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ABSTRACT.

4 this papery i1 consider the problem of estimating a survival curve

from randomly right censored data when it is known to havej4t Increasing

Failure Rate Average (IFRA), or to be - New Better than Used (NBU). Let

Fn(t) be the product-limit estimator (PL-estimator) of Kaplan and Meier for

the life distribution. Since F(t) never has the IFRA property and may not be

NBU, we modify FL(t) to have the desired IFRA (NBU) properties.

The modified estimators are easy to compute and ,under mild conditions,

are shown to be asymptotically ntf2-equivalent to F (t) on compact intervals.

Thus the modified estimators share the asymptotic properties of the

FL-estimator 4~(09.
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1. INTRODUCTION AND SUMMARY

In reliability theory and survival analysis, it is often desirable to

estimate survival curves or equivalently, life distributions. In some

circumstances the lifetime Xi of the Ith item is not observed, rather we only

know that it exceeded a time Yi. For example, in clinical trials patients may

move away or die of some other causes and therefore are lost to the study.

Let (Xi, Yi), i-1, ... , n be i.i.d. random variables with Xi and Yi

independent for each i. Let F(t) - P(X1 < t) and G(t) - P(Yl C t) denote the

distribution function of X1 and Yl respectively. F(t) is referred to as the

life distribution end G, the censoring distribution. In random censorship

model one observes (Zi, 6i), i-1, ... , n, where Zi - Min (Xi, Yi),

61 - I(Xi 4 Yi) and, I(A) is the indicator function of a set A. Techniques

for estimating F(t) using (Zi, 6i), i-1, ..., n, have been known for a long

time only recently has there been much concern with estimating F(t) when it is

known to belong to a certain nonparametric class of distributions.

A variety of such classes which arise naturally in practice are given in

Barlow and Proschan (1981). to and Phadia (1984) treat the classes of convex

distributions and increasing failure rate distributions. We shall consider

two nonparametric classes in this paper: (1) the class of distributions with

increasing failure rate average (IFRA) and (2) the class of distributions with

the "New Better than Used (NBU)" property.

For a life distribution F(t), let F(t) - 1-F(t) and H(t) - -log F(t)

denote its survival and hazard function respectively. A distribution function

F(t) with F(O) - 0 is said to be IFRA if H(t) is starshaped, that is; R(t)/t

is a nondecreasing function of t. A distribution function F(t) is said to be

NBU if P(x+y) 4 F(x) F(y), or equivalently H(x+Y) ) R(x) + H(Y); that is,

H(t) is superadditive. Note that an IFRA distribution is also NBU.
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The class of IFRA distributions arises naturally in shock models (Esary,

Marshall and Proschan (1973)) and is the smallest class containing the

exponential distributions, closed under the formation of coherent structure

and taking limits in distributions (Birbaum, Esary and Marshall (1966)). The

NBU concepts means that the residual lifetime of a used item tends to be

shorter than the lifetime of a new item.

The product-limit estimator (PL-estimator) Fn(t) due to Kaplan and Meier

(1958), the most commonly used nonparametric estimator of F, will now be

defined. Let Z(i) be the ith order statistics from the sample {Zi,i-I,...,n)

and 6(i) be the corresponding indicator function associated with Z(i). The

PL-estimator isdefined by

6n-i 6 (i)
(1.1) 1 - Fn(t) - I (- ) , if t ( Z(n)

Z(i)< t

0 otherwise.

Large sample properties of the PL-estimator have been studied extensively

by Breslow and Crowley (1974), Csorgo and Horwath (1983), Gill (1983) and Lo

and Singh (1984) among others. Moreover, Wellner (1982) showed that the

PL-estimator posseses desirable asymptotic optimality properties, e.g.

minimax. In this paper we modify the FL-estimator (1.1) so that is has the

known property (IFRA or NBU) of F(t) and remains close to the original

PL-estimator.

