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FOREWORD

The Army Research Institute (ARI) Presidio of Monterey Field Unit is con-
cerned with research related to improving unit collective training. Research
in this area is conducted under the sponsorship of the U.S. Army Training
Board (ATB) and the U.S. Army Combined Arms Center (CAC). The National Train-
ing Center (NTC) uses an instrumentation system to provide valuable detailed
information about unit collective training. To capitalize on this valuable
information, the Presidio of Monterey Field Unit has acquired the capability
of replaying and analyzing NTC data. The collection and analysis of this
dynamic and complex data breaks new ground. The development and adaption of
methodological tools for the analysis of such data are required. This report
is an in-house effort that reviews, evaluates, and develops times-series meth-
odologies that can be applied to NTC data and other complex Army environments.

EDGAR M. JOHNON
Technical Director
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INTERACTIVITY THEORY: ANALYZING HUMAN ENVIRONMENTS USING LINEAR

PREDICTION FILTERS

EXECUTIVE SUMMARY

Requirement:

The ability to analyze the details of Army unit performance quantitatively
is important for many scientific and practical applications. Performance is
used in a general sense to refer both to tactical behavior during field training
exercises, and to day-to-day operations in garrison. The analysis of performance
in such realistic Army environments is complex. It involves the analysis of
dynamic forms of interaction over time between individuals and groups, and be-
tween groups. In addition, Army environments are not tightly controlled, and
unexpected random events are commonplace. Approximate methods are needed to
analyze performance quantitatively in these circumstances.

Procedure:

Analyses of complex interactive human environments pose analytic diffi-
culties for commonly used methods. Linear prediction filters are selected as
a methodology that can realistically reflect the characteristics of an inter-
active environment and conform to appropriate scientific criteria: empiricism,
replication, prediction, and parsimony. Filters are compared to related
linear models (e.g., ANOVA, path analysis). Scientific criteria are used to
identify weaknesses in interactive applications of traditional linear methods.
A multichannel linear prediction filter is derived and integrated with a mea-
surement model, producing "time-series" factor analysis. The model is applied
to data showing a long-term cyclical relationship between promotion rates in
the U.S. Army and survey measures of company effectiveness.

Findings:

Multichannel linear prediction filters provide a useful set of methods
that can be applied to the analysis of Army unit performance in dynamic environ-
ments. These filters are useful for predicting the dynamics of garrison per-
formance as is shown in the Army example that is provided.

Utilization of Findings:

The National Training Center (NTC) uses a sophisticated automated data
acquisition system to record events over time for NTC exercises. Another
possible application of linear prediction filters is for the analyses of such
data. In addition, the filters can be used usefully to simulate the dynamics
of battle in computer-driven Nbattle" simulations.
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INTERACTIVITY THEORY: ANALYZING HUMAN ENVIRONMENTS USING LINEAR
PREDICTION FILTERS

The application of the scientific method in psychological research

has been the subject of continuing debate (see Elms, 1975; Gergen, 1973,

1976; Greenwald, 1976b; Schlinker, 1976; Secord, Note 1). Some critics

have asserted that the application of the scientific method has been

inadequate. As a consequence, informational content in the field

becomes ideologically based, since theories remain untested by the

scientific method. Far from being upset by ideological content, some

psychologists have urged the creation of informational content

"liberated both from the press of immediate fact and the necessity for

verification." The application of emprirical methods to psychological

problems is seen as inappropriate. The psychologist thus becomes

liberated from the necessity for "discompassionate comportment in

scientific affairs" (Gergen, 1978, p. 1344, 1982).

SCIENTIFIC METHOD

By contrast, we argue that ideologically based content in psychology

is neither necessary or desirable when a more vigorous application of the

scientific method can move informational content beyond ideology.

Interactivity theory is directed toward the goal of improving the appli-

cation of the scientific method in psychological research. The meaning of

"scientific method" as used here is not synonymous with "randomization"

or "controls" in a typical application of the experimental paradigm. In

4'ii .~
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fact, we argue (see Section 1.3.) that some applications of the traditional

experimental paradigm in psychology can actually be poor applications of

the scientific method. A simplified diagram of some essentials of the

scientific method appears in Figure 1. To briefly summarize, the

epistemology of the scientific method is empiricism, i.e., testing theory

using systematic observation. The objective of the scientific method is

to modify theory to match data. As noted in Figure 1, correspondence is

required between the predictions that stem from theory and the predic-

tions that stem from the application of the methodology. If this

correspondence does not exist, "something" may be tested but it is not

the theory in question. In addition, the methodology must be capable of

making predictions in the first place so that theory becomes subject to

testing and modification. Given equally precise prediction, concise

representations are always preferred over inconcise ones (law of parsi-

mony, or Occam's razor). Predictions that are confirmed should be

replicable. These well known principles delineate the areas where

Sansformational Modify Theory

Ri s tot ical M qETHODS

. Measurement ,Transformational

RiCtorica r i s onfirmed tPrdic tos _Prdcions C

-r: I -I

• - - Match -

*(Instanitation 
I)

Figure 1. Some essentials of the scientific method.
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problems can arise in the application of the scientific method (see

Sections 1.3., 2.1.3., 3.3.4.). The goal of interactivity theory is to

adhere to the principles of the scientific method in these potential

problem areas, i.e., require (a) empiricism, (b) replication, (c) pre-

diction, and (d) parsimony. These four scientific criteria were used as

guidelines for methodological development and evaluation. Subsequent

discussion is organized in these terms.

The relationships between these criteria are important since

conclusions drawn from them can be in conflict. When conflict exists

among objectives, the relationship between objectives is defined by the

concept of preemptive prioritization--a concept borrowed from goal

programming. In goal programming, the analyst must satisfy multiple

mutually contradictory objectives by satisfying some ahead of others in

order of a preestablished priority structure. An implicit priority

structure exists among the scientific criteria: in order of priority,

(a) empiricism, (b) replication, prediction (placed together as related

criteria) and (c) parsimony. When conflict exists among criteria,

empiricism must be ordered ahead of prediction so that theory can be

tested by prediction. Empiricism requries observations to be made

according to theory even if forecasts are not optimal under these

• :conditions, because the lack of optimality provides a criterion for

modifying theory. Parsimony involves refusing to multiply complexity

beyond necessity. However, empiricism, prediction, and replication

constitute necessities. Simplicity cannot be obtained at the expense of

3
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empricisim, prediction or replication, without engaging in over simplifi-

cation or false parsimony. For these reasons parsimony is ordered last.

I. Empiricism

I.I. Bootstrapping Levels of Theory

Interactivity theory is partitioned into three levels of theory

with three corresponding levels of methodology in Figure 1. The hier-

archical organization of levels indicates a dependence of upper levels

of theory upon lower levels. These same levels of theory exist in the

physical sciences. However, in the physical sciences, the lower levels

can be so straightforward that they become transparent to observers.

Transformational theory is theory about change, i.e., what it takes to

transform units of analysis from their present state to a new state as

defined by predetermined goals. Such transformational questions are

logically dependent upon historical theory, which describes present

states in terms of past histories of the units of analysis. Historical

theory, in turn, is dependent on a measurement theory that describes

needed measurements and how to combine them in order to track appropriate

"historical" variables. To recap, transformational theory cannot be

tested without identifying current states first. Current states cannot be

identified outside the context if their own histories, and histories

cannot be tracked without measuring relevant variables first.

Empiricism requires that theory be tested at all levels. The only way to

accomplish this is to test theory from the bottom up, from measure-

ment theory through historical to transformational theory, in a bootstrap

4I



fashion. Transformational theory cannot be tested prior to testing

historical, and measurement theory; likewise, historical theory cannot

be tested prior to measurement theory. Violating this order violates

the principle of empiricism, and produces information that relies on a

poor foundation. In psychology, it is generally much more difficult to

bootstrap through lower levels of theory than in the physical sciences.

Moreover, psychological theory (see Neel, 1977, for examples of theories)

is frequently most elaborate at the transformational level and most

sparce at the measurement levels--a situation incompatible with empiricism.

The goal of interactivity theory is to adhere to empiricism by providing

tools that allow observations to be made at all levels of theory. Almost

by definition, this approch is data intensive, requiring appropriate

observations at all levels. Initial emphasis is in measurement and

historical models.

1.2. Correspondence of Theory and Method

Besides ignoring the necessity for bootstrapping, a second common

way to violate the principle of empiricism is to mismatch theory and

method as depicted in Figure 1. If the predictions provided by theory

don't correspond directly to their realization through the method,

"something" may be tested but it is not the theory in question. If the

theory in question is not tested, the principle of empiricism has been

violated. Instantiation is a descriptive term, borrowed from computer

science terminology, that is used here to refer to this process of

*matching method to theory. Theory is like an inactive generic template.

5



Methodology must correctly activate specific instances of the theory.

The process of correctly activating instances is called instantiation.

Methodology must correctly instantiate theory.

Interactivity theory approaches the issue of instantiating theory

by first defining generic characteristics of theory to which the methods

can be applied. Interactivity theory was designed to apply to inter-

active human environments:

The human environment can be characterized by

complex, recursive, nonlinear, time-dependent

exchanges between interacting people or groups.

Interaction between participants is selective

and goal oriented. The course of interaction

adapts to fit circumstances; which can include

random events. Interaction occurs in a context

of social groups, organizations or institutions.

This generic characterization of the human environment is the

starting point for interactivity theory. This starting point appears

to be realistic and compatible with many psychological theories. The

problem next becomes one of matching methods to the definition of the

* environment that will not violate the integrity of the initial defini-

tion. Linear prediction filtering (digital filtering) was selected as a

technique that provides an appropriate match to the problem as defined

6



above. These filters are used in many high technology applications. To

a large extent, the literature related to this approach is found outside

psychology, e.g., in the economics, electronics engineering, and

statistics literature (see Chow, 1975, 1981; Friedlander, 1982a, 1982b,

1983; Isaksson, Wennberg & Zetterberg, 1981; Jain, 1981; Kay & Marple,

1981). Many concepts differ from traditional deterministic concepts

commonly found in psychology. Some familiarity with such models is

necessary as a point of departure for further discussion. An example of

a multichannel linear prediction filter is provided next.

1.2.1 Multichannel linear prediction filter. The model is a

multivariate generalization of the autoregressive time-series model (see

Chow, 1975, chap. 3). The definition of the model starts with model

statements which define the linear relations between each variable at

time t, and its own history and the histories of all other variables, as

measured at equidistant and discrete points in past time. For example,

model statements for a two-variable two-wave panel design can be written,

x - x1 + a12 Zt-l e xt

X eYt " 121 2Et-1 + 122 -1 + -_

where x, y are measured variables, subscripts t, t-I are the times

associated with measurement intervals, aj are real linear coefficients

showing relationships from past to present, and ext , eyt represent

7



random residuals, or white noise processes. Likewise, the model state-

ment for a two variable, three-wave design can be written,

it" ll - t-l -12 -t-l + -13 4-2 + 414 Yt-2 -

(3)
"- 'A21 I - -2 2 Yt- 1 4-2 3 Et_-2 * 1-24 Y_-2 + Y_ "

The model statement can be written in the same way, as illustrated

above, for both time-series and panel designs. With time-series many

observations on a single case vary by time, while in panel designs, many

cases are observed at just a few time intervals. The algebra is greatly

simplified, if the model statement is rewritten in matrix notation as a

first-order difference equation. Only a single time lag appears in a

first-order equation. Since Equation 2 already has just one time lag,

it translates directly into first order form as,

ill S12 -At-l A
S "+-, L (4)

Since more than one time lag appears in the second model statement, it

must be rewritten as,

4t ill -2 -13 A14 -At-l !At

t 2 - 22 -23 -24 -St-I -St
U +- - (5)

At-l 1.0 0 0 0 -,A-2

4t-1 0 1.0 0 0 x t-2 0

8



Equations 4 and 5 can be written more compactly in first order form as,

X X + vt, where (6)

Xt is a n x m matrix of observed variables (starting at time t), with

means. The term m represents the number of observations. The term

n - p x t. The term p is defined as the number of variables in the system at

time t, and t is the number of lagged observations on these variables, e.g.,

- 1 in Equation 2 and L - 2 in Equation 3. The value t represents the order

of the equation. It should be noted that, in time series designs, the data

matrix is transposed from the position typically given in a linear regression

set-up. In addition, in order to simplify the notation, it is assumed that

the observed variables have been scaled by a factor of 1/m , so that

covariance matrixes can be represented in the form XtXt, without requiring

division by m. A is an n x n matrix of real linear coefficients (e.g., as

shown in Equations 4 and 5). Xt_ 1 is a n x a matrix of observed variables

listed at time t-I in relation to Xt . The vector v t is a n x a matrix of

random moise variables, uncorrelated with Xt_l, with 0 means (see, e, e in

Equations 4 and 5). When L is greater than one, v will contain some zero

elements. It is clear that the pattern in Equations 5 and 6 readily

generalizes to model statements with any number of variables and lags (see

Chow, 1975, chap. 3).

