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HAZARD RATE ESTIMATION FOR CENSORED DATA VIA STRONG
REPRESENTATION OF THE KAPLAN-MEIER ESTIMATOR

Running Title: Hazard rate estimation under censoring
by
S. H. Lo

Rutgers University
New Brunswick, New Jersey

Y. P. Mack! and J. L. Wang2
University of California
Davis, California

ABSTRACT

We study the estimation of a hazard rate function based on censored
data by the kernel smoothing method. Our technique is facilitated by a
recent result of Lo and Singh (1984) which establishes a strong uniform
approximation of the Kaplan—Meier estimator by an average of independent
random variables. Pointwise and uniform strong constistency are derived,
as well as the mean squared error expression and asymptotic normality,
which is obtained using a more traditional method, as compared with the

Hajek projection employed by Tanner and Wong (1983),

1 Research supported in part by
2 Regearch supported in part by U.S. Air Force Grant AFOSR 85-0268.
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Key words and phrases, Censored data, hazard rate, kernel method, stong
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1. Introduction L

Suppose Tj,ee.,Tn are i.i.d. nonnegative randcm variables

("lifetimes”) with common distribution function (d.f.) F(¢) and suppose i

ClsessCp are 1.1.d. nonnegative random variables ("censoring sequence") A
with common d.f. G(*). Assume also that the lifetimes and censoring h,
sequence are independent., In the setting of survival analysis data with %
random right censorship, one observes the bivariate sample 5
(X1,81)500e(Xy,8,), where 5
(1) Xy = TynCq, &g = 1{Ty<Cy}
with A denoting minimum and 1{+} denoting the indicator function on a ,
set. One question of interest in survival analysis is the estimation of it
the hazard rate function h(e), defined as follows when it is further ;
assumed that F has a density £(e¢): .;
() b =3 [-log F(0)] = £(x)/F(0), F(x) < 1, :
with F = 1-F, (The quantity H(x) = -log ¥(x) is called the cumulative Es
hazard function.) In the setting without censoring, parametric models of :
monotone fallure rate have been extensively studied (see Ch, 3 of Barlow E
and Proschan (1975)). The nonparametric estimation of h(x) was initiated ;
by Watson and Leadbetter (1964a, 1964b). Subsequent research works include -
Barlow and van Zwet (1971), Ahmad (1976), Rice and Rosenblatt (1976), Ahmad E
and Lin (1977) and Singpurwalla and Wong (1983). There are essentially 3 ;»
variants based on the delta-sequence smoothing introduced by Watson and %é;::j .
Leadbetter (1964a, 1964b) and Rice and Rosenblatt (1976) (the third O ;
variant): 1 E
By . o ] N
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M W@ = [ kw0 Falx),  Falo < 1

dF(u)
@ w0 = [ ket

Fr(u)
. 1
I ey e
8P = [ gtewag e

n
= I kn(x-X ..) log [Il +
=1 (3

j+l]

where F, is the empirical d.f., H, is the empirical cumulative hazard
function, X(j) is the jth order statistic from the sample {Xi, i-l,...,n};
and {kp(*)} 1s a delta-sequence (see Walter and Blum (1979)), which in the

kernel case (see Rosenblatt (1956)) 1is specialized by taking

1 v
(6) kn(v) E k (bn)’

where k is usually a bounded, symmetric, density function, and {bn} is a
so-called band sequence such that b, + 0, nb, + ® as n + =, The method
of analysis in the uncensored case in Rice and Rosenblatt (1976) parallels
that of kernel density estimation and exploits heavily the strong
approximation of the empirical process by a Brownian bridge (Komlas, Major
and Tusﬁady (1975)).

When the data are subjected to random right censoring, the problem

becomes more complex, primarily because the estimate of F(¢), due to

Kaplan and Meier (1958), now takes on a product form:

Eate

P X
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n -4 S
1- 0 (-n—gi-i—l-) 1f x < X(p); 4
X(1)<x )
Kl‘ln(x) = :

1 if x > X(n) and the largest observation
i1s uncensored.

Since many well-studied properties of the empirical d,f. cannot be .
readily transferred to the Kaplan-Meier estimator, several researchers
circumvented the technical difficulty by considering an equivalent problem
on the uncensored observations (for example, Blum and Susarla (1980),
{ Burke (1983), Yandell (1983), Liu and Van Ryzin (1985)). Some researchers :
‘ (for instance Ramlau-Hansen (1983)), employed the method of counting

processes studied by Aalen (1978), and Gill (1983). Still others (Foldes,

] Rejto and Winter (1981), Burke and Horvath (1984)) used a Chung-Smirnov

Al s W A

type result on the Kaplan-Meler estimator. To the credit of Tanner and

Wong (1983), expressions for the bias and variance in the kernel case ;
(essentially the form hﬁz)(x) given in (4)) were obtained by direct
calculations and asymptotic normality was proved by appealing to Hajek's
projection. Tanner (1983) and Liu and Van Ryzin (1985) also considered é
the variable kernel case along the line of the nearest-neighbor method
(see Mack and Rosenblatt (1979)). Padgett and McNichols (1984) gave a
review of density and failure rate estimators from censored data.