We shall restrict the estimation problem only on compact intervals [0,T],

where T is any point with F(T) < 1 and G(T) < 1. Let Hn(t) - -log (l-Fn(t))

be the hazard function of Fn(t). In Section 2, we construct estimators Cn(Dn)

of the hazard function H(t) under the assumption that F is IFRA (NBU) by

modifying Rn(t). The modified estimator of F(t) is the distribution function

- . V ~... .. ...% V ..* .*.~'



3

whose hazard function is Cn(t) (Dn(t)) respectively. The modified estimators

Cn and Dn can be expressed in close form (cf. (2.1) and (2.3)) and are easy to

compute. Moreover,

Sup I Cn(t) - H(t) 1( Sup I Hn(t) - H(t) ).
O<t<T O0t<T

Hence Cn(t) is closer to H(t) than Hn(t) in the sense of Kolmogorov distance.

The main results of the paper are Theorems 4.1 and 4.2 where we show that

under mild conditions,

Sup ni/2 1 Cn(t) - Hn(t) I and Sup n1/2 I Dn(t) - Hn(t) I tend to zero in
Ot<T 0t4T

probability. This implies then the asymptotic behavior of our modified

estimators are the same as that of the PL-estimator.

The proofs of Theorems 4.1 and 4.2 utilize an i.iod. representation of

Hn(t) by Lo and Singh (1984). Relevant results are summarized in Section 3.

2. DESCRIPTION OF THE ESTIMATORS

In this section we shall modify the PL-estimator (defined in (1.1)) so it

has the desired IFRA or NBU property. We shall construct the estimators on

the interval 10,T].

First consider the case when F is known to be IFRA.

Let Cn(t) - Sup {h(t) : h(t) 4 Hn(t) for 0 < t < T, where h(t) is

starshaped on [0,TJ, i.e. Cn(t) is the greatest starshaped minorant (GSM) of

Hn(t) on [O,T]. It is easy to check that Cn(t) is starshaped. A closed form

of Cn can be obtained as follows:

n
Let m Z I(6i  1, Zi < T) be the number of uncensored observations in the

i-I

• • .. ,- ,. . - , . . .. .. , ,...... .- ' .. .- , -.. , . . ,. , - ., • , , ,- - - . . .
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00 ()
interval [0,T] and {Zl, Z2  ", Z } be the uncensored observations from

{ZI , ..., Zn} which correspond to actual lifetimes, and are in the interval

[O,T]. The PL-estimator assigns positive mass on the interval [0,T] only to

those points Z 0, i-l, **a, m} Let a be the smallest slope of all the lines
0 0

connecting the origin and the point (Zk, Hn(Zk-)), for k-J, J+1, ..., m+1,

where,

Zm+1 = T, Rn is taken to be right continuous and hence Hn(Zk-) - Hn(Z k1 ).

That is, a min {Rn(Z0- )/ZOTa s j =J~kem+l k k

Using the results of Wang (1984a) in the i.i.d. case, it is easy to check that

the modified estimator Cn, which is the GSM of Rn Is a piecewise linear

function of the form:

(2.1) Cn(t) - a t , for Z (01 4 t < Z , J-1, ... , 2+1.

Thus C%(t) has a close form expression and is easy to compute. The follow-

ing lemnas asserts that Cn is closer to any starshaped function on [0,T] than

Hn, and hence is closer to the true hazard function H(t) than Hn .

Lema 2.1. For any starshaped function 0(t) on 10,T],

Sup Cn(t) -0(t) I Sup I Rn(t) 4(t) I
OtcT 0€ t4T

PROOF: Let Sup I Hn(t) - 0(t) j A.

O(teT

If A - -, there is nothing to be proved. If A < , *(t) -A is starshaped on

[0,T] and Rn(t) ) 4(t) -A. From the definition of Cn we have Cn(t) > 0(t)-A.
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Since Cn is a minorant of Hn, we have Cn(t) < Hn(t) 4 4(t) + A, so the lemma

holds.

Since H is starshaped we have

Corollary 2.1 Sup I Cn(t) - H(t) 1 4 Sup I Hn(t) - H(t) I.

Ot<T Ot(T

Thus Cn is a better estimator of H than the hazard function, Hn, of the

PL-estimator. A modified estimator of F(t) is then taken to be the

distribution Fn(t) - I - exp (-Cn(t)). Note that Fn is not necessarily a

better estimate of F(t) than Fn although its hazard function is a better

estimate of H(t) than Hn. Theorem 4.1 however guarantees its equivalence to

the PL-estimator,.

