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ABSTRACT

The structure and the size of the supports of balanced in-
complete block (BIB) designs are explored. The concept of funda-
mental BIB designs is introduced and its usefulness in the study
of the support of BIB designs is demonstrated. It is shown that
the support size can be recuced via a technique called trade on
a design. A new graphical method of studying the supports of BIB
designs with blocks of size three is introduced. Several useful
results are obtained via this graphical method. In particular,
it is shown that no BIB design with seven varieties in blocks of
size three can be built based on sixteen distinct blocks. Con-
tributions made here have immediate applications in controlled

experimental designs and survey samplings.
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C. INTRODUCTION.

The standard statistical optimality of balanced incomplete
block (BIB) designs has nothing to do whether or not the design
has repeated blocks. However, it is known that such designs
have interesting additional applications in design of experiments
and controlled survey sampling. Therefore, it is useful to study
the existence and nonexistence of BIB designs with repeated blocks
and catalog them for practical applications. The set of distinct
blocks, referred to as the support, of BIB designs plays a crucial
role in the study of BIB designs. This paper is mainly devoted to
explore the structure of the supports for this family of designs.

Formal definitions and notations are introduced in section 1.

In section 2 we shall briefly present the algebraic formulation

v

AL A SOR )
LN (3

of all BIB designs by Foody and Hedayat (1977). This allows us

AR

LA

to introduce, for the first time, the concept of fundamental BIB

desizns and demonstrate its usefulness in our study. The general
concept of trades of Hedayat and Li (1979) will be restricted to

the notion of trades on a design. We have utillized this latter

idea for reducing the support size of a design. :f %
The structure of supports and their possible sizes are studied ‘55;}
in detail in section 3. Some implications of our results on the ;}’—
entire design are also pointed out. A graphical description of ;gfﬁé
the support for blocks of size 3 is introduced and studied in E'{Ej‘;
section 3.3, We have demonstrated the usefulness of our graphical A
description by applying the result to the case of v =17, k = 3 S;?‘;
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in section 4. These techniques allowed us to conclude that it
is impossible to build a BIB design based on 7 varieties in blocks
of size 3 if we are limited to have 16 distinct blocks only.

1. DEFINITIONS AND NOTATION.

Let vEk be the set of (:) distinct subsets of size k based
on the set V = {1,2,...,v}]. We will refer to the elements of V
as varieties. For convenience the number (z) will be denoted
by vCk. A balanced incomplete block (BIB) design with parameters
v.b,r,k,x,b‘ is a collection of b elements of vgk, referred to
as blocks, with properties:

1) each variety occurs in exactly r blocks,

i1) each pair of distinct varieties appears together in
exactly A Dblocks,

i11) there are exactly b" distinct blocks among all b
blocks of the design.

It b' < b then we say the design is a BIB design with re-
peated blocks. The support of a BIB design, D, is the collection
of distinct blocks in D, denoted by D". We will denote the
cardinality of D’ by b' and shall refer to b' as the support
size of D.

We will denote a BIB(v,b,r,k,\) with support size b* by
BIB(v,b.r.k.xlb'). Any incomplete block design may be specified
by the number of times that each element of vk is repeated in

that design. We write f1 for the frequency of the ith element

of vk 1in the design. Thus, we identify an incomplete block
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h design, D. with vtk and the frequency vector
Fu (fl.fa.....vak)'. It is clear that b=f,+f + ...+ f o
and that b‘ is the number of non-zero entries in the vector F.
The BIB design, D, is said to be a uniform BIB design if the non-
f zero components of F are all identical. A BIB design with
“ b =b" = vCk 1is denoted by DT(v,k) and referred to as the
. trivial BIB design based on v and k. A BIB design with b< vCk

is said to be a reduced design.

2. CONSTRUCTION OF BIB DESIGNS WITH REPEATED BLOCKS.

In this section we list techniques for constructing BIB ce-

signs with repeated blocks from already known BIB designs. The
requirement that we begin with a known design is not unduly re-
strictive, since for any v and k the trivial design is availa-
] ble. From the trivial design we will be able to construct many

other designs.

2.1. P-matrix Representation of BIB Designs.

To introduce the new concept of fundamental BIB designs we

need some algebraic results and ideas of Foody and Hedayat (1977)
which will be introduced first. Given v and k, begin by

k labelling the elements of v2 from 1 to vC2 and those of vrk
from 1 to vCk. Let piJ =1 if the 1ith element of vg2 1is

. contained in the Jjth element of vtk, and let piJ = 0 other-

)
T T 3 T e g T L s e TS SR e, A S




IO YO,

YXYEX LS

B W s AL

'y
b
“ o

WA

.o \.h "

"y

o

WO

wise. Let P be the matrix (pij)' Thus P s an incidence
matrix relating pairs and k-sets 1n the trivial desizn for v
and K.

Since any incomplete block design can be identified with its
frequency vector, F, we will often refer to "the BIB design F",

meaning the design determined by F. It is easy to verify:

Lemma 2.1. The frequency vector F determines a BIB design if

and only if
PF = Al (2.1)

where A 1is a positive integer.

If F = (fl,...,fn)’ and G = (gl.....gn)' are vectors, we
will write F > G 1if fi 2 - for all i and fJ > 53 for
some J. Therefore, the problem of constructing all BIB designs
based on v,k, and )\ 1is precisely the problem of finding all non-
negative integer solutions, F, to the equation PF = Al. In the
language of mathematical programming, we want to solve the system

PF = 11l

F20 (2.2)
for integer values of F. If we are not interested in a particular
value of 1\, then this integer programming problem may be replaced
by the linear programming problem of finding rational solutions to
(2.2). Multiplying both A and F by a common multiple of the
denominators of the entries of F will give a new frequency vector

of integers and a new 3 which will fulfill condition (2.1).

cT g e, et e T T wm e . M m A m_ 4 s+ @ s s e e m s . .. a
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Lemma 2.1 will now be used to zive a geometric characteriza-
tion of the set, 3 of all BIB designs for a given v and k.

Proposition 2.2. If cl,....cn are non-negative intezers, not

all equal to O, and if F,,...,F  are in 3. then

n
c,Fy +.c+ ¢ F ) is in 3.

A set with the property which Proposition 2.2 ascribes to ¥
is called a positive integer cone. Lemma 2.1 also gives immedi-

ately the following fact about 3.

Proposition 2.3. (i) If Fe® and g 1is a common divisor

of the entries of F then g *Fe 7. (ii) If F, and F,

are in ¥ with F, > F, then F, -~ F, € 7.

