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Abstract (Continued)

mechanism for using information available before the commissioning of a centrol
system to reduce the number of adjustable controller parameters. The ideas involved
in the design of this model reference adaptive control scheme are then generalized
to provide guidelines for the design of slowly adapting systems. An example then

illustrates tiie use of these guidelines to upgrade an existing fixed parameter
controller to a slowly adapting one.
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occurs in either continuous or discrete time. Second, conditions are derived under which this

integral manifold is exponentially attractive. Third. the behavior on the manifold is analyzed via

o

& the method of averaging. In the process of developing the discrete-time part of these results, the

[ 2%

relationship between the method of averaging for deterministic signals and the ordinary differential

equation approach to the study of stochastic adaptive systems is clarified.
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! This three-step procedure for analysis is then used as a design tool. First. a model reference

! i adaptive control scheme which allows a reduced number of adjustable parameters is presented and

' : analyzed via the three-step procedure. The scheme allows considerable flexibility in the controller
C: parametrization. Taking advantage of this flexibility requires the use of a priori information about
! the plant to be controlled. Hence. the scheme provides a mechanism for using information

i‘ available before the commissioning of a control system to reduce the number of adjustable

rv: :::',‘, controller parameters. The ideas involved in the design of this model reference adaptive control

R

. " scheme are then generalized to provide guidelines for the design of slowly adapting systems. An

é r-: example then illustrates the use of these guidelines to upgrade an existing fixed parameter

i - contrcller 1o a slowly adapting one.
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gy A three-step procedure for the analysis of slowly adapting systems is presented. First,
E.: conditions are given for the existence of an integral manifold upon which the slow adaptation
ot occurs in either continuous or discrete time. Second. conditions are derived under which this
f: integral manifold is exponentially attractive. Third, the behavior on the manifold is analyzed via
'

the method of averaging. In the process of developing the discrete-time part of these results, the
Ca'
:;" relationship between the method of averaging for deterministic signals and the ordinary differential
< equation approach to the study of stochastic adaptive systems is clarified.
N
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This three-step procedure for analysis is then used as a design tool. First. a model reference

adaptive control scheme which allows a reduced number of adjustable parameters is presented and
analyzed via the three-step procedure. The scheme allows considerable flexibility in the controller
parametrization. Taking advantage of this flexibility requires the use of a priori information about
the plant to be controlled. Hence. the scheme provides a mechanism for using information
available before the commissioning of a control system to reduce the number of adjustable
controller parameters. The ideas involved in the design of this model reference adaptive control
scheme are then generalized to provide guidelines for the design of slowly adapting systems. An

example then iilustrates the use of these guidelines to upgrade an existing fixed parameter

controller to a slowly adapting one.
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CHAPTER 1

INTRODUCTION

1.1. Why Slow?

vl

The first question which is asked when the topic of slow adaptation is introduced is "Why

slow?" Here are several answers to this question.

.
r,
L ‘

(1) In many control systems the plant parameters change very slowly with respect to the time

\i constants of the closed-loop system with fixed controller and plant parameters, or the plant
Y parameters make infrequent step changes. For such systems a fixed parameter controller
N provides good performance for some initial interval, but performance and even stability can
:.\ be lost as the plant parameters drift from the initial values. This situation is ideal for slow
= adaptation which can either continuously retune the controller parameters, or be turned on
‘ for finite intervals as an on-line, on-demand u.ming algorithm.

(2) Using slow adaptation, adaptive control systems can be designed for given controller
¥

parametrizations. That is, the controller parametrization is chosen as necessary for the design
of a good fixed parameter controller, and then, a parameter update law is designed for the
given parametrization. This contrasis with the theory for fast adaptation which requires the

use of a particular controller parametrization (typically ARMA) which is chosen for the ease

. of theoretical parameter convergence analysis.
A
!5-

(3) Slow adaptation :eplaces the exact matching conditions found in the theory for fast
"
- adaptation with a compatibility requirement that the fixed parameter controller can be tuned
- to give the desired performance by adjusting only the parameters. A compatible controller
.:.‘
R never requires more parameters than the exact malching conditions and usually requires
,*- many f{ewer parameters. The reduced number of parameters reduces the number of

frequencies which inputs to the system must contain in order to be sufficiently rich.
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-‘rfg 1.2. Summary of Results

o The systems we study in this monograph reduce when the parameters are constant to linear,
j::-, time-invariant systems driven by inputs which are independent of the parameters. Letting x
2 |

W, denote the states and @ denote the parameters, we study systems in the form

T x = A(0)x + B() w(1) (1.1)
)

L™ .

~7 0 = ef(1.0.x) (1.2)
: ::J

for continuous time or, for discrete time, in the form

b
O x(k+1) = A(6(k)) x(k) + B(O(k)) w(k) (1.3) ;
"

4
Y
o 0(k+1) = 0(k) + € £(k.0(k).x(k)) . (1.4)
L9

S0 where x contains the states of the plant. the model. the dynamic controller, and any filters which
~:"

-_-f process signals before they enter the adaptation scheme, and where w(1) is a vector input
" containing the reference input and any disturbances entering the system.
Y

x:'E Slow adaptation is forced upon the system (1.1)-(1.2) by choosing € small. An intuitively
o appealing approximation of the solutions of (1.1)-(1.2) is obtained by a two-step procedure. First
L)

K5 .

) assume that 8 is constant in (1.1) and evaluate the solution as a function of t and 8. Assuming that
L
fj A(0) is Hurwitz, we define the frozen parameter response ¥(1.0) by
0y
o .
1'% v(1.0) = f eA®(—) B(§) w(s) ds . (1.5)
2
139 which is simply the response of the linear time-invariant system (1.1) to the input w(t) with
L

‘
133 .
')] initial condition zero at time t, = —oo. The second step is to substitute ¥(1.8) for x in (1.2), that is,
6 = ef(1.9.0(1.9)) . (1.6)
.:{‘ .

‘\‘{ Then. letting é(m‘,.e.‘,) denote the solution of (1.6) with initial data 6(t,) =0, and letting
\ A
]
& x(t:,.0,.x,) . 0(t:1,.0..x.) denote the solution of (1.1)-(1.2) with initial data x{(1,) = x,,.6(t,) =9,,.
._ the approximation is given by

‘o
L

»

{\
- L BT} R 2 Y

] W a
‘l e, .q .. ')' Y 0 l.o. (

hd -, ~ .
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0(t:1,.0,.x,) = 0(1:t,.9,) (1.7)
x(t:t,.00.x,) T ¥(1.8(1:1,.8,)) . (1.8)

with the second approximation holding only after an initial transient in x. This implies that the
long-term behavior of the slowly adapting system (1.1)-(1.2) is approximated by the reduced-
order system (1.6). This reduced-order system is interpreted as the parameter update law without
transients in x. Because the frozen parameter response ¥(1.9) is simply the steady-state response of
(1.1) with 0 constant, it is easily evaluated and understood, hence, (1.6) is useful for both the

analysis and design of slowly adapting systems. This approach has been used by Astrom

(1983,1984) in an analysis of a specific adaptive scheme.

The idea of using the reduced-order system (1.6). which ignores the initial condition on x, as a
model for the complete system (1.1)-(1.2) is similar to ignoring the boundary layer in singular
perturbations. Kokotovic, Khalil, and O'Reilly, (1986). However, the presence of time-varying
input w(t) in (1.1) prevents the application of the usual singular perturbation techniques for
establishing the approximation (1.7)-(1.8). In Chapter 2 and in Riedle and Kokotovic (1986a). we
apply integral manifold theory to the study of (1.1)-(1.2) and prove that there exists a function
g(1.8:€) with the property that if X, = g(t,.0,:€) then x(t:t,.0,.x,) = g(1.8(1:t,.0,.x,) :€) for t 2 t,
We also show that along solutions of (1.1)-(1.2) with x, = g(1,0,€) the difference

x(1) — g(1.6(1):€) decays exponentially to zero. That is, for certain initial conditions or after the

stale transient decayvs, the reduced-order system
0 = ef(1.9.8(1.0:€)) (1.9)

and the algebraic equation x(t) = g(1.8(1):€) provide an exact description of the slow adaptation of

(11)-(1.2). This function g defines an integral manifold M, of (1.1)-(1.2) by

M, = {t.0.x: x = g(1.0:€)} . (1.10)

Furthermore. the difference h(1.0:€) = g(1.0:€) — v(1.8) between the function g and the frozen

parameter response ¥ is (0(€). Hence. the existence of M, implies that the approximation (1.7)-(1.8)

“ - el o
"‘__‘ N e T8
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oA and the approximate reduced-order system (1.6) are justified.

‘::::: Although the reduced-order system (1.9) is easier to study than the complete system (1.1)- |
::: (1.2). it 1s sull & system of nonlinear time-varying differential equations. Noting that (1.9) is in a |
‘ standard Bogoliubov form for the method of averaging, the solutions of (1.9) (or (1.6)) are |
i’ approximated by the solutions of the time-invariant nonlinear differential equation
b i
w2 4 3=7® (1.11) |
dr ' ' |
E;-‘, where 7 = €t is slow time and where T is the time average of f for fixed 0. {
-:E‘; +T ‘
e T0) = lim L [ 1(s.0.0(s.0))ds . (1.12) |

. T-o T ¥

-:._::j Hale (1980). Meerkov (1973), Sethna and Moran (1968), Volosov (1962). and quoliubov and |
, f,‘ Mitropolski (1961). The method of averaging was used to simplify the analysis of (1.6) in Astrom
-,

o (1983.1984). . }
‘- The method of averaging gives more than a simplification of the analysis. By interpreting the 1
'- stability and instability conditions provided by averaging theory in terms of the signals and

~_J transfer functions in the adaptive system. we developed a signal dependent stability criterion for

":;}. slow adaptation of the Narendra and Valavani (1978) adaptive control algorithm designed for a

‘f::‘:j relative degree one. order n plant but applied to a plant of order n, > n with unspecified relative
_‘._ degree. Riedle and Kokotovic (1985) and Kokotovic. Riedle, and Praly (1985). At that time. the
E integral manifold theory had not yet been applied to (1.1)-(1.2); hence. the transformation of
i (1.1)-(1.2) into the standard form (1.9) was not available. The stability criterion was established

_7 by linearizing the adaptive system (1.1)-(1.2) and then performing a time-varying transformation

(S

f:“: of the linearized equations into a standard form for the method of averaging. This transformation

LSRN

\.‘_: is used in several subsequent works which also obtain local results via averaging theory. Fu,

N Bodson, and Sastry (1985). Kosut. Anderson. and Mareels (1985). Anderson et al. (1986). and
::’:_E Bodson et al. (1985). After showing that the Narendra and Valavani (1978) controiler possesses an

,'
0]
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integral manifold under slow adaptation. Chapter 2 concludes with a more complete discussion of

the stability criterion results and an estimate of the region of attraction which is not dependent on

linearization.
- In view of the similarity between the continuous-time system (1.1)-(1.2) and the discrete-
a time system (1.3)-(1.4). it is tempting to simply state that the discrete-time counterparts of the
W,

results of Chapter 2 hold with appropriate modifications of the proofs. However, this claim has

g

met with some skepticism and the supporting literature for ordinary difference equations is not as

extensive as that for ordinary differential equations. Therefore. we take this opportunity to

:j:: present in Chapter 3 a complete self-contained proof of these results for the discrete-time slowly
- adapting system (1.3)-(1.4). Our proof of the existence of an integral manifold follows the proof
w in Chapter 2 for continuous-time except that references to Chapter VII of Hale (1980) are replaced
\ with a complete derivation of the required bounds. Using a different proof. Praly (1986) has also

shown the existence of an integral manifold of (1.3)-(1.4).

With the existence of an integral manifold M, established. it follows that the system (1.3)-

=z (1.4) restricted to the manifold is described by x(k) = g(k.8(k):€) and
-}.
‘ 0(k+1) = 8(k) + ef(k.0(k).g(k.0(k):€)) . (1.13)
which is analogous to (1.9). While many results are available in the cited literature for averaging
§, of the ordinary differential equation (1.9), very few results are available for the ordinary
Y
difference equation (1.13) with deterministic inputs. The notable exception to this rule is Meerkov
" (1973) who states theorems for discrete-time systems (but refers to the continuous-time proof).

Taking inspiration from Meerkov's continuous-time proofs, we state and prove several basic

RS

averaging theorems relating the solution of (1.13) to the solutions of the ODE (1.11) with

Lt

+N-—1

f(9)-—llmV Z f(i.0.v(i.9)) . (1.14)

N—co | =k

0 B
[

&‘
A

where v is now the frozen parameter response of (1.3). In contrast to the averaging theory for

(1.13) with deterministic inputs, many articles have been written concerning the relationship

.::;
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between the behavior of (1.13) and the ODE (1.11) when (1.13) represents a recursive adaptive
algorithm witk stochastic inputs. Ljung (1977), Kushner (1977). and Benveniste. Goursat, and
Ruget (1980). to mention a few. Our proof is easily applied to a stochastic system on a sample
path by sample path basis. Hence, some "with probability one” results for the system (1.3)-(1.4)
can be obtained as corollaries of our basic ayeraging theorems. However, we use some boundedness

assumptions and many triangle inequalities in our proof. Hence, our proof does not reproduce any

of the weak convergence results.

Motivated by the method of sensitivity points (Kokotovic. 1973) and some early work on
self-adaptive systems. Medanic and Kokotovic (1965) and Kokotovic, Medanic. Vuskovic, and
Bingulac (1966). we present in Chapter 4 and in Riedle and Kokotovic (1986c) a controller
parametrization with much more flexibility than the parametrizations usually seen in the adaptive
control literature and a parameter update law which is designed with the intention of using slow
adaptation. This parametrization allows the number of adjustable gains 1o be chosen independently
from the order of the fixed gain feedback controller. Hence, it provides the freedom to design
adaptive control systems with only a few adjustable parameters. Along with this freedom comes
the necessity (and hence. opportunity) to use much a priori information about the plant and to
make a more extensive off-line design effort. The additional design effort is compensated by

improved performance and confidence in the on-line operation of the slowly adapting system.

As noted earlier. slow adaptation allows the controller parametrization to be specified for the
design of a good fixed parameter controller. After the controller parametrization is specified. the
design of the slowly adapting system is completed by developing a parameter update law. In
Chapter 5 we illustrate the development of a parameter update law for a given controller
parametrization. The plant is fifth order with three uncertain parameters and the controller is first
order with three adjustable parameters. The uncertain plant parameters can vary from given
nominal values by 30%. We first do off-line numerical analysis to verify that the controller can be

tuned for all possible values of the plant parameters. We then present simulation results which
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show that the controller parameters of the slowly adapting system converge to the values which
achieve optimal tuning in the off-line numerical analysis. We conclude by showing that the

theoretical analysis of this algorithm is similar 10 the analysis in Chapter 4 and that the positive

simulation results are predicted by the analysis. ‘
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CHAPTER 2

INTEGRAL MANIFOLDS OF SLOW ADAPTATION IN CONTINUOUS TIME

2.1. Introduction

Continuous-time adaptive algorithms for estimation and control can be represented by the

nonlinear dynamic system

x = A(0)x + B(Ow(t) x € R™, weéR" (2.1)

0 =ef(1.8.x). 0 €R™. (2.2)

The x-equation (2.1), where w(t) incorporates both the reference and disturbance inputs. describes
the plant. its controller, filters, etc.. hence, the n,-vector x is referred to as a "state.” The 0-
equation (2.2) is the update law for the ng-vector of adjustable "parameters.” When x and 0
strongly, interact the distinction between the "states” and "parameters” is meaningless. However. in
the case of "slow adaptation” this distinction is meaningful and greatly simplifies the analysis. In
the system (2.1)-(2.2) the slow adaptation is due to the smalliness of the scalar gain €, which forces
0 to be small and the parameters 0 to evolve slowly compared to the states x. Even without this
scaling by €. a typical adaptive transient consists of a few rapid initial swings after which the
parameters continue to move slowly as f(1,0.x) becomes small. During the period of slow
adaptation the parameters may (a) remain in a bounded set where Re A(A(8)) < 0. (b) drift toward

infinity with Re A(A(8)) < 0. or (¢) drift to a region where Re A(A(8)) > 0.

In this chapter the concept of slow adaptation is made precise by showing that it occurs in an
integral manifold M, of (2.1)-(2.2). a time-varying ng-dimensional surface in the ny, + ng-

dimensional space of x and 0. defined by

M, = {1.0.x:x = g(1.0:€)} . (2.3)

where v(1.8) = g(1.0:0) is the steady-state response of (2.1) with constant 8. In Section 2.2 we

show that g(1.0:€) can be viewed as a similar steady-state response in the case of slow variations of
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6. For this reason we call M, a "slow manifold” of (2.1)-(2.2). The motion of the parameters 0 in
. the slow manifold is governed by the update law (2.2), but with x replaced by g(t.0:€). that is,
;‘," .
r 0 = ef(1.9. g(1.0:€)) . (2.4)
? For an adaptive system this equation is an exact description of the adaptation process after the state

transients have decayed.

Y

?b’ In Section 2.3 we formulate conditions for the existence of h(t.0:€) = g(1.0:€) — v(1.0), and in
= Section 2.4 we give conditions for the slow manifold M, to be attractive, as well as a procedure for
&3 | :
l estimating the region of attraction. By showing that M, is attractive and that h(t.0;¢) =~ Oase — 0,
% we justify the use of
o 6 = ef(1.0.5(1.0)) (2.5)

as an approximation of (2.4) for € sufficiently small. This approximation combined with an

[ ¢

averaging analysis of (2.10) was instrumental in Astrom’s (1983,1984) lucid explanation of the

»

»
(e’

drift instability observed by Rohrs et al. (1982, 1985). In Section 2.5 and in Riedle and Kokotovic

k 4

(1986b) we show that the given conditions for the existence of an attractive slow manifold are met

by a standard model reference adaptive control system. The results of Section 2.6 prove the

:_? asymptotic validity of Astrom’s approach and generalize the analysis which led to the local
o stability criteria formulated by Riedle and Kokotovic (1985), Kokotovic, Riedle. and Praly (1985,
T‘ Kosut. Anderson. and Mareels (1985). Fu. Bodson, and Sastry (1985). and Riedle. Praly. and
Kokotovic (1986).
e Before we proceed. let us mention that the concept of an integral manifold was introduced by
: Lyapunov and used by him and Perron in their studies of conditionally stable systems. More |
) | recently this concept is encountered in the averaging literature. Bogoliubov and Mitropolski (1961),
i Volosov (1962), and Mitropolski and Lykova (1973). A comprehensive treatment. independent of

averaging. is found in Pliss (1966, 1977) and Hale (1980). Closely related notions are center
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> manifolds: Fenichel (1971) and Carr (1981). and singular perturbations: Hoppensteadt (1971).
> Fenichel (1979). and Kokotovic, Khalil, and O'Reilly (1986).
&5
B
o
2.2. Interpretation and Approximation of the Slow Manifold
St
(7 An integral manifold M, of (2.1)-(2.2) is simply defined by the statement that if the vector
I8
oy x.0 is in M, at t = t,, then it is in M, for all t, that is.
s
w x(t,)
8 “leM, > x(1) € M, ¥t. (2.6)
NN 0(t,) 0(1)
)
J .
& If a manifold M, can be found for each value of € in a segment € € [0.€"). then we shall say that an
S . .
€-family of slow manifolds exists. The simplest member of this family is the frozen parameter
.’\
N
':: manifold M, defined by € = 0 and the requirement that if x = »(7.0) at 7 = t. then x = ¥(7.)) for all
&
J‘\\ 7 € R. Noting from (2.2) that if € = 0. then 0 is constant. we have
; " t
: v(1.9) = eAON-T)y(5 9) + f AN —TIB(9)w(7)dr. (2.7
2 s
b
b Assumption 2.1 : There exist a set © C R" and constants @ > 0 and K 2 1 such that
?: leA(o)(t_s)l <K —argt—s) (2.8)
[ X K¢ .
.
) where | - | is the Euclidean norm.
° a
\-::.- Under this assumption we let s = — oo and obtain from (2.7)
o
o3 t
2 v(1.9) = [ &A= B(@)w(r)dr. (2.9)
.'::: For a broad class of signals w(t). including almost periodic signals. this integral is well defined and 1
o i
Y - shows that M, represents the familiar "steady-state response” of the linear time-invariant system |
J" o |
i‘n. (2.1) considered as a function of both t and 6. Although the situation is more complicated when i
" € > 0 and 0 is not constant. the interpretation of M as a "steady-state response” is still helpful.
Ay
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Introducing the deviation of x from »(1,0) as a new state variable

z=x—¥(t.0). (2.10)

we rewrite (2.1)-(2.2) in the form
z = A(0)z — evg(t.0)F(1,0.2), (2.11)
0 = ef(1.0.0(1.0) + 2) = eF(1.0.2). (2.12)

where v4(1.0) is the n,Xng sensitivity matrix

Vg(t.O) = g;. = f eA(O)(t—f) -&- [A(O)x + B(O)u('r)]x”(,,e)d‘r. (2.13)

—o0

The brackets indicate that % is performed with x fixed, after which ¥(7.8) is substituted for x.

Properties of the response ¥(1.,0) and its sensitivity v¢(1.8) are among the crucial factors influencing

the behavior of an adaptive scheme. We characterize these properties by assuming bounds on v and

Vg.

Assumption 2.2: There exist positive constants v, vy, and Vv, such that for all t € R and 9.0¢eco

(18] € v. [v(1.0)] € vy, [ve(1.0) —v(1.OX S v, B -4 (2.14)
O

Remark 2.1: A sufficient condition for Assumption 2.2 to be satisfied is that A(68). and B(8) have

Lipschitzian derivatives and that w(t) is uniformly bounded. We make the assumption directly on

v to vy to simplify expressions in this sequel.

