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For a clinical trial where two treatments have been assigned sequentially 5

to the patients via Efron's (1971) biased coin design, a recursion procedure is

derived for obtaining the exact randomization distribution of a class of test

statistics. This enables one to perform exact significance tests of the :
hypothesis of no treatment difference. The randomization distribution of the F
statistic is conditional on the imbalance of the treatment allocation. It is i
illustrated that if the analysis is performed as if complete randomization was E
used, conservative and anticonservative errors can be incurred. The applica- N

bility of the test to censored data is also discussed.
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1. INTRODUCTION

In clinical trials to compare the efficacy of treatments A and B, patients
typically arrive sequentially and upon arrival are assigned a treatment or
otherwise excluded from the trial, Several designs are possible for assigning
the treatments. Complete randomization assigns treatments on the basis of the
outcomes of independent tosses of a fair coin, whereas systematic design
alternately assigns the treatments after the first patient has been assigned a
treatment. The complete randomization design is optimal in minimizing selection
bias (see Blackwell and Hodges, 1957), the bias introduced when the experimenter
can predict with high probability the treatment an incoming patient will receive.
It also controls accidental bias, the effect of covariates, time trends, etc., on
the statistical analysis of the resulting data, However it suffers from the \
defect that it could produce highly imbalanced treatment allocations especially
for small-sample trials (Efron 1971 and Pocock 1979). Such an imbalance may
decrease the efficiency of statistical procedures, and may also lead to less 4
credible results (Halpern and Brown 1986; Smith 1984b), In contrast, the
systematic design is optimal in balancing the treatment allocation, but is the
worst design in controllingselection and accidental bias.

Efron (1971) introduced the biased coin design with bias p, abbreviated
BCD(p) for convenience, This design is a compromise between the complete

randomization and systematic designs, Let Tl’ T denote the sequence of

2. een
assignment variables with Ti==0 or 1 according to whether the jth patient receives

treatment A or B, respectively. With D,=0, define for i=1, 2, ...

i
D; = zjlej -i, (1.1)




[

Under the BCD(p) where 0.5 <p <1, the probability that the (i+1)thpatientreceivef
Bisp, 05 0r q¥ 1-p depending on whether D; <, =, or > 0, respectively.
Wei(1977, 1978) generalized this by allowing the assignment probabilities for the
(i+1)th patient to depend both on i and D;. Efron (1971), Wei (1977, 1978) and
Smith (1984a, b) demonstrated that these designs compare quite well with complete
randomization in controlling selection and accidental bias in addition to having
better balancing properties,

We confine our attention to a clinical trial where treatments A and B have
been assigned to n patients via the BCD(p), and study the randomization test of
HO’ the null hypothesis of no treatment difference. We consider test statistics

of the form

S = §arT, (1.2)

so that the two-sided version of the randomization test rejects H0 whenever Sn

is either "too small" or "too large." In (1.2), 2;, .+, 3, is a nonrandom
sequence of scores associated with the sequence of patient TeSPONsSes X;, +ee) X,
and these scores are typically functions of the ranks of the xi's. In deciding
whether S, is too small or too large, Cox(1982) suggested taking the randomization
distribution of Sn over those treatment allocations with the same or nearly the
same terminal imbalance as the observed allocation. In accordance with this

suggestion, our results are conditional on D

h» the terminal imbalance of the

treatment allocation.

In Section 2 we utilize the Markovian structure of Dy» Dl’ eees to derive a
recursion procedure for obtaining the exact distribution of Sn' conditional on
qnsln. This procedure enables one to perform exact significance tests of Ho.

In Section 3 we present procedures for computing higher-order probabilities of

DO’ Dl’ «+. and suggest possible approximations. These probabilities are
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needed in the recursion of Section 2. Section 4 illustrates the consequences of ;
ignoring the BCD(p) allocation and instead acting as if complete randomization was ;
used; while Section 5 considers the applicability of the randomization test to

censored patient responses.

Whereas our work focuses on exact results, previous research dealt mostly

with asymptotic results, Efron (1971) presented an asymptotic argument showing
that if one ignores the BCD(p) allocation and instead acts as if complete
randomization was used, the randomization test of HO could be conservative or
anticonservative. Halpern and Brown (1986) concluded on the basis of their
simulation results that in the case where the patient responses are binary, the
classical 2x2 xz-test should not be used to compute significance probabilities )
when the observed responses exhibit a strong trend., Smythe and Wei (1983)

derived the asymptotic null distribution of Sn under Wei's (1977) urn design, \
Cox (1982) and Smith (1984b) discussed the randomization tests of H, for special i
cases of Wei's (1973) biased coin designs. Wei, Smythe and Smith (1986) derived A
the asymptotic null distribution of the k-treatment version of (1.2) when the A

treatments are assigned via a k-treatment version of Wei's biased coin design.