Our present research is motivated by a recent result of Lo and Singh
(1984) which establishes a strong uniform approximation of the Kaplan-
Meler estimator by an average of i.i.d. random variables with a
sufficiently small error. This allows for a more traditional approach to

the hazard estimation problem. As constrasted with approaches mentfoned .
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in the paragraph above, our method will be a direct one., Although 1t will
become apparent that we could equally well have considered the variants

hﬁz)(x), or h§3)(x), since there have been fewer investigations carried out

for h(l)
n

given by hﬁl)(x) (see (3)) with F,(x) replaced by a modified version

with censored data, the estimator we use will be of the form

Pp(x) of the Kaplan-Meier estimator defined as follows to avoid the

possibility that KM (x)= 1:

n 6
n-1+1,°(1)
1- 1 (=) » 1f  x < X(n);
X(1)<x

(8) I'n(x) =

r (X, ) 1f x > X(,) and the largest observation
n "(n)
is uncensored,

It is easily checked that fn(x) > E%T for all x, and that

(9) sup |RMu(x) = Tp(x)| a;s.o(n'l),
0<x<T
for any OCT < inf{t>0: L(t) = 1}, where L(x) = F(x)+G(x) = P(Ty>x, Cyid>x).
(Hereafter, a.s. will be an abbreviation for "almost surely.”)
In Section 2, we state the preliminaries needed for our presentation.
In Section 3, we focus our attention on kernel density estimation under
censoring via strong approximation. In Section 4, we give the

consistency, asymptotic normality and mean squared error expression of our

hazard rate estimate, Finally, in the last section, we conclude with

relevant comments and some comparison with the nearest neighbor method.
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2. Preliminaries

We will concentrate our analysis on the kernel method, We assume
throughout our discussion that L(x) < 1 for a given point x under
congideration, The assumptions we made on the kernel k are as follows:
(k1) k(x) is a symmetric density function.

(k2) K x) is compactly supported with support [-c,c].
(k3) k is continuous on its support.
(k4) k is of bounded variations with total variation [k|.

These assumptions are the "usual”™ ones encountered in the kernel
method of curve estimation. We will comment on the use of kernels with
vanishing moments in the last section. The estimate that we consider

are modelled after hﬁl)(x) (we continue to label these as h(l)

n (x) for

convenience):

10y 0V

L

f%n- k (52) d Tp(w) / Tyt

fa(x) / Tp(x)

where {bh} is a band sequence satisfying initially

(b1) b,*0, as n>,

To analyze the asymptotic behavior of hgl)(x), it suffices to
analyze that of f,(x). As mentioned earlier our technique is motivated
by the strong representation result (Theorem 1) of Lo and Singh (1984),
In lemma 1 we shall show a modified version of their result., We begin

with some notations. Let Lj(t) = P(X4<t, 64=1). For positive real

-----------------
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z and x, and § taking values O or 1, let { (z,5,x) = -g(zAx) + [I-.(z)]-1

Y o -
4 1 (2z<x and 6=1), where g(y) = [ [L(s)) 2dL1(s) and I(¢) 1s the indicator
o

function. Let {j3(x) = {(Xj, 64,x). Let T be any point with L(T) < 1.

< Note that the random variables {j(x) are bounded, uniformly in O<x<T,

¢ E{4(x) = 0, and Cov(Ci(x), Ci(y)) = g(xAy) (cf. Lo and Singh (1984)).
Lemma 1. Assuming that F is continuous, one can write

n
r. (11) log T (x) - log F(x) = =+ £ ¢,(x) + R_(x), where
: n n 1=1 i n

(12) P( sup IRn(x)I>an) = 0(n™?),

) 0<x<T
i: for any 8§ > 0 with a n Oe¢[log n/n]3/4 for some constant 6 > 0 depending
on 8.
N Proof. The proof is given in the Appendix. =
Remark: Formula (12) is replaced by
9 (13) sup IRn(x)l 2 O(n-3/6(log n)3/4)
X 0<x<T
; in Theorem 1 of Lo and Singh (1984).
It follows from Borel~Cantelli Lemma that (12) implies (13), Hence
Lemma 1 is a stronger result than Theorem 1 of Lo and Singh (1984),
} Let E4(x) = F(x)*lq(x).

