
AD-Al??2 S42 APPLICATIONS OF PARALLEL SCHEDULING TO PERFECT GRAPHS 1/1
(U) STANFORD UNIV CA DEPT OF COMPUTER SCIENCE

HELNBOLD ET AL. JUN 96 STAN-CS-96-1110

7 UNCLSSIFIED N9S914-85-C-S731 F/G 9/2 M

1.25I 1.1 :

!ullllg ,uflL) -L6

"JO16 ReW NI. STAN-a3H115:

N
Applications of Parallel Scheduling

to Perfect Graphs

by

David Helmbold and Ernst Mayr

DTIC

Department of Computer Science.

Stanford Univesity
Stnford.CA MM

Ime fe Public mkpql

8

86Q 1 8 0 O45

SECURITY CLASSIFICATION OF THIS PAGE (When Dos Entered)

REPOT DCUMNTATON AGEREAD INSTRUCTIONSBEFORE COMPLETING FORM
I. REPORT NUMBER 2. GOVT ACCESSION NO. S. RECIPtENT'S CATALOG NUMBER

4. TITLE (midSwu6ittle) S. TYPE Of REPORT 6 PJRIOO COVERED

Applications of Parallel Scheduling to technical
Perfect Graphs 6. PERFORMING ORG. REPORT NUMBER

STAN-CS-86-1118
7. AUTwOR(e) 6. CONTRACT O GRANT NUMSER(.)

David Helmbold and Ernst Mayr N00014-85-C-0731)

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Department of Computer Science AREA & WORK UNIT NUMBERS

Stanford University
Stanford, CA 94305 ..

11. CONTROLLING OFFICE NAME AND ADDRESS Ia. EPORT 19E
Office of Naval Research (Code 458) 3une1 6
Arlington, VA 22217 IS. rsBER OF PAGES

14. MONITORING AGENCY NAME A ADDRESS(I dlfferm#e front Contrll|ni Office) IS. SECURITY CLASS. (of this report)

ONR Representative - Mr. Robin Simpson Unclassified
Durand Aeronautics Building, Rm. 165
Stanford University s.. CSCILASI ICATION/ DOWNGRADING
Stanford, CA 94305 S CCE_

IS. DISTRIBUTION STATEMENT (of this Roport

Approved for public release: distribution unlimited

17. DIST RISOUTION STATEMENT (of the abetract entered in jlock 20, II different hfrm Report)

II. SUPPLEMENTARY NOTES

S. KEY WORDS (Continue on revere aid* II'neceeeary mid Identify by block number)

Parallel Scheduling, Two Processor Scheduling, Matching, Comparability
graphs, perfect graphs

20. ASTRACT -VW'combine a parallel algorithm for the two processor scheduling problem,
which runs in polylog time on a polynomial number of processors, with an

algorithm to find transitive orientations of graphs where they exist. Both
algorithms together solve the maximum clique problem and the minimum
coloring problem for comparability graphs, and the maximum matching
problem for co-comparability graphs. These parallel algorithms can also be
used to identify permutation graphs and interval graphs, important subclasses
of perfect graphs.

D
AAN

TS 1473
* SECURITY CLASSIFICATION Of THIS PAGE ("on. Date Entere)

Applications of Parallel Scheduling
to Perfect Graphs

David Helmbold and Ernst Mayr
Stanford University

Abstract

We combine a parallel algorithm for the two processor scheduling problem,
which runs in polylog time on a polynomial number of processors, with an

algorithm to find transitive orientations of graphs where they exist. Both
algorithms together solve the maximum clique problem and the minimum
coloring problem for comparability graphs, and the maximum matching
problem for co-comparability graphs. These parallel algorithms can also be
used to identify permutation graphs and interval graphs, important subclasses
of perfect graphs.

Acceslon For

NTIS CRAMI
DTIC TAB 0

Unannounced

to" Justification

.,- • By

Dist; ibution I

Availability Codes

A a d ' a n d ' I
r

Dist spuci,

This work was supported by in part by a grant from the AT&T Foundation, ONR contract
N00014-85-C-0731, and NSF grant DCR-8351757.

1 introduction

We present several parallel algorithms for graph problems, in particular for
perfect graphs. Our main result is a deterministic ANC algorithm for solving the
two processor unit execution time scheduling problem, answering an important
open problem posed in [241. We also present an A/C algorithm for transitively
orienting comparability graphs. By combining these two results, we obtain an N/C
algorithm for the matching problem on co-comparability graphs (the complements
of comparability graphs) and nearly co-comparability graphs. In addition our
transitive orientation algorithm gives us NVC algorithms for several additional
problems, such as identifying permutation graphs and finding the maximum
weighted clique and optimal colorings in comparability graphs. Comparability,
co-comparability, and permutation graphs are all important subclasses of perfect
graphs.

