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Ryll-Nardzewski (1957) proved that an infinite sequence of
random variables is exchangeable, if every subseguence has the
same distribution. We discuss some restatements and extensions of
this result in terms of martingales and stoppring times. In the other
direction, we show that the distribution of a finite or infinite
exchangeable sequence is invariant under sampling by means of a.s.
distinct (but not necessarily ordered) rredictable stopping times.
Both typres of result generalize to exchangeable processes in
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1. _Introduction !
w
2 finite sequence of random vasriables €=(€l,...,fn) is said to be =
"
exchangeable, if every permutation has the same distribution, i.e. if ot
) & (¢ 3 %
- (gkl'...’ekn = ( 1’...';!'1) (l) ;:,
i:"
for every permutation (kl""'kn) of (1,...,n). For infinite
- "‘
sequences, we require the same property for every finite subsequence. o
It is easy to see that exchangeability of an infinite sequence :&
§=(§1,€2,...) implies that
g
(gk lgk '---) = (gllgzln.-)' k1<k2<.-. (2) :
1 2 o
A seguence satisfying (2) is said to be spreadable. (Xingman (1978) T{
-
calls (2) the selection property, while RAldous (1985) refers to (2) “?
N
as the property of spreading-invariance.) o
de Finetti's (1937) celebrated theoremr states that an infinite ﬁ
. exchangeable sequence is mixed i.i.d., in the sense that its ;:
distribution is a mixture of distributions of i.i.d. seguences. q
Ryll-Nardzewski (1957) noticed that the same conclusion follows v
from the weaker assumption of soreadability. Both results are in J
fact simple (thouch remarkable!) corollaries of the mean eraodic
theorem. In proposition 2.1 below, we shall show that the same -
X
arcument yields an even stronger result. j
We proceed in Proposition 2.2 to restate the above results
in terms of stoppinc times and martingales. In particular, a sequence .
( is spreadable iff etvg ¢ 5 for every z+-va1ued stopping time T N
[N
(extensive use of this result wacs made in Di]), or equivalently,
. s a
* iff the prediction seguence
%, = Ple &€ |7 ], nez,, (3) f
- 3
is a measure valued martingale. Here ?=(?b,?‘,...) is the 4
filtration induced by £ (so ?B is trivial), stopping times are N
defined with respect to ¥, and 8y+©,s.+. denote the shift operators .
hY
-
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The stopping time condition above characterizes exchangeability
in terms of certain randomly selected subseguences. More generally,
one may look for conditions on the random indices Ti,T},..., such

that
(6_,E ,.. ¢
‘1 %2

implies that & is exchangeable. Another instant when (4) implies

(El,iz,...) (4)

exchangeability (for stationary §) is that of thinning. where the
elements of & are selected independently with a fixed probability
p€(0,1). This result (Proposition 2.3) is closely related to a result
in point process theorv (cf. [12]), where mixed Poisson processes

are characterized in terms of thinning.

Section 3 deals with the converse problem of finding general
conditions on Tl’té"“' such that (4) holds for a given exchanceable
sequence £. If € is infinite and i.i.d.. we may e.g. take Tl'T}""
to be any strictly increasing seguence of predictable stopping times.
tRecall that a stopping time T is predictable, if T-1 is a stopping
time in the usual sense.) This result is well-known to gamblers
(or at least it ought to be!), and the first formal proof appears
in Doob (1936). Our main result in Section 3 states that (4) is

true for arbitrary a.s. distinct predictable stopping times

~ -

ys ¢+ .-, Whenever £ is a finite or infinite exchangeable seguence.

Note in particular that the 75 may form a random (but predictable)
permutation of the indices of &, since no requirement is made on
the order.

The above result, which generalizes Theorem S.i in [11], has
the most surprising consequences for finite games (e.g. card games,
lotteries, sampling from finite populations), as shown bv examples
in [13]. For the sake of applications (but also for the proof), it

is useful to introduce the associated allocation sequence 01,“5,...,

given by

\j% . I ] v e .'. -.‘...._ .'_- v, ‘.....-._..,- “um
ok .‘._J‘.J'\\?,l_ .. ." e ‘_-'r .
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o, = inf{j: T,=k},  k=1,2,... (5) h

£

(Here inf @ means 2, as usual.) Note that the finite values of 4
. S 3

al,ocz,... are a.s. distinct, and that >y is 7 4 measurable by ‘«
. assumption for each k. Informallv, the element é’k is moved to a
new position o, which is only allowed to depend on the past k3
history (£;,...,§ ;). Note that § is discarded for the new 3
seguence if o =90, >
g i

Sections 4 and 5 deal with the corresponding problems in 7
continuous time. A process X defined on I=[0,l] or R+ is said to .
A S

be exchangeable, if X0=0, if X is continuous in probability at =
every te€l, and if the increments of X over an arbitrary set of N
disjoint intervals of equal length form an exchangeable sequence. :
K

In that case, we may (and will) choose a version of X which o
is right-continuous with left-hand limits. If I=R_, the analogue t
) of de Finetti's theorem states that X is a mixture (again in the =
distributional sense) of Lévyv processes. For I=[0,1], we have K
- ,\
instead the more general rerresentation (cf. [9]) l;:(
> X

- n - b )

X, =Xt + OB, + 3&1 51 Tyetp o), te[0,1], (6) B

’,

(1&-} denoting the indicator function of the event within brackets), '-;
where B is a Brownian bridge, while ‘Cl,‘Z'z,... are i.i.d. random ’

variables uniformly distributed on [0,1], and x,o,p,,f3,,... are N
arbitrary random variables satisfying o0>0 and ZB§< oo, the three <
objects B, (Tl,‘c.'z,...) and (cx,d,(!l,ﬂz,...) being independent. We 0
shall write /3 for the point process Z(SP , and say that X is directed .
. by the triple (e:c,c'2 'F) . Note that X is a mixture or ergodic ‘,._
exchangeable proc~sses (6), where e, 0'2 and (3 are non-random. X

Exchangeable processes will be seen to be semimartingales. »,

In Section 4, we shall essentially characterize the exchangeability :-:

.

of a semimartingale X in terms of its local characteristics (as

»
»
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defined in(7,8]1).1f X is exchangeable anéd integrable, the latter
will be absolutely continuous, with densities which form martingales
with respect to the filtration induced by X. Conversely, a semi-
martingale X on P+ with the above property can be shown to be
exchangeable, provided that X has stationary increments, and a
similar result (related also to Theorem 3.3 in [11]) will be proved
for processes on [0,1]. A related characterization of mixed Poisson
processes has been obtained. independently, by Heller and Pfeifer
(1985).

The continuous time counterpart of the predictable sampling
theorem of Section 3 is stated in Section 5 in terms of stochastic

integrals. More nrecisely, the allocation sequence in (5) is now

replaced by an allocation process V, which is predictable and a.s.

measure preserving, at least on some suitable subinterval J of the

index set I. (Thus AV =] on J a.s., where A denotes Lebesque

-

measure.) Given X ané V, we may define a new process XV * on J by

-1 C o7 -
= ] 7 4 & [
XV 5, JI-{\SS_t}d}\S, teJ. (7
The main result of Section 5 (which generalizes Theorer 5.2 in 11]°
states that X ané (a suitable version of) XV~1 have the same

distribution on J, whenever X is exchangeable. As in the discrete
time case. there are some rather surprising avplications of this
result, which are discussed ir [13]. The result has also proved
useful in establishina representations of stable integrals, but
this will be discussed elsewhere.
We now turn to discuss some technical extensions of the above.
Our first point concerns the choice of filtration. For manv
purposes, one needs to introduce some more general filtration F
“han the one generated by the secuence or process under consideration.

