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Ryll-Nardzewski (1957) proved that an infinite sequence of
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same distribution. We discuss some restatements and extensions of

this result in terms of martingales and stopping times. In the other

direction, we show that the distribution of a finite or infinite
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1.Inr2duction

A finite sequence of random viriables ( is said to be

exchangeable, if every permutation has the same distribution, i.e. if

( l)d ) (1)n
1.. . n

for every permutation (k, .... k n ) of (l,...,n). For infinite

sequences, we require the same property for every finite subsequence.

It is easy to see that exchangeability of an infinite sequence

=(fI'92' implies that

k k 2 1.. 2"i (2)k2  %

A sequence satisfying (2) is said to be spreadable. (i'ingman (1978)

calls (2) the selection property, while Aldous (1985) refers to (2)

as the property of spreading-invariance.)

de Finetti's (1937) celebrated theorerr states that an infinite

exchangeable sequence is mixed i.i.d., in the sense that its

distribution is a mixture of distributions of i.i.d. sequences.

Ryll-Nardzewski (1957) noticed that the same conclusion follows

from the weaker assumption of sDreadability. Both results are in

fact simple (thouch remarkable!) corollaries of the mean eroodic

theorem. In proposition 2.1 below, we shall sho,r that the sane

argumnent yields an even stronger result.

We proceed in Proposition 2.2 to restate the above results

in terms of stoppinc times and martingales. In particular, a sequence

is spreadable iff 9 d for every Z+-valued stopping time t

(extensive use of this result was made in [11]), or equivalently,

iff the prediction sequence

n = P~n' E nEZ+, (3)

is a measure valued martingale. Here , is the

filtration induced by 4 (so =0 is trivial), stopping times are

defined with respect to ', and 90,fe,... denote the shift operators

on- *.
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The stopping time condition above characterizes exchangeability

in terms of certain randomly selected subsequences. More generally,

one may look for conditions on the random indices ',,..., such

thatw

.. t . (4) 

implies that is exchangeable. Another instant when (4) implies

exchangeability (for stationary ) is that of thinning: where the

elements of 9 are selected independently with a fixed probability

pe(0,1). This result (Proposition 2.3) is closely related to a result

in point process theory (cf. £12]), where mixed Poisson processes

are characterized in terms of thinning.

Section 3 deals with the converse problem of finding general

conditions on TI,- 2  such that (4) holds for a given exchanceable

seauence . If C is infinite and i.i.d.. we may e.g. take TIT2...

to be any strictly increasing sequence of predictable stopping times.

iRecall that a stopping time 7 is predictable, if T-l is a stopping

time in the usual sense.) This result is well-known to gamblers

(or at least it ought to be!), and the first formal proof appears

in Doob (1936). Our main result in Section 3 states that (4) is

true for arbitrary a.s. distinct predictable stopping times
... whenever is a finite or infinite exchangeable sequence.

Note in particular that the Z. may form a random (but predictable)

permutation of the indices of 4, since no requirement is made on

the order.

The above result, which generalizes Theorem 5.1 in [11], has

the most surprising consequences for finite games (e.g. card games,

lotteries, sampling from finite populations), as shown by examples

in [133. For the sake of applications (but also for the proof), it

is useful to introduce the associated allocation sequence '

given by

% % %. . .. .U
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M = in- j: 1I=k, k=l,2.

(Here inf 0 means Po, as usual.) Note that the finite values of

l , are a.s. distinct, and that is :kZl-measurable by

assumption for each k. Informally, the element 4k is moved to a

new position nk' which is only allowed to depend on the past

history ( l,...,'k1l) Note that k is discarded for the new

seauence if *k
= 0 .

Sections 4 and 5 deal with the corresponding problems in

continuous time. A process X defined on I=[0,l] or R+ is said to

be exchangeable, if X 0=0, if X is continuous in probability at

every teI, and if the increments of X over an arbitrary set of

disjoint intervals of equal length form an exchangeable sequence.

In that case, we may (and will) choose a version of X which

is right-continuous with left-hand limits. If I=R+, the analogue

of de Finetti's theorem states that X is a mixture (again in the

distributional sense) of Levy processes. For i=[0,1', we have

instead the more general representation (cf. 19])

Xt = xt + YP + I. '>(1.;r._tr-.t), tEC0,1], (6)
j-l

(i -1 denoting the indicator function of the event within brackets),

where B is a Brownian bridge, while iZ 2 ,... are i.i.d. random

variables uniformly distributed on Col], and ',:,a',3'.... are

arbitrary random variables satisfying a 0 and 2 -j_ a, the three

objects B, (T '2,....) and ( ' , 4 2 ,...) being independent. We

shall write 3 for the point process AJ and say that X is directed

by the triple (m,7 2,). Note that X is a mixture or ergodic

exchangeable proce-sses (6), where C, a 2 and /3 are non-random.

Exchangeable processes will be seen to be semimartingales.

In Section 4, we shall essentiallN, characterize the exchangeability

o.of a semimartingale X in terms of its local characteristics (as .
55

"4
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defined inC7,81).If X is exchangeable and integrable, the latter

will be absolutely continuous, with densities which form martingales

with respect to the filtration induced by X. Conversely, a semi-

martingale X on P+ with the above property can be shown to be

exchangeable, provided that X has stationary increments, and a

similar result (related also to Theorem 3.3 in [11]) will be proved

for processes on 10,1]. A related characterization of mixed Poisson

Processes has been obtained, independentl?, by Heller and Pfeifer

(1985).

The continuous time counterpart of the predictable sampling

theorem of Section 3 is stated in Section 5 in terms of stochastic

integrals. More nrecisely, the allocation seouence in (5) is now,

replaced by an allocation process V, which is predictable and a.s.

measure preserving, at least on some suitable subinterval " of the

index set I. (Thus AV-I=A on J a.s., where A denotes Lebesgue

measure.) Given X and V, we may define a nei.: process XV on J by

(XV 1v ,t'dX t J.
t gn z T

The main result of Section 5 (which aeneralizes Theoren 5.2 in
-i

states that X and (a suitable version of) XV have the same

distribution on J, whenever X is exchanaeable. As in the discrete

time case. there are some rather surprisino anplications of this

result, which are discussed in [13]. The result has also proved

useful in establishing representations of stable integrals, but

this will be discussed elsewhere.

We now turn to discuss some technical extensions of the above.

Our first point concerns the choice of filtration. For many

purposes, one needs to introduce some more aeneral filtration r

than the one generated by the sequence or process under consideration.

