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ABSTRACT

In this paper we consider a class of nonlinear estimators that are the
solutions to a certain variational problem. These estimators generalize
the concept of conditional expectation; we investigate their continuity and
convergence properties.

I. INTRODUCTION

In this paper we will develop some machinery that generalizes some
well known approximation and continuity properties of minimum mean square
error analysis. These will allow us to examine estimation theory in a much
more general context and give us a much wider choice of criteria for
analyzing and penalizing error. We will be required to forego some of the
main convenient accoutrements of minimum mean square error analysis: the

Hilbert space structure of L2 , the projection theorem, and the fact that
minimum norm projection onto a closed subspace is a nonexpansive linear
operator. However, in return we receive a method that allows us to
customize our notion of error to our particular model. Oftentimes, mean
square error is not the appropriate fidelity criterion.

II. PRELIMINARIES
Throughout this paper let (f,g',P) denote a probability space and let

LO(Q,9,P) denote the set of all random variables X:P - IR modulo a.s.
equivalence equipped with the topology of convergence in probability.

Let o: [0,) -C.,-) be convex, increasing, and satisfy 0(0)=O. We
define the Orlicz space

L¢(Q,91',P) = {XeLO(Q'9'P): f O(IXI)dP <

The function 0 is said to satisfy the doubling condition if there exist
C,M >0 such that x >M => *(2x)<C¢(x). If 4' satisfies the doubling condi-

tion, L¢(Q,9,P) is a vector space. Moreover, it is a Banach space with
the Luxemburg norm

1 =XII inf {A>O: f ((---)dP < ((I)}.
Note that this is simply the Mlnkowski functional of a certain subset of L .

Also, if {X.0. and X are in L , X LX if and only if lim f '(X -Xl)dP
-=0. n n " n- p n

For the basic facts on Orlicz spaces see [3]. Details on Minkowski
functions can be found in [1], pp. 294-295 or [6, pp. 23-26.

Let : [0,-)+[O,o-) be increasing and have a strictly increasing first
derivative * with O(x) .w as x --. Since 0: [0,) -[0,-) is a homeomor-
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phism, is also continuous, strictly increasing, and satisfies
lrm *(x)= . We define the conjugate function T to 0 to be

M T(x) = fx p(t)dt, x >0.

0
This is somewhat more restrictive than the definition employed in [3], but
it eliminates certain annoying technicalities. It also allows us to
dispense with the customary nonatomicity assumption made about the measure
spaces used in this context. We call the pair 0,T an Orlicz pair.

The Banach space L" is reflexive if and only if T and $ satisfy the
doubling condition. A simple calculation shows that the strict convexity

of $ implies that of the Luxemburg norm on L and that of the convex func-

tional X -+ f P(IXI)dP. In addition, if the Banach space LO is reflexive,

we have L'* = L T [3]. Hereafter we posit all Orlicz spaces are reflexive.
Let B be a Banach space. We say B is (i) locally uniformly convex if

whenever {Xn }n and {ynl.. are sequences in the unit ball of B with

lim IIXn+YnI= 2, llxn-ynI =0; (ii) uniformly convex if Ve >0 there
exists 6>0 so that for any x,yeB so that 1lxil =IyI1 =1, IIx+y1l 2>
2(1-6) - Jx-yJl <c. Uniform convexity is a much stronger condition than
local uniform convexity. Every uniformly convex space is reflexive [6],

pp. 126-128. For more about these sorts of conditions, see [2].
If B is a Banach space, Q c B is said to be proximal if VxeB, the

problem min llx-zI

zeQ
possesses a solution. If B is reflexive we may apply the Smul'lyan theorems
to see that every closed convex subset is proximal. Moreover, if B is
strictly convex the norm minimizer problem has at most one solution. In
this case for xeB and K = B that is closed and convex let PK(x) denote the
unique solution to min lix-zil.

zeK
The map PK is called the metric projection of B onto K. Shortly we will

see that if B is locally uniformly convex and reflexive then for any closed
convex K g B, PK is norm continuous. In [5] we showed that PK is weakly O IC

sequentially continuous if B is reflexive and strictly convex. .o".
Let M be a separable metric space. A Borel measurable map Q: M-M is "N'EMr

said to be a round off map if Q has finite range, say {pl,"... VP = range Q'I....

and Q(pk ) =Pk' 1 <k <n. The set {Ql (P), ...Q 1(pn )} is called the
partition of M defined by Q. A sequence {Qn }nl of round off maps is called

a round off scheme if (i) VxeM, lim dia Qnl(Q (x))=O; (ii) the partition of
n n n E)

M defined by Qn+l refines that defned by Qn , neN. Note o(Qn ) s a(Qn+l),

nel. See [5] for details on round off schemes. ......
The primary result of [5) is contained in the

Theorem 1: Let $,1Y be an Orlicz pair, (S,9',P) be a nonatomic probability
space, M be a separable metric space and {X(t): te[O,T]} be a stochastically
continuous process on (,Y,P) taking values in M. Then for any round off Codes

scheme {Qn1'=i on M and any increasing sequence {P_}_=, of partitions of
_z m m- ,0 "/ or

[O,T] whose meshes decrease to zero we have for any Y eL (, 9,P)
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I E 0(V1Qn(X(t)): tP m ) -EO(YIX(t): te[O,T])II LO -1 0

as m,n- -; or, equivalently,

0 = lim f O(IE,(YIQn(X(t)): tePm) -EO(YIX(t): te[O,T])I)dP

where E (.f ): L4 (0,9',P) - L (Q,?,P) denotes metric projection and gis

any o-subalgebra of 9.