Following [11], we shall then say that a sequence § is F-exchangeable,
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if £ is adapted to #, and if 6,06 is conditionally exchangeable,
given ?;, for every nez+. The latter condition means of course
that the shifted sequence should a.s. be exchangeable under the
conditional probability law. It is easy to check that an 7-
exchangeable seguence is exchangeable, and that the two notions
are equivalent in the case vhen = is induced by £. Most of the
results described above extend without effort to the above more
general setting. In particular, this is true for the predictable
sampling theorem, where one may hence allow for independent
randomizations in each step, in the construction of (xk).

The continuous time case is similar. For technical reasons

we shall only consider standard filtrations ¥, satisfying the

usual conditions of right continuity and completeness (so that

F-F
t

Te for all t, while ;6 contains all null-sets in a completion

+
of ﬁ;= V?;). In particular, the filtration induced by X is defined
as the smallest standard filtration making X adarted. Defining
;-exchangeability as before, we have the same relationship to

the usual notion of exchangeability (cf. [117).

A second point concerns the predictable sampling theorem
discussed above. In many applications, the sample size is random,
and there may be no obvious way of extending the given seguence
of stopping times to a sequence of fixed length. In that case,

we can still prove that the sampled sequence v can be embedded

in distribution into the original sequence § (which we denote by

ng €, cf. [11] ). By this is meant that M can be continued, by
randomization or otherwise, to a seguence 7' of the same length
as & and such that 1"2 &. A corresponding extension exists in
the continuous time case, with a similar definition of embedding.

Note that the above construction of q’ may reguire an extension
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of the original probability space.

A simple way of proving the embedding vvg E is to construct,
on some suitable probability space, a sequence ¢' d € and a §+-
valued random variable y', such that

(gi,...,gbﬂ (L (8)

(where the left-hand side should be interpreted as ¢' when y'=x»).

"o

In continuous time, it is convenient first to extend the definition
of the sampled process Y, originally given on some random interval
[0.3), by putting Yt=? for t»}, where & denotes an auxiliary coffin

state. We may further define the killing operators ks by

(ft, S<tel,
(k_ £y, =
o

defire¢ for functions £ on I=[0,1] or R, ané for numbers seIv{x}.

s>tel,

In order to prove that Y g:x, it is then enough to construct, on

some suitable probability srace, a process X' d X ané a random

variable ¢' g &, such that kc,~X' ¢ Y,

The above statements are simple consequences of the following

randomization lemma.

space (4,P) and taking values in the spaces S and T, where S is

separable metric while T is Polish. Assume that £ d f(n) for some

measurable function f: T-— S. Then there exists some random element

n' gn 9_2 (‘a“[O,l], p"A), EE_(_:h that s:f(-yl') a.s_- pKA.

Proof. It is enouch to prove the result for T=R, since it
will then extend immediately to the case of linear Borel sets, and
next, by Borel isomorphism (cf. [1], p.50), to arbitrary Polish

spaces. For T=R, we mav choose a regular version of the conditional

probabilities
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Ps = P[qe'if(q)Eds], ses,
and define

v)' (w,x) = sup{y: P kw) (-:o,y]<_x}, wen, xe(0,1].
It is easy to check that q' is measurable and satisfies (E,q') d
(f(q),q). Since S is separable, the diagonal in S2 is measurable,

so vie cet

1{g=t "} € 1frop=tp} = 1,

which shows that §=f(n') a.s. g

Let us conclude with some remarks on literature. Thouch the
oresent paper is formally self-contained as far as exchangeability
theory is concerned, we recommend Kingman's (1978) paper and Aldous'
(1985) lecture notes for introductory reading. Some further background
on the continuous time theory may be found in [9,10,11]. Standard
results from stochastic calculus and weak convercence theorv will
often be used without explicit references, and for these the reader

may e.g. consult Jacod (1972, 1985) and Billingsley (1968).
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Let us first show how de Finetti's and Ryll-Nardzewski's results
follow easily from the mean ergodic theorem. So assume that §=
(51,52,...) is spreadable, and let the functions fl.fz,...: R—> R

be bounded and measurable. Write J for the shift invariant o-field

in B and let B be a regular version of P[Eie'is-ljj. Then
k k _ n k
STl f.(€.) = EJ[ L= f. (& __.)Y — E T pf.
Ei 5 JIxn RN $nei’} Mlab

as n—»p, by the L, ergodic theorem (where the convergence is

2
clearly uniform under shifts) rlus dominated convergence. lLere

and below, Pf=:fdp. The rroof is completed by a monotone class
argument. (Essentially the same nroof vields the usual conditional
forme of de Finetti's theorem, cf. [1].)

We shall use the same method to rrove the following stronger

result.

Proposition 2.1. Let i=(€l,€2,...} be a stationarv sequence

of random variables satisfving

c -
= f 14
n+2) (‘1""’£n"n+l)’ +

(sl,...,ﬁn,i

Then § 1is exchanceable.

nez . (1Y

First proof. Extenéd £ to a doubly infinite stationary secuence

""5—1'50'51”"’ and conclude fromr (1) that

- é
(-o-lgnlin+2) = (-..,-En,§n+]), nez.

Iterating this result vields

é . sy

""en'€n+K) = (...,€n,fn*1), neZ, kelM.
Lettina g and fl'fz"" be bounded measurable functions on P* and
and. writing < =""’£~l’:7}' ve aet by the L, erondic theorem

_ K _k;_l lm-m-l

Ecl)TT £.(80) =~ ct§) N (E) (2 3 £ (&)
<=1 © 73 5=1 0 77 o P
k-1

™
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Zince P is £ -measurable by the law of large numbers, we may 4
continue recursivelsy, until we get after k steps 2
3 ok x
Eo(§ )T F08) = F alf ) /[ pfl N
j=1 ] J =1 ] ::
Thus the cenclusion fcllows es before, J N
£
We may also give a simple martincale proof, in the spirit of ;
Aldous (1985), p. 22. -
Second proof. It is convenient to reflect the index set in o
the origin, so we may assume instead that & is stationary and -
-
satisfies § g (il,ez°i). By iteration and stationarity, we get -~
e, .:& g (¢ .0 cg) g (¢, c€) k<n, -
k-1 "n 1’"n ' =
o] -
r o g1 8 \ . - v ‘a s g1 g
Ef£6,): 8, €] 2 E[f(§,1:8 8] = Ef(§,) 6 &), k<n, g
for any bounded and measurable function f. By Lemma 3.4 in (1], N
the left equality must also hold in the a.s. sense, and we get
o
as n—>x :f
r 3 ’ - - ’f' ’-7 = . )
E{£(5,) 8 €] ELf(fl), = uf  a.s., :
where . denotes the tail o-field of £. Letting fl""’fn be bounded v
and measurable, we hence obtain by iterated conditioning >
BT t5) "] = ETICETE (&) 60¢] = & Tle = :
AT R EER SR R Y ;=B ouf, v = i.uaf,, -
‘=1 K T *SS Lt A SS T & 5
which proves that £ is conditionally i.i.d., given - . a .
r.
[4
It is useful to restate the above conditions in terms of ;f
L)
F 3

storping times and martingales. For the sake of simplicity, these

YD AND

will here be defined with respect to the induced filtration

T™h = c(&l,...,gn), ne€z .

Define the measure valuecd processes (Wn) and (A_) by

3

n
1, nez , (2)

| ~

n D[Enﬂ.e'\’n

b3 ]
1]
d
~—
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and note that these formulas remain true when n is a finite stopping

time. All functions below are assumed to be measurable.

o REsETEnESEEEs

Proposition_2.2. Let €=(£j) be an infinite seguence of random

variables, and define () and (A)) by (2). Then (i)-(iii) and

(i')-(1iii') are sets of equivalent conditions.

(i) § is spreadable,

(ii) e, ¢ d ¢ for every finite stopping time T,

(1ii) (ﬁhf) is a martingale for every bounded f: P“La-R;

(1) ¢ satisfies (1),

(ii') &

el - Ei for every finite stopping time T,

(iii") (Rnf) is a martingale for every bounded f: R—= R.

