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- ‘ ABSTRACT

~ In this paper we consider a class of nonlinear estimators that are the
solutions to a certain varjational problem. These estimators generalize
the concept of conditional expectation; we investigate their continuity and
convergence properties. -

y I. INTRODUCTION '

In this paper we will develop some machinery that generalizes some
well known approximation and continuity properties of minimum mean square (
error analysis. These will allow us to examine estimation theory in a much '
more general context and give us a much wider choice of criteria for X
analyzing and penalizing error. We will be required to forego some of the
main convenient accoutrements of minimum mean square error analysis: the

y Hilbert space structure of Lz, the projection theorem, and the fact that
minimum norm projection onto a closed subspace is a nonexpansive linear
operator. However, in return we receive a method that allows us to
customize our notion of error to our particular model. Oftentimes, mean
square error is not the appropriate fidelity criterion.

===y

I1. PRELIMINARIES

0 Throughout this paper let (Q,%,P) denote a probability space and let
L(R,7,P) denote the set of all random variables X:2 = IR modulo a.s.
equivalence equipped with the topology of convergence in probability.

Let ¢: [0,~) +[0,=) be convex, increasing, and satisfy &(0)=0. We
define the Qrlicz space

L2, 2.P) = (xel(2,2.p): fg 8(|X|)dP < w}.

The function ¢ is said to satisfy the doubling condition if there exist \
C,M >0 such that x >M => ¢(2x) <Co(x). If ¢ satisfies the doubling condi-

tion, L¢(Qv9§P) is a vector space. Moreover, it is a Banach space with
the Luxemburg norm X

: x|
X = inf {x >0: ¢ (—=—)dP < (1)}
I IIL¢ j;z X . :

Note that this is simply the Minkowski¢functional of a certain subset of L. ;
Mso, 1f (X }7_; and X are in L®, X Lox if and only if Vim f o(|x -X[)ap ;
30, n n"' n n_m Q n

For the basic facts on Orlicz spaces see E3]. Details on Minkowski
functions can be found in [1], pp. 294-295 or [6], pp. 23-26.

Let ¢: [0,2) »[0,») be increasing and have a strictly increasing first
derivative ¢ with ¢(x) +~» as x »o. Since ¢: [0,») +[0,=) is a homeomor-

Presented at the Twenty-Third Annual Allerton Conference on.Cbmmunication,
Control, and Computing, October 2-4, 1985; to be published in the
Proceedings of the Conference. '
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phism, %a=¢ -1 is also continuous, strictly increasing, and satisfies

We define the conjugate function ¥ to ¢ to be

Tim y(x
) S X
¥(x) =j; p(t)dt, x>0.

) This is somewhat more restrictive than the definition employed in [3], but
; it eliminates certain annoying technicalities. It also allows us to
dispense with the customary nonatomicity assumption made about the measure
! spaces used in this context. We call the pair ¢,¥ an Orlicz pair.

The Banach space L¢ is reflexive if and only if ¥ and ¢ satisfy the
doubling condition. A simple calculation shows that the strict convexity

of ¢ implies that of the Luxemburg norm on L¢ and that of the convex func-
tional X — J; ®(|X])dP. In addition, if the Banach space L® is reflexive,

we have LQ* o] Lw [3]. Hereafter we posit all Orlicz spaces are reflexive.
Let B be a Banach space. We say B is (i) locally uniformly convex if

: whenever {xn}n_ and {yn}n_ are sequences in the unit ball of B with

. ]1m Xty ll= 2, llmllx -¥,1l =05 (i1) uniformly convex if Ve >0 there

exists 6 >0 so that for any x,yeB so that || x|| =]|lyll =1, ||x+y]] >
2(1-8) = ||x-y|| <e. Uniform convexity is a much stronger condition than
local uniform convexity. Every uniformly convex space is reflexive [6],

pp. 126-128. For more about these sorts of conditions, see [2].