Following il]l, we shall then say that a sequence k is 7-exchanceable,

%
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if 4 is adapted to , and if ene* is conditionally exchangeable,

given , for every nEZ+. The latter condition means of course

that the shifted sequence should a.s. be exchangeable under the

conditional probability law. It is easy to check that an F-

exchangeable sequence is exchangeable, and that the two notions

are equivalent in the case when 7 is induced by 1. Most of the

results described above extend without effort to the above more

general setting. In particular, this is true for the predictable

sampling theorem, where one may hence allow for independent

randomizations in each step, in the construction of

The continuous time case is similar. For technical reasons

we shall only consider standard filtrations 7, satisfying the

usual conditions of right continuity and completeness (so that

for all t, while 10 contains all null-sets in a completion

of C= V ). In particular, the filtration induced by X is defined

as the smallest standard filtration making X adapted. Defining

r -exchangeability as before, we have the same relationship to

the usual notion of exchangeability (cf. [II]).

A second point concerns the predictable sampling theorem

discussed above. In many applications, the sample size is random,

and there may be no obvious way of extending the given sequence

of stopping times to a sequence of fixed length. In that case,

we can still prove that the sampled sequence can be embedded

in distribution into the original sequence (which we denote by

dvc g, cf. [Ii). By this is meant that I can be continued, by

randomization or otherwise, to a sequence I' of the same length

as 4 and such that ' . A corresponding extension exists in

the continuous time case, with a similar definition of embedding.

Note that the above construction of ' may require an extension

xo
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of the original probability space.

dsimple way of proving the embedding _ is to construct,

on some suitable probability space, a sequence t' _ and a _+-

valued random variable V', such that

(where the left-hand side should be interpreted as when V'=v).

In continuous time, it is convenient first to extend the definition

of the sampled process Y, originally given on some random interval

[0,4), bv Duttinc Yt=? for t>,_ where ! denotes an auxiliary coffin

state. We may further define the killing operators ks by
ft' S<tEI,"%

stt, stE,

defined fcr functions f on I=[0,13 or R+, and for numbers seI.t[o}.

In order to prove that Y 8 X, it is then enough to construct, on

some suitable probability space, a process X' d_ X and a random

d dvarable such that k 4X' = Y. -

The above statements are sirple consequences of the following

randomization lemma.

Lemj",a I.I. Let E and i be randor elements on some probability

space (A,P) and taking values in the spaces S and T, where S is

separable metric while T is Polish. Assume that d f(i) for some

measurable function f: T-- S. Then there exists some random element

d v7 on (ax [O,1], P A), such that =f (-I') a.s. .

Proof. It is enouah to prove the result for T=R, since it
will then extend immediately to the case of linear Borel sets, and

next, by Borel isomorphism (cf. [1), p.50), to arbitrary Dolish

spaces. For T=R, we may choose a regular version of the conditional

probabilities

.ri-, ! AP.
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P C-. f EdLas)s1
and define

(kX) = sup ~ y: F -,Jxj,, x 0,l]. "
d

It is easy to check that ' is measurable and satisfies ( ,i') d

(f(l),j). Since S is separable, the diagonal in S2 is measurable,

so we caet

which shows that 9=f(v1 ') a.s. 13

Let us conclude with some remarks on literature. Thouch the

oresent paper is formally self-contained as far as exchangeability

theory is concerned, we recommend Kingman's (1978) paper and Aldous'

(1985) lecture notes for introductory reading. Some further background

on the continuous time theory may be found in [9,10,11]. Standard

results from stochastic calculus and weak converaence theory will

often be used without explicit references, and for these the reader

may e.q. consult Jacod (1979, 1985) and Billingsley (1968).

"I-
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2__=reldingcharacterizations

Let us first show how de Finetti's and Rvll-Nardzewski's results

follow easily from the mean ergodic theorem. So assume that =

(i' 2'''".) is spreadable, and let the functions fI'f 2 ... : R R

be bounded and measurable. Write 7 for the shift invariant ar-field

in P', and let u be a regular version of P[%e . J-i Then
k k n k

E7Tf4. E 77 T I f.. F 7-17Tpf.Efj=l j ( > =Ej= 1 1 lfj (j n~) 3 j=ll

as n--, by the L2 ergodic theorem (where the convergence is

clearly uniform under shifts) plus dominated converaence. Kere

and below, Pf=1fdP. The troof is completed by a monotone class

argument. (Essentially the same proof yields the usual conditional

forms of de Finetti's theorem, cf. [i3.)

We shall use the same trethod to prove the following stronoer

result.

Proposition 2.1. Let ... ' be a stationary seauence

of random variables satisfying

I " neZ+. (1( ... n' n+ )  i .... n' n+1' ' r7+

Then is exchangeable.

First proof. Extend E to a 8oubi% infinite stationary sequence

_ ,. and conclude from (1) that
.. n d n2 . "nn nEZ.

Iterating this result yields

"' n k = .. n' n- ]  n 72k .