The most fundamental scheduling problems involve unit time execution tasks
with precedence constraints restricting the order of execution. When the number
of processors varies, the scheduling problem is ANP-complete [23]. There are no
published polynomial time algorithms for a fixed number of processors greater than
two. The first polynomial time algorithm for the two processor case was published
in 1969 (5]. Faster algorithms for the same problem were given by Coffman and
Graham [2], and later, Gabow [6,7] found an asymptotically optimal algorithm.
Recently, Vazirani and Vazirani have published a randomized parallel solution
[24]. Like Fujii et al. they use the connection between matching and two processor
scheduling, so their algorithm relies on an RNAC matching subroutine such as [14]
or [18].

In contrast, our scheduling algorithm (12] is deterministic and does not require
the aid of a matching subroutine. Therefore we are able to exploit the relationship
between matching and two processor scheduling in the other direction, obtaining a
deterministic parallel maximum matching algorithm for co-comparability graphs.

The only ingredient required to convert our scheduling algorithm into a
matching result is an AC transitive orientation subroutine. This routine takes
an undirected graph and directs the edges so that the resulting digraph is
transitively closed. Those graphs which can be transitively oriented are called
comparability graphs. The complements of comparability graphs are co-compa-
rability graphs. Kozen, Vazirani and Vazirani, in independent work, coupled a
different transitive orientation routine with our two processor scheduling algorithm
to achieve an AC matching algorithm on co-comparability graphs [16]. Our
transitive orientation subroutine is also the key element in our algorithms for
testing for permutation graphs and finding maximum weighted cliques and optimal
colorings on comparability graphs.

11

2 Main Theorems and Applications

In this section we give some definitions, state our main results, and prove several
important consequences.

As our model of parallel computation, we use the Parallel Random Access
Machine or PRAM as defined in [4]. A PRAM consists of an unbounded number
of identical processors running synchronously. Each such processor can be thought
of, for the purpose of this paper, as an ordinary RAM [1], with local memory. A
PRAM also contains an unbounded number of global memory cells which every
processor can access in one timestep. We allow that several processors read the
same memory cell simultaneously. However, several processors must not write
simultaneously to the same memory cell. Every processor has stored, in one
of its registers, its unique processor index. All processors execute the same
program. Since the instructions may depend on the processor index, the effect
of an instruction will in general vary from processor to processor.

When measuring the complexity of parallel algorithms (for the PRAM model),
we are mainly interested in the amount of time an algorithm uses, and the number
of processors it employs. Time will be the number of parallel steps taken by the
PRAM, and the number of processors will be the highest index of a processor
active in the computation.

The class of parallel algorithms running in time which is bounded by a
polynomial in the logarithm of the size of the input, and using a number of
processors polynomial in the input size, has experienced considerable interest. One
reason is that the algorithms in this class are considered very fast (the "speedup"
over their sequential counterparts is exponential), and they use a "reasonable"
amount of hardware, i.e. processors. Another reason is that this class is very
robust under (reasonable) variations in the definitions of the underlying machine
model. The class is commonly referred to as AC, owing to its original definition
for the boolean circuit model of parallel computation in [20].

A perfect graph is an undirected graph where the chromatic number and
maximum clique size of every induced subgraph coincide. A precedence graph
is an acyclic, transitively closed digraph. We use fa, b} to denote an undirected
edge, and (a, b) to denote a directed edge or arc from vertex a to vertex b. Thus
if arcs (a, b) and (b, c) are in a precedence graph, then so is the arc (a, c). A
comparability graph is an undirected graph with the property that every edge can
be assigned a direction such that the resulting graph is a precedence graph. The
complement of a comparability graph is a co-comparability graph. Precedence
graphs are equivalent to partial orders. Some graphs, such as a simple three-cycle,
are both comparability and co-comparability graphs.

The undirected graph G = (V, E) is a permutation graph if there exists a
pair of permutations on the vertices such the edge {v, v'} E E if and only if

2

- V• P-

v precedes v' (or v' precedes v) in both permutations. Permutation graphs are
equivalent to the comparability graphs of partial orders with dimension two. A
graph is both a comparability graph and a co-comparability graph if and only if
it is a permutation graph [21]. Permutation graphs, comparability graphs and
co-comparability graphs are all subclasses of perfect graphs [9].