If B is a Banach space, Q = B is said to be proximal if ¥YxeB, the

prOb]em min HX"ZH
zeQ

possesses a solution. If B is reflexive we may apply the Smul'lyan theorems
to see that every closed convex subset is proximal. Moreover, if B is
strictly convex the norm minimizer problem has at most one solution. In
this case for xeB and K = B that is closed and convex let pK(x) denote the
unique solution to . I x-2|]

zeK
The map Pk is called the metric projection of B onto K. Shortly we will

see that if B is locally uniformly convex and reflexive then for any closed
convex K = B, py is norm continuous. In [5] we showed that pg is weakly

sequentially continuous if B is reflexive and strictly convex.
Let M be a separable metric space. A Borel measurable map Q: M+M is
said to be a round off map if Q has finite range, say {p], - Py } = range Q:-.

: and Q(pk) Py 1<k<n. The set {Q° (p]), Q (p )} is called the

—_—
partition of M defined by Q. A sequence {Q } of round off maps is called _%_4
a round off scheme if (i) VxeM, lim dia Q (Q (x)) 0; (ii) the partition of

a" e SR

M defined by Q n+1 refines that defined by Q ’ nel Note o(Qn) g;<3(0n+]), 0
neN. See [5] for details on round off schemes -------- ,
: The primary result of [5] is contained in the |

Theorem 1: Let ¢,¥ be an Orlicz pair, (Q,%,P) be a nonatomic probability
space, M be a separable metric space and {X(t): te[0,T]} be a stochastically

continuous process on (Q,%,P) taking values in M. Then for any round off E;;;;——-—<
scheme {Q } =1 ON M and any increasing sequence {P } of partitions of e
[0,7] whose meshes decrease to zero we have for any Y eLQ(Q Z,P) |

L”!.l
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I E4(Y1Q, (X(t)): teP ) -E,(YIX(t): te[0,T)]] o ~ 0

as m,n +x; or, equivalently,
0 =,;:er+00 js'? ¢(|E¢(Y|Qn(X(t)): ter) -E¢(Y|x(t): te[0,T])]|)dP

where E¢(°|$’):L¢(Q,.9’,P)+ L°(Q..¢,P) denotes metric projection and & is ,
any o-subalgebra of <. "y
ITI. A CONVEXITY CONDITION FOR CONVEX '
FUNCTIONALS ON REFLEXIVE BANACH SPACES {

Let B be a reflexive Banach space and y: B+IR be a convex, norm
continuous map satisfying

Tim y(x) = +»

[| x|| >
Then using the Smul'lyan theorems we see that VYxeB
min y(x-2) (1) :

zek

possesses a closed convex nonvoid subset Lx of K of solutions. Furthermore,
if y is strictly convex each Lx is a singleton {p(x)}. We call the map

[l

p: B+K the solution map of (1). Let §>0; define %
4

5 = {zeK: Y(x-2) <8 +y(x-p(x))}. '

We say y is locally uniformly convex if lim dia K =0 for all xeB and 3
closed convex K = B. $+0 ;
Proposition 2: TIf y: B+>IR is locally umform]y convex and uniformly :

continuous on bounded subsets of B, K = B is nonvoid convex and closed and ;
p: B->K is the solution map of (1) then p is norm continuous. !
Proof: Let Xp X in B and § >0, Take zeK(S Then -

W'
W(x-2z) <& +y(x-p(x)).
Since X X there exists NeN so that n>N =
W(x-2) < s+u(x -p(x)).
By minimality
v(x -p(x.)) < w(x -2) :
< §+y(x -p(x)). '
Taking 1imit suprema,
lim sup v(x-p(x, )) < w(x-p(x)). (2)

Suppose by way of the contrapositive that {p(x )}n=1 is unbounded.
Since Xp *Xs {x } =1 is bounded; this forces {x p(x )} to be unbounded.
Observing that lim P(x) =+~ it now follows that

|| x ]|
I}‘iglmsu::’ W(xp=p(x,)) = +e,
a flagrant violation of {(2). This insures that {p(x )} =1 is bounded.

