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ABSTRACT

The structure and the size of the supports of balanced in-

complete block (BIB) designs are explored. The concept of funda-

mental BIB designs is introduced and its usefulness in the study

of the support of BIB designs is demonstrated. It is shown that

the support size can be recuced via a technique called trade on

a design. A new graphical method of studying the supports of BIB

designs with blocks of size three is introduced. Several useful

results are obtained via this graphical method. In particular,

it is shown that no BIB design with seven varieties in blocks of

size three can be built based on sixteen distinct blocks. Con-

; tributions made here have immediate applications in controlled

experimental designs and survey samplings.
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C. INTRODUCTION.

The standard statistical optimality of balanced incomplete

block (BIB) designs has nothing to do whether or not the design

has repeated blocks. However, it is known that such designs

have interesting additional applications in design of experiments

and controlled survey sampling. Therefore, it is useful to study

the existence and nonexistence of BIB designs with repeated blocks

and catalog them for practical applications. The set of distinct

blocks, referred to as the support, of BIB designs plays a crucial

role in the study of BIB designs. This paper is mainly devoted to

explore the structure of the supports for this family of designs.

Formal definitions and notations are introduced in section 1.

In section 2 we shall briefly present the algebraic formulation

of all BIB designs by Foody and Hedayat (1977). This allows us

to introduce, for the first time, the concept of fundamental BIB

designs and demonstrate its usefulness in our study. The general

concept of trades of Hedayat and Li (1979) will be restricted to

the notion of trades on a design. We have utilized this latter

idea for reducing the support size of a design.

The structure of supports and their possible sizes are studied

in detail in section 3. Some implications of our results on the

entire design are also pointed out. A graphical description of b,

the support for blocks of size 3 is introduced and studied in

section 3.3. We have demonstrated the usefulness of our graphical

description by applying the result to the case of v = 7, k = 3
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in section 4. These techniques allowed us to conclude that it

is impossible to build a BIB design based on 7 varieties in blocks

of size 3 if we are limited to have 16 distinct blocks only.

1. DEFINITIONS AND NOTATION.

Let vvk be the set of T distinct subsets of size k based

on the set V = (1,2,...,vJ. We will refer to the elements of V

as varieties. For convenience the number (k) will be denoted

by vCk. A balanced incomplete block (BIB) design with parameters

v,b,r,k,%,b* is a collection of b elements of vEk, referred to

as blocks, with properties:

i) each variety occurs in exactly r blocks,

ii) each pair of distinct varieties appears together in
exactly I blocks,

iii) there are exactly b* distinct blocks among all b
blocks of the design.

If b < b then we say the design is a BIB design with re-

peated blocks. The support of a BIB design, D, is the collection

of distinct blocks in D, denoted by D . We will denote the

cardinality of D* by b* and shall refer to b as the support

size of D.

We will denote a BIB(v,b,r,k,%) with support size b by

BIB(v,b,r,k.!b*). Any incomplete block design may be specified

by the number of times that each element of vk is repeated in

that design. We write f for the frequency of the ith element

of vrk in the design. Thus, we Identify an incomplete block
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design. D. with vrk and the frequency vector

F a (flof2,* f fvCk)'. It is clear that b= f +f 2 + "'" + fvCk

and that b is the number of non-zero entries in the vector F.

The BIB design, D, is said to be a uniform BIB design if the non-

zero components of F are all identical. A BIB design with

b = b = vCk is denoted by DT(v,k) and referred to as the

trivial BIB design based on v and k. A BIB design with b < vCk

is said to be a reduced design.

2. CONSTRUCTION OF BIB DESIGNS WITH REPEATED BLOCKS.

In this section we list techniques for constructina, BIB de-

signs with repeated blocks from already known BIB designs. The

requirement that we begin with a known design is not unduly re-

strictive, since for any v and k the trivial design is availa-

ble. From the trivial design we will be able to construct many

other designs.

2.1. P-matrix Representation of BIB Designs.

To introduce the new concept of fundamental BIB designs we

need some algebraic results and ideas of Foody and Hedayat (1977)

which will be introduced first. Given v and k, begin by

labelling the elements of vZ2 from 1 to vC2 and those of vrk

from 1 to vCk. Let Pij = 1 if the ith element of vE2 is

. contained in the Jth element of vrk, and let pij = 0 other-



wise. Let P be the matrix (pij). Thus P is an incidence

matrix relating pairs and k-sets in the trivial design for v

and K.

Since any incomplete block design can be identified with its

frequency vector, F, we will often refer to "the BIB design F",

* meaning the design determined by F. It is easy to verify:

Lemma 2.1. The frequency vector F determines a BIB design if

and only if

PF %l (2.1)

where i is a positive integer.

If F = (fl9. . .,fn and G =(gl.. )  are vectors, we

will write F > G if fi > gi for all i and f > gj for

some J. Therefore, the problem of constructing all BIB designs

based on v,k, and ) is precisely the problem of finding all non-

negative integer solutions, F, to the equation PF = %.I. In the

language of mathematical programming, we want to solve the system

PF = il

F >o (2.2)

for integer values of F. If we are not interested in a particular

value of X, then this integer programming problem may be replaced

by the linear programming problem of finding rational solutions to

(2.2). Multiplying both X and F by a common multiple of the

denominators of the entries of F will give a new frequency vector

of integers and a new ) which will fulfill condition (2.1).



Lemma 2.1 will now be used to give a geometric characteriza-

tion of the set, .n of all BIB designs for a given v and k.

Proposition 2.2. If cl , .... cn  are non-negative integers, not

* all equal to 0, and if Fi t•. . ,F n  are in a. then

cF 1 +...+ CF n  is in -.

A set with the property which Proposition 2.2 ascribes to m

is called a positive integer cone. Lemma 2.1 also gives immedi-

ately the following fact about V.

Proposition 2.3. (I) If F e ? and g is a common divisor

of the entries of F then g'1 F e . (ii) If F1 Ind F2

are in m with F1 > F2  then F- F2 e x.

Note that it follows from (i) that if there is no BIB design

with b < vCk, then there is no uniform BIB design with b < vCk.

It is clear that for any fixed x there are only finitely many

solutions to (2.1), and that if X is free to vary, there are

infinitely many. But many of these solutions are in fact posi-

tive combinations of other ones. It is shown that there are

only finitely many designs that are not such combinations. To

be more precise, we make the following definition. A BIB design

F is a fundamental design if there does not exist any BIB design

F1  such that F > FI.

