

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDA; DS-1963-A

A CONTRACTOR OF THE PARTY OF TH

NOTICE

PLEASE DO NOT REQUEST COPIES OF THIS REPORT FROM HQ AFESC/RD (ENGINEERING AND SERVICES LABORATORY). Additional copies may be purchased from:

NATIONAL TECHNICAL INFORMATION SERVICE 5285 Port Royal Road Springfield, Virginia 22161

FEDERAL GOVERNMENT AGENCIES AND THEIR CONTRACTORS REGISTERED WITH DEFENSE TECHNICAL INFORMATION CENTER SHOULD DIRECT REQUESTS FOR COPIES OF THIS REPORT TO:

DEFENSE TECHNICAL INFORMATION CENTER CAMERON STATION ALEXANDRIA, VIRGINIA 22314 Unclassified SECURITY CLASSIFICATION OF THIS PAGE

1

-10-4172075

~ ~ ~

		REFURI DUCUME	INTATION PAGE				
18 REPORT SECURITY CLASSIFICA	ATION		16. HESTRICTIVE MARKINGS				
UNCLASSIFIED	THORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT				
			Approved fo	r public re	eleas	se.	
20. DECLASSIFICATION/DOWNGRADING SCHEDULE			Distributio	n unlimite	d.	~~•	
4 PERFORMING ORGANIZATION P	PORT NUM	BER(S)	5. MONITORING OR	GANIZATION R	EPORT	NUMBER(S)	
			TCI TO OF F	٨			
SA NAME OF REBEORMING ORGAN	ZATION	SH OFFICE SYMBOL	ESL-IK-00-0		ZATIC		
		(If applicable)					
Texas A&M University			HQ Air Force Engineering and Services Center				
6c. ADDRESS (City State and ZIP Co	de)		7b. ADDRESS (City,	State and ZIP Cod	le)		
Civil Engineering Dep	artment		Engineering	and Servi	ces l	Laborato	ry (RDCS)
College Station, TX	77843	••••••••••••••••••••••••••••••••••••••	Tyndall AFB	, FL 3240	3		
B NAME OF FUNDING/SPONSORIA ORGANIZATION	NG	8b. OFFICE SYMBOL (If applicable)	9 PROCUREMENT	NSTRUMENT ID	ENTIF	ICATION NU	MBER
HQ Air Force Eng & Sv	cs Center	RDCS	F0 8635-84-	K-0053			
Be ADDRESS (City, State and ZIP Cou	de i	· · · · · · · · · · · · · · · · · · ·	10 SOURCE OF FUN	DING NOS.			
Engineering and Servi	ces Labo	ratory	PROGRAM	PROJECT		TASK NO.	WORK UNIT
iynaali Arb, rl. 3240	13						
11 T TLE Include Security Classificat	ion Prope	rties of Cement.	62601F	2673		-	0033
Compacts Prepared by Hi	igh-Press	ure Compaction		2075	L		0000
Jeffrey R. Borman, W.	B. Ledbe	tter, Matti Reli	S				
13. TYPE OF REPORT	136. TIME C	OVERED	14. DATE OF REPOR	RT (Yr., Mo., Day)	15 PAGE COUNT		
Final Report	FROMMAY	84 <u>to Aug 85</u>	May 1986				
I JUFFLEMENTANT NUTATION							
Availability of this	report i	s specified on r	reverse of tro	nt cover.			
17 COSATI CODES		18 SUBJECT TERMS (C) high strength	onlinue on reverse if no	cessary and identi	ly by b	lock number) als	
13 13	B. GR.	high strength	concrete, fly	y ash			
13 02		-					
19 ABSTRACT Continue on recerse in	Inecessary and	identify by block number	to dotomino	the combin	ed e	ffects o	f_flv
ash as a partial re	eplacemen	it for portland (cement and the	e use of hi	gh-p	ressure	• • • •
compaction in reduc	cing the	porosity and in	creasing the d	compressive	str	ength of	
prepared miniature	compacts	•					
Ac. ordina to c	-urrent r	practice and the	orv. for speci	alized use	s, p	ortland	
cement concrete mat	terials w	ith strengths a	pproaching 20	,000 psi (1	40 M	Pa) may	be
produced by reducir	ng the am	ount of porosit	y present in 1	the microst	ruct	ure of t	he
paste-matrix materi	ial. To	accomplish this	, both high-pi	ressure com volanic rea	pact	n have p	rovided
increased formation of cementitious products			an extensive	literature	surv	ey, the	effect
of combining the tw	vo has no	t been examined.	. (Continued	on back of	pag	e)	
							,
20 DISTRIBUTION AVAILABILITY	OF ABSTRAC	т	21 ABSTRACT SECU	RITY CLASSIFIC	CATIO	N	
UNCLASSIERED UNLIMITED X SAME AS BOT CONTINUESDO			Unclassified				
224 NAME OF RESPONDED & SHOW				-	<u> </u>		<u></u>
LCDR Thomas J. Hilfer	ty		Include trea Con	de: 07	220 0	FFICE SYMB	
	J		(904)283-62	51			
DD FORM 1473, 83 APR		EDITION OF 1 JAN 73 IS	OBSOLETE	Uncla	ssif	ied	
		f		SECURIT	YCLA	SSIFICATIO	N OF THIS PAGE

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

Block 19

The three main parameters investigated included the initial compacted porosity level from high-pressure compaction, the percentage fly ash replacement of the cement, and curing duration. Additionally, the effects of accelerated curing by oven-drying was explored.

The study revealed that high-pressure compaction, followed by accelerated curing, is an excellent means of producing a low-porosity condition and, thereby, a greater strength in a cementitious material. Strengths in excess of 72,000 psi (500 MPa) were developed. Confirming earlier findings, it was found that while increased hydration product formation occurs under conditions of greater porosity, the resulting strength is not as high as when lower initial porosities are achieved through greater compaction. Thus, reducing the initial porosity of the cement system is seen as the single most important factor toward achieving ultra-high strengths. It was also found that particle gradation and compatibility are important considerations when producing the compacts. The existence of an optimum percentage of fly ash replacement for cement in the prepared compacts could not be determined. The expected increase in strength from the pozzolanic reaction was not apparent as increasing amounts of fly ash provided for decreasing strength levels. The partial cause is believed to be inadequate curing duration, allowing for incomplete formation of the pozzolanic reaction. Another cause could be the amount of necessary calcium hydroxide available in the low-porosity compacts.

PREFACE

This report was prepared by the Civil Engineering Division, Texas Engineering Experiment Station, Texas A&M University System, College Station, Texas 77843-3136, under Contract Number F08635-84-K-0053 for the Air Force Engineering and Services Center, Engineering and Services Laboratory (HQ AFESC/RD), Tyndall Air Force Base, Florida.

This report summarizes work done between May 1984 and August 1985. The HQ AFESC/RDCS project officer was Thomas Hilferty, LCDR, USN.

The authors wish to acknowledge the valuable assistance of several people and firms. Mr. Phillip Harris , Vice President, Texas Industries, provided advice and council on the design of the experiments, the interpretation of the results, and the wording of the report. Texas Industries and Gifford-Hill & Co., donated the cement and fly ash, respectively. Mr Joe Brusse of the TEES Engineering Shops assisted in the fabrication of the segmented die system. Mrs Melody Meyer typed and helped proofread the report.

To each of these persons and firms, we offer our heartfelt thanks.

This report has been reviewed by the Public Affairs office (PA) and is releasable to the National Technical Information Service (NTIS). At NTIS it will be available to the general public including foreign nationals.

iii

(The reverse of this page is blank)

This technical report has been reviewed and is approved for publication.

THOMAS J./HILFERTY, LCDR, USN Project Officer

erett J. Ma EVERETT L. MABRY, LT COL, US/AF

WILLIAM S. STRICKLAND, GM-14 Chief, Facility Systems and Analysis

Chief, Engineering Research Di hision

B. BOYER, COLONEI USAF ROBERT Director, Engineering and Services Laboratory

NTIS CRA&I DI DTIC TAB DI Unannounced DI Justification By Dist. ibution / Availability Codes Dist Avail and / or Special	Accesi	on For	
By Dist.ibution / Availability Codes Dist Avail and / or Special	NTIS DTIC Unann Justifi	CRA&I TAB ounced cation	
Availability Codes	By Dist.ib	oution /	
Avail and/or Dist Special	F	vailability	Codes
	Dist	Avail and Specie	l / or N

TABLE OF CONTENTS

Section	Title	Page
I	INTRODUCTION	, 1
	A. OBJECTIVES B. BACKGROUND	, 1 , 1
	C. SCOPE	, 1
II	LITERATURE REVIEW	. 2
	 A. PRESENT STATUS. B. STRENGTH IN A CONCRETE AND MORTAR. C. THE STRENGTH - POROSITY RELATIONSHIP. D. HIGH-PRESSURE COMPACTION. E. HIGH-PRESSURE COMPACTION OF PORTLAND CEMENT POWDERS AND PASTES. F. HYDRATION OF PREPARED COMPACTS. 	2 2 4 7 10
	 G. STRENGTH-POROSITY CONSIDERATION OF PREPARED COMPACTS	, 15 , 16 , 17
III	LABORATORY INVESTIGATION	. 19
	A. MATERIALS AND EQUIPMENT B. PROGRAM DESIGN C. PERFORMANCE OF THE LABORATORY PROGRAM	. 19 . 19 . 21
IV	LABORATORY RESULTS	. 28
	 A. INTRODUCTION. B. RESULTS OF DIE OPERATION. C. RESULTS PERTAINING TO THE INITIAL 	. 28 . 28
	D. COMPRESSIVE STRENGTH RESULTS	• 31 • 40
v	CONCLUSIONS AND RECOMMENDATIONS	. 61
	A. CONCLUSIONS.B. RECOMMENDATIONS.C. FUTURE RESEARCH.	. 61 . 62 . 63
	REFERENCES	. 64
APPENDIX		
A	MATERIAL DATA	. 67
В	LABORATORY PROCEDURES FOR THE HIGH-PRESSURE PREPARATION OF CEMENT AND FLY ASH COMPACTS	. 71
	A. PREPARATION OF THE POWDER MATERIAL	. 71

TABLE OF CONTENTS (CONCLUDED)

		B. ADDITION OF POWDER TO THE DIE
		E. THE CURING REGIME
	С	POWDER WEIGHT DETERMINATION PROCEDURES
		A. INTRODUCTION
	D	CALCULATED INITIAL POROSITY FORMULA DERIVATION 77
3. 3		A.INTRODUCTION.77B.ONE-COMPONENT SYSTEM.77C.TWO-COMPONENT SYSTEM.78
	Е	LABORATORY DATA 80
\$ 2	F	LINEAR REGRESSION SUMMARY DATA120
S.		
		vi

LIST OF FIGURES (CONTINUED)

Figure	Title	Page
16	Density vs. Production Pressure Relationship for Compacts Containing 20 Percent Fly Ash (Note: 1 psi = 0.006895 MPa)	. 37
17	Density vs. Production Pressure Relationship for Compacts Containing 30 Percent Fly Ash (Note: 1 psi = 0.006895 MPa)	. 38
18	Normalized Final and Initial Porosity vs. Production Pressure Relationships (Note: 1 psi = 0.006895 MPa)	. 39
19	Percent Reduction in Porosity vs. Percentage Fly Ash Replacement Relationship at 14,000, 70,000, and 175,000 psi Production Pressures (Note: 1 psi = 0.006895 MPa)	. 41
20	SSD Compressive Strength vs. Production Pressure Relationship for 100 Percent Portland Cement Compacts at 3, 7, and 28 Days of Age (Note: 1 psi = 0.006895 MPa)	. 42
21	SSD Compressive Strength vs. Production Pressure Relationship at 7, 28, and 90 Days of Age for Compacts Containing 10 Percent Fly Ash (Note: 1 psi = 0.006895 MPa)	. 44
22	SSD Compressive Strength vs. Production Pressure Relationship at 7, 28, and 90 Days of Age for Compacts Containing 20 Percent Fly Ash (Note: 1 psi = 0.006895 MPa)	. 45
23	SSD Compressive Strength vs. Production Pressure Relationship at 7, 28, and 90 Days of Age for Compacts Containing 30 Percent Fly Ash (Note: 1 psi = 0.006895 MPa)	. 46
24	Percent Increase in SSD Compressive Strength from 7 to 38 Days vs. Production Pressure Relationship for 100 Percent Portland Cement Compacts (Note: 1 psi = 0.006895 MPa)	. 47
25	Percent Increase in SSD Compressive Strength from 7 to 28 and 7 to 90 Days vs. Production Pressure Relationships for Compacts Containing 10 Percent Fly Ash (Note: 1 psi = 0.006895 MPa)	. 48

viii

NGALAAAAA BEESHAAA

LIST OF FIGURES

ز. بن

1572523

52

Figure	Title	Page
1	Schematic Diagram of Compaction Process in Particulate Material (Reference 18)	. 8
2	Typical Pressure Contours Which Develop in Prepared Compacts (Reference 18)	. 10
3	Typical Class "C" Fly Ash Material Magnified 3000 Times	. 17
4	Disassembled View of the Die Used for Compaction	. 20
5	Assembled View of the Die Used for Compaction	. 20
6	Typical Type III Portland Cement Material Used in the Compacts Magnified 3000 Times	. 22
7	Typical Class "C" Fly Ash Material Used in Compacts Magnified 300 Times	. 22
8	Compact Series Numbering System	. 24
9	Flowchart of Laboratory Procedures	. 26
10	Prepared Compact Weight vs. Calculated Initial Porosity Relationship for 0, 10, 20, and 30 Percent Fly Ash Replacement	. 29
11	Prepared Compact Weight vs. Production Pressure Relationship for 0, 10, 20, and 30 Percent Fly Ash Replacement (Note: 1 psi = 0.006895 MPa)	. 30
12	Normalized Calculated Initial Porosity vs. Pressure Relationship (Note: 1 psi = 0.006895 MPa)	. 32
13	Final Porosity vs. Production Pressure Relationship for 0, 10, 20, and 30 Percent Fly Ash Replacement (Note: 1 psi = 0.006895 MPa)	. 33
14	Density vs. Production Pressure Relationship for 100 Percent Portland Cement (Note: 1 psi = 0.006895 MPa)	. 35
15	Density vs. Production Pressure Relationship for Compacts Containing 10 Percent Fly Ash (Note: 1 psi = 0.006895 MPa)	. 36

LIST OF FIGURES

CONTRACTOR DEVICES

Sec. Sec.

ELCINCICS

Figure	Title	Page
1	Schematic Diagram of Compaction Process in Particulate Material (Reference 18)	. 8
2	Typical Pressure Contours Which Develop in Prepared Compacts (Reference 18)	. 10
3	Typical Class "C" Fly Ash Material Magnified 3000 Times	. 17
4	Disassembled View of the Die Used for Compaction	. 20
5	Assembled View of the Die Used for Compaction	. 20
6	Typical Type III Portland Cement Material Used in the Compacts Magnified 3000 Times	. 22
7	Typical Class "C" Fly Ash Material Used in Compacts Magnified 300 Times	. 22
8	Compact Series Numbering System	. 24
9	Flowchart of Laboratory Procedures	. 26
10	Prepared Compact Weight vs. Calculated Initial Porosity Relationship for 0, 10, 20, and 30 Percent Fly Ash Replacement	. 29
11	Prepared Compact Weight vs. Production Pressure Relationship for 0, 10, 20, and 30 Percent Fly Ash Replacement (Note: 1 psi = 0.006895 MPa)	. 30
12	Normalized Calculated Initial Porosity vs. Pressure Relationship (Note: 1 psi = 0.006895 MPa)	. 32
13	Final Porosity vs. Production Pressure Relationship for 0, 10, 20, and 30 Percent Fly Ash Replacement (Note: 1 psi = 0.006895 MPa)	. 33
14	Density vs. Production Pressure Relationship for 100 Percent Portland Cement (Note: 1 psi = 0.006895 MPa)	. 35
15	Density vs. Production Pressure Relationship for Compacts Containing 10 Percent Fly Ash (Note: 1 psi = 0.006895 MPa)	. 36

LIST OF FIGURES (CONTINUED)

17

- 3-

E

Contraction of

te la su

Figure	Title	Page
16	Density vs. Production Pressure Relationship for Compacts Containing 20 Percent Fly Ash (Note: 1 psi = 0.006895 MPa)	. 37
17	Density vs. Production Pressure Relationship for Compacts Containing 30 Percent Fly Ash (Note: 1 psi = 0.006895 MPa)	. 38
18	Normalized Final and Initial Porosity vs. Production Pressure Relationships (Note: 1 psi = 0.006895 MPa)	. 39
19	Percent Reduction in Porosity vs. Percentage Fly Ash Replacement Relationship at 14,000, 70,000, and 175,000 psi Production Pressures (Note: 1 psi = 0.006895 MPa)	. 41
20	SSD Compressive Strength vs. Production Pressure Relationship for 100 Percent Portland Cement Compacts at 3, 7, and 28 Days of Age (Note: 1 psi = 0.006895 MPa)	. 42
21	SSD Compressive Strength vs. Production Pressure Relationship at 7, 28, and 90 Days of Age for Compacts Containing 10 Percent Fly Ash (Note: 1 psi = 0.006895 MPa)	. 44
22	SSD Compressive Strength vs. Production Pressure Relationship at 7, 28, and 90 Pays of Age for Compacts Containing 20 Percent Fly Ash (Note: 1 psi = 0.006895 MPa)	. 45
23	SSD Compressive Strength vs. Production Pressure Relationship at 7, 28, and 90 Days of Age for Compacts Containing 30 Percent Fly Ash (Note: 1 psi = 0.006895 MPa)	. 46
24	Percent Increase in SSD Compressive Strength from 7 to 38 Days vs. Production Pressure Relationship for 100 Percent Portland Cement Compacts (Note: 1 psi = 0.006895 MPa)	. 47
25	Percent Increase in SSD Compressive Strength from 7 to 28 and 7 to 90 Days vs. Production Pressure Relationships for Compacts Containing 10 Percent Fly Ash (Note: 1 psi = 0.006895 MPa)	. 48

ت و د م

and a second a second

LIST OF FIGURES (CONCLUDED)

J

Î

0.000

2

5

Figure	Title	Page
26	Percent Increase in SSD Compressive Strength from 7 to 28 and 7 to 90 Days vs. Production Pressure Relationships for Compacts Containing 20 Percent Fly Ash (Note: 1 psi = 0.006895 MPa)	. 49
27	Percent Increase in SSD Compressive Strength from 7 to 28 and 7 to 90 Days vs. Production Pressure Relationships for Compacts Containing 30 Percent Fly Ash (Note: 1 psi = 0.006895 MPa)	. 50
28	SSD and OD Compressive Strength vs. Final Porosity Relationships at 7 Days of Age for Compacts Containing 0, 10, 20, and 30 Percent Fly Ash (Note: 1 psi = 0.006895 Mpa)	. 51
29	SSD and OD Compressive Strength vs. Final Porosity Relationships at 28 Days of Age for Compacts Containing 0, 10, 20, and 30 Percent Fly Ash (Note: 1 psi = 0.006895 MPa)	. 53
30	SSD and OD Compressive Strength vs. Final Porosity Relationships at 90 Days of Age for Compacts Containing 10, 20, and 30 Percent Fly Ash (Note: 1 psi = 0.006895 MPa)	. 54
31	Percent Increase in SSD Compressive Strength vs. Percentage Fly Ash Replacement Relationships at 7, 28, and 90 Days of Age	. 55
32	SSD and OD Compressive Strength vs. Age for Compacts Containing 100 Percent Portland Cement and Compacted Under 100,000 psi Pressure	. 59

ix

الأدزار

LIST OF TABLES

Table	Title	Page
1	Target Calculated Initial Forosity Percentage for the Laboratory Program	. 23
A-1	Cement Composition and Properties	. 67
A-2	Fly Ash Composition and Properties	. 69
A-3	Aggregate Data	. 70
C-1	Preliminary Data Used to Determine the Relation- ship Between Powder Weight and Calculated Initia Porosity	1 . 75
E-1	Laboratory Data for SSD Compacts Containing 100 Percent Portland Cement and Cured for 3 Days (Sample Size = 8 Unless Otherwise Noted)	. 81
E-2	Predrying Laboratory Data for OD Compacts Containing 100 Percent Portland Cement and Cured for 3 Days (Sample Size = 8 Unless Otherwise Noted)	. 82
E-3	Postdrying Laboratory Data for OD Compacts Containing 100 Percent Portland Cement and Cured for 3 Days (Sample Size = 8 Unless Otherwise Noted)	. 83
E-4	Laboratory Data for SSD Compacts Containing 100 Percent Portland Cement and Cured for 7 Days (Sample Size = 8 Unless Otherwise Noted)	. 84
E-5	Predrying Laboratory Data for OD Compacts Containing 100 Percent Portland Cement and Cured for 7 Days (Sample Size = 8 Unless Otherwise Noted)	. 85
E-6	Postdrying Laboratory Data for OD Compacts Containing 100 Percent Portland Cement and Cured for 7 Days (Sample Size = 8 Unless Otherwise Noted)	. 86
E-7	Laboratory Data for SSD Compacts Containing 100 Percent Portland Cement and Cured for 28 Days (Sample Size = 8 Unless Otherwise Noted)	. 87

Section

LIST OF TABLES (CONTINUED)

Table	Title	Pag
E-8	Predrying Laboratory Data for OD Compacts Containing 100 Percent Portland Cement and Cured for 28 Days (Sample Size = 8 Unless Otherwise Noted)	. 88
E-9	Postdrying Laboratory Data for OD Compacts Containing 100 Percent Portland Cement and Cured for 28 Days (Sample Size = 8 Unless Otherwise Noted)	. 89
E-10	Laboratory Data for SSD Compacts Containing 100 Percent Portland Cement and Cured for 90 Days (Sample Size = 8 Unless Otherwise Noted)	. 90
E-11	Predrying Laboratory Data for OD Compacts Containing 100 Percent Portland Cement and Cured for 90 Days (Sample Size = 8 Unless Otherwise Noted)	. 91
E-12	Postdrying Laboratory Data for OD Compacts Containing 100 Percent Portland Cement and Cured for 90 Days (Sample Size = 8 Unless Otherwise Noted)	. 92
E-13	Laboratory Data for SSD Compacts Containing 10 Percent Sieved Fly Ash and Cured for 7 Days (Sample Size = 8 Unless Otherwise Noted)	. 93
E-14	Predrying Laboratory Data for OD Compacts Containing 10 Percent Sieved Fly Ash and Cured for 7 Days (Sample Size = 8 Unless Otherwise Noted)	. 94
E-15	Postdrying Laboratory Data for OD Compacts Containing 10 Percent Sieved Fly Ash and Cured for 7 Days (Sample Size = 8 Unless Otherwise Noted)	. 95
E-16	Laboratory Data for SSD Compacts Containing 10 Percent Sieved Fly Ash Cured for 28 Days (Sample Size = 8 Unless Otherwise Noted)	. 96
E-17	Predrying Laboratory Data for OD Compacts Containing 10 Percent Sieved Fly Ash and Cured for 28 Days (Sample Size = 8 Unless Otherwise Noted)	. 97

xi

LIST OF TABLES (CONTINUED)

Table	Title	Page
E-18	Postdrying LaboratoryDaa for OD Compacts Containing 10 Percent Sieved Fly Ash and Cured for 28 Days (Sample Size = 8 Unless Otherwise Noted)	98
E-19	Laboratory Data for SSD Compacts Containing 10 Percent Sieved Fly Ash and Cured for 90 Days (Sample Size = 8 Unless Otherwise Noted)	99
E-20	Predrying Laboratory Data for OD Compacts Containing 10 Percent Sieved Fly Ash and Cured for 90 Days (Sample Size = 8 Unless Otherwise Noted)	100
E-21	Postdrying Laboratory Data for OD Compacts Containing 10 Percent Sieved Fly Ash and Cured for 90 Days (Sample Size = 8 Unless Otherwise Noted)	101
E-22	Laboratory Data for SSd Compacts Containing 20 Percent Sieved Fly Ash and Cured for 7 Days (Sample Size = 9 Unless Otherwise Noted)	102
E-23	Predrying Laboratory Data for OD Compacts Containing 20 Percent Sieved Fly Ash and Cured for 7 Days (Sample Size = 8 Unless Otherwise Noted)	103
E-24	Postdrying Laboratory Data for OD Compacts Containing 20 Percent Sieved Fly Ash and Cured for 7 Days (Sample Size = 8 Unless Otherwise Noted)	104
E-25	Laboratory Data for SSD Compacts Containing 20 Percent Sieved Fly Ash and Cured for 28 Days (Sample Size = 8 Unless Otherwise Noted)	105
E-26	Predrying Laboratory Data for OD Compacts Containing 20 Percent Sieved Fly Ash and Cured for 28 Days (Sample Size = 8 Unless Otherwise Noted)	106
E-27	Postdrying Laboratory Data for OD Compacts Containing 20 Percent Sieved Fly Ash and Cured for 28 Days (Sample Size = 8 Unless Otherwise Noted)	107

LIST OF TABLES (CONCLUDED)

のないのである

1000000

 \mathbf{y}_{i}

というないである

N

and the second

225-2

DESERTED

ŝ

Table	Title	Page
E-28	Laboratory Data for SSD Compacts Containing 20 Percent Sieved Fly Ash and Cured for 90 Days (Sample Size = 9 Unless Otherwise Noted)	.108
E-29	Predrying Laboratory Data for OD Compacts Containing 20 Percent Sieved Fly Ash and Cured for 90 Days (Sample Size = 8 Unless Otherwise Noted)	.109
E-30	Postdrying Laboratory Data for OD Compacts Containing 20 Percent Sieved Fly Ash and Cured for 90 Days (Sample Size = 8 Unless Otherwise Noted)	.110
E-31	Laboratory Data for SSD Compacts Containing 30 Percent Sieved Fly Ash and Cured for 7 Days (Sample Size = 8 Unless Otherwise Noted)	.111
E-32	Predrying Laboratory Data for OD Compacts Containing 30 Percent Sieved Fly Ash and Cured for 7 Days (Sample Size = 8 Unless Otherwise Noted)	.112
E-33	Postdrying Laboratory Data for OD Compacts Containing 30 Percent Sieved Fly Ash and Cured for 7 Days (Sample Size = 8 Unless Otherwise Noted)	.113
E-34	Laboratory Data for SSD Compacts Containing 30 Percent Sieved Fly Ash and Cured for 28 Days (Sample Size = 7 Unless Otherwise Noted)	.114
E-35	Predrying Laboratory Data for OD Compacts Containing 30 Percent Sieved Fly Ash and Cured for 28 Days (Sample Size = 6 Unless Otherwise Noted)	.115
E-36	Postdrying Laboratory Data for OD Compacts Containing 30 Percent Sieved Fly Ash and Cured for 28 Days (Sample Size = 6 Unless Otherwise Noted)	. 116
E-37	Laboratory Data for SSD Compacts Containing 30 Percent Sieved Fly Ash and Cured for 90 Days (Sample Size = 9 Uness Otherwise Noted)	117

LIST OF TABLES (CONCLUDED)

Table	Title	Page
E-38	Predrying Laboratory Data for OD Compacts Containing 30 Percent Sieved Fly Ash and Cured for 90 Days (Sample Size = 8 Unless Otherwise Noted)	118
E-39	Postdrying Laboratory Data for OD Compacts Containing 30 Percent Sieved Fly Ash and Cured for 90 Days (Sample Size = 8 Unless Otherwise Noted)	119
F-1	Linear Regression Summary Data	120

Ś

SECTION I

Andreas (recorded (analysis)

INTRODUCTION

A. OBJECTIVES

The primary objective of this study was to determine the combined effects of the use of high-pressure compaction and fly ash as a partial replacement for portland cement on the compressive strength development of prepared miniature compacts. Also of interest were the effects of high-pressure compaction on the porosity, the hydration process and the pozzolanic reaction in the prepared compacts. An additional objective was to produce data which could be used to investigate the production of ultra-high-strength mortar and concrete cubes from large-scale high-pressure compaction.

