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Abstract

This report describes the design and results of a time-driven simulation of
an Ultracomputer-like multiprocessor in the presence of several hot spots,9or
memory modules which are frequent targets of requests. Such hot spots exist
during execution of parallel programs in which the several threads of control
synchronize through manipulation of a small number of shared variables. The
simulated system is comprised of N processing elements (PEs) and N shared
memory modules connected by an N x N buffered, packet-switched Omega
network.

The simulator was designed to accept a wide variety of system configu-
rations to enable observation of many different characteristics of the system
behavior. We present the results of four experiments: (1) General simulation
of several 16-PE configurations, (2) General simulation of several 512-PE
configurations, (3) Determination of critical queue lengths as a function of re-
quest rate (512 PEs) and (4) Determination of the effect of hot spot spacing
on system performance (512 PEs).
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1 Introduction

This report describes the design and results of a time-driven software simulation of
an Ultracomputer-like multiprocessor comprised of N processing elements (PEs)
and N shared memory modules connected by an N x N packet-switched Omega
network; a familiarity with the basic design of the NYU Ultracomputer and the
Omega network as described by Gottlieb et aL [GGK83] is assumed throughout.
The simulated system incorporates one minor restriction of the Ultracomputer
model, namely that request packets are allowed to participate in only one combin-
ing operation at a network switch; of course, packets may participate in several
combining operations as long as they occur at different network stages.

The simulator is an Ada' [DoD83] program of around 1500 lines subdivided
into three packages and a main driver procedure. The program was compiled,
debugged and executed using a validated Ada compiler running on the Data Gen-
eral MV10000 operated by the Program Analysis and Verification Group of the
Computer Systems Laboratory at Stanford University.

The simulator was specially designed to reveal certain aspects of the behavior
of the Ultracomputer in the presence of a small number of "hot spots" or shared
memory modules which are frequent targets of data requests. Such hot spots would
exist during execution of parallel programs in which constituent threads of control
synchronize through modification of a small set of globally shared variables (such
as semaphores or condition variables). The statistics of interest output by the
simulator include average and maximum request latency, average and maximum
queue lengths in each Omega network stage, and actual numbers of queues and
wait buffers used in each Omega network stage; these statistics are computed
empirically as functions of input parameters to the simulation, such as maximum
allowed queue lengths, memory request rate and number of hot spots present.

The major features which set our work apart from previous efforts include
(1) Packet combination, (2) Wait/no-wait policies for packet creation (described
below), (3) Multiple numbers of hot spots, (4) Variability of hot spot assignment
and spacing and (5) Fair and robust solution of conflicts. These features and all
results will be described more fully in later sections.

Kruskal and Snir [KS83] have derived some asymptotic results, both analyt-
ically and through simulation, for bandwidth in both unbuffered and buffered
systems connected by various Banyan networks; an "unbuffered" system can be
considered to be equivalent to a buffered system with queue lengths of one. Their
simulations do not incorporate packet combining, but instead rely on packet dele-

P'., 'Ada is a registered trademark of the US Government-AJPO.
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tion to solve conflicts. The simulations described in this report allow combining
of packets, and, as described below, packets are never deleted once they have been
enqueued at a PE. In particular, packet movement is held up if necessary to await
available queue space, and packets are deleted only upon creation if either the PE
queue is full or if a wait policy is being used. One feature of the simulations of
Kruskal and Snir not allowed for in our effort is the simulation of time-multiplexed,
multi-packet requests.

Pfister and Norton [PN85] performed simulations of systems connected by
buffered Omega networks. They simulated the presence of variable traffic to a
single hot spot superimposed over a background of light, uniform traffic. The mo-
tivation for their work was to determine whether or not the cost of added packet
combining hardware is justified by a relative increase in performance; they con-
cluded that the extra cost can be justified, especially because combining reduces
the phenomenon of network congestion which they term "tree saturation." They
claim that wait buffers of length six and queues of length four give "adequate" per-
formance, apparently for all systems and applications. Furthermore, they claim
that "real code" typically develops only one or two hot spots, and that results
for systems with multiple hot spots are "essentially identical" to their results for
systems with a single hot spot. Our simulations demonstrate that a single queue
size is not adequate for all offered loads (i.e., request rates), but instead is either
wasteful or insufficient for those loads not within the small range for which the
single size is ideal; however, our simulations do demonstrate that for a fixed load,
system performance is not very dependent on the number of hot spots present or
their relative placement.