0
In the (z.8)-coordinates M, is defined by z=0. To define M for € > 0 we need tc find a function h of

t and 6 parametrically dependent on € such that

z = h(t.0:€) (2.15)

satisfies (2.11)-(2.12). Let us first interpret h(t.0:€) by constructing a sequence of “steady-state

responses’ h,(1.0:€). h\(t.0:€). .. .. h,(t.8:€).... which in Section 2.3 will be shown to converge to




\o* o8 . TR R et dai Rath At Sad Saf Aol Bak hefk Rk B |
AT e e cwR TN TY Tw N M A e st e e mid aih adlh e aih ARl e e d bl Akl aNA SR Bt e N i ki wlbi i adl® Ao ol a* JHE Pt b 4 ]
"r%z
A

h(1.0:¢). Suppose that h,(1.0:€) is available for all t and each 6 € ©. and substitute it for z in

(2.12). Then compute the solution 6,(s:1.0.€) of the end-value problem
% 8,(s) = €F(s.0,(s).hy(s9,(s:€))., 8,(t1)=0€8. (2.16)

With 0,(s) = 0,(s:1.9.€) and h,(s.9,(s)) available, use (2.11) to evaluate h,,, along 6,(s) from

d

%= hy+1(s.0,(s):€) = A(0,(s))h,,,(s.0,(s):€) — evy(s.0,(s))F(s.0,(s).h (s.0,(s):€)). (2.17)

The state transition matrix ®,(s.7) = ®(s.7:1.0.€) of the linear time-varying system (2.17) is

defined by
% O (s.7) = A (NP (s.7). D (r7) =1 (2.18)

If (2.18) is exponentially stable. that is. if as in (2.8). there exist positive constants Ky and a; such

that

| @ (s.7)| € Ky ™™ ¥s > 7. ¥reR. (2.19)

then the steady-state response of (2.17). analogous to (2.9). is
hy41(s.8,(s)) = -ef &, (s.7)e(7.0,(7))F(7.0,(7).h,(7.0,(7)))dT. (2.20)

This expression defines hy,, along a particular trajectory 6,(s) whose "end™-point at s=t is 6. By

choosing different "end"-points 8 € ©. hence, different trajectories 8,(s) = 0,(s:1.0.€). the function
t
hesr(t.0:€) = —€ [ @ (1718, (T)F(7.0,(7).h(7.8(r))d7 (2.21)

can be evaluated for each 8 € © and all t € R. Except for the use of different trajectories
8.(7)=0,(r:1.0.€) in place of different constant values of 0. there is a clear analogy between
hes(1.0:€) defined by (2.21) and v(1.8) defined by (2.9). Initialized with h(1.0:€) = 0. the
sequence h,(1.0:€). k=1.2.... is uniquely defined by (2.16) and (2.21). These expressions. which are

not recommended as a computational procedure. will be used in Section 2.3 Lo prove the existence.

S98 and other properties. of h(t.0:€).
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If a continuously differentiable h(t.0;€) is known to exist, then the substitution of

.- @b . dh ;
z 5'—+@-9 (2.22)

into (2.11)-(2.12) shows that h(t.0:€) satisfies the partial differential equation

%% = A(@)h — e(vg(1.0) + %)m.o.h) (223)

which suggests that it may be computationally feasible to approximate h(t.0:€) by a power series

in €. Substituting

h(t.0:¢) = h%1.8) + €h'(1.0) + €h2(1.0) + - - - (224)

into (2.23) and evaluating the terms of the series, we see that h%t.8) = 0 and that h'(1.0) is the

steady-state response of

%th = A(O)h! — ve(1.9)F(1.0.0). (2.25)

The equations for h?, h3, etc. are more complicated and. from a practical point of view. the
approximation h(t.0:€) = €h!(1.0) may be all that is needed to improve the "frozen parameter”
approximation (2.5), because h!(1.0) incorporates the effects of vp(1.0). which are important when

the sensitivity of the plant with respect to adjustablz parameters is high.

Example 2.1: The analysis of the effects of an unstable zero 71‘- > 0 on the performance of an

adaptive controller designed for a minimum phase plant is nontrivial even in the case of a first

order plant and a single adjustable parameter. Such an adaptive system, shown in Fig. 2.1, is

described by
) 1—-0 1—u
= + :
X =20 X = r (2.26)
0= ¢ XTHL (XTHT _ (2.27
=8 (=g " Y™ :

where r = r(t) and y_, = v,,(t) are. respectively, the reference input and model output. For

r = coswt the frozen parameter response ¥(1.8) and its sensitivity are

I L R
“-'_"."‘-.".\-\ 'j.

I
R R
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:' Fig. 2.1.  Block diagram of the system (2.26)-(2.27).
.
: ¥(1.0) = V(0.0)cos(wt + ¢(0.w)) (2.28)
: 1—u (1 — udlw
W V(bw) = . ¢(8.w) = arctan (2.29)
] V(1 —uP w? + (6 — 1) §-1
3
- vy(1.9) = % cos(wt + ) — % V sin(at + ¢). (2.30)
“ With » and v, known. h' can be obtained as the steady-state response of (2.25). Then
’
" v(1.8) + €h'(1.0) can serve as an approximation of h(t.8:€). which, in this case, is periodic in t.
AX For a clear graphic display let us consider the constant input case with r=1, y_  =.5. A
;‘ simple calculation gives
X D ) 0y = 1—n
~ V(e) rl—. VH(O) = W (231)
'_. and. upon the substitution into (2.24). we obtain ‘
b~
3 1
3 W= — (1 —pu)1—-ud)3-90) 2.32)
7 20-1)% pATH (

For 6 2 2.25 the sensitivity vy is small and. as predicted. the slow manifold is practically

indistinguishable from »(8). For @ 2 2.25 the trajectories plotted for u = .25 and € = .1 in Fig. 2.2
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th: clearly show a separation of time scales: the slope %3- is much steeper away from the manifold
.&q

I than along the manifold. Again as predicted, the situation changes in the region 8 £ 2 where the

sensitivity v is high. In this region, the curve »(8) + €h!(8) is a significantly better approximation

5 e

¥
LA

of the slow manifold than v(8). The disastrous effect of the unstable zero % is alen characteristic:

>0

for 8 > 71[ the manifold is repulsive. whereas for 6 < -1— it is attractive. For 8= L the system
“ “

(2.26)-(2.27) is not defined. In the manifold. the slow adaptation converges 1o the equilibrium

4y

0=3.
- Remark 2.2: To avoid excessive numerical sensitivity of the unstable trajectories for § > 4 . they
e
o have been obtained by simulation in reverse time.
2 o
]
>
l\.
- T T I T T T ! T T
v + eh? |

10
C 0.8 ]

) X Manifold |
- 0.6} —
~ N
- 04} K |
: ‘ ~

~
02 =
-
(@) 1 L 1 | L 1 ] |
S 1.50 2.25 300 3.75 450
Y o]
tt Fig. 2.2. Trajectories of (2.26)-(2.27) with r=1. v, =0.5. € = 0.1, g = 0.25 converge to the
manifold for 8 < 4. In the manifold all movement is toward 6 = 3.
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Remark 2.3: An analytical study of repulsive manifolds would involve the following
modifications. If Re A;(A(8)) > 0 for all i=1....m . then (2.11).(2.13), and (2.20) are 1o be
integrated in reverse time, from co to t. If A has both srable and unstable eigenvalues, then each of
these expressions would include two integrals, one from —oo to t for the stable part and one from

oo 10 t for the unstable part of the response. We restrict our analysis to attractive slow manifolds.
]

2.3. Existence of the Slow Manifold

Expressions (2.16) and (2.21) rewritten as hy,; = Thy define a map T. Its fixed point. if it
exists. is our function h(1.0:€). As in any fixed point argument, we first specify a closed subset of a
Banach space in which to search for h(1.9:€). We let this space be the set of continuous functions

H(1.8) equipped with the norm [IHIl = sup |H(1.8)} and use positive constants D and A to
19€ RxR"®

define our closed subset H(D.A) as

H(D.A) = {H:RXR"=R™| 1 HIl €D and |H(1.0) — H(1.0) 1< A0 — &, %t€eR: 0.0€R™). (2.33)

Our goal is not only to establish the existence of h(1.8:€). but also to characterize it by estimating D
and A in terms of € and the data about the adaptive system. In addition to Assumptions 2.1 and 2.2

about the system (2.1) with constant 6, we need the following data about the parameter update

law (2.12).
Assumption 2.3 : There exist nondecreasing positive functions pg(D). pg(D). and p,(D) such that

|F(1.8.2)| € pp(D). |F(1.0.2) — F(1.8.2)| < py(D)|0 — 6],

) . 3 R (2.34)
[F(1.80.2) —F(1.8.2) 1 L p(Dlz—2], ¥L€R; 06€0: |zl]z] € D.

O

Remark 2.4: A sufficient condition for Assumption 2.3 1o hold is that (1.0.x) be bounded. and
Lipschitzian in 8.x uniformlv with respect to t€R . 0€0 in x in compact sets. These are very mild

conditions which are met by most parameter update laws.
O
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In the iterative scheme (2.16), (2.21) the stability condition (2.19) is crucial. Unfortunately.
our Assumption 2.1 is not sufficient to guarantee that each trajectory 6,(s:t.0.€) will remain in the
set O for all s, as required by (2.19). Following Carr (1981). we avoid this difficulty by proving
the existence of h(t.0:€) for a modified system, rather than for (2.11)-(2.12). In the modified
system. each 8 which is not in © is replaced by some value p(6) which remains in 6. By
construction, the original and the modified systems are identical for all 6 € ©, that is. p(@) =6.
¥0 € ©. For simplicity, we restrict the set © in Assumption 2.1 to be convex and compact. Then

p(0) is uniquely defined as the point in © closest to 8, namely,
p(8) = arg min|p - 6]. (2.35)
r€e
We henceforth analyze the modified system

2z = A(p(8)) — evy(1.p(8)) F(1.p(8).2). (2.36)

0 = €F(1.0.p(0).2). (2.37)

The results obtained for the modified system translate into those for the original system as
follows. Suppose that (2.36)-(2.37) has an integral manifold h(1.8:€) and a solution 6(1) of (2.37)
with z = h(1.0:€) which satisfies 8(t) € 8, ¥t € [1,.t,]. Then 68(1). z = h(1.6(1):€) is also a solution
of the original system (2.11)-(2.12) ¥t € {1,.1;]. As for the modified assumptions. we note that.
because p(@) € © and | p(8) — p(é)l <6 —0| the bounds imposed on A(8) . ¥(8), v(1.0), F(1.0.2)
for all @ € © are satisfied by A(p(8)). v(t.p(8)), v,(t.p(8)). F(1.p(8).2) for all 8 € R™. To describe

the dependence of F(1.p(8).z) and v.{t.p(6)) F(1,p(6).2) on 8 over the set H(D.A) we define py(D.A)

and p-(DD.A) such that

F(Lp(0).H(1.9)) — F(1.p(d).H(1.6)) | € p(D.2) 16— 8| (2.38)

L Lp(@)F(Lp(8).11(1.8)) — v.L.pt@)F(L.p(B) H(1.H)) | € po(D.A) [0 — 8] (2.39)

tor all t € R, 00 € R"and H € H(D.A). It follows from Assumptions 2.2 and 2.3 that p, and p;

exist and can be chosen to satisfy
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p(D.A) € py(D) + Ap(D).  py(D.A) € vipy(D.A) + vype(D). (2.40)

We now perform the same modification of the iterative expressions (2.16) through (2.21). In

particular, (2.16) becomes

= €F(s.p(08,(s)). h,(s.0,(s)e€)). 6,(1)=40. (2.41)

dé,(s)
s

As before. the trajectory 0,(s:t.0.€) is determined by its “end"-condition 0 at s=t. However, the
modification now guarantees that to each h, € H(D,A) and each 8 € R™ there corresponds a unique
continuous solution of (2.41) 8,(s:1.0.€) = 0,(s), defined for all s € R. This is a consequence of the
global character of (2.38). A more important advantage of the modification is that the stability

property (2.19) of ®,(s.7:1.0.€). the solution

% O, (s.7) = A(p(8,(s))) O, (s.7), D(r.7) =1, (2.42)

can be established as follows.

Lemma 2.1 : Suppose that the Assumptions 2.1, 2.2, and 2.3 hold; choose a constant a > 0 such

that| A(9) — A(é)l < 20—0|forall0.0 € ©and let

p3(D) = [ap(D) K InK]". (2.43)
If h, € H(D.A) and
€app(D) < a (K InK)™! (2.44)
then
| ®,(s.7)| € Ke™™ PO > (2.45)

vhere a (e D) = a,, — € 'pi (D).

Proof : By assumption. tor all 5.5 € R.

and by conscruction, AUp(0)) satisties (2.8) for all @ € R™. The proot then follows from a standard
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theorem for systems with slowly varying cocfficients, e.g., page 117 of Coppel (1965) or Section 2.5

of Kokotovic. Khalil. and O'Reilly (1986).
o

We are now prepared to consider the map T defined pointwise via

(Th)(1.0:€) = —€ f @, (1.7) ve(7.p(0,(7))) F(7,p(0,(7)).h,(7.0,(7):€)) d7 . (2.47)

where 0,(7) = 8,(7:1.0.€) and ®,(t.7) = & (1.7:1.0.€). The meaning of T is made clear by comparing

(2.47) with (2.21), that is. the map T represents the iterations (2.16) through (2.21) for the

modified system (2.36)-(2.37).

Lemma 2.2 : Suppose that Assumptions 2.1, 2.2, and 2.3 hold. If €. D, and A satisfy (2.44) and

€Kv,p¢(D) /a,(e.D) £ D (2.48)
€p,(D.A) < a,(eD) (2.49)
K KavlpF(D) <
€ D= D lpg(D.A) t oo | €8 (2.50)
PAD)
em[l\v,+A] <1 (2.51)

then T is a contraction mapping on H(D.A).

Proof(discussion): Omitting lengthy calculations of the bounds (2.48)-(2.51), we only indicate
their origin and discuss their meaning. Using (2.45) and (2.47) it is not difficult 1o see that (2.48)
assures II'Th, I € D. The most  complicated bound (2.50) originates from
(Th,)1.6:€) — (Thk)(L.é:e) written as the sum of two integrals

t
—¢ [ O (L) wi7.p(0,(7))F(r p(8(1)).1y(7.8,(7)))

—y

— v (7.p(8, (T ))F(7.p(8,(7)).h, (7.8, (7))]d7 (2.52)

t

—€ f [(bk(t.r)—&)k(L.T)]m,(f.p(ék(r)))F(‘r.p(ék(r)).hk(f.ék(f)))dr

—u0
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b
o)
o where §,(7) = 8,(:t.0.€) and ®,(1.7) = &, (1.7:1.0.€). Now (2.49) assures that the norm of the first
‘\‘ w
A integral is bounded by
L 18 — 8] Kp(D.A)a,(e.D) — €py(D.A)] (2.53)
“5 hence, is well defined over any infinite interval (—eo.t]. The term in the brackets, also appearing in
'l
(2.49) is of conceptual interest, because it represents a time-scale separation property. To see this.
o A < A, €p(DA)s—t! .
\3 note from (2.38) and (2.41) that 10,(s)—08,(s)| € 10—01 ¢ : hence. €p;(D.A) is the
[N
"1:$ fastest exponential rate of the "steady-state” solutions. On the other hand. (2.45) shows that
[LA '
a,(€.D) is the slowest exponential decay towards a "steady-state” solution. If the difference of
) ‘h
-\; these two rates is larger. the dependence of h on 6 will be "smoother.” The other term in (2.50)
"‘,(
xy o . . " "
Do indicates that the smallness of the sensitivity bound v, also contributes to the "smoothness of h.
L Finally, (2.51) is a "contraction” bound for ! Thy — Thy, Il /il hy — hy, I . For further details in this
ol
*ﬁ continuous-time case see Chapter VII of Hale (1980). We give a complete proof following Hale for
D
:-‘ the discrete-time case in Chapter 3. To conclude. let us mention that the time-scale/smoothness
L
relationship is clarified in Fenichel (1971).
o O
o
_ - Remark 2.5 : The only use of (2.44) in Lemma 2.2 is to ensure (2.45) holds with ay(€.D) > 0. If
"4

-
-~ e

(2.45) can be established for a;(€.D) > O without (2.44), then (2.44) can be dropped as a

hypothesis of Lemma 2.2. For example. if there exists a constant positive definite symmetric

X iy matrix P which satisfies |
.J;, i
‘ AT(B)P + PA(O) € —a,P ¥OE€O. (2.54)
3 :
l‘.‘- - i
o then (2.45) is satisfied with a,(€.D) = a, and K = (A, P/A ;. P)".
b O
*a
.(;_. It is clear that for any positive D, . a;(€.D,) will be positive for € sufficiently small. With
.*::: this observation in mind. it is obvious that (2.45)-(2.51) will be satisfied for any positive Dy . &,
f. -
>
0.\ by a sufficiently small €, > 0, hence. for all € € [0.€,). In view of the fact that py and p, are
._: nondecreasing functions of D, it is clear that for € < €, we can use D = (€/€,) D, and & = (e/e,) A,
"
17 . . A
W -s'j instead of D, and A, in the definition of H. Hence. under the conditions of l.emma 2.2 the function
"~
!
<
! ~

B T T T D T S I R TR R E Y SO T T e R ™
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h(t.0:€) exists and is an O(€) quantity. This observation leads to the following summary of our

. existence results.
Theorem 2.1: Suppose that Assumptions 2.1, 2.2. and 2.3 hold. Then. given any fixed D, > 0 and
N
-j-: A, > 0. there exists €, > 0 such that for each € ¢ [0.€,) the modified system (2.36)-(2.37) has an
integral manifold uniquely defined by
Lot
={t.0,.z:z=h(1.0:¢)}). h € H((e/€,) D, . (e/€,) Ay). (2.55)
§ o
= When translated to the original system. this result establishes the existence of an e-family of
e
o~ slow manifolds of (2.1)-(2.2). Recalling that x =z + »(1.0). that g=» + h. and that in x.0
- coordinates M, = {1.0,x : x = g(1.0:€)} we translate Theorem 2.1 to the original system in the
&
following corollary.
‘_"
::S Corollary 2.1 : Suppose that Assumptions 2.1, 2.2. and 2.3 hold. Let x(1), 8(1) be .1e solution of
i (2.1)-(2.2) with initial data 6(t,) =6, € ® and x(t,) = g(t,.0,:€) = v(1,.8,) + h(1,.0,:€). Suppose
that 6(t) € © for all t € [to.t;]. Given any fixed D, > 0 and A, > O, there exists €, > 0 such that
- for each € € [0.¢,] the solution x(t), (1) of (2.1)-(2.2) satisfies
o
! (1.0(1).x(1)) € M, = {1.0.x : x = g(1.0:¢) = v(1.0) + h(1.0:¢)} (2.56)
for all t € [1,.t,] with h € H((e/€,)D,.(€/€,)A,).
¥ o
e Remark 2.6: Reference and disturbance signals are not required to be persistently exciting (PE).
;S |
~, Remark 2.7: It can be shown that if w(t1) and f(1.0.x) are periodic (almost periodic) in t. then
o h(1.0:€) is periodic (almost periodic) in t.
-:'; D
re, Example 2.2: Returning to Example 2.1. we now use Corollary 2.1 to pruve that on the segment
" =[2.25.3.75] the adaptive system (2.26)-(2.27) possesses an €-family of local slow manifolds
- with h € H(0.045€.4.61¢), ¥e € [0,0.2]. The A estimate 4.61€ is conservative due to the fact that
a.,, = 2.85 1s evaluated at 8 = 2.25, whereas a = 192 is evaluated at 8 = 3.75. lLess conservative
1Y
~§. estimates would result . m a smaller segment @. In this case Lemma 2.1 is trivially satisfied and

. - RO T ‘\ ‘.f_: e '.:_"."‘..-'_ e e : ‘... - : -
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3% K = 1 implies p3(D) = 0. The Assumptions 2.2 and 2.3 are satisfied by
Kt
v=06. v,=048, v,=077,
8
K ";: pe(D) = 0.242 + 2.52D + 5.23D% p,(D) = 3.64 + 512D2,
O
ﬁ.j': po(D) = 0.704 + 4.37D + 5.98D?,
P and p,(D.A) and p,(D.A) are taken to be
ANy
L)
R p1(D.A) = 0.704 + 4.37D + 5.98D? + (2.52 + 10.5D)A.
;l .
* p(D.A) = 0.524 + 4.04D + 6.89D? + (1.21 + 5.04D)A.
::.‘:; These expressions are valid for both cases. constant input r=1 and periodic input r = cos wt. and are
b
a)
“ used to show that we can take D, = .009 , A, = 0.922 and €, = 0.2 in Corollary 2.1.
o o
L
F
'_:i: Before considering in the next section the attractivity of M, and sufficient conditions for the
o
.:'5 stability or boundedness of solutions of (2.36)-(2.37). we give an instability result. The evolution
ao
il
: of (2.36)-(2.37) restricted to M, is governed by the reduced-order system
Y
?}‘: § = eF(Lp.(0).n(1.8:6)) . (2.57)
3N
" - The next theorem follows from the definitions of integral manifold and instability (in the sense of
_‘}‘,- Lyapunov).
3.4
i‘j Theorem 2.2 : Suppose that the conclusion of Theorem 2.1 holds and that € € (0.,]. Let 8°(1) ve
f. o
"l * i3
s any solution of (2.57) which is bounded for finite time. If 8°(t) is an unstable solution of (2.57).
AN then z'(1) = h(1.0°(1):€) . 8°(1) is an unstable solution of (2.36)-(2.37).
B
‘f_\} Proof : Because 8" is an unstable solution of (2.57) there exists a p > 0 and t, € R such that for
Ay
each 8 > 0 there exists a solution 0i1) of (2.57) with 10%(t,) —01,)! <8 and
A3\ 9'(1;,)—0.(1,)1 2 p for some t, = 1, Ior the same p > 0 and t, € R and each 8 > 0. the
N
e
\) '--' l l,.o X -t
%o solutions Ny 1ey)(1) = B = (500 of (2.36)42.37) satisfy
o 0 (v 6'(1)
b 33 L1412
c:. “
e,
R~ i Noyoeakt) =X (W) 1 <80 1 X yaea(tyaesy) = X tyasa) ! 2 0. (2.58)
N
“é
)
e
l“"

W x" ‘-"u‘}

. - » .f Tt
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where the second inequality follows from ([zT 0T]1 2 101.