Lettina q and fl,f 2, ... be bounded measurable functions on P00and D,

an, wrt7) e act by the L, eroodic theore-

k-i 1 k-+n-l

- j=3
k-l

_,, f

~~~~~~.'.%.-..-. ... % . .......-... -.... .. ....... ........ •--. ..-....-......
,..... -.: "." , ,. '. -" . , - -.- ,.,-'..'.". "..- . " .*. ..'. . .. .". .- .- .- ,- ...- '.-'.." "' ..' -.. x . -" .'/',''' .-.
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Since P is t--measurable by the law of large numbers, we may

continue recursively, until we get after k steps

k k
, 4 -) 71 C< ) ', i~

j=l

Thus the conclusion followzs as before, 0

We may also give a simple martinaale proof, in the spirit of

Aldous (1985), p. 22.

Second proof. It is convenient to reflect the index set in

the origin, so we may assume instead that 4 is stationary and

d
satisfies d (t 1 ,E2 ot). By iteration and stationarity, we get

= (k,en ) d (lnieno) k<n,

so

EL f( k)e k" Elf ( k)En'j en~1 '&~ kn

for any bounded and measurable function f. By Lemma 3.4 in [1],

the left equality must also hold in the a.s. sense, and we get

as n--.
f ) E I'f . uf a.s.,

where denotes the tail ca-fieli of . Letting f,,...ifn be bounded

and measurable, we hence obtain by iterated conditioning

n n n nE I ( k ) "' = E ,.Ef () Ok $ -- _' -k-"

k=l kk "k j = k ,l k= k=l'

which proves that is conditionally i.i.d., given '. 0)

It is useful to restate the above conditions in terms of

stopping times and martingales. For the sake of simplicity, these

will here be defined with respect to the induced filtration

' n 1 "+"'

Define the measure valued processes (rn ) and (A ) by

n = n = [nl'i], nn e (2)

.-.;-.-...;.~..v...--......-......-.--....-.-..-.......--.--.--..v--.....--........-" -.....- :
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and note that these formulas remain true when n is a finite stopping

time. All functions below are assumed to be measurable.

Proosition 2.2. Let f= (j) be an infinite seauence of random

variables, and define (,rn ) and (;n) bY (2) . Then (i)-(iii) and

(i')-(iii') are sets of equivalent conditions.

(i) t is spreadable,
(ii) e@? = for every finite stopping time Z ,

(iii) (7rnf) is a martinqale for every bounded f: Poo- R!

(i') satisfies (1) ,

d(ii) i = i for every finite stopping time 7,

(iii') (n f) is a martingale for every bounded f: R-R.

The fact that (ii) with a general filtration ' is equivalent

to .- exchangeability was noted with a direct proof in (11,]

Theorem 2.1. Condition (iii') in mainly interesting because of

its analogy with the continuous time conditions of Section 4 below.

Proof. Condition (iii) means that

E~f(eA ' =E E ( - ), j Ai n EZ
E~f(9n+l): A] n  n +

for bounded f: R--> R. By a monotone class argument, this is

equivalent to

d(ti' .... % ,n+2,fn+3,.... )  = f . nC-Z+,

from which (i) follows by iteration. Thus (i)q=p(iii) Condition

(iii) is further equivalent to

E7-, f = E7tf

for bounded f: R -- R and for finite stopping times T. This may

be rewritten as

Ef(er!) = Ef(9)

which is equivalent to (ii). Thus (ii)"(iii), so (i)-(iii) are

equivalent. A similar argument proves the equivalence of (i')-(iii'). Q
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it should be noted that Proposition 2.1 is false without the

hypothesis of stationarity. For a simple counterexample, let

I'2'" .take the values 0 or 1, and choose Ptj=lj=l/4. Let us

further assume that f2' 3,... are conditionally i.i.d., given i

with
1D 1 = nl.

D[ n=lIl ] = 6 3 1'

Then

n=0,

En + + I ',-n n10,

is a martingale, and hence so is (Anf) for everv f: O,i1--- R.

Thus (1) holds by Proposition 2.2. But 4 is not exchanoeable

since P{i~=g 2=I}=1/8 while Pic 2 =9 3=1}=1/12.

We turn to the thinning characterization of exchangeability,

mentioned in the introduction. For a formal definition of thinning,

let t be an infinite random sequence, and let the random variables

,2 .... be i.i.d. and inderendent of ' with

1 Pj~I=O* = T-, ieN,

for some pe(0,1]. Then the random variables

k
j inf 1eh: . i=J3, j(N

are a.s. finite, so the sequence "'S

12
is a.s. well-defined and will be called a p thinning of .

Proposition 2.3. Fix pt(0,1), and let be a stationary

sequence of random variables with p-thinnina Y. Then is

exchangeable iff = d

First proof. By iteration, we get the same property with p

replaced by p n, nEN, so we may take p arbitrarily small. Fix m,nrN

with men, and note that

J1~~~. P~* Op *J1.*~,"':'."<..-4 M 'i' .'. -,.:4 ".' ..?. ?., 4 .v - -;-."":.<- -, . -. ,;-. -..- , - ... ..
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r mP L j- j3 m) ,
'=1

for alj. k <...<k en. Lettina fl..,fm: R-->R be bounded, we get

as in Kingman (1978), p. 188,

In m
1n. Ejlv! m+l=n+ = j=l' '

hereuf=E~f(1), j . Since T+-- as p-*O, it follows that

m m M m
E 71 fCq) =E 7-tf(j = E Ej=1 v -+ E7F

j~l jl 3=1j=l

which implies that E is exchangeable.

For readers aquainted with random measure theory, we shall

outline an alternative proof, exhibiting the relationship with

thinning of point processes. Here and for the remainder of this

section, we shall use the terminology and notation of [12].

Second Droof of Proposition 2.3. Tntroduce the marked point

process

j=l (

and construct another point process from by a p-thinning

followed by a scale contraction by a factor - Note that the

successive marks of rk are given by =j. Let us further constructT -i
*p by a p -contraction of the random measure p4. As before, we

may let p--- 0 along a sequence. By the ergodic theorem, we get

S p ---- A a.s., for some random probability measure p on R, so
Theorem 8.4 in [12] yields 'I- where ' is a Cox process

directed by p A. It follows by continuous mapping that dp

d , where 7' is the sequence of successive marks of t'.

remains to notice that n' is conditionally i.i.d. p.

We conclude this section by stating an analogous point process

result, which follows easily by a similar argument. Recall that a

-. : . 't --
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marked point process on R+ is exchangeable (in the sense of

Chapter 9 in (123), iff it is a mixture of stationary Poisson

processes.

_2 Fix pt(0,1), let be a stationary marked

point process on R+, and let I be obtained from by a p-.thinning

followed by a scale contraction by a factor p-. Then is

exchangeable iff .

'S

*

. ... ".. 5 ..-.. . '- '-. . '-.. •-..... :. ..... :.. , .;..,-... .5.,....2,.; ..S-, *.-...*..;.... .... ..- ........-....
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3. Predictable samplina

Here we shall prove the fact, already mentioned in the introduction,

that the distribution of an exchangeable sequence is invariant

under predictable sampling. To facilitate access, we begin with the

special case when the sampled sequence has fixed length. Fix a

