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Abstract

For a clinical trial where two treatments have been 
assigned sequentially

to the patients via Efron's (1971) biased coin design, a 
recursion procedure is

derived for obtaining the exact randomization distribution 
of a class of test

statistics. This enables one to perform exact significance tests 
of the

hypothesis of no treatment difference. The randomization distribution of the

statistic is conditional on the imbalance of the treatment allocation. It is

illustrated that if the analysis is performed as if complete 
randomization was

used, conservative and anticonservative errors can be incurred. 
The applica-

bility of the test to censored data is also discussed.
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1. INTRODUCTION

In clinical trials to compare the efficacy of treatments A and B, patients

typically arrive sequentially and upon arrival are assigned a treatment or

otherwise excluded from the trial. Several designs are possible for assigning

the treatments. Complete randomization assigns treatments on the basis of the

outcomes of independent tosses of a fair coin, whereas systematic design

alternately assigns the treatments after the first patient has been assigned a

treatment. The complete randomization design is optimal in minimizing selection

bias (see Blackwell and Hodges, 1957), the bias introduced when the experimenter

can predict with high probability the treatment an incoming patient will receive.

It also controls accidental bias, the effect of covariates, time trends, etc., on

the statistical analysis of the resulting data. However it suffers from the

defect that it could produce highly imbalanced treatment allocations especially

for small-sample trials (Efron 1971 and Pocock 1979). Such an imbalance may

decrease the efficiency of statistical procedures, and may also lead to less

credible results (Halpern and Brown 1986; Smith 1984b). In contrast, the

systematic design is optimal in balancing the treatment allocation, but is the

worst design in controlling selection and accidental bias.

Efron (1971) introduced the biased coin design with bias p, abbreviated

BCD(p) for convenience. This design is a compromise between the complete

randomization and systematic designs. Let TI, T2, ... denote the sequence of

assignment variables with Ti = 0 or I according to whether the ith patient receivesil
treatment A or B, respectively. With D0 = O, define for i= 1, 2,

i
Di = 2 T i (1.1)

j=



Under the BCD(p) where 0.5 <p < 1, the probability that the (i+l) thpatient receive:-

B is p, 0.5 or q=l-p depending on whether Di <, =, or > 0, respectively.

Wei(1977, 1978) generalized this by allowing the assignment probabilities for the

(i+l) t h patient to depend both on i and Di . Efron (1971), Wei (1977, 1978) and

Smith (1984a, b) demonstrated that these designs compare quite well with complete

randomization in controlling selection and accidental bias in addition to having

better balancing properties.

We confine our attention to a clinical trial where treatments A and B have

been assigned to n patients via the BCD(p), and study the randomization test of

HO, the null hypothesis of no treatment difference. Ile consider test statistics

of the form

n
Sn laiTi (1.2)

so that the two-sided version of the randomization test rejects H0 whenever Sn

is either "too small" or "too large." In (1.2), al, ... , an is a nonrandom

sequence of scores associated with the sequence of patient responses xl, ... , xn

and these scores are typically functions of the ranks of the xils. In deciding

whether Sn is too small or too large, Cox(1982) suggested taking the randomization

distribution of Sn over those treatment allocations with the same or nearly the

same terminal imbalance as the observed allocation. In accordance with this

suggestion, our results are conditional on Dn, the terminal imbalance of the

treatment allocation.

In Section 2 we utilize the Markovian structure of Do, D1 , ... to derive a

recursion procedure for obtaining the exact distribution of Sn, conditional on

Dn =m. This procedure enables one to perform exact significance tests of Hi0 .

In Section 3 we present procedures for computing higher-order probabilities of

Do, D1, ... and suggest possible approximations. These probabilities are

3
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needed in the recursion of Section 2. Section 4 illustrates the consequences of

ignoring the BCD(p) allocation and instead acting as if complete randomization wa-

used; while Section 5 considers the applicability of the randomization test to

censored patient responses.

Whereas our work focuses on exact results, previous research dealt mostly

with asymptotic results. Efron (1971) presented an asymptotic argument showing

that if one ignores the BCD(p) allocation and instead acts as if complete

randomization was used, the randomization test of H0 could be conservative or

anticonservative. Halpern and Brown (1986) concluded on the basis of their

simulation results that in the case where the patient responses are binary, the

classical 2 x 2 X2-test should not be used to compute significance probabilities

when the observed responses exhibit a strong trend. Smythe and Wei (1983)

derived the asymptotic null distribution of S. under Wei's (1977) urn design.