Letting B(8.9) denote the ball of radius 5 centered at .
B(5.6)=(0: 16-01 <3},

we translate this instability result to the original system.
Corollary 2.2 : Suppose that the hypotheses of Theorem 2.2 are satisfied and that B(2p.0'(1)) C ©

forallt 2 to. Then, for t 2 t,. x°(1) = g(1.8°(1):€) . 8°(1) is an unstable solution of (2.1)+(2.2).
O

2.4. Attractivity of the Slow Manifold

While the existence of an integral manifold is sufficient to show that unstable solutions of
(2.57) combined with z = h(1.0:€) provide unstable solutions of (2.36)-(2.37). existence alone is not
sufﬁciént to show that stable solutions of (2.57) lead to stable solutions of (2.36)-(2.37). In this
section we derive conditions under which M, is exponentially attractive and give an estimate of the
region of attraction. We then give examples of how this result is used to prove that the stability
properties of a solution of (2.57) are also the stability properties of the corresponding solution of
(2.36)-(2.37).

Lemma 2.3 : Suppose that Assumptions 2.1. 2.2, and 2.3 hold and let €, D, and A be such that

M ={1.0.z: 2 = h(1.0:€)} with h € H(D.A) is an integral manifold of (2.36)-(2.37). Then for every

D, > (K + 1)D such that

eK(v, + A)p,(D;) < ,(e.D,) (2.59)

the solutions z(1). €(1) of the modified system (2.36)-(2.37) starting from any bounded

8(1,) =0, € R and any 2(1,) = z, bounded by

D,-D
1
EZ()l S k - D (2()())
satisfy
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|2(1) — h(1.01):€) | € K |z — h(15.05€) | e~ *HDNE %) (2.61)

for all t 2 1) and any t, € R, where a,(€.D;) = a,(€.D,) — €K(v, + A)p,(D,) .

Proof: Suppose that | z(t)| € D, for all t 2 t,. By Lemma 2.1
2= A(B(D)z (2.62)

is exponentially stable with constant K and rate a,(€,.D;). A converse Lyapunov theorem from

Yoshizawa (1966. p. 90) shows that there exists a Lyapunov function V(1.2) satisfying
|2} € V(1.2) £ KIzl. V(D)= V(2| < KlZ-Z| (2.63)

Voo (12) € = ag(€D)) V(13), 12> 1,. (2.64)

Where V(;3,) is the upper right derivative of V along solutions of (2.36). Because V(t.z) is
Lipschitzian in z, h is Lipschitzian in 0. and 6(1) is Lipschitzian in t, V(12— h(t.0:€)) is a

continuous function of t along the solutions of (2.36)-(2.37). In order to evaluate

V(2.36)—2.37(t.z—h(1.8:€)) it is helpful to first determine expressions for z(t+A) given z(1) = z and

h(t + A.8(1+A):€) given 6(1) = 6:

2(1+4) = z + A[A(p(8))z — eve(1.p(0))F(1.p(8).2))] + O(A2) . (2.65)

h(1+A4.0(1+A):€) = h(1+A.0 + AeF(1.p(0).h(1.0:€)):€)
+ h(t+A.6(t+A):€) — h(1+A.0 + AeF(1.p(6).h(1.8:€)):€)
= hf1.0:€) + A[A(p(8)))h(1.0:€) — € vo(1.p(8))F(1.p(8)).h(1.0:€))] (2.66)

+ [h(t+A.0 + AeF(1.0.2):€) — h(1+A.0 + €F(1.0.h(1.0:€):¢)]
+ 0(A%).

From these expressions and (2.63)-(2.64) it follows that V(t.z — h(t.0:€)) satisfies
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Vi2se~230(t.z = h(1.8:)) € ~ay(€.D)V(1.2 — h(1.8:€))
+ K e(v;+4) | F(1,p(0)).z) — F(1.p(0)).h(t.0:€)) |
< —a,(e.D)V(1.z — h(1.0:€)) (2.67)
+ € K(v;+A)p, (D)) 1 z— h(1.0:€) |

< "az(e.Dl)V(t.Z — h(t.0:€))

for all 1 2 t,. which in view of (2.63) proves (2.61) for all t 2 t,. This argument. conditioned on
the assumption that |z(t)|{ € D, for all t 2 t,. also proves that (2.61) holds for t € [to.t,] if
|z(1)| € Dy on this interval. The proof that 1, = oo is by contradiction . Assume that there exists

t. € [19.00) such that |2(t.)| 2 D, and let 1, be the smallest such time. Since |2(t,)| < D;. t; > t,

and

t2(t) ] € [h(1,.0(1)):€) | +]2(1,) — h(1,.0(1,):€) | < D + K|z, — h(1,.8,) | € D,, (2.68)

which contradicts | z(1,) | 2 D,.

Remark 2.8: If € and D, satisfy

€ KvlpF(Dl)/al(e'Dl) < Dl \ (2()9)

then (2.60) can be relaxed to K 1z,! € D; when K > 1or i2zyl < D, when K =1. See Lemma 3.5

in Chapter 3.
0o

With this remark in mind we summarize the existence and attractivity of M, in the following
theorem.
Theorem 2.3: Suppose that Assumptions 2.1, 2.2, and 2.3 hold. Given any fixed
A0>0.Dy > 0.D; > D,.and a € (0.a,), there exists €, > O such that for each € € [0.€,] there
exists h € H((e/€,)D,.(e/€,)a,) such that M, ={168.2:2=hn(1.8:€)} is an integral manifold of
(2.36)-(2.37). and furthermore. solutions z(1). 6(t) of (2.36)-(2.37) with 2(t,) =2z, and
K'z,l < Dsatisfy (2.61) with a-(€.D;) 2 a.

Proof: Choose €, as for Theorem 2.1. Then choose €; < €, such that a-(€;.1),) 2 a. Thus. €, 15
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chosen to satisfy the most restrictive of five inequalities; hence, it is easily computed given the

functions p.
@]

Similarly to Theorem 2.1 this result can be translated to the original system (2.1)-(2.2).

Corollary 2.3: Suppose that Assumptions 2.1, 2.2. and 2.3 hold. Let x(t). 6(t) be the solution of
(2.1)-(2.2) with initial data x(t,) = x, . 8(1,) =0, € ©. Suppose that 8(t) € © for all t € [1,.1,].
Given any fixed Ag > 0.Dy, > 0.D; > D,. and a € (0,a). there exists €, > 0 such that for each

€ € [0.€,] there exists h € H((e/€,)D, . (€/€,)Aq) with the following properties:
i) if (1.0,.%0) € M. then (1.0(1).x(1)) € M, for all t € [t,.1,].

i) if Kixo=2(10.80)! < D, then for all t € [t,.t,]

Ix(1) — g(1.0(t): €)1 € Ke™"™ Ix, = g(10.00:€) 1 . (2.70)

Theorem 2.3 suggests that solutions of the modified system (2.36)-(2.37) have two "time-
decoupled” parts. one being rapid convergence to the slow manifold M, and the other being
evolution near M,. Motivated by this observation we rewrite (2.37) in the form of (2.57) with a

rapidly exponentially decaying perturbation.
0 = €F(1.p(8).h(1.0:€)) + €[ F(1.p(8).z) — F(1.p(0).h(1.8:€)) 1. (2.71)

and use it to show that the stability properties of a solution 6(t) of (2.57) are inherited by the
solution 8(1). z(1) = h(1,0(1):€) of (2.36)-(2.37). We show this for the case of a uniformly stable
solution 8" of (3.25). The first step is to recall a converse l.yapunov theorem: see. for example.
Yoshizawa (1966).

Lemma 2.4: Suppose that 8°(1) is a uniformly stable solution of (2.57). that B(K,.8(1)) & © for all
1 € R. and that f(1.0.x) is a continuous function of t. Then. there exist K, € (0.K;). a Lvapunov
function 1.(1.8). two strictly increasing positive functions ¥, and y,. and a constant [ . such that,

for 1 21,0 —0"1 € K, and 16—6"1 < K,.

Y110 —=0"]) SL(t.8—0) S y,(10—=0"1). ¥,(0)=y,(0,=0 (2.72)
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0
) . a . A
- |L(t.0—0")—L(1.6-6)1<1/0-0| (2.73)
' L(.;_».57)(t.9 - e.) £0 , ¥ 9.5 €0. (274)
a

29
RS From (2.71) it is clear that for (2.36)-(2.37) with | z| € D, and |0 — 6" | € K,. L satisfies
ot ' DESW i
..* L(2A36)—(2.37)(t-6 -6 ) S L(2.57)(1.9 -0 ) + €l pz(Dl) I zZ— h(t.O:e) ' (2.75)
.- < e p,(D,))V(t.z— h(1.0):€).
*
™

It follows from (2.59).(2.67). and (2.75) that the composite Lyapunov function
o=
W(1.8.2) = L(1.0 — 6°) + B V(1.2 — h(1.8)) (2.76)
‘ with
., B=ep D)o . 2.77)
- satisfies Wz 36)(237)(1.8.2) € 0if |z] € Dy and |0 — 6| € K,. This proves the following theorem.
' Theorem 2.4: Suppose that the conclusions of Lemma 2.4 and Theorem 2.3 hold and that € € (0.€,].
" Choose K3 < 0 such that y,(161) € K; implies 16! € K,. Then. the solution of (2.36)-(2.37)
x

with initial data z(1,) = z,. 8(t,) = 6, for any (t4.0,.2,) in the set
! Sn = {[.9,2 :Klzl < Dl . W((.Q.Z) < K:;} . (278)
;:" remains in the set 8§, ={t0.z: Izl <D,, W(t.6.z) < K;} for all t 2 t, and along each solution
N
- W4’3 360—231(1.8.2) £ 0. Moreover, for every constant 8 > ), there exists 1y > 0 such that
- {to).2(1)} €S, forallt 2 1, + t; where
Py So=1{t8.z: z—h(1.0:€)1 8. 1(.0-0(1)) € W(1,.0,.2,)} . (2.79)

O

*-_. This theorem shows that the uniform stability of 6°(1) as a solution of (2.57) combined with the
i exisience of an exponentially attractive integral manifold M, implies that z'(1) = h(1.8°(1):€). 8°(1)

i a uniformly stable solution of (2.36)-(2.37). Since (1.0.z) € §, implies that § € ©, Theorem 2.4
E,-; can be translated to the original svstem (2.1)-(2.2).
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Corollary 2.4 : Suppose that the hypotheses of Theorem 2.4 hold. Then. the solution of (2.1)-(2.2)

with initial data x(t()) =Xy 9([0) = 90 for any tO'OO'xO in the set
So={tx:Kix=v(t.8)! <D;. W(t8x—v(1.0)) <K,} (2.80)

remains in the set S; = {t.0.x: I x—(t.0)! < D;. W(1.0.x—v(1.0)) < K;} for all t € t, and along
each such solution W5, 22)(1.0.x—¥(1.8)) € 0. Moreover, for every constant § > 0. there exists
t; > O such that

S = {t8.x: Ix—g(10:€)l €£8§. L(1.60-0°(1)) € W(1,.0y.x9)—1(1,.0,)} . (2.81)

O

Remark 2.9: Whereas results similar to those of Theorem 2.4 are usually obtained under the more
restrictive assumption of the uniform asymptotic stability of 6°(t) as a solution of (2.57). in
Theorem 2.4 8°(1) is only assumed to be uniformly stabtle. This stronger result which is due to the
fact that 0 is a solution of the exact manifold equation (2.57), rather than an approximation, is of
conceptual interest. The hypothesis of Lemma 2.4 may not be verifiable which limits the direct

applicability of the result.
a

Remark 2.10: The same proof technique can be applied to show that uniform asymptotic stability
or exponential stability of 8°(1) implies uniform asymptotic stability or exponential stability,
respectively. of x'(1) = g(1.8'(1);e), 0°(1). Similar techniques apply when 0°(1) is replaced by an
invariant set. The use of a quadratic Lvapunov function in place of W may provide better

estimates of the region of ati. 1ction; see Saberi and Khalil (1981).
O

Remark 2.11: It may not be necessary to find the manifold function h(1.8:€) in order to determine
a solution 8°(1) of (2.57). For example, if (2.36)-(2.37) has an equilibrium at z= 0,0 = 6, then

0'(1) = 0 is a solution of (2.57).
d

In specific case studies a more elaborate construction can lead to an estimate of the domain of
attraction less conservative than S, in Theorem 2.4,

Example 2.3: Consider avain Example 2.1 with constant r=1. v, =05 let @, be a segment
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A
i [A,.A] S ©. Similarly to Lemma 2.3 we can show that if {z| € D, and 0 € ©,, then the derivative
. of V(z — h(8).e) =|z — h(0:€) | satisfies
(%21
- ' 1— 3-A, 2D+D; (| V(z—h(6:¢))
v (z—h(0:€)) € — [A~1—€|—F_+A + '
% @3o-z3n(z=h(@:€) < : (N—17 20-1) | T—pA, 1—u0 (2.82)
ﬁ and the derivative of L(8) =|0 — 3 | satisfies
, : 3—\, 2D+D — 1B

C L 5 9 < L \ 0 + 1 + 1 V(Z h(e.e))

.‘,3 2.36)-237(0) € L(257(0) + € =D T T = (2.83)
? For small enough € the right-hand side of (2.82) is negative. We use u = .25, € =.1. Taking W as
- an appropriate linear combination of V and ., we can achieve W(’;,_3b)_(2,37)(9,z) < L(’M,)(O) < 0if
4
- L(6) 2 .09. Choosing different linear combinations of V and L for different subsets of ©, of © we
'w create a comparison function

W(.2) = % (m,L(8) + V(z — h(8:€)) +y,) iff €O, (2.84)

with m,. y,. and @, listed in Table 2.1. The constants Y, are chosen so that W(8.z) = ¢,. a constant.

e

is the boundary of a compact set. This construction is such that if ¢, < ¢, then

10.z: W(0.2) € ¢} C{0.z: W(0.2) < c5l. The m,’s are chosen SO that

.
2

W s 361-237(0.2) € L554(8) < 0 if L(8) 2 .09 and m, =0 if L(6) £ .09 . Thus any solution of

o
»
oy (2.36)-(2.37) with (8,,.z,) € S, = {6,z : W(8.z) € 0.75} remains in S, for all t 2 t, and converges in
< Table 2.1. Parameters of W(.2)
:‘:. |l| @_, 9, m|=m—| yl=)"‘l
N
1 [2.91.3.00] [3.00.3.09] 0.00 1.143
. | 2 [285291])] [3.09.3.15] 1.80 0981
}'I 3 [2.75.2.85) [3.15.3.25] 1.92 0.963
Cy l3  [2652.75] [3.25.3.35] 2.04 0.933
l's  [255265] [3.353.45] 220 0.877
N “6 [2.452.55)  [3.45.3.55] 2.39 0.7914 |
¥ 7 (235245 [355365] 273 0.6045
8 [225235] [3.653.75] 366 000 |
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finite time to S;=1{0.z:/0—3|<0.09, |z— h(8:¢)| £ 8}. By construction (6.z) € S,=> 6 € 6;
hence. these solutions can be related to solutions of (2.26)-(2.27) with x = () + z as in Corollary
2.4. The trajectories in Fig. 2.3 which begin from the vertices of the polygon W(0.x—1(8)) = 0.75
clearly show that the equilibrium 6 =3, x = v(3) = 0.375 has a domain of attraction containing S,.
For 6 € 3 the trajectories cross the boundary of S, almost perpendicularly indicating that in this
region S, is a conservative estimate of the domain of attraction. However, this estimate is designed
to guarantee that 6(t) € 3.75 for all t 2 t,. and is much less conservative for § > 3. This can be

seen from the trajectory (a) converging to the manifold and the close-by divergent trajectory (b).

2.5. Attractive Integral Manifolds of a Model Reference Adaptive Control System

In this section we put a model reference adaptive control system (MRAS) in the form of
(2.1)-(2.2). Then. in order to show that the MRAS possesses a slow manifold, it is sufficient to

show that Assumptions 2.1, 2.2, and 2.3 are not restrictive.

As the first two assumptions are concerned only with properties of (2.1) for constant values
of 0. we postpone the specification of the parameter update law (2.2) until later. The controller
parametrization of Narendra and Valavani (1978) is common to several MRASs; a block diagram of
the controlled system is shown in Fig. 2.4. Assuming, for ease of exposition. that the plant is

strictly proper, the controlled system is described by (2.1) with

A(B) = A, + b'0T 8 . B(8) = [0, b' 1 b316,b" + b7]
(2.85
Ay by, 0 b, :
Ay= 10 {.bl=Ib| . b"= (0], b= [0
bfhp 0 b! 0
Cn
h," Xp r(1) du,
C=10].x= || wl=|n(0}. 6=
0 Vz ng(l) d

where r is the reference input. and n;.n». are disturbances and without lJoss of generality

h. = 1. We get the Narendra and Valavani controller designed tor a plant of relative degree one

and order n by assigning the dimensions ¢, € R . d, € R . ¢ € R} d € R v € R v € R
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L5}

i 2% ]
-1.5L— L ! ] ) L 1
2.25 3.00 3.75
8
The trajectories of (2.26)-2.27) beginning at the vertices of W(8.x—1(8)) = 0.75 converge

o the equilibrium. Along trajectory (a) 0 leaves the set © =[2.2

5 3.75). but con-

verges to the manifold. and then, to the equilibrium. Initially nearby trajectory (b) is

divergent.
n, (1) ns(t)
r(1)
n —aq:L hJT(sl-A,)"'b,
. vi
L
84 (Sl_./\)_lbf
T
n
z d.
2
1n (s1—A) "'
dr

Fig. 2.4.

-'..Ym(l)

Block diagram of the Narendra and Vialavani (1975) controller parametrization.
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32 |
g
N
n
:: and choosing the eigenvalues of A to be the zeros of the reference model. In order to show that an
integral manifold exists we require A, B. and w 10 satisfy Assumptions 2.1 and 2.2.
e
b Assumption 2.1 implies the stabilizability of the unknown plant by the chosen controller. In
e
0

order to see that il is not very restrictive we state a proposition.

Proposition 2.1: If there exist 8" € R"™ and &, > O such that

Re M(A(6%) < —ay (2.86)

then Assumption 2.1 is satisfied.

Proof From (2.86) it follows that exp[tA(6")] € K exp[—a(:t] for some K < . From standard

arguments about the stability of perturbed linear systems, it follows that Assumption 2.1 is

sauistied with a,, = a<:/2 and ®@ = {# € RM: 1901 £ KIDb'l /(Za(:)}.
0

Thus our stabilizability assumption does not require the knowledge of the plant order, nor
does it require the plant to match a reference model. We shall take the hypothesis of Proposition
2.1 as a hypothesis of Theorem 2.5. However. «,.K.and © are important quantities in the
analvsis of the previous sections and estimating them via the proof of Proposition 2.1 is, in general.
very conservative. We suggest that they be estimated in an off-line analysis via analytic

expressions. simulation, or experimentation.

The following proposition shows that Assumption 2.2 is not restrictive.

Proposition 2.2: If Assumption 2.1 holds. and w(t) is uniformly bounded. piecewise Lipschitz |
continuous. and there exists 8 > 0 such that all points of discontinuity are separated by at least 8.

then Assumption 2.2 is satisfied.

Proof: The houndedness and regularity of w(t) combined with Assumption 2.1 are sufficient to

guarantee that ¥(1.8) 15 a Lipschitz continuous function of time. letting W r)l =sup Ir{t)1 we can
t
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computie bounds on v, v, . and v, as

K
v £ = 5B Il 8,b*r + b*n; + (6,b! + b?)n, i
K 1
v,\.;.lbl[llr|0+v+llnzll] (2.87)
4]
V2$2_K_ |bllvl.
o O

Thus Assumption 2.2 is a regularity and boundedness assumption on the external inputs to
the system. An important observation concerning the applicability of this analysis in the design of
adaptive control schemes is that these assumptions are stated for the system with constant

parameters. These are assumptions about the chosen controller structure and the signals expected

to enter the controlled system.