f iltration 7 = (I0 ... )

Theorer 3.1. Let C be a finite or infinite C-exchanaeable
seauence with index set I, and let t k be a.s. distinct

I-valued predictable stopping times. Then

1( )lk
.

Proof. Let us first consider the case when i is

finite and k=n. Let .. be the allocation seouence associated

with 7%l,..., Cn, and note that the two secuences are inverse random

permutations of the integers 1,...,n. Define for each Tn0 ....n

another randor permutation (c .) b' nutting A .=v for :<_r, and

then recursivelv

Vmj = min(N \.;x ! . l j=m+l, ... ,n.

Note that is F -measurable for each j, an(. that

whenever j<m. Using the F-eychangeability of , we get for any

bounded measurable functions f

n - n
EJ: f (i) E r , 7 f

=1 fmj Lj=l C. mj J.

jcm mj j>m mj

- f f f "--)m[l.7je'm mr-l,j j>m rm-1, j

n

j== %f-l , j

Summing over m=l,... ,n, and noting that O .=O,. while ,-.j, we
nD- 3 0j-
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hence obtain

n n n
j=l 3 j j=1 jji

The assertion now follows by a monotone class argument.

If instead kcn, we may extend the seouence (T.) by putting

recursively

min.., , j=k+l,...,n.

The assumptions are then fulfilled by the extended sequence, so

which implies the same result for the first k components.

Let us finally assume that is infinite. We then define the

predictable stopping times tnj, for neN and j=l,...,k, by

. Lit (2)

nJ n+j, T>n.

Since -nl' . nk are a.s. distinct and bounded by n+k, we may

apply the result in the finite case to the subsequence (1I ... n+k) '

to obtain

d
Inl _nk

But then the same relation must be true forl'I' .... since1 'k'
S--1. . for each j, as we let n--).
njj

We turn to the general result, where the length of the sampled

seuuence is allowed to be random. Recall that the graph of a random

time Z is the random set 4t*O: t=T). Recall also the definition

dof = from Section 1.

Theorem 3.2. Let t be a finite or infinite F-exchangeable

secuence with index set I, and let '71Tr2 ... be (I [vro})-valued

predictable stopping times with a.s. disjoint graphs. Tlut V=
infjjo: rj+I=,I . Then

((3)

V N.,
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Note that the left-hand side of (3) should be interpreted as

the infinite sequence ( '. -2 "..) when V= o. The above result

was obtained for increasing (-r) in Theorem 5.1 of [ii], by a

cumbersome direct argument.

Proof. We may clearly assume that Tj=:, forj..V. Consider first

the case when ' is finite. Define a new allocation

sequence (1) recursively by

r k' k - Do
= CID

The inverse permutation (T i'....A) given by

T =k :,k l,..,n,

will then satisfy the requirements of Theorem 3.], and moreover

3=Z' for j4_Q, so we get

d( Ll'' ' v "+n = i n• rv L ,...,j ,) = ..

proving (3).

It remains to consider the case when is infinite. Defining

-j as in (2), we get by Theorem 3.1

d . (4)

nl n2

Let us further write

= inf-%j>O: 7j.l>n, nCN,

and note that Vn--, *. Note also that

(nl . n n ... ) = (5)
n V

since nJ= t '3 for j5i)n. The seauence of pairs (n, n) is trivially

tight in Rod17, so (In.on) d some (1 ',V') along a suitable subsequence,

where ' d by (4) . Letting n--P in (5) , and noting that
(Xl,X2 . .-k) - (xI . .,Xk, , , . )

defines a continuous mapping from r *0%f to (Rk8}) , we cet in the

limit

0
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viv 1 01...)d

with the usual interpretation in case of infinite v or ~.Thus

(3) holds by Lemma 1.1. t

N- &-
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AM =ar l ==inncontinuous time

The main purpose of the present section is to discuss a continuous

time counterpart of condition (iii') in Proposition 2.2, and its

bearing on the exchangeability of a process on [0,1] or R+. Recall

from Propositions 2.2 and 2.2 that (iii') is equivalent to

exchangeability, for a stationary sequence of random variables.

Before indulging in the main theme, we remark that most methods

and results related to the notion of spreadability carry over rather

easily to the context of processes on R+. In particular, the

continuous time ergodic theorem yields an easy direct approach to

the continuous time analogue of de Finetti's theorem (though under

the assumption of measurability). Much deeper is the spreading

characterization of eraodic exchangeable processes on [0,i3 in

Theorem 3.3 of [11], whose proof employed some martingale techniques

akin to those below.

Recall (e.g. from 17J) that a process X on some interval I

is a semimartingale (with respect to a standard filtration ), if

X is richt-continuous and adapted, and if X=M+V for some local

martingale M and some process V with locally finite variation and

V0=0. Moreover, X is a special semimartingale. if V can be chosen

to be predictable, and in that case the above decomposition is

unique and will be called the canonical decomposition of X.

Associated with a semimartingale is marked point process t and

2
a continuous increasing process rt' given (for Borel sets ACR

with 00A) by

A 2  t >t(t = l(AXs) ' t= <C !

where Y =M is the unique continuous component of the martingale

part M. The compensator (dual predictable projection) of will be

denoted by . For special semimartingales, the processes V, a2

. . . . . . . . . . . . . . . . . .

. .. .. ... .. .. .. ... .. .. .. ... ... . . . . . . . . .
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and will be called the local characteristics of X. (Note the

slight deviation from common practice, in our definition of the

first characteristic V.)

The continuous time counterpart of condition (iii') above is

to assume that X is a special semimartingale with absolutely

continuous local characteristics, such that the associated densities

may be chosen to be martingales. Here absolute continuity is

understood to be in the time parameter and with respect to Lebesgue

measure A. In case of , this means that

gtA = ds, ttl, (2) "

for some measure valued process p, such that rtA is a martingale

in t for every fixed A. All martingales in this section are ,-ith

respect to a fixed standard filtration , and we shall always

choose their right-.continuous versions.

Our plan for this section is first to show in Theorem. 4.1

that the above condition is fulfilled for an exchangeable process,

under suitable moment conditions. (we shall actually prove slightly

more, in preparation for the next section.) We then show in Theorems

4.3 and 4.4 that the stated condition is also sufficient, under

appropriate additional assumptions, for a process on R+ or [0,1]

respectively to be exchangeable. As in case of Proposition 2.1,

the sufficiency assertion fails without such extra conditions.

In what follows, we shall avoid to use the explicit representation

of exchangeable processes stated in Section 1, since the results

