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Extreme Values of Queues, Point Processes
and Stochastic Networks

During the last year we worked on four research topics. Our

progress on these topics is described in the following discussion.

1. Modeling of Stochastic Flows in Networks: Compound Poission

Approximations

Our most significant accomplisment last year was the development of

compound Poisson approximations for random variables and Point processes.

Such approximations are instrumental in the modeling of stochastic flows

in networks. Being fundamental in nature, our results apply to other

settings as well. The following papers described our work; further

discussion is given below.

Serfozo, R. F. (1985). Compound Poisson Approximations for Sums of

Random Variables. To appear in Ann. Probability.

Serfozo, R. F. (1985). Partitions of Point Processes: Poisson

Approximations. To appear in Stochastic Processes and Their

Applications.

Compound Poisson Approximations for Sums of Point Processes. A basic

theme in probability is the characterization of the behavior of sums of

random variables and point processes. Many physical quantities can be

viewed as a sum of a large number of small quantities (e.g. an SAT score

is the sum of scores from individual questions, or a company's revenue in

a month is the sum of the revenues from its many sales). Moreover, any

random sequence S can be viewed as the sum of its increments:

P nf,~ ..... .



n
Sn = £ (Sk - Sk_ - So . The classical central limit theorem for a sum

k-I

Sn of independent identically distributed random variables asserts that

the distribution of S , for large n, is approximately normal, and the

quality of this approximation is described by the Berry-Esseen

inequality. It is also known that S nunder slightly different
n

conditions, may be approximately Poisson, compound Poisson or infinitely

divisible, and there are known error estimates for the Poisson

approximation.

The Poisson approximation is frequently used in the operational

analysis of telecommunications networks. For instance, the number of

telephone calls that arrive to a switching station in an hour from a

large number of subscriber lines, as shown below, is typically modeled as

a Poisson random variable. More generally, the flow of calls over time

from each subscriber is viewed as a "thin" point process and the sum of

these point processes that enters the station is modeled as a Poisson

process.
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Figure 1. Flows in a Telecommunications Network
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This type of merging or summation of point processes occurs in other

networks such as (i) flows of data packets in computer networks, (ii)

flows of material and parts in automated production plants, and (iii)

flows of goods in distribution networks. (These are the principle

application areas for our results.) Although Poisson processes are used

for modeling flows in these networks, they are inappropriate when the

flows have certain natural groupings of points (e.g. a series of

data-packets consitutte a message, or a group of parts constitute a

delivery). In such instances, which are evidently more common than not,

a compound Poisson model may be more appropriate than a Poisson model.

This raises the questions: under what conditions can a sum of random

variables or point processes be approximated by compound Poisson random

variables or point processes? This question is what motivated our

research.

During the last twenty years, several ad hoc theorems had been

proved on the convergence of sums of independent random variables to

compound Poisson variables, but little was known about the error in their

attendant approximations. D. Freedman (1973) gave some examples that

seemed to imply that one could not develop compound Poissosn

approximations that would be as natural or universal as normal or Poisson

approximations.

In spite of this dire evidence, we have been fortunate enough to

develop such approximations. We have found rather general conditions

under which sums of dependent random variables or sums of dependent point

processes are asymptotically compound Poisson. More important, we have

established bounds on the errors involved in these approximations. Our



results are applicable, for instance, for constructing compound Poisson

models of merging of flows in networks as described above. These models

could be used in conjunction with queueing models to analyze the delay or

throughput of the flows. Another major application of our results is

described next.

Partitions of Point Processes. The preceding discussion was on the

merging of stochastic flows in networks. Another related operation is

the partitioning of a single flow into many subflows as shown below.

C¢tpter

Figure 2. Subflows in a Computer Network

Here a stochastic flow of computer data packets on a network line is

entering a computer that directs the packets to several other computers

depending on the packets' respective instructions. In other words, the

initial flow is randomly partitioned into several subflows. When the

number of subflows is large so that each subflow is relatively thin, then

one would suspect that the subflows may be modeled as multi-variate

Poisson or compound Poisson point processes. Using the results described

above, we have been able to shed light on this phenomena. We have found

several types of random partitions whose resulting subflows are

VIC!



approximately Poisson or compound Poisson, and we have obtained bounds on

the errors in these approximations.

Partitions of point processes, like sums, are fundamental to a

variety of contexts other than networks. For instance, consider a point

process over time in which each point has one of several attributes (e.g.

insurance claims over time may be categorized as small, medium or large

in size), then the numbers of points with these attributes form a

partition of the parent process. Our results are useful for analyzing

the dependency among such subflows as well as the characteristics of each

subflow.

2. Extremal Problems in Stochastic Networks

We have obtained a family of bounds for the distributions of certain

generic random variables associated with networks. These random

variables represent critical path lengths in PERT networks, maximum flows

in networks, and lifetimes of systems. This work is documented in:

Weiss, G. (1985). Stochastic Bounds on Distributions of Optimal

Value Functions with Applications to PERT, Network Flows and Reliability.

Technical report, Georgia Tech.

Description of the Study. We consider a network with nodes {1,...,n) and

random variables X1 ,...,X n associated with the nodes. Let Ii,...j k

denote the sets of paths and let JI,...,JI denote the sets of cuts of the

network. We focus on the following random variables.