B. BACKGROUND

Current concrete technology has produced concrete with compressive strengths from 10,000 to 12,000 psi (70 to 80 MPa). Generally, this has been created by optimizing the concrete constituents, and using special additives. Current practice and theory say, however, that, for specialized uses, a portland cement concrete material with strength approaching 20,000 psi (140 MPa) may be produced by reducing both porosity and strength-reducing void space in the microstructure of the pastematrix material. This should be possible by high-pressure compaction and by adding pozzolanic mixtures such as fly ash to bring about increased cementitious binding.

C. SCOPE

The test parameters chosen for study in the laboratory investigation included: (1) percentage of porosity, (2) percentage of replacement of portland cement with fly ash, (3) curing time, and (4) limited accelerated curing of the prepared compacts.

SECTION II

LITERATURE REVIEW

A. PRESENT STATUS

and the second provide the second sec

In recent decades, the construction industry has placed reliance on concrete which develops compressive increased strengths of 10,000 to 12,000 psi (70 to 80 MPa) in relatively short times (References 1,2). The consistent production and usage of concrete with strengths significantly greater than this remains, however, more difficult to achieve, because of many variables influencing the development of strength in such a heterogeneous material as portland cement concrete (Reference 3). In practice, production of concrete at the 10,000 to 12,000 psi (70 to 80 MPa) strength level generally depends on optimization of the constituent materials (aggregate, cement, water, and various admixtures in the proper combinations) and quality in the mixing, batching, and placement techniques control (References 4,5,6,7,8).

In addition, to produce a concrete with compressive strength at the ultra-high-strength level of 20,000 psi (140 MPa), it is necessary to significantly increase the strength of the weaker binder or matrix material in a given concrete batch. According to current practice and theory, the amount of porosity present in a matrix material is the most influential factor concerning strength. Thus, to produce an ultra-high-strength material, the microstructure of the matrix must be modified to significantly reduce porosity level (Reference 3,9,10,11,12,13). This can best be done by high-pressure compaction and increased cementitious binding.

B. STRENGTH IN A CONCRETE AND MORTAR

In a concrete batch, the matrix is actually the "glue" which binds the various sizes and types of aggregate together. Because the aggregate often has far superior strength than the matrix material, the strength of the matrix material must be improved for a higher strength material to be achieved (Reference 3).

The microstructure of the matrix material is the controlling factor for matrix strength (Reference 3). The matrix is initially a two-component system consisting of anhydrous cement and water. When the cement particles are exposed to water, the major cement compounds, namely tricalcium silicate (C₃S), silicate (C_{S}) , tricalcium aluminate (C_{A}) , oferrite $(C_{A}F)$ begin hydration and dicalcium and tetracalcium aluminofefrite (C,AF) the formation of cement gel and caldium hydroxide. Most of the cement gel is composed of calcium-silicate-hydrates (C-S-H), which are primarily responsible for strength in a matrix The calcium hydroxide is believed to have no major material. impact on strength other than the occupation of detrimental void space and increased surface area contact between the different

particles of the matrix (Reference 13). However, in the presence of a pozzolan, it becomes a vital part of the hydration process.

As the hydration process proceeds, the gel effectively coats the cement particles with various layers of hydration products. Within a few hours after the beginning of the hydration process, the matrix material consists of the cement gel, remaining unhydrated cement material, available free water, and void space or porosity. The majority of the porosity has developed as the hydration of the cement particles has "used" the available water in the vicinity, creating a remnant of water-filled space in the hydrating paste. The amount of cement gel or hydration product will continue to increase while sufficient water is available to encourage the hydration process. Current theory states that the cement gel product can only form in the void provided by the exchange of available free water through the hydration process. During this process, the surface area of the gel solid product increases tremendously (Reference 3,12,13,14).

The strength of the cement paste is developed as the cement hydration product continues to form around each cement qel particle and expands outwardly as hydration proceeds, increasing the amount of surface area contact between the various components It is generally believed that two types of in the paste. cohesive bonds give the matrix material its strength. One is physical attraction between the surfaces of the hydrated the cement particles known as van der Waals forces. The second type cohesion is made up of the interlocking and interwoven of filaments, fibrals, and plate-like formations of the hydration product. This type of bond provides the greatest strength in the paste material (Reference 12).

Both of these bonds, however, are highly dependent upon the amount of surface area of the various hydration products in contact and the distance between these products. This surface area contact is a function of the amount of void space created by the depletion of the surrounding water in the hydration process. The void space caused by the depletion of water has the most significant impact on the strength of the matrix material (References 3,12,13,14). This is the reason for the relationship between a lower water-cement ratio and a higher resulting compressive strength in a normally prepared portland cement mortar or concrete.

Excluding the larger voids which occur due to improper and insufficient consolidation in a mortar or concrete, two types of voids or pores develop in a paste during the hydration process and contribute to the total porosity of the matrix. One type, gel pores, exists within the cement gel product as interconnected spaces or voids between the fibrous, interwoven filaments of the gel product. In normally hydrated cements, gel pores are an integral part of the hydration product and, typically, occupy approximately one-fourth the total volume of cement qel (References 12,13). As the hydration process proceeds and the cement gel increases in volume, the gel pore space will increase

by the same degree and continue to occupy approximately onefourth the total volume of hydration product. Gel pores are considered to have less influence on the engineering properties of a hydrated portland cement paste than other types of voids and pore space (References 3,12,13,14).

The other type of pores, termed capillary pores, the is larger of the void spaces present in the paste and is defined as the space which exists between the various hydrating cement The influence of the initial amount of water used in particles. the formation of the paste on the resulting capillary porosity is because increasing amounts of water will further extreme, separate the individual cement grains, making sufficient particle increasingly difficult surface area contact (Reference 3,12,13,14).

The total amount of capillary porosity present in the paste depends on the amount of water used in its formation and the consolidation effort applied to the freshly mixed paste. The total volume of the capillary porosity in a paste decreases as volume of the hydration product increases, depleting the available water from the surrounding vicinity and replacing that space with cement gel (Reference 3,12,13,14). Because of this, it is highly beneficial to use extremely low water-cement ratios and to reduce potential void space between the individual cement particles before the hydration process begins (Reference 15). In the production of ultra-high-strength portland cement paste, the elimination of substantial amounts of this type of porosity is a primary concern and the high-pressure compaction of anhydrous portland cement is particularly well-suited to this objective.

C. THE STRENGTH - POROSITY RELATIONSHIP

. . .

The physical properties of a portland cement paste depend on structure and porosity. Extensive its internal research supports the conclusion that compressive strength increases as decreases and material density increases porosity (References The following 11,19,20,24,31). summary focuses four on relationships developed from previous work. The relationship established the framework for cement strength - porosity which research in this century was probably developed by Abrams in 1919 (Reference 15). Abrams' concept stated that the strength of а portland cement paste is inversely related to the initial watercement ratio used in its formation.

This concept was later expanded by T.C. Powers who developed the minimum water-cement ratio needed for the complete hydration of all cement pastes. Pastes with ratios in excess of the minimum water form deleterious capillary porosity and reduced strength (Reference 13).

Another strength, porosity, on water-cement ratio relationship significant to concrete strength technology is based on the concept that the strength of a portland cement paste is proportional to the increase in the gel/space ratio. Developed by Powers and Brownyard, this relationship states that the strength of a material is directly proportional to the concentration of the hydration products developed in the space available for the hydration to occur (Reference 13).

This relationship is expressed in the form:

$$S = (S^{O})X^{n}$$
⁽¹⁾

where

S

is the predicted strength of the paste,

S^O is the intrinsic strength of the cement gel (i.e.X=1),

X is the ratio of gel volume to gel volume plus capillary porosity (Gel/Space Ratio),

a n is constant, depending on the cement characteristics, and typically is value a in the range of 2.6 to 3.0.

The rationale of this equation is to relate the compressive strength which could be achieved to the actual hydration product formation and initial water-cement ratio. When water is combined with the anhydrous cement material, the quantity of available space for hydration product formation equals the amount of space occupied by the mixing water. After a certain degree of hydration, the available space becomes the volume of hydration product plus the capillary pores that exist. There is a significant relationship between a lower volume of capillary pores and the corresponding increase in the concentration of the hydration product in the space available for the hydration to occur, indicating an increasing amount of surface area contact among the many components in the hydrating matrix. It can then be deduced that strength in a portland cement paste increases as the surface area contact between the various hydration products increases.

As the porosity of a portland cement paste decreases and the strength increases, the matrix material will behave as a brittle material and its mechanical properties such as strength may be compared with those of ceramic materials (Reference 11). With the high-pressure compaction of anhydrous cement, the porosity is significantly reduced, resulting in ultrahigh strengths. It is then appropriate to use a relationship which defines the porosity-strength relationship for various types of brittle, low-porosity, high-strength materials.

This relationship is:

s=s_e^{-kp}

(2)

where

ACCI INSPERSE CONTRACTOR SAMANY MARKAN MARKAN

P is the fractional porosity at a given time, and

K is a constant which depends on the system being studied (References 11,13).

This relationship is well-suited to portland cement materials, because of the wide range of porosity values for which the expression holds true. In addition, as the porosity level approaches very low values, the compressive strength increases tremendously.

While this relationship is an excellent model of the general relationship between porosity, hydration, and strength for normally prepared cement pastes, other factors (such as cement composition, morphology and bonding properties of the hydration products) also affect the strength of cement paste, especially hardened (set) (Reference 31). This after it has is particularly true in the case of highly compressed, low-porosity portland cement pastes.

According to work by Relis and Soroka, other factors have for the been found to produce excellent strength correlations extremely low-porosity range produced by the high-pressure compaction of anhydrous cement powders (Reference 31). This work is based on the rationale that the three components of a set cement, namely porosity, hydration product, and unhydrated cement are interrelated and a change in one will result in a change of the other two. If it is assumed that both porosity and the amount of hydration product in the matrix are influential to strength, then in a low-porosity system the strength of а hydrated cement will increase with an increase in the volume of hydration product and a decrease in the porosity level. It is possible for the unhydrated cement grains to be stronger than the C-S-H gel hydration product formed, which would mean that a large concentration of unhydrated cement material would also contribute to compressive strength (Reference 31).

From this concept, the following relationship was developed:

$$S = (W_{hp}^* \times G_c^*)/P_f$$
(3)

where W^{T} is the weight concentration of hydration product formed,

G _____ is the weight concentration of unhydrated cement,

P_f is the final porosity in fractional form.

Using this equation, excellent results have been obtained for up to 28 days of curing (Reference 31). For periods greater than 28 days, other age factors appear to apply, and this relationship does not correlate well with actual strengths. Several conclusions can be drawn concerning the relationship between compressive strength and porosity conditions in portland cement pastes, mortars or concretes. They are:

1. Porosity is inversely related to strength. When porosity of the system is decreased, the compressive strength increases (water - cement ratio law).

2. If more water is used than is needed for hydration, strength is reduced.

3. The formation of hydration products produces higher strengths by decreasing porosity and increasing the amount of surface area contact between the many particles composing the matrix.

4. In most instances, porosity has the greatest influence in strength development for portland cement systems, however, at extremely low-porosity levels, concentration of unhydrated cement material may have considerable influence on the strength.

These conclusions can help in understanding the importance of the high-pressure compaction in the production of a highstrength material. If the compaction is performed on an anhydrous portland cement, the effects of excessive amounts of water are eliminated because the necessary moisture for hydration is imbibed through porosity existing between the cement particles. Thus, high-pressure compaction of anhydrous portland cement is an attractive method of producing a high-strength system.

D. HIGH-PRESSURE COMPACTION

The objective of high-pressure compaction is to increase the surface area contact and consequently reduce the void space between the powder material so that interparticle forces may develop which will produce high strengths (Reference 16). This may be accomplished by particle sliding or rearrangement, plastic and elastic deformation of the material being compacted and particle fragmentation (Reference 17). Figure 1 shows a schematic representation of these three processes (Reference 18).

Two interrelated stages occur in application of highpressure to a particulate material. These are (1) the process by which the particulate material will attain a state of close packing or low-porosity and (2) the process by which the particulate materials cohere between themselves, resulting in a high-strength material. This second process is commonly accomplished by various methods of adhesion and aids significantly in producing the stable, high-strength, condition (Reference 18).

The first stage in the compaction of particulate material is the general rearrangement of the particles to obtain a condition of closer packing or lower porosity. This occurs as the material chooses a "path of least resistance" and the material

FILLING OF LARGE VOIDS

FILLING OF SMALL VOIDS

Figure 1. Schematic Diagram of Compaction Process in Particulate Material (Reference 18)

particles slide next to and in between each other. The elimination of the larger voids is the primary occurrence at this stage. At this point, much of the compaction energy input is **dissipated** in overcoming the interparticle frictional forces which exist at material contact points. For fine ceramic powders, it has been found that under the comparatively low pressures induced in this initial stage, one-half to one-third of the total sample volume reduction will occur (References 16,18).

The second stage in the compaction process occurs as increasing pressures are applied and depends on the elasticity plasticity of the compressed powder particles in further and obtaining a reduction in voids. Plastic deformation and fracture of the material particles are common during this stage. Under the higher pressure associated with this stage, the particles will either fracture or deform plastically and flow into the reducing the spaces remaining from the first available voids, This action results in increased surface area of stage. interparticle contact and, therefore, increases the area available for interparticle bonding. If the particles fracture, in sample volumes may occur, large reductions а common characteristic of brittle materials. Substantial amounts of particle interlocking may occur depending on the geometrical properties of the particles (References 16,18). Rough textured, angular particles interlock better than smooth-surfaced, sharp, spherical particles.

These various stages take place simultaneously throughout all portions of the powder material as the compaction pressure is applied and continues until the porosity and void content of the sample approaches zero and the compact density approaches the

true density of the component materials. Throughout both stages of the compaction process, elastic compression of the trapped air and the particulate materials occurs. As the pressure becomes extremely high, the void - porosity system will become fully disconnected, consisting only of very minute isolated pores throughout the system. As this destruction of the void porosity system occurs, extremely high internal gas pressures and the compression of the material results in the develop storage of elastic energy. When the compaction pressure is released, a great deal of stored energy will also be released. Thus, current technology indicates that release of the compaction pressure on the compact sample should be done gradually to eliminate the risk of total compact disintegration (References 16,18).

During the process of compacting particulate materials, particle shape, texture, strength, plasticity and elasticity influence the results. Studies have shown that, as the reduction in the larger voids occurs, an increase in the number of smaller voids also occurs. Initial gradation of the material has a significant effect on the amount and type of void reduction which Studies have shown that compaction of single-size occurs. particles results in higher amounts of particle However, with the inclusion of a range of sized fracture. particles, researchers have found that the amount of fracturing diminishes significantly (Reference 17).

The type of machinery used also affects the goal of producing the highest density possible. Frictional forces commonly develop along the walls and the top and bottom of the pressing die. These frictional forces produce shear forces at the wall-particle interface resulting in nonuniform pressure distributions. Theoretically, the compacting pressure should be transmitted throughout the material, providing uniform pressure and constant density. This is not the case, however, as the frictional forces lead to various points of weakness in a pressure-produced compact. Various lubricants can reduce this frictional effect; however, they may have a detrimental effect on the strength produced (References 16,18). Figure 2 shows a typical pressure contour pattern which may develop in a highpressure compact (Reference 18).

PRESSURE CONTOURS kg/cm²

Figure 2. Typical Pressure Contours Which Develop in Prepared Compacts (Reference 18)

E. HIGH-PRESSURE COMPACTION OF PORTLAND CEMENT POWDERS AND PASTES

A thorough search of the literature yielded very little information on the high-pressure compaction of portland cement systems. The search, however, provided substantial amounts of information concerning the high-pressure compaction of portland cement pastes and anhydrous powder (References 19,20,21,22,24,25, 31).

From the literature surveyed, the high-pressure compaction of both cement pastes and anhydrous cement is typically performed with the aid of a specifically designed die or mold (References 20,22,23). High-pressure compaction of a material with a die consists of the placement of the anhydrous powder or cement paste in the die chamber and the insertion of a plunger into this chamber to compact the material. The degree of powder compaction can either be limited by the stroke of the ram or by the level of compaction effort applied (References 20,22).

Because of the extremely high production pressures, dies must be made of high-strength materials. To eliminate as much of the friction as possible between the plunger and the die walls. dies must be made of hardened steel with smoothly tooled surfaces (References 20,22). The tolerance of fit between the plunger and the die chamber is also critical, because powder under pressure will "escape" around the plunger, leading to an increase in the friction between the plunger and the die walls. instances this friction is reduced with the use of In many special lubricants such as stearic acid or mold oils (References 19,20,24).

Generally, high-pressure compaction produces small whether with anhydrous cement, paste o 19,20,21,22,23,24). This is because specimens, paste or mortar 19,20,21,22,23,24). (References smaller specimens permit the use of smaller capacity production equipment such as hydraulic presses and because more specimens can be made quickly and cheaply under stricter quality control more conditions (Reference 22). Compacts of 1 cubic centimeter are commonly produced (Reference 22). Samples have been produced as cubes, cylinders, and disks (References 20,21,22,23).

Propagate ()Provide (

soccessi hereces

Preservess Pressures (2000000)

PERSONAL PROPERTY

The level of compaction pressure varied and seemed to depend on the general intent of the individual laboratory program and the limits of the available equipment. The lowest compaction pressure in the literature was 1500 psi (10.3 MPa) while the highest appeared to be 116,000 psi (800 MPa) (References 20,21). The rate of loading was seldom mentioned in the literature. Two values reported were 4,380 psi (30.2 MPa) per minute in one instance and 11,220 psi (77.4 MPa) per minute in another (References 20,22).

Researchers seem to think it is advantageous to hold the production pressure for a spefified period once the desired pressure level has been reached (References 19,20,22,23,25). In these studies typical holding times of 1 to 3 minutes were commonly used, with excellent results. However, it appears that holding the production pressure for an excessive amount of time has little effect on the initial porosity of the compact or its ultimate compressive strength (References 19,20,22,23).

For an anhydrous material, the quality control of the prepared compacts was much better than for a paste or mortar material (Reference 22). There were no complications concerning the correct amount of water and the mixing. Calculation of the initial porosity of the unhydrated compact was simple as the specific gravity of the powder, bulk weight and and bulk volume provided this value. The mixing water content in this type of compact will be essentially the volume of the void within the cube which will be filled with water upon immersion, and the initial porosity of an anhydrous compact will be a crude measure of the water-cement ratio for a prepared compact.

A unique phenomenon makes paste material attractive for high-pressure compaction tests, because there is an optimum water content for each production pressure. This is defined as the water content at which water from the paste material was not pressed out as a specific compaction pressure was applied (Reference 21). This optimum level decreases as the compaction pressure increases.

The optimum water content is unusual, because compacts prepared with amounts of water increasing from zero to the optimum level exhibited increasing density, while compacts prepared with water contents above the optimum level, exhibited lower densities. The strengths at early ages followed the same pattern; i.e., increasing with higher density and lower porosity. However, over time, the effects of this initial finding became less evident due to the formation of hydration products (References 19,21). In summary, it appears that with highpressure compaction of portland cement, a certain optimum water content acts as a lubricant between the individual particles of cement resulting in denser, lower-porosity materials at a given production pressure.

Studies show that cements with lower specific surface areas (coarser material) compacted at the lower production pressures, produce compacts of lower apparent specific volumes (Reference This means that for the compaction of coarser materials, 20). the resultant porosity is lower than that of the finer materials. This relationship is more evident for the lower production of Concerning the importance particle size pressures. distribution, it appears that a mix combination of two-thirds coarser particles with one-third finer particles will result in the lowest porosity for a given production pressure (Reference A similar coarse-aggregate to fine-aggregate ratio is 20). needed for a well-graded concrete mix.

In the formation of portland cement compacts there is difficulty in controlling the porosity and dimensions of the prepared compact because of expansion upon the removal of the compaction pressure. This is typically overcome by taking the expansion into account and adjusting the quantity of initial material inserted into the die. In this way, fairly constant results can be obtained. This expansion primarily depends upon the characteristics of the powder (References 20,22).

Another problem is termed the "detachment of end caps," referring to the formation of small cracks around the perimeter of the prepared compact at the surface where the plunger applied the compactive pressure. These cracks usually extend into the compact and intersect internally at a certain distance. This results in a "cap-like" failure on that surface of the compact (Reference 20).

Possible explanations for this failure are:

1. Nonuniform powder distribution in the die chamber before the compaction pressure is applied may result in shear concentrations, resulting in nonuniform expansion upon release of the compaction pressure.

2. Insufficient rigidity in the material of the die wall may allow the compacted material to expand radially during compaction causing a shear failure at the point of pressure application.

3. Residual triaxial compression-tension stresses may be created, if the radial pressure that develops between the compact and the die wall does not dissipate as the compaction pressure is released.

4. The outer surface of the compact might develop a crack if, upon the removal of the compaction pressure, a nonuniform expansion is caused by friction between the die wall and the powder.

5. The compact may burst upon removal of the compaction pressure through the release of pockets of compressed air.

It appears that this "cap" failure is minimized by the use of lubricants on the die walls and the ram - powder interface (Reference 20).