2, THE RANDOMIZATION DISTRIBUTION

Let Z denote the set of integers, Z, the set of positive integers, and set

;g = ;* u {0}. By the defining property of the BCD(p), the process D,, Dyy wees K

in (1.1) is a homogeneous Markov chain with state space Z. It has stationary

transition probabilities i




Pi'j = pr(nl-jlooai), jeZ, iel

5  if j=%1, i=0
if (j=i+l, i<0) or (j=i-1, i>0)

if (j=i-1,i<0) or (j=i+l, i>0)
otherwise,

(2.1)

[= 2~ B ]

Let {P'i‘ it ieZ,jeZlbe the n*® order transition probabilities of this chain,
»

and represent the randomization distribution of Sn » given Dn=m, by

n .n
h:(s) = [ Pr(s =s|D=0,D =m), sea], Po,m> 0
0 otherwise
where
A =1{)a.t.:t.e{0,1}and 2) t, -n=m).
m jep 17 1 j=1 *

Then we have the following procedure for computing {h:l(s)}. For continuity

of presentation, proofs of the theorems are deferred to the Appendix.

Theorem 1., If meZ with P’(; m>0 and seA:, then
»

n n ,-1.n
ha(s) = (P o) " Jy(s),
where {J:;(s)} satisfy the recursion equation

k-1

k -
Tals) = vy I lsea) + ey, (), k=1, ..o,

with initial and boundary conditions Jg(s) =1 if m=0 and s=0, 0 otherwise; and

vwhere Ya=P, .5, q according to whether m <, =, > 0, respectively.
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An immediate consequence of this theorem is
n_ n
Po,m = Ly Jp() (2.2)

where Zu denotes summation over all ue A;. Combined with Theorem 1 this shows

that

n
m

n n -1.n
hm(s) = {Zqu(u)} Jm(s), sed

n
0,

to compute significance probabilities one usually needs only those values of

Using (2.2) to obtain P n requires knowledge of J:‘(u) for all ue A:. But
h:(u) and J:(u) for u beyond the observed value of S,e In Section 3 we therefore
present a different method for computing Pg n which does not require knowledge
1 4
of {J:(u)}.
The next result allows us to restrict attention to conditional randomization

distributions with Dn =m20,

n

0 . by
Theorem 2. If meZ_ with Py >0 and se a7, then h(s) =h'_‘m(i§ a;-s).

=1

Observe that when a; = rank(xi) the recursion in Theorem 1 has some similarity
with that of Mann and Whitney (1947) for the Mann-Whitney-Wilcoxon U statistic.
However, in contrast to the distribution of U, {h:l(s)} is not invariant with
respect to permutations of the scores By eeey Bpe This is illustrated by Table 1
which summarizes the conditional randomization distribution of Sn, under BCD(2/3),

for all permutations of the ranks. (For economy of space we just list the

distributions for nz4 and m=0,)
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Table 1. Randomization Distributions of Sn for the 24 Rank Permutatinns under
BCD(2/3) with n=4 and m= 0.

Values of Sn
Rank
Sequences 3 4 5 6 7
1234 1243 2134 2143 2 3 6 3 2
16 16 16 16 16
4321 3421 4312 3412 ‘
1324 1342 3124 3142 3 2 6 2 3
16 16 16 16 16
4231 2431 4213 2413
1423 1432 4123 4132 3 3 4 3 3
16 16 16 16 16
3241 2341 3214 2314

We developed a FORTRAN subroutine that implements the recursion procedure
in Theorem 1 for the case a; = rank(xi) and D, =m20, Interested readers could
obtain this program by writing to Edsel Pefia, Using the Cyber 730 computer, the
computer time required by this program to obtain the conditional randomization
distribution of Sn for n=6, 12, 18, 24 and 30 with m=0 and p=2/3 were 0.15,
0.81, 3,16, 9.14 and 20.75 CPU seconds, respectively, Note the exponential rate
of increase of the time as n increases, In a forthcoming report, we present
large-sample approximations that enables one to obtain approximate p-values when

the recursion in Theorem 1 is not practically feasible.

3. HIGHER-ORDER PROBABILITIES

We now present recursive methods for computing the higher-order transition
probabilities of the process D,, Dl’ ees s Let Yl' Y2’ .+ be identically

distributed and independent random variables with Pr(Ylsl) =q=1- Pr(Y1=-1).