Note that it follows from (i) that if there is no BIB design
with b < vCk, then there is no uniform BIB design with b* < vCk.
It is clear that for any fixed A there are only finitely many
solutions to (2.1), and that if 1\ 1is free to vary, there are
infinitely many. But many of these solutions are in fact posi-
tive combinations of other ones, It is shown that there are
only finitely many designs that are not such combinations. To
be more precise, we make the following definition. A BIB design
F 1is a fundamental design if there does not exist any BIB design

F such that PF > Fl'

1
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Corresponding to the concept of a fundamental design is
that of an irreducible solution in non-nezative integers to a
system of homogeneous linear equations. Consider the set of
non-negative integer solutions to the set of homogeneous linear

equations
AX = 0 (2.3)

where A is an mxn matrix of integers. Such a solution Xl

is called irreducible if for no other such solution, X2. xl > x2.

It is known that there are only finitely many irreducible solu-
tions to (2.3). For a proof of this fact see, for example,

Grace and Young [(1903)]. Notice that, for a given v and k,

the vector F determines 4 and that if Fl < F2 then L9 < Py

Thus, each fundamental BIB design corresponds to an irreducible

solution to the system

Therefore we have
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Proposition 2.4. For any given v and k there are only

finitely many fundamental BIB designs.

It 1s worth noting that every fundamental designs 1is a
basic feasible solution to the integer program (2.2) for some
value of A, but that the converse does not hold. For example,
if Fy is a fundamental design with parameter v,b,r,k,)
then 2F1 will still be a basic feasible solution to the

program.
PF=(21)}
F>0 .

The fundamental designs are fundamental in the sense that

they generate all BIB designs for a given v and k.

Proposition 2.5. For a given v and k let F Dbe the

frequency vector of a BIB design and let FiseeesFp e the
frequency vectors of the fundamental designs. Then there

exist non-negative integers 8yseeesdp such that

F=2a;F +...+ a F (2.5)

Proof: If b 1is minimal for v and Kk, then F is clearly

fundamental and 2.5 is satisfied. Proceeding by induction on
b, suppose F 1is the frequency of an arbitrary design D. If
D is fundamental, then 2,5 is satisfied. If D 1s not funda-

mental, then there exists a design with frequency vector F

1
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such that Fy < F. By Proposition 2.3, F - P is also the
frequency vector of a BIB design and both 1’F; and 3{(?-?1)
are less than b. Thus, by the inductive hypothesis, doth

Py and F - Fl have representations as in 2.5, But so then
does F, since F = F, + (F-Fl).

2.2. construction of BIB Designs by Trades

This section discusses the construction of one BIB design
from another by trading blocks. Suppose that the BIB design
D contains a set of (not necessarily distinct) blocks, S.
Suppose alsé that there exists another set of blocks, S’, based
on the same v and Kk such that S and S’ contain the same
pairs of varieties the same number of times. If we remove S
from D and replace it by S’, then the new design will still
be a BIB with the same parameters v,b,r,k,X, but with possibly
a different value of b*. Following Hedayat and Li (1979), we
define a trade in terms of the P-matrix discussed above: A

non-zero vector of integers, T, 1s called a trade if PT = 0.

Note that this definition makes no reference to any parti-
cular design, but depends only on the parameters that define
P, namely v and k. The following lemma is due to Hedayat
and L1 (1979).

Lemma 2.6. lLet F = (fl,....fvck)' be the frequency vector

of a BIB(1.e., PF = A1) and let T = (t),...,t, )" bDea




Q9-
trade (L.e., PT = Q).
(1) For all positive integers m and n, mF + nT is

a BIB design if and only if mF + nT > O.
(11) The condition that f, > O whenever t, < 0 is

necessary and sufficient for there to exist positive integers

m and n such that =oF + nT 1is a BIB design.

Notice that for any trade T, t1+...+tvcx = 0; that is
0=2'0=1'(PT) = (2’P)T = (kC2)Q’T.

So T has both positive and negative entries. In Hedayat
and Li (1979) the sum of the positive entries is called the
yolume of the trade.

Trades for which the blocks added and the blocks sub-
tracted are both already present in the support of a design
play an important role in the sequel. We will say that a
trade T = (t;,...,t,, )’ 1is a trade op the design D if
t, = 0 for all blocks not in D' .

Trades on the design D may also be characterized as
follows: remove from the P-matrix all columns corresponding
to blocks absent from D'. and call the resulting matrix P'.
Then each vector T* of integers satisfying P’T’ =0
corresponding to a trade, T, on the design D. To reconstruct
T from T, let t, = O if the i-th Dblock is absent from
p*, and t, = t; 'if the i-th block corresponds to the j-th
coluan of P*. So sets of trades on a given design, like sets

of trades in general, correspond to the integer valued vectors

e e \.-',.\.“.f.. ‘-‘
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in the mull space of a matrix. By utilizing some results of
Foody and Hedayat (1977) we have:

Proposition 2.7. Let F Dbe the frequency vector of the design

D. If T is a trade on the design D, then there exist posi-

tive integers m and n such that moF + nT is the frequency

PRI Y. TR LI PR LT L A S SO o O UL T .. Y w® . 3 -
gt NN . ~" .";\"“ 0 ".’ " "' o AN MII .' 2 '$(~" 3 ) '* )

vector of a BIB design whose support is properly contained in

D*.

Proof: let F = (fl,-o-,fvcl()' and T = (tljooo)tvck)' o

Also select J so that
1:3/1"j = min(t,/f,|f, £ 0}.
Then t,j < 0, so there exist positive integers m and n
such that
m nt = .

But

-1

mf, + nt; > fifj (mfj+ntJ) =0 i=1,...,vCkK.

Some value of ti is positive, so not all mf:L + nti are
equal to 0. Thus mF + nT defines a BIB design by Lemma
2.6, and its support 1s a proper subset of D*.

Proposition 2.8. If D and D, are BIB designs such that
n; As properly contained in D", then there exists a trade

on D.

MISIL L
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Proof: Let P and G be the frequency vectors of D and

Dys» respectively. Then PF =11 and PG = 1,1, and there
exist positive integers m and n such that m - nAl = 0.
Then P(mF-nG) = O, and mF - nG £ 0, since for some 1,

f. > 0 bdut 8y = O. Thus mF - nG 1is a trade. And since

i
DI c D*, it is a trade on D.

Starting with the trivial design for v and k, a trade
can be constructed by finding a non-zero rational solution to
the equation PT' = Q0. The solution vector is then mltiplied
by the least common multiple of its denominators to give a
vector of integers, that is, a trade. This trade is applied
to a multiple of the trivial design to produce a new design,
D, as in Proposition 2.7, with smaller support. Now remove
from P the columns corresponding to blocks absent from D;
to produce P,. Find a solution to PT=0 and continue
as above. This process will ultimately produce a design whose
support cannot be reduced. Foody and Hedayat (1977) utilized

a result similar to Proposition 2.7 and presented some techniques

for producing BIB designs whose support is contained within a

given design.
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3, THE SUPPORT OF A BIB DESIGN.