Before the hydration process begins, the compact is stable only because of the adhesive forces present between the particles (Reference 20). Curing conditions for compacts prepared in previous work vary as much as the production pressures. Much of the work utilized curing conditions which involved hightemperature curing (References 19,20,22,24,26).

most common curing regime for simple Generally, the compressive strength determinations is the immersion of the compacts in deionized or distilled water for the required time (References 19,21,22,24). The temperature of this water ranged from 68 to 70 F (20 to 25 C). The extreme internal pressure caused the calcium hydroxide produced in the hydration process to leach from the compacts. Some researchers believe that compacts cured in a saturated lime solution will provide zero to minimal leaching (Reference 29). Further studies have proved otherwise (Reference 29).

and hereads boardour seconds records received hereads hereads hopeand humaned received hereads

Testing conditions were numerous and varied. Loading rates varied from 4,350 psi (30 MPa) per minute to 8,000 psi (55 MPa) per minute (References 19,20). In one instance, the surface was ground to obtain a smooth surface for testing (Reference 20). Occasionally, special devices were employed for loading because of the small size of the compacted specimens (Reference 22). There was no record of end-capping.

F. HYDRATION OF PREPARED COMPACTS

The process of hydration in high-pressure compacts is more complex than in normally prepared material. Generally, as the compaction pressure decreases, the resulting compacted material will have a higher degree of hydration (Reference 21,28). The greater the initial porosity level, the greater the degree of structural change within the compact from curing (Reference 28). Compacts prepared at higher compaction pressures, with the resultant increase in structural density, exhibit slower rates of hydration and hydrate at later ages (Reference 28).

However, for the condition of initial porosity where less hydration product is formed, this hydration product has a far greater effect on strength, primarily because of the relatively large increase in surface area contact between the various products in the system. The resulting percentage change in total porosity is also greater (Reference 21). This process is referred to as an increase in the specific binding capacity of the hydration product formed (Reference 28).

It has been generally believed that no new forms of hydration product are produced as a result of high-pressure compaction (References 23,28). Upon visual inspection with sophisticated equipment, products of C-S-H, calcium hydroxide and other common hydration products are clearly visible, however in amounts as the initial porosity decreases (Reference decreasing The characteristic fibrous growths, rosettes of the C-S-H 28). and platlets of calcium hydroxide become less evident materials, as the production pressure increases (Reference 23). In general, the greater the production pressure, the more amorphous the structure of the compact appears. The rate of hydration product formation also influences the microstructure of the compacted material (Reference 23).

The extremely high concentration of cement material present in pressure-prepared compacts may have negative effects on the hydration process. Chief among these are extremely hightemperature evolutions leading to thermal cracking, deleterious expansion of the compact if hydration proceeds at an uncontrolled pace, and the formation of a limiting mechanism which hinders the hydration of material deeper within the compact. Concerning the first two potential problems, subsequent laboratory tests have shown that neither extremely high temperature evolutions nor uncontrolled expansion occurs for smaller-sized compacts, but as the size of the compact increases, these effects may become more influential (Reference 20). Second Second

のないないのであると

VEORD AN

FUNCES

The concept of a limiting mechanism has some merit. Tn theory, there is a limited amount of water for hydration, which permeates to the inner portions of the compacted material. Permeability is further reduced by the formation of hydration products in the outer portions of the compacted material, which can virtually eliminate the exposure of the unhydrated material within the compact to water (References 20,29,30). This hydration reaction has been described as occurring in two stages (Reference 29). The first stage involves hydration occurring through solution with the hydration product precipitating on the surface of the cement grains. This type of hydration occurs upon the initial exposure of the prepared compact to a curing The second stage is hydration through diffusion which solution. occurs at the cement - gel interface. The necessary moisture must pass through the cement gel which has developed around the individual cement grains (Reference 29). Studies show that the rate of take-up of water decreases with decreasing initial porosity and also with increases in curing duration (Reference 20). However, during this second stage the diffusion rate of water through the hydrate layers can be materially increased by raising the curing temperature, as will be shown later in this report.

The average density of the hydration product in high-

pressure prepared material increases with (1) the increase in the degree of hydration and (2) the decrease in the initial porosity (References 29,30). This relationship is a result of pressure build-up due to volume constraints which develop in the compact as the hydration product forms. The hydration products produced by diffusion are denser than formed by solution (References 29,30). The relative amount of hydration product formed by diffusion increases with an increase in degree of hydration and a decrease in porosity (References 29,30).

G. STRENGTH - POROSITY CONSIDERATIONS OF PREPARED COMPACTS

The inverse relation between strength and porosity, when combined with the formation of hydration product relationship, reveals two important general rules. First, compressive strength increases with a decrease in porosity, and second, conditions of greater initial porosity allow for greater formation of hydration products. Therefore, compacts with higher initial porosities will show a greater amount of strength gain with time (although not necessarily greater strength), than compacts with lower initial porosities (References 19,20,25). This relationship between porosity and strength for an initial porosity range from 20 to 35 percent appears to exist as a simple linear relation (References 19,20,25). Elimination of as much initial porosity as possible is the most influential method of producing a high-strength material (References 19,20,25).

The level of initial porosity obtained in compacts of portland cement depends on the amount of compaction pressure used and the coment particle size distribution (Reference 20). An initial porosity level of 20 to 35 percent has been achieved in laboratory studies (References 19,20,25,30).

Assuming the specific volume of evaporable water is unity, the final porosity of a compacted material can be estimated by the quantity of evaporable water at 220 F (105 C) (Reference 29). This estimation accounts for a large portion of the gel porosity as well as the capillary porosity present in a hydrated system. Some observers feel, however, that at the temperature used to determine the "total" free water content, some free water still exists within the paste which contributes to the total porosity content (References 12,13). For this reason, another procedure often used is a loss on ignition test at 1800°F (1000°C) which has produced final porosity levels ranging from 10 to 30 percent (References 19,20,21,26,29). These lower final-porosity values have been achieved with addition of heat to the process of compaction and subsequent curing (References 26,32).

Because of the numerous variables effecting the strength of the compacts, it is very difficult to compare the strengths achieved from the various studies. Compressive strengths as great as 40,000 to 50,000 psi (280 to 340 MPa) have been obtained in 28 days in a simple laboratory situation of high-pressure compaction and moist curing of small compacts, but in many cases the small size of the test specimens had a tremendous influence

(References 20,24). the results Compressive on strengths approaching 95,000 psi (650 MPa) in 28 days have been produced by heating the material while compacting (References 23,24,31). caused a more rapid termed hot-pressing, This procedure, caused a substantial hydration which material rearrangement within the microstructure of the material (Reference 24). This method achieved an actual porosity of 1.8 percent, which is considered to be the closest approach to zero porosity theoretical density for portland cement system attai or attained (Reference 24).

A number of prediction equations have been proposed to predict the strength of prepared compact samples from their (References 19,20). ultimate Theoretical porosity levels strengths of approximately 72,000 psi (500 MPa) at zero porosity been predicted by the compaction of anhydrous powder have Because of the initial anhydrous condition, (References 19,20). value is believed to be a prediction of the strength of this anhydrous clinker material (Reference 20). The bond created in a portland cement system is a hydrate bond, however, and not a ceramic bond as exists in clinker material. Because of this, it appears that the ultimate strength of a hydrated material may be depending primarily on the amount of initial much greater, porosity reduction which can be obtained through high-pressure compaction.

H. POZZOLANIC REACTIONS

A pozzolanic reaction is a chemical reaction in which available siliceous materials react in the presence of water with the free lime or calcium hydroxide $(Ca(OH)_2)$ produced by the hydration process to produce calcium-silicate-hydrates (C-S-H). In equation form this reaction can be written as :

$$CH + S + H => C-S-H$$

where: CH represents calcium hydroxide,

S represents silica dioxide,

H represents water, and

C-S-H represents calcium-silicate-hydrate formed (Reference 13).

lime itself is not cementitious in nature, but The the of a pozzolan to portland cement results in increased addition into transforming the noncementitious lime strength by this cementitious calcium-silicate-hydrates. In way а pozzolanic material increases the concentration of strengthproducing calcium-silicate-hydrates at the expense of free calcium hydroxide.

I. FLY ASH AS A POZZOLAN

ASTM C618 defines a fly ash as a pozzolan normally produced during the burning of coal products in a furnace (Reference 33). A Class "C" fly ash is one which possesses both pozzolanic and cementitious properties and generally contains a considerable amount (>10 percent) of lime (in a combined state). A Class "F" fly ash has pozzolanic properties only and generally contains little or no lime. The Class "F" fly ashes are considered lowlime fly ashes while the Class "C" fly ashes, which contain as much as 40 percent lime in a combined state, are considered high-lime fly ashes (Reference 34).

During the exposure to the extremely high temperatures in the boiler, the noncombustibles in the coal form tiny spherical droplets varying in size from 1 micron to 1 millimeter. Figure 3 shows a example of Class "C" fly ash particles as photographed by a scanning electron microscope and magnified 3000 times.

Figure 3. Typical Class "C" Fly Ash Material Magnified 3000 Times

In general, the finer the fly ash, the greater the amount of pozzolanic activity (Reference 34). Since most fly ash are of the coarser variety, the consequential low surface area results in a slower lime-pozzolan reaction in the presence of water. This is why many portland cement products containing fly ash as a pozzolan often exhibit lower early compressive strengths, but, at later ages, produce substantial strength increases. This development of higher ultimate strengths makes fly ash very attractive as a partial replacement for portland cement (References 1,2,5,8,35).
Better workability, placeability, finishability and pumpability all improve in a mix containing fly ash. Often the water-cement ratio can also be lowered, since much of the water used in a mix is for workability. Fly ash will lower the rate of heat liberation due to a decreased rate of hydration. Impermeability and durability of hardened concrete are also improved (References 8, 35).

Typically, rates of replacement of the fly ash for the portland cement range from 15 to 30 percent and can be done on a pound for pound basis provided a high-lime, good quality fly ash is used (References 1,2,8,34). The optimum amount for replacement depends upon mix characteristics, as well as the reactivity of the fly ash used.

SECTION III

LABORATORY INVESTIGATION

A. Materials and Equipment

The cement selected was Type III cement produced by Texas Industries Inc. at their Midlothian, Texas plant. The fly ash selected was an ASTM C618 Class "C" produced at Caison, Texas and marketed by Gifford-Hill Company of Dallas, Texas. Complete chemical and physical analysis test results for both materials are included in Appendix A.

The die equipment (patent pending) for this study was and developed by Dr. Matti Relis (References designed Figures 4 and 5 show disassembled and assembled 22,29,30,31). of the die, respectively. This particular die is views with the four interior segments tooled for exact fit segmented, and held together by a clamp ring bolted to the baseplate. The compacting ram is then inserted into the chamber formed by the tooled segments. The die is fabricated entirely from A-2 tool steel and heat-treated to a Rockwell C60 hardness.

For a summary of the actual operation of the die, see Appendix B. The die functions on the general principle that, by controlling the depth at which the ram penetrates into the die chamber, all compacts prepared will be nominally of the same size. This is accomplished through the use of the spacer piece which surrounds the ram. As the compactive force is applied, the ram head will come into contact with the spacer disk and at this instant, compaction effort is halted. Porosity of the prepared compacts is controlled by the amount of powder initially placed in the die chamber and the applied compaction pressure.

B. Program Design

The calculated initial porosity, percentage fly ash replacement by weight for cement, and curing duration were selected for investigation. The target values for initial porosity were 20, 23, 26, 29, and 32 percent. This range of values was chosen so that a distinct relationship could be determined concerning the effect of porosity on the other variables. Four fly ash replacement values were selected; 0, 10, 20, and 30 percent by weight of the cement. All compacts were prepared with anhydrous material. Three, 7, 28, and 90-day curing times were utilized.

In addition to the possible combinations of the three main parameters, compacts were prepared for testing in both saturated surface dry (SSD) and oven-dried (OD) condition. The primary purpose of preparing compacts for both of these conditions was to determine an approximation of the final porosity of the compacted material. The process of oven-drying had a significant effect, producing a much higher strength material, probably due in part

AND ALL AND ALL

ž

Figure 5. Assembled View of the Die Used for Compaction

to restrained shrinkage stresses which developed in the dried compact, but primarily due to accelerated water diffusion rates.

Unforeseen complications developed associated with the highpressure compaction of two very different powder materials. Figures 6 and 7 show the variations in size and shape between the rough, angular, irregular shaped particles of the cement and the smoother, more spherical particles of fly ash. Laboratory experimentation demonstrated that the raw fly ash contained some extremely large particles which disrupted the proper highpressure compaction of the compacts. Larger spherical fly ash particles not compatible with the angular crushed cement particles were eliminated by using only fly ash which passed an ASTM 100 wire mesh sieve (i.e., < 150 microns).

This sieving process also virtually eliminated all visible unburned carbon particles from inclusion in the compacts, producing a more compatible gradation of fly ash and more physically stable prepared compacts.

The laboratory program in Table 1 was developed and used throughout the project.

For control purposes and ease in terminology throughout the project, the term "series" was used to define set of prepared compacts having the same parameter values as defined in Table 1. Each "series" consisted of at least six individual compacts (of eight that were prepared), all having the same percentage of fly ash replacement for cement, the same target initial porosity and the same curing duration. A total of 74 series were prepared for testing in the SSD condition and an additional 74 series for the OD condition.

The numbering system shown in Figure 8 was used throughout the project. An alphabetical symbol (B, C, D, or E) was used to denote curing duration; an upper-case letter denoted a compact tested in the SSD condition and a lower-case letter denoted a compact tested in the OD condition. For the parameters of calculated initial porosity and percentage fly ash replacement of the cement material, numerical symbols as denoted in the figure The letter "S" was used to denote when the were utilized. sieved fly ash material was used. cement was used. The letter "R" If no "S" appears, only The letter "R" was added when it became evident that remakes of some compacts were necessary in an effort to collect usable data. In addition, each compact of a particular series was assigned a unique alphanumeric symbol for identification purposes.

C. PERFORMANCE OF THE LABORATORY PROGRAM

The first major step in the performance of the laboratory investigation was to determine the relationships among the amount of powder used, required production pressure, and the porosity produced by that amount of powder. For this determination, 10 series of three to eight compacts each were prepared from various

and a second and an analysis and the second and the second and

Figure 6. Typical Type III Portland Cement Material Used in the Compacts Magnified 300 Times

Figure 7. Typical Class "C" fly Ash Material Used in Compacts Magnified 300 Times

TABLE 1. TARGET-CALCULATED INITIAL POROSITY PERCENTAGE FOR THE LABORATORY PROGRAM

and the second state of the se

Curing Period	đ	ercent Fly Ash Repla	cement For Cement	
(days)	0	10	20	30
e	20,23,26,29,32			
4	20,23,26,29,32	20,26,32 S	20,26,32 S	20,26,32 S
28	20,23,26,29,32	20,26,32 S	20,26,32 S	20,26,32 S
90	20,23,26,29,32	20,23,26,29,32 S	20,23,26,29,32 S	20,23,26,29,32 S

Legend :

1.5 denotes compacts were prepared with sieved fly ash material passing a No. 100 sieve. Note: All parameter combinations were prepared for testing in the Saturated Surface Dry and Oven Dried conditions.

Figure 8. Compact Series Numbering System

amounts of anhydrous cement powder. The initial porosities were then calculated using the bulk volume, weight, and specific gravity of the cement. A linear regression analysis was performed to relate the amount of powder added to the die to the porosity obtained upon full compaction. Full compaction is defined as the compaction effort at the time the ram head contacts the spacer piece.

The resulting linear regression equation was:

$$P_i = -17.8013 W_0 + 71.2672$$
 (4)

where

P_i

is the calculated initial porosity, and

W is the weight of powder placed in the die for compaction.

The r^2 or coefficient of determination for this equation is 0.994 (Reference 37). Further discussion of the development of this equation is contained in Appendix C.

Because of this excellent relationship, it was simply a matter of solving the equation to determine the amount of powder to be used in producing a desired initial porosity. It is important to note that W is the weight of powder placed in the die before the compaction process and not the weight of the compact upon preparation. This method of weighing powder accounts for the minor loss of powder between the ram and the die walls during the compaction process.

The next major step, was to determine the powder weights needed to produce the desired porosity at each level of fly ash replacement for the cement. This was accomplished through the determination of a factor which accounted for the specific gravity of the fly ash and the percent replacement of fly ash in a particular compact. Once this factor was calculated, the needed powder weight necessary to produce a desired porosity was determined by multiplying the appropriate weight of cement by the appropriate factor. A complete discussion of this procedure is contained in Appendix C.

Figure 9 shows the essential steps followed in the production of the compacts. A more in-depth description is given in Appendix B. As shown in Figure 9, after curing, the compacts were weighed and measured in the SSD condition. Depending on the initial intent of the individual series, the compacts were then tested for compressive strength in the SSD condition or placed in a convection oven at 220 F (105 °C) for determination of the final porosity. These OD compacts were also tested for compressive strength.

The last phase of the laboratory investigation involved the data preparation and analysis of all the various dimensions and weights obtained during the actual performance.

Figure 9. Flowchart of Laboratory Procedures

26

Section 20

The initial porosity was determined for each of the individual compacts prepared, from the initial weight and dimensions. The equation used for the calculation of the initial porosity was:

$$P_{i} = 1 - ((W_{1}/V_{0})((\&C/SG_{0}) + (\&FA/SG_{fa})))$$
(5)

where

 P_i is the calculated initial porosity,

 W_1 is the initial weight of the prepared compact,

V is the volume of the prepared compact,

%C is the percentage by weight of cement in the compact,

%FA is the percentage by weight of fly ash in the compact,

SG_ is the specific gravity of the cement, 3.13 ,

 SG_{fa} is the specific gravity of the fly ash, 2.71 for the unsieved fly ash material and 2.75 for the sieved fly ash material.

The derivation of this equation is given in Appendix D. Once the calculated initial porosity was determined for each individual compact of a certain series, an average calculated initial porosity was determined for that series. The standard deviation and coefficient of variation were also determined for each series. The same procedure was also followed for the various data contained in Appendix E. The values for each unique series are an average of the values for the six to eight individual compacts of each series. All further data analyzed in the following sections are based on these average values for each individual series.

SECTION IV

LABORATORY RESULTS

A. INTRODUCTION

TARACTER PROVERSE BUILDAD MAAAAAAA

Many of the data analyses contained in this section utilized linear regression analysis. Appendix F contains the pertinent data for each analysis performed and is referenced to the figure for which the equation applies. As the equations were generally not determined for predictive purposes, the figures in this section include only the coefficient of determination (r^2) for each relationship.

B. RESULTS OF DIE OPERATION

Figure 10 shows the relationship between the weight of the prepared compacts and the calculated initial porosity achieved for the various percentages of fly ash replacement for cement. Note the distinct delineation between the various percentages of fly ash. For all practical purposes, the weight values listed in this figure may be used for the approximation of the amount of powder material needed to produce a certain initial porosity. Judging frc... the coefficients of determination listed in the figure, the linear relationships determined between prepared compact weights and calculated initial porosities are excellent.

Furthermore, it appears that the initial prediction equation (Equation (4) in Section III and Equation (C-2) in Appendix C) for cement only (zero percent fly ash) can be used to determine amount of powder necessary to produce a certain initial the For the various percentages of fly ash (10, 20, 30 porosity. the initial powder weights used appear to be less than percent), the amount actually needed to produce a target initial porosity. This can be observed by entering Figure 10 with the weight of powder material needed to produce a desired initial porosity at a certain percentage of fly ash replacement, as taken from Table C-3, and reading the corresponding calculated initial porosity This signifies that the factors which which should be obtained. were used to determine the amount of material containing fly ash were slightly lower than needed. Perhaps the specific gravity of the fly ash material was greater than the 2.75 value determined in the laboratory and used throughout the project. This deviation did not alter the results.

Figure 11 shows the relationship between the weight of the prepared compacts and the production pressure. As the weight of the compact increases, the production pressure also increases. plotted relationship Note that the is linear when semilogarithmically, and the accompanying coefficients of determination signify an excellent relationship between the two. in Figure 10, a distinct delineation between the Again, as various percentages of fly ash can be observed. For а particular production pressure, as the percentage of fly ash

Figure 10. Prepared Compact Weight vs. Calculated Initial Porosity Relationship for 0, 10, 20, and 30 Percent Fly Ash Replacement

ないであると

San de la casa de la c

La strand and

annane sweeter

29

decreases in the compacts, the weight of the powder needed and the resulting weight of the prepared compacts increases. This is because of the lower specific gravity of the fly ash.

There also appears to be a much greater difference between the weight of the prepared compacts containing 0 percent fly ash and 30 percent fly ash at the higher production pressures. The reason is unclear. One possible explanation is that, at the higher production pressures, more powder material is needed and the effects of an inaccurate specific gravity value for the fly ash may be compounded. Or possibly the contrast in particle shape and texture of the two materials causes the amount of compaction and porosity reduction to vary. A third possibility is that increased particle surface area in the compact is created by crushing fly ash particles in the compact at extremely high If this is the case, the formation of a greater pressures. number of smaller particles resulted in larger porosities, thus, less powder weight was required to achieve full compaction.

From the excellent relationships of prepared compact weight, calculated initial porosity, and production pressure, the calculated initial porosity and the Base 10 logarithm of production pressure can be considered synonymous in the analyses of data. Figure 12 shows that calculated initial porosity is inversely proportional to the log of the production pressure. Note the excellent correlation (r = 0.991) although data for all percentages of fly ash were used. Hereafter, the terms, "production pressure" and "porosity" are considered synonymous.

C. RESULTS PERTAINING TO THE INITIAL PARAMETERS

From the final porosity determination of the OD compacts, regression analysis was performed to relate the final porosity to the initial porosity. From the equations, the final porosity of the compacts tested in the SSD condtion were estimated and used for data analysis purposes. Since the final porosity depends on the initial porosity (and the synonomous production pressure), the relationship between final porosity and production pressure was analyzed (Figure 13). The best correlations were achieved by considering each percentage of fly ash replacement separately. a given initial porosity, as the percentage of fly ash For was increased, the final porosity also increased. This indicates the formation of less hydration product as the percentage of fly ash increases.

The general relationship of the lines representing the various percentages of fly ash indicate that the effects of fly ash on the final porosity become less as the production pressure is decreased (or the initial porosity is increased). This indicates that, at the higher initial porosity conditions, regardless of the percentage of fly ash, porosity is reduced the same amount by the formation of hydration products. At the lower initial porosity conditions, the formation of hydration product and the resulting final porosities are lowest when <u>no</u> fly ash is used. It should be noted, however, that FINAL strengths

1 - araba tara tarak

and the second of the second states of the second s

. (6ha: 6% "B'h. '8ha.')

and the states

\$

follow the well-known rules governing strength development, which will be discussed in detail later in this report. One possible explanation may be that the low initial porosity conditions increasingly inhibit the formation of hydration products. key point is that, with increasing amounts of fly ash, Another cement is present, which reduces the amount of hydration less products and calcium hydroxide formed. This may be directly related to the amount of calcium hydroxide available for Since calcium hydroxide will only form in pozzolanic reaction. available free space, the low porosity may reduce both hydration and pozzolanic reactions.

Density determinations were made at the three distinct stages of the testing process as follows, (1) the initial density of the compacts before hydration, (2) an SSD density as the compacts were removed from the curing solution; and (3) an OD density after oven-drying for 48 hours. Figures 14, 15, 16, and demonstrate the relationships between the various densities. 17 as the production pressure increases, the densities As expected, of the compacts increase and porosity decreases. The difference the OD density and the initial density is a measure between of Of course, the amount of formed hydration product. the OD compact will still contain a certain amount of combined water in various stages. If this quantity of combined water is considered to be a constant percentage of the hydration product, then the general trends should be valid.

14 shows the density - production Figure pressure relationships for the 100 percent portland cement compacts. A close examination of the relationship between the OD density and the jinitial density reveals that the difference in density (0.17 g/cm) at the lowest production pressure is greater than the difference in density (0.11 g/cm^3) at the higher production pressure. This signifies the formation of more hydration products at the lower production pressures, which have higher porosities. Figures 15, 16, and 17 show that similar relationships exist for various percentages of fly ash replacements. the the As percentage of fly ash in the compacts increases, the <u>differences</u> in the density-changes at the lowest and highest production pressures decreases. This is believed to signify the formation less hydration products as the percentage of fly ash of is increased, coupled with the formation of less hydration products as the production pressure is increased.