Next, we shall consider the case when F(t) is assumed to be NBU. Since

an NBU distribution has superadditive hazard function. It is therefore

natural to consider

(2.2) Dn(t) - Inf {HR(s+t) - Hn(s) ,
0 tcT

as our estimator of the hazard function H(t). The estimator Dn is analogous

to the estimator in Boyles and Samaniego (1984) developed for the uncensoring

case. Their results show that Dn(t) is superadditive. Since Hn is a step

function with jumps at (Z z2, ... , Z ), to compute Dn one only needs to

take the infinum in (2.2) over these points, i.e.,

(2.3) Dn(t) - Inf (Hn(Z0 + t) - Hn(Z0)), where Z0 . 0,

and D. is a step function with jumps at points of the form Z0 - Z0 for somer s

r and s. Note that Dn(t) 4 Hn(t) for all t, and if Hn is superadditive,

Dn(t) - Hn(t) for all t. To estimate F(t), we again use the distribution

, .
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F (t) whose hazard function is Dn, i.e., Fn(t) - I - exp {-Dn(t)).

Unlike the IFRA case we cannot show that Dn is a better estimator of H

than Rn . However we have

Lemma 2.2. For any superadditive function (t) on 1O,T],

Sup IDn(t) - 0(t) 1 4 2 Sup Hn(t) - 0(t) -
Ot4T O(t<T

PROOF: Let Sup IH(t) - (t) m A.
Oct4T

It then follows that Dn(t) = Inf {Rln(s+t) -Hn(s)}

O sCT

> Inf {o(s+t) - O(s) - 2A}
O(sT

0 (t) - 2A ,

where the last step follows from the superadditivity of #(t). The lemma now

follows from the fact that

Dn(t) KH(t) <*(t) + A. a

Lemma 2.2 implies that Dn is a strongly uniformly consistent estimator of H(t)

on 10,T] with at least the same rate of convergence as Hn(t). Theorems 4, 5

and 6 of Boyles and Samaniego (1984) are immediate consequence of Lemma 2.2.

3. PRELIMINARIES

As mentioned in Section 1, the techniques of our main results (Theorems

* 4.1 and 4.2) are based on the i.i.d. representations of the PL-process derived

by Lo and Singh (1984). In this section, we shall give the results that are

later needed in Section 4 to establish the main theorems.
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Lemma 3.1. (Lo and Singh (1984)) Let 'ij, .. , be ioiod. random variables

with mean zero, variance a2 and IniI 4 C for some constant C for all 14i~n.

For any positive d and z satisfying Cz 4 d and nza2 < d2 one has

n

i-1

PROOF: This is Lemma 1 of Lo and Singh (1984). The proof is based upon

Markov's inequality and Taylor' s expansions. N

Let Q(t) and Ql(t) be the distribution (subdistribution) function such

that Q(t) - F(t) a(t) and 01(t) - P(Zl < t and 61 - 1). It is easy L0

check that Q1(t) dff E(t) d F(t), and hence dQl(t) - 6(t)dF(t). Note that

Q(t) is the dist~ribution of the observation Z. Let g(t) -ft 15()12 d01 (s)

be the asymptotic variance of Hn (Breslow and Crowley (1976)). For positive

real z and t, and 8 taking values 0 or 1, let & (z,6,t) - 15(z)1 1l I (z'Ct and

6-1) - g(zAt). The following lemma, although not stated explicitely in La and

Singh (1984), can be proved by tracing the arguments of their Theorem 1. The

proof can be found in Proposition 1 of Lo, Mack and Wang (1985).

Lemma 3.2. If F is continuous, for any P > 0, there exists constant e > 0

(depending on P) such that

- n
(3.1) Hn(t) --H(t) - n1 Z C (Zi, 6 1, t) + Rn(t), where

(3.2) P( Sup I Rn(t) > 0(lon n/n) 3/ 0- -)
04t-CT

We shall now assume that F(t) has bounded density function f(t) on [0O,T], and

S* ~ * -
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let M - Sup {ff(t)j : 0t4T). Let

&1(t) - 6(Zj, 61, t), and q - Q(T) > 0.