Time is given by t, a counter that increases with time. Measurement lags

are given by k, a counter measured in relation to t that increases backward in

time from the starting value of 0 assigned at t. Synchronous relationships

include only those measured at a common time, with k = 0. The expected

9



variance-covariance matrix between variables in synchronous time, can be

written as a function of A and v in Equation 6 as follows:

r(t, -E (x X) V + AVA' + A2 VA' 2 + ....AL-1 VA-- Il, where (7)

the observed variables Xit , Xjtk are expressed as deviations from their

means, and r(t,O is a portion of the expected variance-covariance matrix at

time lag k - 0. r(t,O) includes n x n covariances between those observed

variables listed at the left in Equations 4, 5, and 6. A is the matrix of

real coefficients from Equation 6. Vn x n is the variance-covariance matrix

of the vector of residual noises from Equation 6. Derivation of Equation 7

is provided in Chow (1975, chap. 3) and will not be repeated here. In the

derivation ot Equation 7, covariation between residuals is not permitted

across time, anytime k > 0. However, covariation between residuals is

permitted if it occurs in synchronous time (k - 0). The V matrix contains,

then, variances of the residual noises for each variable. The pattern of

covariances between residuals must be zero for lagged relationships (k - 0)

but may differ from zero for synchronous relationships. Techniques for

eliminating auto-correlated residuals are not discussed here (see Chow, 1975,

pp. 61-63). Equation 7 is an infinite series. If the time-series is

stationary (see discussion of stationarity in Sections 2.2.1.), the series

reaches a steady state as time (denoted by t in Equation 7) goes to infinity,

and additional terms on the right of Equation 7 become negligible.

10



The expected covariance matrix involving lagged relationships, k > 0, is

obtained by,

r(t,k -E Xi_ . - k r(,o)w where (8)

r(tI), is the n x n section of the covariance matrix involving time at

lag k > 1. When k - i, r(tl), involves the covariances between variables at

XtX i- . Additional n x n sections of the covariance matrix can be projected

backward in time as k increases, k > 1.

It is clear from Equation 8 that A can be calculated from the observed

n x n sections of the covariance matrix,

A - r(l) r(0)- 1. (9)

In order to make the notation more concise, t has been deleted from (t,k) in

Equation (9) and subsequent equations. r(l) and r(0 ) must be stationary in

this model.

V can be calculated by eliminating the infinite series from Equation 7.

This is accomplished by premltiplying Equation 7 by A and post-multiplying it

by A' which yields,

Sr( -A v + A2 + ..... (10)

Subtracting Equation 10 from Equation 7 eliminates the infinite series, and

provides an expression for V:

E(V) - r(0) - A r(0) A'. (11)

An alternate expression for Equation 11, in summation notation, is useful for

purposes of compact calculation:

11



n n/n n

V 2 0) where (12)

t-1 k-I 1 - -

n is defined as in Equation 6, and elements of A, r(0), and V are

represented by a, y(O), and V, respectively.

Given an observed stationary covariance matrix, A can be calculated

first from Equation 9, and V can be calculated next from Equations 11

or 12. To close the loop, A and V can be substituted into Equations 7
A A"

and 8, and the original covariance matrix can be regenerated exactly

from A and V.

*Equation 7 includes infinite series to generate r(0). This is not

a particularly efficient way to compute r(0). Appendix A provides

alternate computational procedures.

1.2.2. Filter characteristics. The model just outlined represents

a multichannel, finite, impulse-response (FIR) filter for zero-mean

processes. Estimates are equivalent to estimates from simple multi-

variate regression computed on stationary, block Toeplitz matrices (see

Section 2.1.1.). The regression is multivariate in a dual sense with

multiple dependent as well as independent variables. The logic under-

lying a filtering model differs in a variety of ways from a deterministic

regression model, however. In a deterministic regression equation, the

regression coefficient represents the degree of deterministic input from

"independent" variables, and "error" represents the lack of perfect

12



control. By contrast, in a filtering model, the stochastic white noise

parameters (i.e., "error") represent the input that drives the system.

Without the driver the system would die. Activation of, or driving

energy for, a stochastic system must always come from sourc 3 that are

at least partly stochastic (i.e., random). By contrast, in a deter-

ministic model, activation or energy comes from entirely deterministic

sources. In a stochastic system, the random driver feeds two types of

processes: a colored (i.e., correlated) noise process that in turn

feeds into an "autoregression" process. Together these processes

produce filtered output--containing structure--from white noise as

input.

This concept underlies the multivariate ARMA model (see Box &

Jenkins, 1976; Granger & Newbold, 1977). In this model, white and

colored noise processes drive filter coefficients (autoregression, AR,

parameters) producing filtered output. Moving average (MA) parameters

are associated with colored noise processes. A wide variety of physical

and biological systems can be modeled in this way (Kay & Marple, 1981).

The model in this section is a special case of an ARMA model. The model

is a special case because colored noise is limited to synchronous time.

The information is partitioned so that all information that is useful

for forecasting is contained in A, the matrix of "autoregressive"

coefficients, while all information about the noise processes that drive

the system is contained in V. In a filtering model, if a particular
J"

process produced structure in data, the same process should be able to

13



decompose it, reducing residuals to white noise.

In the general case, iterative numerical techniques are required to

estimate ARMA parameters (see Granger & Newbold, 1977). However, in the

special case just noted, A and V parameters can be estimated in closed
AW ASP

form using least squares estimators. In addition, the least squares

estimators in the special case are also maximum likelihood estimators.

A stationary process (see Section 2.1.1.) can be written in first order

form as in Equation 6, and considered to follow a Markov process.

According to the Gaus-Markov theorem, least squares estimators are also

maximum likelihood (minimum variance) estimators under these circum-

stances (Wilks, 1962, pp. 283-286).

Filters as in Section 1.2.1. provide a number of useful features

for modeling social interaction. In psychology, theoretical relation-

ships are frequently stated in terms of discrete linear relationships.

Parameters A and V provide a useful form for instantiating many theories.
A"~ AV

In addition, features can be modeled with a stochastic driver that are

difficult to model with a deterministic one. As indicated by Definitin 1,

random events are continually introduced into the course of natural

interaction, affecting its outcome. Filters with stochastic drivers can

model and track interaction in the presence of such noise. In addition,

stochastic drivers are useful for modeling selection and choice behavior.

As indicated by Definition 1, goal-oriented behavior is an integral part

of social interaction. Goals imply selection and choice. The range of

possibilities from filtered output is narrower than that of the

14



stochastic input. Filters are selective by definition. A driver of

white or colored noise can represent a "menu." Selections from the

of"menu" can be inferred from filtered output. By contrast, choice

behavior is difficult to model with a totally deterministic model.

Stochastic input is required in a stochastic model as in Section 1.2.1.,

-' but stochastic input does not preclude the addition of deterministic

input to the system. In fact, much of modern controls theory involves

calculation of deterministic inputs necessary to produce specified

transformational changes in a stochastic system (Chow, 1981).

In spite of the possibilities for testing theory, most time-series

models and engineering applications delete theory instantiation as a

scientific criterion or goal. When this occurs, the model becomes a

"black box" representation (see Makridakis & Wheelwright, 1979). Black

box models are applied in practical situations where the goal is to

predict accurately without concern for testing theory. ARMA models,

"state-space" representations, and canonical parameter representations

are generally black box models (see Akaike, 1976; Box & Jenkins, 1976;

El-Sherief & Sinha, 1982). The objective is to provide the best fore-

casts possible with a minimum number of parameters.

1.2.3. Measurement model. In order to bootstrap through levels

of theory, a measurement model needs to be added to the filter in

Section 1.2.1. Measurement models are designed to reduce measurement

error, and thus increase predictive accuracy. In addition, they

increase parsimony by reducing the number of variables in the system.

15
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Measure theory in psychology has traditionally been a latent variable, or

"hypothetical construct" model (APA et al. , 1954), that has been instantiated

using factor analysis. Interactivity theory requires that a measurement model

*' be able to distinguish between interactive historical effects and measurement

effects produced by latent variables. Unfortunately, traditional synchronous-

time measurement models, including factor analysis, are unable to make this

distinction by themselves. Time must be added to these measurement models in

order to validate that a true latent variable model exists, or is at least

possible. Without validating that a true latent variable model exists,

researchers run the risk of confusing interaction effects with measurement

effects, with potentially disastrous results. In this section and

*subsequently whenever measurement models are discussed, it is assumed that the

data has been standardized. Consequently, we will be dealing with correlation

instead of covariance matrices. To simplify notation, correlation matrices

are represented by XtE, without dividing by the product of sample size and

variable standard deviations.

For example, a synchronous correlation matrix between four variables is

provided in Equation 13,

.1.0 .36 0 0

.36 1.0 0 0
r (13)
x() 0 0 1.0 .51

0 0 .51 1.0

rX(O) in Equation 13 appears to be a perfectly appropriate candidate for

a measurement model, so a common factor analysis was applied. The

factor loading matrix is shown in Equation 14. A principal axes solu-

tion with iterations was used.

16



.60 0

.60 0 (14)
0 .71
0 .71

0 .71

From Equations 13 and 14, it appears appropriate to form two scales:

Scale 1 is the average of items 1 and 2, and Scale 2 is the average of 3

and 4. Applying the Spearman-Brown prediction formula (Winer, 1971,

p. 286), the reliabilities of these two scales are .53 and .68, respec-

tively. From the classical relationshipbetween reliability and validity

(r = v , a researcher knows Scales 1 and 2 can never correlate

higher than .60.

Unfortunately, history has been excluded from Equation 13. It is

assumed that r in Equation 13 is stationary. r in Equation 15
X (0) la(1)

represents a stationary first-order historical process added to r
x(0)

in Equation 13,

3 3

.3 .3 0 0

.3 .3 0 0

rx() . (15)
-.7 -.7 .4 .4

-.7 -.7 .4 .4

Given the historical process in Equation 15, the lagged correlations for

Scales 1 and 2 were computed,

17
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r a L : 3 0.0] (16)rs-a 1).70 .40

The lagged correlation between scales, _l1 2  -.70, violates the upper

boundary determined by reliability-validity theory, .70 > .60. Relia-

bilities are stationary in this example, so the upper boundary applies

to lagged as well as synchronous correlations.

Assume a different history in Equation 17 were added to rx(O) in

Equation 13,

.3 .3 .5 .5

.3 .3 -.5 -. 5

r (17)
2b,1) -.5 .5 .4 .4

-.5 .5 .4 .4

According to measurement theory, the creation of scales reduces measure-

ment error. As a consequence, correlations between Scales 1 and 2

should be higher than corresponding correlations between individual

items from different scales. Given the historical process in Equation 17,

* - the lagged correlations were computed for Scales 1 and 2,
.4

,,bl) 3 (18)3* 0 401
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The correlations in Equations 16 and 18 would be seriously misinter-

preted if a true measurement model as depicted in Equations 13 and 14 were

accepted. A falsely indentified "meaturement" model can cover over

significant interaction effects, and reduce the correlation between

scales rather than increase it (e.g., see the 0 cross-lagged correlations

in Equation 18). The time lagged relationships in Equations 15 and 17

represent relationships between separate variables rather than true latent

variables. Synchronous-time measurement theory accepts a latent variable

by definition. Time must be added to verify the existance of true latent

variables. If true latent variables don't exist, then none of the

traditional measurement theory follows. Tests for the existence of true

latent variables can be made using the time-series factor analysis model

described next.

The traditional factor analytic model can be written as follows:

1 = %,t where (19)

X is a y x I column vector of observed variables, with 0 means, measured at

time t; B is a ax f matrix of factor loadings; Zt is a f x I column of

latent, unobserved variables; mxt is a y x I column of independent measurement

errors, uncorrelated with other variables, with 0 means; and p and f are

values identifying the number of observed and latent variables, respectively,

at time t. For the sake of concise notation, sample size m has been deleted

from X t , Zt and %t and these terms are represented as column vectors rather

than matrices. Sample size is implicit in the vectors. Assuming Xt and Z to

be standardized, the expected structure of the correlations at time t follows

19
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Equation 19,

E(X X a BP B' + M, where (20)

E(X X)') is the observed correlation matrix; P is the correlation

matrix of latent variables Z Z' at time t; and M is a diagonal variance-

covariance matrix of measurement errors m xt. Equation 20 defines the

traditional factor,analytic problem (J5reskog. 1970; Mulaik, 1972).