Lemma 2, Assume that F 18 continuous, then

n

(14) T (x) - F(x) = I, 800 + (0, where
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(15) sup E|r_ (x)|% = 0{[225_5](3/4)a} for any a>l.
n n
0<x<T
Proof. We shall only demonstrate the case a=l. Since [4(x)'s are
y uniformly bounded and (n+1)”! < F (%) < 1 for all x in [0,T], ve have

X sup ‘Rh(x)l = 0(log(n+1)), and hence
0<x<T

tan g

(16) sup E|R (x)| = sup E[|Ry(x)] ¢ I{|Ry(x)| > aj}]

N 0<x<T 0<x<T

X + sup E[|R (x)] ¢ I{|Rp(x)]| < ap}]

: 0<x<T

L. < sup P{|Ry(x)| > ay)} ¢ O(log(nt+l)) + aj

: 0<x<T

.

N = 0(a,), by lLemma 1.

3 Similarly, one can show that
2 2

L (17)  sup E(R (x)7) = O(a ).

‘ 0<x<T

- Now by Taylor's expression,

_ - [Pa(x) = F(x)]
¥ - -

y - rn(x) - F(X)

~ = exp{log Th(x)} - exp{log F(x)}

= [log To(x) - log F(x)] * F(x) + A, « [log Tp(x) - log F(x)]2

. :-..1.. ;g()-pf()-k()-ﬁ-A s [lo F()"IO E(X)]z
. ~ n =1 1 X X n' X n § Tnix & ’
5




where A, 1s between I'y(x) and F(x) and is therefore bounded by one.

It now follows from (16) and (17) that

Sup Ellog Th(x) - log i(x)l2 = sup E[ %-2 g, (x) + Rn(X)lz
0<x<T O<x<T

1 2 2
< sup 2[E( =Z E,(x))" + E(R_ (x)7)]
O<x<T n t n

< sup 2n-1Var (51(x)) + 0(32)
0<x<T n

= on~ Dy + 0(a?).
n

Hence

Sup E|rp(x)| < sup TF(x) ¢ E|Ry(x)| + sup E|log Th(x) - log F(x)|2
O<x<T 0<Kx<T OKx<T

- 0(ag) + O(n" 1) + 0(a§)

= 0(an)o [ ]
Finally, we state a lemma which by now is a standard device in the

kernel estimation literature:

Lemma 3: Assume the kernel k is a bounded density. Let g be an

integrable function.

(a) If {bn} is a sequence of positive numbers such that b,+0 as n*=,

then
(18) lm [ 3= k(E2) gu) du = g(x)
nee n n

for every continuity point x of g.
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X e

(b) If in addition k is symmetric with finite second moment, and g

is twice continuously differentiable at x, then

(19) ) L kf%:g) g(u) du = g(x) +-5:%§l f v2 k(v)dv o hi + o(bi]
n n

. e

3. Strong Approximation of fn(x)

Using the integration by parts lemma of Foldes, Rejto and Winter
(1981) and Proposition 1, under the assumption that k is continuous on its

support (condition (k3)), we have that if x<{T, where L(T)<1,

(20) £ (x) =—j k(" ) a I (u)

b b ‘
1 C .
- S; {c Fn(x - vbn) dk(v) ,
1 C 1 :
=5 | [F(x - vbn) + =2 E(X,8,,x - vbn) + b
n -c 1 :
r (x - vb )] dk(v)

c 1 c :
= [ f(x - vb ) k(v)dv +--1;-Z f E( i,x - vbn)dk(v) b
-c n nl -c .
1 € :
+ rn(x - vbn) dk(v) ,

n -c

= f(x) + 3n(x) + on(x) + en(x),

o« ’ f ’ K .’-..-’ ._ AR IR ’n K ‘.' AR P T T T m T et T e Ty ey, R T T S R G . v o
e a et \ 5‘. 4 S <m0 LY . LR P S’ e e T et e et P |
- T “" o g e . % - A AN SN '.‘\:._\'.b’.-s'.\' Y
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where

c
(21) Bu(x) = [ £(x = vby)k(v) dv - £(x)

-c
is essentially the bias of f,(x);
c

{c §(x1.61,x - vbn) dk(v)

(22) an(x) = -a!,—
n

el x -

is the random fluctuation component of f,(x), (we note that the integral

is well~defined for n large enough because k is compactly supported), and

b

c
(23) en(x) = l;-{c rn(x - Vbn) dk(v)

is the error of the approximation. It is easily checked that
-]

a
(24) sup Ien(x)| =  0((log n/n)
O<x<T

34, L,
b
n
by Lemma 2 and the fact that k is of bounded variation (condition (ké4).)