Lema 3.3. (a) For any x in [O,T] and e < (3/2)Mx,

n 22
(3.3) P n-I ZE (x) I > E I 2 exp (-

(b) For any x < y both in 10,T] and e < (3/4)M(y-x),

n 22(3.4) P fln "I E V (x) - C (y)) I > E 2 exp f- n9 ) .
i- ii9M(Y-x) "

PROOF: In order tb facilitate the aplication of Lemma 3.1, let ni -i (x)-

Then X lj i 0 and

a2 - Var (hi) - g(x)

" fo [5(t)1-2 d Q (t)

- f, 1Q(t)1 - 2 E(t) dF(t), since dQ,(t) 6(t) dF(t),

- F(x)q
- 2

Mx-2€ Hxq - .

It can be checked easily that

ll(x)l €(x)1 -  + [Q(x)1-2 4 2q-2 . Taking C- 2q-2 , d- (n)/3 and

2 2 2 2
z - (ne q )/(9Mx), then Cz < d, and nza - d , so Lemma 3.1 applies to

n
I m 1 yielding (3.3).

i-II

To show (3.4) let ri - &I(x) - i(Y)" Again Eni - 0 and .4

-1

m' ,.,+ +.,,.. +". .+ ,.-.' :. + . s.. .r *.''
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Var ('ri) - g(x) + g(y) - 2g(xAy)

-fy  &(t)1-2 dQ (t)

- fy [&(t)1-2 a~t) dF(t)

4 [F(y) - F(x) q2

< M(y-x) q- 2 .

When C - 4q-2 , d - (nE)/3 and z - (nE2q2 )/[9M(y-x)], the conditions of Lemma

3.1 are satisfied and (3.4) follows. U

4. MAIN RESULTS

In this section we shall show the n1/2-equivalence of the PL-estimator Fn

and the modified estimator Fn and Fn e We shall assume that F(t) has bounded

density f(t) on 1O,TJ, and M - Sup If(t)I. Let al - Inf {x: F(x) > 0) be
O~t-(T

the left endpoint of the support of F, and L - T - aF -

The proofs of the main results utilize notions of linear interpolating

functions which we now define.

* Let {kn} be a sequence of integers tending to infinity. For each n,

partition the interval [aF, T] into kn equal length subintervals
ajn n n i =T

(aj, a ] ), J-O, 1, ..., kn-l, where a0  aF, aknT.

For any function g on [aF,TJ define its linear interpolating function

Lng as

Lng(an) - g(a n) for J-0, 1, ... , kn, and Lng(x) is linear on [an, ajn+I

for each J-0, 1, ... , k1-1.

Thus Lng is a piecewise linear function. Note that {LnHn(t) : 01t<T} is

a stochastic process whose realizations are piecewise linear functions.

S • m 'i.. .........................................................
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Let An be the event that LnHn is starshaped on (0,TI and Bn be the event

that La~ is superadditive on 10,TJ.

We proceed with a series of Lemmas.

Lema 4.1. If there exist. a constant X > 0 such that for any 0 < x 4 y 9 T,

(4.1) [H(y)/yI - [H(x)/xJ > X(y-x),

then for any p > 0, and tcn - 0 ((n/log n) 3/8),

I-P(An) 4 4k1n exp { 6M 3 ) + 0(n P) , for n sufficiently large.

n

PROOF: Since LnRti is piecewise linear, it is starshaped on [0,T) if and only

if Rn(aj)fa is'increasing in J. This implies that 1 - P(An) < Z PE)
i-1

* ~~where Ejis the event that Hn()/ is graenhnlna1

n n
To compute P(Ej) for fixed J>1, let x - aY- aj+ and hence r-x - L/kn

* and Y>x),(L/kn). Now consider

P(Ej) - Pf[H(y)/yJ < I Hn(x)/X]

- P([Rn(y) - H(Y)J - [Hn(x) - HWx) < H(x) - H(y) + Hn(x) (y-x)/x)

CP{[Hn(y) - H(y)J - [Hn(x) - H(x)J < [Hn(x) - H(x)J (Y-x)/x - Xy(y-X) I

from (4.1),

SP([Hn(y) -H(y)) - [Hn(x) - H(x)J < - (X/2)y(y-x))

+ P{[Hn(x) -H(x)J (y-x)Ix > (X/2)y(y-x)J

,{. ! [FCi(y) - & (x)JI > (X14)y(y-x)} +

P{IRn(x) -Rn(y)l > (X/4)y(y-x)) n E (~ > (X/4)xy)
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+ P{ R 1 (x)j > (X/4)xy I
l 

2
P - E i W - E (T)]I > (X/2) (y-x)2 + P[IRUx I > (,/4)(L/kn) 2)S1=1i

P{IRn(y) I > (X,/4)(L/kn)2 } + P( ( i E FIX) I > (X/2) x(y-x)}
i-i

+ P{lRn(x)l > (X/2) (L/kn)2 , since y . an - 2(y-x) - 2(L/kn).