The first section below gives a detailed description of the algorithms executed
by the simulator along with a description of the input and output operations
performed. This is followed by a brief examination of possible alternatives to
some of the chosen design decisions which have an effect on the output statistics.
Finally, results are presented for the simulation of both a 16-PE Ultracomputer
and a 512-PE Ultracomputer.

2 The Simulation Algorithm

In order to make the simulator as flexible as possible in producing desired statistics,
'I. each simulation run is parameterized by the following input data values requested

from the terminal:

* Number of simulation steps to perform.

* Seed for the pseudo-random number generator.
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* Number of PEs/memory modules.

* Number of hot spots.

e Maximum number of hot spots to assign to each PE.

* Whether or not to choose hot spot locations randomly.

e Spacing, in numbers of memory modules, of hot spots if not chosen randomly.

* Maximum allowed deviation from the spacing value for hot spots if not chosen
randomly.

e Whether or not to allow multiple outstanding requests to the same hot spot.

e Probability of assigning a hot spot to a PE.

* Maximum length of all queues.

e Probability of a memory request.

* Filename for statistics output.

The program can be easily extended to accept three other input parameters:

" Switchbox size (currently assumed to be 2 x 2)

* Probability of generating a new hot spot (currently assumed to be 0.0 and,

thus, ignored)

" Probability of removing an existing hot spot (currently assumed to be 0.0
and, thus, ignored)

For the purposes of the simulation, we assume that all memory requests are
Fetch&Adds, and that each memory module contains a single memory word, the
location of the hot spot.

The simulation consists of four phases:

1. Initialization of the virtual Ultracomputer.

2. Main simulation steps, during which memory requests are generated and
fulfilled.

3. Final simulation steps, during which all remaining outstanding requests re-

quests are fulfilled.
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4. Output of statistics.

Each of these phases is examined in detail below. The simulator uses a generator of
uniformly pseudo-random positive integers to determine when to perform certain
actions which are guided by the input probabilities. For the remainder of this
report, let request packets be called MM packets when travelling from PEs to
memory modules and PE packets when travelling from memory modules to PEs.

Also, let the Omega network stage closest to the PEs be numbered 0; the stage
closest to the memory modules is then numbered K - 1, where K = log2N (since
2 x 2 switching elements are assumed).

2.1 Initialization

During the initialization phase, the simulator first requests all of the input param-

eters from the terminal, reprompting the user when illegal values are encountered.
Next, the simulator seeds the pseudo-random number generator using the value
input from the terminal. Then, the hot spot addresses are chosen.

Let H be the total number of hot spots to be simulated. If the hot spot

addresses are to be chosen randomly, the pseudo-random number generator is used
to randomly choose addresses until exactly H different hot spots have been chosen.
Otherwise, hot spot addresses are chosen according to input spacing parameters
S (the spacing value) and V (the maximum magnitude of deviation from S); the
input routines check these values to insure that H * (S + V) _< N, where N is the

number of memory modules. The first hot spot address is chosen at random; the
remaining H - 1 hot spot addresses are chosen iteratively as follows, wrapping
around to the beginning of the address space if necessary: The next address is
chosen by adding an increment to the previously-chosen address; the initial value
of the increment is S, to which is added a value chosen randomly from the interval
[-V, V] to obtain the final increment. This iteration is performed until exactly H
different hot spots have been chosen.