401
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Corresponding to the concept of a fundamental design is

that of an irreducible solution in non-negative integers to a

system of homogeneous linear equations. Consider the set of

non-negative integer solutions to the set of homogeneous linear

equations

AX = 0 (2.3)

where A is an m x n matrix of integers. Such a solution X1

is called irreducible if for no other such solution, X2 , X1 > X2 .

It is known that there are only finitely many irreducible solu-

tions to (2.3). For a proof of this fact see, for example,

Grace and Young ((1903)]. Notice that, for a given v and k,

the vector F determines I and that if F1 < F2  then Xl < 2'

Thus, each fundamental BIB design corresponds to an irreducible

solution to the system

Therefore we have



Proposition 2.4. For any given v and k there are only

finitely many fundamental BIB designs.

It is worth noting that every fundamental designs is a

basic feasible solution to the integer program (2.2) for some

value of X, but that the converse does not hold. For example,

if F1 is a fundamental design with parameter v,b,r,k,.

then 2F 1 will still be a basic feasible solution to the

program.

PF = (21)l

• -. F>O •

The fundamental designs are fundamental in the sense that

they generate all BIB designs for a given v and k.

Proposition 2.5. For a given v and k let F be the

frequency vector of a BIB design and let Fl . . . Fn  be =9

frequency vectors of the fundamental desigus. Then te

exist non-negative integers alt ...,an L= that

F = aF 1 +...+ anFn  (2.5)

Proof: If b is minimal for v and k, then F is clearly

fundamental and 2.5 is satisfied. Proceeding by induction on

b, suppose F is the frequency of an arbitrary design D. If

D is fundamental, then 2.5 is satisfied. If D is not funda-

mental, then there exists a design with frequency vector F1
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such that F1 < F. By Proposition 2.3, F - I1 is also the

frequency vector of a BIB design and both V'F, and 1*(F-Fl)

are less than b. Thus, by the inductive hypothesis, both

F1 and F - F 1 have representations as in 2.5. But so then

does F, since F = F1 + (F-F 1 ).

2.2. Construction of BIB Designs by Trades

This section discusses the construction of one BIB design

from another by trading blocks. Suppose that the BIB design

D contains a set of (not necessarily distinct) blocks, S.

Suppose also that there exists another set of blocks, SO, based

on the same v and k such that S and SO contain the same

pairs of varieties the same number of times. If we remove S

from D and replace it by S', then the new design will still

be a BIB with the same parameters v,b,r,k,I, but with possibly

a different value of b*. Following Hedayat and Li (1979), we

define a trade in terms of the P-matrix discussed above: A

non-zero vector of integers, T, is called a trade if PT = 0.

Note that this definition makes no reference to any parti-

cular design, but depends only on the parameters that define

P, namely v and k. The following lemma is due to Hedayat

and Li (1979).

Lemma 2.6. Let F = (fl,...,fvCk)0 be the frequency vector

of a BIB(i.e., PF -- 1) 4_4 ae T (tl,...,tvCk)' a

N1 .

- I -- /,4 ~ ~ -~ -
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raM (i.e. , PT = Q).

(i) For all positive integers m and n, mF + nT is

a BIB design if and only if mF + nT > 0.

(ii) The condition that fl > 0 whenever ti < 0 is

necessary and sufficient for there to exist positive integers

m and n such that mF + nT is a BIB design.

Notice that for any trade T, tl+...+t vC - 0; that is

0 = Jo- Y ('T) - (.r P)T - (kC2) 'T.

So T has both positive and negative entries. In Hedayat

and Li (1979) the sum of the positive entries is called the

j2JU of the trade.

Trades for which the blocks added and the blocxs sub-

tracted are both already present in the support of a design

play an important role in the sequel. We will say that a

trade T - (tl,...,tvCk)' is a WAS 2D MM U D if

ti - 0 for all blocks not in D * .

Trades on the design D may also be characterized as

follows: remove from the P-matrix all columns corresponding

to blocks absent from D, and call the resulting matrix P .

Then each vector T* of integers satisfying PT* = O

corresponding to a trade, T, on the design D. To reconstruct

T from T ,let tI =0 if the i-th block is absent from

D, and ti  t if the i-th block corresponds to the 3-th

column of P . So sets of trades on a given design, like sets

of trades in general, correspond to the integer valued vectors

% * ~*~ * ... ** ~ ** ~ *.$
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in the null space of a matrix. By utilizing some results of

Foody and Redayat (1977) we have:

Proposition 2.7. Let F be the frequency vector of the design
D. If T is a trade on the design D, then there exist posi-

tive integers m and n such that mF + nT is the frequency

vector of a BIB design whose support is properly contained in

D*.-

Proof: Let F = (f,...,f vC) and T = (tl,...tvck).

Also select J so that

t i/f i = min~ti/filf i X 01.

Then t < o, so there exist positive integers m and n

such that

mf + nt -0.

But

Mf + nt - >  ff 1 (mf+ntj) = 0 1 = l,...,VCK.

Some value of ti is positive, so not all mf I + nti are

equal to 0 . Thus iF + nT defines a BIB design by Lemma

2.6, and its support is a proper subset of D*.

Proposition 2.8. If D and D, are BIB designs such t

D1 is properly contained in D*, then there exists I trade

on D.

S.
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Proof: Let F and G be the frequency vectors of D and

DI , respectively. Then PF = %I and PG = XIi, and there

exist positive integers m and n such that mA - nl = 0.

Then P(mF-nG) = O, and mF - nG 4 0, since for some i,

fi > 0 but gi = 0. Thus mF - nG is a trade. And since

D1 D*, it is a trade on D.

Starting with the trivial design for v and k, a trade

can be constructed by finding a non-zero rational solution to

the equation PT = O. The solution vector is then multiplied

by the least common multiple of its denominators to give a

vector of integers, that is, a trade. This trade is applied

to a multiple of the trivial design to produce a new design,

D1 2 as in Proposition 2.7, with smaller support. Now remove

from P the columns corresponding to blocks absent from D1

to produce Pi. Find a solution to PIT = 0 and continue

as above. This process will ultimately produce a design whose

support cannot be reduced. Foody and Hedayat (1977) utilized

a result similar to Proposition 2.7 and presented some techniques

for producing BIB designs whose support is contained within a

given design.
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3. TgE SUPPORT OF A BIB DESIGN.

This section is concerned with the supports of BIB de-

signs. First we examine the characteristics of designs whose

supports are minimal. We then provide some lower bounds for

the size of a support, and consider some conditions under

which sets of blocks may form the support of a BIB design.