(a) Critical Path of a PERT network: The nodes represent

MUMILI



activities, the Xi are activity durations, and the network

structure depicts the precedence constraints. The critical

path length is the shortest time needed to complete the

project, namely

M = max E Xi .
1j<k iec i

(b) Maximal Flow in a Network: The nodes represent pipelines and

the Xi are maximal flow capacities. The maximal flow through

the network from source to sink is

L - min E X .
LI4j(L icJ

(c) Reliability of a System: The nodes represent components and

the Xi are their lifetimes. The system lifetime is

T - max min Xi W min max X .
lJ~k i eI Il4J<1 i i 

It is generally impossible to obtain tractable expressions for the

distributions of M, L, T in terms of the joint distribution P of the

X ,...,X n * Consequently, it is natural to seek partial information or

bounds on M, L, T. In this regard, we consider worse-case bounds of M,

L, T. Specifically, we address the question: What joint distributions P

on the Xl,...,X I solve the following optimizaton problems

max E(M - x) +  max E(L - x)-
P P

** *~-#~ !~*.*-V.~- - q
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max P(T > x), sup P(T - x),
P P

where the optimization is over all joint distributions P with the fixed

marginal distributions Fl,...,F? We answer this question by presenting

mathematical programming algorithms for optimizing P in these problems.

This gives us worse-case networks in which the distributions of M, L, T

can be computed. These distributions are then bounds for M, L, T in any

network.

3. Optimization of Queueing Systems

Two major problem areas in the optimization of queueing systems are

as follows:

Optimal Design of Queueing Systems. In designing a service system

involving queueing, one typically is able to choose some of the basic

parameters of the system (such as numbers of servers or arrival and

service rates) from a range of possible values. The problem is to select

the parameters so as to minimize the total cost of the system, including

the operational cost of the system over its lifetime. This is a static

optimization in that the parameters are chosen at the inception of the

system and are thereafter fixed for the system's lifetime.

Optimal Dynamic Control of Queueing Systems. In some queueing systems,

the basic parameters can be changed dynamically as the queues evolve.

For instance in telecommunications systems, the service rate or numbers

of servers change as the queue lengths change. The problem is to

determine a policy for dynamically regulating the system parameters,

based on the queue length, so as to minimize the total cost of operating

the system.



We have begun work on several problems in these areas; our progress

on these is discussed below. This work compliments our analysis of

extreme values of queues discussed in Section 4 in that here we are seek-

ing economical ways to control or dampen extremes of queus.

Optimal Idle and Inspection Periods for H/G/l Queues

In a standard M/G/l queueing system, a Poisson stream of customers

arrives to a single server who serves them on a first-come-first-serve

basis and the service times are independent and identically distributed.

In this system, the server is alwasy available for service. In actual

systems, however, a server may have to be absent periodically for other

duties or for rejuvenation (e.g. a computer may do file maintenance in

addition to its standard processing of jobs). In such systems, the

customers are served intermittently rather than continuously. Inter-

mittant service is also characteristic of service systems in which short

queues are tolerable or when short busy periods for servers is uneco-

nomical. In designing such a system, a natural question is: How long

should the server be absent without serving customers and how large

should the queue be before the server starts serving customers?

We have solved this problem for an M/G/1 queue that operates under a

(T,N)-policy described as follows. Whenever the system becomes empty,

the server is idle for a time T and then it inspects the queue contin-

uously without serving customers until there are N customers waiting -

thereupon the server is activated and serves customers continuously until

the system becomes empty. This idle-inspection-service cycle is repeated

indefinitely. There are costs for inspecting the queue, for activating

and running the server, and for holding customers in the system. We have



developed a nonlinear programming model for determining the parameters

(T,N) that minimize the average cost. This is documented in the

following paper.

Kim, S. S. and R. F. Serfozo (1985). Optimal Idle and Inspection

Periods for M/G/l Queues. Technical Report, Georgia Tech.

Optimal Control of Networks of Queues. Service systems in manufacturing

and telecommunications usually involve random flows of customers among a

network of queueing systems.

We have begun a study of the dynamic control of a network in which

the service rates at the nodes and the routing of the customers through

the network are subject to control each time a customer moves in the

network. Whenever a customer moves, the queues in the entire network are

observed and, based on the observation, the service rates and routing

probabilities are selected until the next customer movement. This is

repeated indefinitely. Our aim is to establish the existence of certain

natural monotone optimal policies in which the service rates are

increasing functions of the queue lengths and the routing probabilities

have monotonicity properties such that large queues are avoided. The

knowledge of the existence of such policies leads to efficient

computational procedures for optimal policies. Furthermore, monotone

policies are more natural for implementation in actual systems.

Our approach to this problem area is as follows. We characterize

the queueing network process as a multi-dimensional Markov process whose

transitions are determined by a family of "transition operators". (As a

simple example, a birth and death process has two operators: an upward

unit jump and a downward unit jump.) We first establish certain optimal
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monotonicity properties for these operators, and then translate these

into monotonicity properties for the parameters under control. The

analysis involves transforming the Markov process into a simpler process

and introducing and exploiting the notion of convexity and submodularity

of functions with respect to the transition operators. We plan to start

documenting our results on this next year.

4. Extreme Values of Queues and Point Processes

Although much of our effort this year has been spent on this topic,

we have not reached the documentation stage yet. The research is

proceeding along the lines of our proposal, which need not be reviewed

here.

There are several technical issues that we are striving to

understand more fully: (i) Our major results show that queueing

processes have an asymptotic extreme-value distribution that is different

from the three classical ones. To shed light on why this is so, we are

attempting to prove our results by another approach, possibly via limits

of diffusion processes. (ii) We are seeking a more complete

characterization of the types of service times in queues for which our

results apply. (iii) We are attempting to obtain necessary as well as

sufficient conditions for our limit properties of queues and point

processes.

We will give a more extensive review of this work in our next

progress report.
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