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ABSTRACT

We study the estimation of a hazard rate function based on censored

data by the kernel smoothing method. Our technique is facilitated by a

recent result of Lo and Singh (1984) which establishes a strong uniform

approximation of the Kaplan-Meier estimator by an average of independent

random variables. Pointwise and uniform strong constistency are derived,

as well as the mean squared error expression and asymptotic normality,

which is obtained using a more traditional method, as compared with the

Hajek projection employed by Tanner and Wong (1983).
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I. Introduction

Suppose Tl,*..,Tn are i.i.d. nonnegative ranom variables

("lifetimes") with common distribution function (d.f.) F(e) and suppose

Cl,...Cn are i.i.d. nonnegative random variables ("censoring sequence")

with common d.f. G(*). Assume also that the lifetimes and censoring

sequence are independent. In the setting of survival analysis data with

random right censorship, one observes the bivariate sample

(X, 8 1 ),@*•*(Xn,6n), where

(1) Xi - TiACi, 6 i - ITiCiI

with A denoting minimum and If*} denoting the indicator function on a

set. One question of interest in survival analysis is the estimation of

the hazard rate function h(e), defined as follows when it is further

assumed that F has a density f(e):

dx(2) h(x) d ' -o F(x)] - f(x)/F(x), lF(x) < 1, -

with 1 - 1-F. (The quantity H(x) - -log V(x) is called the cumulative

hazard function.) In the setting without censoring, parametric models of

monotone failure rate have been extensively studied (see Ch. 3 of Barlow

and Proschan (1975)). The nonparametric estimation of h(x) was initiated

by Watson and Leadbetter (1964a, 1964b). Subsequent research works include

Barlow and van Zwet (1971), Ahmad (1976), Rice and Rosenblatt (1976), Ahmad

and Lin (1977) and Singpurwalla and Wong (1983). There are essentially 3

variants based on the delta-sequence smoothing introduced by Watson and El

Leadbetter (1964a, 1964b) and Rice and Rosenblatt (1976) (the third 0

variant): By-------:., ..
D.stributlpnh

INSP~im lvail vitc jor
Dist SPOCIal



3

(3) hl)(x) - f kn(x-u)dFn(u)/Fn(x), Fn(x) < 1;n

(4) h 2 (x) - f kn(x-u)dFn(u)
Fn(u)

n1
E kn(x-X(j) -

J=1

(5) h (3)(x) - f kn(x-u)dHn(x)
n

E kn(x-X(j)) log [1
J-1

where Fn is the empirical d.f., Hu is the empirical cumulative hazard

function, X(j) is the jth order statistic from the sample fXi, ili,...,nJ;

and fkn(,)J is a delta-sequence (see Walter and Blum (197q)), which in the

kernel case (see Rosenblatt (1956)) is specialized by taking

(6) kn(v) - - k ,

where k is usually a bounded, symmetric, density function, and {bnl is a

so-called band sequence such that bn + 0, nbn + - as n + -. The method

of analysis in the uncensored case in Rice and Rosenblatt (1976) parallels

that of kernel density estimation and exploits heavily the strong

approximation of the empirical process by a Brownian bridge (Komlos, Major

and Tusnady (1975)).

When the data are subjected to random right censoring, the problem

becomes more complex, primarily because the estimate of F(*), due to

Kaplan and Meier (1958), now takes on a product form:
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1 1 -nJ if x 4X(n);
X(i)(x

1 if x > X(n) and the largest observation

is uncensored.

Since many well-studied properties of the empirical d.f. cannot be

readily transferred to the Kaplan-Meier estimator, several researchers

circumvented the technical difficulty by considering an equivalent problem

on the uncensored observations (for example, Blum and Susarla (1980),

Burke (1983), Yandell (1983), Liu and Van Ryzin (1985)). Some researchers

(for instance Ramlau-Hansen (1983)), employed the method of counting

processes studied by Aalen (1978), and Gill (1983). Still others ('oldes,

Rejto and Winter (1981), Burke and Rorvath (1984)) used a Chung-Smirnov

type result on the Kaplan-Meier estimator. To the credit of Tanner and

Wong (1983), expressions for the bias and variance in the kernel case

(essentially the form h (2)(x) given in (4)) were obtained by directn

calculations and asymptotic normality was proved by appealing to Hajek's

projection. Tanner (1983) and Liu and Van Ryzin (1985) also considered

the variable kernel case along the line of the nearest-neighbor method

(see Mack and Rosenblatt (1979)). Padgett and McNichols (1984) gave a

review of density and failure rate estimators from censored data.