The case where the block size, k, is equal to three will be

discussed in greater detail.

3.1. Minimal Supports

For a given v and k we can partially order by set

inclusion all of the supports of BIB designs based on that

v and k. Let us refer to the minimal elements under this

ordering as minimal supports. The discussion after Proposition

2.8 provides a technique for generating designs with minimal

supports.

The following proposition shows that all BIB designs with

the same minimal support are, in a sense, the same.

Proposition 3.1. Let D be a BIB design based on v and x.

Then D has minimal support if and only &i AnX oZthe BIB

design with the same support Is a rational ' liplW Qf D.

Proof: Suppose D1 is also a BIB design and let the fre-

quency vectors of D and D1 be F and 0 respectively.
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Suppose that D is a minimal support and that D D

but D1 is not a multiple of D. Now PF = 11 and PG = Lll

for positive integers I and 11, and there exist positive

integers q and s such that qX - sl 1 = 0. Let T = qF - sG.

Since D1  is not a multiple of D, it follows that T 0 0.

Thus T is a trade on the design D, and by Proposition 2.7,

D cannot be minimal.

To show the converse, suppose that every design with support

D is a rational multiple of D, but that D* is not a mini-

mal support. Then there exists a design D1 such that D*

is properly contained in D If F and G are defined as

above, clearly G is not a rational multiple of F. Thus

nF - G is never a rational multiple of F. But for a large

enough integer n, the support of the design defined by nF - G

is D , since nF - G > F and D D. This is a contradic-

t ion.

Corollary 3.2. For a given v and K let D* be a minimal

support and let S be the set of all BIB designs supported

by D * . Then there exists a unique design D e . such that

all other designs in A are integer multiples of D. Further,

D is a fundamental design.

Proof: Choose a design D in a with the smallest value of

X out of all designs in A, and let F be its frequency

vector. Note that the greatest common divisor of the entries



or F is one, by Proposition 2.3. Thus, if aF is a design

for some rational number a, it follows that a must be an

integer. So, by the last proposition, all designs supported

by D are integer multiples of D. Also, if some integer

multiple of D is to have the same value of I as D does,

then this other design must be equal to D, which demonstrates

uniqueness. Finally, if G is the frequency vector of a de-

sign such that G < F, then the support of this design must

be equal to D ,by ainimality of D• But G < F implies

that PG < WI. contradicting the construction of D. Thus D

is a fundamental design.

An interesting problem, for which we do not know the

answer, is how to find the values of v and k for which

all fundamental designs have minimal supports.

For any v and k we can give an upper bound on the

number of blocks in a minimal support. In fact, this bound

depends only on v.

Proposition 3.3. For any given BIB design with minimal support,

b < vC2.

Proof: If D has minimal support, then by Proposition 2.7,

there does not exist a trade on D, i.e., if F = (fl# "'"fvck)

is the frequency vector of D, there is no vector

T = (tlIO...tvCk)' such that ti = 0 whenever fl = 0 and
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PT = 0. Equivalently, forming P by removing the columns of

P corresponding to blocks for which fl = 0, there is no vector

T such that

PT =C.

That is, P* has full column rank. Thus the number of columns

of P, namely b , must be less than or equal to the number

of rows, namely vC2.

2.2. Lower Bounds on the Support Size of a BIB Design.

Lower bounds for b, the number of blocks in a BIB design

are well known. One such result is Fisher's inequality: b > v.

In this section we give some lower bounds on b , the number of

distinct blocks in the design. Some of these bounds depend upon

an inequality due to Mann (1969).

Lemma 3 (Mann). If F = (fl, "" " vCk )' is the freouency

vector of a BIB(v,b,r,k,%), then fi ( b/v. i = l,...,vCk.

Utilizing Mann's inequality we obtain the following useful

Corollary.

", . . .. .. .



Corollary 3.5. If F = (fl,...fvCk)O is the frequency

vector of D, a BIB(v,b,r,kpl), and if fi = b/v for some

i, then every blocK in D* intersects the i-th block in

the same number of elements.

For example, if v = 7 and k = 3 then the basic

necessary conditions on the parameters show that I = b/v.

Thus, any block with frequency I intersects every other

block in the support in exactly one variety.

From Mann's inequality we obtain the following corelatives

of Fisher's inequality.

*

Proposition 3.6. b > v.

Proof : BY Mann, b/v > fi" Summing on both sides over all

non-zero values of fi, we get

b*(b/v) > b,

giving the result desired.

b*

Proposition 3.7. If b= v then the design is uniform.

Proof: First b/v = rfi/v, summing over the non-zero entries

in F. If b v, this implies that b/v = rfi/b*; that is,

that b/v is equal to the average of the non-zero entries in

F. But by Mann, b/v is greater than or equal to each of
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these entries. Thus, they all must be equal to b/v, and so

to each other.

These last two propositions have also been proved by van

Lint and Ryser (1972), using a different technique. In the

same article, van Lint and Ryser also proved (essentially)

the following proposition.

Proposition 3.7. In _ BIB design b* v + 1. Tbg, in &

non-uniform BIB design. b v + 2.

Obviously in a BIB design the frequency of any block can-

not exceed I.

Proposition 3.8. Suppose (f' "'vPk )' is the frequency

vector of a BIB(v,b,r,k,%). Then

(i) _<,

(ii) b* b/,

(iii) If b* = b/% then the design is uniform.

It is worth noting that this last bound for b is inde-

pendent of b, since

b/% = v(v-l) / (k(k-l)).

A slightly better version of this last bound for b* can be

produced. Let [x) be the smallest integer greater than or

equal to x. Foody and Hedayat (1977) proved:
.o'
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Proposition 3.9. b* > ((v/k) ((V-l)/(k-l)jj.

Before determining what happens when equality obtains in

Proposition 3.9, some additional notation and terminology will

be introduced. If F = (fl'''''fvCk)Y is the frequency vector

of a design D for a given v and k and if B is the i-th

element in the ordering of the blocks, then f(B) a f If

X c (l,...,vJ then s(X) is the number of distinct blocks in

D* containing X.

A set S of distinct blocks is a covering of the pairs if

every pair of varieties is contained in S. S is a minimal

covering (of the pairs) if no proper subset of S is also a

covering of the pairs.

What has been shown in Proposition 3.9 is that every minimal

covering must contain at least ((v/k)((v-l)/(k-l)jj distinct

blocks. Before completing the discussion of minimal coverings,

the following simple lemma of Foody and Hedayat (1977), to be

used many times in the sequel, is presented.