The process

n
(25) T(e) =2z g(X,8,,t), Os<r,
/n 1

has mean zero and covariance

E[E(s) E(t)] = F(s) F(¢) [ [TCuw)]~2 4 Ly(uw),
0

(26) r(s,t)

where we recall L(t) = F(t) « G(t), and Lj(t) = P(X4<t, 64=1). One notes
that this agrees with the covariance of the Kaplan-Meier process obtained
by Breslow and Crowley (1974) and reduces to the usual covariance of the

empirical process in the absence of censoring (see Hall and Wellner

(1980)). op(t) is thus a process with mean zero and covariance

............................

R .‘;\.‘,._._..'

Y e T N
S LA R THL SRS, SR LSRR (€ ¢



Y 12 il
| 1 c ¢ j
(27) E[o (t) 0. (8)] =— [ [ y(t-ub_, s=vb ) dk(u) dk(v). 4
n n 2 n n

nb” =¢c =c i

n i

it

.‘!

We now summarize our findings in the following .
Proposition 1l: Suppose F is absolutely continuous with density f(x) > 0 y
at x. Suppose k is of bounded variation and is continuous. Then f,(x) :
admits the strong approximation on the interval [0,T]: .
(28) fa(x) = £(x) + Bp(x) + on(x) + ey(x), .
4

where Bn(x), on(x), ey(x) are defined in (21), (22) and (23) respectively, ;i
and e, satisfies (24). i
In view of previous lemmas and the above proposition, we have the =
following consequences: J
3’

Corollary 1: (Strong pointwise consistency.) Suppose k satisfies E
W

(k1) - (k4), {b,} satisfies (bl), and additionmally, X
(b2) (n/log log n) 2, by > ® as n -+ = i
f(x) exists and 1s continuous at x. Then f,(x) » f(x) a.s. )

as n»e,

Corollary 2: (Bias and variance.) Suppose k satisfies (k1) - (k4), "
f(x) > 0, and that £ is twice continuously differentiable at x, then },
"\
i

£ (x) & 2 2 2 1 o

- »

(29) E fn(x) = f(x) +—2—£c v k(v) dv bn + o(bn) + O(bn an). .,’
2

(30) Var £ (x) = (ab )" £(x) 1© 2oav + on”Y) + o(¢a_/b )2 8
a %,

n -1/2

+ 0 ('b— (nbn) )o n

n P

~
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Proof: We shall demonstrate (30) only. Consider first

2,-1 ¢ © = =
Var an(x) - (nbn) {c {c F(x-ubn)F(x-vbn).

gl (x=uby A (x-vb,) ]Jdk(u)dk(v),

y _ -
gly) = [ [L(t)] 2dl..l(t:) has lLebesque derivative
o

dL, (t)
dg(t) _ "1 - 2 _ ey ee 2
it Tc /[L(t)]) f(t)/[G(t)F(t)").

k is symmetric, a two-term Taylor expansion argument ylields

Var on(x) = a;(x) + O(n-l).

Cc [
J g[(x-ubn)A(x-vbn)]dk(u)dk(v).

* 1-’(8)2 f
nb 2 -c =C
n

[+
n

integration by parts, we have

c x-vbn —~
/ gl(x-ub A(x=vb_)1dk(u) = [ K(557) dg(w)
-c x—cbn n

Thus by Fubini Theorem and a change of variable, we otbain

=/.72 xtch
*
var o_(x) --F-<—’2‘)— ;" kz(%w-)dg(w)
nb‘,l x-cbn n

. i(x)z x-!-(:brl

kZ(x-w f(w)
2 3 ) T3
nbﬂ x=C bn n G(w)F(w)

dw,

®, v LI SR A S R N S NI S 1
ML \' RO OO RO
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where the last equality follows by (31). Finally, another change of

variable and expansions applied to lead to the following

GF
approximation

(33) Var a*(x) = -f—(-’-‘—)-f kz(v)dv . -—ll’- + O(n-l).
G(x) =-c ™Pn

Next, observe that by lLemma 2, for n large enough, since b, + 0 as

n + «, we have

(34) Var e (x) < E(ei(x))

1 c c
"7 {c {c E{r_(x-ub )r_(x-vb_))dk(u)dk(v)
n

2
= O((an/bn) ).