Finally, the hot spot assignment table is set up as follows using the hot spot
density parameter D (maximum hot spots per PE) and hot spot assignment prob-
ability P as input to the simulator: D assignment rounds are performed, and
within each round each PE is assigned, with probability P, a randomly chosen

hot spot (from the set of chosen hot spot addresses) different from all hot spots
previously assigned to the PE. Thus, the average number of hot spots assigned to
each PE is DP.
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2.2 Main Simulation Steps

All simulation runs are clock-driven; each simulation step (equivalent to one tick
of the simulator clock) corresponds to a single Ultracomputer cycle and consists
of three main substeps: (1) At most one new memory request is generated and
enqueued for each PE according to the generation probability input to the simu-
lator; (2) All other outstanding requests are moved forward at most one Omega
network stage in their paths according to the Ultracomputer algorithm [GGK83],
taking into account full queues which may delay routing; (3) Queue length statis-
tics (maxima and cumulative sums) are updated.

Requests are generated (and appropriate sums updated for statistics) during a
simulation run according to one of two policies (determined by a simulator input
parameter): a "no-wait" policy in which multiple outstanding requests to the same
hot spot by a single PE are allowed, and a "wait" policy in which a PE must wait
for requests to a hot spot to be satisfied prior to generation of a new request to the
same hot spot. If Z is the number of simulation steps and G is the probability of a
PE generating a request at each step, then the mean number of requests generated
during a simulation run using a "no-wait" policy is ZGN. Each request generated
for a PE is destined for a randomly chosen hot spot, but if the "wait" policy is in
effect, the request is discarded if the currently PE has an outstanding request to
the chosen hot spot.

The simulated movement of request packets is carried out in what will be
referred to in the rest of this paper as a "forward simulation." That is, MM
packets are moved in a stage by stage manner, first from the PEs to Omega
network stage 0, then from stage 0 to stage 1, then from stage 1 to stage 2, and so
forth until MM packets are moved from stage K- 1 to the memory modules, where
the Fetch&Adds are performed and the return PE packets are enqueued; next PE
packets are routed from the memory modules to stage K - 1, then from stage
K - 1 to stage K - 2, and so on until PE packets are moved from stage 0 to the
PEs and then destroyed after updating some statistics. A "backward simulation"
would visit the stages in the reverse order, first moving PE packets from stage 0
to the PEs, then moving PE packets from stage 1 to stage 0, etc., until finally
newly generated MM packets are moved from the PEs to stage 0. To ensure that
routing preference is not given to packets moving through smaller numbered ports
in a network stage, routing is performed on a switchbox-by-switchbox basis in the
destination stage of each step. This "fair" routing scheme is described further
below.

Movement of packets between stages occurs only if queue space is available
at the target stage. To ensure that a packet is routed at most one stage per
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simulation step, each packet is timestamped with the value of the simulator clock
each time it is moved; these timestamps are then compared to the simulator clock
value and used in the obvious way. In addition, requests may be combined at a
switching element according to the Fetch&Add algorithm described by Gottlieb
et aL [GGK83]; one wait buffer pool is associated with each MM output port of
each switching element. The MM packets resulting from a combine operation may
participate in further combine operations in later network stages only, but packets
may participate in at most one combine operation at a single stage. Thus, there
will be at most one wait buffer entry per stage for each request.

To make the routing fair, switchboxes (or memory modules or PEs) in the
destination stage of a routing substep are visited sequentially. All queues and
wait buffer pools are either infinite or are of the same finite length if a maximum
length is input to the simulator. Queue space is allocated as follows to each pair of
MM packets entering a switching element: if both incoming packets are destined
for the same output port of the switchbox, then they are combined if port queue
space and wait buffer space is available in the destination switchbox, or else one
is selected randomly for routing if only port queue space is available; otherwise
(different output ports) each one is routed only if port queue space is available.
Queue space is allocated to each pair of PE packets entering a switching element
by taking each packet in a random order and performing the routing only if queue
space exists in the destination switchbox for the packet and its corresponding wait
buffer entry (if one exists). In all cases, once a packet is moved, combined or
"uncombined," the old buffer space becomes available for immediate use by other
packets being routed.

