
<• «t t>OR T NUMOt H 

Technical Report #86-27 
«•■ TITLE (tid 5ut>(/ir*> 

J. OOVT  ACCESSION  MO 

ON THE PROBLEM OF FINDING THE LARGEST NORMAL 
MEAN UNDER HETEROSCEDASTICITY     ^'.'^^t^''^^L 

ni-.hORK Cny.pi.i- , i\r, FORM 

1      "EClPlENT-s  CAT*LOCi   MuMFltf 

'>■    AUTMOR(-«J 

Shanti S. Gupta and Klaus J. Miescke 

'■    '•ER«-UHM,NO ORGANIZATION   NAME   AND  AOORESs" 
Purdue Umversity 
Department of Statistics 
West Lafayette, IN 47907 

»•    TYPE or  HEPOUT » PCRioO COVtHCD 

Technical 
«■    "tRTORMlNG ORG.  REPORT  NUM9E«" 

Technical Report #86-27 
• •    CONTRACT   O't  GRANT  NTTMFLST^T 

NQQ014-84-C-0167 

". CONTROLLING OFFICE NAME AND AOORESr 

Office of Naval Research 
Washington, DC 

^ 7- — 

'°-    ^295 V^  ELEue^jT. PPOJECT.   TA'.,- 
«HtA»«(ORKUNlTN UMBERS 

iV 

•J-    REPORT DATE 

July 1986 

'*•    O'STRieuTlON   STATEMENT (a, ,hl. R.pa,,/ 

'J      NUMBER OF   PACES 

-11. 
'»■    SECURITY   CLASS,  (cl ,h,. .,forl, 

UNCLASSIFIED 

"'■ SCHEOJLC"^*'''^*' '=3*''-''*oi'^o~ 

Approved for public release, distribution unlimited. 

'?■    DISTRIBUTION  ST^.-.Aif-iy T /„» ..'      ' . — —  

•••    SUPPLEMENTARY   ftj^T CTES 

'»■    KEY WORDS (C. onilnum on r.Keri. „d, //n.c.j 
• »«ry  „i Id.ntlty by block num6»o 

Selecting the largest mean; Heteroscedasticity in 
Bayes selection rules. normal populations; 

^0^ ATTRACT rco..,_ o„ ,..y.. _..,. .n.„..,;7^;;7=7n7i;;;7^;;:;;j;;r 
LeT: »^,...,P|^ be k > 3 given normal populations with un 

9 ' '  "IK., unknown means o,.   n  and a 
common known variance a^  Let)?    ? h. .^,    . ^ ^1. •. • ,",^, and a 

A^,...,X^ be the sample means of k independent samples 

the population with the largest 

ects in terms of the largest 

of sizes n^,...,n^ from these populations. To find 

s^mpie^Ln"""^ ''''''' '''  ^^^^^ -^^ ^''  which sel 

I^ this paper the pPrfnrmance of this rule is studied under 0-1 loss. It is sh 
^^    »  JAN   7J     14/3  — ■ __ 

own 

cont. 

iTCuRiTr CLAs-sr^^^i^^H^r^TT;;., p.,e rH^.. o..r,-,...., 



that d is minimax if and only if.n, =•••= ni,- d is seen to perform 

weakly whenever the parameters e,,...,e, are close together. Several 

alternative selection rules are derived in a Bayesian approach which 
seem to be reasonable competitors to d^, worth comparing with 
•N • • d in a future simulation study. 

UNCLASSIFIED 

>eCU«ITY CLASSIf*lCATIOS OF  THIS PAGEl-KT-.n D.<. En,.,, d) 



_0n the Problem of Finding the Largest Normal 
Mean under Heteroscedasticity 

*^Shanti S. Gupta^ 
Purdue University 

^Klaus J. Miescke^ 
University of Illinois at Chicago 

Technical Report #86-27 

Department of Statistics 
Purdue University 

July 1986 

AMS(1980) Subject Classification:  Primary 62F07; Secondary 62F15 

KEY WORDS:    Selecting the largest mean; Heteroscedasticity in normal populations; 
Bayes selection rules. 

Research supported by the Office of Naval Research Contract N00014-84-C-0167 and 
NSF Grant DMS-8606964 at Purdue University. 