Thus (30) follows by applying (32), (33), (34) and Schwartz's inequality

to an expansion of Var fnh(x) via (28). ]

Corollary 3: (Asymptotic normality.) Suppose k satisfies (k1) -(k&),
by = o(n-lls), and

1/2
(d3) -—--—-—7- J b + ® ag n+ o,

(log n)

Then

/5 [£ () - £0] -4-> N(o, £ ® ¢ 2egyav)
G(x) ~¢

as m=, Here -g-> means convergence in distribution,

Remark: Putting b, = O(n~*), the conditions in Corollary 3 say 1/5 < a < 1/2,

........................
>

.'-\..“!._'} 0 L‘-\'\L J.
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4, FKernel estimation of the hazard rate

We begin by stating the strong consistency of hﬁl)(x):

Theorem 1. Let k satisfy (k1) - (k4), {b,} satisfies (bl)(b2).
(a) If f is continuous, then hsl)(x) + h(x) a.s. as n + =,

(b) If f is uniformly continuous, then for any T with L(T) < 1,

hil)(x) + h(x) uniformly a.s. on [0,T] as n » =,

Proof. Since P(x)

n estimates F(x) uniformly a.s., the pointwise result (a)

is a direct consequence of Corollary 1. For (b), the proof is also
standard, noting that by Csorgo and Horvath (1983),

-1/2

a.s'
sup lKMn(x) - F(x)} = O(n log log n). .

0<x<T

In order to establish the asymptotic normality of hgl)(x), write

/nb_ [h(l)(x) - h(x)] = /nb_ {f (x) [= L - = :
ntn non I (x) #(x)

+ [fn(x) - £(x)] / F(x)}.

It suffices to show the first term on the right converges to zero in

probability. Now

F(x) - T (x)
(35 /mb {f (o) [= =

= ]} =vn [F(x) -T (x)]-
T_(x) F(x) n

. /B: fn(x)[fn(x) f(x)]-l.

saa PV N o ay

P

ol L0 0

L)
N
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Since /n[?h(x) - ikx)] tends in distribution to a normal random variabdle,
fa(x) converges to f(x) a.s. by Corollary 1, and clearly ffh(x)‘?Zx)]'l
converges to [F(x)]~2 a.s., we have by Slutsky's Theorem that the

expression in (35) tends to zero in probabhility, To summarize, we have

Theorem 2: Suppose F is absolutely continuous with density f(x) > 0,

suppose the kernel k satisfies (kl1)-(k4), and suppose the band sequence
{by} satisfies (b3) and additionally that b, = o(n~1/5). Then we have
(36) /a5 [V (x) - b)) 25N (0, B® [ 203a0)

L(x) -¢
as n + o,

Remark 1.

Tanner and Wong (1983) tackled the asymptotic normality question by
Hajek's projection. Their centering constant is E hﬁz)(x). thus bypassing
the bias issue. They also imposed a compatibility condition on the kernel
k with respect to both F and G. Such a condition 1is met by kernels

satisfying (kl)-(ké).

We now turn our attention to the study of MSE of h(l)(x). WUrite
(37) E[h (l)(x) - h(x)] = E[1+ 11+ 111]2
where
Im= fn(x) [ 1 - 1 ] ’

fnm F(x)

IT = [fn(x) - E fn(x)] /F(X),

111 = [E f,(x) ~ £(x)] / F(x).

Lt 0 4

LA RIARE
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We will show that the main contribution comes from E(II2) and BE(1I12), all
other terms Iin the quadratic expansion being of smaller order. Note also
that III is deterministic, Now

(38) E(I12) = [F(x)]~2 + Var f£,(x)

c a a
=22 1 P (eyav o o+ o(nY) + o[(F2)]7 + o2 -(nb )71/,
L(x) - n n n

a
39) E(111?) = (F)172 2(x) + o[ oy 1%) + B,0(5")

" c 4 a 2
= [ 1 vrav)? o bt wo(b) + o[ 2] ) + 0(ab ).
2F(x) =-c n n bn nn
To evaluate E(I), let us first consider
= - -1
f (x) f (x) I (x) - F(x)
(40) E[ =—] =B — [1+-T— ]}
T (x) F(x) F(x)
£ (x) f (x) T (x) = F(x) -
~e[2—]-B{ 22— [2— Jo (14 )2 )
F(x) F(x) F(x)

for some €, between 0 and [Tn(x) - F(x))/F(x) by Taylor's expansion for

large enough n since Tp(x) » ;%T for all x. Since If{(x)l, < M for some

oM<= by (k2) and (k3), we have that
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£ (x) Fn(x) - F(x)
(41) E|I| = Bl
F(x)

T (x) - F(x)
| < M . El n

F(x)2 (1 + en)z

2
(1 + en)

« =M {E[F (o) - B0 )13 (e[1 + e ]2
F(x)

by Schwarz inequality. Now

(42) 0 ¢ Bl +eq) ™" ¢ B[ ZZL 14 4
Pn(x)
F(x) - F(x) °
= E [1 -2 - ] +1,
Pn(x)

and

T (x) - F(x) 4 d 4

n n
@Bl BT stifm - Feol <oy

n n

4 - -
+ [ 2 ] . P(‘Pn(x) - F(x)| > dn)

4

n + na . n-s]

< 0[d
= O(n'l),
where the last inequality follows from Lemma 2 and the exponential bound
in Lemma 1 of Lo and Singh (1984) and d, = T * (log n/n)l/2 for some t>0,.

