenvalues alone is sufficient

to compute the first passage time distributionm.

1. Introduction and Summary. Consider a continuous time Markov

process with state space N = {0,1,2,...}. For j < n define

Tj n to be first passage time from j to {k: k > n}. Define

A(n)

columns of the infinitesimal matrix A, i.e. the matrix of transi-

to be the n*n matrix obtained from the first n rows and

tion rates among the states 0,l1,...,n-1l. If A(n) is similar to

a diagonal matrix then spectral analysis of A leads to the

(n)

representation:

o -Xit
>t = ) v,e .

(1.1) Pr(T
j’ 1'1

In (1.1), Al,...,An are the eigenvalues of A(n) and
YyseeesYy depend on the right and left eigenvectors of A(n)'
Convenient references for this algebraic approach are Cinlar (1975),
Karlin (1966), Keilson (1975) and Kemeny and Snell (1960).

In general in order to apply (1.1) a complete spectral analysis
of A(n) is required. The computational difficulties in performing

this analysis limit the applicability of the spectral approach.
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We consider a class of Markov processes in which upward jumps

may only be of size 1 (A >0, A, ., =0, j>1+2) with no

i,i+l i,j
restriction on downward jumps. This class includes birth and
death processes. For these Markov processes the coefficients
Yysee+sY, can be computed from the eigenvalues of A(n)’ without
computation of right or left eigenvectors. This result should
simplify computation and render the spectral approach more attrac-
tive. A summary of the results now follows.

If Al,...,kn are distinct then A(n) is similar to a diagonal

matrix and (1.1) holds. 1In section 2 it is shown that:

n A -, t
(1.2) Pr(ry >t) = ] [ I T‘-jx—]e i,
’ i=1 i1 T§ 4

From (1.2) it follows that if .,xn are real then T

1" O,n

is the convolution of exponentially distributed random variables

with parameters A\ An. If the Xi's are real but not distinct,

1,.00’
say xl,...,xr are distinct with multiplicities Mypeeesly then

TO,n is distributed as the convolution of F(mi,xi), i=1,...,r,

where TI'(m,\) 1is the gamma distribution with parameters m and ).
For convolutions of gammas we know of no nice analogue of (1.2) for
representing the survival function.

For general j <n ((1.2) had j=0), let w ,Ww, be the

3

are

1,.-.

Consider the case where Wisere,W

3

)’
1+ »?, are distinct. Define D = {izkiﬂ{wl,...,wr}-¢}

and E = {1:win {xl,...,xn}-¢}. Then:

eigenvalues of A(

distinct and X

p w -\,t
(1.3) Pr(ry >e) = § o1 g A
’ ieD [j#1 "§ "4 2eE "2 4
jeD J
3
Xy , . (. . ‘ g‘\gl A" Lev‘.,lu' 3 R .\ i - L ¥ '.;'"." Y ‘. > f.{-
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The class of processes under consideration can be described
as birth and death processes with multiple deaths (but not multiple
births) allowed. Birth and death and related processes have signifi~
cant application in queueing, reliability, inventory and biological
models. Good references for these applications are Cinlar (1975),

Gertsbakh (1984), Karlin (1966), Keilson (1975), and Ross (1933).

-

In section 3 we attack the problem of identifying ACERERTY

in (1.1) for a general Markov process.

2. Derivation of Results. Consider a Markov process {X(t), t >0}

L with state space N = {0,1,2,...}. The infinitesimal generator

matrix A 1is defined by Aij = lim [Pr(X(h)=§|X(0)=1)/h] for
h~0
i#j, and A, = lim {[Pr(X(h)=i|X(0)=1)-11/h}. We consider

t ii h0 K

processes which satisfy: K

(D) Ay 4y =by >0
(i1) Ai,j =0 for j > i+2 i
13
(i11) -Aii <o for all 1

The nxn matrix A(n) is the submatrix of A consisting of ;s
the first n rows and first n columns, i.e. those corresponding
to states 0,1,...,n=1. It is not hard to show that under (i),

(i1) and (iii) above, is similar to a diagonal matrix if and

A
(n)
only if its eigenvalues xl,...,xn are distinct. Thus the spectral

representation (1.1) holds if and only if Al,...,An are distinct.