Research supported by the Air Force Office of Scientific Research Contract AFOSR- 
85-0347 at the University of Illinois at Chicago. 



On the Problem of Finding the Largest Normal 
Mean under Heteroscedeisticity 

Shanti S. Gupta^ 
Purdue University 

Klaus J. Miescke^ 
University of Illinois at Chicago 

Abstract 

Let Pi,...,Pk be A; > 3 given normal populations with unknown means 6i,...,6k, 
and a common known variance cr^. Let Xi,,..,Xk be the sample means of k independent 
samples of sizes ni,..., njt from these populations. To find the population with the largest 
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In this paper, the performance of this rule is studied under 0—1 loss. It is shown 
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1.  INTRODUCTION 

Let Pi,...,Pkhek>3 given normal populations with tmknown means 0i,..., 0^ G R, 
and a common known variance a^ > 0. Suppose we want to find the population with the 
largest mean, where^ independent samples of sizes ni,...,nk from Pi,...,Pk are available 
with sample means Xi,..., Xk, respectively. 

- The natiu-al decision rule d^, which selects that population which is associated with 
the largest sample mean, has been studied by many authors since it was introduced in the 
pioneering paper of Bechhofer (1954). It was found that it is the uniformly best permu- 
tation invariant procedure if the sample sizes ni,...,nk are all equal. The most general 
version of this so-called "Bahadur-Eaton-Goodman-Lehmann Theorem" is presented in 
Gupta and Miescke (1984), where the risk function of multi- stage selection rules with 
screening is studied under a permutation invariant loss structure. 

The situation changes drastically when the assumption of equal sample sizes is 
dropped. Besides being asymptotically consistent when the sample sizes tend to infinity, 
no optimum property of the natural rule d^ is known so far. On the contrary, Lam and 
Chiu (1976), and more generally Tong and Wetzell (1979), have brought to light quite 
pathological behavior of the probability of a correct selection under <i^,P(C5|d^), say. ff 
^1,..., ^fc are sufRciently close together and if 0i,... ,0k-i < 0k, then its value is strictly 
decreasing in njfc. 

It should be noted that technically there will be no great changes if we assume that 
Pi,...,Pk have different but known variances. However, we feel that the chosen model 
provides a better m^otivation for our considerations. Nevertheless, our analysis will be 
based on k independent random variables X,- ~ N{0i,pi),i = 1,..., fc, where pi,...,pk are 
known, and can be thus applied to the more general case, too. 

Whenever comparisons with a control are incorporated into the problem, difficulties 
caused by heteroscedasticity can be overcome more easily. This has been done for example 
by Miescke (1981) and Gupta and Miescke (1985). However, the transition to the corre- 
sponding problem without a control, as it is described in Miescke (1979), cannot be made 
in the given situation. 



Although some work has been done already to solve the given selection problem, no 
modification or substitute of d^ has been found so far which can be considered to be better 
in some reasonable sense. Some insight mto the structure of the problem has been gained 
by Bechhofer and Tamhane (1986), who looked for the best allocations of observations, 
subject to ni + ... + Mfc being fixed, to maximize P{CS\d^) for the case of known but 
unequal variances. 

The problem under concern, although being rarely mentioned in the literature, e. g. 
Berger (1983) and Miescke (1984), is well known to the statistical community. A recent 
siniulation study by Zaher and Heiny (1984), where d^ is compared with two similar rules 
which are based on medians and rank-sums, respectively, under ni = ... = n^ but different 
variances of Pi,..., P^, corroborates this fact. It should be pointed out that the problem 
of selecting a subset for unequal sample sizes (or unequal variances) has been studied by 
Gupta and Huang (1976). 

In the next section, the muiimax approach is used to detect weak points in the per- 
formance of d^. However, no alternative decision rule can be found in this approach. 
Therefore, Bayes rules with respect to various priors are studied in the subsequent sec- 
tions to find reasonable modifications of or alternatives to d^. Similar techniques have 
been used previously by Ehrman, Krieger and Miescke (1986) in the related subset se- 
lection problem. Several promising candidates to be used as alternatives to d^ will be 
derived and proposed in this paper. Comparisons of the performance characeristics of all 
rules considered in a simulation study is planned to be made in the future. 