Since the density of the compacts is a function of the level of porosity they contain, examination of the change in porosity from the initial to the final condition should tend to support the statement that less hydration occurred as the production pressure increased, as Figure 18 shows. This finding focuses attention on the strength properties of the hydrate. Regardless of the quantity of hydrate, the highest strengths were achieved at the lowest porosities, as will be discussed later.

Figure 18 is a normalized representation of the porosity - production pressure data obtained during the investigation. The

-141

where the

An Interior Chief Atal

•

للمشلمان

and worked house and the second second many and the second many and

AL AL

initial porosity line is the same as shown in Figure 12. To determine the change in porosity from the initial to final conditions, the final porosity line was added. For compacts prepared at the highest production pressure, the total average change in porosity was 8.41 percent. The compacts prepared at the lowest production pressure had an average change in porosity of 10.68 percent. This supports the statement that increased hydration occurs at conditions of greater porosity, resulting in a greater percentage reduction in porosity (but not necessarily a correspondingly large increase in final strength). Note further that, at the highest production pressure, the resulting change in porosity (8.41 percent) was a 41 percent reduction in porosity. At the lowest production pressure, the resulting change in porosity (10.68 percent) resulted in only a 31 percent reduction The formation of hydration products in compacts in porosity. prepared at higher production pressures influences porosity reduction much more than hydration products formed in compacts prepared at lower production pressures. This agrees with the principle of increased specific binding capacity as discussed in Section II.

Figure 19 provides some interesting insight into these relationships. In general, the relationship between production pressure, reduction in porosity, and the percentage of fly ash replacement is such that the formation of hydration products <u>increases</u> as the production pressure and percentage of fly ash <u>replacement decreases</u>. On a percentage basis, however, the hydration products formed in compacts produced at higher production pressures have a greater influence on porosity reduction than compacts prepared at lower production pressures.

At the 0 percent fly ash level, a wide variation in porosity reduction occurs, depending on the production pressure and resulting initial porosity. However, at the 30 percent fly ash level, the percent reduction in porosity is changed much less with changes in production pressure. This shows the hydration rate of 100 percent portland cement compacts (measured as a percentage change in porosity over a given time period) is greatly influenced by differing compaction pressures and the associated changes in initial porosity. Cubes containing 30 percent fly ash, however, appear to be relatively insensitive to such changes which may be because less cement is present in these compacts.

D. COMPRESSIVE STRENGTH RESULTS

Figure 20 shows the SSD compressive strength results in relation to production pressure for the 100 percent portland cement compacts. Generally, as the production pressure increased, the compressive strength at all ages also increased. The influence of curing duration on the resulting compressive strength is also clearly evident. There was a significant

Figure 19. Percent Reduction in Porosity vs. Percentage Fly Ash Replacement Relationship at 14,000, 70,000, and 175,000 psi Production Pressures (Note: 1 psi = 0.006895 MPa)

تار كالاستعماد المحادث

ŝ

SSD Compressive Strength vs. Production Pressure Relationship for 100 Percent Portland Cement Compacts at 3, 7, and 28 Days of Age (Note: 1 psi = 0.006895 MPa) Figure 20.

JEELE COLORING

anterial interve little

<u>ͺ</u>ϒϗ;;Ϡϗ;ͺϼϗ;ϧϼϗͺϼϧ;ͺϿ;ϒͺϧϗʹͺϼϧϨͺϗϥͺʹϧϥϟͺϷϧϨͺϿϧϟʹ;ϧϥʹϿϧϟʹϧϥʹϿϧϟʹʹϧϥʹϽϧͺΫʹϧϥʹ

here a statistic for the sector of the

increase in strength at all production pressures from the 3 to 7 day curing period and a smaller increase in strength which occurred from 7 to 28 days. Strength data for cement-only compacts cured for 90 days were not available.

Figure 20 also shows the magnitudes of strength increases at various production pressures. Note the decreasing difference in the magnitude of strength gain as the production pressure was increased. For higher production pressures, greater strengths at early ages were developed. However, due to increased hydration with higher porosity, the strengths of the compacts produced at the lowest production pressures approach the strengths of the compacts prepared at the higher production pressure, as curing duration increases. This trend in strength increase at lower production pressures again supports conclusions drawn from the earlier figures that a greater amount of hydration occurs in compacts with higher porosity.

Figures 21, 22, and 23 show the relationships between SSD compressive strength and production-pressure for various fly ash replacements. The same general trends that existed for the 100 percent portland cement compacts are evident. As curing the SSD compressive strength also duration was increased, increased, regardless of the percentage of fly ash. As the percentage of fly ash was increased, the strength at the lower production pressures more closely approached that of the compacts prepared at the higher production pressures. Evidently, as the percentage of fly ash is increased, the relationship of a higher pressure compaction producing a higher strength material This is particularly evident for the longer curing diminishes. durations.

Figures 24, 25, 26, and 27 show that increased hydration, formed with higher initial porosity and lower pressure, had a positive effect on relative increase in the compressive strength. The influence of curing duration on increasing strength is also evident from these figures. Generally, these figures show that from either 7 to 28 days, or 7 to 90 days, the compacts prepared the lowest production pressures experienced the greatest at relative increase in SSD compressive strength. This can be misinterpreted, because the compressive strengths of the compacts prepared at higher production pressures were already extremely high because of the mechanical reduction of porosity. Thus, the resulting percent change in strength was low. On a relative basis however, these figures do show the tremendous influence of the increased formation of hydration products on the compressive strength.

While previous figures presented the influence of curing duration on the compressive strength, the following figures present the influence of the fly ash on compressive strength. Figure 28 shows the influence of final porosity on the 7-day compressive strength of compacts containing various percentages of fly ash. Increasing the percentage of fly ash in the compacts noticeably decreased compressive strengths. This is a

SSD Compressive Strength vs. Production Pressure Relationship at 7, 28, and 90 Days of Age for Compacts Containing 10 Percent Fly Ash (Note: 1 ps1 = 0.006895 MPa) Figure 21.

Ľ

SSD Compressive Strength vs. Production Pressure Relationship at 7, 28, and 90 Days of Age for Compacts Containing 30 Percent Fly Ash (Note: 1 psi = 0.006895 MPa) Figure 23.

.

date and the

R

Figure 24. Percent Increase in SSD Compressive Strength From 7 to 28 Days vs. Production Pressure Relationship for 100 Percent Portland Cement Compacts (Note: 1 psi = 0.006895 MPa)

.

THE PARTY PARTY I TANK THE AVAILABLE PRO

Figure 25. Percent Increase in SSD Compressive Strength From 7 to 28 and 7 to 90 Days vs. Production Pressure Relationships for Compacts Containing 10 Percent Fly Ash (Note: 1 psi = 0.006895 MPa)

Figure 26. Percent Increase in SSD Compressive Strength From 7 to 28 and 7 to 90 vs. Production Pressure Relationships for Compacts Containing 20 Percent Fly Ash (Note: 1 psi = 0.006895 MPa)

No. Alexandre

ALLOW WIND STREETS STREETS STREETS

SCOULD PROVIDE ACCOUNT ACCOUNTS ACCOUNTS ACCOUNTS

Figure 27. Percent Increase in SSD Compressive Strength From 7 to 28 and 7 to 90 vs. Production Pressure Relationships for Compacts Containing 30 Percent Fly Ash (Note: 1 psi = 0.006895 MPa)

SSD and OD Compressive Strength vs. Final Porosity Relationghips at 7 Days of Age for Compacts Containing 0, 10, 20, and 30 Percent Fly Ash (Note: 1 psi = 0.006895 MPa) Figure 28.

reasonable result at this early age, because the pozzolanic reaction is slow in developing and because less cement is present. The parallel relationships of the lines draw attention to the equality of the strength reductions as the percentage of fly ash was increased for all levels of porosity shown.

For comparison purposes, the compressive strengths achieved in the OD compacts are included on this figure. Note the large increase in strength of the compacts due to the oven-drying procedure and the pronounced effects of low levels of porosity on The highest strength occurred at the lower compact strength. porosities at all ages tested, which could mean that the greatest shrinkage stress developed in the low porosity restrained In typical concretes, current theory indicates that specimens. low-porosity conditions provide for less shrinkage of the material and, therefore, formation of less restrained shrinkage Because of this, the high strengths cannot be stress. attributed wholly to the formation of restrained shrinkage stress. To the contrary, the major factor driving this strength porosity relationship in the OD compacts could be the rapid formation of additional, very influential, strength-producing products caused by accelerating the water diffusion hydration This would explain the rates during the oven drying process. higher strengths at the lower porosity conditions.

29 shows the influence of final porosity on the Figure compressive strength following 28 days of curing. Again. increasing amounts of fly ash reduced the compressive strength at all porosity levels. Observing the SSD data, there appears to be a more significant increase in strength for the 0 and 10 percent of fly ash replacements than for the 20 and 30 percent. This figure suggests that the replacement of cement with up to about 10 percent in the high-pressure compaction process has very little effect on 28 day strength. With replacements over 20 percent, however, the reduction in strength becomes substantial Observing the OD strength data, this trend is at 28 days. supported as the compacts containing 30 percent fly ash exhibited lower strengths than the compacts containing lesser amounts of fly ash.

Figure 30 shows the relationship which existed at 90 days of curing between the final porosity and compressive strength. Compressive strength data for the 100 percent portland cement compacts were unavailable at 90 days. However the same general trends that existed for the 7 and 28 days of age appear to exist for 90 days of curing. For the higher-porosity conditions, a similar result can be observed for amounts of fly ash greater than 20 percent. At the lower-porosity conditions this point is not as obvious. Again observing the OD strengths, particularly at the lower porosities, the delineation between 10 and 20 percent fly ash producing very different strengths becomes visible.

At the initial outset of the laboratory investigation, the influence of fly ash on the strength of the prepared compacts was

SSD and OD Compressive Strength vs. Final Porosity Relationships at 28 Days of Age for Compacts Containing 0, 10, 20, and 30 Percent Fly Ash (Note: 1 psi = 0.006895 MPa) Figure 29.

Figure 31. Percent Increase in SSD Compressive Strength vs. Percentage Fly Ash Replacement Relationships at 7, 28, and 90 Days of Age

200000000000

of primary importance. As shown, the fly ash had an adverse effect on the strength of the compacts at all percentages of replacement. Figure 31 shows the marked effects of fly ash on the reduction of SSD compressive strength in the prepared compacts at all ages investigated. This is also a normalized relationship in that the SSD compressive strengths used for determination of the relationships included all production pressures.

Generally the figure shows that, for all production pressures, the SSD compressive strength increased approximately 12 percent of the 7-day strength from 7 to 90 days; regardless of the percentage of fly ash in the compact. The figure also shows that for each 10 percent of fly ash replacement in the compacts, 6 to 7 percent of the SSD compressive strength was lost at all curing durations, regardless of production pressure.

PUPPER STATAA WORKAN STATET, AASSA

The influence of fly ash can be further established by entering the figure at the control point of zero percent increase in SSD compressive strength and compare the strengths of the of the fly ash replacements at the various durations. From this exercise, for approximately 10 percent fly ash cured for 28 days, the strength is the same for 100 percent portland cement cured for 7 days. Likewise for the 20 percent fly ash value, 90 days curing is required to achieve the same SSD compressive strength as 100 percent portland cement cured for 7 days. For 30 percent fly ash, curing periods up to 90 days were insufficient to produce strengths equal to 7 day strengths of 100 percent portland cement.

Therefore, in terms of SSD compressive strength, no optimum percentage of fly ash existed for up to 90 days of moist curing. At least no particular percentage of fly ash resulted in an increase in strength over that of the 100 percent portland cement compacts. At all durations up to 90 days, increasing of fly ash produced incrementally lower SSD crengths. It appears, although not conclusively, percentages SSD compressive strengths. that fly ash replacement up to 10 percent had a less significant effect on reducing strength than replacement percentages of greater than 20 percent. Perhaps the 90-day curing duration utilized was insufficient to allow for the pozzolanic reaction to fully become established or, as discussed earlier, perhaps the high-pressure compaction process had a negative effect on the pozzolanic reaction.

Because of the excellent linear relationships which existed, multiple linear regression analyses were performed. The resulting equation, determined by combining all of the various parameters, is:

> SSD f'c = -303.8 FA + 4401.7 \log_{10} Age + 4441.5 \log_{10} PP - 497.1 P_i - 2666.4 P_f (6) - 66072.5 Den_i - 26286.3 Den_f + 291693.0

where SSD f'c is the predicted SSD compressive strength based on the parameter values supplied,

FA is the percentage of fly ash in the compact in percent,

 Log_{10} Age is the base 10 logarithm of the curing age in days,

 Log_{10} PP is the base 10 logarithm of the production pressure in psI,

P_i is the initial porosity of the compact in percent,

P_f is the final porosity of the compact in percent,

Den, is the initial density of the compact in grams per cubic centimeter,

Den, is the final density of the compact after removal of free water by oven drying at 220° F (105°C) for 48 hours, in units of grams per cubic centimeter.

The multiple R or the multiple coefficient of correlation for this equation is 0.950. This equation was developed from all the SSD data obtained from the various series.

Concerning this equation, two important points must be made. , logarithmic values of the curing duration and production First, pressure must be used with the other data collected to obtain a high degree of correlation. Second, this equation was developed from a very definite range and combination of values as contained in Appendix E. Chief among these is the influence of production pressure on the porosity and density conditions as in Figures 12 through 17. The multiple-regression shown equation discussed here is based on the relationships shown in these figures. The equation is based on the fact that higher production pressures will produce corresponding lower-porosity conditions and resulting higher densities. Concerning typical values. the above-mentioned figures should be consulted. For a production pressure of approximately 185,000 psi (1,275 MPa), the initial porosity used must be in the 20 to 21 percent range with an initial density in the range of 2.4 to 2.5 g/cm^3 . Conversely, for a production pressure of approximately 14,000 to 15,000 psi, a corresponding initial porosity of 32 to 33 percent and initial density of 2.0 to 2.1 g/cm³ must be used for correct Realistic values for the final application of the equation. porosity and final density, depending on the curing duration and percentage of fly ash must also be used to achieve reliable strength predictions.

A satisfactory predictive equation of the SSD compresive strength of compacts prepared with the die was developed using only a few of the parameters involved. Multiple linear regression analysis yielded:

Seed hyperses subscript a subscript property seeden

SSD f'c = -248.7 FA + 5904.7 Log₁₀ Age + 4552.8 Log₁₀ PP + 17329.9

The multiple R or coefficient of multiple correlation for this particular equation is 0.924. Again, as with the previous equation, this equation was developed from data on all the SSD compacts and series tested.

The use of a realistic relationship between a higher production pressure producing a greater initial density is a correct compressive extremely important for strength prediction. Figures 14 through 17 show the typical relationships between production pressure and initial density resulting achieved, depending on the percentage of fly ash. Initial porosity was not necessary in this prediction equation, because the excellent inverse relationship which exists between of porosity and the production pressure. Parameters chosen for this equation have values which are readily available once a compact been prepared and make this equation quite useful for the has miniature compacts, keeping in mind the proper interrelationships and limitations on density and porosity.

Turning now to the OD compressive strengths, and using the same parameters, the following equation was developed by multiple linear regression:

OD f'c =
$$-261.8 \text{ FA} + 1746.7 \log_{10} \text{ Age } +$$

15981.2 $\log_{10} \text{ PP} - 20814.2$ (8)

The multiple R or coefficient of multiple correlation for this particular equation is 0.955. This equation was developed from data on all the OD compacts tested and, as with Equations (6) and (7), must be used with realistic, interrelated values.

32 illustrates relative influence of age Figure and accelerated OD curing on predicted compressive strengths of 100 percent portland cement compacts. Several important results can be seen from an examination of the figure. First, extremely high strengths are achieved very rapidly in these pressed compacts. The 3-day predicted strengths (earliest age measured) are 42,900 DSI. (300 MPa) for the SSD curing conditions and 59,900 psi (410 MPa) for the OD curing conditions. If the relationship remains linear for even earlier ages, it could mean 1-day strengths of 40,100 psi for the SSD curing conditions and 59,100 psi (410 MPa) for the OD curing condition. These are remarkable values, to say the least, and raise interesting possibilities for the rapid production of ultra-high-strength cement products. Second, since the vast majority of the strengths are achieved at a very early age, relatively small increases in strength occur from continued

(7)

curing. According to Equation (7), the SSD compressive strengths increase by about 5,900 psi (40 MPa) with each order-of-magnitude increase in age (1 to 10 days, 10 to 100 days, etc). According to Equation (8), the OD compressive strengths increase by only about 1,750 psi (10 MPa) with each order-of-magnitude increase in Third, the accelerated curing by oven-drying following age. water immersion dramatically increased strength, even though the specimens were being dried, but the rate of continued hydration The OD equation predicts a 100-day with age was reduced. strength of 62,500 psi (430 MPa). (If steam curing were Finally, utilized, the results should be even more dramatic.) caution should be exercised when using these equations for predictive purposes (especially Equation (8)) as they were developed for one brand of Type III cement cured under specific conditions. Thus, the results should not be generalized.

SECTION V

CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The following conclusions were drawn from an analysis of the literature surveyed and the laboratory investigation performed.

1. High-pressure compaction has been shown to be an excellent means of producing a low-porosity condition which results in ultrahigh compressive strengths in cementitious materials, especially at early ages.

2. The level of porosity present in prepared portland cement compacts, both initially and at the completion of curing, exhibited a linear relationship with the ultimate compressive strength (for the 20 to 32 percent initial porosity and the resulting 8 to 20 percent final porosity range).

3. In all instances, the greater the reduction of initial porosity due to high-pressure compaction, the greater the resulting strength, even though less hydration occurred.

4. In all instances, the higher the initial porosity the greater the amount of porosity present upon completion of curing. For compacts with a greater initial porosity, a greater amount of hydration product formed which resulted in a much greater percentage strength increase in the compact.

5. Over time, the strength of the compacts prepared at higher initial porosities appears to approach the strengths of the compacts prepared at lower porosity levels.

6. The high-pressure consolidation of portland cement and the Class "C" fly ash can be accomplished with excellent results. Compatibility of the materials, however, must be considered in the preparation of compacts containing fly ash. The use of a fly ash passing an ASTM 100 sieve produced a more stable compact than the use of the coarser raw fly ash material.

7. An optimum percentage of fly ash replacement of the cement in the miniature compacts could not be determined. Increasing replacement of the cement with fly ash resulted in decreasing compressive strengths at all ages of water curing. On a percentage basis, approximately 5 to 6 percent loss in strength was experienced at all durations with each 10 percent replacement of cement with fly ash.

8. The expected increased strength from the pozzolanic reaction was not realized when fly ash was used. Evidently the pozzolanic reaction required longer time or the high-pressure compaction process hindered the formation of needed calcium hydroxide.

9. Oven-drying of the prepared compacts to determine the amount of free water present as a measure of the final porosity produced significant compressive strength increases in the compacts tested, probably caused by the accelerated water diffusion rates driving additional hydration.

10. A multiple linear regression analysis of the SSD data yielded the following predictive equation for SSD compressive strength:

SSD f'c =
$$-248.7$$
 FA + 5904.7 Log₁₀ Age +
4552.8 Log₁₀ PP + 17329.9 (9)

The multiple coefficient of correlation for this equation is 0.924.

11. A multiple linear regression analysis of the OD data yielded the following predicitve equation for OD compressive strength: $f'c = -261.8 FA + 1746.7 Log_c Age +$

$$15981.2 \log_{10} PP - 20814.2$$
(10)

The multiple coefficient of correlation for this equation is 0.955.

12. These compressive strength prediction equations are only valid for values encountered in this study. They predict very high early strengths, accelerated significantly by oven-drying, and relatively slow increases in strength over time.

B. RECOMMENDATIONS

The following recommendations are offered:

Careful consideration should be given to the order in 1. which the compacts are prepared. For this particular study, all compacts for a particular duration were prepared before the compacts of another duration. Because of the data variability, the determination of successive changes in porosities and densities for the various durations was not possible. Excellent however, were obtained at each duration when the results, compacts cured for that duration where compared for porosity and density change relationships. Because of data variability, the intent of the laboratory investigation be actual should considered when determining the order in which to prepare the compacts.

2. Even though excellent relationships were determined concerning compressive strength and the various other parameters, the authors think that the strength results in terms of

consistency and uniformity could be improved by using a special device designed specifically for testing of the miniature cubicle compacts.

שמיט הריבון

3. Exposing the freshly prepared compacts to a fine mist for initial periods of hydration and compact stabilization before complete immersion could help to reduce the quantity of compacts which fail prematurely in the curing solution.

C. FUTURE RESEARCH

This project raised the possibility of further research topics relating to the preparation of high-strength materials through high-pressure compaction.

1. Since the initial intent of this study was to determine the effects of fly ash on producing a higher-strength material by exposure to pozzolanic reaction, future efforts might consider increasing the time in which the compacts are moist-cured so that the full pozzolanic reaction can occur.

2. Additional work should be performed to investigate the effects of high-pressure compaction on the pozzolanic reaction. This will help determine the feasibility of utilizing fly ash in a high-pressure compaction system.

3. Considerable work needs to be done concerning the proper combination of a range of particle sizes to produce a higher-strength material through high-pressure compaction. Determination of the degree of particle crushing which occurs at the high production pressures is also critical to this determination of the optimum particle gradation involved in the high-pressure compaction process.

4. Considerable work also remains pertaining to the amount and type of hydration products formed in compacts having low porosities.

5. More effort should be directed at the effects of accelerated curing using elevated temperature and possibly steam. The authors find it intriguing that compressive strengths in excess of 72,000 psi (500 MPa) were achieved by oven-drying the specimens after water-curing. If hot-pressing and steam-curing were employed, the compressive strengths could even be higher.

REFERENCES

1. Anderson, David F. and Ryan, David, "High Strength Concrete in Houston and Dallas - A State of the Art Review," paper presented before the 1984 Spring Convention of the ASCE, Dallas, Texas, April 6,1984.

2. Schmidt, William and Hoffman, Edward S., "9000 psi Concrete - Why? Why Not?," <u>Civil Engineering - ASCE</u>, Vol.45, No.5, pp.52-55, May 1975.

3. Swamy, R. Narayan, "The Nature of Strength of Concrete," <u>Progress</u> in <u>Concrete Technology</u>, Canada Center for Mineral and Energy Technology, MRP/MSL 80-89(TR), Ottawa, Canada, 1980.

4. <u>High Strength Concrete</u>, National Crushed Stone Association, Washington, D.C., September 1976.

5. Blick, R.L., "Some Factors Influencing High-Strength Concrete," Modern Concrete, Vol.36, No.12, pp.38-41,47, April 1973.

6. Aitcin, Pierre-Claude, "How to Produce High-Stength Concrete," <u>Concrete</u> <u>Construction</u>, Vol.25, No.3, pp.222-230, March 1980.

7. Perenchio, W.F., <u>An Evaluation of Some of the Factors</u> <u>Involved in Producing Very High-Strength Concrete</u>, Bulletin RD014, Portland Cement Association, Skokie, Illinois, 1973.

8. Blick, Ronald, Petersen, Charles and Winter, Michael, "Proportioning and Controlling High Strength Concrete," <u>Proportioning Concrete Mixes SP 46-9</u>, American Concrete Institute, Detroit, Michigan, pp.141-163, 1974.

9. Harris, A.J., "High Strength Concrete: Manufacture and Properties," <u>The Structural Engineer</u>, Vol.47, No.11, pp.441-446, November 1969.

10. Harris, A.J., "Ultra High Strength Concrete," <u>Journal of</u> <u>the Prestressed Concrete Institute</u>, Vol.12, No.1, pp.53-59, February 1967.

11. Roy, Della M. and Gouda, George R., "Porosity Strength Relation in Cementitious Materials with Very High Strengths," Journal of the American Ceramic Society, Vol.56, No.10, pp.549-550, October 1973.

12. Neville, A.M., <u>Properties of Concrete</u>, 3rd edition, Pitman Publishing Co., Marshfield, Massachusetts, 1981.

13. Mindness, Sidney and Young, J. Francis, <u>Concrete</u>, 1st edition, Prentice-Hall Inc., New Jersey, 1981.

14. Troxell, G.E., Davis, H.E., and Kelly, J.W., <u>Composition</u> and <u>Properties</u> of <u>Concrete</u>, 2nd edition, McGraw-Hill Book Company, New York, 1968.

15. Abrams, Duff A., "Design of Concrete Mixtures," <u>A Selection</u> of <u>Historic American Papers on Concrete 1876-1926</u>, Publication SP-52, American Concrete Institute, Detroit, Michigan, 1976.