Hence from Holder's inequality, we have

(44) E[1 + e5)™% = 0(1).

Nl
A
Ay e~
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Apply Lemma 2 once more, one can show that
= = 2 -1
(45) E[Ty(x) - F(x)]° = 0o(n "),

It now follows from (41), (44) and (45) that E|I| = O(n-llz]. The term
E(Iz) can be shown in a similar fashion to be of order O(n-l). Hence

from (29) and (38),

(46) E|I-III| = |III|+E|I| = o(n'l/zb:) + o(n’l/z(an/bn))

-1/2

(47) E|IeII| = 0o(n . (nbn)-llz) + o(n'l/2 . (an/bn))

1/2 -1/4).

+ o(n'”2 s (ap/by) " “e(nby)

Let b, be of the form cn-p, where c,p are both positive constants.

-1/2,2 -1/2

For 0<p<l/4, O(n n) and O(n-llz(nbn) ) are the dominating

terms in E|I+III| and E|I-I1I| respectively.

-1/2 1/2 -1/4)

For 1/4 < p < 1/2, O(n-l/z(an/bn)) and O(n (ap/by) " “(nby)

are the dominating terms in E{I+III| and E[I-II| respectively.
For p > 1/2, O(n-llz(an/bn)) 1s the dominating term in both E|I+III| and
E{I-II].

-I/Zbﬁ for p < 1/4, and (nby)~) dominates n

-llzbﬁ) is always dominated by either b: or

-l/2b2

'
Since bn dominates n n

for p > 1/6, the term O(n

(nbh)-1 for any p > 0.

.....................
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Y

Also, (nbh)-l alwvays dominate n-l/z(nbn)-llz, 2(3n/bh) and

n-llz(an/bn)llz(nbn)_lla for any p > O,

0} E(IIZ) and E(IIIZ) will be the main contribution to the MSE of
-1/2

hil)(x). Futhermore, if {b,} satisfies (bl) and (b2), (nby,)

will dominate (a,/bp). Also either b: or (nbn)-l will dominate apby,.

We now state our finding:

Theorem 3: Suppose f is twice continuously differentiable at x, f(x) > 0,

the kernel k satisfies (k1)-(k4), and the band sequence {b,} satisfies (bl)

and (b2). Then

" c c
) msE[nD (0] = [EEZ 17 Pigoyav)? o bt + (B2 1 P (oya] @
n 2F(x) -c L) = ™n

4 1
+o(b + ES;J‘

5. Concluding Comments

(a) We have seen in the above discussion the use of Lo and Singh's

(1984) strong represnetation of the KRaplan-Meier estimator in

analyzing kernel estimation of hazard rate functions. We have

| P

chosen to consider the estimates given by h:l)(x) as contrasted

with hgz)(x) studied by Yandell (1983). Our variance expression

and asymptotic normality results are similar to theirs, although

we have employed a more traditional approach. The bias for the

........................................................
.....
------
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three variants appear to be different ir the scale constant but

not the rate,

(b) Tanner (1983) mentioned that a nearest-neighbor approach may be

preferable to the fixed band sequence approach from an extensive
8imulation experiment., This observation appears to have some
theoretical support judging from the recent work of Liu and

Van Ryzin (1985) which essentially used an asymmetric nearest-
neighbor window. Both their findings (Theorems 4.3 and 4.4) and
the findings of some other researchers on nearest neighbor
density estimation with censored data (for instance Mielniczuk
(1984)) suggest that the censoring mechanism may have no effect
on the varliance for nearest-neighbor estimates. This may be an
advantage in terms of constructing a confidence interval at a
fixed point or a simultaneous confidence band if one wants to
test for goodness-of-fit. WNevertheless, one cautions that the
bias behavior of the Liu and Van Ryzin variable histogram
estimator suffers essentially the same drawback as nearest-
neighbor estimators in that it may be quite large at the tail

regions of F,

(c) A number of researchers in kernel estimation have studied the

effects of kernels which may have vanishing moments. Its use,

ORI 30 I N 3y
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coupled with the assumption of a higher degree of smoothness of

3 h(x), can make the convergence of the bias to zero faster. This
point of view was taken in Singpurwalla and Wong (1983). Of
course one pays the price that the estimator so constructed may
take on negative values if the sample size 1s not "large enough.”