2.  MINIMAXITY 

The problem, which will be considered throughout this paper, can be formulated in 
a concise form as follows. Given are independent random variables X,- ~ -/V(5,-,p,),t = 
1,...,A;, where Pi,...,Pk are fixed known positive numbers. To be found is the index 
to, say, with 0,„ = max{5i,.. .,5^}, which we may assume to be tmique for the sake 
of simplicity. ^ Under the 0 - 1 loss function, the probability of a correct selection and 
the risk function of a (possibly randomized) decision rule d at a parameter configuration 
0_= {0i,...,6k) G R* are connected through 

P^(C5|d) = l-i2(£,d). (1) 

Thus all decision theoretic formulations in terms of risk can be translated inmiediately 
into the "P(CS)-language" used in the area of ranking and selection. 

We begin our study with minimax considerations since this will lead us directly to 
the weak points in the performance of the natural decision rule d^, which selects in terms 
of the largest value among Xi,...,Xk. We shall see that the performance of d^ becomes 
unsatisfactory whenever the parameters (?i,..,, ^^ are lying closely together. This comple- 
ments the findings of Lam and Chiu (1976) and of Tong and Wetzell (1979) and indicates 
that d    cannot be considered to be a universally acceptable decision rule. 

Let (p and $ denote the density and cumulative distribution function, respectively, of 



, ifjfx-tij^iy-.i^  . 

N{0,1) in the sequel. The first result is a reformulation of the findings by Tong and Wetzell 
(1979), presented however in a form which is more suitable for our further considerations, 
and proved differently. 

LEMMA 1.   The function 

fc-i 

it is strictly increasing in 7,- > 0, i = 1,...,/;- 1. 

Proof:  The partial derivative of H with respect to 71 is equal to 

fc-i 

(2) 

/   n ^i.li^)z'P{liz)(p{z)dz. (3) 
•^R .=2 

After combining the two v3-functions, and then integrating by parts, it can be seen that 
(3) equals 

where 

{2n)-^{l + ^l)-'' f M{w)<p{w)dw, (4) 

1=2 

is clearly positive over the whole real line. 

As an immediate consequence, we can state the following. 

COROLLARY 1.  The function 

'\'^-'-   / G(ax,...,aO= /  l[^K'^K''PK'^)d^ (6) 
•'R ,=1 

is strictly decreasing in ai,.. .,Ok-\, and strictly increasing in cr*. 

Now we can state the main result of this section. The points of weakness of d^, which 
we have mentioned before, will become visible in the course of the proof. 

THEOREM 1.  For the given problem, the natural decision rule d^ is minimax if and 
only if pi — P2 = ... = Pk- Moreover, the minimax- value of the problem is 1 — 1/k. ' 



Proof: Consider the no-data rule d°, which selects every i G {l,..., A;} with the same 
probability 1/A:. It has clearly the constant risk 1 - Ijk. 

The risk function of d^ can be represented in a convenient way by using the following 
notation. For any vector a e R*, let 0[i] < ... < a^k] denote the ordered coordinates. 
Moreover, whenever i= {9i,...,dk) and X = (Xi,...,Xfc) are considered jointly in 
the sequel, let subscript [j] = i, if (?.• = 0y^,i,j = l,...,k. As mentioned before, we 
ma,y assume that no ties occur among the 5,'s. This simplifies our considerations without 
losing generality. Introducing generic random variables Ni,...,Nk, which are independent 
standard normals, we can represent the risk of d^ at ^ G R'' by 

= 1- P{5[.j + pf.^Ni < ^[fc] + pl^Nk,i < k}. (7) 

And since this is an increasing function of tfj,], i < A;, we conclude that 

supi2(^,d^) 

-inf f [J mP{k)/P{i))^z)<p{z)dz 

- /   I[^{{p[il/P[i])^zMz)dz, 

e 

fc-i 

= 1 
e   /o 

t=i 
k 

= 1 (8) 

where the second equation is a consequence of Lemma 1. Moreover, from Lemma 1 we see 
that 

snpR{e,d^)>l-l/k, (9) 
$ 

= Pk- with equality holding if and only if p^ = p2 = 

Thus, to complete the proof, we have to show that the minimax value of the given 
problem is equal to 1 - 1/k. Since the no-data rule d° has constant risk 1 - 1/k, it suffices 
to find a sequence of priors such that the sequence of associated Bayes risks tends to this 
value. The following class of conjugate priors will be seen to contain such a sequence. 