This section 1is concerned with the supports of BIB de-
signs. First we examine the characteristics of designs whose
supports are minimal. We then provide some lower bounds for
the size of a support, and consider some conditions under
which sets of blocks may form the support of a BIB design.
The case where the block size, k, is equal to three will be

discussed in greater detail.

3.1. Minimal Supports

For a glven v and X we can partially order by set
inclusion all of the supports of BIB designs based on that
v and k. Let us refer to the minimal elements under this
ordering as minimal supports. The discussion after Proposition ]
2.8 provides a technique for generating designs with minimal
supports.
The following proposition shows that all BIB designs with

the same minimal support are, in a sense, the same.

Proposition 3.1. Let D be a BIB design based on v and k.

Then D has minimal support if and only if any other BIB
design with the same support is a rational multiple of D.

Proof: Suppose D, is also a BIB design and let the fre-

quency vectors of D and D, be F and G respectively.
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Suppose that D' is a minimal support and that DI =D
but D, is not a multiple of D. Now PF = xl and PG = 1,1
for positive integers 1 and X,, and there exist positive
integers q and s such that q - sxl =0. Let T = qF - sG.
since D; 18 not a multiple of D, it follows that T £ 0.
Thus T 1is a trade on the design D, and by Proposition 2.7,

D* cannot be minimal.

To show the converse, suppose that every design with support

- .

D* is a rational multiple of D, but that D' is not a mini-
mal support. Then there exists a design Dl such that D;

et

-

*
is properly contained in D . If F and G are defined as

- A

above, clearly G 1is not a rational multiple of F. Thus ‘
nF - G is never a rational multiple of F. But for a large

enough integer n, the support of the design defined by nPF - G

g e cem o s

is D*, since nF - G> F and DI c D*. This is a contradic-

tion.

. ———-

Corollary >.2. For a given v and Kk let D* be a minimal

support and let £ be the set of all BIB designs supported ‘

by D'. Then there exists a unique design D ¢ £ such that ;

all other designs EB d are integer multiples 2£ D. Further,

D is a fundamental design. ;

Proof: Choose a design D in & with the smallest value of

A out of all designs in #, and let F Dbe its frequency

vector. Note that the greatest common divisor of the entries b
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of F is one, by Proposition 2.3. Thus, if aF 1is a design
for some rational number a, it follows that a must be an
integer. So, by the last proposition, all designs supported
by D’ are integer multiples of D. Also, if some integer
multiple of D 1s to have the same value of A as D does,
then this other design must be equal to D, which demonstrates
uniqueness. Finally, if G 1is the frequency vector of a de-
sign such that G < F, then the support of this design must
be equal to D', by minimality of D . But G < F implies
that PG < Al, contradicting the construction of D. Thus D
is a fundamental design.

An interesting problem, for which we do not know the
answer, is how to f}nd the values of- v and k for which
all fundamental designs have minimal supports.

For any v and k we can give an upper bound on the
number of blocks in a minimal support. In fact, this bound

depends only on V.

Proposition 3.3. For any given BIB design with minimal support,

b < vez.

Proof: If D has minimal support, then by Proposition 2.7,

there does not exist a trade on D, i.e., if F = (fl,...,fvck)'

is the frequency vector of D, there is no vector

T = (tl,...,tvck)' such that t; = O whenever f, = O and

LTy L TN e AT gl 0
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PT = 0. Equivalently, forming P' by removirg the columns of
P corresponding to blocks for which fi = 0, there is no vector

*
T such that

* _#*

PT =_.

That 1is, P* has full column rank. Thus the number of columns
of P', namely b', must be less than or equal to the number

of rows, namely vC2.

3.2. Lower Bounds on the Support Size of a BIB Design.
Lower bounds for b, the number of blocks in & BIB design

are well known. One such result is Fisher's irequality: b > v.
In this section we give some lower bounds on b', the number of
distinct blocks in the design. Some of these bounds depend upon
an inequality due to Mann (1969).

Lemma 3.4 (Mann). If F = (f,,...,f )’ 1is the freauency

vector of a BIB(v,b,r,k,\), then £, < Y/v, 1 =1,...,vCk.

Utilizing Mann's inequality we obtain the following useful
Corollary.
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corollary 3.5. If F = (f},...,f )" 1s the frequency

vector of D, & BIB(v,b,r,k,)), and if f, = b/v for some

i, then every block in D' intersects the i-th bdlock in

the same number _o_t: elements.

For example, if v =7 and k = 3 then the basic
necessary conditions on the parameters show that A = b/v.
Thus, any block with frequency 1 intersects every other
block in the support in exactly one variety.

From Mann's inequality we obtain the following corelatives
of Fisher's inequality.

*
Proposition 3.6. b > v.

Proof: By Mann, b/v > f,. Summing on both sides over all

non-zero values of fi’ we get
*
b (b/v) > b,

giving the result desired.

Proposition 3.7. If b't = v then the design is unifornm.

Proof: First b/v = 7f,/v, summing over the non-zero entries
in F. If b =v, this implies that b/v = If,/d"; that is,

that b/v 1s equal to the average of the non-zero entries in

F. But by Mann, b/v is greater than or equal to each of

-
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these entries. Thus, they all must be equal to b/v, and so

to each other.

These last two propositions have also been proved by van
Lint and Ryser (1972), using a different technigue. In the
same article, van Lint and Ryser also proved (essentially)

the following proposition.

Proposition 3.7. In a BIB design, b* v+ 1. Thue,., ina

non-uniform BIB design. 'y 2V + 2.

Obviously in a BIB design the frequency of any block can-

not exceed ).

Proposition 3.8. Suppose (fl,...,vak)' is the frequency

vector of a BIB(v,b,r,k,\). Then

- (11) b > bA,
(111) 1If b* = b/A then the design is uniform.

It is worth noting that this last bound for b is inde-
pendent of b, since
b/ = v(v-1) / (k(kx-1)).
A slightly better version of this last bound for b" can be
produced., Let (x]} be the smallest integer greater than or
equal to x. Foody and Hedayat (1977) proved:
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Proposition 3.9. b* 2 ((v/x) ((v=1)/(x-1)}}.

Before determining what happens when equality obtaine in
Proposition 3.9, some additional notation and terminology will
be introduced. If F = (fl....,vak)' is the frequency vector
of a design D for a given v and k and if B 1is the 1i-th

element in the ordering of the blocks, then f(B) s f Ir

g°
Xe(l,...,v] then s(X) 1s the number of distinct blocks in
D' containing X.

A set S of distinct blocks 1s a covering of the pairs 1if
every pair of varieties is contained in S. S 4s a minimal
covering (of the pairs) if no proper subset of S 1is also a
covering of the pairs.