16. Pietsch, Wolfgang, "Pressure Agglomeration - State of the Art," Proceedings of the 2nd International Symposium on Agglomeration, Atlanta, Georgia, March 6-10,1977, <u>Agglomeration</u> <u>77</u>, Vol.2, K.V.S. Sastry, Editor, New York, New York, 1977.

17. Onoda, George Y., Jr., and Hench, Larry, Editors, <u>Ceramic</u> <u>Processing Before Firing</u>, John Wiley and Sons, Publisher, New York, New York, 1978.

18. Gray, W.A., Editor, <u>The Packing of Solid Particles</u>, Chapman and Hall, Ltd., London, England, 1968.

19. Bajza, Adolf, <u>Physical Properties of Cement, Cement Paste</u> and <u>Mortar Compacted By High Pressure: Influence of Compacting</u> and <u>Curing Procedure</u>, Cement and Concrete Association, London, England, October 1970.

20. Lawrence, C.D., <u>The Properties of Cement Paste Compacted</u> <u>Under High Pressure</u>, Research Report 19, Cement and Concrete Association, London, England, June 1969.

21. Skalny, Jan P. and Bajza, Adolf, "Properties of Cement Pastes Prepared by High Pressure Compaction," <u>Journal of the</u> <u>American Concrete Institute</u>, Vol.67, March 1970.

22. Relis, M. and Soroka, I., "Prediction of Standard Compressive Strength of Cement by Means of Accelerated Testing," <u>Materiaux Et Constructions</u>, Vol.7, No.38, 1974.

23. Roy, D.M., Gouda, G.R., and Bobrowsky, A., "Very High Strength Cement Pastes Prepared By Hot Pressing and Other High Pressure Techniques," <u>Cement and Concrete Research</u>, Vol.2, No.3, pp.349-366, 1972.

24. Roy, D.M., and Gouda, G.R., "High Strength Generation in Cement Pastes," <u>Cement and Concrete Research</u>, Vol.3, No.6, pp.807-820, 1973.

25. Bajza, Adolf, "On the Factors Influencing the Strength of Cement Compacts," <u>Cement and Concrete Research</u>, Vol.2, No.1, pp.67-78, 1972.

26. Bajza, A., Salaj, A., Gebe, S., and Kusy', D., "Autoclaved Compressed Cement Pastes," <u>Cement and Concrete</u> <u>Research</u>, Vol.5, No.5, pp.497-502, 1975. 27. Yudenfreund, Marvin, et. al., "Hardened Portland Cement Pastes of Low Porosity V. Compressive Strength," <u>Cement</u> and <u>Concrete Research</u>, Vol.2, No.6, pp.731-743, 1972.

28. Bajza, Adolf, "Structure of Compacted Cement Pastes," Cement and Concrete Research, Vol.13, No.2, pp.239-245, 1983.

29. Relis, M. and Soroka, I., "Limiting Values for Density, Expansion, and Intrinsic Shrinkage In Hydrated Portland Cement," <u>Cement and Concrete Research</u>, Vol.10, No.4, pp.499-508, 1980.

30. Relis, M. and Soroka, I., "Variation in Density of Portland Cement Hydration Products," <u>Cement and Concrete Research</u>, Vol.7, No.6, pp.673-680, 1977.

31. Relis, M. and Soroka, I., "Compressive Strength of Low-Porosity Hydrated Portland Cement," <u>Journal of the American</u> <u>Ceramic Society</u>, Vol.63, No.11-12, pp.690-694, Nov.-Dec.1984.

32. Gouda, G.R. and Roy, D.M., "Quick Determination of Cement Properties Through the Use of Hot-Pressing," <u>ASTM</u> <u>Cement,Concrete, and Aggregates</u>, Vol.2, No.2, pp.78-83, Winter 1980.

33. "Standard Specification for Fly Ash and Raw or Calcined Natural Pozzolan for Use as Mineral Admixture in Portland Cement Concrete," ASTM C618-84, <u>1984 Annual Book of ASTM Standards</u>, Part 14, American Society for Testing and Materials, Philadelphia, pp.382-385.

34. Cook, James E., "Fly Ash in Concrete - Technical Considerations," <u>Concrete International: Design and Construction</u>, Vol.5, No.9, pp.51-59, September 1983.

35. ACI Committee 363, "State-of-the Art Report on High-Strength Concrete," <u>ACI</u> Journal, Vol.81, No.4, July-August 1984.

36. McKerrall, Wiiliam C., and Ledbetter, W.B., "Variability and Control of Class C Fly Ash," <u>ASTM Cement, Concrete, and</u> <u>Aggregates</u>, Vol.4, No.2, pp.87-93, Winter 1982.

37. Harnett, Donald L. and Murphy, James L., <u>Introductory</u> <u>Statistical Analysis</u>, Addison-Wesley Publishing Company, Inc., Reading, Massechusetts, 1975.

APPENDIX A

MATERIAL DATA

TABLE A-1. CEMENT COMPOSITION AND PROPERTIES

Midlothian TXI Type III Cement Physical Test Results as reported by TXI NC 26.5 % H₂O Cubes % Flow 48.5 112 & Air 9.0 % Passing #325 Sieve 98 Blaine (cm²/gm) 5350 Wagner (cm²/gm) 2550 98.6 Gilmore Setting Time 2:35/4:15 Initial/Final (hrs:min) 0:50/3:20 Vicat Setting Time Initial/Final (hrs:min) 7.1 % Fed. False Set Autoclave Expansion D.O.P. (mm) 1 50 2 50 50 3 50 4 5 50 Compressive Strengths (2"x2" cubes) 3592 psi l day 3 day 5425 psi 7 day 6242 psi 28 day 7575 psi Specific Gravity 3.13

and the second second

TABLE A-1. CEMENT COMPOSITION AND PROPERTIES (CONCLUDED)

1777)

Chemical	Analysis / X-Ray	Analysis
SiO2 Al 203 Fe203 Ca0 Mg0 SO3 P205 T102 Cr 203 Mn203 Na203 K20	20.11 4.38 3.52 64.66 0.78 3.34 0.23 0.22 0.00 0.30 0.29 0.38	
Total		98.20
$C_{3}S$ $C_{2}S$ $C_{3}A$ $C_{4}AF$ $C_{5}A$ $C_{4}C_{4}C_{5}C_{5}C_{5}C_{5}C_{5}C_{5}C_{5}C_{5$	63.40 9.80 6.80 10.70	AlaOa, PaOs, and TiOa
-37 curet		

68

. .

· · · · ·

5. 5. 5. 6. 6.

TABLE A-2. FLY ASH COMPOSITION AND PROPERTIES

Gifford-Hill Class "C" Fly Ash Physical properties Sample Specification Fineness, +325 Sieve, & Retained: 18.3 34.0 max. PAI (28 days), & Control 101.4 75.0 min. 105.0 max. Water Requirement, % Control 90 Autoclave Soundness, % 0.218 0.8 max. Sample Specification Specific Gravity: unsieved 2.71 2.75 sieved Chemical Properties Sample Specification Silicon Dioxide 32.03 Aluminum Oxide 17.10 Ferric Oxide 7.25 Total 56.38 50.0 min. Calcium Oxide 29.88 Magnesium Oxide 6.34 Sulfur Trioxide 5.0 max. 3.61 Sodium Oxide 2.08 Potassium Oxide 0.26 Loss on Ignition 0.88 6.0 max. Moisture Content 0.07 3.0 max. Total 99.50 Sodium Oxide Equivalent 2.25

69

ItemFine AggregateCoa AggSieve Analysis (% Retained) as per ASTM C333/4 in.1/2 in.3/8 in.No. 40.0No. 80.7No. 1639.3No. 3064.0No. 50
Sieve Analysis (% Retained) as per ASTM C33 3/4 in. 1/2 in. 3/8 in. No. 4 0.0 No. 8 0.7 No. 16 39.3 No. 30 64.0 No. 50 80.0
3/4 in. 1/2 in. 3/8 in. No. 4 0.0 No. 8 0.7 No. 16 39.3 No. 30 64.0 No. 50 80.0
1/2 in. 3/8 in. No. 4 0.0 No. 8 0.7 No. 16 39.3 No. 30 64.0 No. 50 80.0
3/8 in. No. 4 0.0 No. 8 0.7 No. 16 39.3 No. 30 64.0
No. 4 0.0 No. 8 0.7 No. 16 39.3 No. 30 64.0 No. 50 80.0
No. 8 0.7 No. 16 39.3 No. 30 64.0 No. 50 80.0
No. 16 39.3 No. 30 64.0 No. 50 80.0
No. 30 64.0
No. 50 80.0
No. 100 93.5
No. 200 99.4
Dry loose unit wt - 10 (1b/ft ³ 3)
S.G. (Dry Bulk) 2.60
Absorptions (%) 0.56

TABLE A3. AGGREGATE DATA

71-51-51-7

APPENDIX B

LABORATORY PROCEDURES FOR THE HIGH-PRESSURE PREPARATION

OF CEMENT AND FLY ASH COMPACTS

A. PREPARATION OF THE POWDER MATERIAL

After the weight determinations for the proper proportions had been made, the cement and fly ash material were each weighed in separate containers and then mixed in a larger container. The powder needed for each individual compact was taken from this mixture. Generally 50 to 100 grams of combined powder was mixed at one time, depending upon the quantity of compacts to be prepared at that time. To provide for more meaningful data, enough powder was mixed at this point to provide a series of compacts for both the wet surface dry and oven-dried test conditions for a given combination of parameters. The percentage of fly ash in the mix also influenced the amount of powder which was initially mixed, because of the higher percentage of premature compact failures during the compaction process with increasing amounts of fly ash.

The powder material was mixed with a glass stirring rod until no visible segregation of the powder material existed. The combined powders were placed in a closed container, and mixed by vigorous shaking and tumbling.

Two other methods of powder preparation were not used for this work, but deserve mention. One method is the mixing of the powders for each individual compact. This procedure takes too long, has a greater probability of error, and variation among the individual compacts. The method recommended for future studies is a one-time mixing of the cement and fly ash material which would save a tremendous amount of time, permit mechanical mixing and improve the consistency in the mixed powder.

Once mixed, the powder was weighed for each of the individual compacts. This was done on a Sartorious Model 2442 scale which could be read to 0.0001 grams. The powder material for each of the individual compacts was placed in a paper cup container until placed in the die.

It is very important that the weighed powder, as well as the supply material, be protected from moisture in the air. Moisture can have disastrous effects on the overall quality of the compaction tests performed by affecting the powder weights causing inaccurate density considerations, and forming premature hydration reactions. For these reasons, all materials were kept covered in a minimum moisture exposure condition until use.

B. ADDITION OF POWDER TO THE DIE

Once the die is assembled and checked (see Figure 5), the ram is removed and the powder carefully placed into the die chamber. The die is placed on a table or platform vibrator for preliminary consolidation of the powder material. Once the die and vibrating table are in the proper working arrangement, a small glass funnel is placed in the die for the transfer of the powder from the paper cup holder to the die.

The powder is placed in the funnel slowly and continuously so that it does not accumulate at the neck of the funnel. Light brushing of the paper cup with a small fine bristled brush while it is held over the funnel removes all of the powder. Then the die, powder, and funnel are vibrated by the table vibrator for approximately 15 seconds or until the powder is uniformly distributed in the die. After the vibration, the glass funnel is removed from the die and wiped clean with a cloth.

C. COMPACTION OF THE POWDER

Once the ram is properly placed in the die, the spacer is then placed around the ram. The purpose of this spacer piece, as discussed in Section III, is to produce a constant nominal compact volume at full compaction and provide for manual control over the amount of compaction force applied to the powder material.

The full compactive effort is reached when the spacer piece is no longer free to move around the ram, because the ram head has come into contact with the spacer piece.

With the ram and spacer piece in place, the die is then placed in a press for actual compaction of the material. The die has a spherical seat and washer which allows for the proper distribution of compactive effort from the press through the ram to the powder material.

The powder material is then preloaded with a compactive load of approximately 500 pounds (2.22kN). A loading/displacement rate of the press platens of 0.05 inches (1.27 mm) per minute was used for this investigation. Once obtained, the maximum load was maintained for 1 minute, then released.

D. REMOVAL OF THE COMPACT

Once the compactive force is released, the prepared powder compact is removed and readied for curing. The extremely high compaction forces cause the die segments to experience some degree of radial displacement wedging them firmly into the clamp ring. A puller bar is required to "break down" the die. The clamp ring is freed by tightening the two bolts on the puller bar. By tightening these bolts, a vertical lifting force is applied to the clamp ring while the die segments are held in place. Once free, the clamp ring is then removed by hand and the four interior segments of the die are peeled carefully away from the prepared compact sitting on the center hub. The prepared compacts at this point are generally stable enough to be handled gently by hand. アンジャンシュー

のうたいの見ていた。

للكلاف ويداون لالك

E. THE CURING REGIME

Following removal from the die, then measured and weighed, the freshly prepared compacts are ready to begin the curing process for the desired duration. The fresh compacts, in an open container, were placed in a controlled atomosphere of 73°F (22.8°C) at 100 percent humidity for a period of approximately 30 minutes during which time they became acclimated to an abundance of moisture for hydration. During this 30-minute procedure, the container holding the compacts gradually collected water until the compacts were immersed. The time at initial placement of the compacts in the 100 percent humidity environment was recorded as the beginning of the curing period.

The compacts were then removed from this initial curing exposure and placed in supersaturated lime and distilled water solution at a constant temperature of 70° F (21 +/- 1/2°C) for the remainder of the desired curing period.

APPENDIX C

POWDER WEIGHT DETERMINATION PROCEDURES

A. INTRODUCTION

The purpose of this Appendix is to cover in detail the procedure for determining the amount of powder material needed to produce a desired porosity. As mentioned in the report, because of the principle on which the die operates, the amount of powder placed in the die chamber controls the resulting initial porosity. From laboratory experimentation, the relationship between the two was found to be linear, making possible the determination and use of a simple factor accounting for the variation in specific gravity of the fly ash material and the amount of fly ash in the compact.

B. LABORATORY RESULTS

To determine the initial relationship between the weight of powder material used and the porosity obtained, 10 experimental trial series, consisting of three to eight samples each, were prepared from the Type III anhydrous cement powder. The results of these trials are listed in Table C-1.

The calculated initial porosities shown in this table were determined with the following equation:

 $P_{i} = 1 - (W_{+} / (V_{+} ((SG_{c})(C) + (SG_{f_{a}})(C-1)))$ (C-1)

where:

P, is the calculated initial porosity,

W, is the total weight of the prepared compact,

 V_{+} is the total volume of the prepared compact,

SG, is the specific gravity of the cement,

SG_{fa} is the specific gravity of the fly ash,

%C is the percentage of the cement powder used, and

%FA is the percentage of the fly ash powder used.

Using the calculated initial porosity and powder weight values shown in Table C-1, a linear regression analysis yielded the following equation:

Porosity = - 17.8013 (Powder Weight) + 71.2672 (C-2)

where :

Porosity refers to the calculated initial porosity, and

Powder weight refers to the weight of anhydrous cement powder material placed in the die for compaction, not the weight of the compact after compaction.

The coefficient of determination (r^2) for this equation was 0.994.

TABLE C-1. PRELIMINARY DATA USED TO DETERMINE THE RELATIONSHIP BETWEEN POWDER WEIGHT AND CALCULATED INITIAL POROSITY

Series No.	No. of Samples	Powder Weight (g)	Initial Density (g/cm ³)	Calculated Initial Porosity (percent)
P3	6	2.5386	2.3145	26.05
P4	8	2.7290	2.4136	22.89
P5	6	2.8469	2.4723	21.02
P 7	6	2.4673	2.2814	27.11
P8	6	2.5939	2.3508	24.89
P9	3	2.3250	2.1870	30.13
P10	4	2.6500	2.3875	23.72
P11	3	2.3750	2.2186	29.12
P12	4	2.4200	2.2458	28.25
P13	4	2.7500	2.4392	22.07

Because of the excellent relationship between the initial powder weight and the calculated initial porosity for anhydrous cement powder, this equation was used to determine the powder weights needed to produce a desired initial porosity condition for the various percentages of fly ash replacing the cement, using factor which relates the weight to volume of the fly ash.

For example, if 2.8700 grams of anhydrous cement material produces a porosity of 20 percent, the values of %C and %FA in Equation (C-1) are 1.0 and 0.0, respectively. If fly ash is introduced into the system, a proportional specific gravity is used to calculate the porosity depending on the percentages of fly ash and cement in the system (with all other factors held constant). The control weight of the cement may be adjusted by multiplying a factor determined by:

 $((SG_{c})(\&C) + (SG_{f_{c}})(\&FA))/SG_{c}$ (C-3)

this will determine the powder weight needed for a material containing a given percentage of fly ash.

From these considerations, the following factors were determined for the different percentages of fly ash as shown.

Percent Fly Ash	Calculations	:	Factor
0% Fly Ash	(Cement Only Control)	=	1.0000
10% Fly Ash	((3.13x0.9)+(2.75x0.1))/3.13	=	0.9877
20% Fly Ash	((3.13x0.8)+(2.75x0.2))/3.13	=	0.9754
30% Fly Ash	((3.13x0.7)+(2.75x0.3))/3.13	æ	0.9631

When these factors were initially determined, Equation (C-1) was developed from an intuitive approach by considering the relationships between porosity, density, specific gravity, percent cement and percent fly ash. However, the actual mathematical derivation of the relationship between porosity, density, specific gravity, percent cement, and percent fly ash produced a slightly different equation. This derived equation is developed in Appendix D.

From the laboratory results however, it appears that the considerations discussed in this Appendix are adequate for determining quantities of powder containing various percentages of fly ash to be used in producing a desired target initial porosity, provided the fly ash specific gravity is correct. For actual initial porosity calculations, the derived equation of Appendix D is the correct mathematical relationship and was used for determining the calculated initial porosity content of the compacts prepared for this investigation.

APPENDIX D

CALCULATED INITIAL POROSITY FORMULA DERIVATION

A. INTRODUCTION

The calculated initial porosity is a measure of the volume of a prepared compact which is void space before exposure to moisture and subsequent hydration occurs. The determination of this value depends on the specific gravity of the material, the volume, and the weight of the prepared compact. This Appendix contains the derivation of the relationship between these variables.

B. ONE-COMPONENT SYSTEM

A one-component system refers to the use of only one type of powder material for the compact preparation (in this case, Type III cement powder). Initially the compact has a total volume consisting of the volume of cement (V) and the volume of the voids between the cement particles (V_{air}^{C}) . The total weight (W,) of the compact is the weight of cement powder (W) composing the compact. In equation form, these relationships are:

$$V_{t} = V_{c} + V_{air} \qquad (D-1)$$

$$W_{\pm} = W_{C}$$
 (D-2)

Dividing Equation (D-1) by the total volume (V_t) of the compact, the equation becomes:

 $1 = v_c / v_t + v_{air} / v_t \qquad (D-3)$

The ratio of V_{air}/V_{t} is defined as the fraction of the total compact volume which is void space or porosity (P_i). Equation (D-3) can then be written as:

 $1 = V_{C}/V_{t} + P_{i} \qquad (D-4)$

Using the relationship of specific gravity, the volume of cement (V_c) can be written as:

$$V_{C} = W_{+} / SG_{C} \qquad (D-5)$$

where SG is the specific gravity of the cement material. Equation (D-4) then becomes:

 $1 = (W_{t}/SG_{c})(1/V_{t}) + P_{i}$ (D-6)

Solving for P;, the equation then becomes:

$$P_i = (1 - (W_t / V_t) (1 / SG_c)) \times 100$$
 (D-7)

where P_i is the initial porosity of the compact on a percentage basis. Realizing that W_t/V_t is the density of the prepared compact, the calculation of the initial porosity for one component system is accomplished.

C. TWO-COMPONENT SYSTEM

Initially the volume of a prepared compact, in the case of this work, is the volume of cement, the volume of fly ash and the volume of void space. In equation form this relationship is:

$$V_{t} = V_{c} + V_{fa} + V_{air}$$
 (D-8)

Dividing through by the total volume V_+ , the equation becomes:

$$1 = V_{c}/V_{t} + V_{fa}/V_{t} + V_{air}/V_{t}$$
 (D-9)

Again the ratio V_{air}/V_t can be defined as the initial porosity (P_i) or void space as a fraction of the total volume. Equation (D-9) then becomes:

$$P_i = 1 - (V_c + V_{fa})/V_t$$
 (D-10)

Concerning the weight relationship in a two-component prepared compact, the total weight (W_{\downarrow}) equals the weight of the fly ash $(W_{\uparrow a})$ plus the weight of the cement material (W_{\downarrow}) . In equation form this becomes:

$$W_{t} = W_{c} + W_{fa} \tag{D-11}$$

Dividing through y the total weight (W \downarrow , the equation becomes:

$$1 = W_{c}/W_{t} + W_{fa}/W_{t} \qquad (D-12)$$

The ratios of the weights of the individual component materials may be defined as:

$$C = W_C / W_t$$
 and $FA = W_{fa} / W_t$ (D-13)

Also, using the specific gravity of each of the inidividual components, the volumes of cement and fly ash can be written as:

$$V_{c} = W_{c} / SG_{c} \qquad (D-14)$$

$$V_{fa} = W_{fa} / SG_{fa} \qquad (D-15)$$

Equation (D-10) then becomes:

$$P_i = 1 - (1/V_t)(W_c/SG_c + W_{fa}/SG_{fa})$$
 (D-16)

However, this equation is impractical, because only the final density of the prepared compacts is known and not the individual weight values for each of the two powders. In order to have a more usable equation the following modification is made:

 $P_{i} = 1 - (W_{t}/V_{t})((1/SG_{c})(W_{c}/W_{t}) + (1/SG_{fa})(W_{fa}/W_{t})) \quad (D-17)$

As defined by the equations of (D-13), W_{t} and W_{ta}/W_{t} are the known percentages of cement (%C) and fly ash (%FA) by weight in the mix used to prepare the compact. From this consideration then, the calculated initial porosity of the two component anhydrous system may be determined by:

$$P_{i} = (1 - ((W_{+}/V_{+}))(C/SG_{+} + FA/SG_{+}))) \times 100 \quad (D-18)$$

where:

P; is the calculated initial porosity,

 W_{\perp}/V_{\perp} is the density of the prepared compact,

%C is the percentage of cement by weight in the mixed powder used for the compact,

%FA is the percentage of fly ash by weight in the mixed powder used for the compact,

SG_ is the specific gravity of the cement, and

SG_{fa} is the specific gravity of the fly ash material.

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDA; DS-1963-A

THE REPORT OF THE PARTY OF THE

APPENDIX E

Automatic Constant States

LABORATORY DATA

Complete laboratory data for all compacts are given in Tables E-1 through E-39.

LABORATORY DATA FOR SSD COMPACTS CONTAINING 100 PERCENT PORTLAND CEMENT AND CURED FOR 3 DAYS (SAMPLE SIZE = 8 UNLESS OTHERWISE NOTED) TABLE E-1.

		0	.	ዲ	0	a . –	
sive	MPa)	305	279 7	272 13	256	242	
Campres Streng	(psi) (44 ,300 ^C 800	40,500 ^b 1000	39,500 ^b 1900	37,100 ^C 1700	35,000 ⁵ 500	
Calc. Final	(percent)	10.51	13.00	16.01	19.38	23.23	
SSD Density	(g/am ³)	2.7019 0.0030	2.6510 0.0037	2.5989 0.0023	2.5329 0.0027	2.4534 0.0029	
SSD Volume		1.1567 0.0012	1.1277 0.0018	1.0971 0.0012	1.0736 0.0011	1.0569 0.0016	
SSD Meight	(ð)	3.1252 0.0011	2.9894 0.0013	2.8513 0.0018	2.71 <i>9</i> 5 0.0008	2.5930 0.0018	
Calc. Initial	rorosity (percent)	20.15 0.08	22.65 0.08	25.67 0.06	29.05 0.06	32.91 0.05	
Initial Density	(g/an ³)	2.4992 0.0027	2. 4 209 0.0028	2.3266 0.002	2.2206 0.0021	2.0998 0.0019	
Initial Volume	(cm ³)	1.1477 0.0012	1.1191 0.0012	1.0910 0.001	1.0679 0.001	1.0516 0.001	
Initial Weight	(g)	2.8684 0.0006	2.7093 0.0007	2.5382 0.0013	2.3714 0.0003	2.2083 0.0005	
tion ure	(MPa)	1, 255 25	83 4 19	4 85 22	244 9	8 0	
Prod.r Press	(psi)	182,000 3700	121,000 3000	70,300 3100	35,400 1400	1 4 ,200 300	****
6 6 7	stic	וו וו ס או	או א או	וו וו ס ×ו	וו וו סי או	 (7 ×)	
Seriand	stati	BLI	BL2	B13	Bl4	BLS	

Note: a. $\tilde{X} = sample average and <math>\sigma = sample standard deviation$ b. sample size = 6

spent hannesded learnes

いちょうひとたい

ないためであるというないの

sample size = $\overline{7}$

81

<mark>ta ta ini na kanana k</mark>

PREDRYING LABORATORY DATA FOR OD COMPACTS CONTAINING 100 PERCENT PORTAND CEMENT AND CURED FOR 3 DAYS (SAMPLE SIZE = 8 UNLESS OTHERWISE NOTED) TARLE E-2.