of this section will then provide a martingale approach to the

basic representation formula, at least under moment restrictions.

'W N IV X1 I,% %I
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= =Theore 4.1. ny -exchangeable process X on [0,1] is a

semirrartngale, such that !2 anc. ; are absolutely continuous. If

moreover FIX j<p-, then X is a special semimartingale on [0,i), such

tnat '-V is a rnartinaale on [',), while V is absolutely continuous
w~t mriqaednst'on[,! f 2 2 "

wtth a martinqale . .enstty or. E -., then even o and
t

na,, -. art:na.ae Jer.st-es or. Iti) and X-V is an L martingale2-

-- *A ,o._ow:inc simple leria.

."" " zanceabie on [0,13, we have for any

-r' f. T-.s s -r:a. fcr t=l, so we may fix a tE(0,1).

'Ett :6 Z oE a-.trar', we aet
+

7, .AA=k7 i. n kn-k

n.

-n-k " a
r.>k n>k n

since
a 2n n (1-t)- ' --> 1-t 1 .

a n-i (r.-l) (n-k)

Hence

F'E cA E E AA <.- a.s.,

so
E' "7< SA" a.s.

and the assertion follows by taking expectations on both sides.

Proof of Theorem 4.1. Let us first assume that FIXt1<. tC

Write M for a right-continuous version of the process

t = F X tl I t]" I -t) , t'0.,L.O
Lettinc s4t with 1-s and l-t rationally dependent, and usinq the

exchangeability of X, we get

E[Mtj] E[Xi-Xtila]/(l-t) : E[X.-Xs5 F /(I-s) Ms,,, s S "
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which extends by right-continuity to arbitrarily related s and t.

Thus H is a martingale on [0,1). In particular,

E[xt-Xsj~sj= (l-s)Ms - (l-t)EEMtI; J = (t-s)M s, 0s<.tcl.
Writing t

Vt = MsdS, tr [0,i), (3)

and noting that
.t t

E3 MJsds I EMs) ds < tE jMt tt [0, 1)

since IMI is a submartingale, it is further seen that

t
E[Vt-V.j'T E f M-du!' 2 = (t-s)M .0slcl.

S -

Thus X-V is a martingale on [0,1). Since V is predictable, this

shows that X is a special semimartingale on [0,1) with canonical

decomposition X= (X-V) +v.

Let us next assume that EX2  . By Jensen's inequality,
t

so by Schwarz' inequality,

E(1I dVt)2 E. -! 2 2
Id = E\00Ms tldsdt d (< 0d

0 0 0 st0 -t

Thus

sup F(Xt-V t 2 2EX2 _2FjdVj) 2
t

so X-V is uniformly integrable and extends to an L2-martingale

on [0.i1. In particular,

2 2 - 2E 1 + Yx (dx)]= F[x-,;,x-v] l = E(X 1 -V 1 ) <

which implies that E IA-Oo for Borel sets A with 0ZA.

The r-exchangeability of X is clearly inherited by the processes
2

Ot and t" We may thus conclude as above that there exists a

martingale M' on [0,1) making the process

M" 2 0t

t= 2 - 5sds, tefo,l),
0

a~a. aa.- .. *J a ... q[P

' " : " ;,"-. ."-. " , " . " .- , ,"," . - ,"." '-. - ,"-" . -".. ,' " " , -"-- ,'-" ,.-"".. .,''',,.a.-' ',-
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a martingale. Since M" is continuous with locally finite variation,

it follows that M"=O, which proves the desired representation for

2
Ot" Similarly, t is compensated by the process 4 in (2), with

Pt chosen as the measure valued martingale

[ tA C )-= 1t tE [0, 1)(4
Let us finally turn to the general case, when there are no

moment restrictions. Let us then assume that X is directed by
some trpl _ V=~

some triple (,, p), and define a new filtration 9 by I' ,

2
where =cT,,cT 23). (The threefold meaning of I shouldn't cause any

confusion.) Then X remains 9-exchangeable, and moreover ELxt;73

* for all t, so it may be seen as above that X is a special q-

semimartincale on fo,l] with canonical decomposition X=(X-V)+V.

where V is now civen by (3) with

Mt = E[X .XtltJ/(1-t)' te[0,1).
Since tc qt for all t, we rnay conclude from Theorer 9.19 of

Jacod [73 that X remains a semimartinoale with respect to I= Note

2.also that the process ct is absolutely continuous, since this is

conditionally true, given 7.

To see that remains absolutely continuous in the ceneral

case, fix a Sorel set .cR ith 00-, and :et Pt7 be civen by (4)

for t>O. Then Pt. a.s. by Lemmra 4.2, and we cet as before
t

[ffy- ,5 5 ] = . j = (tos)y A Q<s<t<l,
5

s
* which shows that

t -SA pjdu, OCsct~l.

A
Letting s-.O-0 and noting that %=0, we obtain the representation (2)".D

We turn to the results in the opposite direction and becin

with the case of processes on R+.

_J.

J', " ., r ' """ " , . ,} - - , . . : " ', " , " -.. " " * "" "
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Theorem 4.3. Let X be a special semiriartingale on P+ with
..

stationary increments and with X0=O and_ F[XX]I.ra, and assume

that V, 2 and are absolutely continuous with martingale densities.

Then X is exchangeable.

Proof. Assume that X is compensated by the process V in (3),

for some martingale M. Then V is integrable, and X-V is a martingale

since E[X,X]Ic o, so we get for st

t t

In particular,

E[Xs+h-Xs qs] = h E[t+1 Xti s], O<sct, h>O, (5)

where q=(qs) denotes the standard filtration generated by X.

Let us now extend X to a right-continuous process X' on R

with stationary increments, and define

Xs °x;-;_, h--Oj, s>O.

Let us further write f for the d--field generated bv all shift-
,%

invariant functions of the increments of X', and note that 1f7-
S

a.s. for all s. From the stationarity of the increments, it is

easily seen that (5) remains true 1.:ith C replaced by C v s

and hence also by 5s,= q.

Applying the ergodic theorem to the right-hand side of (5)

yields

F[Xs+h-Xs(q = h EXli 3, s,h0.-

A similar argument shows that

E[es+hA-CsAjis] = h E[ IAf], s,h>O,

= h Eo s_2 s,h O.• ~~E Ics~h-(72 js ]=hE''-""

Thus the processes

X t- tE[XI fj, tA-tF [4IA ifj t>0,

are '-mrartinoales, while

* -d*. . . ..
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= t E fel ,  t>0.

This means that X is a special 9'-martingale with linear and f-
measurable local characteristics. It then follows as in Theorem

3.57 of Jacod [7] (cf. [8]) that X is conditionally a Levy process,

given f. Hence X is a mixture of L6vy processes, and therefore

exchangeable.

We turn to the case of processes on [0,!]. Here the stationarity 1

assumption in Theorem 4.3 will be replaced by a suitable constraint

at the terminal point. The following result, in conjunction with

Theorem 4.1 above, yields a complete martingale characterization

of ergodic exchangeable processes on [O,l. The corresponding

characterization of finite exchangeable sequences is the martingale

version of Proposition 2.3 in [11).

Theorem 4.4. Let X be a uniformly integrable special semi- K
martingale on 0,1] with X0=0 and non-random X1 .

2 and ,' and

such that V, o72 and are absolutely continuous with martingale

densities on 10,1). Then X is ergodic 7-exchangeable.

Two leirmas will be needed for the proof.

Lemma 4.5. Let B be a Brownian -martincale and an

t-adapted marked point process with an .-comDensator which depends

predictably on . Then B and 4 are independent.

roof. It is clearly enough to show that Ff(B)g( )=O for any ..

bounded measurable functions f and a. By Theorems 11.16 and 12.23