.............
-------
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With Wo=0, define wi=Y1+ "”Yi for ieZ . The process Wo, Wis eee is the Y

unsymmetric random walk with negative drift. For je 52 and neZ,, let

n-1
fg’j = Pr{ 0 (D;%5); D;=3|D,=0}, ;
bn _ {n'l . . y
0,j ° Pr igl(tizo), wn-3|w0-0}.

Furthermore, let C(b,a) denote the number of combinations of a items taken from .

b items.

Then the higher-order transition probabilities satisfy the following:
Theorem 3. For ne Z andmegZ,,
n L k
(1) Pt = V& pt-
‘s n-1
(i) P’(;.m = (.5)b

Theorem 4,

(i) fg!:al = 0 and fgno = (Zn-l)'l C(2n-1,n-1)pnqn°1 fornez , ;
(ii) bg,m = {(m+*1)/(n+1)} C(n+1,(n+m+2)/2)p(“'“0/2 q(n+m)/2 {

0

0
for neZ,meZ .

Efron (1971) obtained the stationary distribution of |D0| . 'Dll’ oo s

» ey W T

From this distribution, the stationary distribution probabilities of nu. Do .-

denoted by {"j' jeZ) are found to be

To = (-a)/(2p) and mi=n . = (p-a)/(4pD) @/, sz
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Since DO' Dl’ «so has period 2 it follows that the limiting values of'Pgnzm
]
2n-1

and PO,Zm—l are Z"Zm and Z"Zm-l’ respectively, For large n we could approxima:i :
Pg,m in Theorem 1 by these limiting values. Computations show that these
approximations are quite good for sample sizes of at least 30. This is illus-
trated by Table 2 which summarizes the exact values of Pg, m for 6<n< 30 and

0<m<6 under BCD(2/3). These values were computed using Theorems 3 and 4.

The last row contains the limiting probabilities., Notice the close agreement

29

30 .
between PO,m and Zwm when m is even, and Po,m

and an when n is odd.

4. A SIMULATION STUDY

A computer simulation was performed to illustrate the consequences of
ignoring the BCD(p) allocation and instead acting as if complete randomization
was used. This simulation was done on a Cyber 730 computer at the Florida State
University Computing Center. The uniform random number generator used was the
intrinsic routine RANF,

Five hundred replicates were generated of the following experiment. Each
experiment consisted of generating n= 15 independent uniform (0,1) variates
X1 eoes Xge and obtaining their associated ranks A1y eees 5, and then

generating the treatment assignment variates tis eeen t via the BCD(2/3).

15
After stratifying these 500 replicates according to their value of Dls==m, the
conditional randomization distributions {h;S(s)} were obtained using the FORTRAN
program mentioned in Section 2. For each of these distributions, the a-level
conservative critical values o corresponding to the one-sided test which rejocts

H, when S15 is small was determined. The significance lcvels were set to

0
0.01, 0.05 and 0,10, Note that So is conservative in the sense that

Pr(SlSsso|Do-0, Djg=m) < a and Pr(815550+1|00=0, Dyg=m > a.
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Table 2, Exact Higher-Order Transition (Pg m) and Limiting (Zﬂm) Probabilities
t4
of DO’ Dl’ ... under BCD(2/3).

- —
n 0 1 2 3 4 5 6 4
6 0.5597 0.1893 0.0288 0.0021
7 0.4060 0.0823 0.0110
8 0.5413 0.1902 0.0347 0.0041
, 9 0.3975 0.0866 0.0143 -
' 10 0.5300 0.1902 0.0384 0.0058 :
11 0.3913 0.0890 0.0167 ’
12 0.5224 0.189¢ 0.0408 0.0071
13 0.3878 0.0905 0.0183 -
14 0.5171 0.1896 0.0424 0.0081 :
15 0.3850 0.0915 0.0195 y
16 0.5133 0.1893 0.0435 0.0088
17 0.3828 0.0921 0.0204
18 0.5104 0.1890 0.0443 0.0094
19 0,3812 0.0925 0.0211
20 0.5083 0.1888 0.0449 0.0099 "
21 0.3800 0.0928 0.0216 X
22 0.5067 0.1886 0.0453 0.0102 :
23 0.3790 0.0931 0.0219
24 0.5054 0.1884 0.0456 0.0105 ’
25 0.3783 0.0932 0.0222 -
26 0.5044 0.1882 0.0459 0.0107 s
27 0.3777 0.0933 0.0225 X
28 0.5036 0.1881 0.0461 0.0109
29 0.3772 0.0934 0.0226 E
30 0.5029 0.1880 0.0462 0.0110 "
2n_ 0.5000 0.3750 0.1875 0.0937  0.0468 0.0234 0,0117 .