Sec. 21

いいいいい

Ķ	~	~ ~	~~	~~	• •	10.57	
SSD Densit	10/5)	2.7087	2.660	2.600	2.5349 0.0033	2.457 0.003	
SSD Volume		1.15 4 9 0.0015	1.1240 0.0011	1.0982 0.0019	1.0732 0.0013	1.0556 0.0011	
SSD Weight	(g)	3.1282 0.0022	2.9901 0.0022	2.8561 0.0017	2.7203	2.5940 0.0014	
Calc. Initial	(percent)	20.13 0.07	22.60 0.05	25.61 0.09	29.00 0.04	32.87 0.09	
Initial Density	(g/cm ³)	2.4999 0.0023	2.4226 0.0018	2.3285 0.0032	2.2222 0.0015	2.1013 0.0031	
Initial Volume		1.1468 0.0015	1.1174 0.0008	1.0911 0.0015	1.0674 0.0007	1.0500 0.0007	
Initial Weight	(ɓ)	2.8670 0.002	2.7069 0.0026	2.5406 0.0006	2.3718 0.000 4	2.2064 0.0024	
tion	(MPa)	1, 201 4	812 19	475 14	230 8	8 7	
Produc Press	(psi)	17 4,2 00 600	117,800 2700	68,800 2000	33,300 1100	1 4 , 400 300	
Ø		 0 ×1	д XI	∥∥ 0'≍1	∥ ∥ 0' ≍1	11 11 Of X4	
Series and	SCACIS	गाव	b12	613	b14	2Ld	

Note: a. \overline{X} = sample average and σ = sample standard deviation

POSTURYING LABORATORY DATA FOR OD COMPACTS CONTAINING 100 PERCENT PORFLAND CEMENT AND CURED FOR 3 DAYS (SAMPLE SIZE = 8 UNLESS OFHERWISE NOTED) TNELE E-3.

ssive ngth	(MPa)	448 ^b 14	424 ^C 10	381 ^b 10	33¢	17 38°
Compres	(18d)	64 , 90 0 ⁵ 2000	61,600 ⁶ 1400	55, 300 ⁵ 1500	48,900 ^b 1700	4 2,900 ^b 1600
Measured Final Porosity	(percent)	10.42	12.76	16.22	19.57	22.95
48 Hour 00 Density		2.6145 0.0031	2.5468 0.0036	2.4571 0.0046	2.3613 0.0021	2.2530 0.0035
48 Bour 00 Volume		1.1505 0.0013	1.1178 0.0009	1.0899 0.002	1.0631 0.001	1.0438 0.0008
48 Hour OD Weight	(6)	3.0079 0.0019	2.8467 0.0028	2.6780 0.0008	2.5103 0.0005	2.3517 0.0026
42 Hour 00 Weight	(6)	3.0069 0.0019	2.8468 0.0027	2.6799 0.0008	2.5119 0.0004	2.3539 0.0025
24 Hour OD Weight	(6)	3.0150 0.0020	2.8554 0.0025	2.6865 0.0009	2.5110	2.3523 0.0026
iic ^a		Q XI II II	二 の メ	で まま	n n X V	
Series and Statist		Πq	b12	धाव	bld	510

Note:

 \overline{X} = sample average and σ = sample standard deviation a.

sample size = 6

sample size = 7 ຊ່ວ່ LARGRATORY DATA FOR SSD COMPACTS CONTAINING 100 PERCENT PORTLAND CEMENT AND CURED FOR 7 DAYS (SAMPLE STARE = 8 UNLESS OTHERWISE NOTED) TARLE E-4.

			0	0	م	U
isive jth	(MPa)	338 12	331	310	310	289
Compres	(psi) (49, 000	48, 000	45,000 ^b	44,900 ^b	41,900 ^C
Streng		1700	600	400	900	400
Calc. Final	(percent)	10.64	12.65	15.36	18.34	21.68
SSD	(u)	2.7052	2.6599	2.5991	2.5345	2.4547
Density		0.0022	0.0046	0.0024	0.0018	0.0024
SSD	m	1.1572	1.1240	1.0967	1.0735	1.0574
Volume	5	0.0013	0.0019	0.0014	0.0010	0.0012
SSD	(g)	3.130 4	2.9896	2.8505	2.7208	2.5956
Weight		0.0016	0.0022	0.0027	0.0011	0.0007
Calc.	rorosity	20.13	22.45	25.58	29.02	32.87
Initial	(percent)	0.07	0.04	0.07	0.07	0.03
Initial	(g/cm ³)	2.5001	2.4272	2.3293	2.2217	2.1010
Density		0.0024	0.0014	0.0026	0.0023	0.0011
Initial	ر	1.1468	1.1160	1.0896	1.0679	1.0506
Volume	ال	0.001	0.0006	0.0011	0.0011	0.0005
Initial	(g)	2.8672	2.7089	2.5382	2.3725	2.2073
Weight		0.0006	0.0022	0.0032	0.0003	0.0003
tion ure	(MPa)	1, 261 25	845 19	4 87 26	229 7	ጽግ
Produc	(psi)	182,900	122 , 600	70, 700	33,300	13 , 800
Press		3600	2,700	3, 700	1,000	500
Series and a	Statistic	cllr X = d =	cl2R	Cl3R X = d =	Cl4R <u>X</u> = 0 =	cl5R X = d =

Note: a. $\vec{X} = \text{sample average and } \sigma = \text{sample standard deviation}$

10

sample size = 6 sample size = 7 ი ა.

Understand I have

84

PRETRYING LABORATORY DATA FOR OD COMPACTS CONTAINUNG 100 FERCENT FORTLAND CEMENT AND CURED FOR 7 DAYS (SAMPLE SIZE = 8 UNLESS OTHERWISE NOTED) TABLE E-5.

Sec.

1. 1. 1

Note: a. \vec{X} = sample average and σ = sample standard deviation

POSTIRYING LABORATORY DATA FOR OD COMPACTS CONTAINUNG 100 PERCENT PORTAND CEMENT AND CURED FOR 7 DAYS (SAMPLE SIZE = 8 UNLESS OTHERWISE NOTED) TABLE E-6.

ssive ngth (MPa)		468 ^b 8	430 ^b 16	419 ⁵ 9	351 ^c 15	329 ^C 9	
Compres Stree		67,900 ⁰ 1,100	62,400 ^b 2,300	60, 800 ^b 1, 300	50,900 ^C 2,200	47,700 ^C 1,300	
Measured Final Porosity (nercent)		10.83	12.60	15.27	18.37	21.75	
48 Hour OD Density (a/cm ³)		2.60 4 2 0.0023	2.5460 0.0025	2.4634 0.0046	2.3694 0.0026	2.2595 0.0018	
48 Hour OD Volume		1.1552 0.0011	1.1205 0.0009	1.0910 0.0015	1.0656 0.0005	1.0466 0.0007	
48 Hour OD Weight		3.0084 0.0010	2.8529 0.0015	2.6876 0.0041	2.5248 0.0025	2.3649 0.0029	
42 Hour OD Weight (a)	ĥ	3.0087 0.0010	2.6538 0.0017	2.6874 0.0049	2.5248 0.0026	2.3646 0.0029	
24 Hour OD Weight	<u>, </u>	3.0129 0.0011	2.8619 0.0016	2.6949 0.0040	2.5289	- 2.3672 - 0.0029	
ica		ייי ע או	6 1	11 II 12 20	n n Ø ×I		
Series and Statist		cllr	cl2r	cl3r	cl4r	cl5r	

Note: a. \vec{X} = sample average and σ = sample standard deviation ი. ი. თ.

sample size = 6 sample size = 7

VOLLEE

Summer Sector

12222222

224222

LABORATORY DATA FOR SSD COMPACTS CONTAINING 100 PERCENT PORTLAND CEMENT AND CURED FOR 28 DAYS (SAMPLE SIZE = 8 UNLESS OTHERWISE NOTED) TABLE E-7.

intertation of the state of the second

đ	Produc Press	ition ure	Initial Weight	Initial Volume	Initial Density	Calc. Initial	SSD Weight	SSD Volume	SSD Density	Calc. Final	Compres Streng	sive th
((psi)	(MPa)	(g)	(cm ³)	(g/cm ³)	Porosity (percent)	(đ)	ູ ເ	(uz)((12/5))	bercent)	(pei) (MPa)
	1 84 ,300 3,100	1,271 21	2.8668 0.0010	1.1 4 70 0.0007	2.4994 0.0019	20.15 0.05	3.1321 0.0014	1.1590 0.0012	2.7025 0.0026	10.10	19 ,4 00 ^b 3,000	57 34 P
	125,100 1,800	863 12	2.7091 0.0006	1.1186 0.0006	2.4219 0.0013	22.62 0.04	2.9975 0.0005	1.1278 0.0011	2.6579 0.0026	12.35	^م 007, وا	342 ^b 5
	72,700 1,600	102 201	2.5390 0.0019	1.0913 0.0010	2.3267 0.0034	25.67 0.10	2.8570 0.0012	1.0981 0.0013	2.6017 0.0025	15.14	18,300 ^b 3,000	53 33 ⁵
	37 ,8 00 700	261 5	2.3727 0.0009	1.0685 0.0008	2.2205 0.0020	29.06 0.06	2.7259 0.0015	1.0765 0.0010	2.5321 0.0016	18.24 ·	17,200 1,700	325 12
	15,500 300	107 2	2.2078 0.0006	1.0506 0.0005	2.1016 0.0012	32.86 0.03	2.6001 0.0010	1.0596 0.0011	2.4538 0.0024	21.72	1,500	299 10

Note: a. $\tilde{X} = sample average and <math>\sigma = sample standard deviation$ b. sample size = 6
PREDRYING LABORATORY DATA FOR OD COMPACTS CONTAINING 100 PERCENT PORTLAND CEMENT AND CURED FOR 28 DAYS (SAMPLE SIZE = 8 UNLESS OTHERWISE NOTED) TABLE E-8.

1.1

sD sity	~	064 025	5 91 031) 02 032	362 316	61 31	
Dens	o/6)	0.0 0	2.65 0.00	2.6(0.0(2.53	2.45	1
SSD Volume	((()	1.1578 0.0011	1.1270 0.0018	1.0982 0.0013	1.0741 0.0008	1.0580 0.0014	
SSD Weight	(g) (3.1334 0.0004	2.9969 0.0015	2.8555 0.0008	2.7241 0.0012	2.5985 0.0021	
Calc. Initial	(percent	20.11 0.02	22.66 0.07	25.66 0.06	29.03 0.04	32.90 0.07	
Initial Density	(g/cm ³)	2.5007 0.0008	2.4206 0.0025	2.3268 0.0021	2.2213 0.0012	2.1003 0.002 4	
Initial Volume	(cm 3)	1.1469 0.0003	1.1193 0.0013	1.0912 0.0008	1.0682 0.0005	1.0508 0.0013	
Initial Weight	(ɓ)	2.8679 0.0006	2.7093 0.0007	2.5390 0.0010	2.3729 0.0007	2.2069 0.0016	
cti <i>o</i> n sure	(MPa)	1,275 12	855 24	507 12	252	109	
Produx Pres:	(psi)	184,900 1,800	12 4,000 3,500	73,500 1,800	36,600 1,000	15,800 700	
e		 0 ×1	∥∥ Ø×Ø	∥ ∥ 0⁄ ≍1	∥∥ 0∕≫1	6 X	
Series and	OLALI	dllr	dl2r	dl3r	dl 4 r	dJ5r	

AND BARROW PARAMENT

Note: a. \tilde{X} = sample average and σ = sample standard deviation

POSTURYING LABORATORY DATA FOR OD COMPACTS CONTAINING 100 PERCENT PORTLAND CEMENT AND CURED FOR 28 DAYS (SAMPLE SIZE = 8 UNLESS OTHERWISE NOTED) TARLE E-9.

ssive ngth (MPa)	477 ^c 5	424 ^b 18	394 ^b 19	372 ^c 13	336 10	
Compres Stree (psi)	69,200 ^C 800	61,400 ^b 2,700	57,200 ^b 2,800	54,000 ^C 1,900	48,700 1,500	
Mensured Final Porosity (percent)	10.30	12.09	14.99	18.49	21.69	
48 Hour 00 Density (g/cm ³)	2.6124 0.0030	2.5479 0.0024	2.4638 0.0014	2.3717 0.0021	2.2646 0.0029	
48 Hour 00 Volume (am ³)	1.1538 0.0012	1.1227 0.0014	1.0921 0.0007	1.0649 0.0010	1.0461 0.0011	
48 Hour OD Weight (g)	3.0141	2.8606 0.0013	2.6909 0.0012	2.5255 0.0006	2.3690 0.0016	
42 Hour OD Weight (g)	3.0159 0.0013	2.8609 0.0013	2.6908 0.0014	2.5260 0.0008	2.3685 0.0015	
24 Hour OD Weight (g)	3.0234 0.0015	2.8660 0.0015	2.6980 0.0012	2.5308 0.0008	2.3720 0.0016	
iica	# # × 0	" " × 0	" " × 0	₩ ₩ ¥ 0	н н Хо	
Series and Statist	àllr	dl2r	dl3r	dl4r	dl5r	

Note:

X = sample average and o = sample standard deviation . م. م. م.

sample sise = 6

sample size = 7

Sector Sector

LABORATORY DATA FOR SSD COMPACTS CONTAINING 100 PERCENT PORTLAND CEMENT AND CURED FOR 90 DAYS (SAMPLE SIZE = 8 UNLESS OTHERWISE NOTED) TABLE E-10.

pressive rength	i) (MPa)	P 7 9 9 9					
55	ed)						
Calc. Final	rorosity (percent)	10.25	12.09	14.67	17.50	20.85	
SSD Density	(g/cm ³)	2.6898 0.0022	c2.6495 ^C 0.0031	2.5815 0.0030	2.5156 0.0024	2.4443 ^b 0.0030	*
SSD Volume	(cm ³)	1.1572 0.0015	0.0009	1.0958 0.0017	1.0745 0.0018	1.0580 0.0021	
SSD Weight	(g) (3.1127 0.0029	2.9746	2.8288 0.0060	2.7030 0.0030	2.5861 ⁵ 0.0026	
Calc. Initial	(percent	20.45 0.11	22.64 ⁰ 0.07	25.71 0.09	29.07 0.07	33.06 ⁵ 0.12	
Initial Density	(g/cm ³)	2.4899 0.0039	2.4214 ^C 0.0024	2.3253 0.0033	2.2200 0.0026	2.0952 ^b 0.0045	
Initial Volume	(cm ³)	1.1513 0.0017	1.1177 ^C 0.0012	1.0906 0.0016	1.0676 0.0013	1.0525 ^b 0.0025	
Initial Weight	(ɓ)	2.8666 0.0009	2.7063 ^C 0.0012	2.5360 0.0019	2.3701 0.0004	2.2051 ^b 0.0008	
tion ure	(MPa)	1, 323 21	866 ⁰ 42	474 27	229 10	93 ⁵ 6	
Produc Press	(psi)	192,000 3,000	125,500 ^C 6,100	68 , 8 00 3 , 9 00	33,300 1,500	13,500 ^b 900	
es ttina		וו וו ס או	∥ ∥ Ø ≍1	" " 0 XI	n n 0 Xi	וו וו מ או	
Serie and Statio		113	E12	EI3	El4	E15	

of = sample standard deviation c. sample size = y Compressive strength data not available. Note: a. X = sample average and `__:^__ f sample size = 6 sample size = 9

PREDRYING LABORATORY DATA FOR OD COMPACTS CONTAINING 100 PERCENT PORTLAND CEMENT AND CURED FOR 90 DAYS (SAMPLE SIZE = 8 UNLESS OTHERWISE NOTED) TABLE E-11.

$ \begin{array}{llllllllllllllllllllllllllllllllllll$	les d tistic	Pro Br	ductio	50	In tual Weight	In tial Volume	In tial Density	Calc. Initial Porosity	ssD Weight	SSD Volume	SSD Density
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		(psi	W) (Pa)	(ɓ)	າ ເອີ	(g/cm ⁵)	(percent)	(g)	ົ ເ	(g/cm ³)
X =127,7008802.70751.11912.419322.712.97871.12432.6495 $o =$ 3,500240.00070.00180.00360.100.00270.0027X =72,7005012.53681.09142.324425.742.83231.09672.5826v =2,300160.00180.00130.00240.070.00510.00100.0033X =33,700 ^b 232 ^b 2.3705 ^b 1.0689 ^b 2.2176 ^b 29.15 ^b 2.7062 ^b 1.0739 ^b 2.5199 ^b x =11,400100.00140.00190.00400.110.00390.00240.0033x =14,700100.00150.00130.004032.94258341.05592.4466x =40030.00150.00130.00350.00130.00350.00110.0030	×o	= 179,9 = 8,2	00 1 ,	240 56	2.8667 0.0008	1.1510 0.0032	2.4906 0.0072	20.43 0.21	3.1133 0.0038	1.1579 0.0029	2.6887 0.0044
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	×o	= 127,7 = 3,5	88	880 24	2.7075 0.0007	1.1191 0.0018	2.4193 0.0036	22.71 0.10	2.9787 0.0032	1.1243 0.0027	2.6495 0.0055
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	×o	= 72,7 = 2,3	000	501 16	2.5368 0.0018	1.0914 0.0013	2.3244 0.0024	25.74 0.07	2.8323 0.0051	1.0967 0.0010	2.5826 0.0033
X = 14,700 102 2.2046 1.0503 2.0990 32.94 2.5834 1.0559 2.4466 o = 400 3 0.0015 0.0013 0.0035 0.10 0.0023 0.0011 0.0030	×o	= 33,7 = 1, 4	400 000	10 10 10	2.3705 ^b 0.0014	1.0689 ⁵ 0.0019	2.2176 ^b 0.0040	29.15 ^b 0.11	2.7062 0.0039	0.0024	2.5199 ^b 0.0039
	×o	= 14,7 = 4	000	102 3	2.2046 0.0015	1.0503 0.0013	2.0990 0.0035	32.94 0.10	2.5834 0.0023	1.0559 0.0011	2.4466 0.0030

Note:

X = sample average and o = sample standard deviation þ. and the variable () washing freedow () zeeoord () yearsed

New Section of the

KEEPATIN SEEDER ACCOUNT PERSON

sample size = 8

POSTURYING LABORATORY DATA FOR OD COMPACTS CONTAINING 100 PERCENT PORTLAND CEMENT AND CURED FOR 90 DAYS (SAMPLE SIZE = 8 UNLESS OTHERWISE NOTED) TABLE E-12.

ł

36

Compressive Strength	(psi) (MPa)					
Measured Final	Porosity (percent)	10.23	12.11	14.84	17.41 ^b	20.81
48 Hour	Density	2.5952	2.5399	2.4543	2.3701 ^b	2.2669
OD	(g/an ³)	0.0059	0.0052	0.0028	0.0033	0.0047
48 Hour	Volume	1.1540	1.1191	1.0877	1.0629 ^b	1.0427
OD	(Cm))	0.0029	0.0025	0.0013	0.0019	0.0016
48 Rour	Weight	2.9949	2.8425	2.6696	2.5192 ^b	2.3637
OD	(g)	0.0027	0.0030	0.0047	0.0026	0.0026
42 Hour	Weight	2.9969	2.8439	2.6707	2.5210 ^b	2.3641
OD	(g)	0.0024	0.0029	0.0050	0.0026	0.0024
24 Hour	Weight	3.0091	2.8534	2.6775	2.5263 ^b	2.3696
OD	(g)	0.0022	0.0032	0.0044	0.0025	0.0023
d	tic	וו וו ס אן	וו וו ס ×ו	0 XI	0 XI	ц И И И И И И
Series and	Statis	ell	el2	el3	el4	el5

Note: a. $\vec{X} = \text{sample average and } \sigma = \text{sample standard deviation}$

b. sample size = σ Compressive strength data not available

LABORATORY DATA FOR SSD COMPACTS CONTAINING 10 PERCENT SIEVED FLY ASH AND CURED FOR 7 DAYS (SAMPLE SIZE = 8 UNLESS OTHERWISE NOTED) TABLE E-13.

r ies d ntistic ^a	Product Pressu (psi) (ure MPa)	Initial Weight (g)	Initial Volume (cm ³)	Initial Density (g/cm ³)	Calc. Initial Porosity (percent)	SSD Weight (g)	SSD Volume (cm ³)	SSD Density (g/cm ³)(Calc. Final orosity percent)	Compres Streng (psi) (sive th MPa)
s X =	176,300 1 1,900	1,215	2.8310 0.0007	1.1534 0.0019	2.4546 0.0041	20.48 0.12	3.1055 0.0019	1.1653 0.0019	2.6649 0.0030	11.72	45 ,100 ^b 700	311 ^b 5
3S X = 0 =	63 , 80 0 ^d 700	440 ¹ 5	2.5077 ^d 0.0026	1.0946 ^d 0.0012	2.2909 ^d 0.0020	25.78 ⁰ 0.06	12.8286 ^d 0.0027	1.1030 ⁶ 0.0023	12.5644 ^d 0.0041	16.51	44 ,6 00 ^C 1,000	308 ^C 7
S X = 0 =	12,900 0	68 0	2.1801 0.0005	1.0517 0.0016	2.0729 0.0032	32.84 0.09	2.5754 0.0013	1.0624 0.0010	2.4241 0.0021	22.89	38 , 800 ^C 500	267 ^C 3
	i											

Note: a. \tilde{K} = sample average and σ = sample standard deviation

sample size = ອີບ ບໍ່ລະ

σ sample size = sample size =

dels de

AND PRETRYING LABORATORY DATA FOR OD COMPACTS CONTAINING 10 PERCENT SIEVED FLY ASH CURED FOR 7 DAYS (SAMPLE SIZE = 8 UNLESS OTHERWISE NOTED) TARKE E-14.

and the second second

Ņ.					
SSD Densit	(g∕cam ³	2.6731 0.0035	2.5731 0.0043	2.4316	
SSD Volume	(cm ³)	1.1602 0.0015	1.0982 0.0025	1.0565 0.0008	
ssD Weight	(ɓ)	3.1012 0.0011	2.8258 0.0030	2.5690 0.0006	
Calc. Initial	(percent)	20.35 0.08	25.61	32.84 0.03	•
Initial Density	(g/cm ³)	2.4587 0.0026	2.2963 0.0026	2.0729 0.0010	
Initial Volume	(cm ³)	1.1519 0.0009	1.0927 0.0014	1.0513 0.0005	
Ini tial Weight	(ɓ)	2.8320 0.0012	2.5090 0.0027	2.1793 0.0006	
ition sure	(MPa)	1, 211 17	443 11	33 7	
Produc Press	(psi)	175,600 2,500	64,300 1,700	13,500 300	
a	2	וו וו ס או	וו וי ס ×ו	 0' ×1	
Series and	orderise	c2ls	c23s	c25s	

Note: a. \overline{X} = sample average and σ = sample standard deviation

.

POSTIRYING LAHORATORY DATA FOR OD COMPACTS CONTAINING 10 PERCENT SIEVED FLY AGH AND CURED FOR 7 DAYS (SAMPLE SIZE = 8 UNLESS OTHERWISE NOTED) TABLE E-15.

t t

				1
Compressive Strength (psi) (MPa)	66,300 ^b 457 ^b 1,700 12	56,600 ^b 390 ^b 1,900 13	42,800 ^b 295 ^b 1,500 10	
Mensured Final Porosity (percent)	11.52 (16.51	22.83	
48 Hour 00 Density (g/cm ³)	2.5671 0.0028	2.4254 0.0051	2.2290 0.0020	
48 Hour OD Volume (cm ³)	1.1560 0.0012	1.0903 0.0023	1.0443 0.0009	
48 Hour OD Weight (g)	2.9676 0.0006	2.6445 0.0031	2.3278 0.0005	
42 Hour OD Weight (g)	2.9690 0.0006	2.6438 0.0030	2.3282 0.0006	
24 Hour OD Weight (g)	2.9781 0.0009	2.6501 0.0033	2.3313 0.0005	
lica	11 II 0 XI	₩ "	11 II Ø ≫	
Series and Statist	c21s	c23s	c25s	

1

Note: a. \overline{X} = sample average and σ = sample standard deviation b. sample size = 6

l

LARORATORY DATA FOR SSD COMPACTS CONTAINUNG 10 PERCENT SIEVED FLY ASH AND CURED FOR 28 DAYS (SAMPLE SIZE = 8 UNLESS OTHERWISE NOTED) TABLE E-16.