The fact that (ii) with a general filtration = is equivalent
to Z-exchangeability was noted with a direct proof in (117,
Theorem 2.1. Condition (iii') in mainly interesting because of

its eanalogy with the continuous time conditions of Section 4 below.

Proof. Condition (iii) means that -

[ :€); A] = E [ £y A .=
E[f(e,,°8): A] = E[f(e :6): A}, AeT , nez,
for bounded f: R™— R. By a monotone class argument, this is
equivalent to
d

(sli---IEnr§n+2r€n+3r---) = f. n€Z+,
from which (i) follows by iteration. Thus (i)e»(iii). Condition
(iii) is further equivalent to

E7.f = z7r0f
for bounded f: R —» R and for finite stopping times T. This may
be rewritten as

Ef(et'g) = Ef(s),

which is equivalent to (ii). Thus (ii)es(iii), so (i)-(iii) are

equivalent. A similar argument proves the equivalence of (i')-(iii'). @
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It should be noted that Proposition 2.1 is false without the it
[ ]

hypothesis of stationarity. For a simple counterexample, let

§,/8,,-.- take the values 0 or 1, and choose P{£;=1}=1/4. Let us

A
further assume that €2,€3,... are conditionally i.i.d., given 51,
with g
-1j =141
Ple el =4+ 36 w1 - X
Then h
1 _ ;
- '4" ’ n—ol 4
E['Erx+ll"nJ - .
g+ 35 0 :
is a martingale, and hence so is (Anf) for everv £: {0,1}~> R. ‘
Thus (1) holds by Proposition 2.2. But £ is not exchanaeable. A
since P{§,=§,=1}=1/8 while P{£,=§,=1}=1/12. &
We turn to the thinning characterization of exchangeabilitv, ?
; mentioned in the introduction. For a formal definition of thinning, ;
. let £ be an infinite random sequence, and let the random variables .
N/ "y,... be i.i.d. and inderendent of § with 5
. . ) v
- = - =07 = :
Pix,=1} = 1 ~ Pin,=0} = p, ieN, $
for some pé€(0,1]. Then the random variables O
. X .
<. = inf.keN: 3 «.=3j;,  JjeN, "
. j { iop 4 7 N
, -
are a.s. finite, so the sequence x
= (E_ & ,...) o
M T T} -
is a.s. well-defined and will be called a p-thinning of §. e
Proposition_2.3. Fix pe&(0,1), and let § be a stationary f:
iﬁ
sequence of random variables with p-thinning n. Then § is
exchangeable iff E 9 - ::'
First proof. By iteration, we get the same proverty with p >
[)
replaced by pn, n¢N, so we may take p arbitrarily small. Fix m,ne€N N
v
with men, and note that -

- -e “u - ..\_.- - - - - - - - - - Y . - ~ he . LR ] =T -
R N . .o NRLE . . RN . L YA
e A TR A e e e .. A S ARSI

LSS Lo o N



(0,
for all k1<...<km5n. lLetting £.,... fm: R-—> R be bounded, we get

as in Kingman (1978), p. 188,

[ ; 7 T
lim E “ ftn))IT =n+l)| = FE || uf
n>»» 'IJ m+1 ] l j

where uf=E[f(§1 J Since m+12*‘” as p=0, it follows that

m m
ET'f(g ) = ET‘ ) < E E[jglf(qj),fmﬂ — Ejz"'l}.lfj,

which implies that £ is exchangeable.

For readers acguainted with random measure theory, we shall
outline an alternative proof, exhibiting the relationship with
thinning of point processes. Here and for the remainder of this

section, we shall use the terminology and notation of [12].

Second proof of Proposition 2.3. Tntroduce the marked peoint

process
g = ) v
5o (l,;j)

and construct another point process ﬁb fromli bv a p-thinning

followed by a scale contraction by a factor p-l. Note that the

successive marks of ﬁ§~are given bv M=Ny- Let us further construct
;p by a p—l-contraction of the random measure p&. As before, we
may let p—»> 0 along a seguence. By the ergodic theorem, we get

~

§p2+}JxA a.s., for some random probability measure p on R, so

Theorem 8.4 in [12] vields ﬁpéa-ﬁ', where ﬁ' is a Cox process

directed by P“h' It follows by continuous mapping that & d N,
»

§+ q', where ﬂ' is the sequence of successive marks of'ﬁ'. It

remains to notice that q' is conditionally i.i.d. p.
i

We conclude this section by stating an analogous point process

result, which follows easily by a similar argument. Pecall that a

., _.\‘,-.',-.'_-.'_«.:_- Yoo -\.',-."_\:_s:;.j,-.:,\::.';.'_
. e
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marked point process on R, is exchangeable (in the sense of

Chapter 9 in {12]), iff it is a mixture of stationary Poisson

processes.

point process on R, and let 1 be obtained from € by a p-thinning

fcllowed by a scale contraction by a factor p 1. Then E is

exchangeable iff £ g q.
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) Fere we shall prove the fact, alreadv mentioned in the introduction,

-\

that the distribution of an exchangeable sequence is invariant

?, under predictable sampling. To facilitate access. we begin with the i
é special case when the sampled secguence has fixed length. Fix a §
filtration 7= (?b,?i,...). .
Theorer_3.1. Let € be a finite or infinite Z-exchangeable )
sequence with index set I, and let Tl""'tﬁ be a.s. distinct 5
I-valued predictable stopping times. Then ?
(2‘51'”"5‘%) d (8 rveer§) e (1) ;
' Proof. Let us first consider the case when i-(il ceesE ) is v
z firite anéd k=n. lLet Nyve e Xy be the allocation sequence associated
j with Tl,...,Th, and note that the two secuences are inverse random
: permutations of the integers 1,...,n. Tefine for each me{o,...,n} .
: another randor permutation (uhj) b nutting “mj=qj for igr, and {
then recursively ;,
: xmj = min(N'\{xl,...,aj“l}), j=m+l,...,n. E{
. Note that “mj in_lmmeasurable for each j, and that Amj=“h_1’j=03
- vhenever j<m. Using the ?Lexchangeability of §, we get for any
E bounded measurable functions  SREREE ;;
n - e - ’
E{;lf“mj(gj) = F ELlegxmj(gj)‘fm”lJ ;
=F T -
= F j'<£mf"‘m3 £.) E[j;)\mf m(i‘ RN l' R
=T _ﬁf“ _(gj) E[ £, (g)'- "
jem m-1,] j>m - 1,3 >
n X
=E 7 £, (Ej)- -

=1 “h-1,3

Summing over m=l,...,n, and noting that Qﬂﬁfoﬁ while xojij, we

-5
!-
.r-
v
A




hence obtain

l’\ n
E,(f(f E.\f (§)= > T £ (E)
j=1 7 3 j=1 j=1

The assertion now follows by a monotone class argument.
If instead k<n, we may extend the sequence (Tj) by putting

recursively

Ty = mi“(N'\iflr-"rTj_l})' j=k+l,...,n.

The assumptions are then fulfilled bv the extended sequence, so

o
(ETII'-GIETn) - (slli"lgn)l
which implies the same result for the first k components.
Let us finally assume that E is infinite. We then define the

predictable stopping times Thj' for neN and j=1,...,k, by
O L

I n+j, Tj>n.

x are a.s. distinct and bounded by n+k, we may

(2)

in T eees T
Since ‘h1’ .Ln

15

apply the result in the finite case to the subseguence (51”"’En+k)'

to obtain

(3

Al
-~
.
.
~
Sy
t
~

“nl “nk
But then the same relation must be true for ?1,...,7%, since

’an—> 1."j for each j, as we let n— %,

We turn to the general result, where the length of the sampled
seguence is allowed to be random. Recall that the graph of a random

time T is the random set {t<s: t=T}. Recall also the definition

of é_i_ from Section 1.