Lemma 3.10. If X and Y are pairs of varieties, both contained

in the same block B of a BIB design, and if s(X) = 1, then

s - 1.
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Proposition 3.11. Suppose S is a minimal covering of pairs

and D is a BIB design such that D S. Then D is a uniform

design.

Proof: First, we show that the design produced by taking one

copy of each block in S is a BIB design. For, if it is

supposed otherwise, then not every pair of varieties occurs

exactly once in S, since this would guarantee a design with

= 1. But every pair occurs in at least one block of S,

since S is a covering of the pairs. So, there exists a

pair Y such that s(Y) > 1. Now if B is a block containing

Y, then for every other pair X in B, s(X) > 1 by Lemma 3.10.

Then S - (BJ is a covering of the pairs, contradicting the

minimality of S. Thus S is itself a BIB design.

S, considered as a BIB design, certainly is a minimal

support, and every non-zero frequency is equal to one. Thus

by Proposition 3.1, D is a multiple of S, proving the result.

Corollary 3.12. If D is a BIB design such that

b ((v/k)[(v-l)/(k-l)jj, then D is a uniform design.

We now have two lower bounds for b , namely v and

((v/k)( (v-l)/(k-1)JJ . These bounds can be attained. For

example, in the BIB(7,7.,33,117), these bounds are equal to

each other and to b* In general, if v > k2  k+ 1 then

v < ((v/k)((v-l)/(k-l)JJ. If, one the other hand, v is small

,..*.. *- .,.*:- ** ,.- %*,*..v >* . .. . ,o. ... . ... . -- . . -* * . . - * - - ...-*
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compared to k2 - k + 1, then the bound given in Proposition 5.6

is sharper. It may be. however, that for a given v and k

neither of these bounds is achieved.

If v < k2 - k + 1 there is another bound for b* which

is sometimes sharper than that given by Proposition 3.6.

Proposition 3.13. Suppose D is a BIB(v,b,r,k,Ib*) and that

v < k2 - k+ 1. Then

( b2(V-1)l and further
(1) b" _ L k-i j

(ii) if b =v ( 2(v-1)) then D is uniform.

Proof: It is easy to see that v < k2 - k + 1 is equivalent to

" b/v < %. Thus, by Mann's inequality, the frequency of every

block is strictly less than %, so every pair of varieties must

occur in at least two blocks of D*.

For any given variety, x. each of the v - 1 pairs xy

must have s(xy) > 2. Therefore s(x) > 2(v-l)/(k-l). But, as

we argued in the proof of Proposition 3.11, on the average each

variety occurs in b k/v blocks of D*, and the fact that the

average is at least as great as the minimum gives result (i).

By this analysis, if b* = v2(v-1), then the average variety,

and hence every variety, occurs in the minimal number of blocks

of D*, namely 2(v-l)/(k-l). Thus s(xy) = 2 for every pair of

varieties, xy, and D* is itself a uniform BIB design.

- ,:,, .,. ,&",.,, .;;:&l ,'.. ., ,..-_ "...-......"..................... '': ''"i "." "' ,' '' "
i ima~alilillii ** **.. ...
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But certainly D is a minimal support. since it achieves

the lower bound in (i), and so by Proposition 3.1. D is uniform.

Consider the case when v = 6 and k = 3. Part (i) of this

last proposition says that b > 10 and part (-i1) says that if

b* = 10 then the design is uniform. It is well known that there

is a uniform BIB design with these parameters. Notice that

Propositions 3.6 and 3.9 each give a bound of six for b* in

this case. For further result"s on v = 6 and k = 3 see

Hedayat and Khosrovshahi (1981).

3.3. Graphical Description when k = 3.

If we restrict our attention to block designs in which each

block contains three varieties, we can describe the supports of

these designs by means of graphs. In particular, if a is a

variety in a block design D for which k = 3 define the figure

around a in D to be the adjacency graph whose vertices are

the other v - 1 varieties. Two vertices, b and c, are adjacent

if (a b c) e D . For example, if the figure around 1 is

2 3/
X 6 7

45

then the blocks of the design containing variety 1 are

124, 123, 145, 136, 167, 156, 157. Since each line of the

graph represents a block, we will sometimes indicate on the

graph the frequency of the block. In the example above,

(124) = X.

..................................... c nnmunm nun unmnlilu nu .nnn- Im m . -. .. .. *
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If D is a BIB design, and if b is a vertex of the figure

around a in D, then the degree of b is just s(ab). Also

the sum of the frequencies of all lines incident with a vertex.

called the index of the vertex, must be I for each vertex.

Given a set of distinct blocks, S, we can draw the figures

around each variety without assigning frequencies to the edges.

Certainly a necessary condition for S to support a BIB design

is that each figure be balanceable, that is, that there exist

an assignment of positive integers to the edges of the graph

in such a way that the sum of the integers on all lines in-

cident with a vertex be the same for all vertices.

For example, the following figure cannot be balanced:

1-4

4 This is clear, since whatever positive integer is assigned to

the edge 3-6 will be the total for vertex 6, and thus for

all vertices. But the total for vertex 3 must exceed this,

since edge 3-4 must be assigned a positive integer frequency.

Thus, if the above graph were the figure around variety 7 in

some set of blocks, that set could not possibly be the support

of a BIB design.
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We will set forth in this sub-section a few propositions

giving conditions which would guarantee that a graph not be

balanceable, and we will apply these propositions in the next

section to show the non-existence of certain designs.

There is a literature on the subject of balancing graphs

(see, for example, Stewart (1966), Kotzig and Rosa (1973), and

Stanley (1976)). In this literature an assignment of frequencies

to a graph in a balanced way is called a "magic labeling" of the

graph, due to the relation of these graphs to magic squares.

Tutte (1952) has given a necessary and sufficient condition for

a graph to be unbalanceable, but his concept of balancing allows

frequencies of zero, which would not be helpful in our context.

Stanley (1973) rewrites a theorem of Stiemke (1915) on diaphantine

equations into (essentially) the following condition for balancing

a graph:

A finite graph cannot be balanced if and only if there exists

a labeling K:V Z of the vertices of G by integers such that

rveVK(v) _< 0 and for each edge, e. rv:veeK(v) > O. with at least

one of these sums not equal to 0.

This result is stronger but less easy to apply than the pro-

positions which we prove below.