Y L PO L WU DY I WIW 0 W I W W W TSI I I T WY TP WA SATUATER W, PRI

Proof of (1.2). In order for state n to be reached there must be

at least one transition from i to i+l for 1=0,1,...,n-1.

Thus TO n is stochastically larger than the convolution of n
]

exponentially distributed random variables with parameters

R bO""’bn-l’ which in turn is stochastically larger than M, the
: maximum of n independent exponentially distributed random variables
(t) _ .
2 with parameters bO""’bn-l' Define FO,n Pr(TO,n < t). Then:
X (v) a1 n
(2.1) Fy <Pr(M<t)=t[I[ b)+0(c) as t->0.
s — - 0 i
)
' Assume that Al,...,kn are distinct, and thus that (1.1) holds.
K Then Féti is an analytic function which by (2.1) is O(tn-l)
?
as t > 0, It is clear from the Taylor series expansion of Fét;
Al bl
g around zero that Fétz = O(tn-l) implies:
. >
k
o (2.2) JLE- Fétl =0 for k=1,...,n-1 .
) dt »" t=0
\
]
; From (1.1) and (2.2):
'
n Kk 1 for k=20
(2.3) Ly =
X i=1 0 for k=1,,..,n-1.

\
1)
1
}
¥
)
)

Define y' = (Yl....,yn), W to be an nxn matrix with

k-1
components wik Ai

vector with 61 =1, 61 =0, {=2,...,n. Rewrite (2.3) as:

» 1,k=1,2,...,n, and § to be an nx1l

Dt e 4 s, & , g} SR ¥ SN L - | " LT SRS L R - Toa e » AL - IR
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(2.4) =g

Now W is the well-known Vandermonde matrix (Cullen (1967)
p. 72). For kl,...,kn distinct W 1is invertible. From (2.4)

ve see that y' concides with the first row of Efl, thus:

- A
(2.5) Yy = W), = T l - )
i U By

Substituting y into (1.1) yields (1.2) [] .

Next note that if Al,...,kn are distinct then from (1.2):

: , - -sTo n ? [ A A n xi
2.6 V(s) = Ee o= ] = p(s) T ——
121 y7Ay) Agts 1M
where
n A,+s
(2.7) p(s) = Z[H [;5—]]
imibygs V470

Now p(s)-1 1is a polynomial of degree n-1 with n distinct

roots Al,...,kn. Thus p(s)-1 = 0 and it follows from (2.6) that:

n Xi
(2.8) v(s) = 1 .
=1 Ai+s

When Al,...,ln are real they must be strictly positive (since

(Px(T >t)+0), thus if X,....,A\_ are real and distinct it
0,n 1 n

follows from (2.8) that T is distributed as a convolution of

O,n

exponentials with parameters Al,...,xn.
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Now consider the case of distinct real eigenvalues Al,...,x

r
with multiplicity WysecesM . We can obviously construct a sequence

r
A (k) (k)

of vectors converging to this vector )\ with each )

having distinct components. This can be done through a sequence of

(k)

matrices A(n) converging to é(n)' For the process corresponding

to AEE; the distribution of Téki is the convolution of n
9

exponentials and thus has Laplace transform:

n Xik)
(2.7) g, (8) = T |~—5—] .
k 1=1 |2 (6 4g
i
Letting k - o, Ték) converges in distribution to T and
,n O,n
(2.7) converges to:
r )‘i mi
(2.8) Y(s) = 1im ¥ (s) = 1 ] .
k> o k i=1l-ki+s

Since for Al,...,kr real (2.8) is the Laplace transform of a
convolution of P(mi,xi) random variables, we see that To n has
*
this distribution.

We next look at general j < n and prove (1.3).