While the previous two assumptions were independent of the parameter update law. the last

assumption depends only upon the parameter update law. For the MRAS which we are considering,

the update law is given by (2.2) with

r 0
f(1.0.x) = f(t.x) =— + |ny| KhTx, +np —y,(1) . (2.88)
Cx )
where
ya( = [ hTexplA,(t—=D)lb,r(r)dr . (2.89)

A, € R™" is Hurwitz, and W (s) = hX(sI—Ay) b, is strictly positive real (SPR). The update law

must satisfy Assumption 2.3. It is straightforward to establish that | x| € D implies that

L) € pe(D)= (Nl + linall + D) na=y,, 1l + D) . (2.90)

LI

\g_r(t.x)! Sp D)= 1t + nail 4 fn,—y, Il +2D . (2.91)
X

Then. under Assumption 2.2, Assumption 2.3 is satistied with
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!
A ,
?,* pr(D) < pe(v+D) . p(D) < p(v4D) . py(D) € v,p,(v+D). (2.92)
v
o Hence, we have the following result concerning the existence of an attractive integral manifold M,
‘-):J
o for the MRAS described by (2.1)-(2.2). (2.85), (2.88)~(2.89).
Theorem 2.5: Suppose that the hypotheses of Propositions 2.1 and 2.2 hold. Then, with AB. w.
o
9 ]
k! i.@ and f given by (2.85). (2.88)-(2.89). the conclusions of Theorem 2.3 hold for the modified system
N
»- (2.34)-(2.35) and the conclusions of Corollary 2.3 hold for (2.1)-(2.2).
o o
e Remark 2.12: To this point we have made no assumptions about persistent excitation, sufficient
l.::ih
:,}j richness, periodicity or almost periodicity of the signals entering the adaptive system.
it ]
J.'-‘*.
: Remark 2.13: If w(t) and f(1.8.x) are periodic (almost periodic) in t. then »(1.0) and h(1.8:€) are
periodic (almost periodic) in t.
\.."'. :“, D
:’,’:‘XA
: 2.6. Stability in the Manifold: Averaging
3
-:\_ In Sections 2.3 and 2.4 we derived conditions for the existence of an attractive local integral
&:,
! ‘ manifold M, of (2.1)-(2.2) and showed that the stability properties of a solution 8(1) of
A ,
ot 6 = ef(1.0.g(1.0:€)) (2.93)
A
Pt
o which remains in © for all t 21, are also the stability properties of the solution
o x(t) = g(1.8(1):€) . 6(1) of (2.1)-(2.2). We have established these conclusions without recourse to an
Y
‘;_. averaging argument. However. equation (2.93) is in the standard Bogoliubov form for the method
Pl
R of averaging, Hale (1980). Meerkov (1973), Sethna and Moran (1968), Volosov (1962), Bogoliubov
RO ging g
‘_ and Mitropolski (1961). Although averaging is not the only means for analyzing (2.93), it is the
:"_._7: one which we shall apply. The method of averaging gives very strong results for (2.93) in general.
o
.: and especially. when (2.1)-(2.2) represent an adaptive system as in Section 2.5. including
L.
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0
by (i) analysis with enough precision to provide sufficient conditions for instability as well as
. sufficient conditions for stability. and
(i1) interpretation in terms of the frequency spectrum of the signals entering the system and
[
| :'_’_ certain transfer functions in the adaptive system.
E The method of averaging relates solutions of (2.93) to solutions of
; B _7@) (2.94)
- dar
b
where 7 = €(1—t,) is the slow time scale and using g(1.0:0) = ¥(1.8).T(0) is the average of f with @
‘& constant defined by
o +T
& T(0) = lim & [ f(s.8.x(s.0)ds (2.95)
T—co T 1

- We assume w(t) and f(1.0.x) are almost periodic in t so that the limit in (2.95) exists uniformly

. with respect to t. Because (2.94) is time-invariant and independent of €, it is easier to study both
. analytically and experimentally via computer simulation, than (2.93).
i‘; Three theorems from the method of averaging lead to immediate and useful results for
adaptive systems. One theorem gives conditions under which the existence of a constant solution of
g (2.94) implies the existence of an almost periodic solution to (2.93). This theorem also relates the
.',;'; stability or instability of the constant solution of (2.94) to the almost periodic solution of (2.93).
£ It is the essential part of the theorem used to establish a stability-instability criterion for adaptive
g svstems in Riedle and Kokotovic (1985) and Kokotovic. Riedle. and Praly (1985). The other two
'_' theorems give conditions under which tne solution of (2.94) approximates the solution of (2.93).
:.“'- The first of these applies on a finite time interval:hence, it applies when solutions of (2.93) or
L (2.94) leave © in finite time. This result was used by Astrom (1983.1984) in his explanation of the
<
- instability mechanisms 1n a model reference adaptive control system. The second approximation
o theorem applies on infinite intervals. We shall use it to provide sufficient conditions for the
. unitorm asvmptotic stability of an almost periodic solution of (2.93) and to provide an estimate of

$q\,’.~ Mo e A T '-,\"
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the region of attraction which is not restricted by linearization.

We consider first the finite interval approximation theorem
Theorem 2.6: Suppose that Assumptions 2.1, 2.2, and 2.3 hold. If the solution 8(7) of (2.94) with
B(0) = 6(t,) and its o-neighborhood are in © for all 7 € [0.7)). that is. if
BlocO(r) SO w¥wrelor) (2.96)
for any 7, € (0,00) and any @ > O, then there exists €(7,.0°) € (0.€,] such that for each € € (0.¢.)
10() = Tle(t=to) | <o ¥tE€tgty+ 71/€). (2.97)
a
Let ©, C © be a set and o, > 0 a constant such that 8 € ©, implies B(c;.0) & ©.
Corollary 2.5: Suppose that Assumptions 2.1, 2.2, and 2.3 hold and that every solution of (2.94)
with §(0) € ©, C O, leaves O, before 7,. Then there exists & € (0.€;] such that for each € € (0.€.)
and for any t, € R, every solution of (2.93) with 8(1,) € ©, leaves ©, before t, + 7,/€.
a
Remark 2.14: The phrase "solution of (2.93) with 6(1t,) € ©," can of course be replaced by
"solution of (2.1)-(2.2) with 6(1,) € ©, and x(1,) = g(1,.6(1,):€).” Using the exponential decay of
I x — g | one can modify the proof of Theorem 2.6 to show that off-manifold initial values of x are
also allowed.

]

If the averaged system (2.94) has an instability mechanism which causes its solutions to

escape in finite time from ©,. then this result shows that an explanation of the instability of (2.94)

Pr) is a valid explanation of the predicted instability of the original system (2.93) for sufficiently slow
LA
ity adaptation.
LA
3 '\1'\'

e

o . .

" :}_» Rather than repeat more of the general averaging theorems which apply to (2.93) and can be
O WY i
A found in the cited literature, we illustrate the use of averaging theorems in the analysis of the {
1

]
b particular MRAS presented in Section 2.5. We first use the theorem on existence and stability of

WY
A almost periodic solutions of (2.93) to strengthen. by a precise definition of the tuned parameter. our
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stability criterion. The weakness of the criterion was the arbitrariness of the choice of the tuned

- value of the parameter 8 around which the system (2.1)-(2.2) was linearized in Riedle and
Kokotovic (1985) and Kokotovic. Riedle. and Praly (1985). In terms of the update law (2.14), the

<

w5 function f in (2.93) is

. f(1.1(1.0)) = —¢(1.0)e(1.0) (2.98)

s

) where ¢(1.0) and e(1.0) are. respectively, the values of the regressor vector and the tracking error

o,

- for constant values of 0:

x

B $(10) = |V | e(10) =[BT 0 OI(L) + ny(1)=ym(®) . (2.99)

4 )

Y Using the regressor vector ¢(1.0) as the input to the transfer function

-~ W (@s) =[n] 0 0Ksl = A@))'p! . (2.100)

results in a vector

v(t.0.8) = W (T 5)(1.9) . (2.101)

AV RS

"l .U

This vector is important because when § =, it can be shown that v is the sensitivity of e(1.0)

with respect to 0. that is.

R
-~

es(1.0) 8 %u 0) = vI(1.0.9) . (2.102)

» 1‘1'

F Y

By the mixed notation t.s in (2.101). we mean that the ith component of v is the almost periodic

|

i response of the closed-loop transfer function W (#.s) to the almost periodic ith component of ¢.

- Letting 6" be an arbitrary "tuned” parameter, we derive the equation from which the siability

\ﬂ

x criterion was developed. l.inearizing (2.94) around 8 = 6" we get

(95 |
\3 %2; = —{avgld(-.0°0vT(-.8°.8°)] + avgld(-.0")e(- .01 (F—0") — avgld(-8e(-.6°)] (2.103) :

‘ where

-,

-f.'-l‘ ) ._-f.
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L
3
o { T
X avgle(-69] 8 lim L [ e(1.0°)at.
": . T-o T 0
]
o
b Our previous analysis. (Riedle and Kokotovic ,1985. and Kokotovic, Riedle. and Praly .1985).
M
b
bt neglected the terms containing e(1.6°) and investigated the linear system
VW
3 D —avgld( W4 0 T—0) (2.104)
5N
Wy
‘. >
fn' Its equilibrium & = 6° is exponentially stable or unstable depending on the eigenvalues of R(6°.6°)
~.;q where
o'@ A
A R(O.F) 2 avgle(-OVT(-0.8)) . (2.105)
N
DO
W The stability criterion on (2.104) was practical because the eigenvalue condition on the matrix
R
B R(8°.0°) is easily interpretable in terms of signals and transfer functions in the system (2.1)-(2.2).
N :
(-'_?_ Consider. for example. the case when ¢(1.0) is the sum of a finite number of sinusoids
B :I---\
D.'\-“
p(0) = T WBw)er. (2.106)
- Wk Q
W
T
g
f Because ¢ is real valued, w€ Q implies —w€ Q@ and Y(0,—w) is the complex conjugate of Y(6.w).
h
e Then we compute v(1.8.8) and R(6.7)
J
';;'f v(1.0.9) = T ¢(0.0) W (0 jw) e (2.107)
:""3 wE O
o
:‘:.r:
..‘ R(ey) = u,GZ, \b(O.—w) 'IIT(O.Q)) WcL(y.j(lJ) . . (2108)
. S
.:::,';: Hence. the matrix R(6°.0°) is easily computed if we know the Fourier series representation of
::',:::: @&(1.6°) and the transfer function W (6°.jw). An interesting sufficient condition for (2.104) to be
-‘ exponentially stable is that R(6°.6°) + RT(8°.6°) be positive definite, that is,
ot
.;::: 0 < R(6°.6°) + RT(6°.6°) = .,,ez Y(0°.—w) ¥T(6°.w) Re W (0. jw) . (2.109)
- {- . Q
RO
- e
L . The condition (2.109) has been called "signal-dependent SPR" (Riedle and Kokotovic. 1985, and
R ,
S Kokotovic. Riedle. and Praly. 1985) because it resembles the usual strict positive realness
W
3 ::a"
-
)
by
-::'_:';
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requirement that Re W (6°jw) > O for all w. but relaxes this requirement by incorporating

information about the signals entering the adaptive system.

In this analysis we do not neglect e(t.6°) but instead assume that an equilibrium §° of the

averaged equation (2.94) exists, that is,

0 =T(0°) = avgle(-.F°)e(-.F°)]. (2.110)

Then we select 8 =8° to be the tuned parameter 8°. With this choice, the forcing term in the
linearized equation (2.103) is zero and (2.103) is the linearization of the averaged system (2.94)

around its equilibrium. Clearly, the stability or instability of this equilibrium is determined by

the eigenvalues of

To(6°) = Q%""_) = —R(8°.6°) — R,(6°) (2.111)
R,(6°) = avglea(-.0°)e(-.8°)] . (2.112)

In addition 1o the easily interpretable matrix R, a stability criterion for (2.103) must deal with R;,
which is much more difficult to interpret. Since a criterion for stability and instability based on
the eigenvalues of R + R, is much less appealing than the criterion for (2.104), our goal is to

formulate sufficient conditions for stability and instability in terms of the RMS error
E(0) = {avgle’(-.0)]} . (2.113)

which will appear in a bound for R,. and the eigenvalues of R(6°.6°).

In the noncritical case. that 1s, when no eigenvalues of R(8°.0°) have zero real parts. we can always

find a transformation T(6") such that

Ay o
TO I R,(0°0) T Q") = L ITHe) ) €1, (2.114)
0 A

w here all the eigenvalues ol .\, have positive real parts and all the eigenvalues of A_ have negative

real parts. Furthermore. there exist positive constants m and A such that
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—A. 0

0 A I € me™. (2.115)

lexp it

Theorem 2.7: Suppose that Assumptions 2.1, 2.2, and 2.3 hold. Let 6° = 8° be an equilibrium of
the averaged system (2.94) in the interior of ©. Suppose that no eigenvalues of R(6°.6°) have zero
real parts. Let T(0°) be a transformation satisfying (2.114) and m.\ be constants such that (2.115)

holds. If the RMS error (2.113) is bounded by

E@°) < M TE)!

m (.00 (2.116)

where ¢y = %- and

Wbl -.6°) 11 2 lavgl | bel-.0°) 121} . (2.117)

then there exists € € (0.€,] such that for each € € (0.&.], the original system (2.93) possesses a
unique almost periodic solution 6°(t.e) which tends to 6° as € tends to zero. that is.

lim 10°(1.€)=6°1 =0. Furthermore, 0'(t.€) is uniformly asymptotically stable if all the
—

eigenvalues of R(6°.8°) have positive real parts (that is, the dimension of A_ is zero), and 0°(1.€) is
unstable if one eigenvalue of R(6°.6°) has a negative real part (that is. the dimension of A_ is
greater than zero).

Proof: It is sufficient to show that no eigenvalues of R(6°.0°) + R,(6°)have zero real parts and that
the dimension of A_ is equal to the number of eigenvalues of R(6°8°) + R,(6") with negative real
parts. The conclusions then follow from averaging theorems such as Theorem V.3.1 of Hale
(1980). Applying the transformation 8 = T(8,XF—6°) 1o (2.103) we have

Av 0

4 §=- + T(6°)R,(8°)T-1(8) | § . (2.118)
dr 0 A

By the Cauchy-Schwartz inequality
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o)
"3
LS IR (6°)1 < 1 ¢g(1.0°) 1 E(6°) € v,E(6°) (2.119)
I where the second inequality follows from
} (109 = |, ¢ (2.120)
5 AL Crg(1.8) ’

ICt =1. and  Assumption 2.2. Then (2.115)-(2.116) and the fact that

o

A+ Q

0A + T(6°)R,(6°T-%(0°) is similar to R(6°6°) + R;(6°) imply that no eigenvalues of

T4(8°) = —R(8°.6°) — R,(8°) have zero real parts and that the dimension of A_ is equal to the

number of eigenvalues of T 4(6°) with positive real parts.

In light of Corollary 2.2 and the results of Section 2.4, we have the following corollary.

Corollary 2.6: Under the conditions of Theorem 2.7, for each € € (0.6.] the system (2.1)-(2.2)
with definitions (2.85). (2.88)-(2.89) possesses a unique almost periodic solution
x'(1.€) = g(1.8°(1.€):€) . 6°(1.€) in a neighborhood of ¥(1.8°) . 6°. Furthermore, this solution is u.a.s. if
all the eigenvalues of R(8°.6°) have positive real parts and unstable if one eigenvalue of R(6°.6°) has
a negative real part.

O

Although Theorem 2.7 and Corollary 2.6 are also based on linearization. this result is more
complete than the original stability criterion results of Riedle and Kokotovic (1985) and Kokotovic,
Riedle. and Praly (1985). It is more complete because the choice of the tuned parameter 6° =8° ‘

allows the conclusions to apply to the actual MRAS (2.1)-(2.2). However. by itself. the choice of

the tuned parameter 6° = ° does not provide sufficient guidance for the design and analysis of an
VMIRAS. The existence of 8" is not obvious and. except for the case E(8°) = 0, defining the tuned
parameter 8" as the solution of (2.110) does not give a characterization of 6° which is easily ‘

interpreted or checked in terms of the properties ol the controlled svstem (2.1) with constant 6.
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In the ideal case, no disturbances and no unmodeled dynamics. the parameter update law
drives the tracking error to zero. An assumption of persistent excitation on the regressor vector
then implies that the function E(8) has a unique global minimum with min E() =0. In the
nonideal case we are studying, suppose that the function E(8) has an isolated local minimum at §".
an interior point of ©. As the existence and properties of 9" are more easily checked and
understood than those of §°. our next goal is to derive conditions under which the existence of N

implies that ° exists and is close to §'. We rewrite f from the update law (2.93) as
f(1.0(1.0)) = —p(L.OVI(1.0.F°)0-T") + e(1.97)] . (2.121)
Using (2.121) to rewrite f of the averaged system (2.94) as
T(0) = —R(8.5°X6-F") — avg[o(-.0)e(-T")] . (2.122)

we state the following result.

Theorem 2.8: Suppose that 8", an interior point of ©, provides an isolated local minimum E@") of
E(8) and that R(B",8") is nonsingular. Under these conditions there exist u, > 0 and y, < oo such

that if E(8") < u,. then the equilibrium 8° exists and

1o =81 < y,E@). (2.123)

Proof: Factoring e(1.0") as the product of e,(t). with unit amplitude. and . a scaling factor.
e(t.7°) = ue, (1) . avglef(D]=1 (2.124)
we prove the continuity of the function §(«) implicitly defined by

0

TUO.L) 2FO0-F") — p avgla(-8)e,()]. (2.125)

Since tH.0Y=0 . T.MT .0

R(G°.F°). and i_",.,l(y'.()) = avg[d)(ay' Je,()]. the claim follows from

the imphcit function theorem.
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'
. With the combination of Theorems 2.1 and 2.2 we have a result which is strong enough to be
4
' practically applicable for the design of adaptive systems. Doing off-line analysis or simulation of
"

(2.1) for constant values of parameters. we can check for typical signals w(1) entering the system,
. whether or not E(8) has a minimum for some value §" in the interior of the set ©. If this

- minimum exists we can then check the fact that the slowly adapting system has an almost periodic

solution which preserves its u.a.s. property in the presence of a nonzero tracking error. It is

s M
N

.

convenient that the restrictions Theorem 2.2 places on the tracking error are for the minimum

v
value of the RMS error E(§"). However, this result is local and does not give estimates of u, . o Or
: :‘.:'. the region of attraction of the u.a.s. solution. Theorems 2.1 and 2.2 are local because their
. hypotheses depend on the eigenvalues of the constant matrices R(F°.8°) and R(8".8"). respectively.
e Our next result considers R(8.87) as a function of 6 in © and makes use of the infinite time
'::.- approximation theorem to address these weaknesses.
-' Theorem 2.9: Suppose that 8" provides a local minimum E(F") of E(8) in the set B(8.8") € © and
that
-l ROFDI+RTOT) 2 2A1> 0 ¥0 € B(BT"). (2.126)
n ’ If the minimum RMS error E(7") satisfies
.. E(0") < A2/(2wyv V2 +Av,) (2.127a)
-
-
E(@") < BA(3V) (2.1270)
where
;.' W, = L | bl
Q,,y
- v = max Wol- 61N v
LR
Vi= max el 0)1 < v
"-‘ ~Bib o
with v and v from Assumption 2.2, then
o
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(i) the averaged system (2.94) has a u.a.s. equilibrium J° such that

g0 € ZE@). (2.128)

>| <

(ii) every solution of (2.94) with §(0) € B(B.7") satisfies

F(r) € B(BO) ¥71 20, lim|19(7)-0°1 =0: (2.129)

T—o0

(iii) given o > O there exists €(0) € (0.€,] such that for each € € (0.&] the original system system

(2.93) possesses an almost periodic solution 6°(1.€) which is u.a.s. and

lim 16°(te)—8°1 =0 (2.130)

€—0

(iv) every solution of (2.93) with 8(1,.€) = §(0) € B(8—0 .§") satisfies for each € € (0.€]

B(t.e) € B(B.8) . 10(1.e)-F(e(t—ty))| <o . ¥t 21,. (2.131)
and
lim 10(te)—0(te)! =0. (2.132)
t—oo

Proof: Because the Sethna and Moran (1968) theorem. together with (i) and (ii). implies (iii) and

(iv). we need only establish (i)  and (ii). Define the  mapping
T:B(VATIE(E").8") = B(VATIE(@).F") by

T(9) = 0"—R-10.9 Davgle(-.0)e(-57)] . (2.133)

The inequalities (2.127) are sufficient for T to be a contraction mapping on B(vA~'E(8").8"): hence.
T has a unique fixed point 8° € B(VAT'E(F").8"). Clearly. the fixed point of T is a solution of

T(8) = 0. Thus (2.94) has an equilibrium J" satisfying the bound (2.128). We establish that this

equilibrium is exponentiallyv stable with the Lyapunov function V(8) = _1- 0'6. Rewriting (2.94) in

~

the torm
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'ad7 T = —R@FNT-0°) — [b(T)—b(F°)]
(2.134)
+[REF) = REFHT-T") .
where
b(0) = avg[e(-.0)e(-.5%)] .
1t follows that
diT V(F-F°) € 2[-A+(2w,v VA1 + v DE@O)IVT=T°) (2.135)

for all & € B(8.8"). The inequalities (2.127b) and (2.135) imply that §° is exponentially stable
and that its region of attraction includes B(28/3.9°). that is. there exists A; > O such that solutions

of (2.94) with 8(7,,) € B(28/3 .8°) € B(B.F") for any 7, 2 O satisfy forall 7 2 7,
18(7)-8°1 € 18(7,)-8" lexp[—A(7=7)]. (2.136)

o show that the region of attraction of 8° includes B(B.¥'). that is. to establish (2.129) it is

enough to show that solutions of {2.93) with 5(0) € B(B.F") enter B(28/3.9") in finite ume. Using

the form of T in (2.122) we compute the inequality
L VE-F) < -NT-F 12+ VEF) 1 T-F1 (2.137)

Choosing 8 > O such that 8 + VAT!E(F") < B/3. it is clear from (2.137) that solutions of (2.94)

beginning in B(B.8") enter B(§ + VAT'E@)F") C B(28/3.8°) in finite time.

0

The stability condition (2.126) is again the signal-dependent SPR condition. HHowever. it 1s

noa evaluated pointwise in @ for each 8 in a ball around J° rather than at only the point 6 = 6"
The tormula (2.108) for R(O.F) is still vahd: hence. the trequency domain interpretations of
(2126 are analogous to those of (2.109). Finally. we point out that as 8 varies over B(B.") the
transter tunction W, (8 5) does not change. That is . the condition (2.126) is a signal-dependent

SPR condition on the fixed transter tunction W (8°.5) tor the different signals &(1.8) as @ vares

wer the ball B(3.8°).
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2.7. Concluding Remarks

Pursuing the intuitively appealing distinction between states and parameters, we have
established conditions for the existence of an integral manifold — the slow manifold — and used it
for an exact description of the slow adaptation process. Conditions for the exponential attractivity
of the slow manifold are formulated. and the exponential attractivity is shown to imply that the
stability properties of a solution of the reduced-order system on the manifold are also the stability
properties of the corresponding solution of the full-order system. Based on this reduced-order
exact description, we have examined the validity of earlier results obtained via the averaging of
what is now shown to be a "frozen parameter” approximation of the slow manifold. A particular
model reference adaptive control system is shown 1o possess an exponentially attractive slow
manifold. The stability of this system is then analyzcd via averaging of the equation describing the

motion 1n the manifold. This analvsis extends and completes earlier results based on a linearization

near 4 "tuned” system.

il

|




Y i e catoaaal aaocag . gk gt At aia Aledla gdia diid Ty TR TR R CETEITROTFCT T I AT WITATT W W HTT BT 0 7T RyTm A | m T m ot | amen |
- )
-

47

. .-
| RPN
-« ¥ o

CHAPTER 3

INTEGRAL MANIFOLDS OF SLOW ADAPTATION IN DISCRETE TIME

Z;:; 3.1. Introduction
" Many discrete time adaptive control schemes are described by ordinary difference equations of
* the form
3 x(k+1) = A(BK)x(k) + B(B(k)w(k) . (3.1)
.. 6(k+1) = 0(k) + ef(k.0(k).x(k)) . (3.2)
_
) where, as in (2.1)-(2.2). x contains the states of the plant. controller, filters. etc., and @ is the vector
é of adjustable parameters. We remark that if the update law is of the Newton or least-squares
) tvpe. then 0 contains the columns of the Newton matrix. As in Chapter 2, we first derive
2 conditions under which (3.1)-(3.2) possesses an integral manifold M, of the form
i M, = {kf8.x:x=g(k8e) . (3.3)
. and then consider its attractivity. Restricted to the slow manifold M, the system (3.1)-(3.2)
Y
2
d evolves according to x(k) = g(k.08(k):€) and
. B(k+1) = 6(k) + ef(k.0(k).g(k.6(k):e€)) . (3.4)
which is in the standard form for averaging. Discrete time averaging theory relates the solutions of
~
(3.4) 10 the solutions of the ordinary differential equation (ODE)
x
= 43 =7®) (3.5)
dr
- w here
0
Pt
_ k+N-—1
£(9) = \lxm— Y £(3.0.8(3.9:0)) (3.6)
'.:' — XY » J—'k

Leaving the application of this theorv to a specific adaptive svstem for Chapter 4. we give proofs of

‘n
o

several discrete-time averaging theorems using deterministic assumptions. Bv making appropriate

=~
]

&

assumptions on the stochastic process which generates the inputs to (3.1)-(3.2). we conclude this

[ 3]
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chapter with a lemma that relates the trajectories of some stochastic adaptive control systems in

A the form (3.1)-(3.2) 1o solutions of the ODE (3.5).