Our present research is motivated by a recent result of Lo and Singh

(1984) which establishes a strong uniform approximation of the Kaplan-

Meier estimator by an average of i.i.d. random variables with a

sufficiently small error. This allows for a more traditional approach to

the hazard estimation problem. As constrasted with approaches mentioned
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in the paragraph above, our method will be a direct one. Although it will

become apparent that we could equally well have considered the variants

h(2)(x), or h (3)(x), since there have been fewer investigations carried outn n

for h(1) with censored data, the estimator we use will be of the form
n

given byh n (see (3)) with Fn(x) replaced by a modified version

rn(x) of the Kaplan-Meier estimator defined as follows to avoid the

possibility that 10n(x)- 1:

n n-i+l 6 (j)
1 l (ni2 ifx< n)
x(i)(x

(8) rn(x) 
E

r n(X W) if x > X(n) and the largest observation
is uncensored.

It is easily checked that fn(x) for all x, and thatn+1

a.s.
(9) sup Iwnx - rn(x)l - 0(n1),

Ogx<T

for any O<T < inf{t;O: L(t) - 1), where L(x) - F(x).G(x) - P(Ti>x, Ci>x).

(Hereafter, a.s. will be an abbreviation for "almost surely.")

In Section 2, we state the preliminaries needed for our presentation.

In Section 3, we focus our attention on kernel density estimation under

censoring via strong approximation. In Section 4, we give the

consistency, asymptotic normality and mean squared error expression of our

hazard rate estimate. Finally, in the last section, we conclude with

relevant comments and some comparison with the nearest neighbor method.
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2. Preliminaries

We will concentrate our analysis on the kernel method. We assume

throughout our discussion that L(x) < 1 for a given point x under

consideration. The assumptions we made on the kernel k are as follows:

(kl) k(x) is a symmetric density function.

(k2) 1< x) is compactly supported with support [-c,c].

(k3) k is continuous on its support.

(k4) k is of bounded variations with total variation IkI.

These assumptions are the "usual" ones encountered in the kernel

method of curve estimation. We will comment on the use of kernels with

vanishing moments in the last section. The estimate that we consider

are modelled after h(x) (we continue to label these as h((x) forn n

convenience):

(10) h(1)(x) f k d rn(u) / n(x)

f n(x) / n(x)

where fbnJ is a band sequence satisfying initially

(bl) bnO, as n+.

To analyze the asymptotic behavior of h(l)(x), it suffices to
n

analyze that of fn(x). As mentioned earlier our technique is motivated

by the strong representation result (Theorem 1) of Lo and Singh (1984).

In lemma I we shall show a modified version of their result. We begin

with some notations. Let L1 (t) - P(Xitt, 8i-1). For positive real

i ,

S
a

, • • • . ° . • . - . ,o. , . e - o . O ° - . - - . ° . - S'° -..-* ° * ' .' o . " . . - o . ° ° -
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z and x, and 6 taking values 0 or 1, let C (z,6,x) - -g(zAx) + fI(z)] -

I (z~x and 6-1), where g(y) f [L(S)1- dLi(s) and I(*) is the indicator
0

function. Let Cj(x) - C(Xi, 6i,x). Let T be any point with L(T) < 1.

Note that the random variables C1 (x) are bounded, uniformly in 04x4T,

Eli(x) - 0, and Cov(Ci(x), Ci(y)) - g(xAy) (cf. Lo and Singh (1984)).

Lemma 1. Assuming that V is continuous, one can write

(11) log F (x) log F(x) E C + R (x), where
*n n 1-1

(12) P( sup IR(x)l>a) - (n-P),
0(x(T

for any P > 0 with a - e.llog n/n]3/4 for some constant 9 > 0 depending

on P.

Proof. The proof is given in the Appendix. M

Remark: Formula (12) is replaced by

(13) 0xuTp IRn(X), a.s. 0(n 3/4(log n)3/4)

in Theorem 1 of Lo and Singh (1984).

It follows from Borel-Cantelli Lemma that (12) implies (13). Hence

Lemma 1 is a stronger result than Theorem I of Lo and Singh (194).

Let Ci(x) = 
.(x).Ci(x).