First, let us recall some graph theoretic terminology. A

graph is said to be bi-colorable if the vertices can be divided

into two disjoint sets, say reds and green, such that no two ad-

jacent vertices are of the same color. A connected subset X of

a graph forms a component if no vertex in X is adjacent to any
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vertex outside of X. A subgraph of a graph is a subset of the

set of vertices, along with a subset of the lines connecting them.

We call a sequence of distinct vertices in which each vertex is

adjacent to the one preceeding it and the first is adjacent to the

last a cycle. The length of the cycle (a ,...,anJ is n, and the

distance between ai  and aj, with J >i is minfj-i. n-J+lj.

Proposition 3.14. Suppose G is a balanceable graph and some com-

ponent of G is bi-colorable. Then the number of vertices of each

color is the same.

Proof: We can assign positive frequencies to each edge of G so

* that the index of each vertex is the same, say %. Restrict our

attention to the bi-colorable component and consider only the ver-

tices of one of the colors. Now every edge in the component is

incident with one and only one of the vertices of that color. Thus

the sum of all of the indices of vertices of that color is equal to

the sum of the frequencies of all of the dges in the component. But

the same is certainly true of the other color. But for each color,

the total of the indices is simply the number of vertices times %.

Thus, the number of vertices is the same for both colors.

As an example, the following graph cannot be balanced:

0

0 0

44

'U.- *~***.,* *~U U

.. . . . . . . . .. . . . . .. . .. . . . . . ..
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Proposition 3.15. Suppose that G is a balanceable graph

and that some subgraph H of G is bi-colorable, with tne

same number of vertices of each color. If for one color

tne dearee of every vertex is the same in H as in G, then

the same is true for the other color.

Proof: Suppose that in H there are n vertices of each

color, and that the index of the reds is the same in H as

in G, say '. Then as in the proof of the last proposition,

the total frequency of all of the edges in H must be nX,

and the total index in H of the greens must be n%. But no

vertex may have an index in H higher than that in G, namely

I. Thus every green vertex has index X in H. But if there

were any edge of G - H incident with a green vertex, this

would raise its frequency in G to more than 1, which is

a contradiction of the fact that G is ijkalajl 2/.

For example let the figure around variety 1 be

2 3

7

4 ,_,, 6

Then these blocks cannot support a BIB design. For, if we

remove line 24, then the remaining subgraph is bi-colorable

with, say (2,4,7j as the greens and (3,5,61 as the reds.

Notice that the degree of each red vertex is the same in the

7 , :::
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subgraph as in the original figure, but that this is not true

for the greens. Thus, the proposition is violated.

The following useful corollary is a special case of the

last proposition.

corollary 3.16. Suppose G is a balanceable graph and H is

a cycle in G. Suppose H has even length and that T is a

subset of the vertices of H in which every vertex is an even

distance from every other. If every vertex of H - T has

degree 2, then every vertex of T has degree 2.

Proof: Since H is a cycle of even length, it is bi-colorable

with the same number of vertices of each color. Also T is

entirely of one color, so all of the vertices of the other

color are in H - T, and thus have the same degree in H as

in G. The proposition can now be applied.

This corollary shows that the following cannot be figures

around a variety in a BIB design. Here A, B, and C repre-

sent subgraphs.
A

A B

A!I I \ /
" "C

The following fact is Just a restatement of the elementary

Lemma 3.10. It is also a special case of Proposition 3.15.
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-orollary 3.17. If G is a balanceable graph then every

vertex of degree one is adjacent only to another of degr.e

one.

To conclude this sub-section, we state a fact about the

number of different frequencies possible in very simple

graphs.

proposition 3-18. If G is a graph of index X and if a
component, H, of G is a cycle, then there is a positive

integer x such that every edge has frequency x or 1 - x.

oreover., if H has an odd number of vertices, then x 1/2.

Proof: Suppose H has n vertices. WUe can then sequentially

label the edges of H from 1 to n following a path around

the cycle. If x is the frequency of the edge number 1,

then edge 2 must have frequency X - x. Arguing inductively,

it is easy to see that odd numbered edges have frequenCy x

and all even numbered edges have frequency X - x. ;f n is

4 odd, then edge n and edge 1 are both incident with vertex

0 n, and both have frequency x. Thus, in this case, x X/2.
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4. BIB(7.b.r 3.,jb*).

The case of v = 7, k = 3 has been investigated by Hedayat

and Li (1979. 1980) in regard to the possible combinations of b

and b . Key results in their 1979 paper can be summarized this

way. There exists a BIB(7,b,r.3,, b*) if and only if (i) bsO(mod7);

(1i) 7 _ b* < min(b,35); (iii) b* 4 8,9,10,12, or 16;

(iv) (b,b*) X (28,24), (28,27), (35,30), (35,32), (35,33), (35,31),

or (42,34). These authors did not give a proof for the nonexistence

of a BIB(7,b,r,3,A116), instead they made reference to others.

The story of b* = 16 is this. Seiden (1977) proved that based

on 21 blocks it is impossible to build a BIB design with v = 7,

k = 3 having precisely 16 distinct blocks. Clearly one

could not conclude the same result if b was allowed to go beyond

21. In his Ph.D. Thesis, Foody (1979) verified this fact.

In this section we shall utilize the graph theoretical results

of the previous section and demonstrate graphically that there is

no BIB design based on exactly 16 distinct blocks if v = 7 and

k = 3. The techniques and the ideas used here are perhaps more

useful to researchers than the end result for v = 7 and k = 3.

For the rest of this section, unless specifically indicated to

the contrary, all designs discussed will have v 7 and k = 3.

4.1. Designs Containing Blocks with Frequency t.

When v = 7 and k = 3, there is a symmetric BIB design for

which = 1. In this section we show that all BIB designs



-29-

with v = 7 and k = 3 in which some block has fre-

quency X are unions of symmetric designs.

A special feature of the case v = 7, k = 3 which we

exploit is that b/v X. T.us, every block with frecuency

x intersects every other blocK in the support in the same

number (clearly one) of varieties, by Corollary 3.5.

We also need the following lemma to prove our main

proposition.

Lemma 4.1. Let V = (a,b,c,d,e,g,hJ and suppose D is a

BIB(7,7X,3,,). If f(abc) = X and if (adej e D , then

faghJ E D

Proof: Consider the figure around variety a. By Corollary

3.16 each vertex other than b and c must have degree at

least equal to 2 if (aghJ i D*.

b c

h

de

* g

For example, h must be adjacent to either d or e, say d,

but d and e already have an edge connecting them; thus

s(ad) > 2 so s(ae) > 2 and s(ah) > 2. So the figure

around a must be as depicted above. But this figure violates

Proposition 3.15. Thus (agh) c D*.
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Proposition 4.2. Suppose D is a BIP(7,7,31, 5, ) and

suppose B E- D -and f(B) =. Then D contains DO =

BIB(7,7,3,3,1) and B e D*.