Theorem_3.2. Let & be a finite or infinite ¥-exchangeable

secuence with index set I, and let TJ,T},... be (I uis})-valued

predictable stopping times with a.s. disjoint graphs. Put V=

in£{320: T 41=%} - Then
e
(E‘tl'...'stp) CE- (3)

©




R

Note that the left-hand side of (3) should be interpreted as

e d 4

L)
4

was obtained for increasing (Tj) in Theorem 5.1 of [11], by a

the infinite sequence (§_,%_,...) when V=5. The above result
Ul -

”

s
PR . o
= S

cumbersome direct argument.

Proof. We may clearly assume that Tj=:m for j>y. Consider first

the case when §=(€l,...,£n) is finite. Define a new allocation .

o, g
- .

sequence («i) recursively by

I X

r o o, <%,

°‘1'<={k' k

max(il;--'rn}\{&i""’“}'(—l})’ dk=c°.

i

-~

The inverse permutation (T',...,.n), given by

J' -

{Ti=k} = ix=3h, j, k=1,...,n,

will then satisfy the requirements of Theorem 3.], and moreover

S

T!=t} for j<V, so we get

3
(E~ ,---,E I€,| r---yE~ )
"1 T T Tn

o s
n

d

N

(& rener )

n

proving (3).

W It remains to consider the case when £ is infinite. Defining

i ?nj as in (2), we get by Theorem 3.1

- d
- l’}n = (:,.. l‘cw,.. fese) = E. (4)

. ‘nl n2
Let us further write

vn = inf:j>0: t}+1>“f' n&eN, X

and note that yh—’ v. Note also that
v .
; cee M L2000 = .. 2,2,.. :
:: (nnli ']nv e ) (erl -'ET by &y -)r (5) :
: n n .

o~
L

since T_.= for je<v_. The seauence of pairs (q ,¥.) is trivially
nj =n n’’'n

tight in R®xM, so (V) 9y some (n'.v') along a suitable subseauence,

& .
e ote o' e

vhere q' d € by (4). Letting n—oe in (5), and noting that

-

(xl,xz,...rk) -> (xl,...,xk,a,a,...) -

defines a continuous mapping from P*Afl to (Rv43}) , we cet in the

limit
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Myreee ey 8200 (511,...,51,8,3,...>,

with the usual interpretation in case of infinite v or y'. Thus

(3) nolds by Lemma 1.1. a
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The main purpose of the present section is to discuss a continuous
time counterpart of condition (iii') in Proposition 2.2, and its
bearing on the exchangeability of a process on [O,IJ or R, . Recall
from Propositions 2.1 and 2.2 that (iii'} is equivalent to
exchangeability, for a stationary sequence of random variables.

Before indulging in the main theme, we remark that most methods
and results related to the notion of spreadability carry over rather
easily to the context of processes on R_. In particular, the
continuous time ergodic theorem yields an easy direct approach to
the continuous time analogue of de Finetti's theorem (though under
the assumption of measurability). Much deeper is the spreading
characterization of ergodic exchangeable processes on [O,LJ in
Theorem 3.3 of [11], whose proof emploved some martingale techniques
akin to those below.

Pecall (e.g. from [7J) that a process X on some interval I

is a semimartingale (with respect to a standard filtration ¥), if

X is right-continuous and adapted, and if X=M+V for some local
martingale M and some process V with locally finite variation and

V0=0. Moreover, X is a special semimartingale. if V can be chosen

to be predictable, and in that case the above decompcsition is

unigue and will be called the canonical decomposition of X.

Associated with a semimartingale is marked point process §t and

) . . 2
a contlnuous 1ncCreasing process O, ,

t given (for Borel sets ACR

with 0€A) by
- 2 _ c C
§.A = s2<t1A(AxS), op = <X7,X") .,  teI, (1)

c . . . .
where ¥°=M® is the unigue continuous component of the martingale

part M. The compensator (dual predictable projection) of £ will be

A
denoted by &§. For special semimartingales, the processes V, 02




faY
and E will be called the local characteristics of X. (Note the

slight deviation from common practice, in our definition of the
first characteristic V.)

The continuous time counterpart of condition (iii'} above is
to assume that X is a special semimartingale with absolutely
continuous local characteristics, such that the associated densities
may be chosen to be martingales. Here absolute continuity is

understood to be in the time parameter and with respect to Lebesgue

A
measure A. In case of §, this means that
A t
EA = SOFsA ds,  tel, (2)

for some measure valued process B such that PtA is a martingale
in t for every fixed A. All martingales in this section are with
respect to a fixed standard filtration %, and we shall always
choose their right-continuous versions.

Cur plan for this section is first to show in Theorem 4.1
that the above condition is fulfilled for an exchangeable process,
under suitable morent conditions. (We shall actually prove slightly
more, in preparation for the next section.) ¥e then show in Theorems
4.3 and@ 4.4 that the stated condition is also sufficient, under
appropriate additional assumptions, for a process on R+ or [b,l]
respectively to be exchangeable. As in case of Proposition 2.1,
the sufficiency assexrtion fails without such extra conditions.

In what follows, we shall avoid to use the explicit representation
of exchangeable processes stated in Section 1, since the results
of this section will then provide a martingale approach to the

basic representation formula, at least under moment restrictions.
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™m
Theorem

[[E-S

1. Any 7F-exchangeable process X on [0,1] is a

A

N~ >

2 ; .
semirartingale, such that o° anc g are absolutely continuous. If

moreover F|X |[<se, then X is a special semimartingale on [0,1), such

tna+ x-\ 1s _a martingaie on [4,1), while V is absolutely continuous
g 1 3 ‘ A £ 2 2 2
with a martingale density orn [0,1'. If EX, < #0, then even o and £

a.« dersities or [v,1). and X-V is an L,-martingale

cr [T00) ) wrlle j 4t e o

W 8ha.. Teer tne followinc simple lemma.

. . .. -~ N .
«ETC@.3se: .. % € =-exThanceable on [0,1], we have for any
MUre. set S CF w.t UE
€7 T < e z.s., t€0,1]

Procf. This e trivial for t=1, sc we may fix a te€(0,1).

Lett.nc n€l  De aru.trary, we get

(M n-k

E[€7: €§a=k] = X npigimni(Mefiion

n>k

n. n-k
< 2 n{ i{l-t = Zan<x-,

nsk * n>k
since
a 2
-t
no. R -t - 1=t < 1.
a (n=1) (n=k,
n~1
Hence
FLEE A Fod Sl = ELER §Al<e a.s.,
so
i r'— - & 7:
DLELSlp"t]<”clgtAJ 1 a.s.,
and the assertion follows by taking expectations on both sides. 'y

Proof of Theorem 4.1. Let us first assume that let|<=~.

Write M for a right-continuous version of the process
M = =X T 1/(1- :
M, r_[xl xt,.t], (1-t), t€[0,1).
Letting s<t with 1-s and 1l-t rationally dependent, and using the

exchangeability of X, we get

E[Mt’?;] = E[xl~xti?;]/(l—t) = E[Xl-xs;?gj/(l—S) = Mg

s

w v v a2 w -

[P

sl -

kPR R PR
-4 s 2
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which extends by right-continuity to arbitrarily related s and t.
Thus !1 is a martingale on [O,l). In particular,

C[X X [Fs] = (A-s)Mg - (I-t)E[M [F_ ] = (t-s)M_, Ogcsctel.
Writing £
v, = jomsds, te0,1), (3)
and noting that

.t t
EJO}MS’ds = jOE{MS,ds ¢ tElM J <o, te0,D),

since ,M’ is a submartingale, it is further seen that

s’ Ocs<tel.

efv,-v (2] = E[f:Mudu,:‘?s,] = (t-s)M
Thus X-V is a martingale on [0,1). Since V is predictable, this
shows that X is a special semimartingale on [0,1) with canonical
decomposition X=(X~V)+V.