A a a a for a data a for a for

CALIFORNIA CONTRACTOR DATA

Series and	Produc Press	tion	Ini tial Weight	Initial Volume	Initial Density	Calc. Initial	SSD Weight	SSD Volume	SSD Density	Calc. Final	Compres	ssive Jth
Statistic	(psi)	(MPa)	(ɓ)	(cm ³)	(g/cm^3)	percent	(ɓ) ((9 3)	(g/cm ³)(orosity percent)	(psi)	(MPa)
D215R	175,500 2,800	1,210 19	2.8319 0.0021	1.1508 0.0005	2.4608 0.0015	20.28 0.04	3.1023 0.0009	1.1609 0.0019	2.6722 0.0045	11.18	4 9,300 1,200	340 8
D235RRX = 0 =	63,500 ⁶ 2,100	1 438 ^ĉ 15	<mark>1</mark> 2.5073 ^d 0.0038	1.0940 ^d 0.0007	2.2919 ^d 0.0036	25.75	³ 2.8319 ⁽ 0.0024	1.1025 0.0023	2.5686 ^d 0.0045	15.69	45,500 ^b 1,400	31 4 b 10
DZ5SR X = d =	1 4, 600 ⁶ 300	2 101 ^C	2.1797 ^C 0.0011	1.0507 ^C 0.0005	2.0745 ^C 0.0013	32.79	2.5739 ⁶ 0.0016	0.0010	2.4308 ^C 0.0022	21.49	4 3 , 500 ^C 900	300 ^C 6
Note: a. X = sar	nple aver	age an	ע ע = 35	unple sta	ndard đe	viation						

ھ ~ sample size = sample size = ים. מיה

sample size = 9

7 4

فالمسالم المسالم والمسالم

FREDRYING LABORATORY DATA FOR OD COMPACTS CONTAINING 10 PERCENT SIEVED FLY ASH AND CURED FOR 28 DAYS (SAMPLE SIZE = 8 UNLESS OTHERWISE NOTED) TABLE E-17.

2

Series	9	Produc	sure	Initial Weight	Initial Volume	Initial Density	Calc. Initial We	SSD ight Vc	SSD	SSD Density
STARTS		(psi)	(MPa)	(ɓ)	(cm ³)	(g/cm ³)	Porosity (percent)) (ɓ)		(g/cm ³)
वंट्री झ	∥ ∥ Ø ≍1	17 4 ,500 ^t 1,700	1,203 ^t 12	2.8320 ^b 0.0025	1.1528 ^b 0.0009	2.4566 ^b 0.0032	20.41 ^b 3. 0.09 0.	1075 ^b 1. 0027 0.	1632 ^b 0015	2.6716 ^b 0.0028
d23sr	6 X1 11 H	64,000 1,500	441 10	2.5083 0.0021	1.0958 0.0021	2.2891 0.0042	25.84 2. 0.12 0.	8500 1. 0037 0.	1113	2.5646 0.0030
d25sr	о, XI Н Н	14,400 600	99 4	2.1802 0.0009	1.0504 0.0013	2.0755 0.0028	32.76 2.0	5770 1. 0009 0.	0603	2.4304 0.0012

Note: a. X = sample average and d = sample standard deviation b. sample size = 9

annon sections and and

POSTURYING LABORATORY DATA FOR OD COMPACT CONTAINING 10 PERCENT SIEVED FLY ASH AND CURED FOR 28 DAYS (SAMPLE SIZE = 8 UNLESS OTHERWISE NOTED) TABLE E-18.

Series and Statis	tica	24 Hour OD Weight (g)	42 Hour OD Weight (g)	48 Hour OD Weight (g)	48 Hour OD Volume (cm ³)	48 Hour OD Density (g/cm ³)	Measured Final Porosity (percent)	Compre Stree (psi)	ssive ogth (MPa)
वे21 डा	0 X	2.9811 ^C 0.0034	2.9760 ^C 0.0031	2.9754 0.0031	1.1595 ^C 0.0011	2.5661 ^C 0.0024	11.36	64, 500 ^b 1,700	45 ^b 11
d23sr	6 14 11 11	2.6863 0.0035	2.6774 0.0035	2.6762 0.0036	1.1047 0.0022	2.4226 0.0043	15.64	56,700 ^b 2,000	390 ^b 14
d25sr	ж о 	2.3 494 0.0019	2.3464 0.0018	2.3488 0.0016	1.0506 0.0005	2.2357 0.0020	21.52	4 7,800 1,400	32 9 10

NOCO:

X = sample average and $\sigma =$ sample standard deviation

sample size = 6 sample size = 9 ບ ຕ.ສ LABORATORY DATA FOR SSD COMPACTS CONTAINING 10 PERCENT SIEVED FLY ASH AND CURED FOR 90 DAYS (SAMPLE SIZE = 9 UNLESS OTHERWISE NOTED) TABLE E-19.

		0	0	75	۵
sive	341 ^d	340 ^ć 8	336 ⁽	325 ⁽ 10	322 ¹
Compres	49,400 ^d	49, 300 ^C	48,800 ^C	47,100 ^d	46,700 ^b
	2,000	1,200	700	1,400	600
Calc. Final Porosity	11.70	13.64	16.08	18.80	21.92
SSD	e.0026	2.6276	2.5703	2.5097	2.4345
Density		0.0023	0.0027	0.0012	0.0014
SSD	1.1632	1.1320	1.1031	1.0780	1.0603
Volume		0.0018	0.0010	0.0008	0.0006
SSD	3.1077 ^e	2.9743	2.8353	2.7055	2.5814
Weight	0.0017	0.0025	0.0022	0.0010	0.0014
Calc. Initial Porosity	20.59 0.08	22.91	25.84	29.11	32.86
Initial	2.4513 ^e	2.3796	2.2893	2.1881	2.0724
Density	0.0028	0.0028	0.0018	0.0021	0.0015
Initial	1.1556 ^e	1.1246	1.0960	1.0712	1.0519
Volume	0.0013	0.0015	0.0013	0.0010	0.0008
Initial	2.8328 ^e	2.6762	2.5090	2.3439	2.1800
Weight	0.0008	0.0010	0.0015	0.0004	0.0006
tion	1, 265 ^e	966	530	252	109
tre		10	18	6	3
Product	183,500 ^e 1	125,600	76,900	36 , 500	15, 8 00
Pressu	3,200	1,500	2,600	900	500
Series and Statistic ^a	E215	E22S X = d =	E23S X = d =	E24S X = 0 =	E25S X = 0 =

Note: a. \tilde{X} = sample average and σ = sample standard deviation

ם יים מ

sample size = 7 sample size = 8 sample size = 10

PREDRYING LAFORATORY DATA FOR OD COMPACTS CONTAINING 10 PERCENT PORTLAND CEMENT AND CURED FOR 90 DAYS (SAMPLE SIZE = 8 UNLESS OTHERWISE NOTED) TABLE B-20.

							- i -
SSD Density	(g/cm ³)	2.6715 0.0023	c2.6299 ^C 0.0031	2.5719 0.0030	^b 2.5074 ^b 0.0022	2. 4 393 0.0012	
SSD Volume	())	1.1644 0.0016	² 1.1314	1.1026 0.0017	0.0010	1.0580 0.0007	
SSD Weight	(g)	3.1107 0.0016	°2.9754	2.8359 0.0013	b2.7045 0.0018	2.5808 0.0011	
Calc. Initial Porosity	(percent	20.64 0.10	22.93	25.82 0.05	29.17	32.89 0.06	
Initial Density	(g/cm ³)	2.4497 0.0034	2.3789 ^C 0.0027	2.2898 0.0018	2.1862 ^b 0.0020	2.0715 0.0020	
Initial Volume	() () ()	1.1566 0.0016	1.1256 ^C 0.0014	1.0957 0.0009	1.0714 ^b 0.0009	1.0525 0.0009	
Ini tial Weight	(g)	2.8332 0.0005	°2.6776° 0.0003	2.5090 0.0006	0.0017	2.1803 0.0006	
tion sure	(MPa)	1, 271 27	862	520 15	° 252	104	
Produ Pres	(psi)	18 4,4 00 3,900	125,000 ⁽ 3,900	75,400 2,200	36, 500 ¹ 1, 600	15 , 100 600	
beries and Statistic		e21s X = σ =	=22s X = d =	e23s X = d =	e24s X = d =	e25s X = d =	

Note: a. \tilde{X} = sample average and σ = sample standard deviation

とうちょう ひんたい いたい たいちょう

JAGAZZA PAGAGAN JARADADA LAD

Ę

sample size = 8 sample size = 9 ວ່ ບໍ

POSTURYING LABORATORY DATA FOR OD COMPACTS CONTAINING 10 PERCENT SIEVED FLY ASH AND CURED FOR 90 DAYS (SAMPLE SIZE = 10 UNLESS OTHERWISE NOTED) TABLE E-21.

	Í					ł
essive ngth (MPa)	449 ^b 15	4 27b 11	377 ^b 14	338 ^b 17	331 ^C 12	
Compr Stre (psi)	65,100 ^b 2,200	62,000 ^b 1,500	5 4, 700 ^b 2,000	49,100 ^b 2,400	48,100 ^C 1,700	
Measured Final Porosity (percent)	11.52	13.64	16.57	18.66	21.87	
48 Hour OD Density (g/cm ³)	2.5648 0.0043	2.5034 ^d 0.0033	2.4270 0.0032	2.3413 ^C 0.0035	2.2 4 36 0.0023	
48 Hour OD Volume (cm ³)	1.1606 0.0018	1.1269 ^d 0.0016	1.0948 0.0014	1.0691 ^C 0.0012	1.0471 0.0011	
48 Hour OD Weight (g)	2.9766 0.0009	2.8211 ^d 0.0007	2.6572 0.0007	2.5032 ^C 0.0024	2.3494 0.0009	
42 Hour OD Weight (g)	2.9777 0.0009	2.8226 ^d 0.0007	2.6573 0.0007	2.5045 ^C 0.0023	2.3495 0.0008	
24 Hour OD Weight (g)	2.9850 0.0010	2.8298 ^d 0.0008	2.6660 0.0009	2.5087 ^C 0.0024	2.3553 0.0008	
ica	 X V	 0 ×1	 X 10	 0 XI	∥ ∥ Ø ≍I	
Series and Statist	e21s	e22s	e23s	e24s	e25s	

Note:

 \tilde{X} = sample average and σ = sample standard deviation ດີດ.

sample size = 6

sample size = 8

sample size = 9

LABORATORY DATA FOR SSD COMPACTS CONTAINING 20 PERCENT SIEVED FLY ASH AND CURED FOR 7 DAYS (SAMPLE SIZE = 9 UNLESS OTHERWISE NOTED) TARLE E-22.

tatile latest

Compressive	y	13 42,900 ^b 296 ^b	15 40,600 ^C 280 ^C	21 36,200 ^C 250 ^C
Strength	nt) (psi) (MPa)	500 3	900 6	600 4
SSD Calc.	/am ³)(percer	6307 ^d 13.1	5306 17.4	4 011 23.5
nsity Final		0028	0058	0032
t Volume Der	(cm ³) (g,	3 ^d 1.1694 ^d 2.0 9 0.0013 0.0	3 1.1082 2. 8 0.0029 0.0	4 1.0605 2. 1 0.0012 0.0
Calc. SSD	percent) (g)	20.70 ^d 3.076	25.87 2.804	32.78 2.546
Initial Weigh		0.07 0.001	0.04 0.001	0.03 0.001
Initial	(g/an ³) (2.4143 ^d	2.2568	2.0465
Density		0.0025	0.0014	0.0011
Initial	(cm ³)	1.1580 ^d	1.0976	1.0516
Volume		0.0010	0.0006	0.0004
Initial	(g) (4 ^d 2.7956 ^d	2 2.4771	9 2.1522
Weight		7 0.0009	7 0.0016	0 0.0007
Production	(psi) (Mpa	168,800 ^d 1,16.	61,300 42:	12, 900 8
Pressure		3,900 2 ⁻	2,500 1	0 0
eries and	DIGUTSCIC	c31s X = d =	c33S	C35S X = d =

Note: a. \vec{X} = sample average and σ = sample standard deviation ... მ.ი. ნ. მ.

sample size = 6 sample size = 7 sample size = 8

PREDRYING LARORATORY DATA FOR OD COMPACTS CONTAINING 20 PERCENT SIEVED FLY ASH AND CURED FOR 7 DAYS (SAMPLE SIZE = 8 UNLESS OTHERMISE NOTED) TABLE E-23.

Series and		Produc Press	ition sure	Ini tial Weight	Initial Volume	Initial Density	Calc. Initial We	SSD eight	SSD Volume	SSD Density
219113		(psi)	(MPa)	(ð)	(cm ³)	(وراحس _ع)	Porosity (percent)	(ɓ)	(am ³)	(و/حس ^ع)
c31s	11 II 1	169,600 ^b 3,100	1, 169 ^b 21	2.7963 ^b 0.0004	1.1587 ^b 0.0011	2.4133 ^b 0.0022	20.74 ^b 3. 0.06 0.	0792 ^b 0016	1.1684 ^b 0.0014	2.6354 ^b 0.0019
c33s	וו יו ס ×ו	65,000 2,900	448 20	2.4775 0.0005	1.0973 0.0011	2.2578 0.0025	25.84 2. 0.07 0.	8049 0027	1.1056 0.0029	2.5369 0.0068
c35s	# # V V	13 , 300 300	3 2 7	2.1517 0.0020	1.0513 0.0005	2.0468 0.0019	32.77 2. 0.06 0.	5459	1.0601	2.4016 0.0009

Note: a. X = sample average and σ = sample standard deviation b. sample size = 7

POSTIRYING LABORATORY DATA FOR OD COMPACTS CONTAINING 20 PERCENT SIEVED FLY ASH AND CURED FOR 7 DAYS (SAMPLE SIZE = 8 UNLESS OTHERWISE NOTED) TABLE E-24.

	0	Ö	0
ssive gth (MPa	428 ¹ 11	358 13	270 ¹ 8
Compres Stren (psi)	62,000 ^b 1,500	51,900 ^C 1,900	39,100 ^b 1,100
Measured Final Porosity (percent)	12.88	17.92	22.99
48 Hour OD Density (g/cm ³)	2.5199 ^C 0.0024	2.3740 0.0084	2.1963 0.0018
48 Hour OD Volume (cm ³)	² 1.1622 ^C 0.0013	1.0981 0.0030	1.0482 0.0005
48 Hour OD Weight (g)	2.9287 ⁶ 0.0011	2.6068 0.0024	2.3022 0.0018
42 Hour OD Weight (g)	2.9291 ^C 0.0009	2.6073 0.0025	2.3012 0.0019
24 Hour OD Weight (g)	2.9356 ^C 0.0013	2.6104 0.0023	2.3048 0.0020
ica	 0' ×1	ון וו מ או	0 XI ■ ■
Series and Statist	c31s	c33s	c35s

Note: a. \overline{X} = sample average and σ = sample standard deviation

sample size = 6 sample size = 7

LABORATORY DATA FOR SSD COMPACTS CONTAINING 20 PERCENT SIEVED FLY ASH AND CURED FOR 28 DAYS (SAMPLE SIZE = 8 UNLESS OTHERWISE NOTED) TABLE E-25.

ອ	Produ	ction	Initial	Initial	Initial	Calc.	SSD	SSD	SSD	Calc.	Compress	sive
ເຊິ່	Pres	sure	Weight	Volume	Density	Initial	Weight	Volume	Density	Final	Strengt	
stic	(psi)	(MPa)	(g)	(cm ³)	(g/cm ³)	Porosity (percent)	(g)	(cm ³)	(g/cm ³)(orosity percent)	(psi) (N	(Pa
וו וו	175,000	1,206	2.7967	1.1568	2.4175	20.60	3.0806	1.1694	2.6343	13.01	44,100 ^b	304 ^b
ס' או	2,700	19	0.0007	0.0015	0.0030	0.09	0.0016	0.0016	0.0028		1,000	7
וו וו ס או	61 , 800' 1,100	d 426d	12.4776 ^d 0.0010	1.0964 ^d 0.0014	2.2597 ^d 0.0032	25.78 ^d 0.09	2.8084 0.0025	1.1091 ⁶ 0.0041	12.5322 ^d 0.0076	17.25	42,500 ^C 1,600	293 ^c 11
וו וו	12,900	68	2.1512	1.0500	2.0487	32.71	2.5505	1.0607	2.4046	22.93	40,600 ^b	280 ^b
ע ×ו	0	0	0.0022	0.0006	0.0025	0.07	0.0021	0.0013	0.0036		300	2

Note: a. \tilde{X} = sample average and σ = sample standard deviation and There is a second processing the second

σ sample size = sample size =

PRETRYING LABORATORY DATA FOR OD COMPACTS CONTAINING 20 PERCENT SIEVED FLY ASH AND CURED FOR 28 DAYS (SAMPLE SIZE = 8 UNLESS OTHERWISE NOTED) TABLE E-26.

Series and	a ci	Produc	tion ure	Initial Weight	Initial Volume	Initial Density	Calc. SSD Initial Weight Porceity	SSD SSD SS Volume Dens	sD sity
)	(psi)	(MPa)	(ɓ)	(cm ³)	(g/cm ³)	(percent) (g)	(cm ³) (g/()) 13
d31sr	0 ×)	172,300 3,600	1,188 24	2.7949 0.0031	1.1565 0.0017	2.4167 0.0023	20.62 3.0780 0.07 0.0035	1.1681 2.6 0.0036 0.0	351 062
d33 sr	م ×! ۱۱	63,000 ^t 1,900	134 134	2.4771 ^b 0.0004	1.0962 ^b 0.0009	2.2597 ^b 0.0018	25.78 ^b 2.8074 ^b 0.05 0.0014	0.0030 0.0	269 ^b 067
d35sr	0 ×1	13 ,4 00 200	93 1	2.1520 0.0005	1.0512 0.0008	2.0473 0.0015	32.76 2.5511 0.04 0.0008	1.0614 2.4 0.0013 0.0	035 029
Note:									

 \overline{X} = sample average and σ = sample standard deviation sample size = 9 p.

22223222

3

106

POSTIRYING LABORATORY DATA FOR OD COMPACTS CONTAINUNG 20 PERCENT SIEVED FLY ASH AND CURED FOR 28 DAYS (SAMPLE SIZE = 8 UNLESS OTHERWISE NOTED) TABLE E-27.

1

ŧ

Series and Statis	tica	24 Hour OD Weight (g)	42 Hour OD Weight (g)	48 Hour OD Weight (g)	48 Hour OD Volume (cm ³)	48 Hour OD Density (g/am ³)	Measured Final Porosity (percent)	Campre Stren (psi)	ssive gth (MPa)
d31sr	ון וו מ או	2.9364 0.0028	2.9280 0.0026	2.9269 0.0028	1.1628 0.0044	2.5172 0.0099	12.94	63,100 1,300	435 9
d33sr	и ж И Ш	2.6206 ^C 0.0016	2.6144 ^C 0.0018	2.6140 ^C 0.0016	; 1.1012 ^C 0.0029	2.3739 ^C 0.0075	17.41	53,300 ^b 1,900	, 367 ^b 14
d35sr	∥ ∥ Ø ≍4	2.3135 0.0006	2.2089 0.0006	2.3080 0.0004	1.0483 0.0012	2.2017 0.0025	22.90	4 5,000 ^b 1,100	310 ^b 8
Note:									

 \overline{X} = sample average and σ = sample standard deviation sample size = 6

. ი. ლ. თ.

sample size = 9

LABORATORY DATA FOR SSD COMPACTS CONTAINUNG 20 PERCENT SIEVED FLY ASH AND CURED FOR 90 DAYS (SAMPLE SIZE = 9 UNLESS OTHERWISE NOTED) TABLE E-28.

sive th WPa)	318 ^d 318	314 ^b 8	316 ^c 13	308 ^C	286 ^C 8
Compres Streng (psi) ()	46,100 ^d 2,100	4 5,500 ^b 1,200	45,800 ^C 2,000	44 ,700 ^C 1,500	4 1,500 ^C 1,200
Calc. Final orosity percent)	12.76	14.56	16.66	19.13	22.04
SSD Density (g/an ³)(2.6410 ^e 0.0048	2.5955 0.0027	2.5363 0.0062	2.4828 0.0027	2.4098 ^e 0.0030
SSD Volume (cm ³)	² 1.1678 ⁶ 0.0027	1.1365 0.0017	1.1088 0.0030	1.0799 0.0014	² 1.0620 [€] 0.0012
SSD Weight) (g)	⁸ 3.0841 [€] 0.0014	2.9499 0.0017	2.8123 0.0012	2.6812 0.0011	^e 2.5592 ⁶ 0.0009
Calc. Initial Porosity (percent	20.05	23.08 0.06	25.81 0.03	29.02 0.05	32.79 0.05
Initial Density (g/cm ³)	2.4130 ⁶ 0.0018	2.3420 0.0022	2.2588 0.0009	2.1611 0.0018	2.0462 ^e 0.0016
Initial Volume (cm ³)	1.1597 ^e 0.0009	1.1288 0.0012	1.0970 0.0005	1.0714 0.0010	1.0519 ^e 0.0005
Initial Weight (g)	2.7982 ⁶ 0.0004	2.6437 0.0014	2.4778 0.0005	2.3154 0.0005	² 2.1525 ^e 0.0010
tion ure (MPa)	1, 250 ⁶ 28	818 19	461 8	210	86 87
Produc Press (psi)	181,300 ^e 4,000	118,600 2,800	66,800 1,200	30 , 4 00 1, 000	12,800 ^e 200
Series and Statistic ^a	E31S X = 0 =	E32S X = d =	E33S X = d =	E34S X = 0 =	E35S

Note: a. \tilde{X} = sample average and σ = sample standard deviation

.

sample size = 6 sample size = 7 sample size = 8 sample size = 10

2000000

61.000 Desterat

PREDRYING LABORATORY DATA FOR OD COMPACTS CONTAINING 20 PERCENT SIEVED FLY ASH AND CURED FOR 90 DAYS (SAMPLE SIZE = 8 UNLESS OTHERWISE NOTED) TABLE E-29.

1

1		1					
Calc. SSD SSD SSD Initial Weight Volume Density	recent (g) (g) (g)	20.78 ^C 3.0833 ^C 1.1688 ^C 2.6380 ^C 0.04 0.0021 0.0030 0.0051	23.09 ^b 2.9517 ^b 1.1377 ^b 2.5944 ^b 0.06 0.0032 0.0017 0.0039	25.83 2.8129 1.1077 2.5395 0.04 0.0014 0.0025 0.0048	29.06 2.6799 1.0799 2.4816 0.06 0.0013 0.0013 0.0031	32.77 ^C 2.5599 ^C 1.0613 ^C 2.4120 ^C 0.04 0.0013 0.0007 0.0012	
Initial Density	(g/cm ³)	2.4121 ^C 0.0013	2.3416 ^b 0.0021	2.2581 0.0015	2.1598 0.0019	2.0468 ^C 0.0014	
Initial Volume	(cm ³)	1.1594 ^C 0.0006	1.1287 ^b 0.0012	1.0971 0.0007	1.0713 0.0005	1.0518 ^C 0.0005	
Ini tial Weight	(ɓ)	2.7965 ^C 0.0004	2.6430 ^b 0.0007	2.4774 0.0006	2.3139 0.0017	2.1528 ^C 0.0014	
tion	(MPa)	1, 238 ⁶	н В В	467 8	216 6	<u>,</u> 	
Produc Press	(psi)	179,500 ^C 2,800	117,900 ^b 1,600	67 ,8 00 1,100	31 , 300 900	12,900 ^c 0	
و ر :	2	11 11 07 ×1	∥ ∥ o∕ >4	11 11 07 X4	 O' > </td <td>11 H 11 H</td> <td></td>	11 H 11 H	
Series and Statist		e31s	e32s	e33s	e3 4 s	e35s	

Note:

 \overline{X} = sample average and σ = sample standard deviation sample size = 9 sample size = 10

. . .