Proof: For concreteness, let B = 123. Note that the pairs

12, 13, and 23 can occur in no other block of D • Now

Ss(14) > 0, so we assume without loss, that 145 e D . It

follows by Lemma 4.1 that 167 e D • Either 246 or 247
is * *

is in D*; for, if we suppose not, then 245 e D , since

s(24) > 0. Then s(45) > 2, since 145 e . So, by Lemma

3.10, s(24) > 2. Then 246 or 247 is in D . It can

easily be seen that there is no loss in assuming that

246 D . But Lemma 4.1 then implies that 257 e D . So we

so far have in D

123 167 257

145 246.
*

low if either 347 or 356 is in D , then so is the other,

by Lemma 4.1. But these two blocks, together with tne five

listed above, would produce Do  as required. So, if there

is no such DO, we can assume that neither 347 nor 356 is

in D • But s(34) > 0, so 345 or 346 is in D , so

another application of Lemma 3.10 shows that s(34) > 2, so

that both 345 and 346 are in D . And another applica-

tion of Lemma 4.1 shows that 367 and 357 must also be in

D • So, we now have



-31-

1 16 t 57 346 567

145 246 345 357.

-f 156 £ D then so is 147, by Lemma 4.1 and we have cons-

tructed a Do  Similarly if' 256 D 3ut s(56) > 0, so

it must be that 450 E D . However, 456 is disjoint from
12) and this is impossible. Thus, there must be a Do

contained in D as required.

Corollary 4.3. If D is as above, then D is the union of

designs that are BIB(7,7,3,3,1).

Proof: The corollary follows immediately from the proposition

by induction on X.

Using this fact we can now give all possible support

sizes for designs containing a block with frequency X.

Proposition 4.4. If B e D such that f(B) = 1, then

b 7,11,13,15,17 or 19.

Proof: By Corollary 4.3, D is the union of designs

D, i = l,...,n each a BIB(7,7,l,3,1). Without loss we

can assume that for no i is Di c U D and that B = 123.

Since every block intersects B in exactly .one variety,

b* < 19. Observe that ID ri DJ = 1 or 3, since any two

blocks of a BIB(7,7,3,3,1) determine a third (Lemma 4.1)

II
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and any four determine the whole design.
n

First, we show that if M Di = 5 then n = 2 and
i=l

o = 11. For, since 125 E n , we can assume, without loss

that 14 5 E n D*. Lemma 4.1 then shows that 167 E D.

Then for any Di, either 246 or 247 is in Di . Bu: fcur

blocks determine each Di . Thus D = U D2  is the only

such design.

We now show that b is odd, by induction on n. if

n = 1, then b* = 7. If n = 2, then ID nD21 is 3 or 1

ft n
and b is 11 or 13. If n > 2, then i n Dil = 1 by the

n i=l

last paragraph. Let D = U Di . By the inductive hypothesis,
n-I i=l
iU Dij is odd. Consider the sets, for i =

n
(DnflDi) -Jnl Dj. By the last paragraph, these sets are dis-

joint. And each of them has cardinality 0 or 2. Thus

n-i
IDn - U Di is even, so jD*j is odd.

coglr 4,5. For a BIB(? , 3, X,I b*) If b* < 14

b= 7 or 11.

E : If b < 14 then the total number of pairs in D

is less than 42. But there are 21 distinct pairs. Thus

some pair occurs in only one block of D , so the frequency

of this block is X. The last proposition then says that

b -mst be 7 or i1.
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In Corollary 4 . 5 , the condition that D contains some

blocK with frequency I cannot be removed. For example, in

Hedayat and Li (1979), there is a uniform design with

b = b 21. Using. Proposition 2.8 it can be checked that

this design has a minimal support and thus, by Corollary 5.2,

it is a fundamental design. It follows, then, that it cannot

be the union of other designs.

4.2. There is no BIB(7,7X,3,3A 116).

We now direct our attention to proving that there does

not exist a BIB(7,7,3x,3,%j1 6 ). Proposition 4.2 allows us

to restrict our attention to designs in which every pair of

varieties occurs in at least two distinct blocks: i.e., designs

in which no block has frequency X.

There are only five distinct blocKs containing any

particular pair of varieties. We proceed by considering

the cases where every pair appears in exactly two or three

distinct blocKs, where some pair appears in four distinct

blocks, and wnere some pair appears in five distinct blocks.

We must divide the first case, where every pair appears at

most in three distinct blocks, into subcases which depend on

4 in how many distinct blocks a single variety may occur. We

begin by determining possible values of s(a), where a is

a variety.
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L-!nna 4.6. Suppose for every pair, X, of varieties in D,

s(X) > 2. If s(ab) is odd, then there exists a variety

c 4 b such that s(ac) is odd. Further, s(a) > 7.

Proof: Consider the figare around variety a. The vertex

b has odd degree. If the other five vertices all have

even degree, then the total figure has odd degree, which is

impossible. Thus, one other vertex must have degree of at

least 3, giving at least a total degree of 14 for the

figure; that is, at least 7 blocks.

wie now exhibit all possible figures around a variety if

every pair occurs in two or three distinct blocks.

Proposition 4.7. Suppose 2 < s(ab) < 5 for every pair of

varieties in D. Then 6 < s(a) < 9 and the figure around

a is:

/ \ 'ss. ["-. :

A) If s(a) = 6: (1) \ / or (ii) K- ,-

3) if s(a) 1- M i or (ii)

C) If s(a) = 8: (i) or i-

or (iii)

D) If s(a) =9: (i) L2K or(ii

* *---~ ~ ~ ~ -.. *- ~ -. 'I -,-
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Proof: "arie y a appears in six distinct pairs, eacn of

wnich occurs in at least two blocKs of D Exactly :wo of

these parrs fi" in any one blocK, sO s(a) > 6. Simi6arly, if

s(ab) < 5 for all b tnen the, a- ms, oairs containing

a occur in at most nine blocxs. For specificity, le" a = 1

for the rest of the proof.

(i) If s(1) = 6, then every pair of varieties containing

the variety 1 must occur exactly twice in D ; that is,

every vertex in the figure around a must have exactly two

adjacent vertices. Without loss we can start the figure

around 1 as

2-3 -4.