An instance of the two processor scheduling problem is given by a precedence
graph G = (V, E). Each vertex represents a task whose execution requires unit
time on either of two identical processors. If there is a directed edge from task t to
task t', then task t must be completed before task t' can be started. A schedule is
a mapping from tasks to integer timesteps such that at most two tasks are mapped
to each timestep and for all tasks t and t' if t must precede t' (t -< t') then t is
mapped to an earlier timestep than t'. The length of a schedule is the number of
timesteps used. An optimal schedule is one of shortest length.

The maximum matching problem on co-comparability graphs and the two
processor scheduling problem are closely related. If G is a co-comparability graph
and G is a transitive orientation of G's complement, then the pairs of tasks mapped
to the same timestep in an optimal two processor schedule of G correspond to
a maximum matching in G. Furthermore, there is a -quential algorithm for
converting any maximum matching for G into an optimal two processor schedule
for 6 [5]. In [24] it was conjectured that this process is inherently sequential, but
with our two processor scheduling algorithm it can be solved quickly in parallel.

Theorem 1: Two processor scheduling is in N/C.

Proof: We outline an O(log 2 n) time algorithm in section 3. Further details can
be found in [12]. 0

Theorem 2: There is an AC algorithm which detects if an undirected graph is
transitively orientable, and if so finds a transitive orientation.

Proof: We present such an algorithm in section 4. See also (161. 0

Corollary 2.1: There is an NVC algorithm which detects whether or not a graph
is a permutation graph.

Proof: Graph G is a permutation graph if and only if both G and
are comparability graphs [21]. Therefore, by running our transitive orientation
algorithm on both G and 07, we can determine if G is a permutation graph. 0

Corollary 2.2: There is an AC algorithm which finds a maximum node-weighted
clique in comparability graphs.

3

Proof: Given a comparability graph G, we find a transitive orientation, G.
Examine any k-path in d. A k-path is a directed path containing exactly k
vertices. Because d is transitively closed, the nodes on the k-path form a k-clique
in G. Similarly, every k clique in G is a k-path in 6. Thus the problem of finding
a maximum node-weighted clique in G reduces to finding a maximum weight path
in (7. Since d is a DAG, standard parallel techniques (i.e., max-plus closure) can
be used to find a heaviest path in G. 0

Corollary 2.3: There is an NrC algorithm which finds a minimal node-coloring
of comparability graphs.

Proof: Given a comparability graph G, we find a transitive orientation, (G. We
say that a vertex v is on level i in G if the longest (directed) path from v to a
sink contains exactly i vertices. Clearly any pair of nodes on the same level are
not adjacent in G, so they can be assigned the same color. Every node on level
i > 1 is a predecessor of at least one node on level i - 1. Therefore, if G has k
levels then G has a path of length k and G has a k-clique. Since no coloring can
use fewer colors than the size of the largest clique, using a distinct color for every
level yields an optimal coloring. 0

Theorem 3: Finding maximum matchings on co-comparability graphs is in ANC.

Proof: One such algorithm is given in section 5. 0

This theorem is extended to nearly co-comparability graphs in section 5.

Corollary 3.1: Maximum matchings on permutation graphs and partial orders
of dimension 2 can be constructed in ArC.

Proof: As stated above, these graphs are co-comparability graphs. 0

Corollary 3.2: Maximum matchings on interval graphs can be found in AC.

Proof: Interval graphs are a subclass of co-comparability graphs [8]. 0

3 Two Processor Scheduling

In this section, we consider the scheduling problem for task systems with arbitrary
precedence constraints, unit execution time per task, and two identical processors.
Our scheduling algorithm for this problem is built around a routine that, for any
precedence graph, computes the length of the graph's optimal schedule(s). This

4

level jump

6 13 14

5 12

4 1 3

2 1

twt

Figure 1: This is a precedence graph containing fifteen tasks (transitive arcs have
been omitted). The special tasks t.,o and tbt are added when computing the length
of optimal schedules for G. The levels of the original graph are on the left and the
jump sequence is on the right.

length routine is applied repeatedly in order to actually find an optimal schedule
for the input graph.

Let G = (V, -<) be the precedence graph we are interested in. If t -< t' then t is
a predecessor of t' and t' is a successor of t. For any pair of tasks, t, t' E V, define
Vt, to be the set of tasks which are both successors of t and predecessors of t', and
let G, be the subgraph of G induced by V,,. The schedule distance between tasks
t and t', SD(t, t'), is defined to be the length of any optimal schedule for Gt,. If
t - t' then SD(t, t') = 0.