POSTURYING LABORATORY DATA FOR OD COMPACTS CONTAINING 20 PERCENT SIEVED FLY ASH AND CURED FOR 90 DAYS (SAMPLE SIZE = 8 UNLESS OTHERWISE NOTED) TABLE E-30.

and the second secon

ssive yth (MPa)	399 ^С 8	377 ^b 17	386 ^b 14	357 8	30 4 14	
Campres Streng (psi)	57,900 ^C 1,200	54,600 ^b 2,400	55,900 ^b 2,000	51,700 1,200	44,200 2,000	
Measured Final Porosity (percent)	12.53	14.66	17.01	19.10	21.91	
48 Hour 00 Density (g/cm ³)	2.5213 ^e 0.0065	2.4597 ^d 0.0031	2.3883 0.0053	2.3108 0.0021	2.2168 ^e 0.0018	
48 Hour OD Volume (cm ³)	1.1649 ^e 0.0027	1.1322 ^d 0.0015	1.0989 0.0022	1.0705 0.0006	2.0499 ^e 0.0009	
48 Hour oD (g)	2.9369 ^e 0.0012	2.7849 ^d 0.0014	2.6245 0.0010	2.4736 0.0014	2.3274 ⁶ 0.0017	
42 Hour OD (g)	2.9380 ^e 0.0012	2.7861 ^d 0.0015	2.6243 0.0010	2.4740 0.0013	2.3287 ^e 0.0017	
24 Rour OD Weight (g)	2.9434 ^e 0.0014	2.7928 ^d 0.0015	2.6325 0.0011	2.4792 0.0015	2.3324 ^e 0.0016	
ica	וו וו סי או	а х И	"" 0 XI	11 II V X	וו וו סי או	
Series and Statist	e3ls	e32s	e33s	e34s	e35s	

Note: a. $\tilde{X} = \operatorname{sample}_{i}$ average and $\sigma = \operatorname{sample}_{i}$ standard deviation

م.

ဂ က ရ

sample size = 6 sample size = 7 sample size = 9 sample size = 10

LABORATORY DATA FOR SSD COMPACTS CONTAINING 30 PERCENT SIEVED FLY ASH AND CURED FOR 7 DAYS (SAMFLE SIZE = 8 UNLESS OTHERWISE NOTED) TARLE E-31.

terst destated in the second

eries and tastistic	Produ Pres	ction sure	Ini tial Weight	Initial Volume	Initial Density	Calc. Initial Porosity	SSD Weight	SSD Volume	SSD Density	Calc. Final	Compress Strengt	h ve
	(psi)	(MPa)	(g)	~ <u>)</u>	(g/cm ³)	(percent)	(g)	(cm ³)	(g/cm ³)	(percent)	(psi)	(MPa)
341598 <u>X</u> = d =	166,000 4 ,300	1,145 29	2.7619 0.0018	1.1611 0.0012	2.3788 0.0016	20.80 0.05	3.0529 0.0024	1.1739 0.0017	2.6006 0.0029		37,100 ^b 1,100	256 ^b 8
.4358 X = σ =	60 , 2 00 2 , 300	6 415 16	2.4472 ^C 0.0009	1.0974 ^C 0.0010	2.2301 ^c 0.0026	25.75 ^C 0.08	2.7785 ^C 0.0006	1.1101 ^c 0.0031	2.5029 ^C 0.0069	18.57 ^C	38,200 ^C 1,600	ы 263°
.45SRRK = d =	12 , 600 400	33	2.1249 0.0006	1.0530 0.0008	2.0180 0.0018	32.81 0.05	2.5208 0.0009	1.0607 0.0014	2.3764 0.0035	23.82	32,400 ^C 1,500	223° 11
							7					

Note: a. X = sample average and of = sample standard deviation b. sample si e = 6 c. sample size = 7

ACCESSION RECEIPTION REPORTS ADDITION REPORTS PROVIDED REPORTS

PREDRYING LABORATORY DATA FOR OD COMPACTS CONTAINING 30 PERCENT SIEVED FLY ASH AND CURED FOR 7 DAYS (SAMPLE SIZE = 8 UNLESS OTHERWISE NOTED) TABLE E-32.

SSD SSD olume Density	(cam ³) (g/cam ³)	.1753 ^b 2.5962 ^b .0022 0.00 4 5	.1080 2.5071 .0023 0.0047	.0598 ^c 2.3774 ^c .0016 0.0027	
c. SSD ial Weight Vo itv	ant) (g)	.99 ^b 3.0511 ^b 1.	.85 2.7779 1. .09 0.0019 0.	71 ^C 2.5195 ^C 1.	
Cal. Initi Porosi	(pero	o so	20	32.0	
Initial Density	(g/an ³)	2.3730 ^b 0.0027	2.2273 0.0032	2.0213 ^C 0.0017	
Initial Volume	(ang)	1.1634 ^b 0.0008	1.0978 0.0013	1.0512 ^C 0.0005	
Initial Weight	(b)	2.7608 ^b 0.0019	2.4451 0.0017	2.1248 ^C 0.0022	
ttion	(MPa)	1,17 5 22	424 6	~ &	
Produc Press	(psi)	170,100 ^t 3,200	61 , 4 00 800	12, 700 ^C 300	
tica		¢ ≍¦	 0' Xì	11 11 0 X	
Series and Statis		c41s	c43 sr	c45sr	

Note: a. $\overline{X} = sample$ average and $\sigma = sample$ standard deviation . . .

sample size = 7 sample size = 9

.

POSTURYING LARORATORY DATA FOR OD COMPACTS CONTAINING 30 FERCENT SIEVED FLY ASH AND CURED FOR 7 DAYS (SAMPLE SIZE = 8 UNLESS OTHERWISE NOTED) TABLE E-33.

Jmpressive Strength (psi) (MPa)	5,700 ^b 384 ^b 900 6	7,400 ^b 327 ^b 2,300 16	7,900 ^b 261 ^b 1,700 12
masured Co Pinal S Srosity percent) (15 . 02 55	18.66 47	23.74 3
48 Hour Me OD 1 Density Pc (g/cm ³) (1	2.4608 ^C 0.0080	2.3381 0.0068	2.1641 ^d 0.0028
48 Hour 4 00 Volume 1 (cm ³)	1.1682 ^C 0.0029	1.0997 0.0026	1.0480 ^d 0.0011
48 Hour OD Weight (g)	2.8746 ^C 0.0026	2.5712 0.0022	2.2679 ^d 0.0021
42 Hour OD Weight (g)	2.8748 ^C 0.0026	2.5711	1 2. 2680 ^d 0.0020
24 Hour OD Meight (g)	= 2.8784 ^C = 0.0028	= 2.5732 = 0.0025	= 2.2720 ^d = 0.0020
Series and Statistic	cils X		c45sr X : o

Note: a. \tilde{X} = sample average and σ = sample standard deviation

sample size = 6 sample size = 7 ים יים

sample size = 9

assay received

LABORATORY DATA FOR SSD COMPACTS CONTAINING 30 PERCENT SIEVED FLY ASH AND CURED FOR 28 DAYS (SAMPLE SIZE = 7 UNLESS OTHERWISE NOTED) TABLE E-34.

and the first of the state of the

a Parto

STATES STATES

CHERNER

Series and	Product	rtion Ire	Ini tial Weight	Initial Volume	Initial Density	Calc. Initial	SSD Weight	SSD Volume	SSD Density	Calc. Final	Compre Stren	ssive gth
statistic	(psi) ((MPa)	(ɓ)	(cm ³)	(g/cm ³)	(percent)	(ĝ)	(cm ³)	(g/cm ³)	percent)	(psí)	(MPa)
D41593 X = 0 =	171,900 ^d] 2,000	1, 185 ^d 14	2.7602 ^d 0.0006	1.1610 ^d 0.0010	2.3774 ^d 0.0021	20.85 ^d 0.06	3.0529 ⁶ 0.0017	1.1739 0.0018	2.6006 ^d 0.0035	14.13	40,700 900	281 6
D435R X = 0 =	56 , 300 800	388	2.4460 0.0006	1.0979 0.0015	2.2280 0.0033	25.82 0.10	2.7828 0.0022	1.1131 0.0039	2.5001 0.0072	17.94	42, 000 ^b 1,800	289 ^b 12
D45SR X = 0 =	12,800 ⁰ 200	7 80 80	2.1258 ^C 0.0005	1.0510 ^C 0.0003	2.0227 ^C 0.0008	32.66 [°] 0.02	2.5290	1.0624 ⁰ 0.0008	2.3804 ^C 0.0022	23.18	38 , 4 00 700	265 5
							• • • •	7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				

Note: a. \overline{X} = sample average and σ = sample standard deviation

ים. מיני פי

sample size = 6 sample size = 8 sample size = 9

PREURVING LARDRATORY DATA FOR OD COMPACTS CONTAINING 30 PERCENT SIEVED FLY ASH AND CURED FOR 28 DAYS (SAMPLE SIZE = 6 UNLESS OTHERWISE NOTED) TABLE E-35.

Series and	D.	Produc	tion	Initial Weight	Initial Volume	Initial Density	Calc. Initial	SSD Weight	SSD Volume	SSD Density
Statis	ITIC .	(psi)	(MPa)	(ð)	(cm ³)	(g/cm ³)	(percent)	(g)	n U U U U	(g/cm ³)
dalse	а XI С XI	169, 000 2, 300	1, 165 16	2.7590 0.0006	1.1592 0.0011	2.3800 0.0024	20.76 0.07	3.0546 0.0016	1.1757 0.0029	2.5982 0.0055
d43 sr	11 II 17 XI	56,300 1,100	388 7	2.4464 0.0005	1.0988 0.0008	2.2263 0.0016	25.88 0.05	2.7846 0.0025	1.1166 0.0043	2.4938 0.0082
d 4 5sr	0 XI 1 II	12,300 ¹ 200	∽ &	^b 2.1232 ^b 0.0008	1.0505 ^b 0.0010	2.0212 ^b 0.0020	32.71 ^b 0.06	2.5278 ¹ 0.0017	² 1.0656 ¹ 0.0014	0.0032

Note: a. X = sample average and o = sample standard deviation b. sample size = 8

postirying largratory data for od compacts containing 30 fracent sieved fly ash and cured for 28 days (sample size = 6 unless offerwise noted) TABLE E-36.

Sources Preserves

ALLER STORM AND ALLER ALLER

npressive trength psi) (MPa)	,200 374 ,800 12	,100 346 ,500 10	,400 285 800 5
Measured Co Final S Porosity (percent) (13.86 54 1	18.34 50 1	° 23.07 41
48 Hour OD Density (g/cm ³)	2.4736 0.0057	2.3284 0.0115	2.1698 ¹ 0.0026
48 Hour OD Volume (cm ³)	1.1690 0.0025	1.1080 0.0050	0.0013
48 Hour OD Weight (g)	2.8916 0.0010	2.5798 0.0016	2.2820 ^t 0.0017
42 Hour OD Weight (g)	2.8972 0.0013	2.5800 0.0015	2.2840 ^b 0.0017
24 Hour OD Weight (g)	2.9331	2.2587 0.0018	- 2.2992 ^b - 0.0017
ies d tistic ^a	מ או מ או	0 ≍1 1 1	פע א גע
Star	d41	d 4 3	d 4 5

Note: a. \vec{X} = sample average and σ = sample standard deviation sample size = 8 p.a.

116

it is a later of the

LABORATORY DATA FOR SSD COMPACTS CONTAINING 30 PERCENT SIEVED FLY ASH AND CURED FOR 90 DAYS (SAMPLE SIZE = 9 UNLESS OTHERWISE NOTED) TABLE E-37.

50

eries and	Produc Press	tion	Initial Weight	Initial Volume	Initial Density	Calc. Initial	SSD Meight	SSD Volume	SSD Density	Calc. Final	Compres	ssive
STALLSLIC.	(psi)	(MPa)	(ɓ)	(cm ³)	(g/am ³)	(percent)	(g)	(cm ³)	ا) (العام) (ا	orosity percent)	(psi)	(MPa)
E41S <u>X</u> = 0 =	175,500 2,800	1,210 19	2.7614 0.0011	1.1634 0.0009	2.3735 0.0019	20.98 0.06	3.0594 0.0022	1.1748 0.0032	2.6041 0.0056	14.41	43,400 ^b 1,300	299 ^b 9
E42S X = d =	116,200 ^C 3,100	27 80 1	2.6083 ^C 0.0010	1.1310 ^C 0.0013	2.3062 ^C 0.0024	23.22 ⁰ 0.07	2.9234 ⁶ 0.0022	7.1413 0.0019	2.5614 ^C 0.0029	16.13	4 2,900 ^b 1,000	296b 7
E43S X = d =	68,700 1,600	474 11	2.4468 0.0005	1.0996 0.0009	2.2251 0.0018	25.92 0.05	2.7896 0.0009	1.1118 0.0021	2.5091 0.0040	18.21	4 3,300 ^b 1,000	299b 7
E44S X = 0 =	31,200 ^c 700	215 ⁴ 5	°2.2844 ^C 0.0009	1.0718 ^C 0.0005	2.1313 ^C 0.0012	29.04 ^C 0.03	2.6565 ^c 0.0038	³ 1.0808 ⁴ 0.0006	2.4580 ^C 0.0037	20.61	42,400 ^b 1,100	292b 7
E45S X = 0 =	12,600 ^d 500	33	¹ 2.1240 ^d 0.0014	1.0516 ^d 0.0006	2.0198 ^d 0.0019	32.75 ^d 0.06	2.5327	11.0603 ^d	¹ 2.3886 ^d 0.0019	23.46	40,200 1,600	277 11

Note: a. X = sample average and σ = sample standard deviation b. sample size = 6 c. sample size = 8 d. sample size = 10

PREURVING LABORATORY DATA FOR OD COMPACTS CONTAINING 30 PERCENT SIEVED FLY ASH AND CURED FOR 90 DAYS (SAMPLE SIZE = 8 UNLESS OTHERWISE NOTED) TABLE E-38.

the the test of te

τy	3)	оv	dr r	40	90 1	6 b	
SSD	(g/an	2.605 0.004	2.556	2.505	2.455 0.003	2.390 0.001	
SSD Volume 1	(cm ³)	1.1741	0.0024	1.1125 0.0032	0.0022	0.0012	
SSD Weight	(g)	3.0585 0.0024	2.9241 ^b 0.0024	2.7872 0.0022	2.6553	2.5320 ¹ 0.0018	
Calc. Initial	(percent)	21.01	23.25 ^b 0.06	25.97 0.09	29.10 ^C 0.09	32.72 ^b 0.04	
Initial Density	(g/am ³)	2.3725 0.0019	2.3053 ^b 0.0019	2.2236 0.0029	2.1296 ^C 0.0030	2.0207 ^b 0.0014	
Initial Volume	(CIII3)	1.1633 0.0010	1.1313 ^b 0.0011	1.0996 0.0011	1.0726 ^C 0.0013	1.0510 ^b 0.0007	
Initial Weight	(ɓ)	2.7599 0.0018	2.6079 ^b 0.0014	2.4451 0.0017	2.2841 ^C 0.0013	⁰ 2.1237 ^b 0.0007	
cion ure	(MPa)	1, 200 22	773 ⁵ 14	460 14	214	38 98	
Product	(psi)	174,000 3,200	112,100 ^b 2,100	66, 700 2, 000	31,000 ^C 1,300	12,500 ^b 500	
a	CIC	ו	∥ ∥ Ø ⊠	∥∥ 0'≍4	0 XI	∥ ∥ 0 ≍1	
Series and	Statisi	e41s	e42s	e43s	e44s	e45s	

Note: a. \overline{X} = sample average and σ = sample standard deviation b. sample size = 9 c. sample size = 10

a de la constancia de la c

118

- Carlona

POSTURYING LABORATORY DATA FOR OD COMPACTS CONTAINING 30 PERCENT SIEVED FLY ASH AND CURED FOR 90 DAYS (SAMPLE SIZE = 8 UNLESS OTHERWISE NOTED) TARLE E-39.

is the set of the set

sive ch (MPa)	386 ^b 6	379 ^C 6	338 ^b 9	323 5	311 ^b 6
Campres: Strengt (psi)	56,100 ^b 900	54,900 ^C 900	49,100^b 1,300	46, 800 700	4 5 , 200 ^b 900
Measured Final Porosity (percent)	14.43	16.49	18.01	20.33	23.73
48 Hour OD Density (g/cm ³)	2.4736 0.0055	2.4110 ^d 0.0033	2.3481 0.0056	2.2758 ^e 0.0043	2.1783 ^d 0.0023
48 Hour OD Volume (cm ³)	1.1680 0.0026	1.1346 ^d 0.0018	1.1017 0.0021	1.0702 ^e 0.0020	1.0 4 70 ^d 0.0012
48 Hour OD Weight (g)	2.8891 0.0020	2.7355 ^d 0.0015	2.5868 0.0023	2.4355 ^e 0.0017	2.2806 ^d 0.0016
42 Hour OD Weight (g)	2.8891 0.0022	2.7357 ^d 0.0017	2.5877 0.0023	2.4340 ^e 0.0018	2.2793 ^d 0.0021
24 Hour OD ya Weight (g)	= 2.8901 = 0.0023	= 2.7405 ^d = 0.0016	= 2.5956 = 0.0027	= 2.4367 ^e = 0.0015	= 2.2835 ^d = 0.0017
Series and Statistic	e4ls X Ø	e42s X ơ	e43s X Ø	e44s X 0	e45s X Ø

Note: a. \hat{K} = sample average and σ = sample standard deviation

sample size = 6 sample size = 7

sample size = 9 sample size = 10

APPENDIX F

LINEAR REGRESSION SUMMARY DATA

The purpose of this Appendix is to provide additional pertinent data concerning each of the linear regression analyses performed for this report. The data presented have been sorted by the figure which contains the linear relationship in question. Additional data presented include the units to be used for the X and Y axis values, the slope of the developed regression equation, the Y-intercept of the regression line, the number of data points used for the equation development or degrees of freedom and the coefficient of determination for each equation. Linear regression data are given in Table F-1. TABLE F-1. LINEAR REGRESSION SUMMARY DATA

Later and the faith that a faith

re	Line	AX 18	Unite	Degrees of	Slope of	Y-Intercept of	Coefficient of
r.	Description	Y	X	Freedom	Regression Line	Regression Line	Determination
	0% Fly Ash	grams	percent	40	-0.051	3.687	6.993
	10% Fly Ash	grame	percent	22	-0.052	3.887	0.994
	20% Fly Ash	grams	percent	22	-0.053	3.877	0.993
	30% Fly Ash	grams	percent	22	-0.053	3.857	0.992
	OX Flv Ash		log . X. psi	40	0.59	-0.28	0.978
	10% Fly Ash		log X, pei	22	0.58	-0.27	0.976
	20% Fly Ash	graus	log 10 X, pei	22	0.56	-0.18	0.983
	30% Fly Ash	81.48	log 10 X, pei	22	0.55	-0.16	0.983
		percent	log 10 X, psi	106	-10.9	78.2	0.991
	0% Fly Ash	percent	log 10 X, pei	20	-10.5	65.9	0.979
	10% Fly Ash	percent	log 10 X, pei	11	-9.5	61.9	0.983
	20% Fly Ash	percent	log in X, psi	11	-8.6	58.1	0.980
	30% Fly Ash	percent	log 10 X, pei	11	-7.9	55.7	0.987
	SSD	8/cm ³	log 10 X, pei	40	0.22	1.5	166.0
	8	g/cm ³	log 10 X, pei	40	0.32	0.9	0.994
	Initial	g/cm ³	log 10 X, pei	20	0.36	0.6	0.994
•	SSD	g/cm ³	log 10 X, pei	22	0.22	1.5	0.992
	QO	g/cm ³	log in X, pei	11	0.30	1.0	0.995
	Initial	g/cm ³	log 10 X, pei	22	0.35	0.6	0.991
	SSD	g/cm ³	log , X, pei	22	0.20	1.6	0.995
	00	g/cm ³	log , X, pei	11	0.28	1.1	0.992
	Initial	g/cm ³	log 10 X, pei	22	0.32	0.7	0.997

121

1.5

TABLE F-1. LINEAR REGRESSION SUMMARY DATA (CONTINUED)

JO L Determination Coefficient 0.994 0.995 0.919 0.679 0.918 0.944 0.912 0.996 0.807 0.699 0.478 0.807 0.929 6.933 0.898 0.922 0.936 0.997 0.996 0.996 Regression Line of Y-Intercept 15,464 21,412 34,445 11,453 27,940 27,415 14,439 29,902 30,213 2,336 16,870 20,291 78.2 48.4 1.6 1.1 0.7 34.4 10.1 Regression Line 5,797.9 5,211.7 6,041.7 3,066.9 3,643.6 4,566.1 2,227.7 2,575.1 -10.93 7,731.7 6,053.3 2,877.0 5,691.2 Slope of -1.3 -0.19 0.19 0.26 -0.39 -0.57 of Freedom 106 48 egrees 212 12 12 5 5 5 **m m** 5 999 **6** 6 6 1 **pe** 1 period period pe i pe i pe i pe i pe i a a percent percent percent log 10 X, log 10 X. log 10 X. log 10 X. log 10 X, percent log 10 X, log 10 X, log 10 X, log 10 X, × Ax16 Units percent percent percent percent 8/cm³ 8/cm³ 8/cm³ pe : pe : pe : pe i pe i pe i pei pei pei psi psi psi > p8 i p8 i p8 i 28 days Description Initial Initial Final day 14,000 70,000 175,000 ass op Line **3**8 90 3 28 ~ ~ **58 90** 2 28 90 **1**0 ~ Figure Number 17 18 19 20 22 23 24 21

٤

J

Contraction of the second

Sector Sector

VERAL DISTORT

122

TABLE F-1. LINEAR RECRESSION SUMMARY DATA (CONTINUED)

 Line Description	Ax 18 Y	Units X	Degrees of Freedom	Slope of Regression Line	Y-Intercept of Regression Line	Coefficient of Determination
7 to 28 days 7 to 90 days	percent percent	log ₁₀ X, pei log ₁₀ X, pei	11	-2.4 -8.7	19.0 53.4	0.996 0.996
7 to 28 days 7 to 90 days	percent	log 10 X, pei log 10 X, pei	11	-8.6 -8.0	47.1 49.6	0.996 0.996
 7 to 28 days 7 to 90 days	percent	log 10 X, psi log 10 X, psi	11	-8.0 -8.3	55.5 51.5	0.996 0.996
02 Fly Ash, SSD 102 Fly Ash, SSD 202 Fly Ash, SSD 302 Fly Ash, SSD	78 1 78 1 78 1 78 1 78	percent percent percent	v	-621.5 -582.6 -670.0 -565.8	55, 539 52, 760 51, 913 46, 702	0.946 0.869 0.991 0.679
02 Fly Ash,00 102 Fly Ash,00 202 Fly Ash,00 302 Fly Ash,00	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	percent percent percent percent	n n n n	-1868.7 -2082.4 -2265.3 -2030.4	87,399 90,537 91,618 85,862	0.957 0.997 0.996 0.997
 02 Fly Ash,SSD 102 Fly Ash,SSD 202 Fly Ash,SSD 302 Fly Ash,SSD	7 7 7 8 1 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	percent percent percent	v) e) e) e)	-512.9 -552.4 -351.8 -280.3	55, 555 55, 004 48, 637 45, 529	0.866 0.939 0.488 0.488
02 Fly Ash,00 102 Fly Ash,00 202 Fly Ash,00 302 Fly Ash,00		percent percent percent	50000	-1612.3 -1635.9 -1805.8 -1394.0	83,111 82,791 85,853 74,248	0.933 0.997 0.989 0.965
TABLE F-1. LINEAR REGRESSION SUMMARY DATA (CONCLUDED)

10 AL 14

のできるので

0000000

 127

Figure	Line	Axis U	nits	Degrees of	Slope of	Y-Intercept of	Coefficient of
Number	Description	λ	×	Freedom	Regression Line	Regression Line	Veteraination
				v	- 700 . 8	53, 185	0_920
	DE FLY ABN, 33D		percent	~	-451.9	52,416	0.784
	OZ Fly Ash, SSD		percent	5	-319.9	48,378	0.764
	OT FIV Ash OD	.190	percent	\$	-1804.3	85,485	0.940
	02 Flv Ash.00		percent	~	-1325.4	75,447	0.831
	OZ Fly Ash, OD	pe i	percent	~	-1269.9	74,038	0.880
31	7 400	nercent	percent	24	-0.7	0.6	0.988
	28 dav	percent	percent	24	-0.5	4.7	0.869
	90 day	percent	percent	18	-0.6	11.6	0.758

26.0