Time is added to the traditional factor analytic model by assuming

the latent variable to be the product of a stationary historical process

(see Section 2.1.1.).

zti + ezt, ,with (21)

Z vritten In first order form as In Equation 6. When time is added to

the measurement model, replicability and stationarity become issues.

Equation 21 applies the simplest assumption of first order stationarity.

By substituting Z from Equation 21--at time t only--into Equation 19,f -
the model becomes:

lit 1..tf Ii..1 i Z- a..af -it e %i' m
' -:-21 Z *'"-fl [tft1 L -.-t -,,t ex+ t

'I.. ...I V

L-E L2 ";-2z:f J -L J -J 1- -i L-r
_t, ,-or

t x ..ai(I)zt. +..A(t)Zt_t + e,,: + mxt.
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The subscript t denotes the order of the latent variable process, or

number of latent lags, which is assumed to be equal to the number of

lags in observed variables. When t -1, the model does not continue

beyond(1). In Equation 22, measurement error (m ) is different from

the error that drives the filter (e!,t), in the sense that measurement

error does not drive filter coefficients. It only occurs in synchronous

time without history ever being added to it.

The overall model in Equation 22 can be considered nonlinear.

There are a variety of approaches to estimating the parameters in such a

model. An analytic solution was selected here for the sake of simplicity.

The solution, while not necessarily optimal, is sufficiently accurate to

illustrate the influence of time on the traditional factor analytic

model. Observing Equation 20 it is clear that B and M can be estimated

using traditional factor analytic techniques, pxp) I - diag £2, where C2

represents the communality and diag places the communalities as diagonal

entries in a matrix. This leaves A e e' and the latent correlation

structure to be estimated.

Time is added to the observed variables through backsubstitution:

"t BIt + mt
. -(23)

Next, we solve Equation 23 for Zt... t , by letting B+ =(B'B)-3B, the

Moore-Penrose generalized inverse of B (see Green, 1976, Appendix B):
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z B+ X B+

-t 0 -t

B4X (24)

The expected latent correlation structure can be estimated from Equation 24,

E(ZtZ' -P W O (25)X'

+ +1E(Z Z ) P -B (X )B '

it should be noted here that when B is estimated using a factoring

technique in which latent variables are orthogonal, (e.g., Principal-

axes method, Mulaik, 1972) P(o) will be in identity matrix.

The latent correlation structure is packed in first order form in the

same way that r ()and r~l vas packed in Section 1.2.1.:

(0) (1)Ztt

z
att (0) U_.I)

z(O z
-t-1) .-t-

In Equation 26, the lag k from P~k is - k I When .
44(k) -row -column

r and r, ) are limited to the upper left block, P an P
:Z(0) &0l .(0) a"(1)
respectively. It is now possible to solve for A and V as in

Section 1.2.1.:
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A r _ rF -
OAz z (l) z (0)

(27)
E_ (V))= r A_ A'.

S.izo 1z(O) _4z Z(O)bZ1

These equations represent a "time-series" factor analytic model, that

was applied to data in the Example Section.

1.2.4. Interaction between groups. The definition of the human

environment in Definition 1 refers to interaction between groups as well

as individuals. When theory does refer to interacting groups, the

interacting groups become the unit of analysis that must be used by the

methodology to instantiate theory. Generally, interacting groups are

found within a larger social organization. The structure of this larger

social organization must be taken into account by methodology. In

order to correctly instantiate theory involving group interaction, then,

appropriate groups as opposed to individuals must be designated as the

units of analysis, and the structure of these groups in the larger

social organization must be taken into account. Research results are

sensitive to these requirements.

The reasons for the conclusions are illustrated by example. When

groups are the unit of analysis, group aggregated means provide scores

to be used in an analysis. Generalization theory can be used to clarify

the structure of these group aggregated scores. Generalization theory

applies analysis of variance to complex data structures in order to

estimate variance components, and generalized analogies of reliability

and correlation coefficients (see Shavelson & Webb, 1981). A model
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statement is provided for the U. S. Army data in the Example Section.

The structure of this survey data at time t is described by:

Y = 1 + A + B(A) + C(AB) + R + AR + BR(A) + CR(AB) + S(ABCR) + q
(28)

+ Aq + _(A) + CR(AB) + R + ARQ + BRQ(A) + CRQ(AB) + Sq(ABCR).

Nesting relationships are indicated by parentheses. Potential units of

analysis are defined by nested levels of hierarchy; A, B(A), C(AB),

and S(ABCR); defined as brigade, battalion, company, and subject,

in this example. R refers to subgroups that cross levels of hierarchy

above subjects; in this example, rank and race, among others. _ refers

to questionnaire items. From the complexity of Equation 28, it becomes

clear that there is an increase In the number of ways correlations/

covariances can be computed using group as opposed to individual level

data. A rich variety of hypotheses can be tested with group level data.

For example, interaction between subgroups within companies (e.g.,

superiors and subordinates, blacks and whites) is possible with such

data.

Associated with each term that can serve as a unit of analysis, A,

B, C and S, is a variance component, aA2 OB2  C 2 . and aS2  These

variance components are the ones of interest in the analysis, even

though the expected mean squares for MS, MS, MSc, and MS contain

additional variance components, depending upon the sampling plan in the

design (see Hart & Bradshaw, Note 2). In reliability or correlational
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analyses, variance components are assigned the status of either "true"

or "error" variance. Ultimately, the status of "true" variance (a )
true

2 2 2 2
is assigned to aA2, aB2 , aC

2 or OS2 by theory. Theory pinpoints the

unit of analysis term from among MSA, MS, MS and MS . The expectation

2
of this term E(MS) must contain the true variance component atrue. For

reasons to be discussed, "error" variance (a 2r) status is assigned
error

A 2 2 or 2) besides the one selectedall the other components (a A 2, a B 2, 1C 2, or aS 2)bsdsteoeslce

2
as the unit of analysis (aF 2u). With these assignments, the status oftrue

the variance components "A 2, O 2  , a 2 ) changes as the corresponding

unit of analysis (A, B, C, or S) changes. What is "true" variance at

one level becomes "error" at the next. For example, if subjects represent

the unit of analysis, 2 a 2 and a 2 2 2 a C2
ttrue S error =A' aB and1 .MSotal

contains both true plus error variance, MSotal - MSs" If companies
2 2 2

represent the unit of analysis, MS = M , a 2 P and error
-total =-C true errond r2 2 2 2 S2

oA , aB , and S . The status of ac2 and a changed as the unit changed.

Variance components can be divided into two classes by ordering

2 2 2 2
them hierarchically, OA , oB , C , S , and separating the components

above the designated unit of analysis from those below. The reason for

assigning "error" status to these two classes differs. Correlational

analyses like the one in Section 1.2.1. require independent observations

on units of analysis. Components in the upper class are designated as

error because they represent dependence between observations that are

supposed to be independent. For example, if subjects represent the unit

of analysis, the GA 32 "B, C2 components represent "improper" dependencies
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between individual level observations, analogous to "autoregression"

errors in a time-series design (Hibbs, 1974). These dependencies need

to be filtered out prior to entering the observations into correlational

analyses. Components beneath the unit of analysis term are designed as

error when they are sampled. For example, in the Example Section,

companies are designated as the unit of analysis. Individual soldiers

within companies were sampled in order to estimate company means. By

sampling subjects, OS becomes a component of "sampling error" that

shows up in the expected mean square term for companies E(MS).

The results of correlational analyses are determined by the

relative size of "true" and "error" variance components. Total variance

is a sum of true plus total error variance. Generalization theory

defines correlation and reliability coefficients (positive sign) in

terms of a ratio of true to total variance (see Kane & Brennan, 1977;

Winer, 1971, pp. 283-296; Hart & Bradshaw, Note 2). Estimates for

correlations and reliabilities are obtained by solving for this ratio

definition using appropriate mean square terms. In this context,

correlations can be estimated from a generalization of the intraclass

correlation coefficient:

[MS otal - MS rror )/[MS otal + (n-l)MS rror. (29)

Likewise, reliability coefficients for mean scores can be estimated by:

(MS orl- MS )/MS oa. (30)
-total -error -total
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It is evident from Equations 29 and 30 that correlations and reliabil-

2 2
ities are large when a , MS are large, and error, MS are

tu'--total _____o --error

small. Furthermore, the results will be sensitive to selection of the

unit of analysis. The terms that can be substituted into these formulas

vary as the unit of analysis changes. The term designated as the unit

of analysis is always MS total. MS is a "sampling error" term that

also varies with the unit of analysis. This term must either (a) belong

to the nested hierarchy below the unit of analysis term, or (b) represent

an interaction between the unit of analysis and the variable being

correlated (see Hart & Bradshaw, Note 2). The value n represents the

number of observations sampled (e.g., questionnaire items, subjects

within companies). The use of Equations 29 and 30 is illustrated by

comparing the following substitutions: for individuals, Soal - S

2 2 2 2

Otrue OS '---error =§R11 Oerror q, n number of questionnaire

- - 2 2 2
items; for companies, MS-total - M, true C -error -s error

2
, n - number of subjects within companies. The first set of sub-

stitutions represent correlations between items for individuals, while

the second set, correlations between subjects within companies at the

company level. In this example, true variance in MS at the individual

level, became error variance at the company level.

Given that correlations are a function of the sizes of "true" and

"error" variance components, and that true and error designations change

as the unit of analysis changes, then it follows that conclusions reached

at one level may be quite different than conclusions reached at another.

4..
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These results demonstrate why individual level data cannot be used to

instantiate theory about group interaction, and why group data from one

level of hierarchy cannot be used to instantiate theory about another

level, without violating the principle of empiricism. Unfortunately,

it is common to see group level theory "tested" using individual level

data, or using an inconsistent mix of group and individual level data

(see Bowers, 1973; Passmore, 1976; Taylor & Bowers, 1972, p. 54;

Torbert, 1973).

1.3. Comparison

In order to clarify the nature of interactivity theory, it is

instructive to contrast it with other commonly used methodologies; in

this case with analysis of variance. Comparisons are made using

relevant scientific criteria as guidelines, i.e., empiricism, predic-

tion, replication and parsimony. In this case, theory instantiation

provides the basis for comparison.

Analysis of variance, by itself, does not do a good Job of

instantiating an interactive theory of the environment, defined gener-

ically in Definition 1. Design requirements in experiments are dictated

by the method of analysis, in this case analysis of variance. The use

of analysis of variance on randomized experiments is justified by the

Gaus-larkov theorem (Bock, 1975, pp. 175, 235-236). In order to create

a system that approximates a Karkov process, history must be removed by
4

the random assignment of units (people or groups) to treatment con-

ditions. In addition, analysis of variance assumes treatment conditions
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affect only means, not variance-covariance structures. Since history

affects variance-covariance structures (Chow, 1975), history must be

removed by random assignment. With past history removed from a given

situation, subjects may often have a short-term view of the future. In

fact most experiments examine single one-step responses of subjects to

treatment conditions. One-step responses are consistent with a Markov

process. In addition to removing history, treatment conditions are

deterministic, which means that all subjects within the same treatment

condition must receive exactly the same predetermined treatment.

Causation is unidirectional, from independent to dependent variables.

These analysis of variance design requirements create difficulties

for instantiating an interactive theory of the human environment. For

example, interaction as defined in Definition 1 requires time, with past

history and future goals. This is difficult to achieve in most ANOVA

designs, since history and variance-covariance effects must be removed

through random assignments to new situations. By definition, inter-

action involves exchange. The forms of exchange in most ANOVA designs

are highly restricted, limited to one-way, treatment-to-dependent-

variable exchanges; in which the treatment party must remain nonrespon-

sive to whatever the subject does, since treatment effects have to

remain deterministic. Given such "unnatural" restrictions, it is not

surprising that criticisms have been leveled at experimentalism. The

meaning and interpretation of treat-,ent effects, and the "external

validity" of dependent variable responses, becomes a problem when time
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(past and future) in the experimental setting is artificially truncated

(see Alexander & Knight, 1971; Bem & Funder, 1978). "Spurious" forms of

interaction, e.g., "social desirability" responses and demand character-

istics, (Brehm, 1966; Orne, 1962; Rosenthal & Rosnow, 1969) may pop up

in many experimental situations precisely because normal forms of inter-

action are so severely restricted. Human experiments are often designed

like agricultural experiments. Analysis of variance has had a long and

productive history in agricultural experimentation (see Cochran & Cox,

1957), but it should be recognized that human environments are often

interactive in ways that plant environments are not.