2.3 Final Simulation Steps

The final simulation steps are performed exactly as in the previous section except
that no new memory requests are generated; simulation steps are performed only
until all outstanding requests have been satisfied.

2.4 Statistics Output

Statistics are computed and output to the file specified in the input to the simula-
tor. Averages are computed by dividing cumulated sums by the requested number
of simulation steps, not by the total number of simulation steps performed; i.e., fi-
nalization steps are not counted when computing averages. The following statistics
are computed and output:

• Starting and ending time-of-day for the simulation.

6



" Number of extra (finalization) simulation steps performed.

" Memory module numbers chosen as hot spots.

* Average number of hot spots assigned to each PE.

" Total number of requests generated.

" Average number of requests per PE.

" Average, minimum and maximum numbers of simulation steps needed to
complete a request.

" Average length of the queues at the PEs (holding newly-generated MM pack-
ets) at the end of a simulation step.

" Maximum length of the queues at the PEs at any time.

* Average and maximum lengths of the queues at the hot spots (holding re-
turning PE packets).

" Numbers of MM port queues, PE port queues and wait buffer pools used in
the Omega network, calculated for each network stage.

* Average and maximum lengths of MM port queues, PE port queues and wait
buffers in the Omega network, calculated for each network stage.

3 Design Tradeoffs Affecting Results

This section briefly analyzes a few of the simulator design choices and the dif-
fering effects these choices and their alternatives may have had on the generated
statistics.

3.1 Forward vs. Backward Simulation

In designing the main simulation step, it was observed that the execution of a
backward simulation would simulate an Ultracomputer which allowed all packets
to be routed synchronously and simultaneously one stage forward in their paths.
For example, queue space in stage I freed as a result of routing MM packets to
stage I + 1 could be used immediately within the same routing step for packets
coming from stage I - 1; applying this reasoning globally, the net result is that
the simulated system would be able to propagate queue availability information in

7



zero time all the way from the end of the request packet path (PE packet output
port queues in stage 0) back to the starting point of the request packet path (MM
packet queues within the PEs).

Because this assumption of zero propagation delay is completely unrealistic for
large Ultracomputer configurations built using current digital device technology,
the forward simulation method was chosen, thus giving the most conservative pic-
ture of the Ultracomputer behavior. This choice of method affects the simulation
results most notably in simulations of heavy loads using finite queues; using the
forward method, the average packet can require as much as twice as many steps
as would be needed in the backward method, since queue space cleared in one
step cannot be used until the next step. That is, using the forward method on a
loaded system of finite queues, a packet moves forward one queue entry per two
simulation steps in the worst case.

3.2 Wait vs. No-Wait Request Generation

It was decided to allow simulation of both a wait and a no-wait request generation
policy because of the different PE characteristics these two policies imply. A
wait policy simulates approximately a parallel program execution environment on

* PEs with relatively long times between process switches, few constituent threads
of control from each executing program and/or no sharing of hot spots among
processes. A no-wait policy simulates approximately a set of PEs with short
times between process switches, multiple constituent threads of control from each
executing program and/or hot spots shared among processes.

The effect of the choice of generation policy used in a simulation run is most
noticeable when a wait policy is used and the generation probability is larger than
the rate at which outstanding requests can be satisfied. In such a case, requests
are frequently ignored due to the chosen generation algorithm; in particular, note
that in the case when a single hot spot is assigned to each PE, a mean request
rate greater than the reciprocal of the number of stages in the path traversed by
each packet (2K) is useless since requests can never be satisfied 100% of the time
at such a rate.

3.3 Computing Averages

In computing the average queue lengths and wait buffer pool sizes output by
the simulator, only the requested number of simulation steps was divided into the
cumulative sums; i.e., the additional number of steps required to flush the system of
outstanding requests was not accounted for in the averages. The rationale for this

8'e0aa. 4



is based on the observation that each component of the simulated multicomputer
is idle for at least 2K steps during a run due to the need to fill up the network with
requests initially and the need to empty the network of outstanding requests prior
to termination; the averages are computed to ignore these "pipeline"-oriented idle
phases of the system. Although most simulation runs were performed for 1000
steps, the finalization time endured was in some cases as much as ten percent of
the number of requested simulation steps.