Cox (1982) and Smith (1984b) discussed the randomization tests of H0 for special

cases of Weits (1973) biased coin designs. Wei, Smythe and Smith (1986) derived

the asymptotic null distribution of the k-treatment version of (1.2) when the

treatments are assigned via a k-treatment version of Wei's biased coin design.

2. THE RANDOMIZATION DISTRIBUTION

Let Z denote the set of integers, L the set of positive integers, and set
Z0

= Z u (0). By the defining property of the BCD(p), the process Do, D1, ... ,

in (1.1) is a homogeneous Markov chain with state space Z. It has stationary

transition probabilities

4



P i = Pr(D I JID Omi), i'L ie:zI.S if j=*l, i=O
p if (Jrni+l, i<O]or (jai-l, i0)

q if (J=i-l,i<O) or (j=i+l,i>0) (2.1)

0 otherwise.

Let (A ict , j c Zbe the nth order transition probabilities of this chain,

and represent the randomization distribution of Sn' given Dn= m, by

h;(s) = PrC(n-sID0=0,Dn-m), Se P Pm >010 otherwise

where

= a it.i: t. £ (0, 1) and 2 t. i-n =m).

Then we have the following procedure for computing {h"Cs). For continuity
m;

of presentation, proofs of the theorems are deferred to the Appendix.

Theorem 1. If mE Z with p' > 0and s . n, then

n n -i nhm) = (P Om) J;S)

where Q k Cs)) satisfy the recursion equationm

k k-1 k-u (s) k= 1, *.,n,
mW) in-i J;l(s-ak) +(-m+,lm~l'

with initial and boundary conditions Ji0(s)- 1 if m- =0 and s= 0, 0 otherwise; and

where ymn=p, S5, q according to whether in <,, > 0, respectively.



An immediate consequence of this theorem is

Pn,, =u J (u) (2.2)0 n

where lu denotes summation over all u £ -Em Combined with Theorem 1 this shows

that

hn(s) = m reM) JM(s), sC me

Using (2.2) to obtain pn requires knowledge of jn(u) for all ue A n. But

to compute significance probabilities one usually needs only those values of

h n (u) and Jn(u) for u beyond the observed value of Sn. In Section 3 we therefore

present a different method for computing P which does not require knowledge

of {Jn(u)).

The next result allows us to restrict attention to conditional randomization

distributions with Dn =maO.

nn

Theorem 2. If mcZ+ with pn >0 and sean, then hn(s)= hn a_-s).~ i%>o m' tehm -m~ i -s)

Observe that when ai = rank(xi) the recursion in Theorem I has some similarity

with that of Mann and Whitney (1947) for the Mann-Whitney-Wilcoxon U statistic.
However, in contrast to the distribution of 13, (hn (s)} is not invariant with

respect to permutations of the scores al, ... , an. This is illustrated by Table 1

which summarizes the conditional randomization distribution of Sn' under BCD(2/3),

for all permutations of the ranks. (For economy of space we just list the

distributions for n= 4 and m= 0.)

6
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Table 1. Randomization Distributions of Sn for the 24 Rank Permutatinns under
BCD(2/3) with n=4 and m=O.

Values of Sn

Rank
Sequences 3 4 5 6 7

1234 1243 2134 2143 2 3 6 3 2

I6 7 17 -T - -6
4321 3421 4312 3412

1324 1342 3124 3142 3 2 6 2 3

16 T6_ -6 1- T-6
4231 2431 4213 2413

1423 1432 4123 4132 3 3 4 3 3

3241 2341 3214 2314

We developed a FORTRAN subroutine that implements the recursion procedure
in Theorem 1 for the case ai = rank(xi) and Dn = m>O. Interested readers could

obtain this program by writing to Edsel Pefa. Using the Cyber 730 computer, the

computer time required by this program to obtain the conditional randomization

distribution of Sn for n=6, 12, 18, 24 and 30 with m=0 and p=2/3 were 0.15,

0.81, 3.16, 9.14 and 20.75 CPU seconds, respectively. Note the exponential rate

of increase of the time as n increases. In a forthcoming report, we present

large-sample approximations that enables one to obtain approximate p-values when

the recursion in Theorem I is not practically feasible.