*

Now if 124 e D , then the figure can only be completed as
*

;n A(ii). On the other hand, if 124 4 D , then we can

tathe 4 as adjacent to 5.

2- 3 -4 - 5.

If 5 is adjacent to 2, then 6 and 7 will only have
.

degree one. So, assume 156 e D • The only way to give to

7 two adjacencies while using only six edges is to include

167 and 126 in D , thereby constructing figure A(i).

I.I
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(1i) If s(1) , then two vertices in the figure around

1 have degree three and the other four have degree two. We

can assume that the two vertices with degree three correspond

to varieties o ani.

If 6 and 7 are not adjacent, then they are both ad-

jacent to the same two vertices. Therefore, the only possible

figure around 1 is of the form:

7r

But this figure violates Proposition 3.15.

On the other hand, suppose 167 e D. If there is a

vertex adjacent to both 6 and 7, then the only possible

figure around 1 is:

* 6

77

But this figure also violates Proposition 3.15.

So we are left with:

6 - 7

C e
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r' we make b and c adjacent, we get B(ii). On tne other

nand, if we mate b and d or b and e adjacent, we get

B(i).

(Ilii) If S(W' = , then in the figure around 1, two

of the vertices have degree two and the rest have degree

tnree. Let 2 and 3 be the vertices of degree two.

Suppose first that 2 and 3 are adjacent to each other.

If they are also both adjacent to the same vertex, say

2

b

then we can only continue this figure as

3 d -

2 C

b

But we cannot complete this figure, while still giving both

d and e degree three.

Thus, 2 and 3 are not adjacent to tne same vertex.

So we have:
2 b

d e

3 C

Now e must be adjacent to b, c, and d; and d must be

adjacent to c, b, and e, giving us figure C(ii):

* ,* &~.
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2 b

d e

Suppose on the other hana, that and 3 are not ad-

Jacent to each other, and that the distance between them is

one.

2 -d-3.

If there is another vertex adjacent to both 2 and 5,then

we have violated Proposition 3.16. Thus we have:

2 d - 3

b C

Now, b, c, d, and e all have degree three, so we must end

upo with:

d

2 3

But this figure violated Proposition 3.15, as was shown in.

the example following that proposition.



-39-

Suppose now thaL 2 and 5 are a distance of twc apart.

2- e b -3

C d

If e is adjacent to c, we get figure C(i). If e is

adjacent to d, we get figure C(iii).

(iv) Suppose s(1) = 9. Every vertex of the figure

around 1 must have degree three. We begin the figure with

f

C d
e

Now, e must be adjacent to at least two of b, c, or d,

since e has degree three and there are only six vertices.

If e is adjacent to two of the three, figure D(i) results.

if e is adjacent to three of them, then figure D(ii)

results.

-!e now begin ruling out the cases in which no pair occurs

in more than three blocKs of D*. We start with the subcases

in which no variety occurs in more than seven blocKs of D*

Proposition 4.8. Suppose 2 ( s(ab) < 3 for every pair of

varieties in D, and suppose s(a) < Y for every variety in

*_,; then b 16.

-.. . .
' " , - -; " .. " . "' ., "" .," "" ' :' ",' ."" "" : -":" "".' •'", "-'" ".' " " " " "
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Proof: Suppose that b = 10. Then Z s(a) = 48. But
a

2 < s(ab) for all pairs ab, so for each variety, s(a) > 6.

THIus, s(a) = ' for all varieties except one, say variety 7,

and s(7)

Therefore, if a 7, the figure around a must be

either

or

by Proposition 4.7. By the same proposition, the figure

around 7 must be either

1 1 -2

/ 3 6 /\

2 '/
%U° 4 5\

Case A: or Case 3: 5 4

* Consider the 15 pairs from varieties 1,...,b. We

claim that those of these 15 pairs defined by the figure

around 7 (e.g., 12, 23,...) occur in exactly three
wo

~blocKS of* D.
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First note that r s(ab) 36 and L < s(ab) < f for
a< b<o

all pairs, so that si:: pairs do occur in tnree blocks and the

other nine in two blocks. To prove the claim it suffices to

snow that no pair defined by the figure arcund 7 occurs in

only two blocls of D•

Suppose the opposite; that is, suppose without loss of

generality, that s(13) = 2.

First let us suppose that the figure around 7 is as in

Case A above. In the figure around 1, 7 has degree two

and is adjacent to both 2 and 3. But the figure around 1

is either

N.___ or_ _ _

/_ /
by Proposition 4.7. But s(13) = 2, so s(12) = 3.

By the same arguement applied to the figure around 3,

it follows that s(23) = 3. So when we draw the figure around

2, we find that both 1 and 3 have degree three and that

7 must be adjacent to both 1 and 3. But this is not

possible in either of the permitted figures around 2, since

(2) = 7. We have thus shown a contradiction if the figure

around 7 is as in Case A.

• , .. -. , ., • . ~ o .. . . . . .. . . , ,. .. .
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Now suppose the figure around 7 is as in Case B. Wi

will consider three subcases.

(1) Suppose that the figures for 1 and 2 are both

in the figure arcund 1, either 2 or 6 ZUst have degree

three, since 7 does not and since 2 and 6 are aajacenz

to 7. So without loss the figure around 1 is:
6-_7

/ >2

x

Then both I and 7 have degree two in the figure around 2,

so in this figure, x must be adjacent to 3:

1-

Thus x must be 4 or 5.

If x = 4, then the figure around 4 contains:

1 6 72'yi- 3 - 7 - 5

5'~')aryif x =5, then the figure around 5 contains:

-4-7-6 1-2 -3

..d.r 4.'*pS.I. **pp



But these figures cannot be completed as legal figures wi~

seven edges.

(L) Suppose the figures arcund 1 and 2 are respectively:

/and

Then, again supposing without loss of generality that 6

rather than 2 has degree three, we have as the figures

around 1 and 2 respectively:
2-7

I _ _6 7_i

/ and >

Thus .5 must oe adjacent to 2 in the figure around 1;

but this implies that s(15) = 3, contradicting the premise.

(3) Suppose that the figure around I is:

Again, we can assume that s(16) = 3, so the figure around 1

must be

'V ~' ~!
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2 Aor 2 5 ,

7 5 7 4

In the first case, the figure around 4 contains:
3

7 ! 6
5

which cannot be completed as a legal figure. In the second

case, the figure around 5 contains:
4

6

which is subject to the same objection. Thus, the claim is

proven.