Let us next assume that Exi¢=°°. By Jensen's inegquality,

2 v 1212 el t 2, v a2
BN ¢ E(X)-X)%/(1-t)° = E&” + 7= E(o .Zej>,

so by Schwarz' inequality,

1 d.a ul
E(f {dvl)2 = E} | (MM Jdsdt < (] (EMi)%dt)zx’ »0
0 0 0
Thus
sup F(X, -V )2 < 2}:)(2 + 2?("idv\)2<oo
t 't = L J - !

t

so X-V is uniformly integrable and extends to an Lz-martingale
on [0.1]. In particular,
E[c‘i + Sx2€1(dx)_] = F[X-v,X-v], = E(Xl—V1)2< v,
which implies that E§;A<oo for Borel sets A with OgA.
The ?;exchangeability of X is clearly inherited by the processes
di and Et' Vle may thus conclude as above that there exists a

martingale M' on [0,1) making the process

t
| L 2 1 -
My o= o) - Somsds, te0,1).

e
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a martingale. Since M" is continuous with locally finite variation,
it follows that M"=0, which proves the desired representation for '
ci. Similarly, §£ is compensated bv the process §£ in (2), with
Pe chosen as the measure valued martingale

ped = E[62-§A]F 1/ (1-t), telo, D). (4)

Let us finally turn to the general case, when there are no

moment restrictions. Let us then assume that X is directed by
some triple (u,cz,p), and define a new filtration 9 by 9t=?;vf7;
where 7éd(u,dz,ﬂ). (The threefold meaning of ¢ shouldn't cause any
confusion.) Then X remains q—exchangeable, and morecover E[Xi}jj
< for all t, so it may be seen as above that X is a special 9-
semimartincale on [O,l] with canonical decomposition X=(X-V)+V,
where V is now civen by (3) with

M, = E[x-x. |G ]/A-v),  tefo, D).

Since 7;C.§t for all t, we may conclude from Theorem 9.19% of

3

Jacod [7] that X remains a semimartincale with respect to 7. Note

also that the process ci is absolutely continuous, since this is -

conditionally *rue, agiven 7.
o .
To see that £ remains absolutely continuous in the ceneral

case, fix a Borel set LR vith 0€A, and let Pt be civen bv (4)

for t>0. Then Ptﬁ-nx a.s. by Lerma 4.2, ané we get as before

t
E[£,A-€A]F.] = E[gshAdu[ T.]= (tep A Descted,

which shows that

A A t .
£ - €A = .S‘Pu;‘ du, O<sct<l.
[

A
Letting s—» 0 and notinc that €b=0, we obtain the representation (2).0

Ve turn to the results in the oppocsite direction and becin

with the case of processes on R, . -
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Theorem_4.3. Let X be a special semimartingale on R, with

stationary increments and with X,=0 anc E[x,x]1<;ne, and assume

PN
that v, o® and € are absolutely continuous with martingale densities.

Then X is exchangeable.

Proof. Assume that X is compensated by the process V in (3),
for some martingale M. Then V is integrable, and X-V is a martingale

since E[X,X_]lﬂoc, so we get for sc<t

t t
E[xt—xs}?;kg[vt-vs]?s] =e{{ Mudu,?s]=g E[m, |7 )au=(e-s)m_.
s s
In particular,
FlXn¥s(Ge] = b E[¥,17%,[G ],  Oss<t, h>0, (5)
where(;=(§g) denotes the standard filtration generated by X.
Let us now extend X to a right-continuous process X' on R

with stationaryv increments, and define

= 1.y
x o{xs Xi_y+ h>0}, s>0.
Let us further write f for the o-field generated bv all shift-
invariant functions of the increments of X', and note that fflﬁ%
a.s. for all s. From the stationarity of the increments, it is
easily seen that (5) remains true with gs replaced by C}s v 7{5,
and hence also by gs= 9;v L.

Applving the ergodic theorem to the right~hand side of (5)
yvields

- . I
E[Xs+h xs(gs h E[xllfJ, s,h>0.

A similar argument shows that

E[Es+hA-EsAigé] = h E[§2[f], s,h>0,

2 25y 2
E[cs+h— S'qu = h E[C'IH:.:I’ §,h20.
Thus the processes
X -tE[X,| I, §.A-tE[§A{F]. t320,

are Q'-martingales, while

,‘.". f. “»

» l’f )

3 v v e v »
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| 3

'

2 _ 2 ~

o, =t E[crl]f], t>0. e

I3 13 I3 » 13 . ~
This means that X is a special C"'-martlngale with linear and f- .
measurable local characteristics. It then follows as in Theorem :
3.57 of Jacod [7] (cf. [8]) that X is conditionally a Lévv process, S
given f. Hence X is a mixture of L&vv processes, and therefore ) ::'
exchangeable. o \
- b

We turn to the case of processes on [0,1]. Here the stationarity t}s
assumption in Theorem 4.3 will be replaced by a suitable constraint 3
at the terminal point. The following result, in conjunction with b4
Theorem 4.1 above, yields a complete martingale characterization
i

-

of ergodic exchangeable processes on [0,1]. The corresponding ~
o

characterization of finite exchangeable sequences is the martingale .
&

version of Proposition 2.3 in [11]. 0L
Theorem 4.4. Let X be a uniformly integrable special semi- N
martingale on [0,1] with Xy=0 and non-random X1 ci and fl, and =
A e

such that v, cr2 and ¢ are absolutely continuous with martingale . L.
-

densities on [0,1). Then X is ergodic T -exchangeable. N
Two lermas will be needed for the proof. 5

~:\

|.$

Lemma_4.5. Let B be a Brownian --martincale anéd € an :.:

¥ -adapted marked point process with an >-compensator which depends "
predictably on §. Then B and £ are independent. R
S

Prcof. It is clearly enough to show that F£(B)g(£)=0 for any o
—_— "
bounded measurable functions f and g. By Theorems 11.1€ and 12.23 :.
in Jacod [7], there exist predictable processes V and ™ with .
hat ~ ::

‘v2as < >, r5w2 at& < o, -

v'Vg J £,X °‘S,x o

and such that f(}2)=1\i“e while g(€)=Nn, where M and !' denote the o
martingales
(t t,. ~ :::

3 = N = - . B
M= fveas, wo= [we a6-6)g . w20

0 0 \!.-

;-o'
X
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In fact, this is all true with respect to the filtrations

generated by B and £ respectively. Put by assumptions, E remains

the F-compensator of £ while B remains an F-martingale. Moreover,

M is continuous while N is purely discontinuous, so M ) N, and we get

Ef(B)g(§) = IM N_ = 0. 0

u,c‘z,p). Then [x,x]l=0'2+2(3§.

Lemma_4.6. Let X be an exchangeable process on [0,1] directed

This result was obtained in [10) by cumbersome arguments. Here

is a simple martingale proof.

Proof. We may clearly take (W,cz,ﬁ) to be non-random with o¢=0.

In that case,

1-¢t : : J
j=1 1-t j=0

is an orthogonal decomposition of the Lzmmartinqale on the left,

anc we get

ol = S Do
j=

which yields a corresponding decomrosition of [X,x]t. It remains

to notice that [B,B].=t, since B, =W, -tW_ for some Brownian motion W. {1
Jt t ot 1

Proof of Theorem 4.4. Let N be a right-.continuous version of

the martingale density of 02.

¢+ Fixing se[0,1], we get a.s.

1 1
2 2 2 2 " —_ i ~
= - = - k3 = 1 > |= o =(]1- .
SsNtdt oi-og = E[o] o !7.] E[Ssrtdtl.s] SsEth[,s]dt (1-s)N_
Hence N is a.s. continuously differentiable and satisfies the

differential equation

- N = (l-s)Né ~ Ng, Oeskl,
so N =0 a.s., and we get
2 2
o, = to], tefo,1], a.s. (6)

This shows that x© is a Brownian motion with diffusion rate ci.