Lemma 2. Assume that F is continuous, then

n

(14) rn(x) N F - £ W(X) + rn(x), where
i-i

4, ' ; :- , = . .- ,_ . -.-:...,.. . . . . . . . . . . . . . . . . . . .
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(15) sup EIrn(x)l a _ Offlog n 1(314)2} for any a>1.
0(x(T

Proof. We shall only demonstrate the case a-1. Since Ci(x)'s are

uniformly bounded and (n+ )- 1  rn (x) 4 1 for all x in [O,T], we have

sup IR(x) I - 0(log(n+)), and hence
0¢x<T

(16) sup EIRn(x)l - sup EfIRn(x)j• I{IRn(x)l > an)]
0(x4T Ox4T

+ sup E[IRn(x)J *IfIRn(x)l < anI]
0ex<T

. sup P{lRn(x) l > an  * 0(log(n+1)) + an

0(x4T

O 0(an), by Lemma 1.

Similarly, one can show that

(17) sup E(R(x) 0(a 2).

O*x<T

Now by Taylor's expression,

- [rn(x) - F(x)]

_ Tn(x) - "F(x)

- exp{log Fn(x)) - exp{log -(x))

flog fn(x) - log F(x)] * f(x) + An  [log Tn(x) - log f(x)12

n 2
E n i(x) + F(x) R R(x) + A [log Fn(x) - log F(x)Jn nm n

*0I

**.p*
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where An is between ?fn(x) and lF(x) and is therefore bounded by one.

It now follows from (16) and (17) that

Sup Ellog fn(x) -log F(x)1 21 sup Ef 1 (x) + 2

O(x(T O(x nT

< sup 2W( x (x)) + E(R (x)2)'
O(x(T n n

< sup 2n- Var (Wi(x)) + O(a2 )
O(x T :

, O(n-1 + O(a 2.
n

Hence

Sup E~rn(x)1 < sup f(x) EIRn(x)I + sup Eiog Pn(x) log F(x)1 2

O'~xT O'Cx<T O~x<T

- O(an) + O(n + O(an)

- O(an). =

Finally, we state a lemma which by now is a standard device in the

kernel estimation literature:

Lemma 3: Assume the kernel k is a bounded density. Let g be an

integrable function.

(a) If {bn) is a sequence of positive numbers such that bn+O as n+-,

then

(18) lim f 1- k( XT! ) g(u) du " g(x)
n-* n n

for every continuity point x of g.

A-.
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(b) If in addition k is symmetric with finite second moment, and g

is twice continuously differentiable at x, then

(19) f - k( X-j g(u) du - g(x) + 2"x f v2 k(v)dv -* + o(b 2).b b 2 n n
n n

3. Strong Approximation of fn(x)

Using the integration by parts lemma of Foldes, Rejt6 and Winter

(1981) and Proposition 1, under the assumption that k is continuous on its

support (condition (k3)), we have that if x<T, where L(T)<1,

(20) f (x) dr(u)
n n

1 c
M 1 f n(x - vb ) dk(v)

n -c

Cn
I f [ F(x Vbn) + n (Xi, 1 x vbn- C n -£ 1, ,-bn,+n-c 1

rn(x - vbn)] dk(v)

f f(x - vb ) k(v)dv + nn W -- f :×,6~ - Vbn)dk(v)

-c n 1 -c

'c
+ f rn(x - vbn) dk(v)

n -c

f(x) + n (x) + an (x) + e n(x),

e- zU
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where

(21) Pn( f f(x - vbn)k(v) dv - f(x)
-C %

is essentially the bias of fn(x);

I n c
(22) a n(WX) nb E j c(Xt,6jx - vb) dk(v)

n1 -c

is the random fluctuation component of fn(x), (we note that the integral

is well-defined for n large enough because k is compactly supported), and

(23) e(X) =W-- f rn(x - vb ) dk(v)
n -c

is the error of the approximation. It is easily checked that

(24) sup le(x)l as. 0((log n/n)
3/4 . I

Ox(T n

by Lemma 2 and the fact that k is of bounded variation (condition (k4).)

The process(

/n 1

has mean zero and covariance

SA t
(26) r(s,t) E E[C(s) C(t)] - F(s) F(t) f [(u)]- 2 d Lj(u),

where we recall Y(t) - 7(t) - W(t), and Ll(t) - P(Xi~t, 61-1). One notes

that this agrees with the covariance of the Kaplan-Meier process obtained

by Breslow and Crowley (1974) and reduces to the usual covariance of the 5&
empirical process in the absence of censoring (see Hall and Wellner

(1980)). an(t) is thus a process with mean zero and covariance

,% % '° b . *5% , ) .. .
.