These comparisons should not be interpreted as criticism of the

experimental paradigm per se, but as a criticism of how analysis of

variance has been uncritically applied to basically interactive problems,

when other more appropriate forms of design and analysis are possible.

Experiments can be designed in ways that take advantage of the inter-

pretive benefits of random assignment while still accurately instantiating

interactive situations. Linear prediction filters can be adapted for

*the analysis of interactive experiments. History could be reintroduced

after random assignment, by allowing relatively free forms of inter-

action between participants in the situation. Deterministic input in

the creation of treatment conditions, could be handled using one of two

distinctly different formats: using open- or closed-loop filters. With

open-loop filters, deterministic input is not contingent upon subjects'

%% responses, as it is not in traditional experimental designs. With
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"closed-loop" filters, input is contingent upon subjects' responses, as

it is in operant conditioning. Open-loop input changes variance-

covariance structures (Chow, 1975, pp. 150-152). The object of the

design, using an open-loop format, would be to examine the effects of

treatment conditions on covariance structures, as they reflect different

patterns of change during interaction. By contrast, the object of the

design using closed-loop filters could be to examine transformational

changes in response to contingent input, to see if preestablished goals

can be achieved in this way. Controls theory problems in engineering

and economics are often described in this way (Chow, 1981; Elgerd, 1967).

It should be possible to design closed-loop filters so that changes in

means can be examined while changes in variance-covariance structures

are controlled. The use of filters in the analysis of experimental data

is an open area that requires further research.

2. Replication

Time is an inherent attribute of any interactive environment. The

ability to replicate involves the ability to repeat observed relation-

ships at new times. Relationships must be time-invariant for replica-

tion to occur. Parameters that are used to describe relationships are

unreplicable if "population" parameters wander in some unknown way as a

function of time. When they do, repeated samplings will produce

different results. Patterns in relationships will be unreplicable. In

order to replicate, then, complex relationships must be reduced to a

time-invariant representation. This becomes more difficult as interaction
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becomes more adaptive, since adaptivity frequently implies time-variability.

The simplest case with little adaption is discussed first, followed by

more difficult adaptive concepts.

2.1. Without Adaption

2.1.1. Stationarity. Time-invariant representations of relation-

ships exist at different levels of complexity depending on the degree of

adaptivity in the relationship: with low adaptivity, the simplest level

of time-invariance for linear prediction filters is applicable. Time-

invariance at this level is labeled covariance stationarity (see Granger

& Newbold, 1977, pp. 3-5). The means and variance of variables following

covariance stationary processes do not change through time. The covari-

ances between variables remain constant at given distances or lags,

producing a pattern of equalities in a covariance matrix. In addition,

the linear parameters that generate a stationary covariance matrix are

considered time-invariant too.

The model in Section 1.2.1. is based on the assumption of covari-

ance stationarity. A stationary covariance matrix is one that follows a

block Toeplitz pattern. A Toeplitz matrix has the property that all

entries along diagonals--parallel to the principle diagonal--are the

same. A block Toeplitz matrix is one that is partitioned into blocks

with block entries down the diagonals. The corresponding elements

within blocks are the same down the diagonals. In Section 1.2.1., the

covariance matrix remains constant at a given lag, e.g., at lag k = 1,

X t~t-l Xt 1iXt2.This pattern of equalities produces a 
block Toeplitz
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matrix, i.e., r(0) repeats itself down the principle diagonal. With

this repetition, r(O) appears twice in Equation 11. The parameters in A

and V generate this stationary covariance structure. Entries within the

A and V matrices can differ but each entry is invariant as the system

iterates through time, t 1 1, 2...-. The concept of a stationary repre-

sentation is one factor that separates time-series models from structural

equation models commonly used in psychology (Jreskog & Sorbom, 1979).

2.1.2. Preemptive prioritization. Although first-order time

invariance requires stationary (block Toeplitz) covariance matrices,

sample covariance matrices frequently are not stationary exactly. In a

panel design, for example, separate estimates are available for each
element in a covariance matrix. In a stochastic system, sample covart-

ances will differ from expected values in finite samples. For these

reasons, sample covariances will not be exactly stationary in a panel

design, even when the underlying data follow a model in which expected

values of covariances are exactly stationary. In a time-series design,

sample covariances may or may not have stationary block Toeplitz struc-

ture depending on the sampling window used to compute the sample covari-

ance matrix. It is clear that there are four possible sampling windows

that can be used to compute sample covariances (see Friedlander, 1982a,

p. 838; Kay & Marple, 1981, p. 1391).

i ... a+... txat

• x ... X
_ N_ St- (31)

1 Covariance
L • Pre-Windowed

I Post-Windowed
- Autocorrelation
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In Equation 31 t is defined as in Equation 6. Only the autocorrelation

window produces exactly stationary block Toeplitz matrices. This is

true because covariance estimates that share a common lag k, are computed

across data elements that are all identical in this instance. The data

elements are not all identical for the other windows; consequently, the

matrices will not be exactly Toeplitz, although they will generally be

close to Toeplitz form.

A chi-square test is available to see if deviation from stationarity

block Toeplitz form is statistically significant (see Browne, 1977; Burg,

Luenberger & Wenger, 1982; Jbreskog & Sorbom, 1979; Steiger, 1980). Tests

can be computed directly on sample covariance matrices from panel designs.

In time-series designs, more than one sample from sequential windows of

the time-series is needed.

Two mutually incompatible goals arise when covariance matrices are

not exactly stationary. Stationarity requires a block Toeplitz structure,

e.g., duplication of r(o) along the principle diagonal in Section 1.2.1.

On the other hand, estimating linear parameters, e.g., A, requires

optimizing an achievement function, e.g., minimizing the trace of V.

For a stationary covariance matrix, the achievement function V is

written as a function of r() (see Equation 11). In an unstationary

representation, two different matrices appear in Equation 11 in the

place of F(O) . The goal of providing a stationary representation of an

unstationary covariance matrix conflicts with the goal of minimizing the

achievement function V, which becomes apparent from the conflicting ways
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r(0) must be handled to achieve each goal.

The concept of preemptive prioritization is borrowed from goal

programing (Ignizio, 1976, 1982) to handle these conflicting goals.

One goal is satisfied ahead of the other. The achievement function is

an ordered variable that is lexicographically minimized (see Ignizio,

1982, chap. 17). Stationarity is given preemptive priority due to the

centrality of the replication concept. A stationary block Toeplitz

structure is imposed first on the sample covariance matrix using least

squares or maximum likelihood estimators, and then linear parameters

(e.g., A) are estimated next based on the imposed, stationary structure

(see Burg et al., 1982). The objective of this procedure is to find the

"best" time-invariant estimators. The estimators are time-invariant in

a first-order sense. If the sample covariance matrix deviates signifi-

cantly from stationary block Toeplitz structure, then the underlying

process can no longer be considered time-invariant in a first order

sense and more complex adaptive models are needed. The necessity for

time-invariant representations becomes clear from a discussion of the

consequences of ignoring them (see Section 2.3.).

2.2. Adaption

Interaction as defined by Definition 1 requires adaption. The

attempt to model adaptive processes with linear parameters may produce

estimates that are time-variable. The concept of higher-order time

invariance is required to reduce representations to time-i nvariance.

The concept of higher order time-invariance involves representing an
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adaptive process in terms of a more complex model statement. In the

model statement, parameters are written as products or sums of stationary

and unstationary processes. For example, if the parameters A from

Equation 6 were time-variable, then the ways in which the A parameters

adapt can be modeled by treating A like "data" in an equation of the

following form:

At = GA +eAt' (32)
MOtA-t1 --4A

Where G represents a matrix of stationary time-invariant linear param-

eters, A represents a matrix of unstationary time-variable parameters,

and eAt represents white noise, uncorrelated with A or X . Substituting
^"AtAnt 4"t

A in Equation 32 for A in Equation 6 produces a model statement for X
'"t A" &"t

that is stationary or time-invariant in a second-order sense:

Xt = C X +v (33)

While the A parameters change as function of time, the way in which they

change is modeled by the time-invariant G matrix. If the way parameters

adapt can be modeled, then time-invariance occurs at a higher level and

replication of the processes is possible.

A wide variety of models are possible that are stationary in a

higher order sense. Models analogous to Equation 33 have been applied

to physical, biological, and economic systems (see Kalman Filtering,
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Chow, 1981, chap. 6; Kashyap & Rao, 1976). In psychology, Kenny (1973,

1975b) introduced the concept of quasi-stationarity: Correlation

matrices are permitted to be nonstationary so long as they become

stationary after adjusting for measurement error. Extending this con-

cept, measurement parameters can be allowed to vary as a function of

time, while nonmeasurement "latent" parameters remain stationary. The

measurement model in Section 1.2.3. can readily be adapted in this way.

Models are possible in which stationary processes are analyzed after

unstationary components are removed. Some adaptive models may simply

track adaptive changes in linear parameters without modeling the form

that this change takes (see Friedlander, 1982a; Kay & Marple, 1981).

Even in this case, a stationary representation is imposed over a short

sampling interval, and changes in stationary representations are tracked.

It should be noted that reasonably large data bases may be required to

support adaptive models. The number of parameters required to model

adaptive systems will often increase over nonadaptive systems, requiring

more data to estimate parameters. An extensive literature on adaptive

systems exists-in the electronics engineering literature (see Chow, 1981;

Friedlander, 1982a). However, this discussion is limited to introducing

the concepts of adaption and higher order time-invariance just discussed.

*2.3. Comparison

Replication is a frequent problem in psychological research,

particularly for interactive environments (see Epstein, 1980; Greenwald,

1975, 197 6a). This problem is often due to parameters wandering in
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unknown ways as a function of time. When this occurs it becomes

impossible to replicate results, no matter how random the samples taken

or how "normal" the population distribution. The problem is not that

the parameters wander, but thay they wander in unknown ways. Change in

wandering parameters can be accounted for by another stationary set that

determines how the wandering occurs, producing time-invarance at a

higher level. At a minimum, replication of results requires paying

attention to the time-invariance issue. With the exception of cross-

lagged correlation (Kenny, 1973, 1975b) and single case time-series

designs, this issue has been largely ignored in psychology. Under these

circumstances it is not surprising that replication has been difficult.

The issue of time invariance applies to transformational as well as

historical change. For example, the issue applies to quasi-experimental

studies designed to evaluate the effects of social intervention.

Unstationary change in means or covariance are expected as a consequence

of the intervention (see Kenny, 1975a). However, these changes are only

unstationary in a first order sense. The intervention and only the

intervention is supposed to account for this unstationary change. This

means the same form of unstationary change is expected every time the

intervention occurs and only when it occurs. As a consequence, expected

change is stationary or time-invariant in a second order sense. Quasi-

experimental intervention designs should be able to demonstrate this

sort of second order time invariance. This could be accomplished by

showing experimental groups undergo unstationary change of specified form
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after an intervention, but not before; while change in a control group

remains stationary. Again, this issue has not received direct attention

in this context (see Cambell & Stanley, 1966; Simonton, 1977).

3. Prediction

Forecasts about the future based on past hisotry can be made for

individual cases using linear prediction filters. These forecasts are

made one step at a time (see Chow, 1975; Gilchrist, 1976; Granger &

Newbold, 1977). The concept of prediction and replication overlaps in

many ways. Prediction requires that linear coefficients (e.g.,A)

replicate themselves from one step to the next, i.e., require a stationary

representation. Replication itself is a prediction about past structure

replicating itself in new samples.

3.1. Prediction of Nonlinear Change

In Section 1.2.1., information useful for prediction is contained

in A. The A matrix is composed of linear coefficients. This means that
A" 4W

forecasts between adjacent sampling intervals must be linear. However,

the definition of the environment in Definition 1 requires that nonlinear

change be tracked. Change over long intervals seems ii.herently nonlinear.

Linear projections over extended periods will always blow up toward

infinity as time increases, which does not reflect the nature of inter-

active phenomena.

Linear prediction filters do, in fact, predict nonlinear change

over multiple sampling intervals. When forecasts are made using A,

sequential one-step forecasts are made into the future, deleting unknown
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future error terms (e.g., vt in Equation 6). Since the coefficients in

A do not change as a function of time (see Section 2.1.1.), the equation

becomes a homogeneous linear difference equation with constant coeffi-

cients (see Chow, 1975, chap. 2; Dahiquist & Bj~rck, 1974, pp. 368-370).