What has been shown in Proposition 3.9 is that every minimal
covering must contain at least ((v/k){(v-1)/(kx-1)}} distinct
blocks. Before completing the discussion of minimal coverings,

the following simple lemma of Foody and Hedayat (1977), to be

used many times in the sequel, is presented.

Lemma 3.10. If X and Y are pairs of varieties, both contained

in the same block B of a BIB design, and if s(X) = 1, then
s(Y) = 1.

-------------- P
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Proposition 3.11. Suppose S is 2 minimal covering of pairs

and D 1is a BIB design such that D =S. Then D 1is a uniform

design.

Proof: First, we show that the design produced by taking one
copy of each block in S 1is a BIB design. For, if it is
supposed otherwise, then not every pair of varieties occurs
exactly once in S, since this would guarantee a design with
2 = 1. But every pair occurs in at least one block of S,
gsince S 1s a covering of the pairs. So, there exists a
pair Y such that s(Y) > 1. Now if B 1s a block containing
Y, then for every other pair ¥ in B, s(X) > 1 by Lemma 3.10.
Then S -~ {B} 1is a covering of the pairs, contradicting the
minimality of S. Thus S 1is itself a BIB design.

S, considered as a BIB design, certainly is a minimal
support, and every non-zero frequency is equal to one. Thus

by Proposition 3.1, D 1is a multiple of S, proving the result.

Corollary 3.12. If D 1s a BIB design such that

" = ((v/k)((v-1)/(k-1)}}, then D 1is a uniform design.

We now have two lower bounds for b*, namely v and
{(v/x){(v-1)/(k-1)}}. These bounds can be attained. For
example, in the BIB(7,7.3,3,1|7), these bounds are equal to
each other and to b*. In general, if v > k2-k4-1 then

v < [(v/x){(v-1)/(k-1)}}. 1If, one the other hand, v 1s small

W S S
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compared to k° - k + 1, then the bound given in Proposition 3.6
is sharper. It may be, however, that for a given v and k
neither of these bounds is achleved.

If v<k°-k+1 there is another bourd for b which

is sometimes sharper than that given by Proposition 3.6.

Proposition 3.13. Suppose D is a BIB(v,b,r,k,A|b’) and that

v<k:-k+ 1. Then

(1) {—i!:ll and further

(11) 1 b’:‘;’(ﬁ“—(’{—%l) then D is uniform.

Proof: It is easy to see that v < k° - k + 1 is equivalent to
b/v < A. Thus, by Mann's inequality, the frequency of every
block is strictly less than 1\, so every pair of varieties must
occur in at least two blocks of D.

For any given variety, X, each of the v - 1 pairs xy
must have s{(xy) > 2. Therefore s{(x) > 2(v-1)/(k~1). But, as
we argued in the proof of Proposition 3.l11, on the average each
variety occurs in b'k/v blocks of D‘, and the fact that the
average is at least as great as the minimum gives result (i).

By this analysis, if b = zéfﬁf%* » then the average variety,
and hence every variety, occurs in the minimal number of blocks
of D*, namely 2(v-1)/(k-1). Thus s(xy) = 2 for every pair of
varieties, xy, and D' is 1tself a uniform BIB design.
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But certainly D' is a minimal support, since it achieves
the lower bound in (i), and so by Proposition 3.1, D is uniform.

Consider the case when v =6 and k = 3. Part (i) of this
last proposition says that 5" > 1C and part (:!) says that if
b' = 10 then the design is uniform. It is well known that there
{s a uniform BIB design with these parameters. Notice that
Propositions 3.6 and 3.9 each give a bound of six for " in

this case. For further resulcs on v=6 and k = 3 see

Hedayat and Khosrovshahi (1981).

3.3, Graphical Description when k = 3.

If we restrict our attention to block designs in which each
block contains three varieties, we can describe the supports of
these designs by means of graphs. In particular, if a 1is a
variety in a block design D for which k = 3 define the figure

around a in D to be the adjacency graph whose vertlces are

the other v - 1 varieties. Two vertices, b and ¢, are adjacent

if (a be} e D'. For example, if the figure around 1 1is

2 3

/
N

X 6 7

4

then the blocks of the design containing variety 1 are
124, 123, 145, 136, 167, 156, 157. Since each line of the
graph represents a block, we will sometimes indicate on the

graph the frequency of the block. In the example above,
r(123) = x.

v
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If D is a BIB design, and if b 1is a vertex of the figure

. o
il

. around a 1in D, then the degree of b 1s Just s(ab). Also
g the sum of the frequencies of all lines incident with a vertex,
>, called the index of the vertex, must de A for each vertex.

1

§ Given a set of distinct blocks, S, we can draw the figures
9 around each variety without assigning frequencies to the edges.
3 Certainly a necessary condition for § to support a BIB design
E is that each figure be balanceable, that is, that there exist

y an assignment of positive integers to the edges of the graph

E in such a way that the sum of the integers on all lines in-

é cident with a vertex be the same for all vertices.

B For example, the following figure cannot be balanced:

5

-

|
} This is clear, since whatever positive integer is assigned to
the edge 3-6 will be the total for vertex 6, and thus for
all vertices. But the total for vertex 3 mst exceed this,

i since edge 3-4 must be assigned a positive integer frequency.

Thus, if the above graph were the figure around variety 7 in
\ some set of blocks, that set could not possibly be the support

g of a BIB design. ‘
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We will set forth in this sub-section a few propositions
givirg conditions which would guarantee that a zraph not be
balanceable, and we will apply these propositions in the next
section to show the rnon-existence of certain designs.

There is a literature on the subject of balancing graphs
(see, for example, Stewart (1966), Kotzig and Rosa (1973), ard
Stanley (1976)). In this literature an assignment of frequencies
to a graph in a balanced way is called a "magic labeling" of the
graph, due to the relation of these graphs to magic squares.

Tutte (1952) has given a necessary and sufficient condition for

a graph to be unbalanceable, but his concept of balancing allows
frequencies of zero, which would not be helpful in our context.
Stanley (1973) rewrites a theorem of Stiemke (1915) on diaphantine
equations into (essentially) the following condition for balancing
a graph:

A finite graph cannot be balanced if and only if there exists
a labeling K:V = Z of the vertices of G by integers such that

gvevx(v) £ 0 and for each edge, e, T K(v) > 0, with at least

“Vivee
one of these sums not equal to O.

This result is stronger but less easy to apply than the pro-
positions which we prove below.

First, let us recall some graph theoretic terminology. A

graph is said to be bi-colorable if the vertices can be divided

into two disjoint sets, say reds and green, such that no two ad-

Jacent vertices are of the same color. A connected subset X of

a graph forms a component if no vertex in X is adjacent to any
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vertex outside of X. A subgraph of a graph is a subset of the

get of vertices, along with a subset of the lines connecting them.
We call a sequence of distinct vertices in which each vertex is
adjacent to the one preceeding it and the first is adjacent to the
last a cycle. The length of the cycle {a&;,...,a,] 1s n, and the
distance between a, and a4, with J>1i 1is min{Jj-i. n-J+1}.