. -. %,- -.- ',w - .o - - . % . . --. - - - - . . . . . . .
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(27) E[ nW a n (s)]- f f y(t-ub n, s-vb) dk(u) dk(v).
nb 2 -c -Cn

We now summarize our findings in the following

Proposition 1: Suppose F is absolutely continuous with density f(x) > 0

at x. Suppose k is of bounded variation and is continuous. Then fn(x)

admits the strong approximation on the interval [0,T]:

(28) fn(x) - f(x) + Pn(x) + an(x) + en(x),

where Pn(x), an(x), en(x) are defined in (21), (22) and (23) respectively,

and en satisfies (24).

In view of previous lemmas and the above proposition, we have the

following consequences:

Corollary 1: (Strong pointwise consistency.) Suppose k satisfies

(k) - (k4), {bn} satisfies (bl), and additionally,

(b2) (n/log log n)1 2  bn+ 4M as n + b;

f(x) exists and is continuous at x. Then fn(x) + f(x) a.s.

as n~co

Corollary 2: (Bias and variance.) Suppose k satisfies (kl) - (k4),

f(x) > 0, and that f is twice continuously differentiable at x, then

(29) E f (x) f(x) + f"(x fc v2 k(v) dv • b2 + °(b2 ) + 0(b-'ann 2 -cn
W - i)f k 2(v)dv +I 0(n- 1) + 0((an/bn 2

(30) Var fn(X) n (nbn f(x) G(x) -c

+ 0 (an (nb ) 12).
n

. . . . ...... X..-..-. .. .... .. . . , , , .. .. ,', , , , ,
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Proof: We shall demonstrate (30) only. Consider first

Var a (x) - (nh 2 )-I f J" F(x-ubn)F(x-vbn).
n n ~-c -cnn

gf(x-ubn)A (x-vbn )]dk(u)dk(v),

where g(y) = E YL(t) ]-2dL1(t) has Lebesque derivative
0

(31) dg(t) dL1(t) - 2 2dt f t /[L(t)] - f(t)/[G(t).t2.

Since k is symmetric, a tvo-term Taylor expansion argument yields

(32) Var a (x) - a*(x) + 0(n- ),
n ni

* where

a* F(x)2  c c
nb 2 f -c g[(x-ub )A(x-vb )]dk(u)dk(v).n nb 2 -c -cnn

n

Using integration by parts, we have

c x-vb
f gf(x-ub)A(x-vb1)]dk(u) =f k(')dg(w)
-c x-cb n

n1

Thus by Fubini Theorem and a change of variable, we otbain

Var a*(x) - f x+cb k2( dg(w)
nb2  x-cb nn

x+cb n

(x) 2  k.e- f()

nb x-cb n G(w)F(w)

n n

' d * ... .. f 4 F ' .= . . . .. --... ~ *.~ %f.*
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where the last equality follows by (31). Finally, another change of

variable and expansions applied to .-I. lead to the following
GF

approximation

2 _1 + (-1)

(33) Var o*(x) - f(x))f k2(v)dv n+0(n ).
n a(x) nb

Next, observe that by Lemma 2, for n large enough, since bn  0 as

n + c, we have

* (34) Var en(X) E(e2(X))
nn

-1 2 f fE[r n(x-ub n)rn(x-vb) )dk(u)dk(v)

S -c -c
n

0((a n/b) 2 ).

Thus (30) follows by applying (32), (33), (34) and Schwartz's inequality

to an expansion of Var fn(x) via (28).

Corollary 3: (Asymptotic normality.) Suppose k satisfies (kl) -(k4),

bn - o(n- / 5 ), and

* 1l/2

(b3) 1) 3 2 " bn as n + -.(log n) / n

Then

/n-b [fn(x) - f(x)] - _> N(O, f_ f k 2(v)dv)
G(x) -c

as n -. Here -4-> means convergence in distribution.

Remark: Putting bn - O(n-a), the conditions in Corollary 3 say 1/5 < a < 1/2.



15

4. Kernel estimation of the hazard rate

We begin by stating the strong consistency of h(1)(x):n

Theorem 1. Let k satisfy (kl) - (k4), {bnJ satisfies (bl)(b2).