A polynomial equation (labeled the "characteristic" polynomial) describes

the form of nonlinear chance projected by homongeneous linear difference

equations. It is possible to vary the parameters of this polynomial to

describe many forms of nonlinear change. Tr, parameters of the character-

istic polynomial are derived from the eigenvalues (roots) and eigenvectors

of A. When a pair of roots is complex conjugate, the form of change

described by these roots is a cosine wave. Positive real roots, less

than one, produce nonoscillating exponential decay. The form of change

is explosive and grows as a function of time, if the absolute value of

the roots is greater than one, and is dampened and decays to zero if the

*absolute value is less than one. Negative real roots produce rapid oscil-

lation. When different types of roots (i.e., positive real, negative real,

complex conjugate) appear in the same stationary system, the final form of

change is a composite defined by the sum of dampened cosine waves, and

decaying exponentials. The relative contributions of each component to the

final form of change is determined by the size of the absolute value of

the roots. The largest roots dominate the composite, particularly as

the system iterates forward in time away from the initial conditions.

It should be clear from the preceding discussion that linear predic-

tion filters can track a large class of nonlinear changes. These changes
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are described in terms of dampened cosine, and decaying exponential

components. The linear forecast that occurs at each step is a discrete

linear approximation to nonlinear change. Conditions must be imposed on

the way the process is sampled in order for linear prediction to adequately

approximate nonlinear change. First, it is much easier to identify the

process if it is sampled on an equal interval basis. If the process is

not sampled in this way, additional assumptions and methods to approximate

the equal interval criterion are possible. In addition,

samples must be taken frequently enough to ensure that the linear projec-

tion between adjacent intervals is an adequate approximation to the

nonlinear change that actually occurred. As the sampling interval is

reduced, resolution of the form of nonlinear change that actually

occurred becomes better. When change involves oscillation, the size of

the sampling interval, At, must be within the Nyquist frequency (Bloom-

field, 1976, pp. 26-27):

2At s P, where (34)

P is the period of the highest frequency oscillation in the system. If

"< -sampling does not remain within the Nyquist frequency, aliasing occurs

-(see Bloomfield, 1976, pp. 204-208) and information is irretrievably

lost. The most efficient sampling rate is at the Nyquist frequency,

without exceeding it.

The covariance and correlation functions contain information about
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both the stochastic and deterministic components of a model. The

deterministic components are contained in A. These components are used

to track and forecast nonlinear patterns of change. Since the covari-

ance matrix also contains deterministic components, nonlinear change

must be identifiable from the covariance matrix. The covariance coeffi-

cient reflects the degree of linear association between variables.

However, the degree of linear association varies as a function of the

measurement lag throughout the matrix, producing a pattern in the

covariance matrix that identifies the type of nonlinear change that

occurred. For example, when the roots of A are complex conjugate, the

pattern in the covariance matrix follows a dampened cosine wave which

oscillates at the same frequency as the deterministic forecasts provided

by A. When the roots of A are positive and real, the covariances
AM AM

follow a decaying exponential pattern as in A (see Chow, 1975, chap. 1-4;

Granger & Newbold, 1977, chap. 1-3). However, in covariance matrices,

coefficients vary backward in time as a function of k, instead of forward

pin time as a function of t, as do forecasts from A. The nonlinear

patterns in correlation matrices are used to help identify time-series

models (see Box & Jenkins, 1976; McCleary & Hay, 1980).

3.2. Covariances as Prefilters

There are two approaches to the analysis of time-series data: the

direct approach via Fast Fourier Transform and the indirect approach via

..' . the autocorrelation/autocovariance function (Kay & Marple, 1981, p. 1383).

Linear prediction filters follow the indirect approach. In Section 1.2.1.,
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A is a function of the covariance function as shown in Equation 9. The

covariance/correlation function serves as a prefilter of the data prior

to estimation of A. It follows that other measures besides covariances

and correlations might be used in certain instances as prefilters.

Section 1.2.4. suggests the possibility of using variance components as

prefilters. These variance components can be used to reflect structure

of group aggregated scores and to represent theoretically relevant

aspects of group interaction. In addition, polychoric correlations

could be examined as prefilters when there is some reason to suspect the

adequacy of standard linear approximations between sampling intervals

(see Martinson & Hamden, 1975).

3.3. Comparison

3.3.1. Nonlinear change. Unfortunately, the use of discrete

2! linear models to approximate long-term nonlinear change, has been

ignored in psychology. This seems to be due to an assumption that

nonlinear information is unavailable; e.g., "... panel data used in

-ii. psychological and educational research are often limited to two or three

waves and thus a straight line model for growth is as complex as the

data can support" (Rogosa, Brandt & Zimowski, 1982, p. 728). As noted

in Section 3.1. and the Example Section, linear prediction filters can

V detect a variety of forms of nonlinear change from two or three waves of

panel data. Applying the assumption that nonlinear information is

unavailable to filters can lead to serious errors in selecting sampling

intervals. Appropriate sampling intervals are necessary to enable
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discrete linear statistics to model nonlinear change. Serious miscon-

ceptions can result from selecting sampling intervals that violate the

*Nyquist frequency (Equation 34). To illustrate, suppose the following

A and V (see Equations 6 and 11) were to generate the correlation matrix
4 AP 4

in r(0) and r(l) below.

.- .2 r5 65 .2
68 r(0) (2x2)r(l) =(35)

.55 .2J 0 .658 (2[2 .55 .2

Now suppose the researcher failei to sample this system at the correct

interval k that generated the systerm, accidently violating Nyquist by

sampling at twice the interval 2k. The researcher would identify the

system in Equation 35 as (see Equation 8):

A - .26 ; r = 26 -.22

M .22 -.26] ) 6 O 22 -.26

The cross-lagged as well as autoregression parameters and correlation

coefficients are reversed in sign in Equation 36 compared to Equation 35.

, In other words, if the researcher misjudged the sampling interval by

sampling at times 1 and 3 instead of 1 and 2, in this oscillating system,

conclusions would be reversed from those made at the shorter interval

(see Heise, 1970; Pelz & Lew, 1970).

The importance of sampling intervals is not limited to
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quasi-experimental designs. If an experimental manipulation induces an

oscillation in a dependent variable, the mean response in the experi-

mental group can oscillate between being higher and lower than the

control group mean, depending on when the dependent variable is sampled.

Unfortunately, the dependent variable is often sampled only once.

Problems with replication can stem from such sampling interval issues in

addition to time-invariance issues discussed in Section 2. These issues

require further research.

3.3.2. Prediction criterion. In general, linear simultaneous

equation models admit a wide variety of possible specifications. How-

ever, not all of these models constitute linear prediction filters.

Linear prediction filters are a subset of possible specifications that

conform to prediction criteria. As a scientific guideline, the predic-

tion criterion is similar to the principle of parsimony. Parsimony

suggests that when faced with alternate explanations, the simplest one

is accepted. Alternate specifications constitute alternate explana-

tions. The principle of prediction says, that when faced with alternate

explanations, the explanation that can predict and track the phenomenon

is accepted. The rationale for this criterion is tied to theory.

Phenomena are created through a historical time-related process, both in

-'. interactivity theory, and, perhaps, in all psychological theory.

Specifications that can track and predict a phenomenon can represent the

process that created it, or be related to it. By contrast, a specifica-

tion that can't predict or track can't represent any phenomenon that was
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created through time. A process created through time requires time-

lagged coefficients to predict and track the process. The prediction

criterion can be restated in terms of a maxim in modeling: "If a

discrete linear system can't be simulated on the computer, it can't

exist in nature." Application of the prediction criterion is illus-

trated next in Sections 3.3.3. and 3.3.4.

3.3.3. Single-time path-analytic models. In Table 1, a comparison

is made between the filter defined in Section 1.2.1., and linear path-

analytic models applied to single sample data. The correlations at the

left in the table-represent the output generated by a stationary histor-

ical process shown at the right. The coefficients in A and V represent

the generative process. The coefficients in B and e represent three of

the possible synchronous-time specifications. These specifications

correspond in interpretation to A, with the exception that time has beenjg"

left out of the path analytic models. The corresponding elements of B

and A, within examples, should be compared to see how weil a model with-
A"o

out the benefit of time can represent a process generated through time.

The coefficients in B and A in Table 1 are obviously very different.

Furthermore, it is apparent that the synchoronous parameters (B) can't

be tracking the dynamics of change in these examples. Examples 2, 3,

and 4 provide cases where very different histories produced the same

.,'
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synchronous correlations and parameters (8). In example 2, the signs of

the coefficients a* in A were changed without changing the synchronous
--_ l A

correlations or parameters. In examples 3 and 4, very different histories

produced the same synchronous results. In example 5, the coefficients

in B could not have generated this stationary system. Due to a "dampening"

variable, the coefficients in B are large; so large, in fact, that these

coefficients would produce explosive unstationary change if they were

treated as filter coefficients in A. Synchronous time specifications

cannot predict or track because of missing data--time has been left out.

Because of this, the two methods will never match, except by chance,

even when they use the same estimation technique (e.g., regression, as

in Table 1). Since the synchronous-time models cannot predict or track,

they cannot represent the generative processs or increase our under-

standing about it. These conclusions are consistent with information

theory (Shannon & Weaver, 1949). In information theory, information is

produced by change, and if no change is measured, no information is

generated. Synchronous-time models cannot measure change, and lose

information as a consequence.

3.3.4. Econometric model. As just noted, synchronous-time linear

models can't represent histroical processes. Even linear models that

include time do not necessarily represent historical processes either,

unless they conform to prediction criteria. The filter from Section 1.2.1.

is compared next to specifications in Equation 37. Prediction again

forms the basis for comparison. To simplify exposition, the model is
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given for a two-variable, two-wave (one-lag) system, but conclusions

readily generalize to any number of variables and lags:

FX ++Ax +e

t A"t 04 ijt-l "wt

F is subdiagonal; and the covariance of e is W. The specifications
W Wt 4"

in Equation 37 are frequently applied in econometric modeling (Granger &

Newbold, 1977, chap. 6), and in panel designs (Duncan, 1969; Joreskog &

Sorbom, 1979), and are called here the "econometric" model. A stationary

correlation matrix generated by A and V is shown in Equation 38. The
am Am

system includes two variables and one time lag. The generating A and V
are so

are shown in Table 2, specification 1. The econometric model is

illustrated by specifications 2-8. All estimates are based on the

correlation matrix in Equation 38:

r.00 .701] 521 .562
r(0) [.701 1.00 706 774

From Equation 37 and Table 2, it is clear that the econometric model

X includes time-lagged relationships, as do filters. However, the econo-

;I metric model also includes synchronous-time "causal" relationships not
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found in filters. This same kind of synchronous "causal" effect was

unable to track change in the last section when history was excluded.

How well, then, can synchronous-time "causal" relations conform to

prediction criteria, when time has been added to the model?

Specifications 2, 5, and 6 cannot be simulated on the computer under

any conditions, which violates the prediction criterion. Simulation in

a discrete linear system requires iteration over time (see Pelz & Lew,

1970). Iteration is impossible with recursive, synchronous-time "causal"

effects, e.g., specifications 2, 5, and 6. Future projections become

impossible: in order to forecast L+i' the value of Zt+l is required,

but the value of Y+l can't be estimated without -+l' which is the

value desired in the first place.

The econometric model specifications include forecasts between

C' observed variables in synchronous time. These "forecasts" are not

meaningful in a literal sense, because there is nothing to predict at

time the prediction is made: by the time is used to predict . in

specification 7, t has already been observed, so there is no need to

predict x at that time. Apparently, the effects in F were not meant to
-- A"

literally represent synchronous effects but to represent short-term

effects instead.