For kn = 0 ((n/log n) 3/8), Lemma 3.2 implies that

(4.2) Pf Sup I R (t) I > (X/4) (L/kn) 2) - O(n-P).

Since y-x - L/kn tends to zero as n tends to ., we have (X/2) x (y-x) <

(3/2)Mx and (X/2) (y-x)2 < (3/4) M (y-x) for n sufficiently large.

Lemma 3.3 now implies that

n 2 2 2

(4.3) P{f 1 (x)l > (X/2) x (y-x) I 2 exp { n X x(-x)
ni 36Mx

(2 exp ( - 3 L ,and
3614k

n

(4.4) P{1 E [I(x) - I(y)1 > (X,/2) (y-x)2} ( 2 exp { - nq2 2 (y-x31361

ni-I 36

(2 exp ( _ ngX2L

364k
3

n

The lema now follows from (4.2), (4.3) and (4.4), where we replaced

knO(n-P) by 0(n-P) since P can be any positive number.

-- -. * i
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Next we obtain a similar result for the event Bno We first find a

necessary and sufficient condition for the polygon Ln~n(t) to be

superadditive using the results of Bruckner (1960, 1962). Note that

(0) {a n. JO, 1, ... , It.) are the vertices of the polygon LnRn(t)o

Lemmna 4.2. Ln~n(t) is superadditive on 10,T) if and only if it is

superadditive on (a n, j_0, 1, ... , kn}*

PROOF: We only need to consider the case when Ln~n(t) is superadditive on

n

Let fl(t) - 0, for 0 <t 4ap, and

f2(t) s- LRn(t + aF), for 0 4 t 4L.

Then f2(t) is a polygon on [O,L] with equally spaced vertices, and

Theorem 8 of Bruckner (1960) implies that f2(t) is superadditive on [O,LI.

Following the definitions of Bruckner (1962, P. 127). it can be checked easily

that fl and f2 form a decomposition of LnRn(t). Since the minimal

superadditive extension of fj is the zero function on 10,TI, Theorem I of

Bruckner (1962) implies that LnHn(t) is superadditive on [0,T]. a

Lema 4.3. If there exists a constant a > 0 such that for any (x~y<T,

(4.5) H(x+ y) ) H(x) + H(y) + axy ,then for any P > 0 and

kn -0 ((n/log n) 3/8),

1 -P (Bn) < 4 kc2 exp { q + 0(n-P) for n sufficiently large.n 72Hk3
n
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PROOF: Lemma 4.2 implies that,

I - P(Bn) - P( There exists i and j such that

Hn(a n) + Hn(an) > Hn(an + an)}
knn

< Z P(E1 j) , where Ei is the event
i,j)i

that Hn(a') + Hn(an) > Hn(a n a ) 

To evaluate P(Eij) for fixed i and J, let a; = x, a n =y

P(Eij) - P{Hn(x) - H(x) + Hn(y) - H(y) > Hn(x+y) - [H(x) + H(y)]}

4 PfRH(x) -. 1(x) + lL(y) - 1(y) > Hn(x+y) - H(x+y) + axy)

- P([Hn(x) - H(x)] - [1n(X+y) - H(x+Y)] > - IVn(y) - H(y)I + axy)

P{[Hn(x) - H(x)] - [Hn(x+y) - H(x+y)] > (a/2 )xy}

+ P(Hn(y) - H(y) > (a/2)xy)

< Pfl i. lIi(x) _ i(x+y)II > (a/4)(L/kn)y) + P{j Z Cln Z [Ciixy)n

> (a/4)(L/kn)y} + 3 P{ Sup IRn(t)l > (a/4)(L/kn) 2)

2 exp{ - nq2 a (L/k,) 2y) ) + 2 exp { - 2 a 2(L/k.)2y I + O(n-P)144M 144M

by Lemma 3.3 since (a/4)(L/k,)y < (3/2) My < (3/4) Mv for large n,

< 4 exp { - n a2L } + O(n-P) , since y>2(L/k n).7 2Mk3  •

n

Lemma 4.3 thus follows. Here we use the same fact that k2 O(n-P) can be
n

replaced by O(n-p ) since the choice of p can be arbitrary. 8
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The following two Lemmas are propositions 2 and 3 of Wang (1982).

