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Extreme Values of Queues, Point Processes
and Stochastic Networks

During the last year we worked on four research topics. Our
progress on these topics is described in the following discussion.
1. Modeling of Stochastic Flows in Networks: Compound Poission
Approximations
Our most significant accomplisment last year was the development of
compound Poisson approximations for random variables and Point processes.
Such approximations are instrumental in the modeling of stochastic flows
in networks. Being fundamental in nature, our results apply to other
settings as well. The following papers described our work; further
discussion is given below.
Serfozo, R. F. (1985). Compound Poisson Approximations for Sums of

Random Variables. To appear in Ann. Probability.

Serfozo, R. F. (1985). Partitions of Point Processes: Poisson

Approximations. To appear in Stochastic Processes and Their

Applications.

Compound Poisson Approximations for Sums of Point Processes. A basic

theme in probability is the characterization of the behavior of sums of
random variables and point processes. Many physical quantities can be
viewed as a sum of a large number of small quantities (e.g. an SAT score >;”¢__
is the sum of scores from individual questions, or a company's revenue in 5
a month is the sum of the revenues from its many sales). Moreover, any

random sequence Sn can be viewed as the sum of its increments:
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S = I (S

n - SO. The classical central limit theorem for a sum
k=1

kK~ Sk-1)
Sn of independent identically distributed random variables asserts that
the distribution of Sn’ for large n, is approximately normal, and the
quality of this approximation is described by the Berry-Esseen
inequality. It is also known that Sn under slightly different

conditions, may be approximately Poisson, compound Poisson or infinitely

divisible, and there are known error estimates for the Poisson
approximation.
The Poisson approximation is frequently used in the operational
analysis of telecommunications networks. For instance, the number of
telephone calls that arrive to a switching station in an hour from a
large number of subscriber lines, as shown below, is typically modeled as }
a Poisson random variable. More generally, the flow of calls over time
from each subscriber 18 viewed as a "thin"” point process and the sum of \
these point processes that enters the station is modeled as a Poisson )

process.,

D —

Switching
—S—— Station

Subscriber Lines

Figure 1. Flows in a Telecommunications Network
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This type of merging or summation of point processes occurs in other

networks such as (i) flows of data packets in computer networks, (1i)
flows of material and parts in automated production plants, and (1ii)
flows of goods in distribution networks. (These are the principle
application areas for our results.) Although Poisson processes are used
for modeling flows in these networks, they are inappropriate when the
flows have certain natural groupings of points (e.g. a series of
data-packets consitutte a message, or a group of parts constitute a
delivery). In such instances, which are evidently more common than not,

a compound Poisson model may be more appropriate than a Poisson model.

- e e

This raises the questions: under what conditions can a sum of random
variables or point processes be approximated by compound Poisson random
variables or point processes? This question is what motivated our

research.

ot X

During the last twenty years, several ad hoc theorems had been
proved on the convergence of sums of independent random variables to

compound Poisson variables, but little was known about the error in their

P

attendant approximations. D. Freedman (1973) gave some examples that

; seemed to imply that one could not develop compound Poissosn
approximations that would be as natural or universal as normal or Poisson

j approximations.

; In spite of this dire evidence, we have been fortunate enough to

- develop such approximations. We have found rather general conditions

E under which sums of dependent random variables or sums of dependent point

E processes are asymptotically compound Poisson. More important, we have

. established bounds on the errors involved in these approximations. Our
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results are applicable, for instance, for constructing compound Poisson
models of merging of flows in networks as described above. These models
could be used in conjunction with queueing models to analyze the delay or
throughput of the flows. Another major application of our results is

described next.

¥ Partitions of Point Processes. The preceding discussion was on the
merging of stochastic flows in networks. Another related operation is

the partitioning of a single flow into many subflows as shown below.
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Figure 2. Subflows in a Computer Network

Here a stochastic flow of computer data packets on a network line is
entering a computer that directs the packets to several other computers
depending on the packets' respective instructions. In other words, the
initial flow is randomly partitioned into several subflows. When the
number of subflows is large so that each subflow is relatively thin, then
one would suspect that the subflows may be modeled as multi-variate
Poisson or compound Poisson point processes. Using the results described
above, we have been able to shed light on this phenomena. We have found

several types of random partitions whose resuiting subflows are
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approximately Poisson or compound Poisson, and we have obtained bounds on
the errors in these approximations.

Partitions of point processes, like sums, are fundamental to a
variety of contexts other than networks. For instance, consider a point
process over time in which each point has one of several attributes (e.g.
insurance claims over time may be categorized as small, medium or large
in size), then the numbers of points with these attributes form a
partition of the parent process. Our results are useful for analyzing
the dependency among such subflows as well as the characteristics of each

subflow.

2. Extremal Problems in Stochastic Networks
We have obtained a family of bounds for the distributions of certain
generic random variables associated with networks. These random
variables represent critical path lengths in PERT networks, maximum flows
in networks, and lifetimes of systems. This work is documented in:
Weiss, G. (1985). Stochastic Bounds on Distributions of Optimal
Value Functions with Applications to PERT, Network Flows and Reliability.

Technical report, Georgia Tech.

Description of the Study. We consider a network with nodes {l,...,n} and

random variables xl,...,xn associated with the nodes. Let Il,...,Ik
denote the sets of paths and let Jl""’Jz denote the sets of cuts of the
network. We focus on the following random variables.