Lenuna 3.1: Let t, t' E V, and let S be a set of tasks such that for all t E S:
L. t -4 i -< t';

ii. SD(t, t) 2t k; and

5

do(*,*):= 0;
for i := 1 to Pog nl do

for all t, t' with t -< t' do in parallel
for all 0 < k, I < n - 1 do in parallel

{s t -< s -< t,
d,- 1(t, a) k

dj(t, t'):= s,, tl {dj-j(t, t')%

+ I + [IS,,t,,. ,/21;
SD(*, *) dl'. (*, *)

Figure 2: The Distance Algorithm.

ii. SD(i, e) > 1.

Then SD(t,t') >: k + I + fISI/21.

Proof: Count the number of timesteps required to schedule those tasks
between t and t'. There must be at least k timesteps before the first task in S
is scheduled. It takes at least IS1/2 timesteps to complete the tasks in S. After
the last task in S has been completed, at least I additional timesteps are required.
Therefore SD(t, t') _ k + 1 + ISI/2. 0

The distance algorithm (see Figure 2) uses a doubling method like transitive
closure to compute the schedule distances between all pairs of tasks in a precedence
graph G = (V, -<). It initially guesses that the scheduling distance between each
pair of tasks is at least zero. By repeatedly applying Lemma 3.1 to each pair
of tasks in parallel the algorithm refines its guesses. Below we prove that after
log IVI iterations, the algorithm's guess for each pair of tasks has converged to the
schedule distance. The distance algorithm has a straightforward implementation
on an n processor PRAM taking O(log2 n) time.

Lemma 3.2: The distance algorithm always computes the schedule distance
between every pair of tasks.

Proof: Lemma 3.1 guarantees that the distances computed by the algorithm are
never greater than the the schedule distances.

In [2] it is shown how to construct sets of tasks xo, Xi,... , Xk for any precedence
graph such that:

" Those tasks in any Xi are predecessors of all tasks in X,-1, and

" The length of optimal schedules for G is E, rix, 1/21 (See Figure 3).

6

Xs X4 X3 X2 Xi

Ai i 0 15 14 12 11 8 6 14 1-2 1
0t

P - 10 13 - 9 7 5 3 1 -

time 1 2 3 4 5 6 7 8 9 10

Figure 3: This is an LMJ schedule for the graph in Figure 1; each Xi is boxed.

Our algorithm does not compute the X,'S directly, we simply use their existence to
prove that the distances the algorithm does compute converge to the scheduling
distance.

Examine how the distance algorithm determines the schedule distance between
an arbitrary pair of tasks, t and t'. Let XI,X2,...,Xh be a set of Xi's for G,,
Xh+1 - {t}, and Xo = {It'. After the first iteration of the outer loop, the distance
computed between any task in Xi and one in Xi-2 is at least rlxi-i1/21. After
the second iteration, the distance computed between any task in Xi and any task
in Xi-4 is at least [xi-1/ 21 + [xi-2/ 21 + [Xi-3/ 21. This is an easy consequence
of Lemma 3.1 with S = Xi-2, k = rx,-1/21,and I = rXi-3/21. In each iteration
we double the number of X,'s accounted for. After log h iterations, the computed
distance between t and t' is at least the optimal schedule length for Gt,, and thus
at least SD(t t').

Since G contains n tasks, each G', has at most n - 2 Xi's. Therefore, after
log nl iterations the algorithm has converged to the schedule distances for each

pair of tasks. 0

The distance algorithm can be used to compute the length of optimal schedules
for a graph. Augment the graph with two dummy tasks, tt p and thor, which are a
predecessor and successor (respectively) of all other tasks in G. Now SD(ttop, tbt)

is the length of G's optimal schedules, and can be found using the distance
algorithm.

The method for converting the distance algorithm into one which finds an
optimal schedule involves several constructions. For the sake of brevity this paper
contains only an outline of our method. Interested readers may consult [12] for a
more detailed presentation.