Proof of (1.3). Consider the Markov process with the restrictions

previously imposed and assume that Al,...,xn are distinct as are
wl,...,wj the eigenvalues of A(j)' Define D and E as in section
1, and D* = {1,...,n}-D. Since Ai,j =0 for j > i+2, it follows
that

(2.9) T =T * T

o . . _ 'f". " el ( - o ..‘..’. - ..~ "\r'-(\f f o, *.ﬂ N 1‘ "“I".;}‘, .:EI
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where * denotes convolution. Applying (2.8) to both T and

0,3
TO,n and (1.1) to Tj,n we obtain:
n A h| w o oY, A
(2.10) g S [n . fs] ) {A‘;‘s‘]
r=1 r =1 "2 k=1''k

As some xr and w, may coincide we divide both sides of

(2.10) by these common terms obtaining:

o [ vy ] B Y

b .
k=1 lk+s

(2.11) n
geE Vots

n
Muleiply both sides of (2.11) by 'El (\,+s) to obtain:

=1 3

wz- n
(2.12) (TA) T (A +4s) = [ n ""f) ) Yt T (Aj+s)

reD jeD* 3 LeE wl+s

Set s = -Ai in (2.12). For ieD we obtain:

X w

(2.13) vg= 1 sb—/n —— for iep .
jFL 73774 feE "¢ 74
jeD

For ieD*, when we set s = -xi in (2.12), the left side
vanishes while the right side equals \f multiplied by a non-zero

quantity. Thus:

(2.14) i 0 for ieDd* ,

Combining (2.13) and (2.14) we obtain (1.3) [] .
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In the case where either the A's or w's are not distinct we

can obtain the Laplace transform of T (the Laplace transform

jsm

of T divided by that of T J.) but have no convenient repre-

O,n 0,

sentation for the distribution function.

3. Further Comments,

(3.1) Our method worked well because the first n-1 derivitives

of F(t) were equal to zero for the class of processes considered.

O,n
Applying the method to a general Markov process we obtain a represen-
tation for F(t) but it is not usually as computationally simple.

O,n
Assume that Al,...,kn are distinct which implies that (1.1)

holds. Note that:

4k ‘2‘ K
(3.1a) v, = —— Pr(T <t) I = Yo A, .
ko gk jon g=0 4=1 1 1

Note that vo-l and v,=0 {if it requires at least k+l1

k

changes of state to go from j to {k >n}. If v' = (vo,...,v

)

n-1

is known then:
(3.1b) y'=y'wo o,

The problem reduces to computing Vi Toward this end consider
the lossy process with state space O0,...,n-1. The states {k > n}

are made absorbing and the Markov process restricted to 0,...,n-1

steadily loses probability mass (2?:3 Pr(X(t)=3)< 1) and thus called

“ » 3 - el . BRI I I Y vos L
“. P - JEIA) '-"r N Y -..\r. SO YN . . . "-’:',"-‘. s
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lossy. Since Pr(To n> ) = Pr(X(t) < n-1) (recall that states
]
{k:k > n} are absorbing):

(3.1c) P > A(n)t :
.lc r(Tj g >t = (e 1 ;

where 1 is a column vector of n 1's.

It follows that:

K

d k

—= Pr(T, _>t) | = (A, 1)

ae® ) (n)
and thus:

Kk a* Kk, k
(3.1d) v = (DXL _prr. se) | = ¥Rk 1,

k de* 30 e (n) =

Thus Vi equals (-1)k multiplied by the sum of the entries in

the jth row of the matrix A%n)'

(3.2) Keilson (1975) proves, using different methodology, that

for a birth and death process with birth and death rates strictly
positive, the eigenvalues of A(n) are indeed distinct and real

and that TO,n is distributed as the convolution of n exponentials
with parameters Al,...,An.
(3.3) For the class of processes considered we proved that for
xl,...,xn real TO,n is a convolution of exponentials with not

necessarily distinct parameters. Such a distribution belongs to

10
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the class PFn (Polya frequency function of order n). This class

enjoys lots of nice properties (see Barlow and Proschan (1975)).
The pdf. is 1log concave which leads to many interesting inequalities.
It is also a subclass of IFR distributions thus all IFR inequalities

are applicable.

(3.4) For the class of processes considered we do not know of any
convenient to check conditions which insure that the eigenvalues

are distinct or real.
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