III. A CONVEXITY CONDITION FOR CONVEX
FUNCTIONALS ON REFLEXIVE BANACH SPACES

Let B be a reflexive Banach space and 0: B -IR be a convex, norm
continuous map satisfying

lim (x) =
11x i oo

Then using the Smul'lyan theorems we see that VxeB

min (x-z) (1)
zeK

possesses a closed convex nonvoid subset Lx of K of solutions. Furthermore,

if p is strictly convex each Lx is a singleton {p(x)}. We call the map
p: B -K the solution map of (1). Let 6>0; define

K x = {zeK: p(x-z) <6+p(x-p(x))}.

We say 4p is locally uniformly convex if lim dia K -0 for all xeB and
closed convex K a B. 640 6,x
Proposition 2: If Wp: B- IR is locally uniformly convex and uniformly
continuous on bounded subsets of B, K a B is nonvoid convex and closed and
p: B K is the solution map of (1) then p is norm continuous.
Proof: Let x n-x in B and 6 >0. Take zeK6 ,x* Then

<6

Since xn -.x there exists NeN so that n >N =>
Ob(Xn-Z ) < 6+ (Xn-P(X)).

By minimality
(Xn-P(Xn)) < (Xn- Z)

< 6 +(Xn-P()).
Taking limit suprema,

lim sup p(xn-P(Xn)) < (x-p(x)). (2)
n - o n

Suppose by way of the contrapositive that {p(xn)}.= is unbounded.

Since xn -0x, {xn}n0 is bounded; this forces {xn-P(xn)}n. l to be unbounded.

Observing that lim ip(x) =+-o it now follows that
I Ix II--

lim sup t(xn-P(xn)) = +OO,
n n n

a flagrant violation of (2). This insures that {p(xn)}n. l is bounded.

Suppose that for some z0eB, P(Xn) - z0. Then xn -p(xn) - X-zo; p is

convex and norm continuous and therefore weakly lowersemicontinuous. Thus

.-. rM
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O(x-zO 0 lim Inf ip(Xn-P(Xn))

< lrm sup O(xn-P(xn)) . '(x-p(x)).
n -*a

Next observe that K is closed and convex and therefore weakly closed. Thus
P(xn)eK, nell, p(xn)-3 z0 --> zoeK. By minimality, z0 -p(x).

Since B is reflexive and {p(x )}*=I is bounded each subsequence ofoMn nl
{p(xn )n=1 must have a further weakly convergent subsequence. But the

foregoing discussion tells us that this further subsequence must converge
to p(x). Immediately it follows p(xn) - p(x).

We may apply the weak lower semicontinuity of 0 to see that

O(x-p(x)) < lim inf O(xn-p(xn)).
n eo

Combine this with (2) to get
O(x-p(x)) = lim O(xn-p(xn)).

n -o n
Put M=l +sup I(Xn-p(xn)II; note M<-. Take e >0, choose n >0 s.t.r< 1

and l1x-yjl <in, l1xll ,IlyIl < M *-p(x)-p(y)j <E. Because xn -'x there
exists NeN such that n >N => II xn-xll < n. Then n >N -

lIxn-P(xn)-(x-P(Xn))Il = I1xn-xI? < n
son >N =>

M@Xn-P(Xn )) -l(x-p(x)) I < C.

This forces lim{(x -p(x ))-(x-p(x M)) =0 and hence lim O(x-p(xn)) =

Noting lim '(x-p(x )) ='(x-p(x)) there exists Nell so that n >N =>
n- n(x-p(Xn)) < 6 + b(x-p(x). "

But this says that for n >N, p(xn) eK6,x. Obviously p(x) eK6,x so for

n>N, l6P(Xn)-P(X)ll < dia K6, x .  Since lira die K6,x=O we must have
P(xn) - p(x). ED0 _QE
Proposition 3: Suppose {Kn}n= 1, K are nonvoid closed convex subsets of B

with Kn g Kn+ 1, nell and K = U K . Let : B -IR be locally uniformlyn n=ln

convex and norm continuous. Finally denote by p1 the solution map of (1)
corresponding to Kn, nell and p denote the solution map of K. Then for xeB,
Pn(X) p(x). n

Proof: Let 6 >0, xeB. By the continuity of ,p, K6 ,x is a relative neighbor-

hood of p(x) in K. Noting K= U K , we see there must be an Nell so that

n >N --> Knl K6, x 0 0 . n=l n

Fix n >N, zeK6 ,xl Kn. Then we know that (i) '(x-z) < 6 +'(x-p(x));
(ii) (X-Pn(x)) :S i(x-z). Assembling the facts, n >N -->

lp(x-pn(x)) < 6 +(x-p(x)).