(a) Critical Path of a PERT network: The nodes represent
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activities, the X, are activity durations, and the network

i
structure depicts the precedence constraints. The critical
path length is the shortest time needed to complete the

project, namely

M = max z X .
1<j<k 1iel

(b) Maximal Flow in a Network: The nodes represent pipelines and
the X1 are maximal flow capacities. The maximal flow through

the network from source to sink is

L = min L Xi.
1<§<t feJ

(c) Reliability of a System: The nodes represent components and

the xi are their lifetimes. The system lifetime is

T= max min xi = min max Xi.
1¢j <k ite

1<j<2 ier

It is generally impossible to obtain tractable expressions for the
distributions of M, L, T in terms of the joint distribution P of the
x‘,...,xn. Consequently, it is natural to seek partial information or
bounds on M, L, T. In this regard, we consider worse-case bounds of M,
L, T. Specifically, we address the question: What joint distributions P

on the xl,...,x solve the following optimizaton problems

1

max E(M - x)+, max E(L ~ x)
P P
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max P(T > x), sup P(T < x),
P P

where the optimization is over all joint distributions P with the fixed
marginal distributions Fl,...,Fn? We answer this question by presenting
mathematical programming algorithms for optimizing P in these problems.
This gives us worse-case networks in which the distributions of M, L, T
can be computed. These distributions are then bounds for M, L, T in any

network.

3. oOptimization of Queueing Systems
Two major problem areas in the optimization of queueing systems are
as follows:

Optimal Design of Queueing Systems. In designing a service system

involving queueing, one typically is able to choose some of the basic
parameters of the system (such as numbers of servers or arrival and
service rates) from a range of possible values. The problem is to select
the parameters so as to minimize the total cost of the system, including
the operational cost of the system over its lifetime. This is a static
optimization in that the parameters are chosen at the inception of the
system and are thereafter fixed for the system's lifetime.

Optimal Dynamic Control of Queueing Systems. In some queueing systems,

the basic parameters can be changed dynamically as the queues evolve.
For instance in telecommunications systems, the service rate or numbers
of servers change as the queue lengths change. The problem is to
determine a policy for dynamically regulating the system parameters,
based on the queue length, so as to minimize the total cost of operating

the system.
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We have begun work on several problems in these areas; our progress \
on these is discussed below. This work compliments our analysis of
extreme values of queues discussed in Section 4 in that here we are seek-

ing economical ways to control or dampen extremes of queus.

Optimal Idle and Inspection Periods for M/G/1 Queues ‘

In a standard M/G/]1 queueing system, a Poisson stream of customers
arrives to a single server who serves them on a first-come-first-serve
basis and the service times are independent and identically distributed.
In this system, the server is alwasy available for service. In actual
systems, however, a server may have to be absent periodically for other
duties or for rejuvenation (e.g. a computer may do file maintenance in
addition to its standard processing of jobs). In such systems, the
customers are served intermittently rather than continuously. Inter-
mittant service is also characteristic of service systems in which short
queues are tolerable or when short busy periods for servers is uneco-
nomical. In designing such a system, a natural question is: How long
should the server be absent without serving customers and how large
should the queue be before the server starts serving customers?

. We have solved this problem for an M/G/1 queue that operates under a
(T,N)-policy described as follows. Whenever the system becomes empty,
the server is idle for a time T and then it inspects the queue contin-
uously without serving customers until there are N customers waiting -
thereupon the server is activated and serves customers continuously until
the system becomes empty. This {dle~inspection-service cycle is repeated
indefinitely. There are costs for inspecting the queue, for activating

and running the server, and for holding customers in the system. We have
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developed a nonlinear programming model for determining the parameters
(T,N) that minimize the average cost. This is documented in the
following paper.

Kim, S. S. and R. F. Serfozo (1985). Optimal Idle and Inspection

Periods for M/G/1 Queues. Technical Report, Georgia Tech.

Y Optimal Control of Networks of Queues. Service systems in manufacturing

and telecommunications usually involve random flows of customers among a
network of queueing systems.

We have begun a study of the dynamic control of a network in which
the service rates at the nodes and the routing of the customers through
the network are subject to control each time a customer moves in the
.. network. Whenever a customer moves, the queues in the entire network are
observed and, based on the observation, the service rates and routing
probabilities are selected until the next customer movement. This is

repeated indefinitely. Our aim is to establish the existence of certain

Y.

natural monotone optimal policies in which the service rates are

increasing functions of the queue lengths and the routing probabilities

A Aa et

have monotonicity properties such that large queues are avoided. The
knowledge of the existence of such policies leads to efficient
computational procedures for optimal policies. Furthermore, monotone
policies are more natural for implementation in actual systems.

Our approach to this problem area is as follows. We characterize
‘ the queueing network process as a multi~dimensional Markov process whose
: transitions are determined by a family of “"transition operators”. (As a
simple example, a birth and death process has two operators: an upward

unit jump and a downward unit jump.) We first establish certain optimal
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monotonicity properties for these operators, and then translate these
into monotonicity properties for the parameters under control. The
analysis involves transforming the Markov process into a simpler process
and introducing and exploiting the notion of convexity and submodularity
of functions with respect to the transition operators. We plan to start

documenting our results on this next year.

4. Extreme Values of Queues and Point Processes

Although much of our effort this year has been spent on this topic,
we have not reached the documentation stage yet. The research is
proceeding along the lines of our proposal, which need not be reviewed
here.

There are several technical issues that we are striving to
understand more fully: (i) Our major results show that queueing
processes have an asymptotic extreme-value distribution that is different
from the three classical ones. To shed light on why this is so, we are
attempting to prove our results by another approach, possibly via limits
of diffusion processes. (ii) We are seeking a more complete
characterization of the types of service times in queues for which our
results apply. (iii) We are attempting to obtain necessary as well as
sufficient conditions for our limit properties of queues and point
processes.

We will give a more extensive review of this work in our next

progress report.
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