The search for an optimal schedule can be restricted to the class of
Lezicographically Mazimal Jump (LMJ) schedules. Each task t in the precedence
graph is assigned a level equal to the number of tasks in the longest path from t to
a sink. A level schedule gives preference to tasks on higher levels. More precisely,

7

suppose levels L, ..., I+ 1 have already been scheduled and there are k unscheduled
tasks remaining on level 1. If k is even a level schedules puts the k tasks in pairs,
and there is no jump from level 1. If k is odd, a level schedule pairs k - 1 of the
tasks with each other and the remaining task is paired with a task from a lower
level F < 1. In this case, level I jumps to level 1'. We assume that there are an
unlimited number of dummy tasks on level 0 which can be paired with any other
tasks. The jump sequence of a level schedule is the sequence of levels jumped to,
listed in the order in which the jumps occur (see Figure 1). The Lezicographically
Maximum Jump (LMJ) sequence is the jump sequence (resulting from some level
schedule) that is lexicographically greater than any other jump sequence resulting
from a level schedule. An LMJ schedule is a level schedule whose jump sequence is
the LMJ sequence. Note that our definition of LMJ is similar to the definitions of
highest level first in [6] and [24]. The following theorem establishes the importance
of LMJ schedules.

Theorem 4: [6] Every LMJ schedule is optimal. 0
Our two processor algorithm uses the distance algorithm to find the LMJ

sequence and which jump (if any) a pair of tasks can be used for. In general,
there will be many possible pairs for each jump. A path doubling computation
finds a consistent set of task pairs for the jumps. The remaining tasks are paired up
within levels. Since there are never precedence constraints between two tasks on
the same level, this pairing can be done arbitrarily. An LMJ schedule is obtained
by sorting the resulting set of task pairs (both for jumps and within levels). We
refer the reader to [12] for a complete description of the technically more involved
parts of this construction.

4 Transitive Orientation

The transitive orientation problem is nontrivial because some edges cannot be
oriented independently. If the edges {a, b} and {b, c} are in the graph to be
oriented, but the edge {a, c) is not, then the edges {a, b}, {b, c} cannot be oriented
independently. If we choose the arc (a, b) then we are forced to include the arc
(b, c) in the transitive orientation (see Figure 4). The binary relation r reflects
this simple kind of forcing. [21]. Given G = (V, E), we say that (a, b)r(a, c) and
(b, a)r(c, a) whenever {a, b} E E, {a, c} E E and {b, c} V E.

The reflexive, transitive closure of r, rF, is an equivalence relation on the
possible orientations of edges in E. For obvious reasons, we call these equivalence
classes implication classes. If A is a set of arcs (e.g. an implication class) then A
denotes the set of undirected edges {{a, b} : (a, b) E A V (b, a) E A}, and A-' is
the set of arcs {(b,a): (a,b) E A}. A set of arcs A is consistent if A-n A-' = 0
and is inconsistent whea A nlA 1 # 0.

8

b I d f

b h 9

(a, b)r(c, b) e

h g
(b, a)r(b, c) (d, e)r(f, e)r... r(e, d)r... r(e, f)

Figure 4" Graphs and Implication Classes

Implication classes have been studied by M.C. Golumbic and many of the
lemmas in this section have originally been shown in (9] or [101.

Lemma 4.1: If A # B are implication classes of G then either A = B- or
A nB=.

Proof: Assume that _{a,b} E An B. Without loss of generality, let (a, b) E A. If
(a, b) E A then B = A since implication classes are equivalence classes. Therefore
(b, a) E B, and (b, a) V A. By definition, if (a, b)r(a', b') then (b, a)r(b', a'). Thus
some (c,d)r*(a,b) if and only if (d,c)r'(b,a), so A = B - 1. 0j

Given an undirected graph G1 = (V, E) pick any implication class B-1, delete
B, from G1, forming G 2 = (V, E - B j). Next form G 3 by removing the underlying
set B 2 of some implication class B 2 of G2. Continue the process until removing
Bk from Gk results in a graph with no edges. The sequence of implication classes
removed, B 1, B 2 ,..., Bk, is called a r-decomposition of G. The following theorem
points out the usefulness of r-decompositions.

Theorem 5: (TRO Theorem [9]) Let 111,112,..., ffk be a r-decomposition of an

undirected graph G. The following statements are equivalent:

i. G is a comparability graph.

ii. Every implication class of G is consistent.

ii. Each Ai in the r-decomposition is consistent.

Fbrthermore, when these conditions hold, B, U ff U ... U B-k is a transitive
orientation of G.

9
- .].* * .. * *r

Proof: The proof of this theorem requires several technical lemmas, and thus is
beyond the scope of this paper. The interested reader is referred to [9,10]. 0

Let I be any implication class of the graph G. Then we call the underlying
set of edges A its color class. The TRO theorem suggests a sequential algorithm
for finding transitive orientations of comparability graphs. One can take any edge,
orient it arbitrarily, find the associated implication class, add the implication class
to the transitive orientation and remove its color class from the comparability
graph. Repeating this procedure yields a P-decomposition of the comparability
graph and therefore a transitive orientation. This is essentially the algorithm in
[21].