3. HIGHER-ORDER PROBABILITIES

We now present recursive methods for computing the higher-order transition

probabilities of the process Do, D1, .... Let Y10 Y2 ' ... be identically

distributed and independent random variables with Pr(Y 1=1)= q= 1- Pr(YI=-1).

7
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With 11 =0, defineW =Y +...Y. for ieZ .The process Wo I,... is the0i 1 1 OwW 1
umymtric random walk with negative drift. For j e Z0and n F Z, let

n'-1

b n n ID~)

Pr( n (W .!0); W=j1W =01.0,J ii 1 0
furthermore, let C(b,a) denote the number of combinations of a items taken from

b items.

Then the higher-order transition probabilities satisfy the following:

Theorem 3. For neZ and m e

(i) ~ fk p-
0i) 0 k=1 0,000

(i i) FP1  -(.5)bn~ n-k+O,m 0,m- k=0 'oO,m

Theorem 4.

(i) f =0 and f;,0 = (2n-1)~ C(2n-l,n-I)pnqnl' for n

00

for ne Z0, meZ 0

Efron (1971) obtained the stationary distribution of IDOI ID it ....
0' 1

From this distribution, the 3tationary distribution prubabilitir.5 of nu. ..

denoted by (n., jeZI are found to be

i- (p-q) /(2p) and r* =i .% = p /(4p 2)(/)l

8
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Since Do, DI, ... has period 2 it follows that the limiting values o£ 2
01 0, 2m

and 2n-l are 21 and 21 2m 1 , respectively. For large n we could approxir.a[092m-l 2M2m1

pfn in Theorem I by these limiting values. Computations show that these
0,m

approximations are quite good for sample sizes of at least 30. This is illus-

trated by Table 2 which summarizes the exact values of P0, for 6:5n:530 and

05m:56 under BCD(2/3). These values were computed using Theorems 3 and 4.

The last row contains the limiting probabilities. Notice the close agreement

between P 0  and 27r when m is even, and P 29and 2 when n is odd.
Om 2m m

4. A SIMULATION STUDY

A computer simulation was performed to illustrate the consequences of

ignoring the BCD(p) allocation and instead acting as if complete randomization

was used. This simulation was done on a Cyber 730 computer at the Florida State

University Computing Center. The uniform random number generator used was the

intrinsic routine RANF.

Five hundred replicates were generated of the following experiment. Each

experiment consisted of generating n= 15 independent uniform (0,1) variates

Xl, ..., xlS and obtaining their associated ranks a,, ..., a1 5 , and then

generating the treatment assignment variates tl, ..., t15 via the BCD(2/3).

After stratifying these 500 replicates according to their value of D = m, the

conditional randomization distributions {hms (s)} were obtained using the FORTRANm[
program mentioned in Section 2. For each of these distributions, the a-level

conservative critical values so corresponding to the one-sided test which rajocts

H0 when S is small was determined. The significance levels were set to

0.01, 0.05 an4 0.10. Note that so is conservative in the sense that

Pr(S1 5 <SoID 0 .0, D15im) : a and <r(Si5 s 0 +l(D 0=0, D s=m) > a.

9
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Table 2. Exact Higher-Order Transition (P~ n and Limiting (2nm) Probabilities

of Do, Dl,.. under BCD(2/3).

m
n 01 2 3 4 56

6 0.5597 0.1893 0.0288 0.0021

7 0.4060 0.0823 0.0110

8 0.5413 0.1902 0.0347 0.0041

9 0.3975 0.0866 0.0143

10 0.5300 0.1902 0.0384 0.0058

11 0.3913 0.0890 0.0167

12 0.5224 0.189S 0.0408 0.0071

13 0.3878 0.0905 0.0183

14 0.5171 0. 1896 0.0424 0.0081

15 0.3850 0.0915 0.0195

16 0.5133 0. 1893 0.0435 0.0088

17 0.3828 0.0921 0.0204

18 0.5104 0.1890 0.0443 0.0094

19 0.3812 0.0925 0.0211

20 0.5083 0.1888 0.0449 0.0099

21 0.3800 0.0928 0.0216

22 0.5067 0.1886 0.0453 0.0102

23 0.3790 0.0931 0.0219

24 0.5054 0.1884 0.0456 0.0105

25 0.3783 0.0932 0.0222

26 0.5044 0.1882 0.0459 0.0107

27 0.3777 0.0933 0.0225

28 0.5036 0.1881 0.0461 0.0109

29 0.3772 0.0934 0.0226

30 0.5029 0.1880 0.0462 0.0110

2wr 0.5000 0.3750 0.1875 0.0937 0.0468 0.0234 0.0117

10



Table 3 is a summary of the results of this simulation. The second colwan

shows the number of replicates that have DI is m. The last three pairs of

coltums show the percentages of replicates, for each value of m, that have

a-level critical value so. We excluded the cases m=-S and m= 5 since there

were only IS and 9 replicates in each, respectively. Those values of s o that are

superscripted by an asterisk are the a-level critical values under complete

randomization.