One approach to simulating the "short-term" effects in
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Table 2

Comparing Specifications: Filter Versus Econometric Model

Model Specificationa

Coefficient 1 2 3 4 5 6 7 8

at1  .250 .025 .025 .250 .025 3.48 .043 .250

at .387 0 0 .387 0 5.94 .032 .38712

at .320 0 .320 0 .330 0 .320 .23421

at .550 .054 .550 .054 .566 .055 .550 .41722

f12 0 .704 .704 0 .703 -10.1 .645 0

f21 0 1.28 0 1.28 -.041 1.28 0 .344
b

b .652 .508 .508 .652 .508 40.6 .507 .652
'11

w22 .348 .842 .348 .842 .367 .842 .348 .271

w 12  .225 -.653 -.020 -.610 0 0 0 0

a Specification 1 is from the filter in Section 1.2.1. Specifications 2-8

are from the econometric model, Section 3.3.4.

bw are elements of W, the covariance of e e' in Equation 37.
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specifications 3, 4, 7 and 8, Table 2, involves moving one variable

ahead of the other a "slight amount," by computing this variable, with

its error added to it, ahead of the other one. This approach violates

the assumption of "synchronicity" (i.e., common sampling intervals),

both for the model and data. Violating synchronicity does not seem to

be a serious problem at first glance. However, violating this one

assumption creates serious if not insoluable problems. It requires that

synchronous coefficients in F estimate time-lagged effects. As was

shown in Table 1, this will never be true in general without making a

series of highly restrictive assumptions. The size of the "short-term"

interval must be assumed (i.e., the number of short intervals per long

intervals). In addition the covariances and linear parameters must be

assumed for all missing short-term intervals. In addition, assumptions

about interpolating between shychronous effects and lagged effects are

needed. The assumptions are so restrictive as to be almost certainly

untrue. As shown by Table 1, results are sensitive to these assumptions.

It is inappropriate to violate synchronicity for these reasons.

In order to simulate specifications 3, 4, 7 and 8 without violating

synchronicity requires that forecasts be biased by dropping error terms.

The off-diagonal elements of F in Equation 37 create bias for fore-

casting. These elements create a linear combination of errors that are

needed for forecasting (see the last two lines of Equations IB and 2B).

However, these errors have not occurred yet at the time the forecast is

made so they cannot be used. As a consequence the forecast is biased by
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dropping these errors. Specification 7 provides an example. At first

glance, this specification looks optimal for forecasting, even better

than the filter in specification 1, since the trace of W, the residual,

is smallest here. To forecast x+l in specification 7, Y+l must be

forecast first, to enable x+1 to be forecast via f124+1  Unfortunately,

the error for Y.+1 (e. ) has not occurred yet at time t, when the

forecast is made, so it must be dropped in making the forecast to

As a consequence, the forecast to xt+l is biased by e which biases

S' 2
the residual, f1 2 w22 

f .145. Since this is precisely the amount by

which the residual in specification 7 is smaller than in 1, "improved"

prediction in this specification is due totally to prediction bias. The

error _ ll1in specification 7 is biased in the sense that it does not

represent the total amount of prediction error in the system as it

purports to do. Since the parameters in F and At are all estimated in
41 A

relation to biased errors, the latter parameters are biased for fore-

casting too. The transformation equations between the filter in

specification 1 (which can be used to forecast), and the econometric

model in specifications 2-8 are found in Appendix B. The nature of

forecasting biases is illustrated by the transformation equations. For

.' example, from the last line of Equation 1B and from Equation 5B, the

residual in specification 7 can be written as,

2 v -f( 2 239
-ll -11 -12 w 2 2  V1 1  - (V12/V2 2) H22"
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In Equation 39 w and f are from specification 7 and V is from specifi-

cation 1 and Equation 11. Forecast bias is apparent in Equation 39.

In attempting to simulate specification 7 over time, values of n22 in

Equation 39 must be set to zero at time t+l when tracking or forecasting

occurs, which means w1 1 will become equal to V1 1 over time. When a

residual changes, the whole system changes, i.e., parameters in F, At,

r( ) r(l) also change. This means that the forecast bias that accrues

from dropping future errors, makes it impossible to simulate econometric

model specifications 3, 4, 7 and 8, and still maintain the same correla-

tion matrix in Equation 38 and parameters. Furthermore, it is impossible

to eliminate this forecast bias without violating the assumption of

synchronicity with its attendant serious problems. Since none of the

econometric specifications can be properly simulated, none of them

conform to the prediction criterion.

An econometric model may instantiate theory one way via specifica-

tions 2-8, and predict another, via specification 1; however, this dual

system is not consistent with the principle of prediction. Applying the

prediction criterion to Table 2, specifications 1 alone can predict and

track. As a consequence, this specification alone has the potential to

represent, and increase our understanding of, processes created through

time. Specifications 2-8 suffer from the same defect as do the

synchronous-time path-analytic models--missing data. In order to

measure short term effects, the system should have been sampled at

appropriate short-term intervals.
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Without the prediction principle, econometric models have fared

poorly. Very simple autoregressive filters have been able to forecast

as well or better than very complex econometric models (Granger & New-

bold, 1977, chap. 8).

4. Parsimony

4.1. Model Identification

The principle of parsimony is defined by refusing to multiply

complexity beyond necessity. The most common application of this

principle to linear models involves its use as a selection criterion

among alternate specifications. The specification that "fits best" with

fewest parameters is selected from among the alternatives, other factors
-*1

being equal (see Jreskog & Sorbom, 1979). According to Akaike (1974),

there is a relationship between the number of parameters in a model, and

the predictive power of the model. An information criterion (AIC) is

used for purposes of model identification. A curvilinear relationship

between forecasting accuracy and simplicity is identified in this

criterion. Forecasts improve as parameters increase, up to a point,

beyond which limited samples can no longer support accurate parameter

estimates, and then additional parameters decrease forecasting accuracy.

-, A related application of parsimony involves refusing to multiply

possible alternative specifications beyond necessity. Model identifica-

tion is a difficult problem, however (Leamer, 1978). Model identifica-

tion is a current topic of intense research (Ei-Sherief & Sinha, 1982;

Lee, 1983). A goal is to identify models in ways that simultaneously
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conform to more than one scientific criterion, like instantiating theory

where it exists, as well as maximizing prediction and parsimony.

4.2. Comparison

4.2.1. Synchronous-time models. Synchronous-time path-analytic

models admit a great variety of possible specifications, due to the loss

of ordering information that time provides. The number of possible

specifications in these models is given by,

s M , (40)
r-=O r)

where 7 = p(R-i), referring to the number of synchronous variables.

The number of identifiable, and therefore estimable specifications, in

Equation 40 can be found by substituting (p-l) for m in Equation 40.

Using Equation 40, it is clear there are 64 possible synchronous

specifications between the three synchronous variables in Table 1, 42 of

which are identifiable. With four synchronous variables, there are 4096

possible specifications, 2510 of which are identifiable. All of these

possible specifications can be ruled out using the prediction criterion

(see Section 3.3.3.). Furthermore, there is no loss in information in

doing so, since the possible interpretations of synchronous specifica-

tions all have an analogous time-related interpretation that can be

taken directly from A in Equation 6. To illustrate, A from example 1,

Table 1, shows an "intervening variable" relationship between y and z
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via x. The alternate interpretation due to synchronous parameters in

example I of "spurious" correlation, was ruled out by the prediction

criterion.

Similarly, there is an exponentially expanding number of possible

specifications in the econometric model that can be ruled out by the

prediction criterion. No information is lost beyond what is available

in A (see Section 3.3.4.). In this latter model, short-term effects

must be measured if required by theory.

In spite of the ability to rule out large classes of possible

specifications using the prediction criterion, the identification of

filter models is by no means unique. The order of an "autoregression"

model, or number of lags, must be identified. Furthermore, there is a

large class of "latent" or "unobserved" variable models that remain as

possible specifications.

4.2.2. Cross-lagged correlation model of spuriousness. Correla-

tions and covariances are underidentified with respect to the possible

structures that could have created them (Mulaik, 1972, chap. 13). It

is possible to create a given correlation structure through simulation

many different ways, including the use of unobserved or latent variables.

The attempt to rule out latent or unobserved variable specifications has

been defined in terms of "ruling out spuriousness" (Kenny, 1973, 1975b).

The issue of "causal predominance" in the cross-lag model is not the

issue here (see Rogosa, 1980). Currently, it is not possible to rule

out spuriousness in the general sense of ruling out all possible latent

variable specifications. However, Kenny (1973, 1975b) defined ruling

-N 58
% %. ',-."



out spuriousness in terms of ruling out multiple, orthogonal, synchro-

nous latent variables as the sole cause of an observed correlation

matrix. Cross-lagged correlational differences do operate to rule out

spuriousness in this narrowly defined sense; but not in a more general

sense. To illustrate, the cross-lagged model of spuriousness can be

written as,

X = BZ + e_W t v Axt'
(41)

d dli 0 t-i _lt
= +

2tJ 0 d 2 2 J L-J- e [e

Z DZ +eA"t D~ t-1 +0zt

In Equation 41 At and Y are observed variables; Zlt and E2t are two

latent unobserved variables; B is a matrix of loadings from latent to
A"

observed variables; dll and d22 are autoregression coefficients for the-1

latent variables; e are white noise processes that drive the system,

and e is a form of "measurement" error (see Section 1.2.3.). Thext

representation in Equation 41 is the simplest one in which elements of B
low

are "perfectly" stationary and do not adapt. The latent variables are

uncorrelated, i.e., E(e e' ) = U = 0.
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The canonical variable transformation of the filter in Section 1.2.1.

is shown in Appendix C. This transformation is identical to the model

of spuriousness in Equation 41, with two exceptions. The canonical

variable transformation is a special case of Equation 41 in which "measure-

ment" error e M 0--which does not affect the spuriousness argument.auxt I"

However, the second exception is important. The canonical variables are

allowed to be correlated as they almost certainly would be in nature:

E(e _e' ) - U 0 0. When the latent variables are allowed to be correlated,-- Zt tAE '

then a number of variables in synchronous time can be the sole cause of

an observed correlation matrix (see Appendix C). Furthermore, in contrast

to the econometric model, the canonical variable transformation can be

used to track and forecast, so it conforms to the prediction criterion.

Therefore, cross-lagged correlation cannot rule out spuriousness in this

slightly more general sense.

The correlation matrix in Equation 38 provides an example. Equation 2

and specification 1, Table 2, provide the customary explanation for this

correlation matrix in terms of observed variables. The canonical

variable transformation in Appendix C provides an alternative explanation.

Applying Equations 4C, 5C and 8C to the example in Equation 38,

,D . 7 01 U . .9-25 B . .5-5] (42)[ .02], .25 1.0,1 [1:03 .30

/* ,

A and V from Equations 6 and 11 can be partitioned to include latent
AW0 A"4
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variables,

A OK Ms At-1 ' %4L D.1[0
The matrices from Equation 43 can be used in Equations 7 and 8 to

generate the observed and latent correlation matrices. In spite of a

cross-lagged correlation difference in Equation 38, the correlation

matrix in Equation 38 can be produced perfectly by two correlated,

unobserved, latent variables in synchronous time (see Equations 42, 43,

9C, 10C).

The canonical variable transformation becomes complex when the

eigenstructure of A is complex. The canonical variable transformation
a4

cannot be considered an alternate explanation if latent variables and

parameters are limited to real numbers, but the eigenstructure of A is
4"

complex. It is possible to rule out spuriousness in the sense of ruling

out multiple, correlated, latent variables in synchronous time, when the

roots of A are complex (as they were in data from the Example Section).

However, it is still not possible to rule out spuriousness in a general

sense, since multiple latent variables at multiple time lags could

theoretically reproduce any correlation or covariance matrix.

Example

A sample composed of 59 combat companies in the U. S. Army was

used. Companies are organizational units of approximately 125 soldiers
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nested within the larger organizational hierarchy shown in Equation 28.

Companies constitute the unit of analysis here. Approximately 18 enlisted

men, grades El through E4, were randomly sampled from each company on

three occasions at 10-week intervals. Sampling took place without

replacement. Administrative record data were also collected for the

same periods, including frequency of promotion to grades E3, E4, and E5

for lower enlisted soldiers. Frequency of promotion was unrelated to

the numbers eligible for promotion within each company, so frequency

counts were used. Frequency of promotion (Variable 1) plus three survey

scales were selected to illustrate application of the filtering method-

ology. Scale 1 was labeled Goal Orientation (Variables x 2 and x3);

Scale 2, Intergroup Harmony (Variables 24, 5 and 4); and Scale 3,

Enlisted Unity (variables and A).

These data were roughly stationary, with the possible exception of

time-varying measurement error for Variable 1 and Scales 2 and 3. Means

and standard deviations for the eight variables at three time intervals

are given in Table 3. According to the model in Section 1.2., means and

standard deviations do not vary as a function of time. Synchronization

or "reliability" estimates using Equation 30 (MS - MS)MS s
total - _' ~rror -_S

were computed to represent homogeneity of responses within companies.

These measures are expected to be stationary as a function of time.