Let, apriori, Qi,...,Qk be independent random variables with ©,- ~ N{ni,ri),ni e 
R,r,- > 0,t = 1,...,A;. Then, as it is well known, aposteriori, given X = ^,©i,...,©* 
are independent normals with expectations (p,/i,- + ri2,)/(p.- + r.) and variances riPi/{pi + 
r,),t = 1,...,A:, respectively. And marginally, Xi,...Xk are independent normals with 
expectations m and variances p,- + r,-, i = 1,..., A:, respectively. 



At X = I, the Bayes rule d^, say, minimizes the posterior expected loss, and it yields 
the posterior risk 

.min   (l-P{0. = 0[fc]|X=x}) 
1 = 1,...,*; 

= 1 -   max    /  TT $((aypj)-a(aixi + (1 - Q;,)/ii 

- ajXj-{l-aj)tij + {aiPi)^z))(p{z)dz, (10) 

where Oa = ra/{pg +ra),s = l,...,k. 

For the special case of rg = l/n and fig = 0,s = 1,..., A;, we see that (10) tends to 
1 — 1/fc, if n tends to infinity. And since the marginal densities of Xi,..., Xk are bounded 
by a constant, a routine application of Lebesgue's dominated convergence theorem shows 
that the sequence of Bayes risks tend in fact to 1 — 1/fc, if n tends to infinity. This completes 
the proof of the theorem. 

From (8) in the last proof, we can see now clearly what might go wrong in the per- 
formance of the natural rule d^. If the parsuneters di,...,9k are close together, and if the 
variance p(fc) of X(fc), which is associated with 0[jt], is relatively small in comparison with 
P(^i),i 7^ fc, then the rule d^ performs "Svorse than at random". 

One natiiral way out of this dilemjua, and to possibly save the reputation of d^, is 
to look at the average risk over all fc! permutations of a given parameter vector 0, rather 
than taking the risk function as a measure of performance. The average risk of a rule d at 
5 G R*= would be 

m,d)^il/k\)Y,R{<i),d), (11) 

where ir[6) = (^7r(i)5 • • • > ^7r(fc))> and the summation being taken over fc! permutations IT of 
(1,2,..., fc). The average risk reflects perhaps better the prevailing attitude of researchers 
in the area of ranking and selection, which states that "the pairing between the O'^s and 
the Pt's is completely imknown." 

It CEin be shown that with respect to the average risk R,d^ is in fact minimax. This 
result, however, is not of great support for d^, since it shares this property with a large 
class of monotone decision rules, as we shall see in the next theorem. 

THEOREM 2. Let d^ be the decision rule which selects in terms of the largest 
hi [Xi), i = 1,..., fc, where hi,.. .,hk are strictly increasing functions. Then d^ is minimax 
with respect to the average risk R, and the minimax value of the problem is again 1 — 1/fc. 

Proof: For every decision rule d, and for every permutation symmetric prior with 
density p w. r. t. the Lebesgue measure on R*', the Bayes risk satisfies 

'{p,d) =  f   R{9,d)p{i)d9 
JR" 
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= / R{i,d)p{e)di<supR{e,d). (12) 
J{i\e,<...<e^} e 

Since the sequence of priors chosen below of (10) consists of such symmetric priors, it 
follows similarly as in the proof of Theorem 1 that the no-data rule d° is minimax w. r. t. 
R, and that the minimax value is again 1 - 1/k. It remains thus to show that every rule 
of type d^ has supremal average risk 1 - 1/k. Let d^ be any such rule, and let ^ 6 R'^ 

be fixed, where we may assume without loss of generality that ^i < ^2 < • • • < ^;t holds. 
Then similarly as before in (7), 

il/k\)Y,P^^ej{CS\d'^) 
ir 

= (l/fc!)^P,(e){/l^-:(fc)(X,-.(fc))>/l^-x(y)(X,-.(y)),i<fc} (13) 
jr 

= {l/k\)Y,P{K-Hk){6k+ P^-^ik)Nk) > K-^U)i^3 + P--Hi)Nj)J < k}, 

where Ni,.. .,Nk are independent standard normals, and /?,• = p*, i = 1,..., /c. A lower 
bound of (13) is attained if all ^i,..., 9k^i are put equal to 6k, because of the monotonicity 
of /ii,..., /ifc. Doing so, ajid then splitting the sum into a suitable double sum, we see that 
the lower bound is 

k 

t=l 7r,7r(t)=fc 

>h„-^{j){9k + l3^-iU)^j),j<k} 
k 

= {l/k)'^P{hi{ek + PiNi)>hj{9k + 0jNj),j^t} = l/k. (14) 

Thiis, in view of (1), the supremal average risk of d^ is equal to 1 — 1/k, emd the proof of 
the theorem is completed. 