Table 3 shows that if one ignores the BCD(p) allocation and instead performs

the randomization test employing the critical value derived under complete

randomization, the test could be conservative or anticonservative. Conservatism

is illustrated by the cases m=-1 and m=1 with a= 0.01, while the latter is

manifested by the cases m=-I and m a with aO= 0.05 and a= 0.10.

5. APPLICABILITY TO CENSORED DATA

The simulation study in the preceding section dealt only with uncensored

responses. However, the test discussed here can also accomodate censored data,

albeit from a more restricted censorship model than is typically assumed. Let

Xt, ... , X be the independent response variables of the patients, and

' Yn be the sequence of independent censoring variables, with the (Xi }

independent of the {Yi. In the typical nonparametric two-sample censorship model

it is assumed that Yi conditional on Ti = 0 has distribution G1, and Yi conditional

on Ti = 1 has distribution G2 , where G1 and G2 are unspecified. For our randomi-

zation test to be valid in this censored situation, we need to impose the

requirement that C1- . (Thiq "equal cenorIng diLrIboution" xosLIcti~on may

11



Table 3. Number of Replicates With DI5 = m, and Percentages of Replicates For

Each Value of m with a-Level Critical Value so.

No. of a=a0.01 0.05 a=0.10
m Replicates so  so  S0 s

26 5.36 31 3.57 34 5.36

27 28.57 32 25.00 35 25.00

-3 56 28* 35.71 33* 39.29 36* 39.29

29 23.21 34 23.21 37 23.21

30 7.14 35 8.93 38 7.14

34 10.11 39 1.12 42 1.12

35* 43.82 40 40.45 43 42.70

-1 178 36 34.27 41* 43.26 44* 40.45

37 10.67 42 12.92 45 14.04

38 1.12 43 2.25 46 1.69

42 8.91 47 1.49 so O.So
43* 39.60 48 34.16 51 37.13

1 202 44 37.62 49* 42.57 52* 40.59

45 12.87 50 18.81 53 18.81
46 0.50 51 2.48 54 2.48

47 0.50 52 O.SO 55 0.50

50 5.56 55 5.56 58 5.56

51 36.11 56 30.56 59 33.33

3 36 52* 44.44 57* 47.22 60* 44.44

53 8.33 58 8.33 61 8.33

54 5.56 59 8.33 62 8.33

*Critical values under complete randomization.

12
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not be unreasonable in clinical trials where patient arrival and treatment

assignment is sequential.) Under this restriction, the test could then make

use of a wide variety of choices for the a's. For example, Gehan's (1965)

method of assigning the scores is. as follows: Let (Z1 ,6 1 ), ... , (Zn, 6n) be

the observed censored data where Z = min(XiY i) and 6. = I(Xi-f). For
I1 ii

ij=l,...,n, define

r 0 if (Z iZ ., 6i=1)

j 0.5 if (Zi, 6i=0) or (Z iZ j , 6 =O)

I if (Zi>Zj, 6j=l).

The Gehan scores are obtained by letting ai a 1+ j, il, ... , n.

APPENDIX: PROOFS

Proof of Theorem 1. Let mPN 0 and sAn. Then

0(s) a Pr(S =sDn_l=m- lIDo=O=m) + Pr(Sn=SV 1= m+ l lDO= O Dn = m)

n- n' On n- n-a Pr(S lI=S-a nDnl=m-'l D0=OVDn =m) + Pr(SnIz=SQnI=m+llDo=O,Vn=m)

= Pr(Dn l=m-l Do=O,Dn=m)Pr(Sn 1=S-an IDo=O,Dn l=m-, sDnom)

+ Pr(Dnl=m+lDo=ODn-=m)Pr(Sn.l=sIDO-o,Dn~lnm+l,D n-m).