3.4 Maxima vs. Means

Maximum queue lengths and wait buffer lengths represent the maximum length
observed in a queue at any time; i.e., the values of the maxima at stage i are
calculated after requests have been routed into stage i from the previous stage,
but before requests have been routed out of stage i into the following stage. On
the other hand, mean queue lengths and wait buffer lengths represent the mean
length observed in the queues at each stage at the end of a simulation step; i.e,
the cumulative sums used in computing means are updated at the end of a step
after all routing has been performed. The rationale behind this slight difference is
that the means are meant to convey the average queue lengths over all simulation
steps, whereas transient maxima tend to effect the stage-level routing. The latter
becomes especially apparent when the simulated system is constrained to have
small, finite queues and wait buffers, as was explained in Section 3.1.

4 Results
This section presents an analysis of the output of over 100 runs of the simulator,

grouped into four experiments:

1. General simulation of a 16-PE Ultracomputer.

2. General simulation of a 512-PE Ultracomputer.

3. Determination of critical queue sizes in a 512-PE Ultracomputer using the
no-wait policy.

4. Test of the effect of hot spot spacing in a 512-PE Ultracomputer using the
no-wait policy.

All runs were performed for 1000 steps, and each configuration that was to be sim-
ulated was simulated twice, using two different pseudo-random number generator



seeds, to account for any possible instability in the generator. In addition, each
run of the first two experiments was duplicated for the two request generation
policies (wait vs. no-wait).

The simulation of the 16-PE system was performed mainly for testing, debug-
ging and observation of the simulator code; therefore, attention will be focused in
this section primarily on the simulation of the 512-PE systems. Since simulation
of a 512-PE Ultracomputer for 1000 steps usually required 45 real minutes of an
otherwise idle computer, results were generated in overnight batch jobs of groups
of four to six runs.

4.1 General Simulation of a 16-PE System

For the general simulation of the 16-PE Ultracomputer, an initial configuration
representing a "typical" or "normal" system was simulated, and then the char-
acteristics (i.e, simulator input parameters) of this base configuration were per-
turbed for further simulation. This methodology allowed the verification of several
broad and intuitive observations (discussed below) describing system performance
in terms of system configuration or characteristics. Seven different systems were
simulated in this manner:

1. A "normal" system.

2. A system with small, finite queues.

3. A system with a low probability of request generation (a light load).

4. A system with a high probability of request generation (a heavy load).

5. A system with very few hot spots.

6. A system with a large number of hot spots.

7. A system with a different hot spot-to-PE assignment scheme.

The parameter values used to configure these systems are presented in Table I. As
was mentioned previously, each of these systems was simulated for both request
generation policies and for two random number seeds, thus giving a total of 28
simulation runs. In addition, hot spot addresses were chosen randomly in all of
these runs. Tables II and III present the major statistics resulting from these
runs; Table II gives the statistics for the runs using the wait policy, while Table III
gives the statistics for the no-wait policy runs. Each entry in these tables contains
the two values of the particular statistic from the pair of corresponding runs on
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Mean
Configuration Total Hot Spots Max. Queue Request
-,_ _ Hot Spots per PE Length Rate
Normal 2 0.95 00 0.15
Small Queues 2 0.95 2 0.15
Light Load 2 0.95 00 0.05
Heavy Load 2 0.95 00 0.25
Few Hot Spots 1 0.95 00 0.15
-Many Hot Spots 4 1.90 00 0.15
Modified Hot Spot
Assignment 2 1.50 oo 0.15

Table I: Characteristics of Simulated 16-PE Systems.