Letting n-,-,

~ r 2.~L '-~ .. ; '.- F~ 4~'~W"7~
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lim sup ib(X-pn(x)) < A(x-p(x)). (3)
n --o 

* 0

We may imitate a familiar argument in Proposition 2 to see that {Pn(X)lnl
is bounded.

Since Kn = Kn+1 E K, nel it is easy to see that

4)(XPn(X)) > (X-Pn+l(X)) > (x-p(x)).

With the assistance of (3) we obtain

(x-p(x)) = ln 4(x-p (x).

Pick 6 >0. There exists Nell such that n >N ->

(X-Pn(X)) < £b(x-p(x)) +6.

We may now conclude pn(x)eK6,x, n >N. Since dia K6,x -0 as 6 -0 we

conclude that Pn (x) -p(x) in norm.
IV. SOME FACTS ABOUT ORLICZ SPACES

Theorem 4: Let (2,9g,P) be a probability space and $,/ be an Orlicz pair.

Then L (0,.91,P) is uniformly convex if and only if

V E such that 0 <E <4 there exists R>so that
l m inf ( ) > IR .:

an -+ co ( - x

Proof: This is the central result of (4].

Define : L¢(Q,9YP)-, [0,°°) by (X) =f-V(iX)dP. Then 4 is a strictly

convex norm continuous functional and lim L(X) +o. let 0 <E <1,IIXlIL1 -*

X,YeL (0,YP) and X#Y a.s.[P]. Then jIX-YIL1 P 0. Using the convexity

of ¢,

*t(IX-YI) = C((- IX-YI)+(l-E-)(0))

< + ((IX-

Integrating,
f (( I x-Y I )dP < E: f(- -)dp.

Now suppose IjX-YjI Lo< 1. Then

f(IX-Yj)dP < IIX-Ylljj o( -xIX )idP

= IIX-Yl L (l),

amply demonstrating the global uniform continuity of E.
We will not address the question of the local uniform convexity of "

here. The hypothesis of Theorem 4 or possibly something similar might
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guarantee the local uniform convexity of E.

V. A CONVERGENCE PRINCIPLE FOR A
GENERALIZED CONDITIONAL EXPECTATION

Definition: Let (0,91,P) be a probability space, Jr be a sub a-algebra of
97 and 0,T be an Orlicz pair. For XeL(0,9',P), we define E(XI') to be
the unique solution to the variational problem

min f 0R( 1X-Z dP: ZeLO(Q, JP) }

QX 2
^

Recall from [5] that if $(x) = for x >0, then E¢(.IjT) is ordinary

conditional expectation given ..

Remark: If the functional X O(fIXI)dP is locally uniformly convex

then E(,('-I) is norm continuous on L (2,. ',P).

Theorem 5: Let (0,91,P) be a probability space, {nr be an increasing
family of sub a-algebras of 99 and put #= V Jr. Suppose 0,T is an

n=l n
Orlicz pair so that X- f0(IXI)dP is locally uniformly convex. Then for
XeLP(0, 9, P) ,Q

E (XI fn) .E¢(X[5) as n-, o

or equivalently,

lim (IE(XI n)-E(X I) I )dP = 0.

Proof: This is an immediate consequence of Proposition 3. .E

We may now proceed as in [5) to get
Theorem 6: Let (0,91,P) be a probability space, {X(t): te[O,T]} be a
process on (,2,9',P) taking values in a separable metric space M and 0,T be
an Orlicz pair with X- f0(IXI)dP locally uniformly convex. Then if

{Qn}n=l is a round off scheme for M and {Pm}m=l is an increasing sequence

of partitions of [O,T] whose meshes decrease to zero, we have for
YeL"(Qi,Y,P)

ED(Y1Qn(X(t)): tePM )  E,(YIX(t): te[O,T])

as m,n--, or equivalently,

lim 0( E,(YjQn(X(t)): teP m ) - E (YIX(t): te[O,T])I)dP = 0.
m ,n-+wo

VI. CONCLUSIONS AND A PARTING SHOT
AT EARLIER WORK

The abstract principle developed in Section III subsumes the Banach
space principle developed in [5]. Simply take the functional to be the
norm.

We have enhanced the feasibility of studying the operators E0 numeri-
cally in two ways. First, knowing that E,, is continuous assures us that
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it will tolerate small L-perturbations. Second, the result of Theorem 6
shows us we may approximate E¢(YjX(t): te[O,T]) by E¢(YIQn(X(t)): tePm).

Since a(Q n (X(t)): tep M) is finite, calculation of EO(YIQn (X(t)): tep M)
consists of solving a finite dimensional nonlinear optimization problem. A
large body of knowledge now exists about the numerical solution of such
p rob 1 ems.
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