Proposition 3,14, Suppose G 1is a balanceable graph and some com-

ponent of G 1is bi-colorable. Then the number of vertices of each

color is the same.

Proof: We can assign positive frequencies to each edge of G so
that the index of each vertex is the same, say 1. Restrict our
attention to the bi-colorable component and consider only the ver-
tices of one of the colors. Now every edge in the component 1is
incident with one and only one of the vertices of that color. Thus
the sum of all of the indices of vertices of that color is equal to
the sum of the frequencies of all of the dges in the component. But
the same is certainly true of the other color. But for each color,
the total of the indices is simply the number of vertices times A
Thus, the number of vertices is the same for both colors.

As an example, the following graph cannot be balanced:

Y
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Croposition 3,.15. Suppose that G is a balanceable grapn

and that some subgraph H Oof G is bi-colorable, with tre

same number of vartices of each color. If for one color

£

tne degree avery vertex is the same in H as in G, than

+7e same is true for the other color.

Proof: Suppose that in H there are n vertices of each

color, and that the index of the reds is the same in H as

in G, say . Then as in the proof of the last proposition,
the total frequency of all of the edges in H must be ni,
and the total index in H of the greens must be nj. But no
vertex may have an index in H higher than that in G, namely
A . Thus every green vertex has index X in H. But if there
were any edge of G - H incident with a green vertex, this

would raise its frequency in G to more than A, which is

a contradiction of the fact that G 1is balanceable.

For example let the figure around variety 1 be

\\\5
/

Then these blocks cannot support a BIB design. For, if we

2

O—~ — @

4

remove line 24, then the remaining subgraph is bi-colorable
with, say (2,4,7) as the greens and (3,5,65 as the reds.

Notice that the degree of each red vertex is the same in the
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| subgraph as in the original figure, but that this is not true

%‘: for the greens. Thus, the proposition is viclated.

'; The following useful corollary is a special case of the

h last proposition.

2

f corollary 3,16, Suppose G is a balanceable graph and H is

# a cycle in G. Suppose H has even length and that T is a

~ subset of the vertices of H in which every vertex _iﬁ an even

S distance from every other. If every vertex of H - T has
degree 2, then every vertex of T has degree 2.

9

* Proof: Since H is a cycle of even length, it is bi-colorable
with the same nunber of vertices of each color. Also T is
entirely of one color, so all of the vertices of the other

’, color are in H - T, and thus have the same degree in H as

in G. The proposition can now be applied.

. This corollary shows that the following cannot be figures |
around a variety in a BIB design. Here A, B, and C repre-

sent subgraphs.
A

T TN N #
NG )ER.

N_#°

—— o ——

8~

The following fact is just a restatement of the elementary

Lemma 3.10. It is also a special case of Propesition 3.15.
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corollary 3.17. If G 1is a balanceable graph then every

vertex of degree one is adJjacent only to another of degrae

———— S—————  — —

one.

—

7o ccnclude this sub-section, we stat2 a fact about the
number of different frequencies possible in very simple

graphs.

Proposition 3.18. If G is a graeph of index A and if a

component, H, of G is a cycle, then there is a positive

integer x such that every edge has frequency x or A - x.

Moreover, if H has an odd number of vertices, then x =1/2.

Proof: Suppose H has n vertices. ‘e can then sequentially
label the edges of H from 1 to n following a path around
the cycle. If x 4s the frequency of the edge number 1,

then edge 2 must have frequency A - x. Arguing inductively,
it is easy t0 see that odd numbered edges have frequencty x

and all even numbered edges have frequency A - x. If n is
odd, then edge n and edge 1 are both incident with vertex

n, and both have freguency x. Thus, in this case, x = \/Z.
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4. BIB(7.b.r.3.]b").

The case of v = 7, k = 3 has been investigated by Hedayat
and L1 (1979, 1980) in regard to the possible combinations of b
and b*. Key results in their 1979 paper can be summarized this
way. There exists a BIB(7.b,r.3,xlb*) if and only if (i) b= O(mod 7);
(11) 7 < b" < min(b,35); (111) b* £ 8,9,10,12, or 16;
(1v) (v,b") # (28,24), (28,27), (35,30), (35,32), (35,33), (35,34),
or (42,34). These authors did not give a proof for the nonexistence
of a BIB(7,b,r,3,1|16), instead they made reference to others.
The story of b" = 16 1s this. Seiden (1977) proved that based
on 21 blocks it is impossible to build a BIB design with v = 7,
k = 3 having precisely 16 distinct blocks. Clearly one
could not conclude the same result if b was allowed to go beyond
21. In his Ph.D. Thesis, Foody (1979) verified this fact.

In this section we shall utilize the graph theoretical results
of the previous section and demonstrate graphically that there is
no BIB design based on exactly 16 distinct blocks if v = 7 and
k = 3. The techniques and the ideas used here are perhaps more
useful to researchers than the end result for v =7 and k = 3.

For the rest of this section, unless specifically indicated to
the contrary, all designs discussed will have v =7 and k = 3.

4,1. Designs Containing Blocks with Frequency 1.

When v =7 and k = 3, there is a symmetric BIB design for
which A = 1. In this section we show that all BIB designs
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with v=T7 and k = 3 1in which some block has fre-

quency A are unions of symmetric designs.

A special feature of the case v = 7, kK = 3 which we
explois is that b/v = A. Thus, every block with freguency
A intersects every other block in the support in the same
number (clearly one) of varieties, by Corollary 3.5.

We also need the following lemma to prove our main

proposition.

Lemma 4.1. Let V = {a,b,c,d,e,g,h} and suppose D 35 a

BIB(7,M,3,3,A). If f(abc) = A and if (adef € D', then

*
{agh} ¢ D .

Proof: consider the figure around variety a. By Corollary
3,16 each vertex other than b and c¢ zust have degree at

least equal to 2 if (agh) £D .
b c

/\
\/

For example, h must be adJacent to either 4 or e, say d,
bput d and e already have an edge connecting them; thus
s(ad) > 2 so s(ae) > 2 and s(ah) > 2. So the figure

around a must be as depicted above. But this figure violates

Proposition 3.,15. Thus fagh} ¢ D*.

RS e N A N
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Proposition 4.2. Suppose D is a BIB(7,1\,3\,%,A) ard

suppose B ¢ D’ and f(8) = X. Then D contains Do =

*
BIB(7,7,3,3,1) and B € Dq-

Proof: For concreteness, let B = 123. Note that the pairs
12, 13, and 23 can occur in no other block of D*. Now
s(14) > 0, so we assume without loss, that 145 ¢ p*. 1t
follows by Lemma 4.1 that 167 € D*. Either 246 or 247
is in D*; for, if we suppose not, then 245 ¢ D*, since
s(24) > 0. Then s(45) > 2, since 145 € D'. So, by Lemma
3.10, s(24) > 2. Then 24 or 247 is in D . It can
easily be seen that there is no loss in assuning that

246 € D*. But Lemma 4.1 then implies that 257 € D . So we

*
so far have in D .