Suppose that for some 2€B, p(xn) = 75 Then X p(xn) X-2q; ¥ is
convex and norm continuous and therefore weakly lowersemicontinuous. Thus

---------------



v(x-z,) < Nm inf v(x-p(x,))
< lim | sup vx -p(x,)) < w(x-p(x)).
Next observe that K is closed and convex and therefore weakly closed. Thus
p(x )eX, neN, p(x )- 25 = zgeK. By minimality, Z, =p(x).
Since B is reﬂexive and {p(xn)}n-l is bounded each subsequence of
{p(x )) -1 must have a further weakly convergent subsequence. But the

fore omg discussion tells us that this further subsequence must converge
to p? Immediately it follows p(x ) = p(x).

We may apply the weak lower semicontinmty of y to see that
¥(x-p(x)) < Tim inf y(x -p(x )).
n -+

Combine this with (2) to get
v(x-p(x)) = Vim w(x -p(x )).
n >

Put M=1+sup [[x -p(x )||; note M<=. Take € >0, choose n>0 s.t.n<1
and ||x-y|| <n, n||x|| syl < M= [u(x)-¥(y)| <e. Because x_ +x there
exists NeN such that n>N -'>||xn-x||<n. Then n >N =

I xq-p(x )= (x-p(x NI| = [Ix-x|| <n
son>N =
[w(x -p(x)) - w(x-p(x))] <e.

This forces llglo{w(x -p(x ) )-v(x- p(x })} =0 and hence Hm w(x-p(x )) =

¥(x-p(x)).
Noting m w(x-p(xn)) =y(x-p(x)) there exists NeN so that n>N =

w(x-p(x)) < & +y(x-p(x)).
But this says that for n >N, p(xn) eK6 X" Obviously p(x) eKs , so for
n>N, |lp(x;)-p(x)]| < dia K, . Since gi-To dia K =0 we must have

p(x.) > p(x). QED

Proposition 3: Suppose {K }°°=], K are nonvoid closed convex subsets of B

with K cK n+]? neN and K = U] Kn' Let y: B+IR be locally uniformly
n=
convex and norm continuous. FinaHy denote by Pn the solution map of (1)

corresponding to K » nel and p denote the solution map of K. Then for xeB,
Pn(x) +p(x).

g_r;ggﬁ Let 5§ >0, xeB. By the continuity of ¢, K §.x is a relative neighbor
hood of p(x) in K. Noting K = U Kn we see there must be an NeN so that
n>N = K n KG X 0.

Fix ngN, zeKs N K. Then we know that (i) w(x-z) < & +y(x-p(x));
(14) mp(x-pn(x)) < p(x-2). Assembling the facts, n>N =

w(x-p,(x)) < & +u¥(x-p(x)).

Letting n »x,
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- 5 -
lim sup w(x-p (x)) < v(x-p(x)). (3)

n >~
We may imitate a familiar argument in Proposition 2 to see that {pn(x)}:=l

is bounded.
Since Kn c Kn+l =K, nell it is easy to see that

W(x=p (%)) 2 W(x=p (X)) 2 w(x-p(x)).

With the assistance of (3) we obtain
v(x=p(x)) = 1im v(x-p,(x)).
Pick 6 >0. There exists NeN such that n>N =
o(x=p, (x)) < wlx-p(x)) +8.
We may now conclude pn(x)eké’x, n>N. Since dia Ks,x-+0 as § ~0 we
conclude that pn(x)-*p(x) in norm. QED

IV. SOME FACTS ABOUT ORLICZ SPACES

Theorem 4: Let (Q,¥.P) be a probability space and ¢,¥ be an Orlicz pair.
Then LQ(Q,é?,P) is uniformly convex if and only if

V¥ € such that 0 <e <%-there exists RE >0 so that

s (X

I;T*;nf o((1-€)%) > Re‘
Proof: This is the central result of [4].