in Jacod [7j, there exist predictable processes V and with

'2 2r itzSVds ,dF
s 5 ,x -sx N

and such that f(R)=M while a(g)=N, where Y and 1: denote the

martingales
t t

Jt s S 03 'xd s x'

0-.

10 J,
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In fact, this is all true with respect to the filtrations

generated by R and respectively. Put by assumptions, remains

the 7"-compensator of g while B remains an 5.7-martingale. Moreover,

M is continuous while N is purely disaDntinuous, so M)_N, and we aet

Ef(B)g( ) = rM N = 0. C

Lemma 4.6. Let X be an exchangeable process on [0,I] directed

by (,, .2 ,r). Then [X,XI=a 2 +(3.

This result was obtained in [10) by cumbersome arguments. Here

is a simple martingale proof.

Proof. We may clearly take (V,a 2,l) to be non-random with =0.

In that case,

Xt  B l{1 4t}-t
tj=l j  l-t j=0

4

is an orthogonal decomposition of the L 2-martingale on the left,

and we get

: _ 0 Mj Mjit,

j=O i

which yields a corresponding decomposition of [XX]t. It remains

to notice that LB,Bt=t, since Bt=Wt-tW1 for some Brownian motion W.

Droof of Theorem 4.4. Let N be a right-.continuous version of

2the martingale density of at. Fixing st[0,lJ, we get a.s.

2 CN22 r22.., d t  l = EL -a I- r dtl?]=C E[N)t ] dt=l-s) N
Ss , 1 s 1 s; 's~ s t si s tt

Hence N is a.s. continuously differentiable and satisfies the

differential equation

- s = (l-s)N - Ns, 04s-l,

so Y'=0 a.s., and we get
S-

2 2

'7 = 2a i O j as 6
This shows that Xc is a Brownian motion with diffusion rate ar 2

I- ... 
%

%"°, .o. ', , - . '°;.j - • o "• , , .'- '. '-j. .,% . ". ", '- '. "..,.-,... o .'. '. ., &% .,..' .' " .' ". ', '.6" , %.A-:.,
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Let us next assume that t is compensated by the process E in

(2) for some measure valued martingale p. Letting PCP be a Borel

set with 01A, we get a.s. for any secC,lj

A- fAE A ,fA!7=EL ~Adt ! [stA Ldtts (1)ps

so by right-continuity,

F s = (,- )/(l-s) sc- [0, l, a.s. (7)

By Lemma 4.5, it follows in particular that and xc are independent.

Let us finally assume that X is compensated by the process V

in (3), for some martingale M on [0,1). Then V has integrable

variation on compact subintervals of [0,i), and X-V is a martingale

on 10,l) since

[x-v,x-vl 2 + x2 l(dx) ,

so we get a.s., for any Qcst~l,

t t

By the continuity of X at 1, the uniform integrability of Xand

the right-continuity of X and M, it follows that

Xs se 0,I) , a.s,

so

dXs = -(l-s)dMs + Ms ds = d(X s-Vs) + dVs

and therefore

it t s d(X -V)
Vt = = ds -ds 1 u r tE[0,i), a.s. (8)

0 0 0

Let us now consider instead an ergodic exchangeable process
2

X' on LOij directed by (X1,l, l). Theorem 4.1 shows that X is a

special semimartingale with respect to the induced standard

filtration, and that the local characteristics of X' are absolutely

continuous with martingale densities on [Cl). Since X' is further

L2 -bounded and hence uniformly integrable, everything said above

" for X applies equally to X'. In particular, (6)-(8) remain true

.p



27
22

for the processes , ' and V' associated with X'.

As for X above, it is seen that X'c is a Brownian motion

2 2 by Lemma 4.6, the diffusion

rate is the same as for Xc . Since the functional dependence in (7)

is the same for J and ', it may further be seen from Theorem 3.42

of Jacod [7] that 1' , so ' and hence X'-V' X X-V.

Swe may next infer from the two versions of (8) that (X'-V',V')

(X-V,V), which implies that X' X. Thus X is exchangeable.

To reach the stronger conclusion of 5-exchangeability, it

suffices to fix an arbitrary s.F_0,1,, and to check that the preceding

arguments apply to the conditional distribution of X on the

interval Is,l]. given the a-field F. We omit the details of this
S

verification. 0

We conclude this section with some remarks. First we show by

an example that the last two lemmas are false without the additional

assumptions of stationarity of the increments or of non-randomness

* of the local characteristics at the terminal point. Let us then take

to be a simple point process on R+, such that the restriction to

[O,i3 is a mixture of Poisson processes with intensities 1 or 0,

where each possibility is chosen with probability . On the remaining

interval, we choose to be Poisson with intensity 1 or (l+e)"

depending on whether flO or not. It is then easy to verify that

the density of is a martingale. But 1 fails to be exchangeable,

since Pjfl=0j= (1+e ), while
P 2- I=0o (l _+ (l+e )e - l e 

1 I 1

As a second remark, we shall sketch how the above results may be

combined to yield a simple martingale approach to the representation

theorem for exchangeable processes on [0,1]. Let us then assume that

the process X on [0,1j is exchangeable, integrable, and continuous

6 . '
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in probability at every fixed point. Then Yt=(X -X t)/(l-t) is seen

to be a martingale on [0,1), so X must have a version in DL0,1.

Note also that tXX] 1 cpc a.s., since the exchangeability of X

carries over to [X,X]. Since X remains conditionally exchangeable,

given the triple (Xl,[X,X]j, l), we may assume that X1 . EX,X] 1 and

are all fixed. Then EYt , so even EX 2 It may hence be
t t

seen as in Theorem 4.1 that X is a special semimartingale on Lo,],

whose local characteristics are absolutely continuous with martingale

densities on [0,1). Note also that X is uniformly integrable on

2
[0,13, since EXt is bounded. The hypotheses of Theorem 4.4 are then

fulfilled, so the desired representation formula follows as in the

proof of that theorem.

% %

-.

.o.

;I.

.~ ~ . 5 5 . . . . . (.
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5. Predictable transformations in continuous time

Our aim in the present section is to prove continuous time versions

of Theorems 3.1 and 3.2. Let us then fix a standard filtration 7,

and recall from Section 1 the definition of an C-"-exchangeable process.

Recall also our definition of tne transformed nrocesses XV - . The

stochastic integrals occurring in the definition exist by Lemma 5.2

below.

Theorem 5.1. Let X be an ---exchanaeable process on I=[0,11 o_r

R . and let the process V on I be p-predictable with values in I' ,

and such that AV-!=A a.s. on some interval J CI containina 0. Then

XV I  X on J. (i)

Since (XV- I )  is only defined a.s. for each t, (1) should bet "

interpreted as a relation between the finite-dimensional distributions.

Ho,.ever, (1) implies that XV has a right-continuous version with

left hand limits, and for the latter there is clearly eaualitv

* between the distributions on the Skorohod space D(J).

*Two lemmas will be needed for the proof.

Lemgrma 5.2. Let Y be an :-exchangeable process on I= U.lj or n+,

and let ACI be predictable with AA- D a.s. Then the stochastic