£y 3.2. Approximation of the Slow Manifold

As in the continuous-time case, an integral manifold M, of (3.1)-(3.2) is defined by the

.;2:: statement that if x.0 is in M, at k=Kk,. then it is in M, for all k 2k, that is.

"::::

Wiy (Ko.8(ko).x(ko))EM, = (k.O(k).x(KNEM, ¥k Wko€Z . 3.7
S In general. solving for the function g(k.:€). which determines M, via (3.3). is as difficult as solving
N
I
.";\j the complete system (3.1)-(3.2). Our approach. then. is to find an easily computable and

K ) . . ‘

: " meaningful approximation of g(k.0:€). Note that at €=0. @ is constant and (3.1) is a linear time-

' L)

-.l::; invariant system with input w(k). Hence. we can compute the solution of (3.1)(3.2) for €=0. The
N

s variation of constants formula applied 10 (3.1) with (k) = 0. a constant. gives

e\

}'\

k=1
" x(k) = A*TOx(k,) + T ASI(OBOWG) . Kk +1 . (3.8)
]

vf\' 1=kg
LS
I Assumption 3.1: There exist a set © and constants K €[1.00) and A,€(0.1) such that

N
o |A(B)) S KA . i20 . ¥0eO . (3.9)

N
S

-.j}-. 0

Y

".::s

et

A Making use of this stability assumption, we let k,——oco in (3.8) and take the steady-state response

- = .

] k) = Y A {0)B(B)w(i) (3.10)
‘.-‘-.;ly ==

2
A as the manifold function g(k.0:0) = ¥(k.8) defining the frozen parameter manifold M,. This

"f. function is both meaningful and easy to compute. Therefore. in addition to proving that M, exists,

L8

X L-I’:Q we adopt the goal of showing that g(k.0:0) = v(k.9) is a good approximation of g(k.0:€) for small €.

Dy, ¥

A5 i

.Z N In order to meet both goals simultaneously, we introduce the deviation of x from v(k.0) as a new

i
o state variable
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e

z = x=—wv(k9) . (3.11)
and transform (3.1)-(3.2) into

-
‘l

; 2(k+1) = A(6(k))z(k) — G(k+1.6(k).z(k))

(3.12)
S 8(k+1) = 6(k) + eF(k.0(k).2(k)) (3.13)
~ where
o G(k+1.0.2) & y(k+1.0+€F(k.0.2)) — ¥(k+1.0) (3.14)
J
b F(k8.2) & f(k0.0(k0)+2) . (3.15)
)
The goals are met by proving that (3.12)-(3.13) possesses an integral manifold M, determined by
| g
S = (k.0.z: z = h(k.0:e)l (3.16)
4
.
' i‘ with h(k.8:€) = O(e).
. Before proving the existence of h(k.B:€). we consider formal (without proof) approximations
-~ of h(k.0:€). From the definition of M, it follows that the function h(k.0:€) evaluated along a
' trajectory of (3.12)-(3.13) which is in M, must satisfy (3.12)-(3.13) with z replaced by h.
Performing this substitution. we get the functional difference equation
"
)
> h(k+1.0+€F(k.0.h(k.0:€)):€) = A(O)h(k.0:€) — G(k+1.0.h(k B:€)) . (3.17)
! This is no longer an ordinary difference equation in k because of the variations in the second
'
. argument of h. Rewriting (3.17) as |
3
>

h(k+1.0:¢) = A(0)h(k.0:¢) — G(k+1.0.h(k.0:€))

(3.18)
e — [h(k+1,0+€F(k.0.h(k .8:€)):€) — h(k+1.0:€)]

R

we bring (3.17) 1o a discrete-time analog of the partial differential equation (2.23). Under an
Y
> appropriate smoothness assumption we can approximate h(k.0:€) by a power series in €
.;:; h(k.0:€) = h,(k.0)+eh(k.0)+€h(kO)+ - - . (3.19)
. Substituting this series for h(k.0:€) in (3.18) and equating the coefficients of like powers of €. the
i equation for h,(k.0) is an ordinary difference equation in kK whose steady-state response is zero:
0\.

o

»
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s ho(k+1.0) = A(0)hy(k.0) => hy(k.0)=0 . (3.20)

L For the € term h;(k.0) the ordinary difference equation is

‘;:;. hy(k+1.8) = A(0)h,(k.0) — ve(k+1.0)F(k.8.0) . (3.21)

and its steady-state solution for each fixed @ is given by

L
75

3 h(k8) = F ACI(OW(+1FG0.0) . (3.22)
. i=—co
E:.:'.l.

Here use is made of F(k.0.hyo(k.0)) = F(k.0.0). This process of successively evaluating the hjs

Z

el

continues with each coefficient h(k.8) in the expansion (3.19) being the steady-state response of a

j'-‘ linear ordinary difference equation in k. parametrically dependent on 6, and driven by terms with
by
() h, and derivatives of h; only fori < j.
s
o
J'.‘-'
o 3.3. Existence of a Slow Manifold
o
As in the continuous-time case, we derive conditions under which M, exists by constructing a
N
ety map T, whose fixed point is h(k.0:€) and finding conditions for T, to be a contraction. We first
¢ ,)'
*‘ X specify a closed subset of a Banach space in which to search for h(k.0:€). Letting the space be the
. set of continuous functions H(k.0) equipped with the norm |[H|| = sup [|H(k.8)|. we use positive
R - k 96 ZxR "
I.*.h
::’: constants D. A to define our closed subset H(D, A) as
\ .
e
H(D.A) = {H:ZxR"™—R™ [H||<€D and |[H(k.9)—H(k.0)| < A |[0—9|¥k€Z:¥0.0€R™} .(3.23)
g
AN
3 -'_: Recall that our goal is not only to prove that h(k.0:€) exists but also to show that D and A are
L4
A N | | -
(XY (X€) In addition to the stability assumption we require the parameterization A(8). B(8) to be
A
s continuously differentiable and to have Lipschitz first derivatives for €0 and w(k) to be
o, e
P
e unitormly bounded. We quantify this requirement in the following assumption.
LA
.f:'.-
-t
K Ass” _tion 3.2: There exist positive constants v.v;.vs such that
e Wk < v. kO] € vy . vk 8)—vik.H)] < v,|0-6| . (3.24)
N
‘l*)
@aantn,.
by
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for all k€Z, and all 0.6€0.

With this assumption, the existence of h€H(D.A) implies that g is uniformly bounded and
N Lipschitz continuous in 0. Finally, we must use a parameter update law (3.2) with F(k.0.x) being
g

bounded and Lipschitzian in 0.x uniformly with respect to k€Z ,8€86, and x in compact sets.

B

Assumption 3.3: There exist nondecreasing positive functions pg(D), pg(D). and p,(D) such that
0y
‘& ~ -~
a [F(k.0.2)] € pe(D). [F(k.8.2)-F(kd.2)| < py(DYO—4| . (3.25)
o [F(k.0.2)~F(k.0.2)| < p,(D)|z—%| '
3 -
for all k€Z, for 0.9€0. and for all z.3 with |z| € DJ3| € D.
O
Anticipating the same type of stability conditions that were encountered in Chapter 2, we
\j)
N again introduce a modified system where 0 is replaced by p(6)€© in A. G, and F. Notice that
i G(k+1.8.z) contains v(k+1.0+€F(k.0.2)). In order to ensure that p(6)+€F(k.p(0).2)€© we must -
choose p(0) strictly inside ©. Let ©,(€.D) be a compact. convex subset of © such that 6€8,(e.D)
:-_:: implies B(epp(D).0)&O. We take p(8) to be the unique element of ©,(€.D) which is closest to 8.
namely,
g 6 = i —0| .
p(@) = arg min Ip—f| (3.26) |
e Remark 3.1: With this definition p is potentially a function of € and D. However. the meaning of
o p and the choice of 1he set ©,; are generally clear. Hence. for notational simplicity we do not
explicitly indicate the dependence of p on € or D.
- O
o We henceforth analvze the modified system
- AR+1) = A(pOK)NAK)—GK+1.p(8(K)).AK)) (3.27)
. O(k+1) = O(K)+elF(K.p(6(K)).2(k)) (3.28)
,
This modified system s similar to but not identical 1o the usual Kind of parameter update laws
'}_' incorporating projection. which have the form

- - - -~ - - - - . - - , - Iy - - » - . - » - . < W o . '. '- ", o . . --‘ Pl ‘<n .s.'.n o ~‘- _.. 'p' o ﬁ
! R A CR TR LR R TR NPT LR CORLLE SR U RIS e A AT 1 R A T R R R AT AT
mq-z_td:r‘;-.-hr.:u}tc".x:-rb.~.:a S T S T S AP S
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3
by 0(k+1) = plO(k)+€F(k.0(k).z(k))] . (3.29)
~ Update laws such as (3.29) ensure 8(k)€© for all k which makes the p(9) in A and G unnecessary.
)
‘-\.; whereas (3.28) allows 8(k) to leave © but 8(k+1)—08(k) is always computed using p(6(k))€O. The
o
Ko study of (3.29) introduces technical difficulties at the boundary of ©. A topic of future research is
.
O how to avoid the technical difficulties associated with the usual projection algorithm (3.29) while
- "
-~
'\' avoiding the potential unboundedness associated with the modified update law (3.28).
a5
With the use of A(p(6)). B(p(8)). G(p(6)). F(k.p(8).z). the fact that |p(8)—p(8)| < |§—0|
-
;‘ implies that the modified system satisfies Assumptions 3.1-3.3 for all 0€R™. We describe the
B
a dependence of F(k.p(0).H(k.0) and G(k+1,8,H(k.0)) on 8 for HEH(D.A) by defining p,(D.A) and
o
A
'Y p-(D.A) such that
o ) R .
i |F(k.p(8).H(k.0)) — F(k.p(0))H(k.0))| € p,(D.4)|0—6| (3.30)
& IG(k+1.p(8).H(k.8)) — G(k+1.p(8).H(k.0))| < epx(D.A)|0—6|
i)
Y for all K€Z. for all G,éERn" and all HEH(D.A). It follows from Assumptions 3.2 and 3.3 that p,
:Jj:: and p» exist and can be chosen to satisfy
5%
r).:
o ' P1(D.A) € py(D)+Ap,(D). p2(D.A) € vipy(D.A)+vape(D) . (3.31)
I Our first step in constructing the map T is to define 8,(i:k.0.€) for i<k as the solution of the
\’
'’
i 4 end-value problem
"
- 0,(i+1) = 0,(i)+eF(i.p(0,(i)).H(i.8(i))). 6(k) =6 . (3.32)
4%y
15
:'-‘. where the subscript j implies dependence on H,. We bound the dependence of 6(i:k.8.€) on 6 and H,
>
:'{ in the following lemma.
W
Lemma 3.1: Suppose that Assumptions 3.1-3.3 hold. Let €(D.A) = 1/p,(D.A). For each
o e€f0.€,). if H.EH(D.A) and H,, €H(D.A). then
o ‘
"' k—1
: ~ ‘ ~
: (ikBe)—0(1kbe) S 6-0| . %
o 0.(i:k.0.€) — 8 (1:k.0.€)| ETRORY |0—6| (3.33)
e
=
e
o
l:j
N
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k=i

=1 ||IH-Hq| . (3.34)

. < pAD) 1
1% 0.0-0nix 00| € Zrs || s

for all iSk.

Proof: Letting (i) and éj(i) denote 0(i:k.0.€) and Oj(i;k.é.e). respectively, we have

16,(i+1)-8(i+1)| > [0,(1)—B()|—ep,(D.A)9,()—0,(i)|
= [1—ep(D.A)]|0 (i)—6.(i)|
for all iSk—1. Dividing both sides of (3.35) by 1—€p,(D.A)>0. we get the desired result,

(3.35)

1

i—-0.()] €

8,(i+1)=8,(i+1)|

k

1
1—ep,(D.2)

1
l—eplzDAj

< 10,(x)—0,(x)|

k

(3.36)

l0-6] .

Letting 6,(i) and 6,,(i) denote 8,(i:k.0.€) and 6,,(i’k.0.€). respectively. we have

10,(i+1)=0,,(i+1)] > [0,(1)—8,(i)] — €p1(D.A)|6,(1)~0,,(i)]

(3.37)
— €p,(D)|H(i.0,,(i))—H,,(1.0,,(1))|
for all iSk—1. We again divide by 1—€p;(D.A) to obtain the desired result,

1
T—ep,(D.A)

€p,(D)

16,(i)—8,,(i)| < WHHJ—H"‘“

|0 (i+1)—0,,(i+1)| +

€p,(D) ki1
= m'lHJ_Hm” Z

n=¢t

n

1
]—Gp]z I),A j

' (3.38)
€p,(D) 1—ep,(D.A) k=

1
= H~—-
I—Gpli D.A; " ) Hm" épl(T).A)

l—épl(D,Aj

O

The second step in the construction of the map T, requires the stability of the iinear time-

Ai+1) = A(p(B NI (3.39)

.).‘v o
) AN~
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where 0(i) = ,(i:k.0.€) is considered as a given function of time for a given H;€H(D.A). The state

transition matrix of (3.39) is given by

I n = m
®(n;.ny:k0.€) = (3.40)
AP0, (n;—1NA(6(n=2)))A(p(6i(n2))) n, > ny

and we establish its stability in the following lemma.

Lemma 3.22 Suppose that Assumptions (3.1)-(3.3) hold. Let a be the Lipschitz constant of A(8)

for 6€0O. that is,
|A(8)-A(0)] < a|o—f| (3.41)

for all 6.6€6. Denoting the l.rgest integer less than or equal to N by |NJ. let

an(k—1) |
N(e.D) = 3.42
If H€H(D.A), then
[®(ny.nk0.€) € KA 7"eD) . n2n, . (3.43)
where
K(/NEDI[\ +eKape(DIN(e.D)/4] | if N(eD) 2 1
\(eD) = . (3.44)
KAU , if N(G.D) =(
m)

In the proof of Lemma 3.2 and several results in the remainder of this chapter we use the

following discrete-time version of the Gronwall inequality.

Lemma 3.3: If r(k). p(k) are sequences of nonnegative numbers satisf ving

L k—-1
(k) < KA Tr(R) 4+ 3 KA I=p(i)r(i) (3.45)

1=Ky

then

f‘"’dh...r‘tx ,L.;l\l“n R
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>4
- r(k) € Kr(ke) v [)\H\p(x)] (3.46)
1=kg
! Proof: Letting ry(k) = A7*r(k). we have
N k=l
ry(k) € Kry(ko) + ZTP(i)r,(i) : (3.47)
i=kq
. |
o2 Letting ra(k,y) = Kr (ko) and
:(, k—1 K
R ro(k) = Kry(ko) + Y Tp(i)rz(i) . (3.48)
' ) i=kg
~
~ we see that r,(k) satisfies the scalar ordinary difference equation
ot - K
r‘- rak+1) = [1+7\_p(k)]r2(k)
= | O [1+>=p(i)] |r(k,)
: 1=kg A
i Comparing (3.47) and (3.48) it is clear that r (k) Sry(k): hence.
. k=1 |
r(k) = Ar(k) € (kAR T [12p(i)]
- 1=kq A
- k-1 -
- = KelA 0 T [14+20(0)] (3.50)
!_ = Ke(ko) T [)\+Kp(|)]
n 1=k 0
. a

e
o

Proof of Lemma 3.2: Letting A(i) denote A(p(6(i))). it follows from Assumption 3.3 and (3.41)
L
.’- that
= |A(n)—=A(no)| € €app(D)n,—ns| (3.51)
L
~ In order to prove (3.43) it is sufficient 1o show that the solution of (3.39) satisfies
4'..

ln )| € Klz(n)]A" " eD) . ny2n, (3.52)

tor an arbitrary z(n,) and arbitrary n,. For any integer u. we can rewrite (3.39) as

o WIS Ny L W f g eI N '\-‘. ‘-
}":}f:‘,."::"h'. Ran '\ " l".‘"\." ..“l“ KON - \'- "? ,‘ ) .a *

’ "-’\"’ (\ \. . ‘ !’.»‘ R

TP S e T Tl L
f..l‘&i:."f'\“ _"-. | -, ﬂ,'r' - F

;‘d‘$1.1
W 14
Lot <
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z(i+1) = A(u)z(i) + (A()—A(u))z(i)
Applying the variation of constants formula to (3.53) and taking norms we have
)
tj R ~1-i
~J l(ny)] € Klz(n)Ad™ + § KAS ™ “eapp(Dfi=u] |2(i)|
.l l—n2
which in light of LLemma 3.3 implies
\
\
:: -1
‘Q |z(n,)] € K|z(n-.)| I (A0+eKapp(D)|x—uI)
I:'
. n;—n; n;—n;—1
For any given n; and n, we choose u as the integer 3 o 5 :
R np—l -n> )2 . X3
b 2 li—u| € ——— Noting that In(x,+x;) < ln(x1)+;. we have
e 1=n, 1
N ny—1 ny-1
S H [)\(,+ehap;(D)|1—u|] = exp ln [I [A.)+el\apF(D)||—u|]
:: ny—1
=exp | ), In[A,+eKapp(D)|i—u]]
l=n2
N‘
.‘\; n—1 —n>
- Sexp|X ln[)\(,+el\apy(D) ] + Z eKapg(D)[ |1—u| ]
:..; 1=n, 1=n;
-1
A Sexp| ) ln[)\“+€l\apF(D) ]
g 1=n,
. bt 4 -
:: = [)\(,+€Kapp(D) nl4 - ]n, "
N
X Thus. (3.55) is replaced by
)
L~
> . . nNy=ns ;-
- |z(n )] € K|z(ny)|(A,+€Kape(D) 3 R
]
J For n;—n><\(e.D). we have
| . n—ne
) A +eNapge(D) < AleD)
: hence. (3.43) holds for n;—n, S N(€.D}. At n;=n,+N(e.D)) we have
2
¥ M
)
R e e L s e

(3.53)

(3.54)

(3.55)

hence,

(3.56)

(3.57)

(3.58)

S

.l‘..} “‘:‘; h
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N(é D) JNeD)

ANED(eD) = K[\,+eKape(D) —=—~ (3.59)
which implies that for any integer m20
|z(n,;+mN(e.D))] € A[NED) e D)|z(n,)| . (3.60)

Since any interval of length n;—n; can be broken up into an interval of length mN(e.D) and one of
length less than N(e.D). this completes the proof. Note that the proof holds for any integer N in

place of N(€.D). The particular choice of N(e,D) given by (3.42) approximately minimizes A,(€.D).
O

. Kapg(D)
Remark 3.22 N(e.D) = 0 is a degenerate case where (K~1 )x0<e_ap:—_. When K is so close to 1

or A, is so close to zero. we let A\,=K\y and note from (3.9) that [A(8)] € A, ¥(8)€O. Hence.

solutions of (3.39) satisfy |2(i)] € (A, )7*)z(iy)] no matter how fast or slowly 8, moves.
O

]

From the fact that KM <1+ 821 . and from equations (3.42). and (3.44), we bound A,(€.D)

by

V eapF(D)K
ax(K=1)

eap(D)K(K-1) |’

€apr(D)K(K—1) ]

Al(e.D) s 1+ AU . (3.61)

™

Since A, <1 it is clear from (3.61) that € can be chosen small enough so that A,;(€.D)<1; hence. for €
sufficiently small (3.39) is exponentially stable. We complete the construction of the map T, with

the pointwise definition

(TH)(kB) = Z O (k—1.i:k.0.)G(i+1.p(0(1:k.0.€).H (10 (ik 6.6)) (3.62)

Because G(k.p(6).H(1.0)) is uniformly bounded and &, s exponentially decaying for € sutficiently
small. the right-hand side ui (3.62) is bounded for each K€Z and each O€R™. If h is a fixed point
of T,. then wiven any k.. 8, choosing z(k..) = h(k,,.0,:€) results in a solutior. z(k). 8(k) such that

(k) = h(k.O(k)€e). Hence. the fixed point of T, is indeed the manifold function h which we are