If we are dealing with a comparability graph it is sufficient to consider color
classes instead of implication classes, since every color class A represents and
implication class A and its inverse A-1 . When talking about color classes we
always assume that the corresponding implication classes are consistent.

In order to parallelize the sequential algorithm above it is neccessary to
understand how color classes change during a P-decomposition. We will see below
that the changes are very simple: color classes are either merged with other color
classes or remain unchanged.

Lemma 4.2: Let B be an color class of G = (V, E). Every implication class of
' = (V, E - B) is the union of color classes of G.

Proof: The r relation for G', restricted to E - B, contains the corresponding
restriction of the r relation for G. 0

The three edges of a triangle in the undirected graph G form a tricolored
triangle if they belong to three distinct color classes. We say that two color classes
A and B are triangle related, written A&B, if there is a tricolored triangle in G
with one edge in A and another edge in B.

Lemma 4.3: Let A and B be two distinct color classes in G = (V, E). A is not
an implication class of G' = (V, E - B) iff A&B.

Proof: The proof is a simple consequence of the definition of the r relation. It
will be omitted here. 0

An immediate implication of Lemma 4.3 is

Lemma 4.4: Let the color classes B,..., B, of G = (V, E) be an independent
set under the A relation. Then in G' = (V, E - B1), the collection {B 2,..., B} is
an independent set under &.

Corollary 4.4.1: If color classes B1, Bk of G form an independent set under
the & relation, then they are the first k color classes for a P-decomposition of G.

10

Proof: Flbows from the definition of independent set. 0

Lemma 4.5: Let B,..., B be a maximal independent set under the & relation
for some graph G1 = (V, E). Every color class of Gk+I = (V, E- B -B 2 -. ..- B)
is the union of at least two color classes of G1.

Corollary 4.5.1: The number of color classes for Gk+I is at most half the number
of color classes for G.

Proof: Since the Bi form a maximal independent set under a every color class
of G which is not one of the Bi must be adjacent to one of the Bi. Because of
Lemma 4.3 it will be merged with some other color class. 0

The input to our algorithm is an undirected graph G = (V, E). The output is
either G, a transitive orientation of G, or an indication that G has no transitive
orientation. With G, initialized to be G, and d1 initially equal to (V, 0), if no
inconsistent implication class is found in the first iteration, the algorithm proceeds
in iterations as long as the set of color classes is non-empty.

Each iteration consists of the following four steps:

1. Determine the color classes of G,. This can be done using standard parallel
techniques such as solving 2-SAT formulae or finding connected components
[221.

2. Determine the A relation on color classes.

3. Use a maximal independent set subroutine [15,17] to obtain a maximal
independent set M of color classes.

4. In parallel, for each B in M, delete Bi from G,, and add A or ito .

Step 3 is the most expensive of these steps, requiring O(log2 n) time and n4

processors. The log n iterations can therefore be done in O(log3 n) time on n4

processors.

5 Maximum Matching

The two processor scheduling and transitive orientation algorithms can be used
to find maximum matchings on co-comparability graphs. To find a maximum
matching on the co-comparability graph G = (V, E), first create the comparability
graph G, the complement of G. Applying the transitive orientation routine
converts G into a precedence graph. An optimal two processor schedule can be
found for the precedence graph using our scheduling algorithm. We will see below
that the pairs of tasks scheduled together form a maximum matching of G.

Let S be any optimal two processor schedule for 6. A task-pair of S is a
pair of tasks mapped to the same timestep by S. Since there are no precedence

11

relationships between tasks in a task-pair, the set of task-pairs of S form a
matching in G. Because S is an optimal schedule, no schedule has more task-
pairs.

A task is available at some point in a schedule if it can be executed without
violating the precedence constraints.

Lemma 5.1: If a co-comparability graph G has a perfect matching then 6 has a
schedule where every task is in a task-pair.

Proofi We say a pair of tasks is mated if the pair is in the perfect matching.
Construct the schedule (and modify the "mated" relationship) iteratively as
follows:

If two mated tasks are both available, schedule one such mated pair.
Otherwise find two mated pairs, (t,t') and (s, a'), such that t and s
are available and there is no precedence relationship between t' and s'.
Schedule t with a and mate t with s'.

Note that there are never precedence constraints between a pair of mated tasks.
This method clearly takes two tasks each timestep and does not violate the
precedence constraints. What we must show is that it always constructs a schedule
for 6.