Lemma 4.4. For any distribution function F with hazard function H,

Sup n1 12  H 1(t) - Lnn(t) I * 0 implies that
Or t<T

Sup n1/2 Hn(t) - Lnnn(t) + 0 in probability.
0€ t<T

Lemma 4.5. Let H be a differentiable hazard function satisfying

(4.6) IH'(x) - H'(y)I < 0 jx-yj, for any x, y in 10,TJ, and some constant

0>0, then

Sup 1l(t)-- Lnn(t)l < 20 (L/kn)2 .
O~t<T

We are now ready Lo prove the main theorems.

Theorem 4.1

Let F be an IFRA distribution function satisfying (4.1) and (4.6), then

Sup n1/2 ICn(t) - Hn(t)j + 0 in probability.
OC t<T

P ng2X2L3  1/3PROOF: Let In = '108H log n

Setting P-3 in Lemma 4.1 implies that I-P(A n) < n
-2 for n sufficiently large.

When An occurs LnHn is starshaped so Lemma 2.1 implies that

Sup ICn(t) - Hn(t)1 < Sup I Cn(t) - LnHn(t) I + Sup I LnRn(t) - Rn(t)
OCt<T 0 t(T (tCT

4 2 Sup I Ln n(t) -Hn(t) "
O4t<T

Since n1/4 kn- I +0, Lemma 4.5 implies that

Sup n1/2  R(t) -LnH(t) 1.0.
OCtCT

The theorem now follows from Lea 4.4.

M~ X.
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Corallary 4.1. Under the assumptions of Theorem 4.1,

Sup n1/ 2  F I(t) - F n(t) I * 0 in probability.
O< t< T

PROOF: Sup n (t) - Fn(t) j - exp (-Cn(t)) - exp (-Rn(t)) I

C 1n(t) - 1(t)

Theorem 4.2. Let F be an NBU distribution function satisfying (4.5) and

(4.6), then

1/2
Sup n 1 Dn(t) - Hn(t) + 0 in probability.

O< <T

PROOF: The proof follows the derivation of Theorem 4.1 utilizing Lemmas 2.2,

4.3, 4.4 and 4.5, and choosing kn -[- 2I a /3

Corallary 4.2. Under the assumption of Theorem 4.2,

Sup n1/2 1 F*(t) - F (t) I * 0 in probability.
O<t<T n n

PROOF: The proof is similar to Corallary 4.1. U

Remarks:

1. Condition (4.1) essentially means that R is uniformly strictly

starshaped, or the life distribution F is uniformly strictly IFRA. Condition

(4.5) is a uniformly strict superadditivity condition on the hazard function

H, which essentially means that the life distribution F should be uniformly

strictly NB.

2. From the proof of Theorems 4.1 and 4.2, it can be seen that

Sup n1/ 2 1 LnHn(t) - Hn(t) I also tends to zero in probability for
0 t<T

- ** - ' * W ~ *~)1
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properly chosen {kn} (e.g. the choices of kn in Theorems 4.1. and 4.2.). A

practical consequence is that, instead of computing Cn(Dn) exactly, one may be

able to use LnRn as our estimator of the hazard function. The estimtor LnRn

is much easier to compute than Cn(Dn) and has a high probability (P(An ) or

P(Bn)) of being starshaped (NBU).

3. The techniques of this paper can also be applied to obtain analogues

of Theorems 4.1 and 4.2 for distributions with Decreasing Failure Rate Average

(DFRA) or distributions which are New Worse than Used (NWU). Similar results

to Theorems 4.1 and 4.2 can be obtained for DFRA and NBU distributions

respectively.

Oo

:-.

- , ,. ' ,. , ' r-,e """ -,"v ." ,. .' . .:.... " ... "... ."- , ". .'. " . •. • .. ',- . •.'.'.'" . ' ".,"

• . • . ,. . • ,., . " ,.g , _ ,. . ?, . ._ ," _,, • . . " ; " .. . .. . 5
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