They are related to reliability in the sense of sampling soldiers to

estimate total company means, but underestimate true reliability because

(a) response sets have not been filtered out yet, and (b) sampling
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fractions for small finite populations were not used. For lags k - 0,

I and 2, synchronization measures were .33, .34 and .35 for Scale 1;

.39, .21 and .50 for Scale 2; and .36, .30 and .57 for Scale 3. The

covariance matrix between eight variables at three intervals is roughly

stationary. Least squares estimators of a block Toeplitz covariance

matrix were made by averaging the three synchronous blocks (k - 0) and

two, lag-one (k - 1) blocks. The resulting block Toeplitz matrix was

compared to the original using a chi-square goodness of fit test (see

2 1Browne, 1977; Joreskog & Sorbom, 1979), X (300) - 326.7, .5.
Maximum likelihood estimates of block Toeplitz matrices are possible

(see Section 2.1.), but least squares estimators are sufficiently

accurate for illustrative purposes (Steiger, 1980).

Table 3

Means and Standard Deviatiom for Three VWes

lag 4s K4 -16-7 is

0 12.6 5.7 6. 5.1 11.3 1.2 5.5 5.11

1 9.6 5.6 6.2 4.9 11.0 1.1 5.11 5.41

2 7.3 5.6 6.3 5.0 1.1 41.1 5.11 5.3

Standard Deviatiors

0 5.36 .511 .16 .81 .611 .62 .57 .118

1 4.86 .55 .118 .73 .68 .60 .52 .115

2 3.92 .511 .411 .90 .67 .67 .61 .58

Note. x - promotion frequency. Survey scales x2 - x were rated on 8-point

scales aid coded so that larger numbers were associated with positive responses.

1 Covariance and correlation goodness-of-fit tests are sensitive to an assumption

of multivariate normality.
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The time-series factor analysis model from Section 1.2.3. was

applied to these data. The block Toeplitz covariance matrix was

standardized, since factor analysis is customarily applied to correla-

tion matrices. All parameter estimates were based on the standardized

block Toeplitz matrix. The original correlations between variables at

three intervals are given, along with the expected correlations based on

the time-series factor analysis model, in Table 4. The expected correla-

tions were obtained by solving again for the "observed" correlations in

terms of the latent correlations in Equation 25. The expected correlations

were compared to the observed correlations. The chi-square goodness-of-

fit test was again approximately equal to the degrees of freedom, E .5 .

There was a close fit between the standardized block Toeplitz matrix and

the expected correlations in Table 4, p < .01. Estimates of B and H

were obtained by subjecting the synchronous section of the block Toeplitz

matrix (k - 0) to common factor analysis, using a principal axes solution

with iterations and varimax rotation. The first variable, promotion

frequency, was not treated as latent. Scales 1, 2, and 3 were defined

by the latent variables taken from B:

1.0 .0 .0 .0

.0 .70 .10 .12

A. .0 .64 .14 .23

.0 .05 .81 .36
Q B-

.0 .20 .81 .07

.0 .10 .59 .13

.0 .27 .17 .85

.0 .17 .23 .72
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Estimates of M were obtained from B in the customary manner. Finally,

latent correlations and parameters A and V are provided in Table 5.Z A&Z

The results in Table 5 reflect a highly dynamic oscillating system.

The period of oscillation can be determined from the angle of the complex

conjugate eigenvalues (roots) of A (see Chow, 1975, pp. 27-30, 57-58).

The relative amplitude of effects is a function of the absolute value of

the roots. Four different periods of oscillation were represented in

the roots of A , plus exponential decay stemming from one large positive

real root. Listed in order of increasing amplitude, oscillation was

found for periods of 5, 11, 27, and 23 months. The latter period corre-

sponds roughly to the average tenure of enlisted soliders in a company.

Promotions appear to be part of the latter cycle. A cycle of 24 months

appears when comparing promotions with a composite scale (created by

averaging within-scale items first and then averaging scales). A full

multivariate frequence domain transformation, including phase lag

relationships, is needed (see Friedlander, 1982b). Such transformations

are the topic of current research.

In order to pick up the dynamics of change, it was Important to

include the third sampling time in this system. The intermediate

ampling time helps to rule out aliasing effects due to violating

the Nyquist frequency, at least for the longer period oscillations. The

number of sampling intervals needs to be Increased to eliminate concern

over aliasing for the shorter period oscillations (e.g., five months).

The complex conjugate roots of A mean that spuriousness can beI. ruled out in a limited sense: i.e., multiple correlated latent variables

could not have produced the observed correlation matrix entirely (see
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Table 5

System Parameters: Latent Correlations, Az, Vz

latent
variable -it -2t -3t &-t -1t-1 !,t-1 z3t-1 3 14t-1 -lt-2 -2t-2 -3t-2 14t-2

Latent Correlations

- Zlt 100 -02 15 02 23 33 15 20 19 10 60 32

12t -02 100 00 00 05 27 31 01 -27 36 -29 -08

ZM_.1 15 00 100 00 00 07 37 24 -21 -02 12 41

lt, 02 00 00 100 -11 -07 -17 34 -18 01 04 04

Vz Az

4t 43 21 -01 -10 06 10 -17 23 10 08 65 27

.2t 21 39 -10 14 10 43 56 -03 -22 17 -61 -22

zt -01 -10 69 -04 -06 07 28 11 -20 -04 05 32

14t -10 14 -04 76 -15 -19 -27 38 -13 15 30 01

Note. z promotion frequency; R2 = Goal Orientation; 3 Intergroup Harmony; 4 =

Enlisted Unity. All entries should be multiplied by .01. The eigenvalues of Az

are: (a) .65 + .421, (b) .72, (o) .54 + .321, (d) .22 + .481, (e) -.22.

.

I

EJ
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Section 4.2.2.). Similarly, lack of stationarity in measurement error

at each time point could not account entirely for the observed correla-

tion pattern, although it could have had an influence. Allowing measure-

ment error to adapt would improve the fit to real data (see Section 2.2.).

The data in Table 5 suggest that good interpersonal relations led

to high promotion rates, while high promotion rates produced a negative

"sour grapes" reaction on a variety of scales. The expectation of

replicating these results is improved by the fact that relationships are

roughly stationary in a first order sense. Results are not inconsistent

with evidence that promotions are rewarding. Promotions are rewarding,

but rewarding at an individual level to the persons promoted. At the

group level, many eligible persons are not promoted for each one who is,

creating disappointment and conflict. The principle in Section 1.2.4.

is illustrated here: Results from one level of analysis often will not

be the same as results from another level. In another noticeable rela-

tionship, Intergroup Harmony is driving an oscillation in Goal Orienta-

tion (effort toward achieving company effectiveness).

These results also illustrate the principle of bootstrapping

through levels of theory (see Section 1.1.). A measurement model was

* . needed prior to estimating a historical model. The historical model was

needed to understand the dynamics of intergroup or interpersonal inter-

action. Finally, understanding the dynamics of interaction are natural

prerequisites to planning effective transformational change. The

probability of increasing group productivity is improved by understanding

system dynamics as shown in linear prediction filters (e.g., A).
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Discussion

We have argued that failure to appropriately test theory leads to

the predominance of ideologically-based content in the field. Ideo-

logical content is defined as untested theory. This problem can arise

from an inability to appropriately test theory. A brief review of some

comonly used methods in the field showed a number of serious problems

in the application of the scientific method, and a more exhaustive

review could undoubtedly uncover additional problems. Ideological

content is, then, a problem. Interactivity theory attacks this problem

by attempting to improve the application of the scientific method. An

approach that seems particularly promising is linear prediction filter

methodology. These filters have been successfully applied to many high

technology problems, and are appropriate for application to interactive

human environments. There is a large technically sophisticated tradi-

tion and literature in this area. Unfortunately, this tradition has

been frequently ignored, perhaps because it appears irrelevant to

psychological problems. Although many methods need to be adapted to
meet the requirement of psychological theory, the relevance of this

tradition to psychological problems has been demonstrated here.

Many important topics have not been covered here. What is covered,

however, provides a tutorial for approaching the electronics engineering

and economics literature on statistical aspects of filtering. Additional

research and study is needed on such important topics as transformational

change (see Chow, 1981), adaptive systems (see Friedlander, 1982a), and
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higher order stationarity. In addition, estimation theory and statistical

tests were not discussed in the context of filters. A variety of research

issues exist here, e.g.: (a) behavior tests of overall system output,

versus significance tests for single equations (Mass & Senge, 1978);

(b) sensitivity of goodness-of-fit chi-square tests to the multivariate

normality assumption (see Jbreskog & Sorbom, 1979); (c) distribution-

free tests using "bootstrap" methods (Diaconis & Efron, 1983); and

(d) conflict among root-based tests (Berndt & Savin, 1977; Kohler, Note 3).

Placing factor analysis in the context of filters means the resulting

filter must forecast individual cases. Since the common factor analyses

model is underidentified, factor scores must be estimated rather than

identified exactly. Traditional methods for estimating factor scores

(see Mulaik, 1982, chap. 13) do not seem satisfactory in the context of

filters. Again, further research is required.
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APPENDIX A

•.4 r(o) in Equation 7 can be written in closed form that excludes

infinite series. This can be accomplished by using the following

general identity (see Browne, 1977; Equation 6):

vec(RST') - (T * R)vecS, where (lA)

R and T are of order m x n, S is of order n x n; and Orefers to the
AN AM - -

Direct or Kronecker product. Equation 1A can be used to rewrite

Equation 11 as,

vecV = vec r() - (A 0 A)vec r( 0 ), where (2A)

mot" (02" W( )

vec refers to an n2 x 1 column vector created by stacking, in order from

1 to n, the n columns of an n x n matrix. The value n is defined in

Equation 6. Factoring, and solving for r(0 ),

ver() - (I - A • A)-1vecV. (3A)
(0 4 A" Am A

Unfortunately, this solution requires inverting a large matrix. How-

ever, an alternate expression for r(0 ) in closed form is provided by the

egenstructure of A, as shown by Equations 7C and 9C, Appendix C, and

Chow (1975, chap. 3):
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* r(0) -BJ(0-conJg(X )Xi)-Iu ij]B (4A)

is the matrix of eigenvectors of A, Xi and A are elements of the

diagonal matrix of eigenvalues of A (see Equation 6), u are elements

of the residual covariance matrix U (see Equation 5C) in canonical

variable form, and conjg refers to taking the complex conjugate when

A Is complex. In addition to Equation 4A, the lattice filter provides

an efficient formula for the regeneration of covariance matrices in

closed form using linear parameters and residuals (see Friedlander, 1982a).
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APPENDIX B

The transformations between the filter in Section 1.2.1. and the

econometric model in Section 3.3.4. are defined by the equations in this

appendix. All the econometric model specifications can be transformed

into the filter using the following equations. Let G = I - F. Then,

Xt = G-Ix 1 +t G-l1e,
4AM t " 4M A% t- 1 wt

A = G-IAt,
1"4 AM = i( BXt G- Ae +
Alit 4Wi -W tl a.wt

v le

V = G-G' -'.
AA"

In Equation IB W is the covariance of residuals, ee't Other tems

are defined in Sections 1.2.1. and 3.3.4.

Conversely, the transformation from the filter to all econometric

specifications involve the following equations,

At = GA

et -Gv (2B)

W = GVG'.

It is possible to solve for the elements of G (or F) from the elements
A^ ,

,

a. of A as follows. Solve for yt_l in the second line of Equation 2,

.4
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(v- " - ax _- -2
4 - , Y-t 21--t-l e)/ t(3 2B)

Substitute the result into Equation 2, line 1, and collect terms:

x - (all - a12a21/a22)4-1 - (a12/a22)e7 + e . (4B)

In Equation 4B 4-1 becomes zero, and f1 2  -g1 2 
= a1 2/a2 2 " Other

elements of F and G can be solved analogously. Elements of G can also

be obtained from V, by rewriting the last line of Equation 2B as (see

Equation IA),

vecW - (G * G)vecV. (SB)
Am' AV A" A"

Off-diagonal elements of W can be set to zero. Particular elements of G

can then be solved in terms of elements of V. Using Equations 2B, 4B,
4A%4

and 5B, any of the parameters from the econometric specifications in

Table 2 can be written in terms of filter coefficients (specification 1).

For example, a2 from specification 5 is,

22

(a 1 2 22 a12a2 2V1 2 )/(a2 2V a1 2 12  (6B)
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APPENDIX C

The transformation between the filter in Section 1.2.1. and its

latent canonical variable representation is given here (see Chow, 1975,

chap. 3). The canonical variable representation is similar to the

cross-lagged correlation model of spuriousness discussed in Section 4.2.2.