123 167 257
145 246.

Mow if either 347 or 356 is in D*, then so is the other,
by Lemma 4.1. But these two blocks, together with tne five
listed above, would produce D0 as required. So, if there
is no such Dy» We can assume that neither 347 nor 356 is
in D*. But s(34) >0, so 34 or 346 isin D, so
another application of Lemma 3.10 shows that s(34) > 2, so
that both 345 and 346 are in D . And another applica-
tion of Lemma 4.1 shows that 367 and 357 must also be in

»
D . So, we now have
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1253 167 es7 346 367
145 246 345 357.

* - .
If 156 € D then so is 147, oy Lemma 4.1 and we have cons-
tructed a DC. Similarly if 235 ¢ D*. 3uz s(36) > ¢, so

it must be that 456 ¢ D' . However, 456 is disjoint from

123 and this is impossible. Thus, there must be a D0

contained in D as required.

corollary 4.3. If D is as above, then D 1is the union of

designs that are BIB(7,7,3,3,1).

Proof: The corollary follows immediately from the proposition

by induction on A.

Using this fact we can now give all possible support

sizes for designs containing a block with frequency \.

crecposition 4.4. If B e D such that f(8) = A, then

*

b = 7,11,13,15,17 9£ 190

*
Proof: By corollary 4.3, D is the union of designs

Dy, i=1,...,n eacha BIB(7,7,3,3,1). %ithout loss we

can assume that for no i s D1 c U DJ and that B = 123,
J#AL

Since every block intersects B in exactly one variety,
b* < 19. Observe that IDirﬂDJl =1 or 3, since any two
blocks of a BIB(7,7,3,3,1) determine a third (Lemma 4.1)

LRI E B
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and any four determine the whole design.

n
First, we show that if | A D;j =3 then n =2 and
i=1
* ~
o = 1l1. For, slnce 1Z5 € N D;, we can assume, without loss
that 14 € 7 D'. Lemma 4.1 then shcws that 157 < ~ D,

i it
Then for any D, either 246 or 247 1is in Di' Bu: fcur

blocks determine each Di‘ Thus D* = D1 v D2 is the only
such design.

We now show that b* is odd, by induction on n. If
n=1,then b =7. If n=2, then [DAD,}{ 1s 3 or 1

n
and b* is 11 or 13. If n> 2, then | n Dij =1 by the
i=1

n
+*
lasi paragraph. Let D = iUIDi. By the inductive hypothesis,
n- -
i v Di[ is odd. Consider the sets, for i = 1,...,n-1,
i=1

n
(anni) - Jnl DJ' By the last paragraph, these sets are dis-

joint. And each of them has cardinality O or 2. Thus

n-1 o
- Vv Dil is even, so {D | 1is ocdd.

|D
no 4

Lorollary 4.5. For a BIB(7,7h,34,3,A|0 ), if b < 1% thep
" =7 or 11.

Proof: If b < 14 then the total numter of pairs in D
is less than #42. But there are 21 distinct pairs. Thus
some pair occurs in only one block of D*, so the frequency
of this block is ). The last proposition then says that

b* mst be 7 or 1l.
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In Corollary 4.5, the condition that D' contains some
block with frequency A cannot be removed. For example, in
Kedayat and Li (1979), there is a uniform design with’

5 =b = 21. Using Proposition 2.8 it can 2e checked that
this design has a minimal support and thus, oy Corollary 3.2,
it is a fundamental design. It follows, then, that it cannot

be the union of other designs.

4.2. There is no BIB(7,7:,3.3,1|16).

We now direct our attention to proving that there does
not exist a BIB(7,71,31,3,1/16). Proposition 4.2 allows us
to restrict our attention to designs in which every pair of
varieties occurs in at least two distinct blocks: 1.e., designs

in which no block has frequency 1.

There are only five distinct blocks containing any
particular pair of varleties. We proceed by considering
he cases where every pair appears in exactly two or three

distinct blocks, where some pair appears in four distinct

blocks, and wnere some pair appears in five distinct bdlocks.
wve must divide the first case, where every pair appears at
most in three distinct blocks, into subcases which depend on
in how many distinct blocks a single variety may occur. We
begin by determining possible values of s(a), where a is

e variety.
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{>mma 4.6. Suppose ror every pair, X, of varieties in D,

s(x) >2. If s(ab) 1is odd, then there exists a variety

\ c £b such that s(ac) is odd. Further, s(a) > 7.

Froos: Consider the figure around variety a. The vertex

b has odd degree. If the cther five vertices all have
even degree, then the total figure has odd degree, which is
impossible. Thus, one other vertex must have degree of at
least 3, giving at least a total degree of 14 for the
figure; that is, at least 7 blocks.

Ve now exhibit all possible figures around a variety if

every pair occurs in two or three distinct blocks.

Proposition 4.7. Suppose 2 < s(ab) < 3 for every pair of

varietles in D. Then 6 < s(a) < 9 and the figure around

a is:
A) If s(a) =o6: (i) <_—_> or (ii) i> [>
B8) If s(a) = 7: (4) <—> or (ii) ]>‘<!
c) 1f s(a) =&: (i) !> <l or (ii) ’:\Z‘>
or (iii) <>
D) If s(a) = 9: (i) >_:___.__§| or (ii) /i\-
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Proof: ‘Jariety a appears in six distinct pairs, eacn of

»
which occurs in at l2ast two blocks of D . Zxactly zwo of
chese pairs £i% in any one block, so s(a) > o. Similarly, if

-

s(ad) < 3 for all b then the, as mcss, 12 pairs containing

a occur in at most nine blocks. For specificity, ler a =1

for the rest of the proof.

(1) If s(1) = 6, then every pair of varieties containing
*
the variety 1 must occur exactly twice in D ; that is,
every vertex in the figure around a must have exactly two

adjacent vertices. Without loss we can start the figure

around 1 as

*
Now if 124 € D , then the figure can only be completed as
*
in A(ii). On the other hand, if 124 ¢ D, then we can

take 4 as adjacent to 5.

2 3 4 5.

If 5 is adjacent to 2, then 6 and 7 will only have
degree one. SO, assume 156 € D*. The only way to give to
7 two adjacencies while using only six edges 1is to include

167 and 126 in D', thereby constructing figure A(1).

\- ".
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(1i) If s(l) = (, then two vertices in the figure around

1 have degree three and the other four have degree two.

can assume that the two vertices with degree three correspond

to varieties o and 7.