Mean Mean Max. Mean Max. Mean Max.
Config. Requests Steps Steps Queue Queue Wait Wait

per PE per Req. per Req. Length Lengh Buffers Buffers
Normal 56.563 10.046 12 0.187 3 0.057 3

60.688 10.019 11 0.179 2 0.059 2
Small 56.563 10.048 12 0.187 2 0.057 2
Queues 60.688 10.019 11 0.179 2 0.059 2
Light 30.063 10.027 11 0.102 3 0.026 2
Load 32.688 10.004 11 0.102 2 0.020 2
Heavy 67.500 10.049 12 0.216 3 0.085 2
Load 71.563 10.027 11 0.208 2 0.078 2
Few Hot 51.188 10.000 10 0.247 2 0.118 2
Spots 64.313 10.000 10 0.293 2 0.168 3
Many Hot 85.063 10.065 12 0.167 3 0.030 2
Spots 86.063 10.025 11 0.142 3 0.031 2
Modified 76.750 10.081 12 0.241 3 0.089 2
Assignment 72.938 10.027 11 0.206 2 0.069 3

Table II: Performance of 16-PE Systems-Wait Policy.

a 011
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Mean Mean Max. Mean Max. Mean Max.
Config. Requests Steps Steps Queue Queue Wait Wait

per PE per Req. per Req. Length Length Buffers Buffers
Normal 130.313 10.169 12 0.369 4 0.255 4

144.313 10.057 11 0.362 3 0.258 4
Small 129.313 10.274 16 0.376 2 0.241 2
Queues 144.313 10.092 13 0.366 2 0.245 2
Light 43.188 10.036 11 0.144 3 0.046 2
Load 47.375 10.013 11 0.144 3 0.034 2
Heavy 216.500 10.294 13 0.531 4 0.602 7
Load 226.875 10.117 11 0.498 3 0.545 5
Few Hot 119.250 10.000 10 0.444 2 0.480 4
Spots 152.500 10.000 10 0.461 2 0.668 5
Many Hot 151.813 10.143 12 0.280 4 0.095 3
Spots 146.250 10.065 12 0.228 3 0.081 3
Modified 140.875 10.160 12 0.394 3 0.257 3
Assignment 141.750 10.057 11 0.346 3 0.226 4

Table III: Performance of 16-PE Systems-No-Wait Policy.

two different seed values. The (global) queue and wait buffer statistics have been
computed from the individual network stage statistics output by the simulator.
The statistics were calculated only over the set of queues and buffers actually used
for packet routing; in addition, the queue statistics incorporate both the PE-to-
MM and the MM-to-PE stage statistics, since they were practically identical at
each stage.

Table II demonstrates that in the presence of a wait policy, modifying other
system parameters such as maximum queue length, request rate or number of hot
spots produces no discernible change in system behavior. Queues of length three
were adequate for all configurations, and no more than two extra steps of waiting
were required during packet routing. On the other hand, Table III demonstrates
the sensitivity of system performance to the chosen configuration in the presence
of a no-wait policy. As expected, the amount of queue spaced used increases with
increasing load, especially in the wait buffers. With small, finite-length queues, the
number of routing steps required for some packets is as much as 60 percent above
the minimum required. In addition, Table III confirms the theoretical relationship
between request rate and total number of requests using a no-wait policy.

12
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Mean
Configuration Total Hot Spots Max. Queue Request

Hot Spots per PE Length Rate
Normal 8 1.9 00 0.15
Small Queues 8 1.9 3 0.15
Light Load 8 1.9 00 0.05
Heavy Load 8 1.9 00 0.25
Few Hot Spots 2 1.9 00 0.15
Many Hot Spots 16 7.6 00 0.15
Modified Hot Spot
Assignment 8 4.5 00 0.15

Table IV: Characteristics of Simulated 512-PE Systems.

Both tables demonstrate the ideal routing behavior which occurs in the pres-
ence of a single hot spot. There is never contention for queue space as all packets
are pairwise combinable. Consequently, each packet may be routed in the mini-
mum possible number of routing steps. The fact that queues of length tw, are used
everywhere in this case is simply a side effect of the way statistics are gathered
during the "forward" simulation of the system; in a purely synchronous system,
single-element queues would suffice for routing to a single hot spot.