For this reason we have kept the non-negativity of the kernel in

this paper.
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PRANIL,

6. Appendix:

Proof of Lemma 1.

n 8
Let Ly(t) ="l ¥ I(x4 < t) and B
i=]

- -
AR

n
Lip(t) = "l I(xy < t, 854 = 1) be the empirical distribution
i=]
and subdistribution function respectively. If one checks the proof of

Theorem 1 of Lo and Singh (1984) carefully, one will find that R,(x) 1is

. - .
“w. LR

composed of three terms,

Rp(x) = Ry1(x) + Ryo(x) + Ry3(x), where

X
Rp1(x) = logfn(x) + [ [Tn(8)]7'd Lypn(s),
0

0 et " A e e

Ra2 () = [ ([E)]™ = [Tate)]™}) d Ly(o) +
0

fx([f.(s)]-z [L(s) - La(s)] a Ly(s)

o

[To(s) - Lts)]?
- = d Ll(s), s
[T(s)]? Tyts) R

Rp3(x) = fx([i(s)]“ - [Ta()]™Y) d (Lya(e) - LyCe))s

o

L A AT SRR

Lemma 1 then follows from Lemmas 4, 5 and 6 below.

To prove Lemmas 4, 5, 6, let q = P(Xy < T, 654 = 1) <1, g5 = P(X4 > T)

= I(T) > 0.