“le

If 6 and 7 are not adjacent, then they are both ad-

jacent to the same two vertices. Therefore, the only possible

figure around 1 is of the form:

PN
N

But this figure violates Proposition 3,15,

On the other hand, suppose 167 ¢ D*. If there is a
vertex adjacent to both 6 and 7, then the only possible

figure around 1 is:
6
<7 >
\, e

But this figure also violates Proposition 3.15.

L4

So we are left with:

b
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3(ii). On the other

If we make b and ¢ adjacent, we get

PR

nand, i{ we make b and d or b and e adjacent, we get

B(i).

(iii) If

s(1; = ©, then in the figure around 1, two
of the vertices have degree two and the rest have degree

Iet 2 and 3 be the vertices of degree two.

three.
Suppose first that 2 and 3 are adjacent to each other.

If they are also both adjacent to the same vertex, say
/3
2~\\\\\\\\ /

b

then we can only continue this figure as

b
Bt we cannot complete this figure, while still giving both

degree three.

d and e
and 3 are not adjacent to the same vertex.

Thus, 2

SO we have:

Now e must be adjacent to b, ¢, and d; and d must be
c(ii):

adjacent to ¢, b, anid e, giving us figure
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2
I

d
l

N Suppose on the other hand, that ¢ and 3 are not ad-
£' jacent to eacnh other, and that the distance between then is

one.

? 2 d 30

If there is another vertex adjacent to both 2 and 3, then

we have violated Proposition 3,16. Thus we have:

2 d 3
: e
b b c
ff Now, b, ¢, d, and e all have degree three, so we must 2nd

N up with:

T :
I

b — c

But this figure violated Proposition 3.15, as was shown ir

the example following that proposition.

I I J e '.-.'l“ R GG O A, (LN, v ‘\- ORS¢ Lt
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Suppose now that 2 and 3 are a distance of twc apart.

b — -3
t

| c d
1)
1f e 1is adjacent to c, we get rigure cC(i). If e is

adjacent to d, we get figure cC(iii).

(iv) suppose s(1l) = 9. Every vertex of the figure
. around 1 mst have degree three. We begin the figure with

I,

RS W AN

A A8 2

. .
F

b Now, e mst be adjacent to at least two of b, ¢, or d,

since e has degree three and there are only six vertices.

(]
ry

e 1s adjacent to two of the three, figure D(i) results.

o I O v 777,
[
Yy
(1]

is adjacent to three of them, then figure D(ii)

) e now begin ruling out the cases in which no pair occurs
*
in more than three blocks of D . We start with the subcases

in which no variety occurs in more than seven blocks of D*.

A2 NN T |

Proposition 4.8. Suppose 2 < s(ab) < 3 for every pair of

varieties in D, and suppose s(a) < 7 for every variety in

by s then b* £ 16.

RN
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* g A\
Proof: Suppose that b = 16. Then € s(a) = 4E. 3ut
a

2 ¢ s(ab) for all pairs ab, so for each variety, s(a) > 2.

Taus, s{a) = ¢ for all varieties except one, say variety 7,

and s(7) = 7.

Therefore, if a # 7, the figure around a must be

either

oy Proposition 4.7. 3y the same proposition, the figure
around 7 must be either

1
/\
6

/I
7\
2 3 ///\\
44— 5
Zase A: or Case 3:

Cconsider the 15 pairs from varieties 1,...,5. We
claim that those of these 15 pairs defined by the figure

around 7 (e.g., 12, 23,...) occur in exactly three

tlosks of D .
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First note that T s(ab) = 36 and 2 < s(ab) < 3 for .
a<b<o - = ]

all pairs, so that six pairs 4o occur in three blocks and

*her nine in two blocks. To prove the claia it suffices

by the figure arcund 7 occurs in ]

sacw that no pair defined

only two blocks of D*.

Suppose the opposite; that is, suppose without loss of

5 generality, that s(13) = 2.

First let us suppose that the figure around 7 is as in

Case A above. In the figure around 1, 7 has degree two

and is adjacent to both 2 and 3. But the figure around 1

. L\
\_/

. is either

oy Proposition 4.7. But s(13) = 2, so s(12) = 3,

By the same arguement applied to the figure around 3,

it follows that s(23) = 3. So when we draw the figure around j

2, we find that both 1 and 3 have degree three and that

r 7 must be adjacent to both 1 and 3. But this is not g

possible in either of the permitted figures around 2, since

5(2) = T. We have thus shown a contradiction if the figure ‘

around 7 1is as in Cacse A.

------------

.........
...........
e
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Yow suppose the figure around 7 is as in Case 3. Wa

- -y,

will consider three subcases.

e

(1) Suppose that the figures for 1 and 2 are both é;;

) - -
e A B N

in the figure arcund 1, either 2 or ©o must nave degree
three, since 7 does not and since 2 and © are zajacent .

to 7. So without loss the figure around 1 is:
6___7 X

S

Then both 1 and 7 have degree two in the figure arcund 2,

s0 in this figure, x must be adjacent to 3:

1——7

X/ ——-/.3 .
. N N

—

Thus x must be 4 or 5. X
If x = 4, then the figure around 4 contains: o
A
= 3

1 2 3 7 5

~

‘]
. ' "
ct-ilarly, if x = 5, then the figure around S5 contains: Oy
!
—_— . — 7 6 12 2 3 -

S

AL
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3ut these figures cannot pe completed as legal figures wita

seven edges.
(2) Suppose the figures arcund 1 and 2 are respectively:

/N N 5

\ i / am /7. T /\ " 3

Then, again supposing without loss of generality that 6
rather than 2 has degree three, we have as the figures

around 1 and 2 respectively:

217

/ ‘
—6 |7\3____/

\ // and 1/’ ~N .

Thus 3 must oe adjacent to 2 in the figure around 1;

but this implies that s(13) = 3, contradicting the premise.

(3) Suppose that tne figure around 1 1is: )

Again, ve can assume that s(16) = 3, so the figure around 1

mst be

AR R Bl i n
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; 2
12\6 4/? or 1 >6 5<3|'

B In the first case, the figure around 4 contains:
3 7 /
1]

B which cannot be completed as a legal figure. In the second

{ —6

case, the figure around 5 contains:
/4\
7\‘ /1 3

y,’ 6
#hich is subject to the same objection. Thus, the clainm is
proven.

This claim implies that the remaining ten blocks of D*
nat do not contain variety 7 form a BIB(¢,10,5,3,2). It

S, ..V,
e aghe YW WS m YW M

is known that this design is unique up to iscmorphism. De-
*
note these ten blocks of D by S. Now the figure around

any variety in S is:

aveVal 2 m. A
. . ¥

'-'_'/ Moo Al e ATy Ty
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for 4efiniteness, consider the figure around 1 in 3. DMNow
1 is adjacent to two varieties in the figure around 7, so

*
the figure arcund 1 in D is either:

e

; But both of these violate Proposition 3,16. Thus, there can

Lo an an g

e o)

be no BIB(7,70,31,3,1]16) of the type described in this

proposition.