4.2 General Simulation of a 512-PE System

The general simulation of the 512-PE Ultracomputer was performed using the
methodology of the previous section. Table IV presents the parameters used to
configure the seven systems, while Table V (wait policy) and Table VI (no-wait
policy) present the resulting statistics. Tables V and VI verify even more dra-
matically the observations made in the previous section regarding sensitivity of
performance to configuration. The most striking phenomenon is the huge increase
in both the mean and maximum number of routing steps required for packets us-
ing small, finite-length queues and a no-wait policy. The mean is almost double
the minimum while some packets suffered as much as 900% degradation in routing
delay. Both tables demonstrate the greater requirement for wait buffer space than
for queue space. This seems reasonable if the opportunity for combining packets
is great, since queue space is being traded for wait buffer space. Again, the ideal
routing behavior in the presence of a single hot spot may be observed in the statis-
tics for the first seed of the "Few Hot Spots" configuration; although two hot spots
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Mean Mean Max. Mean Max. Mean Max.
Config. Requests Steps Steps Queue Queue Wait Wait

per PE per Req. per Req. Length Length Buffers Buffers
Normal 59.484 20.028 22 0.338 3 0.495 6

59.727 20.062 23 0.344 4 0.499 6
Small 59.205 20.170 25 0.345 3 0.497 3
Queues 59.406 20.247 25 0.353 3 0.503 3
Light 33.018 20.013 22 0.249 3 0.235 5
Load 33.170 20.030 22 0.253 3 0.237 5
Heavy 70.801 20.031 23 0.365 3 0.603 6
Load 71.092 20.075 25 0.372 4 0.606 6
Few Hot 59.625 20.000 20 0.526 2 1.733 8
Spots 59.428 20.048 22 0.542 3 1.734 9
Many Hot 109.527 20.252 27 0.352 5 0.457 8
Spots 108.697 20.259 26 0.352 4 0.453 8
Modified 90.961 20.043 24 0.403 4 0.775 7
Assignment 89.859 20.098 25 0.408 4 0.766 6

-. Table V: Performance of 512-PE Systems-Wait Policy.

were present, it appears that the chosen assignment of hot spots to PEs produced
to completely disjoint trees of utilized routing hardware.

Figures 1-3 plot average queue lengths at each stage using the no-wait policy
and reveal stage-dependent behavior of each system; Figure 1 shows mean PE-to-
MM queue lengths, Figure 2 shows mean MM-to-PE queue lengths, and Figure 3
shows mean wait buffer sizes. In all of the plots, stage 1 represents the set of PEs,
stages 0 through 8 represent the Omega network stages and stage 9 represents the
set of MMs. Since the purpose of these plots is merely to illustrate global behavior
patterns, the data have been taken from the set of runs for only one of the seed
values; these data correspond to the first entries of statistics in Tables V and VI.

Figures 1, 2 and 3 demonstrate the increasing use of queue space and wait
buffer space in the stages close to the memory modules, due to the convergence
of packets on fewer switching ports. In the presence of small queues, it appears
that the greatest proportion of routing delay is incurred by packets in their final
approach to the memory modules. Figure 3 reveals the increased dependence on
wait buffers for combining as the number of hot spots is decreased.
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Mean Mean Max. Mean Max. Mean Max.
Config. Requests Steps Steps Queue Queue Wait Wait
__ __ per PE per Req. per Req. Length Length Buffers Buffers
Normal 149.990 20.085 24 0.490 4 1.247 8
_ _ _ 148.916 20.236 26 0.500 5 1.244 9
Small 148.752 37.834 204 0.778 3 1.581 3
Queues 147.475 36.835 148 0.741 3 1.406 3
Light 49.930 20.022 22 0.312 3 0.403 6
Load 49.979 20.049 23 0.316 3 0.404 5
Heavy 247.342 20.182 25 0.582 4 1.856 9
Load 247.805 20.548 27 0.599 5 1.849 12
Few Hot 150.504 20.000 20 0.658 2 3.093 11
Spots 149.295 20.170 24 0.697 4 3.097 11
Many Hot 151.070 20.434 29 0.413 6 0.659 9
Spots 150.436 20.457 29 0.407 6 0.654 9
Modified 150.438 20.086 24 0.485 4 1.221 8
Assignment 149.830 20.216 25 0.496 4 1.216 8

Table VI: Performance of 512-PE Systems-No-Wait Policy.