This claim implies that the remaining ten blocks of D

that do not contain variety 7 form a BIB(6,10,5,5,2). It

is Known that this design is unique up to isomorphism. De-
*

note these ten blocks of D by S. Now the figure around

any variety in S is:

/
.1 -
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ror definiteness, consider the figure arouni 1 in S. Now

1 is adjacent to two varieties in the figure around 7, so

the figure around 1 in D is either:

or

But both of these violate Proposition 3.16. Thus, there can

be no BIB(7,7,31,3,J16) of the type described in this

proposition.

Proposition 4.9. Suppose 2 < s(ab) < 3 for all pairs of

varieties in D, and suppose s(1) = 8; then b* 4  16.

Proof: The three possible figures around variety 1 are,

without loss of generality:

2 4 4 4 7

r B) 62 6-3-7A)B) \ c)3--5 5

In any of these case, s(14) = s(15) = s(16) = s(17) = 3.

But by Lemma 4.6, each of the varieties 4, 5, 6, and 7

must occur in another pair which appears in three distinct

blocks of D . But by counting to r s(ab) = 48, there can

be at most six piirs repeated in thrce !N'O:s of D .

* . v''.,* .*.m..* ~
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the pairs repeated three times are, in addition to tre four

listed above:

(i) 45 and 67, or

(ii) 46 and 5-', or

4(iii) and :)6.

Note also that varieties 2 and 3 occur only in pairs

occurring in two blocks of D . Thus, the figures 2 and

3 have six edges and are thus either

1>1> or

and the figures around 4, 5, 6, and 7 have seven edges

each, and are thus
S] //\

sill or -

Noti that in these f-gures around 4, 5, 6, and 7, he:e are

. vertices of degree three, that no vertex is adjacent to

both cf the vertices of degree three, and that every vertex

is adjacent to at least one vertex of degree three.

* ~ -.



--7-

Suppose now that (i) holds; i.e., that

s(45) = s(67) 5.

Then vertices 1 and 5 haJe degree t-hree in the figure

around 4. But 4 and 5 are not adjacent in the figure

around 1, so 1 and 5 are no; adjacent in the figure

around 4, even though they both have degree three. This

is impossible.

Suppose instead that (ii) holds; i.e., that

s(46) = s(57) = 3.

Then in the figure around 4, 1 and 6 have degree one,

and 5 is not adjacent to 1, since 4 and 5 are not

adjacent in the figure around 1. Thus, in the figure around

4, vertex 5 must be adjacent to the other vertex of degree

three, namely 6. That is, the figure around 4 contains:

-1 7

6 '5

Ncw we can examine the figures around 1 a-nd 4 to see chat,

in the figure around 6, both 1 and 4 are adjacent to 5.

But . and 4 have degree three in the figure around 6,

producing a contradiction.

Thus, (ii) cannot hold, and inspection of thn figures

around variety 1 shows that the remaining case (iii) is

symmetrical to (ii) and that the same argument would apply.

Therefore no BIB with the properties liste% in the state-

ment of the proposition can exist.
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There now remains the subcase that s(a) 9 for som3

"ariety. The next proposition will help us eliminate both

this subcase and the case that some pair occurs in five

blocKs of D .

Proposition 4.10. If s(ab) ,t 2 for all pairs ab in D,

and if s(12) is odd and s(1) > 9, then b* > 16.

roof: If 16 then r s(iJ) < 48. But if s(1) > 9

i<J

then r s(li) > 18 and Z s(ij) > 48, since there are 15i i<j.

pairs not containing variety 1 and each occurs in at least

two blocks of D. So, s(l) = 9 and r(li) = 18. But by

Lenma 4.6 the fact that s(12) is odd shows that there exists

a variety c 1 such that s(c2) > 2. So Z s(ij) > 50

and : s(ij) > 48, a contradiction.
i<J

Cgrgj -- - 1 2 s(ab) K 3 r all Ra.ai ab in D,

rnd ;I s(l)= 9, t b > 16.

-C!.gJ/a J?- If 2 s(ab) f.r XU piairs ab in D, And

jU s(12) = , b* > 16.

gro: If s(12) = 5, then the figure around 1 contains:

2 -+

IJow every vertex has degree greater than or equal to two, so

the only way to complete the figure in eight or less lines is:

*-V * -'~*
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2

But -his violates Proposition 3.16. Thus, s(l) > 9, and so

by the last proposition, b* > 16.

There now remains only the case in which some pair occurs

in four blocxs of D . The n.-xt two results settle this case.

proposition 4.13. Suppose s(ab) > 2 for all pairs ab in

D and suppose s(12) = 4 and s(1) < 8. Then the figure

around variety 1 is:

Proof: Without loss, we can assume the figare around 1

contains the subgraph 3

7

T.he figure cannot be completed with just one more line, since

d

4 " . . . . . .. . ,"-.. -f, ." "," .". '"•"-•.' ", . . " ,-"
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that line would have to Join 5 and 6, and the resulting

figure would violate Proposition 3.16.

One of the two lines to be added must still Join 5 and

6, since any pair of lines, one containing 5 and the other

6, will form a figure violating Proposition 3.16. So, we

now must add one more line to the figure below:

-3

2 .4

7

Adjoining 5 or 6 to 4 violates Proposition 3.16. Ad-

joining 5 to 3 violates Proposition 3.15 (consider the

subgraph formed by removing line 2-5). Thus, the only possible

figure is the one claimed.

Proposition 4.14. If 2 < s(ab) for all pairs ab in D,

and if s(12) = 4, then b > 16.

Proof: If s(l) + s(2) > 17, then

s(12) + r (z(lJ) + s(2J)) > 34-4 = 30. But then
J>2

r s(ab) > 30 + r s(ab) 1 50 which cannot be if b* < 16.
a<b 2<a<b

So s(l) < 8 or s(2) < 8 and by Proposition 4.13,

s(l) = s(2) = 8 and the figures around varieties 1 and 2

are without loss
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0 0
3

51
4 and

7

Nqow if 5 (or 6) has degree 3 in the figure around 2,

then Lemma 4.6 implies that there exists variety c 4 (1,2)

such that s(3c) > 3. This then gives r s(ab) > 48 so,
a<b

the figure around 2 must be
* 3

44

<6
~7

Then the figure around 3 contains

~2

3nd must then contain a vertex o1f degree 3 other than

variety 1 or 2. So again Z s(ab) > 48.
* a<b

Since all cases have been eliminated, we have proven:

Proposition 4.15. There does not exist a- BIB(7,7X3%,3A '16).
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