(a) If f Is continuous, then h(1)(x) * h(x) a.S. as n + o.

n

(b) If f is uniformly continuous, then for any T with L(T) < 1,

h(1)(x) * h(x) uniformly a.so on [o,T] as n + o
n

Proof. Since r(x) estimates F(x) uniformly a.s., the pointwise result (a)
-n

is a direct consequence of Corollary 1. For (b), the proof is also

standard, noting that by Csorgo and Horvath (1983),

sup [I n (x) - F(x) a s , O(n- 11 2 log log n).
O-(x(T

In order to establish the asymptotic normality of h(1)(x), writen

Anb [h)(x) - h(x)] = vbn {fn(x) - I
n(x) n(x)

+ [f n(x) - f(x)] / P(x)}.

nk

It suffices to show the first term on the right converges to zero in

probability. Now

(_(_) - r- n()] p [F()) " (X) "

(35) n Fn (X) n

* bf (vx)[Fn(X ) F(x)]
- I .

n n n

m- • .. . . . . . . . . . . . . . . ' . . . . - . . . . . . .. .. . .. - . . •I
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Since Vn[rn(x) - f(x)] tends in distribution to a normal random variable,

fn(x) converges to f(x) a.s. by Corollary 1, and clearly In(x) (x)]-I

converges to [ (x)]-2 a.s., we have by Slutsky's Theorem that the

expression in (35) tends to zero in probability. To summarize, we have

Theorem 2: Suppose F is absolutely continuous with density f(x) > 0,

suppose the kernel k satisfies (kl)-(k4), and suppose the band sequence

fbn} satisfies (b3) and additionally that bn - o(n-1/5). Then we have

(36) An-b [hl)(x) - h(x)] d > N (0, h(x) fc k 2(v)dv)
n nT(x) -c

as n+ - .

Remark 1.

Tanner and Wong (1983) tackled the asymptotic normality question by

Hajek's projection. Their centering constant is E h(2)(x), thus bypassingn

the bias issue. They also imposed a compatibility condition on the kernel

k with respect to both F and G. Such a condition is met by kernels

satisfying (kl)-(k4).

We now turn our attention to the study of MSE of h(1)(x). Writen

(37) E[h(1)(x) - h(x)]2 - E[I + II + i11]2,n

where
1. f n(X) [- 1 =1 ,

rn(x) F(x)

II - [fn(x) - E fn(x)] / f(x),

III - [E fn(x) -f(x)] / i(x).

V dP %,q
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We will show that the main contribution comes from E(11
2 ) and E(II12), all

other terms in the quadratic expansion being of smaller order. Note also

that III is deterministic. Now

(38) E(112 ) - [V(x) - 2 • Var fn(x)

O 2(n 1) + 0[(a 2 ),,+(nb) 1 /2).

=_--.! f k2 (v)dv 1 - +

L(x) -c n n n

a a

(39) E(III2) -F(x)]
- 2  2(x) + o([ 12) + an0( )

n b n
n n

- "(x) fc v2 ]2 b4 + (b4) + 0([ a 2
- ~ ~ v b+ob_ ) + O(a b)

2F(x) -c n

To evaluate E(1), let us first consider

f(x) f(x) (x) -F(x) -1
(40) E[ E - f n{ [I + n

F (x) (x) F (x)

for some cn between 0 and In(x) - f(x)]/F(x) by Taylor's expansion for
1

large enough n since Fn(x) o - for all x. Since Ifn(x)l < H for some

o<0<0 by (k2) and (k3), we have that

o4
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fn(x) r(x) -F(x) M n(x) - (x)

Fo) 2 (0+ Cn) 2RX) 2 (0+ Cn)2

< 2. {E[Fn(x) - p(X)]1 /2 fE[1 + C n-411/2

F(x)

by Schwarz inequality. Now

(42) 0 4 Ell + Cn]- 4 4 E[ F(x) j4 + Ir(x)
n X

f (_x) - R(x) 4 + 1
=E[1- n ] +1,

Sn(x)

and

r n(x) -F(x) 4  d 4
(43) E[ n C [[

F (X) F(x) - dn  P( (x) - FWI d)

n n4

+ [2 ]4 P(Ifn(x) - W(x)l > dn)
n+l

c nld 4 + n4 .n - 5]
n

IT
0n1),

where the last inequality follows from Lemma 2 and the exponential bound

in Lemma I of Lo and Singh (1984) and dn - * (log n/n)1/2 for some r>0.