4.3 Critical Queue Sizes in a 512-PE System

One important choice facing the designer of an Ultracomputer-like machine is the
choice of queue sizes for the switchboxes. This section describes an experiment
in which the critical queue sizes for three different request rates were sought. We
define the critical queue size to be the largest queue size which produces the first
discernible degradation of performance as the queue size is decreased from infinity.
The simulations were performed on the "normal" configuration for 512 PEs using
a no-wait policy. For each request rate simulated (0.05, 0.10, 0.15), four queue
lengths around the estimated critical length were chosen for simulation, and once
the critical length was verified, simulations of the resulting configuration on three
more random seeds were run for good measure. All of the plots described below
represent the results of the initial four runs; the extra runs on different seeds added
nothing to the results.

Figure 4 plots mean PE-to-MM queue lengths, Figure 5 plots mean MM-to-PE
queue lengths and Figure 6 plots mean wait buffer lengths, all for a request rate
of 0.05. Figures 7-9 are the corresponding plots for a request rate of 0.10, while
Figures 10-12 are the plots for a request rate of 0.15. The critical queue length
for a request rate of 0.05 seems best derived from Figure 4, as Figures 5 and 6
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reveal no significant performance variation. For queue lengths of three, four and
five, performance is virtually identical; for queue lengths of two, queue utilization
increases significantly for stages close to the memory modules, making two the
critical queue size by our criteria. Similarly, Figure 7 together with Figure 9
suggests a critical queue length of four for a request rate of 0.10, while Figure 10
gives a critical queue length of five for a request rate of 0.15.

4.4 Effect of Hot Spot Spacing in a 512-PE System

In this section we describe an experiment in which the spacing of a fixed number
of hot spots was varied across the set of memory modules in an attempt to test the
sensitivity of performance to hot spot location. The simulations were performed
on a "normal" configuration using a no-wait policy and a request rate of 0.15.
Both infinite queues and finite queues of length five (the critical length for this
request rate) were used, and the run for each configuration was performed twice
using two different random seeds. Three different spacings of eight hot spots were
simulated using the spacing-with-variance algorithm described in Section 2.1: A
spacing of 3 ± 1 represents a "close" spacing, a spacing of 16 ± 2 represents a
"medium" spacirg while a spacing of 61 ± 2 represents a "wide" spacing in which
the hot spots are distributed almost uniformly across the set of memory modules.

Figures 13-15 are the set of plots resulting from this experiment; only the
statistics for the runs on the first seed are represented. Except for isolated points
of divergence this experiment was unable to reveal any significant effect of the
spacing of hot spots on system performance, except possibly that a "medium"
spacing maximizes queue utilization in the center of the Omega network.

5 Conclusions

We have described the design of a simulator of an Ultracomputer in the presence of
several hot spots using packet combination and various packet generation policies.
The performance of the simulated system was analyzed based on empirical results
obtained from several simulation experiments. We demonstrated that different
system loads require different system configurations in order to obtain a near-
optimal balance between cost and delay. However, our implementation was not
able to reveal the effects, if any, of varying the relative placement of a fixed number
of hot spots among the memory modules, for a fixed offered load.

As Kruskal and Snir observed [KS83], a purely mathematical performance anal-
ysis is intractable for all but the most simplistic models. A more realistic mathe-
matical model which may allow derivation of improved general asymptotic results
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is the modeling of the Ultracomputer as a network of finite automata. By rep-
resenting each switching element, PE and memory module as a finite automaton
executing an appropriate stochastic process, the techniques of queueing theory
applicable to networks of queues could be invoked for general and steady-state
performance analysis. However, an analysis of large multiprocessors of around 512
PEs using such techniques will involve the solution of huge systems of descriptive
equations.
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