Conditional on Dn 1  Sn. I and Dn are independent by the Markov property of

Do, DID Dn. Furthermore, Pr(D lm-D=O,D=m) -n-I- and%, .- 0 n = 'Om.I Ym-i/l0oman

n-1 n
Pr(D, Ium+ D0=ODn-m) = Po,m+l(l- ym+l)/Pom. Therefore,

13

&.a. J



n n n-1 n-1 .- n-1 hkns
Po6 hm(S) nYm-i1 h-nl(s'an) Y ml1s1)Po,m+h (s)" Letting J =(s)
Pk k r(k(s) Thintaan ona.0, mh;(s) we obtain the recursion equation for {J (s)). The initial and bounda:

conditions follow from the fact that h;(s) = I if m= 0 and s= 0, 0 otherwise, and

P0  = I if m= 0, 0 otherwise.O,3

Before proving Theorem 2 we first prove the following lemma.

Lemma 1. The process Dog D19 ... is symmetric in the sense that

n n
Prfi__nl (D.=d i)1Do=do} = Pr{ n 1(Di=-di) D0=-d O )

for every do, 0**9 dn with d.Z.

Proof of Lemma 1. From (2.1) we obtain

Pr(Di+l=di+llD I=di) Pr(Di+l=-di+ilIDi=-di).

By the Maikov property of (Dk} we have

n n
Pr{ n ) D =).D, .il( =d.) D=d r(=d

n n

= Pr( Pr{ n (D.u-d. 1Do-d 0 }. 11i=l Di• dIDi=d ) i-i 1

Corollary 1. pn p1 i•Z,jeZ,neZ 0

Proof of Corollary 1. Follows from Lemma 1.

Proof of Theorem 2. Given (tl,...,tn) let (tj,...,t n) = (l-tl, .,1.tn) Then
n n lli' n

2 i ti - n-m and i ait =s if and only if 2 X tf-n=-m and ait = a -s.
in l i i'ml i mi irn

By Lema 1 and Corollary I it follows that

n n
Pri nl (Ti=ti) IDO-0•D nm" - Pr{inl (Ti=l-tI)1 0=O,Dn'-m

n nl n

Consequently, hn(s) = hnMC I ai-s).

14
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Proof of Theorem 3. To prove (i) we have

n k-i
2,o -Prk (n(D.-O);

n k-i
= Pr{.n (Dj*0); Dk=0[D0=0}Pr(Dn=OlDk=0)
k=l J=0 3

using the ?arkov property of {DkI. Since {D kI} is homogeneous, (i) follows. For

meZ-~., we have

i
,"pr{nnl(U.>O);'_ Dn=mIDo=OI

n k-
+ Prv i(n (D eO); Dk=O,Dn D=mIDo=

n-IG (.)Pr{i n2(D. ? ) 1) Dnm ID a 0

n k-w
+ I Pr{,.n,(D i.-s0); Dk=0IDo=O)Pr(Dn-mlDk=O)
k=l1=

n-2 I PDD.k (n-kG (5) Pr(i.nl(WikO) ; if lmM-llW0O no + INOv

since Dip D2 ... is stochasically equivalent to WON NJ ... when Di > for

i- 1, 2, ... , and Do. D1, ... is homogeneous. Recalling the definition of

n-1b o,m I we obtain (ii). II

2n Pr(D=I,D2 . , 2n.I' ,D21 1 _OID o0)

+ Pr(D 1=-I, D2<!-1,,• •,D 2n.1! -1 ,D 2n'O 0 1 0).•

By Lemma 1 these probabilities are equal, hence

f2n -Pr(D2 k ,D 2 1>,D nOID o0,D =I)
0,0o 2 " 2-i n

a Pr(W 1>-I, •.. W2n.2 >-I, ,W2n-li I  0 -0=).•

15
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Each path from (0,0) to (2n-l,-l) must have probability pnqn- and by the ballax

theorem (Feller 1968, p.66) there are (2n-lf1lC(2n-l,n-1) such paths, completin7

the proof of (i).

On the otherhand, each path from (0,0) to (n,m) has (n+m)/2 "up" steps

and (n-m)/2 "down" steps, thus has pnrobability p(n-)/ 2 q.n+m)/2 . By the ballot

theorem the number of paths from (0,0) to (n,m) lying above or on zero is

{(m+l)/(n+l)) C(n+l,(n+m+2)/2). Thus (ii) follows.
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