Hence from Holder's inequality, we have

(44) Ell + en)-4  o().

;. Z
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Apply Lemma 2 once more, one can show that

(45) E[Fn(x) - F(x)]2  O(n- 1).

It now follows from (41), (44) and (45) that EIII - 0(n-1/2). The term

E(I 2 ) can be shown in a similar fashion to be of order O(n- ). Hence

from (29) and (38),

(46) EII.IIII - IIIII-EIII - O(n- 1/2b2 ) + O(j-1/2(an/b))

(47) Ell.II - o(n-1/2. (nbn)-/2) + O(n- '/1  * (an/bn))

+ O(n- 1/2 * (an/bn) l/2.(nbn)-1/4).

Let bn be of the form cn-p, where c,p are both positive constants.

For 0<p<1/4, O(n-l12b 2) and 0(n-1/2(nbn)- 1/2 ) are the dominatingn

terms in EIIOIIII and EII-III respectively.

For 1/4 < p < 1/2, O(n- /2(an/bn)) and O(n- 12(an/bn) /2(nbn)- 1/4)

are the dominating terms in EltIiIII and Ell.III respectively.

For p > 1/2, 0(n-1/ 2 (an/bn)) is the dominating term in both EIITtI and

EllI..

Since b4 dominates n-1/2 b2 for p < 1/4, and (nbn)
- i dominates n- /2b2

n n n

for p > 1/6, the term O(n- /2 b) is always dominated by either b4 or
n n

(nbn) - I for any p > 0.

%. .- |
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Also, (nbn)-I always dominate n-12 (nbn)- 1 2
, n- 12(an/bn) and

n-/2 (an/bn) /2(nbn)- 1/4 for any p > O.

E(II 2) and E(III 2) will be the main contribution to the MSE of

h(1)(x). Futhermore, if fbn} satisfies (bl) and (b2), (nbn)-1/2

n

will dominate (an/bn). Also either b or (nbn)- I will dominate anbn.
n

We now state our finding:

Theorem 3: Suppose f is twice continuously differentiable at x, f(x) > 0,

the kernel k satisfies (kl)-(k4), and the band sequence {bnj satisfies (bl)

and (b2). Then

(48) MSE[h(l)(x)] = [f"(x) fc v2k(v)dv]2 • b4 + h(x) C k2  d]
2F(x) -c n L(x) -c nb

nn

+ O(b 4 + I
n

5. Concluding Comments

(a) We have seen in the above discussion the use of Lo and Singh's

(1984) strong represnetation of the Kaplan-Meier estimator in

analyzing kernel estimation of hazard rate functions. We have

chosen to consider the estimates given by h(1)(x) as contrasted
n

with h (2)(x) studied by Yandell (1983). Our variance expression
n

and asymptotic normality results are similar to theirs, although

we have employed a more traditional approach. The bias for the

SS S S'' % . .79
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three variants appear to be different ir the scale constant but

not the rate.

(b) Tanner (1983) mentioned that a nearest-neighbor approach may be

preferable to the fixed band sequence approach from an extensive

simulation experiment. This observation appears to have some

theoretical support judging from the recent work of Liu and

Van Ryzin (1985) which essentially used an asymmetric nearest-

neighbor window. Both their findings (Theorems 4.3 and 4.4) and

the findings of some other researchers on nearest neighbor

density estimation with censored data (for instance Mielniczuk

(1984)) suggest that the censoring mechanism may have no effect

on the variance for nearest-neighbor estimates. This may be an

advantage in terms of constructing a confidence interval at a

fixed point or a simultaneous confidence band if one wants to

test for goodness-of-fit. Nevertheless, one cautions that the

bias behavior of the Liu and Van Ryzin variable histogram

estimator suffers essentially the same drawback as nearest-

neighbor estimators in that it may be quite large at the tall

regions of F.

(c) A number of researchers in kernel estimation have studied the

effects of kernels which may have vanishing moments. Its use,

-' * • . ,_m .V % . . *. 
°

.%" °," °- ° -. . .-. ' ". , , .. . .
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coupled with the assumption of a higher degree of smoothness of

h(x), can make the convergence of the bias to zero faster. This

point of view was taken in Singpurwalla and Wong (1983). Of

course one pays the price that the estimator so constructed may

take on negative values if the sample size is not "large enough."