integral $ldX exists. Moreover Si dX 0 whenever

are predictable with AA nP-, 0.

Proof. Let us first consider the case of processes on [0,1].

Changing the filtration, as in the proof of Theorem 4.1, and

applying Theorem 9.26 of Jacod 171, we may reduce the discussion

to the case when X is conditionally ergodic exchangeable, given "
0~

But then Theorem 4.1 shows that X is a special semimartingale on

LO,I], with a canonical decomposition X=M+V such that both <P,M>

and V are absolutely continuous. The existence of the stochastic

•lop

" PI . . . .- . .,",-,.. -4 '- 'L'''''- '-.' -. , ", . ",-
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integrals 1AdX follows immediately from this. To prove the

convergence assertion, consider an arbitrary subsequence such that

AAn --- 0 a.s. Then

lim iAl (dVI = lim fIPnd<M,M> = 0 a.s.,
n An n- n

which yields the desired conclusion.

For processes on R+0 we may reduce as above to the case when

X is conditionally a Levy process, given 1. In this case we get

a decomposition X=M+V+J, where V is linear, while M is a local

martingale such that<M,M> is linear, and J is conditionally a

compound Poisson process. For integrals with respect to M+V, the

existence and convergence assertions follow as before, so it remains

only to consider integrals with respect to J. Letting N denote

the associated mixed Poisson process, it is seen from the results

for M+V that IAdN exists and that iAndN -*0. Since the integrals
n

SIAdN and jil dJ! are simultaneously finite and simultaneously

zero, the corresponding statements then follow: for J. 0

Lemma 5.3. Let A, .... A. be disjoint predictable sets in ,0,1"
- - - - 1 n - -- - _ _ _ _

-l
of equal length n , and fix an E>0. Then there exist some integer

metN and some disjoint predictable sets A> ... ,An of equal length

n such that each A' is a union of intervals ((j-l)m ,jm 1 J,

and such that moreover

n
I(;,P)(A4A) E (2)
j=l ""

Proof. Recall that the restriction of the predictable o-field

to the interval (0,1] is generated by the stochastic intervals of

the form (o'J, where d and ' are rational valued stopping times

in [0,I. From this it follows easily by a monotone class argument

that any predictable set in LO,lj can be approximated arbitrarily

closely in measure AP by a predictable union of intervals -er.
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I .=ij-±, m j with m a fixed multiple of n. This implies in .

particular that the process Jl A can be approximated in L1 (AP)

by a process of the form DJluj , where U1 ,...,U n are disjoint

predictable interval unions as above with union (0,1]. Taking the

error to be less than E/n, we get
I nn L 3

j=l -? -j=l

Let us now define the variables .*,...,o( by the condition

x j=k if IjCU j=l,...,rr, k=l,...,n,

and put recursively
C0! if = m/n,

t. T. ri n k: f-0 k}  rn :,otherwise.

It is then easily seen that the sets

= = ) ,kp k=l,...n

are disjoint predictable unions of I .. I of equal length n- 1

Moreover, (2) follows from, (3) and the fact that, by construction

n n--2. ;(U_ AA') (n-1) S ,U - n .

j=l J -j=

Proof of Theoren 5.1. Let us first assume that I=J=[0,1. By

the right-continuity of X and by dominated convergence for

stochastic integrals, it is then enough to prove that, for fixed n,

= ~il'"'nn~'(4)
nl .. .,nn )  d (Inl,...,nn)(4

where gnj and Inj denote the increments of X and X%7-  respectively

over the interval I nj ((j-l)n 1jn ]. Note that

=nj =SldX, j=l,...,n,

where Anj denotes the predictable random set

Anj = t. I: Vtin , j=l,...,n. . ..

t nj
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Consider first the case when each set A nj is a union of in/n

randomly selected intervals I npfor some multiple in of n. Then

in/n

n k=l jt k jl..n

for some functions

j1l j, m/n'
Write J for the discrete filtration C. ' j0,. .. ,i, and

note that is1**'m i-exchangeable, while the 7jk are

9predictable stopping times. Hence Theorem 3.1 yields

and (4) follows by a suitable summation on each side.

In the case of general sets A n!' it is seen from Lemma 5.3

that A n2.***i A nncan be approximated in (A>.P)-mneasure by disjoint

predictable sets B 1 ,..* .,B mnof eq~ual length n 1, and such that

each B mjis a union of randomly selected intervals I .k As shown

above, we get for each m

Dml ..P n(n . .. n

Moreover, it is seen from Lemma 5.2 that

\1 dx-- J .1  *dX as in-P,ob, j=l,...,n.

Hence (5) remains true with the sets B Mjreplaced by A nj4 and the

assertion follows.

Retaining I=[0,1,1, we turn to the case when J=LO,rp2 for some

p'l. We may then construct another predictable Process U on I by

putting

1 { A~ ?"s t: V >P1, 'Isp

Noting that AU =.A, we may conclude as above that XUi-l X. Since

moreover XU- 1=xv- on J, the assertion follows.

4% ~~~.* . . . . . . .5 . . 5j~ . . ~ .~ Y
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If instead I=R+ while J=[0,1], say, we may define the processes

U (t ) = Vt ,

n inf seJ: s-Ar<.n- Vr<S=t-n, t>n.

Then each Un is predictable with AU n
I=  on J and U njc[O,n13'

so the result for processes on finite intervals yields XU n = X

on J. Since moreover

s.n: Un (s ) t_ =t s>n: Vstc --o 0 a.s.
n 5-

by dominated convergence, as n-.po for fixed tEJ, we aet by

Lemma 5.2
Do

* (XU_ -~= ( ltn(s)4,t.}-ljVs~t})dX E-;,-0

so the finite-dimensional distributions of XUI on J tend weakly

to those of XV - , and the assertion follows aaain. 

With regard to applications, it is useful to extend Theorer

5.1 to the case when V is onl'., measure rreservinc on some interval

of random lenath. Recall fror Lemma 5.2 that XV1  is defined at t

if Ais: Vs<t, P a.s. In aeneral, it can be defined by localization

on the random set A = s: V t

Theorem 5.4. Let X be an Z-exchangeable process on T= 0,1 or

R+,.and let the process V on 7 be .-predictable with values in

= supbt>O As: Vs<t}=t},

and let Y denote the restriction of )n
-I to LO) Then Y C d

Note that the process Y is well-defined on [0,;) since

{4tC cAt for each t. The theorem states that Y can be extended to

a process on R with the same finite-dimensional distributions as X. q.

As before, this yields the existence on [0, ) of a riaht-continuous

version with left-hand limits.

IL]
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The core of our proof consists in constructing a measure

preserving process V', to replace V in the definition of Y. This

will essentially be accomplished by the next two lemmas.

I.emma 5.5. Let f: P T be measurable with '-l on some

interval [O,p). Define

gt= sup xO: \{s<t: f Ej'Aon tOx)1, t>O,

and put h=f+..l~f>gj. ThenAh-1 . on. R+, and we have h=f on the

set where f<p. If f is a predictable process, then so is h.

Proof. By a monotone class argument, Ah-l<ck follows if we