I




. A 1]
Let us next assume that £ is compensated by the process g in
(2) for some measure valued martingale P- Letting PC R be & Borel

set with OgZ, we get a.s. for any se[c, l]

EA--EA E[ilA EA};» J—E[SlPtAdt |# 1= SE[FtA[?]dt (1-s)p.A,

s
sc by right-continuity,

Pg = (E -§,)/(1-s), s€f0,1], a.s. (7)
By Lerma 4.5, it follows in particular that & and x© are independent.

Let us finally assume that X is compensated by the process V

in (3), for some martincale M on [0,1). Then V has integrable
variation on compact subintervals of [0,1), and X-V is a martingale
on [0,1) since

[x-v,x-v], = cri + szgl(dx) < %,

we get a.s., for any Ocsct<l,

] _ £t o
rx,-Xg |7 J=F[v, -V 7] =E[SsMudu; .~s]=SSE[Mu; Flaus (t-s)M_

By the continuity of X at 1, the uniform intecrability of X,and
the right-continuity of X and M, it follows that

X)=%g = (1-s)M, sefo0,1), a.s.,

dX = -(1l-s)dM_ + M ds = (X -V_) + av_,
s s s s s s

and therefore

t t s d(X ~v.)

_ _ u_u
v, = EOMSds = Jodsgo o te[0,1), a.s. (8)

Let us now consider instead an ergodic exchangeable process
X' on [0,1] directed by (Xl,oi,gl). Theorem 4.1 shows that X is a
special semimartingale with respect to the induced standard
filtration, and that the local characteristics of X' are absolutely
continuous with martingale densities on [0,1). Since X' igs further
Lz—bounded and hence uniformly integrable, everything said above

for X applies equally to X'. In particular, (6)-(8) remain true
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for the processes 0'2, P', £' and V' associated with X'.

As for X above, it is seen that Xx'® is a Brownian motion
independent of ¢', and since oi2=o§ by Lemma 4.6, the diffusion
rate is the same as for X°. Since the functional dependence in (7)

is the same for & and ', it may further be seen from Theorem 3.42

g x-v.

We may next infer from the two versions of (8) that (X'-v',V') g

(X-V,V), which implies that X' d X. Thus X is exchangeable.

A
of Jacod [7] that ¢' g €, so €'—€' g €-¢, and hence X'-V'

To reach the stronger conclusion of F-exchangeability, it
suffices to fix an arbitrary se[o,1>, and to check that the vreceding
arguments apply to the conditional distribution of X on the
interval [s,1]. given the o-field ?;. We omit the details of this

verification. o

We conclude this section with some remarks. First we show by
an example that the last two lemmas are false without the additional
assumptions of stationarity of the increments or of non-randomness
of the local characteristics at the terminal voint. Let us then take
& to be a simple point process on R, such that the restriction to
[0,13 is a mixture of Poisson processes with intensities 1 or 0,
where each possibility is chosen with probability %. On the remaining
interval, we choose § to be Poisson with intensity 1 or (1+e)-l.
depending on whether €i>0 or not. It is then easy to verify that
the density of 2 is a martingale. But £ fails to be exchangeable,
since P{£ =0}=%(1+e™"), while

P{€,-§=0} = n1-ehe ! + nareThe e

-1

As a second remark, we shall sketch how the above results mav be
combined to yield a simple martingale approach to the representation
theorem for exchangeable processes on [0,;]. Let us then assume that

the process X on [0,1} is exchangeable, integrable, and continuous
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J

in probability at every fixed point. Then Yt=(X1-Xt)/(l-t) is seen m
l‘.

to be a martingale on [0,1), so X must have a version in D[0,1]. o
Note also that [X,x]1<4x a.s., since the exchangeability of X W
carries over to [x,x]. Since X remains conditionally exchangeable, .f
. ",

given the triple (X, , [x, X],.§,), we may assume that X, . %, X}, and 5
g€ are all fixed. Then EYi<m , SO even Exi< 2. It may hence be e,
o=

seen as in Theorem 4.1 that X is a special semimartingale on [0,1], 5
%

whose local characteristics are absolutely continuocus with martingale b
densities on [0,1). Note also that X is uniformly integrable on -
[0,1], since Exi is bounded. The hypotheses of Theorem 4.4 are then o
fulfilled, so the desired representation formula follows as in the .
»

proof of that theorem,
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Our aim in the present section is to prove continuous time versions
of Theorems 3.1 and 3.2. Let us then fix a standard filtration ?,

and recall from Section 1 the definition of an F-exchangeable process.
-1

Recall also our definition of the transformed orocesses XV The
stochastic integrals occurring in the definition exist by Lemma 5.2

below.

R,, and let the process V on I be Z-predictable with values in Iviw},

+’

and such that )V-1=} a.s. on some interval J< I containinc 9. Then

\ xvt € x on J. (1)
» Since (xv'l)t is only defined a.s. for each t, (1) should be
s interrreted as a relation between the finite-dimensional distributions.

Hovever, (1) implies that )(V—1 has a right-continuous version with

left hand limits, and fcr the latter there is clearly equalitv

between the distributions on the Skorohod space D(J).

L AR
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‘\‘\\'\-" RO RO IO

O e Py ¥y <,

) Two lemmas will be needed for the proof.
;5 Lerra_5.2. Let ¥ be an 7-exchangeable process on I=[0.1] or R,
_:.: and let ACI be predictable with AA< o2 a.s. Then the stochastic
,? integral jﬁAdX exists. Moreover jﬁA ax e 0 whenever AysBy, ... G
s are predictable with 2An2» 0. ?
o
': Proof. Let us first consider the case of processes on [0,1].
‘; Changing the filtration, as in the proof of Thecrem 4.1, and
72 applying Theorem 2.26 of Jacod [7], we may reduce the discussion
E? ’ to the case when X is conditionally ergodic exchangeable, given ?B.
f& But then Theorem 4.1 shows that X is a special semimartincale on

) [0,1], with a canonical decomposition X=M+V such that both <M,M)
£~ and V are absolutely continuous. The existence of the stochastic
B
el
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integrals jiAdX follows immediately from this. To prove the

convergence assertion, consider an arbitrary subseguence such that

)An—a 0 a.s. Then

lim flA (av| = lim flp a<M,M> = 0 a.s.,
n=>% n n>x ‘n

which yields the desired conclusion.

For processes on R+. we may reduce as above to the case when
X is conditionally a Lévy process, given ?B. In this case we get
a decomposition X=M+V+J, where V is linear, while M is a local
martingale such that ¢(M,M> is linear, and J is conditionally a
compound Poisson orocess. For integrals with respect to M+V, the
existence and convergence assertions follow as before, so it remains
only to consider integrals with respect to J. Letting N denote
the associated mixed Poisson process, it is seen from the results
for M+V that ledN exists and that le dN 29-0. Since the intecrals
ledN and JlAldJ! are simultaneously f?nite and simultaneously )

zero, the corresponding statements then follow for J. a

__________ et 2y,...,A be disjoint predictable sets in [0,1]

of equal lencth n-l, and fix an €>0. Then there erxist some integer

meM and some disjoint predictable sets Ai....,Aﬂ of egual length

n-l, such that each Aﬁ i§ qvgqiggﬂgfm;g;ervals ((j-l)m-l,jm-lj,

and such that moreover

n
2T (AAP) (A . ARl < E, (2)
j=1 J J

Proof. Recall that the restriction of the predictable o-field
to the interval (0,1] is cenerated by the stochastic intervals of
the form (o0,7T], where ¢ and T are rational valued stopping times

s

in [0,1]. From this it follows easily by a monotone class argument v !!!