For this reason we have kept the non-negativity of the kernel in

this paper.
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6. Appendix:

Proof of Lemma 1.

Let Ln(t) - n-' t I(xj t) and

Lln(t) - n-1  E I(xj 4 t, 6 1 - 1) be the empirical distribution
iul

and subdistribution function respectively. If one checks the proof of

Theorem 1 of Lo and Singh (1984) carefully, one will find that Rn(x) is

composed of three terms,

Rn(x) - Rni(x) + Rn2(x) + Rn3(x), where

x1
Rnl(x) - logifn(x) + f [Ln~s]' d l'i)

0

P~n2(x) - f-[Zs1 - [Ln(s)] 1  d Ll(s) +
0

f ([1s)]-2 [E(s) - n(s)] d LI(s)
0

x [in(s)

o [Ejs)]2 i (s)

Rn3(x) f f([!(a)]' - Ln(s)]J d (Lin(s) -Ll(s)).

Lemma 1 then follows from Lemmas 4, 5 and 6 below.

To prove Lemmas 4, 5, 6, let q -P(Xi 1C T, 61 1) < 1, co -P(Xj > T)

f (T) > 0.
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Lemma 4. For any a0O, and O~b<1, we have

Pfsup lR ni W)I > an }, 2e -l-q)/36

for large n.

Proof.

IRni(x)I 4 E*Ilog(n-i.A±) + 1 In-i+2 n E(~)

where E~ sums over all L such that X(j)<t and 1,1

-~i~(in-i+2~ n i****

=Ilog(1- 1) + 1j + E*(71

n-i+2' n-i+2' n3-i- nT-i+2)

* (n-i+2f-2  + * (1 1 ),since

1-(n-1+2)- ;1 -'

2x 4log(I-x) + x C 0 for 0(x<l,

n-i++ *( n-i+2 1 +

K 1 1 K 1 1E ~ ~ ~ -12 3" ,-+2 where
ii-i

n
K Z I(Xi < T, 6j 1)

- - + L;:+;ir n +1

- 2K + K

4 3K
nT;K)
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3K -b anb
PC7-.X > an )PCK > I-by

n~n-K)3 + an

< P(K > C1+q)n/2)), for large n

- P(X - nq > (1-q)n/2)

< e I-)3

where the last inequality follows fromn Lemma 1 of Lo and Singh (1984) by

letting ij - I(Xj < T, 6 1 - 1)-q, c-1, d-n(I-q)/6, a2 . q(1-q) and z -d/6

= n(I-q)/36

Lemma 4 now follows immediately.

Lemma 5. For any C > oPI:x(T 2(~~c ale'b"e for some positive

constants a' and b'.

Proof. Note that 0 < R n2 (x) < R n2 CT). We have

IRn2(T)I < c-2 (Ln(T)J flLn-LIT2, where glis the sup-norm of a

function over the interval [0,T].

Hence, P(tRfl2(T)I > e)

< P{IEn(T)j1-*IInEIT2 > C £ , En(T) > co/21 + P{Ln(T) < co/2}
T 0

T 3
< If~-I > II. 2 +P~() o2

.d .-.--+
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Lemma 2 of Dvoretzky, Kiefer and Wolfowitz (1956) implies that

-ncE3
I 4 constant * e 0, and

II - P{Tl(T) - Co < - Eo/21

C constant * e- 0/2

Lemma 5 is thus proved.

Lemma 6. If F is continuous, for any 0 > 0, there exists constant 71 > 0

such that

P( Sup IRn3(x)l > n * (log n/n) 3/ ) 0(n-P).
0x<T

Proof. We shall give the proof for the case when G is also assumed to be

continuous, and hence L is continuous.

The proof parallels those of Lemma 2 of Lo and Singh (19R4)

with more rigorous probability statements. The proof when G is arbitrary

can be done similarly as the remark on page 10 of Lo and Singh (1984),

We shall now proceed with the proof when both F and G are assumed to be

continuous.

Divide the interval [0,T] into subintervals fxi, xi+i], i-O,...,kn,

where kn - o(n/log n)1/ 2 ) and 0 - x0 < xi < ... < xk_+, - T are such that
1/21

L(xi+I) - L(xi) < cI • (log n/n)1 /2. This is possible because L is

assumed to be continuous. From any 04xCT, we have

IRn3(X) l 4 kn * Sup IEn(tF - [Et)r-. Max l(ln-El)(xi+l) -
04tCT I'ci(kn

(Lin-El)(xi)I + 2 Max Sup I[Ln(t) - - [n(xi) -

0¢i~kn xi<t~xi+l

- [E(t)] - I + [L(xi)]-l

A + B,
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from the proof of Lemma 2 of Lo and Singh (1984).