can prove that Ah- I<- AI for every finite interval I=ta,b) with

dyadic endpoints. For this purpose, define

gn(t) = 2-n[2ngtj ,  t>O, ne.N,

and note that gntg" Hence

~\S: f k' < (S) A ~S: f Cl, fo '< = Ah I,

so it is enough tc show, for large n, that the left-hand side is

bounded by Al. We mar then assume that I=L(k-l)2-n,k2
-n) for some k.

Dut
infis>C:_ as<k2 -n ,

and note that gt>k2-, since q is left-continuous. Note also that

gn(s)<(k-)2"-n for all s>t. Usina the definition of g, we hence

obtain

A s: fSI, fsn (S)f = Ast: fs,
* as required. The second statement follows immediately from the fact

that qp.

If f is predictable, then A{s_.t: ffI} is 'Tt-measurable for

every t and I, by Fubini's theorem, ane hence so is the event

where the intersection extends over all rational intervals I in

.
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[O,x). Thus g is adapted, and since it is also left-continuous,

it must be predictable, like f. Hence so is h.

Lemna 5.6. Let f: [0,1]-- [0,lp.to} be measurable with If <

on fo,1J and Af-!= on some interval [0,p]. Define

9t= inf xEL[O, 43: x=lI- Aise.t: f S>xjl t;[olJ

and put h=fAg. Then Ah- =A on [0,13, and h-p=f&p a.e ). If f is

a predictable process, then so is h-=ftt

Proof. Since ;qsct- f xr' is continuous in x for fixed t,

with values t<l at 0 and A{sct:fs=:oo>0 at 1, the set of solutions

to the eauation

x -- 1 .- Kst: fs>X. (6)

forms a non-empty closed set. In particular, gt solves (6) at t.

Note also that gt decreases fro. 1 to 0. Substituting x=g t in (6)

and letting t-wt' from above and below, it follows easily that

both gt+ and t-7 solve (6) at t', and the same must then be

true for every intermediate value. This shows the existence, for

every xt[0,11, of some t=t t[0,1], such that x solves (6) at tevex

and moreover ct+ < t-

Let us now assur.e that x is such that ks. as=x =0. Then

)t{s: hX1 = A"st: hsx = A..t: 2. 1_ - x.

Since the set of x's with the above property is dense in [0.1],

it follows that Ah-=A. In particular we get A(hp) -=A(fp)-,

so A(fAp-hAp)=0. Since the integrand is non-negative, it follows

that hAp=fAp a.e.A.

If f is predictable, then AFst: f S,>x is r -measurable for

ever' t and x, and hence so is the event

--t2y} n x-C 1-A's-t: f >X11
r
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where the intersection extends over all rational numbers x in [0,y).

Thus g is adapted, so gt- is predictabie, like f. Hence so is h- 13

Next one needs to verify that the new predictable process V

obtained through the last two lemmas gives rise to the same process

Y on the random interval L0 ,4).

Lemma 5.7. Let U be another rredictable process on I, and

assume that

UV, UsAV 4=0 a.s.
-2 -2

Then XU and XV represent the same process on

Proof. Fix tEl, and define the stopping time

inf r.C: sr- U #V U AVs<tj>- 0..

Then
_ t' S<T ) 0 a s .:-A('Us<_t, s<T /% Vst, _•Z} = 0 .s.,

so by Lemma 5.2 we aet for a12 nV..

I kwS t} d Xs 
= I.V<t, se,7-n~dX

0 S0S°s

f t, s,, n..dX = dx
4. s- - . S SS"

0

-l -1which shows that (XU-I =(XV-I a.s. on the set.J=a@, 4.t}t. it

remains to notice that a.s.

= { • rV U AVsetq=01 D t .

We shall also need an extension of Lemma 5.2, to deal with

convergence of our specific stochastic integrals on events of the

form )tJ. Note that the result is trivial when 4 is 7 -measurable
n %

for some n. Write S for the Borel c-field on the interval (n,-).
n

.... *.**....* . . . .*,%* ~ . . ......... . 4.... .. . 4 .. .. . . . . . .
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Lemma 5.8. Let I=R and assume A En ,n neN, and FE£ to
+n n n

be such that

1F .A P - 0.

Then

1F 1A dX _0.
n

Proof. Let 7-denote the tail a-field for the increments of X,

and write 01

= I ':-" ,-,] En = EL. n/ 3, nN.n n n n

Assuming without loss that 2A --;0 a.s., and writing g(x)=l-e -

ve aet

IFFng(AA) = lrg(.A n) -n 0 a.s.,

Pn Pn
since )A is ' -measurable. Hence IA - 0 a.s. on F, where --

n n n

denotes convercence in probability with respect to the conditional

.Law. Now X =@ oX-XYn) is conditionally a Levv process independent
n n

of n (cf. [lj), and moreover

n A -A dX = JAdX, n-Nn nn n

where the definitions o stochastic intecrals are the sane under

P an. P (cf. Theorem 9.26 -r. [7'). Thus Lemra 5.2 shows that even
n L4n

Inn -0 a.s. on F, so by dominated convergence

ELPFc(n)] = Ei]r a 0,

which means that f F-I a 0. It remains to notice that P F-,- 1n n n

a.s. by martingale theory.

We shall finally need an elementary result on weak convercence

in the function space D(R+) with the Skorohod-Stone topology (cf. [8]).

Recall that kt denotes killing at t. The coffin state a is regarded
t

as isolated in R a].

V.-".
% %.
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Lemma 5.9. Let X,Xl0X 2 ... and Z,1,7 2 ,... be random elements

in D(R+) and R+ respectively, and assume that (Xn,7n ) d

with respect to the Skorohod-Stone topology on D(P+). Then

kp aX d -. k oX (7)
n n E-

for pe 10,i a.e.

Proof. It is easy to check that the mapping (x;t)--t ktx from

D(R+)AR+ to D(RRvij ) is continuous at t= P, and also at every

(x,t) with t<9x and such that x is continuous at t. Thus (7) is

true for every .E[O,l such that X is continuous at rT a.s. on

But conditionally on that event, the process Y =X -, pe[0,23,

has paths in D"0,1], so Y has an at most countable set of fixed

discontinuities (Cf. L2]). it remains to notice that X is

continuous at n-_ iff "' is continuous at n.

Proof of Theorem 5.4. Let us first assume that I=F0,1l. By

Lemmas 5.5 and 5.6, there exists a nredictable process V' with

A a.s., and such that V'=7 a.e. AP on the set V AV' .S S SS

Puttina Y'=XV' -, it is seen from Lemma 5.7 that " and Y' represent

the same process on 170,C). Since moreover Y' = X by Theorem 5.1,

d ait follows that Y c X. a

Let us turn to the case when I=R+. By Lemmas 5.5 and 5.7, we

may assume that -AV a.s. on P+ For every nO-, we define a

predictable process Un byvt,  tVt_ n, i

Un(t) = t-c nVt,

inf s.O: -Arn:r snt-n ,  t>n.

Since clearly AUn I=A a.s., we have Yn=XUn d X by Theorem 5.1.

It follows in particular that the sequence of pairs (Yn,) is ticht

, -

n5
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in D(R+).+, so(,) (X',+s) along some subsequence N'c N,

for some process X' X and some raneom variable ' y

Lemma 5.9 it follows that
k PC Y n~ d ,k r , 1X', pt[0, 1- a. e. A (nEN') (8)

On the other hand, we have for fixed t>O

Ais~n: Un (s)<t = A, s.n v st -- * C a.s. on it4 },

so Lemmas 5.2 and 5.8 yield

(t) l t"'-l{U (s)<t )dX 0
ltc ( n(t)Yn t) = n sn s

i* w;hich shows that

(kn CY ) (k oy)t, pE[0,1] , tCR+

Comparing this with (8) yields

kp-Y k ..X' pE[0,13 a.e. A,

so the same relation must be true for p=l. But then Y _ d X

by Lemma 1.1.
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