Our conclusions of this section are (1) that the natural rule d^ cannot be ax:cepted 
as a universally good decision rule, and (2) that the minimax principle does not lead to 
a convincing alternative to d^. Therefore it seems to be reasonable to study the form 
of Bayes rules with respect to various priors in more detail, in the hope to learn more 
about how such good decision rules act in different situations. Our main interest thereby 
will focus on permutation symmetric (exchangeable) and on conjugate priors. This will be 
done in the subsequent sections. 

3. BAYES RULES FOR EXCHANGEABLE PRIORS 

Permutation invariant (exchangeable) priors appear to be the suitable priors to adopt 
if there is no initial knowledge available as to how the ordered parajneters ^[ij,..., O^k] *tre 
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associated with the populations Pu---,Pk- They reflect the prior opinion that each of the 
A; populations niay equally likely be the one which has the largest mean. 

Since we are considering Bayes rules, we may restrict considerations to nonrandom- 
ized decision rules d, which can be represented simply by measurable functions d: R* ->■ 
{1,2,..., A;}, where d{x) — i means that BX 2L = ^d selects population Pi, i - 1,..., fc, x e 
R*=. 

Now, for any prior r, after X = x has been observed, the Bayes rule selects that 
population which is associated with the smallest posterior expected loss. This decision 
process consists thus of pairwise comparisons of the k competing posterior risks. Ignoring 
a common factor, which depends on x and p, the Bayes rule d^ can be written as 

d^(x) = z   if ^(i|x)=   max   G(y|x), (15) 

where * 
-. k 

9{s\x)= l['^(i='^-^j)/phMO),   i,s = l,...,k. 

' To find out under which conditions one population is preferred over another one if r 
is symmetric, let us compare without loss of generality 5(2|x) and 5(l|x), say, to keep the 
notation simple. After exchanging the variables ^i and $2 in the integral representation of 
^(2|x), and some standard calculations, we see that 

mx)-gii\x) 

.       = / [M2.i(x,^ - 1] n <p{{xi - 9i)/pf)dT{d), (16) 

where 

A^2,i(x,^) 

= exp{{ei - e2)[{x2 - (^1 + 02)/2)/p2 - {xi - {0, + 52)/2)/pi]}. 

Although the Bayes rules may have in general very complicated forms, several con- 
clusions can be drawn from (16). The first one is 

THEOREM 3. Under a symmetric prior r, suppose that for two populations Pa and 
Pb, say, the variances Pa and Pb are equal. Then the Bayes rule relatively ranks Pa and Pb 
m the same way as the natural rule d^, namely according to the larger of the two values 
Xa and Xb, no matter what Xi,i ^ a,b, might actually be. 

Another finding is the following. Suppose we know a constant lower (upper) bound d 
to ^1,... ,5fc. Then if Pa > {<)pb and if (xo - d)/pa > {xb - d)/pb, every Bayes rule w.r.t. 
a symmetric prior prefers Pa to Pb. 



If the prior knowledge asserts that the parameters ^i,..., ^jt are in a slippage config- 
uration $1 = ... = 0,_i = Bi+i = ... = ek = 6, and Bi = 6 + A, where <5 G R and A > 0 
are known, and where apriori each i e {l,...,k} may be, with the same probability l/k, 
the index of the slipped population, then from (16) it follows that the Bayes rule is given 
by 

d^'^{x) = i  if   {xi-6-A/2)/pi=   max {xj-6-A/2)/pj. (17) 

It should be noted that it is quite different from the decision rule d*, say, which selects in 
terms of the smallest p-value of the best 1-sample tests for Hi : 6i = 6 versus Ki : Oi = 

S + A, and thus selects in terms of the largest (x,- - S)/pJ ,i = l,...,k. 