P S T N S ST R S I S LY v ’ L., . Pad T i N ( :
PPN N JJ'J',,_J‘,\ ._ “ Lol e (‘, ‘\'I\.-..“--‘.r./_.(_r/) S
A A PR TR LN VSV S et 1{_ At A..;.!'u‘fa.fk" 2 s hindinde i
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b:f-\_ seeking. We derive conditions for T, to be a contraction on H(D.A) in the following lemma.
n
N Lemma 3.4: Suppose that Assumptions 3.1-3.3 hold and that (3.41) holds. If €>0. D>0, and
o
"122 A >0 satisfy
!
; Kv,p(D)
€ <D . 3.63
_":n . I_AIZG.DS ( )
3 M(eD) < 1—epy(D.A) . (3.64)
o € K (D.A) + RavierD) | ¢ 4 (3.65)
. l-epl(D,AT—'Al(e.Dj P2 ’ I—Al G.D h ) )
re pD)
{ e——(ﬁK +A) < 1, 3.66
Et- l—xl D ( Vi ) ( )
o
! where A (e.D) is given by (3.44). then T, is a contraction mapping on H(D.A).
£LC
.'.'r-:
. Proof: lLet H . H,€H(D.A) be arbitrary. The first bound (3.63) is the easiest to obtain. As
oy €v,pe(D) bounds [G(i+1.p(8 (i:k.0.€)).H(i.0(ik 0.€)))|. we have
vard
Y2 k=l Kv, (D)
_’; (THXKk.O)| < ‘Eml\)\,“ I=(e.D)ev,pp(D) = € TSN (eD) (3.67)
;{;3
o ‘) hence. (3.63) ensures ||T.H || € D. The bound (3.64) arises in the derivation of (3.65) and (3.66)
: i: which guarantee that [(TH)(k.®)—(TH)(k.8)| < 4j6~6] and |[TH~TH.| < [H~Hg.
"'J‘?
::;-: respectively. The most difficult step in establishing (3.65) and (3.66) is determining the dependence
i . |
L of ®(n,.nyk.0.€) on @ and H. We do this now. Denoting ®(n;.ny:k.0.€). ®n(n;.nzkbe) j
p i
¢ . - - :
..;: 8.(i:k.0.€). and 6,(i:k.0.€) by ®(n,.ny).®(n;.n,). 6(i), and 6(i). respectively, we write the ordinary ‘
g
:."_\ difference equation in n,
F ‘::‘_.
] ®(n;+1.n,)=d(n;+1.n,) = A(p(8(n;)N[P(n,.n.)—d(n}.n-)] (%)
L% . . 6
e
E :5. Applyving the varation of constants formula. we obtain
- -~ I ~ -
‘4;-: (®(n,.n21=®(n,.n2)] = [Dlnan,)=dnany)] + Z(b(n,-—l D(A(P(8G)))=A(p(B(i)))]d(ins)  (3.69)
! :' [
-r*
-
WA

- : « = CE R R ’-_*. A R T e e e T T el
. e, e, S P n.-,»_ J' ] .. \ ----------- ‘;-._4-..\".- _‘p_ . A ‘.‘ : e
y '(»\, A ’.\". “'"‘ ‘ b -\J‘t.’a..hu-\_-’_.la.l R IR AR S v e A--R)C;.n.)x".)"‘
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3 ~
- for all n,€$n;<k. Using ®(n,.n,) = &(n,.n,) =1, (3.41), (3.43) and the triangle inequality, we
. bound ®(n,.n.)—d(n;.n,) by
) - ny—=1
|®(n).n;k.0.6)=®(n,. nzkee)l K2ar[1 (e, D)Z|9(1k9€)—6 (ik.0.€)| (3.70)
e 1=ny
, Note that (3.64) implies €<€,(D.A); hence. the bounds (3.33). (3.34) hold. Substituting from
-
L
’ Lemma 3.1 we arrive at the key to (3.65),
* «
o |®(k—1.n:k.0.€)—® (k—1.n:k.0.€)|
< Kanr2ed) -8 F |t |~
- KA [f~“™™(e.D
= S L =
Je
R 1 1 k—1-n ( )
. = K2|0—9]r £~ "(e.D) -1 3.7
16-6lA! € (D.A) ||ep,(D.A)
-
RS -~ ( k=—1-n
. K-?a|6—0)| A (eD) —\K-1-9(¢ D)
y ep,(D.AX,(e.D) || 1—€p,(D.A) ! '
) and the key 1o (3.66),
[®(k—1.n:k.0.€)—®,(k—1.n:k.0.€)
S ., R pa(D) k22 k=
o~ < K-aAxf'==(e.D)||H~H ~ 1
3 A IH-Hl 55y 2 | oD
(3.72)
: K2ap(DH~H,|| |[ AieD) |77
> = . —Af7177(e.D) — €p(D.AXK=1—n)AF717(e.D)
ep (D.AA(eD) || 1—€p (D.A) ! piD.AX AT
L
o Using the inequality (3.71) we bound the dependence of T.H, on 8. With the same notation as in
‘:- (3.68) and j=m. the triangle inequality gives
’{
phy
i
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)
o,

Y -
o [(TH )(k.0)—(TH,)k.8)|

: k=1 . R
» € X |[®x—=1.D)[G(i+1.p(8()).Hi.8(i)))— G(i+1.p(8(i)) H(i.8(1)))]|
k k-1 - . R
i + 2 [®(k=1.)—D(k—1.0)]G(i+1.p(6(i)).H (i.8(i)))|

\ 3 < e 1 k=i
|, - — -2 A k—i—1

= L ! ev,pe(D)K?al0—0)| A (eD) —AF1e D)

:”. \=—c0 GPIWA)A](GD) 1"‘€p1(D.A)
w K v Kapg(D) A

< A) + -] .

: ¢ memmarneny P20+ e [0
::: where the last line holds because of (3.64). Thus. (3.63)-(3.65) imply that TH;€H(D.A) if
‘:. H,€H(D.A). Denoting ® (k—1.i:k.0.€). 8(i:k.0.€) by ®(k-1.i), 8,(i), respectively. and similarly for
'_f\ ®...9,.. we have
.‘n-'

3 |(TH,)(k.0)—(TH,)(k.0))

- k=1 ‘

" < X |o(k=1.0)[G(i+1.p(6,(1)).H/(1.8,(i)))— G(i+1.p(8,,(1)).H{(i.0,()))]|

"o k=1

:_'é + ¥ | (k=1.0D[G(i+1,p(8,,(i)).H,(i.0(i)))— G(i+1.p(8,,(i)).H,(i.0,() ]|

_\. =

- k—1

o + 2 [ (k—=1.)=,(k—1.0)]G(i+1.p(0,,,()).Hp(i.8,,(i)))]
‘ < 5 KpoD.)pu(D)HHy| [ Ai(eD) “““_[1_6 (DAY EIeD)
- S & 5 DANI=ep,(D.A)] T—ep,(D.A) pLD.SIATT e
| ':'. k=1
e + L ehvip(D)[H=Hy A (" (e.D) (3.74)
o k2l evipp(DIKZap,(D)H,~H,[| |{ A eD) |7

g + =X (e )

Y :=z_.:,, ep;(D.A)A(e.D) 1—ep,(D.A) e

7
f —ep,(D.ANK—1—DAF17(eD)
- (DI H—H, Kaps(D)

- = Tl 3N vikapy
.\-_-j. 1=\ (e.D) kv 1—ep,(D.A)—=A(e.D) po(D.A) + [1=x,(e.D]]
o
o €p. 1))
S (kv —H, .

= ATl Ky +2)|[H=H,|
.S d
ol

A
) &"'-"‘-’

A

‘v - D I I T S I AP T Vol U e P A A I
.',\’\,S.‘\‘-‘\'.",\ 0 “':-. ‘--‘-. L .,"_, R ,:-, ...r_, J'.‘-f, o _/ o
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RS
Loy Remark 3.3: Lemma 3.4 uses Aj(€.D) given by (3.44) only to imply that the stability bound
22
il ! (3.43) holds. If (3.43) can be established with A, replaced by A,". then A,  can be used in (3.63)-
N,f - (3.66). For example. if there exists a positive definite matrix P such that
R
NS AT(9)PA(O) S AP ¥0€O . (3.75)
N ’
~ then (3.43) is satisfied with A\ ;(€.D) = A, and K = (A 0 P/AnP)™
".’-_ Y, D
vor
»
S s In light of (3.61). the fact that A< 1, and the fact that A,(€.D) is a nondecreasing function of
» ‘ - )
<o
€ and D. it is clear that for any fixed Dy>0. A;>0 we can find an €,(Dy.A,) such that (3.63)-(3.66)
ol
EAEERA .
:" oy hold for all €€[0.€,). Because pg, p,. P;. and p, are nondecreasing functions of D, A, it follows that
:.‘\‘
-_:}, A (3.63)-(3.66) hold with D = (e/€;)D, and A = (€/€3)4, for all €€[0.6;). We illustrate the last
Y W
& statement with (3.63),
o Kv,pe((€/€;)Dy) Kv,pg(D,) D,
RS e IPFLEE2 0] L PRV e (3.76)
' N 1")\1(5.(6/62)1)()) I—AI(G.DU) €5
k) N ..
E_ By the Banach fixed point theorem. there exists a unique function h(--:€)€H((€/€;)D,.(€/€;)A)
:::;: which is the fixed point of T.. and. hence, defines via (3.16) the integral manifold M, of (3.27)-
.\:n‘. .':. .
:-" ” (3.28) for all €€[0.¢,). This result is summarized in the following theorem.
-
~;:: = Theorem 3.1: Suppose that Assumptions 3.1-3.3 hold and that (3.41) holds. Given any fixed
'J'_-}' -~ D, >0, A, >0, there exists €,(D,.A,)>0 such that for each €€[0.e,) the modified system (3.27)-
A,
o (3.28) possesses an integral manifold M, defined by (3.16) with h(-.-.€)€H((e/€,)D, .(e/€;)A,).
ey v =)
P
,:j This result translates to the original system (3.1)-(3.2) as follows.
.. .
Vol
,.d L Corollary 3.1: Under the conditions of Theorem 3.1, suppose that € <€(D),.A,). Let x(K). (k) be
“" . the solution of (3.1)-(3.2) with initial data  x{(k,)=x, 6(k,) =86, Suppose that
W .
f:Z}-: ’ O(LI€D, (e(e/€.)D,,) tor all k€[k,.k,] If (K,8,.x.)€N,. then (kB(Kk).x(K)ENL for all k€[k,.k,]
S L |
e h where M, is defined by (3.3). ‘
i -
i
o LYY
+.8°8) 5*
g
)

R |',,o, ,": '-‘-'\.s.\.\.

f).l'.rd‘.l'-l'ﬁ.f..r
)
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DA
E:«:E:' Remark 3.4: Up to this point the only assumption we have made about the external inputs to the
’ system. w(k) and f(k...-), is that they are uniformly bounded. If they are periodic (almost
E;:-E periodic), then ¥(k.8) and h(k.0:€) are periodic (almost periodic) in k. o
T
o
. Before considering the attractivity of M, in the next section, we give an instability result.
The evolution of (3.27)-(3.28) restricted to M, is governed by the reduced-order system
0(k+1) = 6(k) + €F(k.p(8(k)).n(k.0(k):€)) . (3.77)
The proof of the following theorem is identical to the proof of Theorem 2.2.
Theorem 3.2: Under the conditions of Theorem 3.1, suppose that €<e€;(D,.A,). Let 0*(k) be a
solution of (3.77). If 8°(k) is an unstable solution of (3.77). then z* = h(k.0*(k):€). 8°(k) is an
unstable solution of (3.27)-(3.28).
a
3.4. Attractivity of the Slow Manifold
Theorem 3.2 showed that the existence of M, is sufficient to prove that instability in the
reduced-order svstem (3.77) implies instability in the full-order system (3.27)-(3.28). However.
existence of M, is not sufficient to show that the existence of a stable solution of (3.77) implies the
existence of a stable solution of (3.27)-(3.28). In this section we establish the exponential
attractivity of M, which is sufficient 1o show that the existence of a uniformly (asymptotically) |
: stable solution of (3.77) implies the existence of a uniformly (asvmptotically) stable solution of |
" (3.27)-(3.28).

;...

We begin with a boundedness result tor z(k) which justifies Remark 2.8.
Lemma 3.5: Suppose that Assumptions 3.1-3.3 hold and that (3.41) holds. Given any fixed

AEIAT). D,>0,and D; 2 D,.. let p(8) take values in ©,(€.1);). There exists €(D..D;.A) > 0

such that tor each € €[0.€,)if 12(k,)! < D,/K and '0(k,)] < oo, then
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l‘.l
" < 1w ykko _k-kgy ¢ (3.78)
lz(k)I € KA I 2z(ko) | + (€/€3)Dy(1~A ) £ D,. .

! Proof: Choose €;(D,.D,.\,) so that
‘::' A‘(e3.Dl) s }\1 . €3KV]PF(D)) S Do(l—'xl(e_;,Dl))- (379)
= By (3.61) it is clear that such an €; > O exists. We prove (3.78) by induction. Suppose that
= 12(i)1 € D, for all i € [ko.k=1). Then |F(i.p(8(i)).z(i))! € pg(D,) for all 1 € [kg.k—1]; hence.
;: 18(i)| < oo for all i € [ko.k~1]. Letting ® be the state transition matrix of z(i+1) = A(8(i))z(i) it
1

follows from Lemma 3.2 that |®(n;.n,)! € K A" "e.D,) for all n,.n, € [kyk]. Applying the
-
variation of constants formula to (3.27), we have
. k=1
% z(k) = ®(k.kg)z(ko) — X D(k—1.0)G(i+1.p(0(i)).2(i)) . (3.80)

1=Kkg
‘,-'j Because 12(i)| € D, implies that 1 G(i+1.0(i).z(i))! < ev,pe(D,). it follows from (3.80) that
: L k—k Kv,pe(D)) K=k

ﬁ lz(k)I < KA,y %eDy) lz(ky)! +€m (1 —Ay %Dy . (3.81)
t‘ which implies for € € [0.€,] that 1z(k)! € D,. Hence. if (3.78) holds for all 1€[k,.k]. then it holds
“

for all i€[k,.k+1]. Since I2(k,)! <€ Dy, (3.78) holds for all k =k,

; o

Remark 3.5: For Lemma 3.5 it is sufficient that v(k.@) be Lipschitzian in 8 and that F(k.0.z) be

. :_
rad bounded for all k € [kyo0). 6§ € ©, and z in compact sets. That is. the assumption of a
:_’, Lipschitzian derivative of v and the assumption that F(k.0.z) is Lipschitzian in 0. 7 can be dropped
from Assumptions 3.2 and 3.3. respectively.
o )
.')
o

Although L.emma 3.5 shows that z(k) converges exponentially to a ball with radius O(€). it
does not show that M, is exponentially attractive. In order to establish the exponential attractivity
of M. we introduce the deviation of z from h(k.0:€) as a new state variable

m=z—hkfe). (3.82)

By Using the fact that h satisfies the functional difference equation

- - A" -y e - R T e S T IR 6 L
" WngD VS SSE NSO NE I SN N I SR P CRR TR TN SORERLS L '2.\.?&‘ MR LU ‘Am
ﬂm.% ulm}ﬁ'ﬁ'f}ﬁfﬂ?&:‘ﬁxm&}: ;'_(;".i:ﬂ! L'(A._{zfu'fxf; F&"A.\J.;ﬁubiufiz_;ﬁmm
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3
; '::5 h(k+1.0 + €F(k.p(6).h(k.0:€)):e) = A(p(0))h(k.0:€) — G(k+1.p(6).h(k.8:€)) . (3.83)
- we obtain the system of ordinary difference equations for (3.27)-(3.28) in 1 . 8 coordinates

“~
::’, , ( |
<o = <) — ) . 3.84
N k+1) = A(p(8(k))In(k) — G (k+1.8(k).n(k):e)

‘ B(k+1) = (k) + €F (k.O(k).n(k)i€) . (3.85)
]
.x"':* where

L%

N

G(k+1.0.m€) = v(k+1.p(0) + €F (k.0.m€) — p(k+1.p(8) + €F (k.0.0)€) (3.56)
o + h(k+1.p(8) + €F (k.9m€)e) — h(k+1,p(8) + €F (k.0.0)z€) .

R4
]

s

,@ :
..:: F(k.0.m€) = F(k.p(8).h(k.0:¢) + 7). (3.87)
n
%)
> Remark 3.6: We could not use ) = z—h as a state variable in the continuous-time case in Chapter 2
Ol
ST . dh dh _ dh;
SO because we did not prove that xistedand =z — 0.
i prove ] exi andn =z 5 @-
'-‘.' m)
2
o With the help of Lemma 3.5 it is straightforward to show that m converges exponentially to
N
-f:: zero. We summarize the existence and attractivity results in the following theorem.
;: ' Theorem 3.3: Suppose that Assumptions 3.1-3.3 hold and that (3.41) holds. Given any fixed
2 AN€(A,1).D,>0. A,>0, and D, 2 D,. let p(0) take values in ©,(e.D,;). There exists
2o
.ﬁ-:: €,(D,.A,.D;.A) > O such that for each € € [0.€,) (3.27)-(3.28) possesses an integral manifold M,
“»
sy given by (3.16) with h(-,-;€) € H((e/€;)D,, (€/€,)A,). where €; = €5(D,.A,) 2 €, is from Theorem
% 3.1. Furthermore. if z(k), 6(k) is the solution of (3.27)-(3.28) with initial data
\-‘..‘:
\_:‘_: 0(k,) =8, € R™ 2z(k,) =2z, and if lz,| < D/K, then z(k) satisfies (3.78) and
AGRY
oo n(k) = 2(k )—h(k.8(k ):€) satisfies
A Ik < KAKTR (k)1 (3.88)
vig*yha)
[ W
"'.rQ Proof: Choose €,(D,.A.,.D;.A) € min{e-(D,.A,) . €;(1),,.D;.A)} such that
A
s A€ D)) + €, Kp,(D[v, + (e,/€:)4,] € A (3.89)
A
: \f.:
..
*:.“: The existence of M, follows from €; € €. That (k) sautisfies (3.78) follows from €, € €;. With
) ‘g’.
'to
.
A%
oy
359 -

v’\v‘-

T Univn e ".“n"‘ \-«\~¢'l ", VF\ h\li.'(\.
. 2

\‘ ¥ (\-(’\ . ’ N - '

e .w-\'n
W T XA I -."
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b
',t) Izl = Ih+7n! € D,. we bound G’ by
! IG(k+1.0.me)t € €paAD)lv, + (e/€,)8,) I . (3.90)
- Applying the variation of constants formula to (3.84). we have
gy -
k) = S(kko) nlke) = T, ®(k—1.)G'(i+1.8G).n(i):€) . (3.91)
i-_-ko
2
. where @ is the same state transition matrix as in Lemma 3.5. Taking norms and applying Lemma
~
Qé 3.3 give
" In(k) 1 € KA (D)) + € Kp(Dy X v, + (€/€,)80)1™ 1m(ky) ! . (3.92)
™ which. in light of (3.89). completes the proof.
a a
-3 We illustrate the use of Theorem 3.3 in an example. First we rewrite (3.85) as a perturbed
¢
T version of (3.77)
o X
N Blk+1) = 8(k) + €F(k.p(8(k)) h(k.8(k):e)) 303
] + €[F'(k.(k).m(k):€) — F'(k.0(k).0z€)] '
N
e where the perturbation is exponentially decaying to zero. For simplicity we consider the case
! where 8 = 0 is an equilibrium of (3.77), B(C.0)€ 0. and for each € € [0.€4(D,.A,.D;.1)) we have
»
. 10+ eF(k.0.h(k.0:€))| < (1—eX,) 101 . ¥0¢€B(CO), (3.94)
I*'
S
where A, € [0.,(0.0)). Note that this implies |p(0) + €F(k.p(0).h(k.0:€))| < 1p(@)!; hence, we
:: can take ©,(€.D)=B(C.0). Note, also that (3.94) is almost never satisfied with A> > 0 in adaptive
. systems of the type (3.1)-(3.2). However. the basic idea does not change if the right-hand side of
™
A (3.94) is changed to (1—€A,)|0|+€8 where 8€[0.A,C).
:'_'; Because (3.94) implies that 8 = 0 is a uniformly stable or an exponentially stable equilibrium
' of 13.77) and because the perturbation in (3.93) is exponentially decaying to zero, it follows that
i 8 =0 15 a uniformly stable or an exponentially stable. respectively. equilibrium of (3.93).
0 Iheretore. the solution m=0.80=0 of (3.84)-(3.85) is uniformly stable if A2 =0 and
A
s

< W Lo Do T T f.;#‘.'n: ' Lo L PCIC oA
k‘&:&i&&rmz S e N R s .
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exponentially stable if A, > 0. The interesting problem is to estimate the region of attraction of

this solution. Letting r (k) satisfy
rp(k+1) = Ary (k). r(ke) = Kindko)!t . (3.95)
it is clear that | 7(k)! € r (k) for all k 2 ko for each € € [0,6,(Dy.80.D;.A)). Letting re(k) satisfy
ro(k+1) = (1—€X;) rg(k) + €p,(Dy) 1 (k). re(ky) = 168(Kk)I . (3.96)

it follows that if 8(i) € B(C.0) for all i € [kg.k—1], then 6(k) € B(C.0). Thus, we can estimate the
region of attraction by finding conditions such that the solution of the linear time-invariant system

(3.95)-(3.96) keeps rg(k) € C for all k 2 ko. Taking

. €p(Dy)
V(rar,€) = 1y + .1___€T2L_Ar,, (3.97)
we have
V(rg(k+1).r(k+1):€) = (1—€X;) V(rg(k). r,(k):€) (3.98)

(1—€A2) ™ V(ry(ko). rp(koi€) .

which proves the following corollary. Because we are proving 6 € © for all k 2 k,. we can state
the result directly for the original system (3.1)-(3.2).