A canonical variable is defined by:

Z = B- 1 X (IC)
w4. 4 it

B is the eigenvector matrix from the eigenstructure of A. A and X are

defined in Equation 6. The following relationships follow from this

definition:

X =BZt, (2C)4Mt

e W B-v (3C)
A"Zt

Z -DZt-I + t" (4C)

The term v is defined in Equation 6, and e t in Equation 41. D is

the diagonal matrix of eigenvalues from A. Using Equation 3C the

covariance of latent canonical residuals becomes:

U .e e- B VB (5C)
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Using Equation 4C the synchronous covariance of latent canonical

variables becomes,

r Z Zz' - Dr D' + U. (6C)z(O) 'Otmt amz(); -

Using Equation 1A, r 3(Q) can be rewritten as,

vecF (0 a [I - conjg (W) a v e . (7C)

In Equation (70) conjg refers to the complex conjugate of the matrix

This operation affects complex, but not real entries in D

The indeterminacy in the eigenvector matrix B can be eliminated by

standardizing the latent covariance matrix rF() hsca eacm

I plished by,

3 a diagF I'~% d Lag r(8X(0) :(O) (C

where 3 represent standardized coefficients, and diag represents
1"48

diagonal elements of the respective matrices. In order to standardize
U, Us must be computed by substitutingA.fr8inEuton5. I

a04 - M%~54

order to standardize r Z) r Z( must be computed by substituting vec

U for vec U In Equation 7C. Finally, the observed correlation matrix

can be written as,

r *xx'- Br Be 9
X(O) st~ am$ zs(0)ms$(9

76



Reference Notes

1. Secord, P. F. Social psychology in search of a paradigm. Paper

presented at the meeting of the American Psychological Association,

Chicago, Illinois, September 1975.

2. Hart, R. J., & Bradshaw, S. C. Reliability estimation for aggregated

data: Techniques for studying organizations. Paper presented at

the meeting of the Western Psychological Association, Honolulu,

Hawaii, May 1980.

3. Kohler, D. F. Conflict among testing procedures in a linear regression

model (Paper P-6691). Santa Monica, CA: The Rand Corporation,

October 1981.

77



References

Akaike, H. A new look at the statistical model identification. IEEE

Transactions on Automatic Control, 1974, AC-19, 716-723.

Akaike, H. Canonical correlation analyses of time series and the use of

an information criterion. In R. Mehra & D. G. Lainiotis (Eds.),

System identification: Advances and case studies. New York:

Academic Press, 1976.

Alexander, C. N., & Knight, G. W. Situated identities and social psycho-

logical experimentation. Sociometry, 1971, 34, 65-82.

American Psychological Association, American Education Research Associa-

tion, & National Council on Measurement Used in Education (joint

committee). Technical recommendations for psychological tests and

diagnostic techniques. Psychological Bulletin, 1954, 51, 201-238.

Bem, D. J., & Funder, D. C. Predicting more of the people more of the

time: Assessing the personality of situaLions. Psychological

Review, 1978, 85, 485-501.

Berndt, E. R. & Savin, N. E. Conflict among criteria for testing

hypotheses in the multivariate linear regression model. Econometrica,

1977, 45, 1263-1277.

Bloomfield, P. Fourier analysis of time-series: An introduction. New

York: Wiley, 1976.

Bock, R. D. Multivariate statistical methods in behavioral research.

New York: McGraw-Hill, 1975.

78

~ n& 6L,



Bowers, D. G. OD techniques and their results in 23 organizations.

Journal of Applied Behavioral Science, 1973, 9, 21-43.

Box, G. E. P., & Jenkins, G. M. Time-series analysis: Forecasting

and control (Rev. ed.). San Francisco: Holden-Day, 1976.

Brehm, J. W. A theory of psychological reactance. New York: Academic

Press, 1966.

Browne, M. W. Genearlized least squares estimators in the analysis of

covariance structures. In D. J. Aigner & A. S. Goldberger (Eds.),

Latent variables in socioeconomic models. Amsterdam: North-

Holland, 1977.

Burg, J. P., Luenberger, D. G., & Wenger, D. L. Estimation of structured

covariance matrices. Proceedings of the IEEE, 1982, 70, 963-974.

Campbell, D., & Stanley, J. Experimental and quasi-experimental designs

for research. Chicago: Rand McNally, 1966.

Chow, G. L. Analysis and control of dynamic economic systems. New

York: Wiley, 1975.

Chow, G. C. Econometric analysis by control methods. New York: Wiley,

1981.

Cochran, W. G., & Cox, G. M. Experimental designs. New York: Wiley,

1957.

Dahlquist, G., & BjSrck, S. Numerical methods (N. Anderson, trans.).

Englewood Cliffs, NJ: Prentice-Hall, 1974.

Diaconis, P., & Efron, B. Computer-intensive methods in statistics.

Scientific American, 1983, 248, 116-130.

7

79



n= w v r V rrrrr 

w - I

Duncan, 0. D. Some linear models for two-wave, two-variable panel

analysis. Psychological Bulletin, 1969, 72, 177-182.

Elgerd, 0. I. Control systems theory. New York: McGraw-Hill, 1967.

Elms, A. C. The crisis in confidence in social psychology. American

Psychologist, 1975, 30, 967-976.

El-Sherief, H. E., & Sinha, N. K. Determination of the structure of a

canonical model for the identification of linear multivariable

systems. IEEE Transactions on Systems, Man, and Cybernetics, 1982,

SMC-12, 668-673.

Epstein, S. The stability of behavior: II. Implications for psycho-

logical research. American Psychologist, 1980, 35, 790-806.

Friedlander, B. Lattice filters for adaptive processing. Proceedings

of the IEEE, 1982a, 70, 829-867.

Friedlander, B. Lattice methods for spectral estimation. Proceedings

of the IEEE, 1982b, 70, 990-1017.

Friedlander, B. Instrumental variable methods for ARMA spectral estima-

tion. IEEE Transactions on Acoustics, Speech, and Signal Processing,

1983, ASSP-31, 404-415.

Gergen, K. J. Social psychology as history. Journal of Personality and

Social Psychology, 1973, 26, 309-320.

Gergen, K. J. Social psychology, science and history. Personality and

Social Psychology Bulletin, 1976, 2, 373-383.

Gergen, K. J. Toward generative theory. Journal of Personality and

Social Psychologist, 1978, 36, 1344-1360.

80
rai'.d l



Gergen, K. J. Toward transformation in social knowledge. New York:

Springer-Verlag, 1982.

Gilchrist, W. Statistical forecasting. New York: Wiley, 1976.

Granger, C. W. J., & Newbold, P. Forecasting economic time series. New

York: Academic Press, 1977.

Green, P. E. Mathematical tools for applied multivariate analysis. New

York: Academic Press, 1976.

Greenwald, A. G. Consequences of prejudice against the null hypothesis.

Psychological Bulletin, 1975, 82, 1-20.

Greenwald, A. G. An editorial. Journal of Personality and Social

Psychology, 197 6a, 33, 1-7.

Greenwald, A. G. Transhistorical lawfulness of behavior: A comment on

two papers. Personality and Social Psychology Bulletin, 1976b, 2,

p. 391.

Heise, D. R. Causal interfence from panel data. In E. F. Borgatta

(Ed.), Sociological methodology. San Francisco: Jossey-Bass,

1970.

Hibbs, D. A. Problems of statistical estimation and causal inference in

time-series regression models. In H. L. Costner (Ed.), Sociological

methodology, 1973-1974. San Francisco: Jossey-Bass, 1974.

Ignizio, J. P. Goal programming and extensions. Lexington, MA:

Lexington Books, 1976.

Ignizio, J. P. Linear programming in single- and multiple-objective

systems. Englewood Cliffs, NJ: Prentice-Hall, 1982.

81



Isaksson, A., Wennberg, A., & Zetterberg, L. H. Computer analysis of

E.E.G. signals with parametric models. Proceedings of the IEEE,

1981, 69, 451-463.

Jain, A. K. Advances in mathematical models for image processing.

Proceedings of the IEEE, 1981, 69, 502-528.

Jdreskog, K. G. A general method for analysis of covariance structures.

Biometrika, 1970, 57, 239-251.

J6reskog, K. G., & Sorbom, D. Advances in factor analysis and structural

equation models. Cambridge, MA: Abt Books, 1979.

Kane, M. T. & Brennan, R. L. The generalizability of class means.

Review of Educational Research, 1977, 47, 267-292.

KR. L., & Rao, A. R. Dynamic stochastic models from empirical
Kashyap, __.,__ao,__D_________ empi__ial

data. New York: Academic Press, 1976.

Kay, S. M., & Marple, S. L. Spectrum analysis--A modern perspective.

Proceedings of the IEEE, 1981, 69, 1380-1419.

Kenny, D. A. Cross-lagged and synchronous common factors in panel data.

In A. S. Goldberger & 0. D. Duncan (Eds.), Structural equation

models in the sciences. New York: Seminar Press, 1973.

Kenny, D. A. A quasi-experimental approach to assessing treatment

effects in the nonequivalent control group design. Psychological

Bulletin, 1975a, 82, 345-362.

Kenny, D. A. Cross-lagged panel correlation: A test for spuriousness.

.1"Psychological Bulletin, 1975b, 82, 887-903.

82



Leamer, E. E. Specification searches: Ad hoc inference with nonexperi-

mental data. New York: Wiley, 1978.

- Lee, T. S. Large sample identification and spectral estimation of noisy

multivariate autoregressive processes. IEEE Transactions on

Acoustics, Speech, and Signal Processing, 1983, ASSP-31, 76-82.

Makridakis, S., & Wheelwright, S. C. (Eds.). Studies in the management

sciences: Forecasting (vol. 12). Amsterdam: North-Holland

Publishing Co., 1979.

Martinson, E. D., & Hamden, M. A. Calculation of polychoric estimation

of correlation in contingency tables. Applied Statistics, 1975,

24, 272-278. (Algorithm AS 87)

Mass, N. J., & Senge, P. M. Alternate tests for the selection of model

variables. IEEE Transactions on Systems, Man, and Cybernetics,

1978, SMC-8, 450-459.

McCleary, R., & Hay, R. A. Applied time series analysis. Beverly

Hills, CA: Sage, 1980.

Mulaik, S. A. The foundations of factor analysis. New York: McGraw-

Hill, 1972.

Neel, A. Theories of psychology: A handbook. Cambridge, MA: Schenkman,

1977.

Orne, M. T. On the social psychology of the psychological experiment:

With particular reference to demand characteristics and their

implications. American Psychologist, 1962, 17, 776-783.

83



Passmore, W. A. The Michigan ICL study revisited: An alternate

explanation of the results. Journal of Applied Behavioral Science,

1976, 12, 245-251.

Pelz, D. C., & Lew, R. A. Heise's causal model. In E. F. Borgatta

(Ed.), Sociological methodology. San Francisco: Jossey-Bass,

1970.

Rao, C. R. Linear statistical inference and its applications (2nd ed.).

New York: Wiley, 1973.

Rogosa, D. A critique of cross-lagged correlation. Psychological

Bulletin, 1980, 88, 245-258.

Rogosa, D., Brandt, D., & Zimowski, M. A growth curve approach to the

measurement of change. Psychological Bulletin, 1982, 92, 726-748.

Rosenthal, R., & Rosnow, R. (Eds.). Artifact in behavioral research.

New York: Academic Press, 1969.

Schlenker, B. R. Social psychology and science: Another look.

Personality and Social Psychology Bulletin, 1976, 2, 384-390.

Shannon, C. E., & Weaver, W. The mathematical theory of communication.

Urbana: The University of Illinois Press, 1949.

Shavelson, R. J., & Webb, N. M. Generalizability thoery: 1973-1980.

British Journal of Mathematical and Statistical Psychology, 1981,

34, 133-168.

Simonton, D. K. Cross-sectional time-series experiments: Some suggested

statistical analyses. Psychological Bulletin, 1977, 84, 489-502.

84



Steiger, J. H. Tests for comparing elements of a correlation matrix.

Psychological Bulletin, 1980, 87, 245-251.

Taylor, J. C., & Bowers, D. G. Survey of organizations: A machine

scored standardized questionnaire instrument. Ann Arbor, MI:

University of Michigan, Institute for Social Research, 1972.

Torbert, W. R. Some questions on Bower's study of different OD techniques.

Journal of Applied Behavioral Science, 1973, 9, 668-671.

Wilks, S. S. Mathematical statistics. New York: Wiley, 1962.

Winer, B. J. Statistical principles in experimental designs. New York:

McGraw-Hill, 1971.

85