Exchangeable normal priors give Bayes rules which are in general quite complicated 
in their structure. Although we know that the Bayes rule is determined by 

d«(x) = i  if P{0i = 0(fc]|X=x} 

=   max   P{0y = 0[fc]lX = x}, (18) 
3 — l,...,ft 

and a prior 0 ~ N{IM,A) with X|0 = 9^ N{d,'E) would result in 0|X = x ~ N{x- 
E(E + A)-'^{x- IM),{Y:-^ + A-^)-^) where, marginally, X ~ iV(M,E + A), there is not 
much simplification to gain if we assume that /i — ^oL and A = al + bl 1^, where 
1 = (1,.. .,1)^,/ is the A; X A: identity matrix, iio,b G R,a > 0, and a + fc6 > 0 to have 
A positive definite, even if, as in the present setting, S is diagonal with diagonal elements 

One limiting case, however, the noninformative prior case, is of natural interest and 
leads in fact to an interesting decision rule. Suppose we are in the situation which led to 
(10), but now letting ri,...,rk tend to infinity. Then the generalized Bayes rule d°°, say, 
can be seen to be based, formally, on 0,- ~ JV(x,-,p,), t = 1,..., fc, independent, at X = x, 
and to be given by 

d°°{x) = i  if   )i{i\x} = . max JU\x), (19) 

where 

y{s\^=   I    Y[^iPjHxs-Xi+ph))<p{z)dz,     t,5 = l,...,fc. 

One interesting feature of d°° is that it selects in terms of the largest variance among 
Pij•••,?*> whenever xi,...,Xk are lying closely together. This is an immediate conse- 
quence of Lemma 1. We conclude this section by proposing two other type of decision 
rules which seem to be reasonable alternatives to d^, worth to be studied in more detail 
in the future. The first is given by 

d^{x) = d^{x},   if x^B, and 

d^{x) = i,   if  X G B and p,- =    max   py, (20) 
y=i fc 



where B CR is an area where the coordinates of the vectors are close to each other, e. g. 
where max,j |i,- — xy| < e for some e > 0. The other type of decision rule is of the form 
(19), where )( is replaced by U, say, with 

)i{s\x) = {x,-x)/p„   s=l,...,k, (21) 

and where   x  is   an  average  of xi,...,Xk,   e.  g.  the weighted  average with weights 

4.  BAYES RULES FOR POSTERIORS WITH (DT). 

One of the basic facts which lead to the "Bahadur et. al. Theorem" mentioned in 
the introduction is the following. Suppose that at every X = i, the posterior depends 
on x through g[x) — (ffi (i),..., gk[x)), where 9i,...,gk are given functions. Then if the 
posterior is (DT) in {0,g{x)), and if the loss function is permutation invariant and favors 
selection of larger parameters, then the posterior risk acts like the loss function where g{x) 
plays the role of 0. For details see Gupta and Miescke (1984). Thus the Bayes rule selects 
here in terms of the largest 3,-(x),I = 1,..., A;, 

Under a normal prior 0 ~ iV(/£,A), as considered after the statement of (18), the 
posterior is (DT) if and only if the covariance matrix associated with it is of the form 

(S-i+A-^)-i=a2[(l-p)/ + plir], (22) 

where a G R and — (fc — l)~^<p<l are necessary and sufficient for this matrix to be 
positive definite. 

If (22) holds true, the conditional expectation of ©, given X_= x, can be seen to be 

EmX = x} = fi, + '^{x)l+ 

+ o2(l-/))((xi-/Xi)/pi,...,(xfc-Mfc)/pjt), (23) 

where ^(x) is a certain fimction which is, as we shall see, of no relevance for the Bayes 
rule. Namely, if we set gr,(x) = E{Qi\X_ = x},t = 1,... ,/:,x G R*, then the posterior is 
(DT) in {0_,g{x)), and the Bayes rule is given by 

d^(x)=t  if  J(t|x)=   max   I{j\x), (24) 
J = l k 

where J(s|x} =/Xs + a2(l-p)(x^-/Lta)/p,,   t,5 = 1,... ,A:. 