10 -
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Table 3 is a summary of the results of this simulation. The second colum
shows the number of replicates that have Dls'm‘ The last three pairs of
columns show the percentages of replicates, for each value of m, that have
a-level critical value Sge We excluded the cases m=-5 and m=5 since there
were only 15 and 9 replicates in each, respectively, Those values of s, that are
superscripted by an asterisk are the a-level critical values under complete
randomization.

Table 3 shows that if one ignores the BCD(p) allocation and instead performs
the randomization test employing the critical value derived under complete
randomization, the test could be conservative or anticomservative. Conservatism
is illustrated by the cases m=~1 and m=1 with a= 0,01, while the latter is

manifested by the cases m=-1 and m=1 with a=0,05 and a=0,10,

S. APPLICABILITY TO CENSORED DATA

The simulation study in the preceding section dealt only with uncensored
responses. However, the test discussed here can also accomodate censored data,
albeit from a more restricted censorship model than is typically assumed. Let

1, «s, X be the independent response variables of the patients, and

,th, cene, Y, be the sequence of independent censoring variables, with the {xi}

independent of the {Yi}. In the typical nonparametric two-sample censorship model

it is assumed that Yy conditional on T, = 0 has distribution G,, and Y, conditional
on T, =1 has distribution G,, where G, and G, are unspecified. For our randomi-
zation test to be valid in this censored situation, we need to impose the

requirement that G 1 G 2° (This "equal censoring distribut jon" rostriction may

11
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Table 3. Number of Replicates With Dls=|n, and Percentages of Replicates For

Each Value of m with a-Level Critical Value s,..

(]
\ No. of a=0.01 a=0.05 a=0.10
m Replicates So % So % So %

,- 26 5.36 31 3.57 34 5.36
‘ 27  28.57 32 25.00 35  25.00
' -3 56 28*  35.71 33* 39,29 36* 39,29
29  23.21 34 23.21 37 23.21
30 7.14 35 8.93 38 7.14
34 10.11 39 1.12 42 1.12
- 35% 43,82 40  40.45 43 42,70
-1 178 36 34,27 41* 43,26 44*  40.45
! 37 10.67 42 12.92 45 14,04
38 1.12 43 2.25 46 1.69
42 8.91 47 1.49 50 0.50
. 43*  39.60 48  34.16 51  37.13
§ 1 202 44 37.62 49* 42,57 52*  40.59
J 45  12.87 50  18.81 53 18,81
46 0.50 51 2.48 54 2.48
47 0.50 52 0.50 55 0.50
50 5.56 55 5.56 58 5.56
51 36.11 56 30,56 59  33.33
3 36 52* 44,44 57% 47,22 60* 44.44
53 8.33 58 8.33 61 8.33
) 54 5.56 59 8.33 § 62 8.33

e

S R e e i

*Critical values under complete randomization,

12
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not be unreasonable in clinical trials where patien"t arrival and treatment

assignment is sequential.) Under this restriction, the test could then make

use of a wide variety of chcices for the a's. For example, Gehan's (1965)
method of assigning the scores is. as follows: Let (21,61), cees (Zn,sn) be ¢
the observed censored data where Zi =min(X i,Yi) and Gi = I(XiSY i) . For

i,j=1, ..., n, define

0 if (Z, Szj, i 1) };,
nij =4 0,5 if (zigj’ Gi=0) or (Zi>2j, .=0)

1 if (2;°2;, 85=1). !

The Gehan scores are obtained by letting a = 1+ Z "ij’ i=1, ..., N, f

i%j
b
N
. 3
APPENDIX: PROOFS 5
Proof of Theorem 1. Let meZ with Pg n>0 and se A:. Then .~
’ :
. ) o ) ) o
h (s) = Pr(S =s,D ,=m-1|D=0,D =m) + pr(sn-s,nn_fmulno-o,nnsm) s
§
= Pr(Sn-lgs-an,Dn_fm-llD0=0,Dn=m) + Pr(Sn_1=s,Dn_1=m+1|Do=0,Dn=m) :
= Pr(D__;=m-1|D,=0,D =M Pr(S, 1=s-an|Do=0 D, _,=0-1,D =m) '
¢
+ Pr(Dn_l=m+1|Do=0,Dn=m)Pr(Sn_1=s|D =0,D _,=m+1,D =m). :
Conditional on Dn 1 S el and Dn are independent by the Markov property of )
- -
= = PP -1 N
Dgs Dys ++es D,. Furthermore, Pr(D,_=m-1|D,=0,D =m) = Po.m-1 Y- l/P‘(;’m and ;
Pr(D_ _,=m+1|Dy=0,D =m) = llM(l 'rm_l)/Po ne Therefore, \
13 3