Corollary 3.2 Suppose that Assumptions 3.1-3.3, (3.41), and (3.94) hold. that € < €,(D,.A,.D,.\)
and that B(C.0) S ©. Let x(k). 8(k) be the solution of (3.1)-(3.2) with initial data

X(k“) = XA) » e(k(;) = 9(). [f |X1)—v(k().9”)l s D] and

Vo, = V(10,1 . K1x,—g(ko0y€)1:€) € C, (3.99)
then
Cx(k)—g(kB(k)€) T € KA1 x,—g(k,0,:€)1 . 18(k)1 € KV, (1—ex;)" ™. (3.100)
O

In manv algorithms the dependence of {(k.0.x) on x is quadratic or higher order. Then there

exist p1(D,) and py(D;) such that
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= p(1z1) € p3(Dy) + p(Dy) M1 . (3.101)
! In such cases we can arrive at a less conservative estimate of the region of attraction.
“ Corollary 3.3: In Corollary 3.2, if (3.101) holds, then V(rg.r,:€) given by (3.97) can be replaced
b by
g V(rgry€) =rg + € _1?_3:)\—1)22_% r, + € l_f-:%)%? r2. (3.102)
- “ o
- Thus. we have shown that the possession of an exponentially attractive integral manifold M,
by (3.27)-(3.28) implies that the full-order system has the property that the existence of a
3 uniformly (asymptotically) stable, an exponentially stable, or an unstable solution of the
» reduced-order system in M, (3.77) implies the existence of a uniformly (asymptotically) stable, an ‘
"‘ exponentially stable, or an unstable solution of the full-order system (3.27)-(3.28). respectively.
" Furthermore, if this solution of (3.77) lies in the interior of ©. then the corres;ponding solution of
the modified system (3.27)-(3.28) is transformed via x(k) = »(k.8(k)) + z(k) into a solution of the
( original system (3.1)-(3.2). In the next section we study via averaging the behavior of solutions of
)

(3.77). We conclude this section with a reminder that the assumptions under which these results

2

were derived are very mild. This is especially true on the inputs to the system. namely, w(k) and

the k dependence of f(k.0.x). which are only required to be uniformly bounded.

3.5. Analysis in the Manifold: Averaging

224

The system (3.1)-(3.2) restricted to M, behaves according to (3.4) which is in the standard

[ TR

Bogoliubov form for the method of averaging. However. the literature on the method of averaging

for discrete-time svstems with delerministic inputs is almost nonexistent. Meerkov (1973)

EAAS

presents elegant proofs using simple mathematics of several standard averaging theorems for
¥, : . , . _
E; continuous-time svstems. He then states the corresponding theorems for discrete-time sysiems
pointing out that the discrete-time proof. which is not given. 1s virtually a copy of the continuous-

time proof. As the hvpotheses of the theorems provided by Meerkov are somewhat different than

.~ -
" .
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?;

v

the hypotheses which our system satisfies. we shall state and prove several basic theorems from the
method of averaging. Our proofs are modelled on Meerkov's but our theorem statements are in the
style of Sethna and Moran (1968). While the literature on the ;nethod of averaging for discrete-
time systems with deterministic inputs is scarce, there are many references which relate the
behavior of (3.4) or (3.1)-(3.2) with stochastic inputs to the behavior of the ODE (3.5):
Derevitskii and Fradkov (1974), Ljung (1977). Kushner (1977). Kushner and Clark (1978).
Benveniste, Goursat, and Ruget (1980), Benveniste. Ruget (1982), Kushner and Swartz (1984).
Metivier and Priouret (1984), just to mention a few. We conclude this section by showing that
some with probability one results relating the behavior of (3.1)-(3.2) to that of the ODE (3.5) can
be stated as corollaries to our basic averaging theorems. We feel that our approach of giving a
complete deterministic proof and then adding stochastic assumptions offers the simplest

introduction to this area, and is at least of pedestrian interest.

In order to simplify the appearance of the equations. we shall make a few notational changes.
" We assume that constants D,>0.4,> 0. D; 2Dy. and XA € (Ay.1) bave been chosen. We let
€4 = ed(DO-AO-Dl-A) . P = P;((€4/€3) Do). and P = p1((€4/52) D() . (64/62)A0) where €= ez(Do.A()).

Finally, we use f(k.0:€) to denote f(k.0.g(k.0:€))=F(k0.h(kB:e€) and we define

pe = (1/€;) Dyp,((€4/€5) D). It follows that for each € € [0.€,). every 00 €©.andallk € Z
I£(k.0:€)| € pp. |E(kO.E)~F(k.O:€) < py16—0 1 . [f(k0:6)—(k.0:0)1 € ep, . (3.103)

As we are interested in the behavior of solutions of (3.4) or (3.77) only for 8 € ©. we do not

need the projection p(0); hence. we study
0(k+1) = 0(k) + ef(k.0:€) . (3.104)

We use the classical notation 6(k:8,.k,) to represent the solution of (3.104) with initial data
0(k,) =0,

Assumption 3.4: The limit on the right-hand side of the definition

Y YRR
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£(9)

>

1 k+N-1 9 )
im = £(i.6:0 .
lim < 2 G (3.105)

1=k

exists uniformly with respect to k € Z and 6 € 8. That is, there exists a strictly increasing

continuous function «(:) with x(0) = 0 such that

T,
(Va2

O -L"F 1601 < L)
P forallk € Z and 0 € 6.
|:n: O
v

Remark 3.7: If f(k.9:0) is N-periodic then we define T by

-l. ..l‘ " ls

- 1 N-1
.. o) = < 2 1.6:0) (3.107)

. 1=

and we take K(%—) = 0 in the following derivations.

w o
' We relate solutions of (3.104) to solutions of the ODE

. =7 =T@. (3.108)
- We use the notation §(7:6,) to represent the solution of (3.108) with initial da.ta 9(0) =0,. (Since
! (3.108) is time-invariant, there is no loss of generality in taking 7=0 as the initial time in (3.108).)
< Because T represents the average of f, (3.108) is also referred to as the averaged system. Our tool
X for establishing relationships between the trajectory of (3.104), 8(k:0,.k,). and the trajectory of
’ (3.108) sampled at t, = €(k—k,) . 8(1,:0,). is the averaged trajectory defined by

) R LA

- O(kbka) = < =zk 0(i:0,.k,) . (3.109)
o where N is to be determined and is possibly a function of €. The averaged trajectory B(k:0,.k.) is
8 simply a moving average of length N\ of the trajectory 0(i:0,.k,) over a window beginning at 1 = k.
i We make use of the average trajectory in a two-slep procedure. First. we bound the distance

between 6(k:,k,) and é(k:&,,k..) and second. we bound the distance bhetween é(k;e‘,.k..) and

B - -
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ﬁ 9(1,:0,). Then the triangle inequality gives us a bound on the distance between

a( k:90.k0) and U(tkzeo)-

o Lemma 3.6: Suppose that 8(k:0,.k,) € @ for all k € [ko.k;+N—1]. Then. for each € € (0.€,) the

distance between the original and averaged trajectories is bounded by
(o 10(k:00.ko) — O(k:0p.ko) | € (eN—€)(p§/2) (3.110)
o for all k € [Ko.k;).
Proof: Using (3.103) we have the bound for i € [ko.k;#N—1]
& 10(i+1;05.ko) — 0(i:05.ke) | < e€pg. (3.111)
b which implies that for k € [k,.k,Jand i € [k.k;+N—1]
1 10(i:09.ky) — 0(k:0g.ko) | € epgli—k) . (3.112)

[ From the definition of 8 and the triangle inequality we get
o

K+

r4

- 1
" 10(k:09.ko) — 0(kiBp.ky) | & 16(j:00.k0) — 0(k:00.k0) |

+ -
z 4

(3.113)

k

1
< GP[:( i—k)

L= 2~
I

€, ' \—
= _'\Di :‘(_\2_1). = (eN—e€)(pg/2)

v
L

P

“

for all k € [ko.k,].

".‘,;.;

O

-

r'ln .‘J '.l "A."L’l.}l»

Lemma 3.7: Suppose that 9(7:8,) € © for all 7 € [0.7,]. Let k,(€) =[7,/€], that is, the largest

integer less than or equal to 7,/e. Then. for each € € (0.€,) the trajectory 8(7:0,) of the ODE

18

(3.108) sampled at t, = €(k—k,,) satisfies the ordinary difference equation

LS

Fly,,) = 8) + e @) + 1,8 )e) (3.114)

- -
20,

'A -~
)

-~y
3

for all k € [K..k,+k,(€)—1]). Furthermore. f, defined by

Yy

» O off Sy

f,(8:¢) = G(eh)— (0 +€f(0)) (3.115)

-
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~ satisfies
i (T (100061 < €Xpog/2) (3.116)
for all k € [ko.ko+k,(€)—1].
- Proof: It is clear from the time-invariant nature of (3.108) and 1t 4;~t =€ that
!. T(14100) = T(eT(1,:0,)): hence. (3.114) follows from the definition (3.115). To establish (3.1 16)
~

we let 8 denote F(1,:0,) for any k € [ko.ko+k,(€)—1] and compute the bound
R ;
15 (e:0)-0—€T ()1 = | [ T@(r:0)-T(0))ar!
- 0
:::' €
‘ < [p18(r0)-01dr
0
¥ ) . (3.117)
o = [p10+ [TE0)ds—01dr
() 0

.= (r T
RN < pipr J [dsdr = €pipr/2) .

. (1)

. ]

Lemma 3.8: Suppose that Assumption 3.4 holds and that 8(k:0,.k,) € © for all k € [Kok  #N—1].

;;: Then. for each € € (0.¢,) the averaged trajectory 8(k:0,,.k,) satisfies the ordinary difference equation
~

. B(k+1) = B(k) + €T (B(k)) + F(k:0,.ko.€) (3.118)
) for all k € [k,.k;—1] where f, satisfies

o 1

. H2(kiBo.ko€)l € € K(V) + e(eN—€)p,pr + €°p, (3.119)
-

. for all k € [ki,.k,—1].

Q Proof: From the definition of @ it follows that for all k € {k,.k,—1]

By

E}

=

Ll

* ;fﬁ + t. n.l
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é(k+1:90.k0)—é(k:90.k0) = % (B(k+N:0y.ko) — 6(k:0,.k,))
1 N—-1
=~ Y ef(k+i.0(k+i:0,.k,):€)
* 1=0
1 N-1
=N Y. ef(k+i.0(k:0,.k,):0)
i=0
N=1
+ % 2 [ef(k+i.0(k+i:8,.k,):0) — ef (k+i:0(k:0,.k,):0)]
i=0

(3.120)

—1
+ % NZ [ef(k+i.0(k+i:85.ko):€) — €f(k+i.0(k+i:00.k0):0)]

i=0

= €T (8(k:0.ko)) + f2(K:00.K.0.€)

where f-_) = fl’l + f22 + f23 + f24 with

f2,(k:B,.ko.€) = < g,) ef(k+1.0(k:0,.k):0) | — €T (B(K:0.k,))
f2o(k:0,.k.€) = % ?:Z_OI ef(k+i.9(k:60.k(,):0)—ef(k+i.§(k:90.k0):0)]
Fas(kk0e) = L N:l €F(1c+i.0(k +i:00k,)0) — €f(ic+i kB k,)0)
f24(k:00.ky.€) = % :: ef(k+i.9(k+i:60.k(,):e)—ef(k+i.9(k+i:90.k0):0)].

By Assumption 3.4 f5, is bounded by

l. 4
ARSOAH

| foy(kBoko€) | S € x(%) .

by

RO

n
]
4

Using Lemma 3.6 it follows that

N=1
| f2a(k B ko€) | < % T epi(eN—€)(pp/2)

1=0

= eleN—€)(p,p/2) .
Similarty 10 the proof of Lemma 3.6 we obtain the bound for sy

N-—1
ifH4(kiB, k., €)l < _{_ Y epieppi = e(eN—€)(p,pp/2) .

=0

Finallv we bound {1, by

(3.121)

(3.122)

(3.123)

(3.124)

(3.125)

(3.126)

(3.127)
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N-1
fa4(ki0o.ko.€) 1 € _,:. Y €p. = €p,. (3.128)
¢ 1=0

The triangle inequality and (3.125)-(3.128) imply (3.119).

L2

e O
<
Thus. we have shown that § and 6 are both solutions of ordinary difference equations which

» _
- are perturbations of
N 0(k+1) = O(k) + €f (0) . (3.129)
I
I From (3.116) it is clear that the perturbation f; in (3.114) can be made arbitrarily small with
respect to €f by taking € sufficiently small. If we take N = N(¢) = €™ for r € (0.1) it follows from
o (3.119) that the perturbation f, in (3.118) can also be made arbitrarily small with respect to €f .
N
ds ”

Notice also from (3.110) that this choice of N(€) allows us to make the distance between 8 and 0
::: arbitrarily small. Hence. with these three lemmas we can generate many results relating solutions
. of the ordinary difference equation (3.104) and the ODE (3.108). We present first a result on finite
‘ lime approximation.
e Theorem 3.4: Suppose that Assumption 3.4 holds. Given any positive constant 7, < ©, no matter

how large. and any o > 0, no matter how small, if

N BlcO(r8,) S © (3.130)
. for all 7 € [0.7,]. then there exists €5(7,.0°) € (0.€,] such that for each € € (0.€;) and any k, € Z

F_:

—~ 18(k:0,k, —0(1,:0,) < o (3.131)

for all k € [ki.k,+k (€)] where k,(€) = |7,/€¢| and t, = e(k—k,,).

Proof: Let €(7,.07) be the smaller of €, and the solution of

. N M7y
3 T = €(pp/2N3 +e" ) +(x(e) + € ppr + €p,) < 5 ! ' (3.132)
- ‘
L let N\ =\(e)=|e" |. We prove (3.131) by induction. Suppose that
)
|
B(k0,.k,—0(1,0,) < o—¢€p; (3.1317)
PN
. Y

N
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. holds for all k € {k,.i} for some i € [kyky+k;—1]. Then B(e€”pp.0(i:0,.k,)) & © which implies
0(k:0,.k,) € © for all k € [kq.i+N]. From this it follows that é(k:Oo.kO) is well defined for all
k € [Ko.i+1]. Using Lemmas 3.6-3.8 we have for all k € [k,.i]

(1 + €p;) 10(k:00.ko)—T (1,:8,) |

<
+ e(m(e”) + €p,pp—e(pp§/2) + €p¢)
< (1 +€p)" ' %%(pg/2)

l é(k+1:90.k0) - y(tk+l:90) I

(14€p)) "1 75—1 | (3.133)
P

+ (m(e*) + €*p,pr—e(pp§/2) + €p,)

3

< O— - €" .
3 & PF

Lemma 3.6. the triangle inequality and (3.133) imply that (3.131') holds for all k € [K.i+1].
Hence. if (3.131") holds for all k € [k,.i] for any i € [kq.ko+k;—1]. then it holds for all
k € [k..i+1]. Since 8(k,0,k,) =8,=08(0:8,) which guarantees that (3.131") holds for k=K,

{3.131") holds for all k Zk,.
O

Remark 3.8: We can get a larger estimate for € by letting N = €™, defining €;(7,0.r) as the

solution of

o = € (pp/2)(3 + 1) + (k(e!'7) + € 7Tppy + €p,) (3.134)

eM—1 ]

1

and taking €(7,.0) = min{e,,.rr€11[ax] {e5(7,.0.r)}}. The proof using this estimate requires a change on
01

Te

the right-hand side of (3.131°) from o — €"pg to 0 — €' ""p; where r. € [0.1] is the value for which

€. atlains its maximum. In general, the bounds provided by lL.emma 3.6-3.8 are so conservative

that this procedure sull results in a very conservative bound for €;.

|
—

Remark 3.9: If {(k.8:0) is N-periodic. then we replace (3.132) by |
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o = eN(p:/2)(3 + &™) + (eNp,p5 + €p,) (3.135)

o]

.
e"1—1
1

In order to give a more complete connection with the ODE literature in the stochastic setting,

we consider the system

B(k+1) = 6(k) + o f(k.O(k)y) . k20, (3.136)

where o, is a monotonically decreasing sequence which satisfies

hm ay = 0. Oy > Qly +i ? ak—akzi. ¥i ? k?(). (3.137)

K=o

We note that oy = (k+1)7* for r € (0,1] satisfies (3.137). Letting Ol(k;ﬂn.k,,) denote the solution of

(3.136) with initial data 9'(k0) = 0. we have the following corollary to Theorem 3.4.
Corollary 3.4: Suppose that Assumption (3.4) holds and that (3.103) holds for all € € [0.e,).

Given positive constants 7, and o, if (3.130) is satisfied for all 7 € [0.7,], then there exists

M(7,.0) such that for any k, 2 M

10 (kby.k,) —F(1,:8,)) < & (3.138)
. k=l
for all k € [ky.ko+k,(€)] where t, = J a; and k,(€) is the largest integer such thatt , < 7.
=Ko Ky

Proof: Clearly the bound (3.110) in Lemma 3.6 holds with @ replaced by OI and € replaced by o,

Likewise. in the difference equation (3.114) in Lemma 3.7, we replace 1,4, by 1,4;. {, by ,.and

€ by a,. Hence, in the tcund (3.1i6) we replace € by a;,. In Lemma 3.8 we let 6 be the average of

’

6 . redefine > . f-3. and f.y. add another term 1.5 to ... and replace €r(O(k)) by aKT(é(k)). In the

term f;; we replace € by o, € ¢y, Because we changed € to oy and not ay,, in f>; we must add

another term f,5 to 5.

N-1 -
BBk = < T (aay) HR+ID(kBD0K,)0) (3.139)
. =1
''sing (3.137) we bound [ by
B s L e AP A A AR Bt I [ o L LT o P2 e O
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oy N-1 )
. 1 f5(ki0p.ko) | € V 2 prad i = ay (o N —og Npp/2) . (3.140)

, ° - 1 1=0
oy Replacing the bound (3.119) with
3

\
{'5'* ! fz(k:oo-ko) | £ ako(x(%) + (akoN_ako)(pl + —;—)p; + akpg) (3.141)

o ' the proof is completed as in the proof of Theorem 3.4 with M(7,.07) chosen large enough so that

N ay < €4 and

Qe o 2 oni(pe2)(3+e™™) + ((a;) + onilpy + -;—)p,: + ap(petpr/2)) d (3.142)

Remark 3.10: As in Remark 3.8 we can get a smaller estimate of M(7.0) by letting N = ay" and

* optimizing with respect to r. The estimate can also be improved if a specific o sequence is chosen
b‘ 3 . .
"y or a decaying upper bound is used in (3.137).
; 5"4 O
ooy
:\' .
* Before giving results on infinite time approximation of 6(k) by 8(t,). we make several
% \ observations about the finite time results which we just presented. The conditions under which
L
bt
"E:} Theorem 3.4 and Corollary 3.4 are established are very mild. namely. that f is bounded and
.-,'
A . o . - . . ce:
") Lipschitzian in 6 and € and that the average [ exists. We also emphasize that the same conditions
_t-’: are required for the constant gain case. (3.104). and the decaying gain case. (3.136), and that the
N4
2o same ODE, (3.108). is associated with the constant gain case and the decaying gain case. The
R/ ‘.,.-Y
: difference between the two cases is that for the constant gain case we sample the ODE periodically
Nn
SO . k=1
j\.:; at t, = €(k—Kk,). whereas in the decaying gain case we sample the ODE at times t, = z a, which
'?'::’: 1=Kkg
o Pl )
N
iy are closer together as k increases. The price we payv for not using more information about f is that
& . . . . ! !
,-".j: the approximation of 8(k:8,.k,) by #(1,:0,) and the approximation of 0 (k:0,.k,) by 8(1,:0,) are
w
h guaranteed only for a finite time interval. In fact. even if (3.130) holds for all 7 2 0. the
Faty
: ‘ approximations do not hold for all 7 2 0. For example. 8, could be an unstable equilibrium of
M
e (3.108) with the property that 8(7:8,) reaches the boundary of @ in finite time for every 6, = 6,,.
g
"
g
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If £(k.6,:€) is not identically equal to zero. then for some k; > k, . 0(k:0,.k,) = 6, = 6,. Hence. for
¢ sufficiently small and k 2 k,. 0(ki0,.k,) = 8(k:0,.k) follows F(7:0,) to some neighborhood of the

boundary of © in finite time which implies (1,:0,) = 0, is not a good approximation of 8(k:8o.k,)

for all k 2 Kk,.

Clearly we must make some additional assumptions about T (8) or the solutions of the ODE
(3.108) in order to be able to relate 8(1,:0,) and 6(k:8,) over infinite intervals. We shall consider
two different assumptions. For continuity with respect to the deterministic averaging theory. we
prove an infinite time result under the assumption that the ODE has an asymptotically stable
constant solution. For continuity with respect to the literature on the ODE method in adaptive
systems and for ease of application in Chapter 4. we prove an infinite time result under the

assumption that a Lvapunov function with certain properties exists.

We let 0. in the interior of @ be an asymptotically stable equilibrium of the ODE (3.108) and

denote the region of attraction by ©,.

O, =10,€0:9(10,)€0 ¥r 20 and lim8(r:8,) =6.}. (3.143)

T— 0o

As in Theorem 3.4 we need a ball around & to be in ©: hence, we define a subset ©,(d) of 9,.

0.(0) = 16,€0,: BloF(r9,) SO ¥r20}. (3.144)
Theorem 3.5: Suppose that Assumption 3.4 holds and that 6. in the interior of © is an
asymptotically stable equilibrium of the ODE (3.108). Given any ¢ > 0 for which (9_;(0') is not
empty. Lhere exists €,(d) € (0.€,] such that for each € € (0.€,). any k, € Z and any 0, € 9;(0')

18(k:0,,k,)—0(1,8,) < o (2.145)

tor all k 2 k... where t, = é(hk—k,,).
Proof: The proot tollows Meerkov (1973). We use the tollowing two consequences of the fact

that 8. s an asvmptotically stable solution of the ODE (3.108). lLet u. > O be chosen so that

B(u.0.) € ©,(0). There exists 7.{u) < oo such that tor each u € (O, ] and tor every 8, € @\(a ).
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: we have
V
. 18(r:0,) —6.1 < u/2 (3.146)
:
4 for all 7 2 7.(u). There exists a continuous function 8(u) with 8(0) =0 such tbat for each
E 4 € (0.u0) and for every 0, with 16, - 60,1 < pu
18(1:0,) ~ 6.1 < 8u) (3.147) 1
i
' for all 7 2 0. Letting 65(#) = €;(7(u) + €/2). we have for each u € {(0.0) N (0.20)} and any
3
4 10(k:0,.k) = T(t 0,01 < u/2 (3.148)
for all k € [ky.k;] where k; = k;(u.€) = [r(u)/€] + 1 and t, = €(k—k,). Hence, from the triangle
3 inequality. (3.146), and (3.148) we have .
. 10(k:0,.ky) =0 < u (3.149)
[}
at k = ko+k,;. Now we consider the interval [ky+k,.k,+2k,). Let 0, = 6(k,+k;:0,.k,). We note
that 0(k:0,.k,) = 0(k:8,.ko+k,) for k 2 k,+k, and that 16,—0.] < u. Applying Theorem 3.4
again, we get
‘ IO(k:O(,.k(,)—U(tk—tk|;91)I < u/2 (3.150) ‘
; i
3 for all k € [k,+k;.ky+2Kk;]. We point out that in (3.150) we are comparing 6(k:0,.k,) with a ‘\
' ;
different trajectory of the ODE than in (3.148). Applying the triangle inequality. (3.147), and i
1 ’
A (3.150). we have
b 10(k:0,.k,) —0.1 < w/2+8(u) (3.151) i
: for all k € [k, +k,.k,+2k,]. Furthermore. [rom the definition of 7. and k, we have Zi
q! ¥
3 Tyt 0 =01 < w2 (3.152) !
" at k = k,+2Kk,: hence. (3.149) holds at k = k,+2k,. We prove by induction that (3.151) holds for
N all kK 2 k.+k; and that (3.149) holds at k = k,+nk, for all integers n 2 1 which implies that a
1' a
A
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(3.151) holds for all k2k,+k;. Suppose that (3.149) holds at k = ke+nk, for any integer n > 1.