Froposition 4.9. Suppose 2 < s(ab) ¢ 3 for all pairs of

varieties in D, and suppose s(1) = 8; then v £ 16.

Froof: The three possible figures around variety 1 are,

without loss of generality:

2—4 -4
! . T 2N /i \

! 2N
: 6 ——, ~ - )
A)3.___:>5’7 or B) 2‘\\\f§3/7 or ) "\s__‘sf/’s

4—7

In any of these case, s(14) = s(15) = s(16) = s(17) = 3.
: But by Lemma 4.6, each of the varieties 4, 5, 6, and 7
‘ must occur in another pair which appears in three distinct
| blocks of D*. But by counting to T s(ab) = 48, there can

* - " . « .
X be at most six pairse repeated in threce 2lozxs of D . Thus

- O o " ¥
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the pairs repeated three times are, in addition to thre four
listed above:
(i) 45 and 67, or
(1i) % and 57, or
(1ii) 47 and 56.
Note also that varieties 2 and 3 occur only in pairs

occurring in two blocks of D*. Thus, the figures 2 and

. /N
L// ~ or ‘\\ ///

3 have six edges and are thus either

and the figures around 4, 5, 6, and 7 have seven edges

each, and are thus

/

/ \

e BN or / .

Not» that in these figures around 4, 3, 6, and 7, thare are
<45 vertices of degree three, that no vertex 1ls adjacent to

both cf the vertices of degrece three, and -hat every vertcx

ic adlacent to at least one vertex of degree three.
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Suppose now that (i) holds; i.e., tha* <
s(u5) = s(o7) = 3.

; Then vertices 1 and 5 have degree three in the figure

. e A .y

around 4. 3But 4 and § are not adjacent in the figure

r

around 1, so 1 and 5 are not adjacent in the flgure

YL

around &4, even though they both have degree three. This

is impossible.

suppose instead that (ii) holds; i.e., that
s(46) = s(57) = 3.

4, 1 and 6 have degree one,

Then in the figure around

4 and 5 are not

and 5 1is not adjacent to 1, since

adjacent in the figure around 1. Thus, in the figure around

4, vertex 5 nmust be adjacent to the other vertex of degree

three, namely 6. That 1s, the figure around 4 contains:

1

f
' 6 S :

7

Ncw we can examina the figures around 1 and 4 to see that,

in the figure around 6, both 1 and 4 ares adjacsnt to 5.

But 1 and 4 have degree three in the figure around 6,

producing a contradiction.

Thus, (ii) cannot hold, and inspection of the figures

around variety 1 shows that the remaining case (1i1) is

symmetrical to (ii) and that the same argument would apply. ;

Therefore no BIB with the prcPerties listed in the state-

ment of the proposition can exist.

- “-,r 8-
PICPC A A ON 4 f“rd’l ) - o e o
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There now remalns the subcase that s(a) = 9 for som=2
variety. The next proposition will help us 2liminate bdoth
this subcase and the case that some pair occurs in five l

nlocks of D*.

: Proposition 4.1C. If s(ab) > 2 for all pairs ad in D,

and if s(12) 1is odd and s(1) > 9, then b > 16.

If b < 16 then ins(iJ) < 48. But if s(1) > 9
<

then £ s(1i) > 18 and 12 s(1j) > 48, since there are 15
i <

ErOOf

pairs not contalning variety 1 and each occurs in at least
two blocks of D . So, s(1) = 9 and £(11) = 18. But by
Lemma 4.6 the fact that s(12) is odd shows that there exists
c variety ¢ £ 1 such that s(c2) > 2. So £ s{ij) > 30

1<i<y 2

and £ s(iJ) > 48, a contradiction. -

i¢d ~ :

l . *
corollary 4.11. If 2 < s(ab) £ 3 for all pajrs ab in D, .

and if s(1) = 9, thep b > 16. ¢

corollary 4,12. 1If 2 £ s(ab) for all pajrs ab in D, and
if s(12) =5, then b > 16.

Proof: If s(12) =5, then the figure around 1 contains: N

s z

| 2 3
'_ ™~

Mow every vertex has degree greater than or equal t0 two, so o

the cnly w#ay to complete the flgure in 2ight or less lines is:




o

e A

' N

ry:
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2 — N\,

But this violates Proposition 3,16. Thus, s(1l) > 9, and so

by the last proposition, b’ > 16.

There now remains only “he case in which some pair occurs

+*
in four blocks of D . The next two results settle this case.

Proposition 4.13. Suppose s(ab) > 2 for all pairs ab in

D and suppose s(12) = 4 and s(1) < 6. Then the figure

AN
)/

around variety 1 &g:

2

oroof: Without loss, we can assume the figure around 1

contains the subgraph
N\
2<

N

The 7i gure cannot ve completed with just one more line, since
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that line would have to join 5 and 6, and the resulting
figure would violate Proposition 3.16.

One of the two lines to be added must still Joih S5 and
6, since any pair of lines, one containing 5 and the other
p 6, will form a figure violating Proposition 3,16. So, we

now must add one more line to the figure below:

= T ~
2 — -4 é,
¥ ~_ 6 //' ;;;

.-
- -

Adjoining 5 or 6 to 4 violates Proposition 3.16. Ad- l
joining 5 to 3 violates Proposition 3,15 (consider the
subgraph formed by removing line 2-5). Thus, the only possible .

figure is the one claimed. SX

Proposition 4.14., If 2 < s(ab) for all pairs ab in D,

and if s(12) = 4, then b > 16. ;

Proof: If s(1) + s(2) > 17, then

s(12) + J;%(s{lj) + s(23)) > 34-4 = 30. But then

T s(ab) 230+ ¥ s(ab) > 50 which cannot be if 'y < 16,
a<b 2<agb =

so s(l) < & or s(2) < 8 and by Proposition 4.13,
s(1) = s(2) = 8 and the figures around varieties 1 and 2

-, 0y g A )

are without loss

PR R A

- X A
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Now if 5 (or 6) has degree 3 in the figure around 2,
then Lemma 4.6 implies that there exists variety c ¢ (1,2}

such that s8(3c) > 3. This then gives T s(ab) > 48. So, !
a<d .

™~

4

the figure around 2 must be
3

a8 T

<]

Then the figure around 3 contains

o s a8 &

.‘ —"\\

12

. ~— 4/’/,

and must then contain a vertex of degree 3 other than

variety 1 or 2. So again ¢ s(ab) > 48.
a<db

, Since all cases have been eliminated, we have proven:

4
$
[
H
#
¥

Y

Proposition 4.15. There does not exist a BIB(7,7A3\,3,1116).
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