Of special interest hereby is the case of tii — ... = Hk = fJ-, where the Bayes rule d**, 
say, assumes the simple form 

d''(x) = t   if  (x,-/i)/pi =    max   (xy-Ai)/Pj, (25) 
j = l,...,k 



i = l,...,k, which is almost the same as that one of the Bayes rule for the slippage 
situation, given by (17). 

The interesting feature of the rule d°°, discussed just after the statement of (19), has 
an analog in the rules given by (25) ajid (17). If there are (almost) tied x,'s, which are 
smaller (larger) than fi or 6 +A/2, respectively, then the Bayes rules prefer the population 
with the larger (smaller) variance. 

The choice of a prior, which results in a posterior with the (DT)- property and ulti- 
mately in a Bayes rule of simple structure, is made not only for convenience. It has also a 
statistical justification since it leads to a posterior situation where the information about 
the unknown parameters ^i,... ,5jt is equally and thus fairly balanced. This can be seen 
perhaps most easily in the case where p = 0 in (22). Then A is diagonal with diagonal 
elements ri,...,rjfc, say, which brings us back to the situation considered at (10), where 
now we have 

P.~^+rri =a-2,   i=l,...,k. (26) 

Calling, as usual, the inverse of a variance "precision," the sum of the prior precision and 
the sampling precision is constant across the k populations, if (26) holds. 

Returning to the original form of the problem, as it was presented in the introduction, 
we can state the following interesting fact. Suppose that the prior is known, as it should 
be, before the sampling is performed. Suppose further that the sample sizes from the 
populations Pi,...,Pk can be chosen in such a way that (22) holds, which means that 
in case of a diagonal A, the condition (26) is fulfilled. Then the information about the 
unknown parameters 6i,...,$kis fairly balanced, and the Bayes decision rule assumes the 
simple form given by (24) or (25), respectively. It should be pomted out clearly, that in 
this case the Bayes rule is the same under every loss which is permutation invariant and 
favors selection of larger parameters. 

5.   CONCLUDING REMARKS. 

It can be seen easily that the natural rule d^ is an extended Bayes rule. Since if 
apriori, ©i,..., 0^ are i. i. d. N{0,n), then the Bayes risk of d^ with respect to this prior 
tends to 0 if n tends to infinity. This is not surprising, as we know that the performance 
of d'^ is only unsatisfactory if the parameters 0i,...,0k are close together. On the other 
hand, we saw that d^ camnot be the Bayes rule for any normal prior 0 ~ N{fi, A). 

We could not settle, however, the interesting question of whether or not d^ is admis- 
sible under the 0 - 1 loss function on the parameter space fl = {£ G R'=|0[fc]is unique}. 
The restriction of parameters to Jl is made for simplicity, and does not cause any loss of 
generality. For other loss fimctions, however, this restriction may not simplify matters and 
may not be made, as e. g. in the example given below. 

The 0 — 1 loss function was adopted in our study because it connects the risk function 
in a natural way through (l) with the probability of a correct selection, which is the 
performance characteristic of decision rules considered primarily in the area of ranking 
and selection. With respect to other loss functions, however, the natural rule d^ may in 
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fact be a proper Bayes rule and admissible on R*=, as the following example demonstrates. 

Assume that the loss for selecting population Pi at parameters ^j,..., 0;^ is of the form 

L[i,i) = e^k]-ei, t = i,...,fc, ^eR\ (27) 

Then the Bayes rule at X = i is given by 

rf*(x) = t   if E{0.|X = x}=    max   E{Q^\X^x},   i=l,...,k. (28) 

Therefore, if apriori, 0,- ~ N{fii,ri),i = l,...,k, independent, the Bayes rule at 
X = X turns out to be 

d^{x} = i  if   M{i\x)=   max   M{j\x), (29) 

where M{s\x) = {Psfis + rsX,)/{ps + rs),s = l,...,k.  And it can be seen now that d^ is 
the natural rule d^ if fn = /j, and r,- = c p., t" = 1,..., k, for some fixed /x G R and c> 0. 

The admissibility of all Bayes rules considered in this paper, those under 0-1 loss on 
n, as well as those under the loss function (27) on R*, follows from the fact that the risk 
function of every selection rule in these problems is continuous in 0. This is an immediate 
consequence of the well known fact that the expectation of a bounded function under a 
multi-parameter exponential family is continuous in these parameters. 
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