Assume to the contrary that at some point it does not find a pair of tasks to
schedule. Let U be the set of available tasks and U' be the set of tasks which are
mated to tasks in U. Since the method fails, U n U' = 0 and there is a precedence
relationship between every pair of tasks in U' (i.e. U' is totally ordered). Let t'
be the task in U' which precedes all other tasks in U'. Since t' e U, there must
be some t E U such that t -< e. However, by the transitivity of precedence, t also
precedes its mate - contradiction. D

Lemma 5.2: Let G - (V,-<) be a precedence graph and S a two processor

schedule for 6' = (V - {t,-<). A single timestep containing t can be inserted
into S yielding a schedule for 6.

Proof: Let t' be the last predecessor of t in S. Insert task t immediately after
the timestep containing t'. Obviously there are no precedence conflicts between t
and its predecessors. Since S is valid schedule, there are no precedence conflicts
between tasks in V - {t). Therefore any precedence conflict which is violated is
of the form t -< . By transitivity t' also precedes t, so t comes strictly after t' in
S. Since t is inserted immediately after t', task t appears before i in the modified
schedule. 0

12

Let M be the tasks in a maximum matching on G. The above Lemmas suggest a
way to obtain a schedule, S, for 6 = (, -4) where the paired tasks of S are precisely

the tasks in M. Start by finding an optimal schedule, S' for the subgraph of G
induced by M and add the tasks in V - M one at a time. One AC implementation
of this algorithm involves bucket sorting the tasks in V - M based on which task-
pair of S' they follow. By topologically sorting the tasks within each bucket we
can quickly determine where each task should be inserted.

Theorem 6: The task-pairs of any optimal schedule for G form a maximum
matching on G.

Proof: Let M be the tasks in some maximum matching of G. Let S be an optimal
schedule for the subgraph of G induced by M. By Lemma 5.1, the task-pairs of
S form a maximum matching on G. By Lemma 5.2 we can insert the other tasks
of G one at a time without disturbing the task-pairs. Therefore, the task-pairs of
the resulting schedule for G form a maximum matching on G. Since every optimal
schedule has the same number of task-pairs and the task-pairs of every schedule
form a matching, the task-pairs of any optimal schedule for G forms a maximum
matching on G. [

If 0 is not transitively orientable it may still be possible to find a maximum
matching in G = (V, E). Assume we are given a set U, consisting of O(logn)
edges, such that 0 U U is transitively orientable. The following method finds a
maximum matching in G.

For each S' C U such that S' is a matching find (in parallel) a maximum
matching in G' = (V - Iv : (v,v') E S'},E - U). A maximum matching for
G occurs whenever the cardinality of the maximum matching for G' plus IS'I is
maximal.

A graph G is a k-nearly comparability graph when:

- G has at most k log n inconsistent implication classes and
- each inconsistent implication class of G is split into consistent implication

classes by the addition of at most k edges.

A k-nearly co-comparability graph is the complement of a k-nearly comparability
graph.

Let G be a k-nearly co-comparability graph (for some constant k). The
following is an outline of an NVC algorithm for finding a maximum matching
in G. In parallel examine each set, T, of k edges not in 0. Determine which
inconsistent implication classes are split when T is added to 0. For each
inconsistent implication class A, pick any set of k edges which splits A into
consistent implication classes. At most kPlogn edges are picked, so the above
method can be used to find a maximum matching for G.

13

6 Conclusions

Although the algebraic approach was used to obtain the first parallel matching
algorithms [14,18], these are randomized algorithms. It is interesting that we
can obtain deterministic matching algorithms for wide classes of graphs using a
purely combinatorial approach. Perhaps the combinatorial approach will yield
deterministic algorithms for matching on other classes of graphs as well.

It was surprising how much more difficult computing the actual schedule was
than simply computing its length. In higher complexity classes such as P and A/'(
it is often easy to go from the decision problem to computing an actual solution,
because of self reducibility. However this does not necessarily seem to be the
case for parallel complexity classes. To support this observation we note that
the random ArC algorithm for finding the cardinality of a maximum matching is
much simpler than the random AfC algorithm for determining an actual maximum
matching [131.

There are several open problems related to scheduling. We are attempting to
extend our two processor result to the case when the tasks have nonuniform start
times and/or deadlines. When the precedence constraints are restricted to in-trees
or out-trees there are parallel algorithms for generating schedules on an arbitrary
number of processor [3,111. It is an open problem whether interval-ordered tasks
[19] can be scheduled in parallel.