* LJ
r:'
W
b
b

~~~~~
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Lemma 4. For any a>0, and 0<b<l, we have

P{ sup [R(x)| > an "} ¢ 2¢7(179)/36

0<x<T

for large n.

Proof.
- 1
|Rp1(x)] < Z*Ilog(-'%-l-) +Ll. 1
n-{+2 n Ln(x(i))

where I* sums over all i such that X(1)<t and 5¢4) = 1

*
= T |log(1- n-i+2) + n-i‘
* 1 1
= I |log(1- n-1+2) + n-i+2l I (n-i n-i+2)
* (n-142)"2 1
«ff 22 4 " (- ), stnee
1~(n-1i+2)
2
~ = < log(l=x) + x < 0 for 0<x<1,
*, 1 *. 1 1
R o s e MR A ey e )
K 1 1
< I lmr -wm) L (5T o) vhere
i=1 i=]
n
K= ¥ I(Xi <T, 61 = l)

i=1

1_ 1
-1

- (— =) + (=
n=K+1 n+l n-K n-K+l n+l

2K K

= (n+1) (n=-K+1) + n(n-K)

< 3K
n(n-X)*

«

l.‘ A - e e ‘.l T ..I » R . R R » .‘
N R SR AN, R S R N CRS CR R s
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2-b
; 3X -b an
PG"T:‘ >an ) = P(K > —~ )
n(n-K) 3 4+ anl b

< P(K > (1+q)n/2)), for large n

= P(K - nq > (1-q)n/2)

< 2e-n(l-q)/36’

where the last inequality follows from Lemma 1 of Lo and Singh (1984) by
letting ny = I(Xy < T, 64 = 1)-q, c=1, d=n(1-q)/6, 02 = q(l1-q) and z = d/6

= n(1-q)/36

Lemma 4 now follows immediately, ]
]
Lemma 5. For any & > 0, P{ sup Iha(x)!>e{ < a'e ™€ for some positive
o<x<T

constants a' and b'.
Proof. Note that 0 < ha(x) < ha(T). We have
“2 = ena=l= =2
|Ra2(TY| < €, [Ln(T)] "1Ly=Li, where K+l 1s the sup-norm of a
function over the interval [0,T].
Hence, P(|Rp2(T)| > ¢€)

< M{UEI ey T2 > € €2, T > eo/2) + P{In() < eo/2)

< P{If.n-fl:, > ¢ 52/2} + P{Lo(T) < eo/2}

=T + II,

- W v e e A W K . B e e . M et ey~
) AR AN W ) ' WA 2ot WA > 2P Y Wi s "".‘,"‘\-"""."‘ ""s‘\ ot L
IO R NI L L o A e LA T Wy S0 gy R e . WA B »

o i oo PR

0 s o o ~
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s
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Lemma 2 of Dvoretzky, Klefer and Wolfowitz (1956) implies that

3
-need

I € constant ¢ e , and

II = P{L(T) - g4 < = €4/2}

2
< constant e e-neo/Z.

Lemma 5 is thus proved. .

Lemma 6. If F is continuous, for any B > 0O, there exists constant n > 0

such that

P( Sup |Rp3(x)| > n ¢ (log n/n)3/4) = O(n-B).
0<x<T

Proof. We shall give the proof for the case when G is also assumed to be
continuous, and hence L is continuous,
The proof parallels those of Lemma 2 of Lo and Singh (1984)

with more rigorous probability statements. The proof when G is arbitrary
can be done similarly as the remark on page 10 of Lo and Singh (1984).
We shall now proceed with the proof when both F and G are assumed to be
continuous,

Divide the interval [0,T] into subintervals [x4, xy41], 1=0,...,ky,,

1/2

where k; = o(n/log n) "") and 0 = x5 < x) < «ee < xkn+l = T are such that

L(xy41) - L(xg4) € ¢y * (log n/n)l/2. This 1s possible because L is

assumed to be continuous. From any O<x<T, we have

IRp3(x)] € ky o Sup JER()17! = [E(eN e Max  [(E1p-T1) (xgap) -
0<t<T 1<i<ky

CinT)x)] +2 Max  Sup  {Eg(0)17) - [Eplxp)) ™
0<icky, xgy<t<xq4]

- e+ o™

= A + B,
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from the proof of Lemma 2 of Lo and Singh (1984).

To estimate B, we further subdivide each [x4, xj4)] into subintervals

[x15, x1(341)]s I=1,¢c0,my such that L(xg(y+1)) = L(x34) € ez * (log n/n)3/4

1/4).

for all 1, j and m, = 0((n/log n) Consider

By = Sup  E0))TY - [T 17 - (7! + (D17
xqSt<x{41

< sup  |[Ep(t) = LOIII(E) ™2 = (Ealxg) - Tx 1T (x) 172
Xg<t<xX441]

+ 0L, - Tip « 1@, D! - (D)2

< Sup |i(x1)]-2|£n(t) - L(t) = Lnlxq) + Lixg)|
x4<t<xy41

2

+ sup  |Tae) = L) |+ |T2(e) = T°2(xg)| + 20D, = Tag - 5;2 [La(1”

X§<t<X44]

< Mxe?|;un)-;uﬁ)-;up+iuﬂl+q(Mgwm”“
1<j<m,

+ 25;4 « 1L, - Lip « cj(log u/n)l/2 + Zegzlfn - in% [fn(T)]-l.

1

We have
P{ag > leg + 9:;2(c1l3)1/2] e (log n/n/)>4)
< P{ Max Iin(xij) - i(xij) - Lnlxg) + Lixg)} > 3(c16)l/2(10g n/n)3/6}
1<j<m,
+ P{aL, - Lrp > (3/2) eg (ﬂ/cl)l/2 * (log n/ny /%
+ P{iTy - DALMY > (372319 (108 n/m) Y%
= I+ II + 111,
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1/4

L
b'n , for some positive constants a'

From the proof of Lemma 5, III < a'e

and b', From Lemma 2 of Dvoretzky, Kiefer and Wolfowitz (1956), II < \
1/2

-b*n

ak ¢ e , for some positive constants a* and v*. As for I, for any

fixed j, use Lemma 1 of Lo and Singh (1984) with ny = Lp(xy4q) = Lixgy) -

1/2 I/an/b

in(xi) + i(xi), c=1, 02 < c] ¢ (log n/n) » 2=8 logn, d = (cB)

(log n)3/a. We have cz < d for large n, and nzo? = 42,

=B log n -8

Bonferoni inequality then implies I < 2m, e =2m, n ",
So far we have shown that, for any positive B there exists a positive
constant w such that

/4 1/2

*
3/l') < 2my n P+ ae®m + a%e ™ s

P{Agy > w * (log n/n)

= 2m, nf 4+ O(n-B). !
Applying Bonferoni inequality once more, we have

/

P{B > w * (log n/n)3 4) < (kp + Dmy O(n-ﬁ), for 8 > 1,

= 0(n Py, for g > 0.

To estimate A, use the fact that |Lj(x) - Tj(y)}<|L(x) - T(y)] for any
x and y. Apply Lemma 1 of Lo and Singh (1984) again as we did for the
term I above, and we have

P(Qs) = P{ Max [(Ljp - L)(x441) - (10 - L1)(x4)| constant « (log n/n)al&}

1<i<ky

- kfl L4 O(n-B)o

CO% Y 2L AP Y SO SR A
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Hence

3/4

P(A > constant ¢ (log n/n)~'")

= P{ky, o l(f.,,)-1 - (L)"lap ¢ @4 > constant * (log n/n)3/4}

< P{kg * 1L, - Lip » [in(T)]-lo Q4 > constant ¢ (log n/n)3/4}

3/4

< P{[Zn(T)]_lo R4 > constant ¢ (log n/n)”' "} +

Pl » 1(Ey) - D1y > Y2
= P{Qq > constant ¢ (log n/n)ala} + P{L (T) < (e,/2)}
+ Pk, * 1T, - LT > g1/2)

-neg/Z -28 log n

= kn * o(n-B) + constant ¢ e + constant ¢ e
for arbitrary B > 1, where the second term was computed in Lemma 5 and the

third term comes from Lemma 2 of Dvoretzky, Kiefer and Wolfowitz (1956).

- O(n-B) for arbitrary g > O,

We have thus shown Lemma 6. s
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