To estimate B, ye further subdivide each [xi, xi+11 into subintervals

[xjj XI(J+)], J-,ooe,mn such that L(xi(j+l)) - L(xij) 4 c2 - (log n/n)3/

for all i, j and mn - O((n/log n) 1/4 ). Consider

Ai- Sup l.n(0)J1 - [Ln(xi)]1 - [L(t)J 1 + [L(xi)1'tl

4 Sup I[En(t) _ E(t)1[Z(t)] -2 _[Ln(xi) _ E(xi)1[r(xi)j -2I
xj( t~xi+1

+ 2NLn - LI *(En E)-I - (E-2 IT

4C Sp IL(xi)1 Ijn(t) _ E L) n(xi) +L(xi)l
xi( t~xi+l

+ Su jE1n(t) - L(t)I.IE>2(t) - L-2(xi)l + 21EIL E E2[n()-
xi( t~xi+1 T o LT)

4 Ma E 2 &i(xij) - Ln(xij) - E(xi) + L(xi)I + c2 (log n/n)3/

+2e~ -4,In *N cl(log n/n) 12+ 2e2 Il.n L D [lT )]

We have

P[Ai > 1c2 + 9E-2 (CIO) 1/2 1 - (log n/nm 3/41&

P Ma xi j)n (xij) - Enx)+ E~il> 3(clP) 1/2 (o /)3/4

"PIn-LIT > 32)E2 0/O1/2 .(o /)1/4

" PfuIn - ED 2 [in(T)]F1 > (3/2)(cIP) 1/2 (log n/n) 3/41

Il +H + 111.

~-"6- IN ' -
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From the proof of Lemma 5, 111 ale' ..ln1/ , for some positive constants a'

and b'. From Lemma 2 of Dvoretzky, Kiefer and Wolfovitz (1956), 11 <

a* 0 e-* / , for some positive constants a *and b * As for 1. for any

fixed J, use Lemma 1 of Lo and Singh (1984) with 'Ii - Ln(xij) - E(xij) -

En(xi) + L(xj). c-i, 02 <cl . (log n/n) 1/ z log n, d - ( f2o) /n

3/42(log n) . We have cz < d for large n, and nza2  d2.

Bonferoni inequality then implies 1 4 2m e~ log n . 2mnnP

So far we have shown that, for any positive there exists a positive

constant w such that

P[Ai > W * (log n/n) 3/4 ) <2m1n n- + ae-b'n 1 /4 + a* e b*n 1/2

=2mn n-P + 0(n-P).

Applying Bonferoni inequality once more, we have

P[P > w o (log n/n)3/4) < (kn + lOmn *0(n-9), for 0 > 1,

iO(n o), for~ > 0.

To estimate A, use the fact that It11x) -tij(y)jkj(x) - (y)j for any

x and y. Apply Lemma 1 of Lo and Singh (1984) again as we did for the

term I above, and we have

P2)- P{ Max IElin - )(xi+i) - (Eln - L1)(xi) constant - (log n/n) 3/4

- kn O(nP)
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Hence 2

P(A > constant * (log n/n) 3/
4 )

- Pfkn • *(n)- - C)-'IT • Oi > constant • (log n/n)3/4 j

IC * IL - ENT " [Ln(T)J- 1. 91 > constant * (log n/n) / 4j

' PI[Ln(T)J- I" Qj > constant • (log n/n) 31/4} +

PIkIn • I(n) - (E)'T > 12}

- P{Q i > constant ( (log n/n)3/4) + PfEn(T) < (co12)J

+ P{kn - IL, - ENT > p1/2}

2
= kn * O(n) + constant e - n 2 / 2 + constant * e - 2 0 log n

for arbitrary P > 1, where the second term was computed in Lemma 5 and the

third term comes from Lemma 2 of Nvoretzky, Kiefer and Wolfowitz (1956).

- O(n - 0) for arbitrary 0 > 0.

We have thus shown Lemma 6.

. -. -.-~. *****~~%-*~*%*-*
-~ "~ ~ ~
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