N nl n-

N Omm(s) mlOmlm

N P
1(s-a) + (1- Ym,l)P m+1 m+1(s)‘ Letting J (s) =

b l(; n m(s) we obtain the recursion equation for {J (s)} The initial and bounda:
' conditions follow from the fact that hm(s) =1 if m=0 and s=0, 0 otherwise, and
P) =1 1£m=0, 0 otherwise.

4
1 0,m
’
' Before proving Theorem 2 we first prove the following lemma,

Lemma 1. The process D Dl’ eees 1s symmetric in the sense that

0’

n n
Pr{;n, (D;=d;) | Dy=dy} = Pr{igl(ni.-:-di) | Dy=-d,}

for every do, eeey dn with dieg.

Proof of Lemma 1, From (2.1) we obtain

Pr(D, |D;=d,) = Pr(D; R RILAZT B S

i+1” 1+l

By the Markov property of {Dk} we have

n n
Pr{igl(Di=di)|DO=do} = 1§1Pr(bi=di|ni- P

1794,

I D (D, =-d, [D=-dn}. |

n

1 Corollary 1. P . =P

. . 0
i, -i,-j’ ieZ, jeZ, neg’.

Follows from Lemma 1.

Proof of Corollary 1.

Proof of Theorem 2. Given (t,,...,t)) let (t{,...,t})=(1 “t,.ialet). Then

n n
: Zt-n n and Zat-sxfandonly1f2gt-n=-mand {alt1 18 -s.
1-1 i=1 i=1 =1 i=1

By Lemma 1 and Corollary 1 it follows that

n n
Pr{ N (T;=t;)|Dy=0,D, =m} = Pr{121(Ti’1"i)l“o=°-°n"“}'

Consequently, h- n(s) = h ¢ E a,-s).
1=1

.
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Proof of Theorem 3., To prove (i) we have

n k-1
p’(;’ 0" Pr[kgl{jgl(njao); Dk=0.0n=0}l00=01

n k-1
= kZIPr{jsl(Dj=0) H Dk=0| Do=0}Pr(Dn=o| Dk=0)

using the Markov property of {Dk}' Since {Dk} is homogeneous, (i) follows. For

meZ, , we have

Py

n-1
0,m ~ Pr{i__r}l(Di>0); Dn=m|D0=0}

n k-l . - }l o]
+ Pr[kgl{iglcni:m, D, =0,D_=m} | Dy=
= (.5)P {n-l n }
= (.5Pr 105(0;21); Dn-mlblal
n p k=1 . OI =0}Pr(D = l -0)
+ kZI r{igl(Di-atO), Dk= DO'O r( R Dk'

n-2 s n-k
= (9P 0 (2005 W,_ =m-1]WG=0) + kZﬁ,O"o.m

since Dl’ Dy, «e. is stochastically equivalent to Wo, ”1’ «s« When DiZI for

i=1, 2, ..., and D,, Dl’ ess is homogeneous. Recalling the definition of

bp~2 | we obtain (ii). I
»

Proof of Theorem 4. That fﬁ“al 20 is immediate from the fact that {Dk} is of
»

period 2, On the otherhand,

zn = = = =
fo’o = Pr(Dl-l,Dzzl,...,DZn_lzl,DZn-OlDo 0)

+ Pr(D1=-1,D <-1,.., s-l,DZn=o|Do=o),

2 Don-1

By Lemma 1 these probabilities are equal, hence

2n
fo.o = Pr(D,21,... ’Dzn-121'°zn’°|°o‘°'°1‘1)
= Pr(W>-1,000,Wp o>-1,W, =1 | 1,=0) .
15
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Each path from (0,0) to (2n-1,-1) must have probability p“q"'l and by the ballo:
: theorem (Feller 1968, p.66) there are (2n-1)°1C(2n-1,n-1) such paths, completin~
| the proof of (i).

On the otherhand, each path from (0,0) to (n,m) has (n+m)/2 "up" steps
7 and (n-m)/2 "down" steps, thus has probability p(n-m)/2q(n+n0/2. By the ballot
theorenm the number of paths from (0,0) to (n,m) lying above or on zero is

{(m+1)/(n+1)} C(n+l,(n+m+2)/2). Thus (ii) follows. il
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