One variant of the two processor problem that we know to be AP-complete
(by reduction from the clique problem) allows incompatibility edges as well well as
precedence constraints. When there is an incompatibility constraint between two
tasks they can be executed in either order, but not concurrently. Incompatibility
constraints arise naturally when two or more tasks need the same resource, such
as special purpose hardware or a database file.

References

[1] A. Aho, J. Hoperoft, and J. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, New York, 1974.

[2] E.G. Coffman, Jr., and R. Graham. Optimal scheduling for two processor
systems. Acta Informatica, 1:200-213, 1972.

[3] D. Dolev, E. Upfal, and M. Warmuth. Scheduling trees in parallel.
In Bertolazzi, P, Luccio, F. (eds.): VLSI: Algorithm and Architectures.
Proceedings of the International Workshop on Parallel Computating and
VLSI, pages 1-30, North-Holland, 1985.

[4] S. Fortune and J. Wyllie. Parallelism in random access machines. In
Proceedings of the 10th Ann. ACM Symp. on Theory of Computing (San
Diego, CA), pages 114-118, 1978.

14

[5] M. Fujii, T. Kasami, and K. Ninamiya. Optimal sequencing of two equivalent
processors. SIAM J. Appi. Math., 17(4):784-789, 1969.

[6 H. Gabow. An almost-linear algorithm for two-processor scheduling. JACM,
29(3):766-780, 1982.

[7] H. Gabow and Rt Tarjan. A linear time algorithm for special case of disjoint
set union. In Proceedings of the 15th Ann. ACM Symp. on Theory of
Computing (Boston, Mass.), pages 246-251, 1983.

[8] P. Gilmore and A. Hoffman. A characterization of comparability graphs and
of interval graphs. Canad. J. Math, 16, 1964.

[9] M. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic
Press, New York, 1980.

[10] M. Golumbic. Comparability graphs and a new matroid. J. Combinatorial
Theory (B), 22(1):68-90, 1977.

[11] D. HeImbold and E. Mayr. Fast scheduling algorithms on parallel computers.
Advances in Computing Research, 1986. to appear.

(12] D. HeImbold and E. Mayr. Two processor scheduling is in A(C. In Proc. 1986
Aegean Workshop on Computing: VLSI Algorithms and Architectures, July
1986.

[131 R. Karp, E. Upfal, and A. Wigderson. Are search and decision problems
computationally equivalent? In Proceedings of the 17th Ann. A CM Symp. on
Theory of Computing (Providence, RI), pages 465-475, 1985.

[14 R. Karp, E. Upfal, and A. Wigderson. Constructing a perfect matching is
in random N/C. In Proceedings of the 17th Ann. ACM Symp. on Theory of
Computing (Providence, RI), pages 22-32, 1985.

[15] R. Karp and A. Wigderson. A fast parallel algorithm for the maximal
independent set problem. J.A CM, 32(4):762-773, 1985.

[16] D. Kozen, U. Vazirani, and V. Vazirani. ANC algorithms for comparability
graphs, interval graphs, and testing for unique perfect matching. In 5th Conf.
Found. of Software Tech. and Theor. Comp. Sci. (New Dehli), 1985.

[17] M. Luby. A simple parallel algorithm for the maximal independent set
problem. In Proceedings of the 17th Ann. ACM Symp. on Theory of
Computing (Providence, RI), pages 1-10, 1985.

[18] K. Mulmuley, U. Vazirani, and V. Vazirani. Parallel algorithms for rank and
matching. private communication.

[19] C. Papadimitriou and M. Yannakakis. Scheduling interval-ordered tasks.
SIAM J. Computing, 8(3), 1979.

[20] N. Pippenger. On simultaneous resource bounds. In Proceedings of the 2Oth
IEEE Symp. on Foundations of Computer Science, pages 307-311, 1979.

15

[21] A. Pnueli, A. Lempel, and S. Even. Tfransitive orientation of graphs and
identification of permutation graphs. Can. J. Mathi., 23(l):160-175, 1971.

[22] Y. Shiloach and U. Vishkin. An O(log ni) parallel connectivity algorithm. 1.
Algorithms, 3(l):57-63, 1982.

[23] J. Ullman. APP-complete scheduling problems. J. Comput. System Sci.,
10(3):384-393, 1975.

[24] U. Vazirani and V. Vazirani. The two-processor scheduling problem is in
lUIC. In Proceedings of the 17th Ann. A CM Symp. on Theory of Computing
(Prov'idence, RI), pages 11-21, 1985.

16

EN D