that any predictable set in {0,1] can be approximated arbitrarilv ::-f;:

closely in measure AA P bv a predictable union of intervals A%

LR I PN E ) L RSP P O IR ST Tt i S )
.f..f‘f-. Y \_.,:-‘., KR RR :"-_--._-\.-".n\.-‘:._- a7

A T T R X
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.l
1 v
j=((j-l)m-1,jm-*], with m a fixed multiple of n. This implies in 3
o3
particular that the process Zle can be approximated in Ll(AkP)
] \]
by a process of the form Zle , Where Ul""’Un are disjoint e,
3
. predictable interval unions as above with union (0,1]. Taking the :'
(]
error to be less than €/n, we get —
pe] \ -1 n . N
EZ Du.-n T & 3 (AxP) (a,4U.) < E/n. (3) :
N =1’ - - = J ]
i=1 i=1 b
»
. . oy b
Let us now define the variables Ql""’“ﬁ by the condition ¥
ij=k if I,C Uy, j=1,...,m, k=1,...,n, &
and put recursively .:
‘&
[y if T Yxi=x}< m/n, 7
o i(‘ - v
°<J' = -) . - _ . . j 3
¢min k: > lg<i=k}\ r/n*, otherwise. "
- i<] N
It is then easily seen that the sets ;
)
™o ) ’
. 'o= I o= = . .
Ay E{ 113 ij kf' k=1,...,n,
]—1 -
are disjoint predictable unions of Il,...,Im of equal lenath n'l. ;j
. ‘o
A Moreover, () follows from (3) and the fact that, by constructicn :i
q n n -1, "
S AMU,AAN < (n-1) S (AU, -n . g
S 3 ] - g ! ~~
j=1 =1 - N
. Proof of Theorem 5.1. Let us first assume that I=J=]0,1}. By Ny
the right-continuity of X and by dominated convergence for =
stochastic integrals, it is then enough to prove that, for fixed n, %
g 1
(Cpare&nn) = Mp17ee s hpn’ (4) W
where gnj and 7nj denote the increments of X and xv'l respectively 4
y over the interval Inj=((j-1)n-l,jn-1]. Note that X
.= {1, 4ax, 3=1,...,n, :
Wn; j Anj .
where Anj denotes the predictable random set
Anj = {t&I: Vtexnj}' i=1l,...,n. :
N
)
A
3
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Consider first the case when each set Anj is a union of m/n

randomly selected intervals Imk’ for some multiple m of n. Then

: Pl
: ﬂ . = ’ j=1,...,n,
= 1 ;
: for some functions
. le<-...< < ,m/n’ i=1,...,n. E
; write & for the discrete filtration gj=5"~ _ys 3=0,...,m, and J
3 ) im ° t
; note that (§ ,,...,§ ) is 9-exchangeable, while the Ty are
' 93predictable stopping times. Hence Theorem 3.1 vields
d )
(€ P 3 = (£ ., .., ), K
m,Tll m, 1‘ m/n ml pund y
»
: and (4) follows by a suitable summation on each side. X
In the case of general sets Anﬁ' it is seen from Lemma 5.3 C
that Anl""’Ann can be approximated in (A P)-measure by disjoint t
a predictable sets Bml""’an of ecual length n_l, and such that
L each ij is a union of randomly selected intervals Imk' As shown )
¢ above, we get for each m .
) . &
. ¢ é c ¢
: $1p ax, oo, {1, a0 € (g ,....08 ). (5) :
, ml mn
! Moreover, it is seen from Lemma 5.2 that .
{l dx LN 1 éX as m—»rx», j=1,...,n. 3
. J'B_. JTA . .
mj nj N
N Hence (5) remains true with the sets Emj replaced by ALy and the L4
\ 3
assertion follows.
Retaining I=[0,1}, we turn to the case when J=[0,Q] for some p
P.
p<l. We may then construct another predictable process U on I by t
putting
, Vi VesPo N
[ Ut = ) o
1 - Aiqs<t: Vt>p}, V,>p. i
Noting that )U-l=), we may conclude as above that XU-l d x. Since !
moreover XU l=xv~1 on J, the assertion follows. R
N\
R
v et A e ettt AT A A TN RO s-;\';-.-::‘.
"?.4’:. :" 2D iy .’_' el AU Ry . Y *:"\'-".-:.\:;.:\ ."' M AN IS

E T L ALY .- Y L N ” Ly I‘ . y iy
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If instead I=R_ while J=[0,1], say, we may define the processes
Vt, t_(_nl
Un(t) = 3

infis€J: s-){ren: Vrgs}=t—n}, t>n.

Then each U is predictable with )U;l=) on J and U;lJc:[O,nJIJ,

so the res:lt for processes on finite intervals yields XU;l g X

on J. Since moreover

A{s>n: U (s)gt} = Ays>n: V ¢t} —> 0 a.s.
by dominated convergence, as n-~» o for fixed te€J, we get by

Lemma 5.2

1 1

x
- - _ . , P
(XU %) =XV ), = jn(l{bn(s)it}-l{\/sst})dx >0,

so the finite-dimensional distributions of XU;l on J tend weakly
1

to those of XV ~, and the assertion follows again. : 3

With regard to applications, it is useful to extend Theorer

5.1 to the case when V is onlv measure rreservinc on some interval

of random lencth. PRecall from Lemma 5.2 that Xv-l is defined at t

if ){s: ngt}<.x a.s. In general, it can be defined by localization

on the random set A _=1a+S: Vsit?‘-”}'

[

Theorem 5.4. Let X be an Z-exchangeable process on I={0,l} or

R, and let the process V on 7 be “-predictable with values in

Tue}. Put
g = sup{t30~ Ms: vtp=t},

ané_let Y denote the restriction of Xv * to [0,8). Ther Vv & .

-

Note that the process VY is well-defined on [0,%), since
{¢>t} <A, for each t. The theorem states that Y can be extended to
a process oOn R+ with the same finite-dimensional distributions as X.
As before, this yvields the existence on [0,§) of a right-continuous

version with left-hand limits.
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The core of our proof consists in constructinc a measure
preserving process V', to replace V in the definition of Y. This

will essentially be accomplished by the next two lemmas.

P+—=~§+ be measurable with Af—l§}A on some

interval [0,p). Define

g, = sup{x>0: A{sc<t: £ €}<a on [O,x)}, t»0,

ané put h=f+e-1{f>g}. Then Ah_lsh on R, and we have h=f on the

set where f<p. If f is a predictable process, then so is h.

Proof. By a monotone class argument, Ah~ >

<A follows if we
can prove that Ah—lls Al for every finite interval I=[(a,b) with
dyadic endpoints. For this purpose, define
-n n .
9, (t) = 2772 ], t»0, nen,
and note that gnfg. Hence
-1
. - £ A . € =
){s. FL€T, .s<gn(s)}. AyS: f_ET, fs<gs} Ah I,

so it is enough tc show, for large n, that the left-hand side 1s

n -n

bounded by AI. We mav then assume that I=[(k—l)2_ k2 ) for some k.

Put

t = infys»C: a_<k2 '},

and note that gt2k2-n, since g is left-continuous. Note also that
gnls)g(k-l)2'n for all s»t. Using the definition of g, we hence
obtain

A{s: € €I, f.<qg (s)} = Aisct: f_€I} < AI,
as recuired. The second statement follows immediately from the fact
that g>p.