Define &: LQ(Q,gﬂP)*-{O,w) by &(X) =Jg¢(}xl)dP. Then £ is a strictly
convex norm continuous functional and 1lim E(X) = 4=, Let 0<e <1,

X||L¢-> P

X,YeL (Q,%,P) and X #Y a.s.[P]. Then ||X-Y||L¢f 0. Using the convexity
of &,

o(|X-Y]) = a(e(d [X-¥]) +(1-€)(0))
< e o2y 4 (1-)e(0)
- ¢ o(lXY),
Integrating,

o(|x-Y])dP < ¢ fo(1XLyap.
fQ| [)dP < fQ -1
Now suppose I|X-Y|IL°§']' Then

,‘;¢(|X-Y|)dP

A

X-Y
HX-Y1| f‘b( = )dP
|_¢ Q X-Y L¢

lIX-Y||L¢¢(]):

amply demonstrating the global uniform continuity of &.
We will not address the question of the local uniform convexity of £
here. The hypothesis of Theorem 4 or possibly something similar might

el oy e, v |

s

v

e
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-6 -
guarantee the local uniform convexity of E.

V. A CONVERGENCE PRINCIPLE FOR A

GENERALIZED CONDITIONAL EXPECTATION
Definition: Let (Q,%,P) be a probability space, & be a sub c-algebra of 1
& and ¢,¥ be an Orlicz pair. For X€L¢(Q..9’,P), we define E(p(xl.?') to be
the unique solution to the variational problem

min {j;<1>(|X-Z|)dP: 2eL®(, #,p) 3.

Recall from [5] that if ¢(x) = % for x >0, then €¢(~|.i') is ordinary .
conditional expectation given 7.

Remark: If the functional X ~o— f<1>(|X|)dP is locally uniformly convex
then I’E\Q(-IJ) is norm continuous on L¥(q, #,P).

-

- - - -,

Theorem 5: Let (Q,%,P) be a probability space, {3'“}:::] be an increasing h
family of sub o-algebras of & and put # = v] ';n' Suppose ¢,Y is an D
n=

Orlicz pair so that x — fd;(lxl)dP is locally uniformly convex. Then for
xeL?(2, #,p), Q
A L¢ [a)
EQ(Xl.i'n) = E,(X|F) as n s,
or equivalently,
liTm J; o(|EL(X]F,)-E,(X|#) | )dP = 0.
Proof: This is an immediate consequence of Praposition 3.
We may now proceed as in [5] to get

Theorem 6: Let (Q,%#,P) be a probability space, {X(t): te[0,T]} be a
process on (Q,%,P) taking values in a separable metric space M and &,¥ be

Iﬁ
<9

an Orlicz pair with X AN I¢(|X|)dP Tocally uniformly convex. Then if 3
{Qn}:ﬂ is a round off sche?ne for M and {Pm}:ﬂ is an increasing sequence ;
of partitions of [0,T] whose meshes decrease to zero, we have for "
veL®(2,2,P) \

Ef(YIQ (X(t)): teP ) 2 Eg(Y[X(t): te[0,T]) :
as m,n >«, or equivalently, !

Hr: Q¢(|€¢(Y|Qn(x(t)): teP ) -E,(YIX(t): te[0,T])|)aP = o0.
m 4 N>

VI. CONCLUSIONS AND A PARTING SHOT p'
AT EARLIER WORK i

The abstract principle developed in Section III subsumes the Banach
space principle developed in [5]. Simply take the functional to be the X
norm.

We have enhanced the feasibility of studying the operators Eq) numeri-
cally in two ways. First, knowing that Eq, is continuous assures us that ,

' M of 3 IR S ’ " ~ RN N S R L L SL TR PP . . - -
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it will tolerate small L°-perturbations. Second, the result of Theorem 6
shows us we may approximate f¢(Y|X(t): te[0,T]) by E¢(Y|Qn(x(t)): ter).
Since o(Qn(x(t)): ter) is finite, calculation of E¢(Y|Qn(x(t)): ter)

consists of solving a finite dimensional nonlinear optimization problem. A
large body of knowledge now exists about the numerical solution of such
problems.
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