If f is predictable, then A{sit: feI} is ?;-measurable for
every t and I, by Fubini's theorem, ané hence sc is the event

{ge2x} = M{A{sct: £_c1}< a1},

where the intersection extends over all rational intervals 1 in
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[0,x). Thus g is adapted, and since it is also left--continuous,

it must be predictable, like f. Hence so is h. h|

on [0,1] and Af"

1

=) on some interval [0,5]. Define

g9, = inf{xe[o,{lz x=l—3{sit: fs>xf}‘ te[o,yj,

and put h=fAg. Then An"1=p on {0,1], and hap=fap a.e. A. If f is

a predictable process, then so is h;=ftag

t_

Proof. Since 2ysct: fé>x} is continuous in x for fixed t,
with values t<l at 0 and A{sit:fs=aq-30 at 1, the set of solutions
to the eauation

x = 1 - A{Sit= fs>x} (6)

forms a2 non-empty closed set. In particular, Sy solves (6) at t.
Note also that = decreases from 1 to 0. Substituting X=g, in (€)
and letting t-=-t' from above and below, it follows easily that

both Ipry and solve (6) at t', and the same must then be

gt'—
true for every intermediate value. This shows the existence, for
every xe[O,l], of some t=txe[0,l], such that x solves (6) at t
and moreover Ty XSG, -

Let us now assume that x is such that 2

is. g_=x,=0. Then
S S -
){s: h§>x} = Ays<t: hs>x} = Aisgt: fs>x} =1 - X.
Since the set of x's with the above proverty is dense in [0.1],

it follows that Ah *=A. In particular we get Athap) T=A(fap) T,

soO 3(pr-hAp)=0. Since the integrand is non-negative, it follows

that hap=fap a.e. A.

-~
-
v

t

If £ is predictable, then Aset: f >x} is ¥ -measurable for

every t and x, ané hence so is the event

{gtgy} = n {x< 1-A{s<_t: fs>x}} ,

»
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a2

, where the intersection extends over all rational numbers x in [0,y). (!
' N
Thus g 1s adapted, so Ieo is predictable, like f. Hence so is h . 4] "

Next one needs to verify that the new predictable process V K

¢ i -
: obtained through the last two lemmas gives rise to the same process K
) Y on the random interval {0,%). .
: R
: Lemma_5.7. Let U be another rredictable process on I, and P
assume that ;

5 Y o - - b 3= :_
, Ms- T AV, LsAvs<§} 0 a.s. .
; Then XU~ 2 and xv 1 represent the same process on [0.(). iy
Procf. Fix t€&Il, and define the stopping time .

. -y
: E . ;— - - . R ) 3 -,
: T 1n-2r3C. Alssr. Ls#vs USAVSSt}>-Oj. ;
Then .

(v -\ v ~] = :-

AUTCE, s<T A 4V gt s<TH 0 a.s., ok

so by Lemma 5.2 we aet for all néEN o

TAD - "

fey = s - v s

J-O li\sﬁt}dxs Jl\VSSt, Sﬁ-“n}d“s :

- .“T"n _ &

= - u”sit’ S\ \n-d)\s = v\o l:\Usit}dXs, by

which shows that (XU-l)t=(XV—l)t a.s. on the set T=%, {>t}. It i

:

remains to notice that a.s. »
[T = = (s U # " = ; . -

T ”} {Ats s Ve r"s'\vs-‘-tj' O}Di§>t} a v

We shall also need an extension of Lemma 5.2, to deal with ) ?;

-

convergence of our spvecific stochastic integrals on events of the

form {Z>t}. Note that the result is trivial when ¢ is ?;-measurable ‘ :;

*a

L4

for some n. Write Z% for the Borel o-field on the interval (n,»). ::
Ry

N
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Lemma_5.8. Let I=R,, and assume A &7 x B , n€N, and FeZ, to

be such that

Then

p
lFflAde 2.0,

Proof. Let 7 denote the tail o-field for the increments of X,

and write

= N RV To=
rpo=r[)Z 7] E[-)=+7], nen
Assuming without loss that AAn—a-o a.s., and writing g(x)zlme"'x’,
vie get
F ng(AP ) = 1Fg(AAn) — 0 a.s.,
. . -~ . Pl'l pn
since )An is +n -measurapble. Hence )An—o-o a.s. on F, where —»

denotes converagence in probability with respect to the conditional
law. Now Xn=enoX-X(n) is conditionally a Lévv process independent
of n (cf. [11]), ané moreover
1, =1 ex = ax nex,
n A 1p -n%%n
n n
where the definitions of stochastic integrels are the same under
Prand P (cf. Theorem $.26 in (7]). Thus Lemma 5.2 shows that even
n . X
In——’o a.s. on F, sc by dominatec convergence
'D . \ = v T 7
E[P Fre(I )] = E[1.F gz )] — 0,

which means that rnF'InE* 0. Tt remains to notice that PnF—+ 1

a.s. by martingale theory. g

We shall finally need an elementary result on weak converaence

in the function space D(R+) with the Skorohod-Stone topology (cf. [8]).

-

Recall that kt denotes killing at t. The coffin state 9 is regarded

as isolated in R¢ {d}.
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Lemma_5.9. Let X'Xl'XZ"" and T'Tl'Té"" be random elements |
in D(R+) and R, respectively, and assume that (Xn’Th) a, (%,7T) <
with respect to the Skorohod-Stone topology on D(r, ). Then

k eX (_i__, k__oX (7) . N
an n ps ¢
for pe0,1] a.e. A. “
Proof. It is easy tc check that the mappinc (x,t)-— ktx from o
¥
D(R+)&R+ to D(R+,Ruia}) is continuous at t= %, and also at every :
(x,t) with t<x and such that x is continuous at t. Thus (7) is -
- l:
true for evervy péLO,l] such that X is continuous at T a.s. on K
%rcoo}. But conditionally on that event, the process YD=XDT, pe[O,l], i
P ¥ A
has paths in D[0,1], so ¥ has an at most countable set of fixed i
discontirnuities (cf. (2]). It remains tc notice that ¥ is 49
[
. , . . 4
continucus at n7T 1ff V is continunus at bu. a 9
o~
. B
Proof cof Thecrem 5.4. Let us first assume that I=£0,l}. By -
Lemmas 5.5 and 5.6, there exists a predictakle process V' with x
AV'_1=A a.s., and such that Vé=Vs a.e. AxTF on the set 3VsAvé< ¢}. ;:
-] K
Putting V'=XV' 7, it is seen from Lermma 5.7 that v and Y' represent .
the same process on i0,¢). Since moreover V' € x by Theorer 5.1, ;f
it follows that v & X. o
‘.

Let us turn to the case when I=R+. By Lemmas 5.5 ané 5.7, we
may assume that )Vlli) a.s. on P _. For every néK, we define a b
predictable process U by b
Vt' thtﬁn, o.l.
Un(t) = 00, t_<_n<Vt, L
i ; P wn: V =t - r-
inf.s20: s-a{rsn: V <san}=t-nf, t>n. iy
Since clearly AU;1=.X a.s., we have Yn=xugl d ¥ by Theorem 5.1. o
It follows in particular that the sequence of pairs (Yn,C) is tight I
o
>
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in D(R ).k _, so (Yr,g) = (X',8§') alonc some subseguence N'C N, g
for some process X' £ %X and some random variable g g §. Bv !
5
Lemma 5.9 it follows that §
d ' . 1 2Nt
eV el s
kp: i kPC' X', pe[0,1] a.e. A (neN'). (8) g
On the other hand, we have for fixed t>0 !
A{s>n: U, (s Kt} = A{S>n~ ngt} — C a.s. on {tc(}, ;
so Lemmas 5,2 and 5.8 vyield
h |’ y —_ (-w/ Sty M - p
lit<§f (v (v)-y () = Jn\lx\/sst;—ltun(s)g_t})dxs -+ 0,
which shows that
ol -
. oV : 7 b
(}\pc ln)t — (kpcoy)t' p€ 0,1, t&R,
Comparing this with (8) yields
d .
k__ <Y 2 k__,eX', el0,1] a.e. A.
P g pelo,1]
so the same relation must be true for p=1l. But then ch X' g X
by Lemma 1.1. a
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discussions, in particular leacding to a simpler proof of Lemma 4.5.
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