Letting 8; = 6(k,+nk:0,.k,) it follows that (3.150) holds for all k € [ko+nk;.ko+(n+1)k,] with

E::: tg = 1y, replaced by ty =ty . Then the triangle inequality, (3.150). and (3.147) imply that (3.151)

: ’ holds for all k € [ky+nk,ke+(n+1)k,+k,]. Clearly. (3.152) holds at k = ky+(n+1)k,+k, with
) . & =l replaced by t, — 1, : hence. (3.149) holds at k = ko+(n+1)+k,. Since (3.149) holds at
i ; k = ko+k;. it follows that (3.149) holds at k = k,+nk; for all n 2 1 and (3.151) holds for all
. ~:" k 2 Ko+k;. One more application of the triangle inequality gives

X 0(k:05.k0)—0(1,:80)] < |6(k:By.ko)—0) + [B(1,,:00)—0:[ue+8() (3.153)

o for all k2Kot+k;. Then choosing u,(0)€(0.u0) such that u,;+8(x,)< e and taking €,(o)=¢€5(u,)

N complete the proof.

o n)

{‘. Corollary 3.5: Suppose that Assumption 3.4 holds, that (3.103) holds for all €€[0.€,). and that 0.

in the interior of © is an asymptotically stable equilibrium of the ODE (3.108). Given any o >0

for which ©,(0) is not empty. there exists M,(0") <oo such that for any k,2M and any 6,60 (o)

16 (k:80.k0) —0(1,:60,)| < o—oy’pr (3.154)
P k=l

g for all k2K,. where1, = ¥} o, Furthermore.

- 1=kg

NG lim 0 (k6," = 6. . (3.155)

P K=o

= .

T Proof: In order to establish (3.154) we follow the proof of Theorem 3.5. except that the repeated

.':‘
‘-, applications of Theorem 34 over intervals [k,,+nkl.k(,+(n+1)k,] are replaced by repeated
- \'—f,

-~ ] ' '

o applications of Corollary 3.5 over intervals [k”+k).k'.+k1+l] where Kk, is chosen so that
e _ .
- Z (7). 7 w)+a ] and kwl is chosen so thatt . —t1 , = Z a,€[rdw)rdw)ta . ]
:: L5 = Ky Kn.y kg lzkn. Rn~l
o

t

for n21. We note that (3.137) implies that lim Z a, = o which. in turn. implies that k,,<oo for

K= =0

- - e C e T -, w . | "-'- v g~ -
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wh each integer n€[0.00). To see that (3.155) is true we point out that in the proof of (3.154) we have
e shown that for any ky,2M,;(0) and any 0,€0,(c). |0 (k:05.k,)—0:| < o for all k2k,. Given any
.¢‘.
Loy o €(0.0) it follows that GI(k:GO.ko)Ee;(d') for all k?k,l. Choosing iy so that io?Ml(a'l) and
‘9.' ' : ' : ' ¢
ip2 K, and taking 0,=0 (iy.k,.8,) we have |0 (i:0,.k,)—0.| = |0 (i:0,.i))—0.| < o for all iZi,.
153 o
4, \)
Sl
5 3’ Our proofs of Theorem 3.5 and Corollary 3.5 use only the definition of uniform asymptotic
~
e >
e stability. (Asymptotic stability of 8. as a solution of the ODE (3.108) is uniform by virtue of the
::., fact that (3.108) is time-invariant.) In an application of these results any demonstration of the
W
)
:.’Q:: asymptotic stability of 0. is sufficient. Two of the most commonly used methods are verification
[) a
g , via simulation or an application of Lasalle’s theorem. Another approach to obtaining information
. . 4 . . .
‘ about 6(k:0,.k,) that is valid for all k2k, is to first find a Lyapunov function which proves the
;:'_:: asymptotic or exponential stability of a solution or an invariant set of he ODE (3.108) and.
e second. make use of this Lyapunov function in a study of (3.104) or (3.136). This approach does
;':f:: not explicitly relate @ or 8 to 0. but instead. provides information about the behavior of 6 or 6
-'
:-':' relative to the asymptotically stable solution or set. In the case of an asymptotically stable
o ’
’ equilibrium arguments similar to the proofs of Theorem 3.5 or Corollary 3.5 can be applied to
Ny
‘2 obtain the infinite time appreximation results such as (3.145) or (3.154)-(3.155). In the case of an
o
[
! invariant set. the best one can hope for is to establish the existence of an invariant set for (3.104)
v
. or (3.136) and 1o apply Theorem 3.4 or Corollary 3.4 over finite time intervals. For simplicity and
F:.-::,' hecause it fits an application in Chapter 4, we illustrate this approach for the constant gain case
'-.if:' under the following assumption.
' W;' Assumption 3.5: There exist scalars ¢,>0. y,>0. and y,€(0.c,y,) and a vector 6.€0 such that
e Y Y1 Y
=
ﬁf B(c,8.)S0 (3.156)
o’
3y L
P
o
)
:’\.
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»

£y

%

and

for all 8€B(c,.0.).

i =

Theorem 3.6: Suppose that Assumptions 3.4 and 3.5 hold. Given any O’E(O.CO-'Z-L). there exists

a Yo

{0
€,(a)€(0.€,] such that for each €€(0.€,). any k€ Z and any 6,€B(co—€"ps.6.)
;‘,.::\
> |0(k:80.ko)—0:f < (l-—eyo)k'k"(|90——0.|+e*’1pp)+[1-(l—eyo)"'“]( $+a) (3.158)
0
'j for all k 2K,.
A
e Proof: Choose €, so that
>
»
-~ 0<€;S¢, . —:—’wscn—e;’:pp . Liler ) +erpipprepdte(pe/2) <o . (3.159)
:‘: 0 Q
i Let N- ;™. Suppose that 8(k:0,.k,)€B(co—€"ps.0:) for all k€[ky.i]l. Then 8(k.00.ko)€O for all
k €[ko.i+N] which implies that 8(k:8,.k,) is defined for k €[k,.i+1]. Using (3.157) and Lemma (3.8)
o~ we have for all k €[k,.i]
N
! Bk +1:00.k,)=0:| € (1=€y)|8(k:00.ko)—0:] + [f2(k:00.Ko.€)] (3.160)
from whnich it follows that (3.158) holds for all ké[kgi+1]. But this implies that
ﬁ 8(k:0..k,) €B(c,—€ 'pg.0.) for all k€lk,.i+1). Thus. if 8(k:0y.k,)E€B(co—€"pE.0:) for all k €[k.i] and
= an arbitrary i. then 0(k:0,,.k,)€B(c,—€“pg.0.) for all k€[k,.i+1). Since 6,€B(c,~€"pg.0.). it follows
ua ,
ol that 8(k:0,,.k.,)€B(c,—€pg.0,) for all k=k,. Hence (3.160) and (3.158) hold for all k2K,
a
e,
o
- It is clear that this result can be combined with Theorem 3.3 to obtain results su ilar to
{ } Corollaries 3.2 and 3.3 for the svstem (3.1)-(3.2). It is also obvious that we could postulate many
' different assumptions about the behavior of 8(7:8,) or about f(8). and then, using Lemmas 3.6-3.8
‘ derive results that apply to 8(k:0,.k,) or Ol(k:G,.,k.,). However. we feel that Theorems 3.4-3.6 and
ne Corollaries 3.4-3.5 provide sufficient illustration of the use of l.emmas 3.6-3.8 for the reader 10 be
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able to state and prove results which are applicable in each different situation.

We now consider the problem of establishing a connection between solutions of the ODE
(3.108) and the system (3.104) or (3.136) when the input 10 the system is a sample path of a
stochastic process. Since every sample path of the input process is a deterministic time sequence.
we can check whether Assumptions 3.1-3.4 are satisfied on a sample path by sample path basis.
For each sample path for which the assumptions are satisfied Theorems 3.4 and 3.5 hold. Hence. if
we place conditions on the stochastic process which generates the input such that Assumptions
3.1-3.4 are satisfied for almost every sample path, then Theorems 3.4 and 3.5 hold with probability

one (w.p.1). If, in addition, Assumption 3.5 is satisfied w.p.1, then Theorem 3.6 holds w.p.1.

Recall from the previous sections that the only property of the input that is used in
Assumptions 3.1-3.3 is uniform boundedness. Therefore. we shall require almost every sample
path to be a uniformly bounded sequence. The supremum over k€Z can depend on the sample
path. However, there chould exist a single bound which holds for almost every sample path. It is
easier to give su;ﬁciem conditions for Assumption 3.4 to be satisfied along any particular sample
path than to ;ay what conditions are necessary for Assumption 3.4 to be satisfied. Each sample
path could. for example. be the sum of a finite number of sinusoids with different sample paths
having different magnitudes, phases. frequencies, or numbers of sinusoids. The lack of dependence
of T on k is most easily met by restricting the input process to be a stationary stochastic process.
This is. in fact, a very natural restriction given that our goal is to reduce the study of (3.104) to
the study of a time-invariant system. Since f is defined as a time average after a sample path has
been chosen it can depend on the sample path. If T does depend on the sample path. then we have
gained little or nothing by considering the inputl Lo be a sample path of a stochastic process. This

claim follows from the fact that we then must study the ODE for each possible f in order to have a

complete analysis. that is. we must make a series of studies for different deterministic inputs. The
easiest way 1o avoid this complication is to restrict the input process to be ergodic. In this case the

time average f(6) of f(k.8:0) is equal to the ensemble average of f(k.0:0). that is. the expected value g
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of f(k.9:0). We summarize this discussion with the following lemma.

Lemma 3.9 Lei the input to the system (3.1)-(3.2), that is. w(k) and the k dependence of
f(k be a sample path of a stationary ergodic stochastic process. If Assumptions 3.1-3.3 hold

for almost every sample path. then Assumption 3.4 holds with probability 1 and 1(8) = E[f(k.0:0)].
O

Remark 3.11: An interesting special case is when f(k.0:€) is linear in 0, f(k.0:€) =0, and
Assumptions 3.4 and 3.5 hold with probability one for 8°=0.y, =0. Theorem 3.6 then
guarantees exponential convergence to an arbitrary small ball around the origin with probability

one. This is related to the results of Bitmead and Anderson (1980a.b) and Shi and Kozin {1986).
0O

In many adaptive systems the function f(k.0.x) in the parameter update (3.2) has the form

f(k.0.x) = £,(8)+f,(0)col(wW(k)wT(k))+f(8)col(xxT)

(3.161)
+ £5(8)col(xwT(k))+f(0)w(k)+f5(0)x
With this form it fol.lows that under the conditions of Lemma 3.9
T(8) = £,(8)+£,(0)col(R,(0))+£5(0)col(R,(0.6)
(3.162)

+ £3(0)col(R,,(0.0))+f (0)E[w(k)]+f5(0)E[v(k.0)] .

where R,,. R,. and R,, are the autocorrelation of w . the autocorrelation of v and the
crosscorrelation of v and w. respectively. Because v(k.0) is the output of a linear time-invariant
system with stationary input w(k). we can compute R,(0.8) and R,(0.0) via Parseval's theorem
using the power spectral density of w and the transfer function from w to ». Hence. we can use
the Theorems 3.3-3.6 and Lemma 3.9 to analyze the effect of the frequency content of w(k)
relative to the transfer function of the system (3.1) on the behavior of the system (3.1)-(3.2).

This 1s discussed in more detail in Chapter 4.

7,
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3.6. Concluding Remarks

Following continuous-time proofs. we have established conditions for the existence of an

exponentially attractive integral manifold for slow adaptation in discrete time. We have also given

proofs of averaging theorems for the analysis of the on-manifold behavior of slowly adapting
o, systems with deterministic inputs. Finally., we have discussed the relationship between the
.

« 2 deterministic averaging results and the ODE method for the analysis of stochastic adaptive

vy systems.
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Ar CHAPTER 4 '
' REDUCED-ORDER MODEL REFERENCE ADAPTIVE CONTROL |
| 4
Y 4.1. Introduction
23
) In Chapter 2 we established the existence of an integral manifold for a standard model
E reference adaptive control system, namely, the Narendra. Valavani (1978) controller for relative
-~ degree one. Then using the method of averaging we analyzed the behavior of the adaptive system
o
S when this controller is applied to a plant that does not satisfy the exact matching and SPR
’: assumptions under which the controller was designed. For slow adaptation, we showed that the
- exact matching and SPR assumptions can be replaced by approximate matching. that is. small RMS
h error and "signal dependent SPR" assumptions.
- This result, by itself. gives us the ability to design reduced-order model reference adaptive
control systems because we can design the usual full-order controller for an assumed plant of
i lower dimension then the actual plant. However. such an approach suffers {from the inadequacies
- of the usual full-order controller design. First, the number of adjustable parameters is determined
oY

by the assumed order of the plant and not by the number of adjustable parameters which the

controller needs to achieve acceptable performance. Second, the usual procedures assume only that

e
.
v

the plant is a black box of known order. hence. do not take advantage of much information which

-"

1s usually available about the plant. Clearly. the two problems are related. By assuming that so

little information is available about the plant and by making exact matching the only acceptable

~
‘e
v.~~ -~ . . . . .
- performance. the design is forced to include as many adjustable parameters as required by the
o assumed order of the plant.
n\'.'
In this chapter we present an alternative parameterization of the adjustable controller which
>

separates the dvnamic order of the controller and plant from the number of adjustable parameters.

This provides the freedom to design a model reference adaptive controller with many fewer

[

adjustable parameters than in the conventional design. The analvsis then proceeds under

assumptions which. 1n general. can be verified only in the analysis. simulation. and testing phases
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of a control system design. The use of these assumptions provides our method with a very natural
way 10 make use of information which is available prior 1o the commissioning of a control system.
The analysis is carried out in several parts. We first establish the existence of an attractive integral
manifold. Then, sufficient conditions for stability are derived using the averaging theorems of

Chapter 3. We conclude this chapier with frequency domain interpretations of the stability

conditions.

4.2. A Reduced-order Controller Parametrization

Earlier adaptive control schemes adjusted as many parameters as required by the assumed
order of the plant. This choice was motivated by the desire of perfect matching in the
disturbance-free case. However. even if the plant order were exactly known. the adjustment of
more than a few of the most important parameters creates difficulties, especially when the inputs
are not persistently exciting. We introduce a controller parametrization which permits a reduced
number of adjustable parameters. One adjusta’ ‘e gain is assigned to each element in the vectors of
transfer functions F, and F and to the input r as shown in Fig. 4.1. The state representation of this
parametrization with adjustable parameter vector 8 = [8,.8T.a™]T is given by

Xolk+1) = Ayxo(k) + b,0Te(k)
X1 (k+1) = byceXy(k) + Ayxy(k) + b,d,0T¢(k)

Xa(k+1) = Ajxy(K) + bye,x, (k) + bny(k)
x,(k+1) = byeoxo(k) + Apx,(K) + byd,87d(k) + byn,(k)

(4.1)

where X,,. X). X». and X, are the states of F,, F;. Fo. and W, respectively. where the regressor vector

|
=[ro! T T s given by J

r(k)
o(k) = —Cyx,(k) CovR) = Cx (K)Hng (k) (4.2)
—C5xa(k)=d,v (k)
and where rtk) g the reference input and n,{ k). n.f k) are disturbances. We have inciuded an input

- RO A G .t :
S AP b '.~-’. : SRR Y

R .-"‘ , : :-_Q:-.J
.('.'-P:' B "'t..r‘.r".r AN ,r-.r A f.u_uf‘u.u(._x Ll e ey e e i 'ﬂtﬁ ~hhh\fl Wi




ks '“'Lmvw?"m"“mw.""I'I‘WW‘H"""-\IW\"\"I‘H'x‘- € LTI E NT R Ty - W, = . - B - W e ™ v T e T s
w Y AP T O TN
-
‘-* .
L\'

‘ ‘.*l. 'l:
Wi o .

n;(k) ny(k)
N r(k) Yo
. i FO z W 2 —
“a
o
; ¢,
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> Op FZ,n *
jad
‘1_'\.
Fig. 4.1. Reduced-order parametrization with one gain per transfer function.

disturbance and an output disturbance with the idea that the input disturbance should represent

a
>

.F

[N o g¥)

inputs to the plant such as load variations and the output disturbance should represent. for

&

example. measurement noise. The only output to which we refer is y, representing the measured

Lo

output. This must be taken into account when specifying the desired performance or evaluating
- the actual performance of the system. The compensator transfer functions F,,. F; , and F, and the

plant transfer function W are related to (4.1)-(4.2) by

‘:; o FH(Z) = Cn(Zl_’An)_lbu +d, . FI(Z) = CI(ZI_‘/\l)_lbl
‘;’ ‘ (4.3)
::: .J-' F:_;(Z) = C:(Zl""\g)_lhz + dz . Wi(z) = CP(ZI—‘/\p)_lbp

The number of adjustable parameters s determined by the number of compensator outputs. that is.

n. = m+n+1 where C, has m rows and C, has n rows. The dynamic order of the compensators F..
Fy. F> 1s at the designer’s disposal and the number of parameters is not dependent on the order of

the compensators. While we have combined all the states ot F and P, respectively. into xp and X
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o
o . , ,
e for a convenient state representation. we do not imply by (4.3) that the poles of each transfer
e

function element of F, or F, are the same. That is, C;. A, .C,.andA; can be block diagonal.

However. we note that if

Fo(z)=1. F(2)= . _—_Z_(ﬂ_— X (4.4)

where Z.(z) has order m+1, then this parametrization is equivalent to the full-order
parametrization normally used in the design of adaptive controllers based on the black box
assumption. Hence. our parametrization. which allows a reduced number of parameters. is more
general, not less general. than the controller parametrizations usually encountered in the adaptive

control literature.

Taking advantage of the freedom offered by this parametrization to work with a reduced
number of parameters precludes, in general, the possibility of exact transfer function matching via
the Bezout identity. We replace the goal of Bezout matching with the goal of minimizing the mean
squared filtered tracking error between the reference model output y,(k) and the plant output

v.(k) with the parameter held constant. We let the reference model transfer function and iis

ocutput be
W (2) = c(zl=A )b, (4.5)
k=1
vm(k) = 2 cn AL o r(i) . (4.6)

and we define the filtered tracking error e(k) by

Xelk+1) = Ax (k) + by (k) =y, (k)

e(k) = ¢;x(k) . F(z)=c(zl=-A) by .

letting e(k.0) denote e(k) when the adjustable parameter is neld constant at 8 and the resulting
linear ume-nvariant system (4.11.04 71 ix imualized with zero initial conditions at K=—oo. that s,

letting e(k.f) be the steady-state response of e(k) when the parameter is constant at 8. 've meke the
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4 o following assumption.

Ly

- ! Assumption 4.1: For the uniformly bounded signals r(k), n(k) . n,(k) entering the system (4.1)
o5 ol

“ and for the reference model Wy,(z), there exists 8° which provides an isolated local minimum of the

s )

B O RMS tracking error

1'!:.

, E E8) £ {avgle?(-0)]1*

" N (4.8)
y i

) 'y ' A . 1 k481 2. i

S = {I!lg?o N E,:‘ e%(i.0)}

.. ".. : <

[i'» -

where the limit exists uniformly ink € Z.
0

£
IS

Remark 4.1: Assumption 4.1 implies that the linear time-invariant system (4.1) with constant 0 is

VR
[ v &%

Z exponentially stable at 8=0" and in an open neighborhood around 6".
o
e -
*‘ :
e This assumption requires the use of a priori knowledge about the plant or range of possible
= .
> .
L ﬁ plants W(z). However. because the assumption is made for the linear time-invariant system (4.1)
::‘: with constant 6. it requires essentially the same information that is necessary to design a fixed
{ ¥ . . :
;% :{ parameter controller with this structure. First the compensators F,, . F, . and F> must be chosen so
¥
l‘q
A that each fixed plant in the range of possible plants can be stabilized for some value of 6. Then,
: E taking into account the expected input signals. or designing the input signal, a reference model and
7 ,
" " an error filter are chosen which reflect an estimate of the achievable performance. That is. the
‘. 1*
o
:'é reference model and error filter should be chosen so that the RMS error E(8) can be made small.
o . )
.::- The advantages of a small E(0°) become ciear in the sequel. While the satisfaction of these
o .
j‘.»:. . requirements may imply a significant off-line design effort. this effort is justified by the improved
) o
W
iy - robustness in the on-line adaptation.
}_ ._-; Remark 4.22 Small E(8") imply transfer function matching. It only requires that the transfer
SR
.
Y functions be close at the dominant frequencies of the inputs to the svstem.
b3 -3; m]
,‘ Although the number of parameters has been reduced. the structure of the proposed controller
N ,‘ preserves the appearance of the parameter vector 8 in (4.1) in the familiar parameter-regressor
Q0
BAN |
- E ‘
q' »
5
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«
x.\',\,‘,_ R
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product 87¢. Letting y,(k.0) . ¢(k.8) denote the steady-state of y,(k) . (k). respectively. with the
parameter vector held constant at 8, we note that the system (4.1) has the property

Yo(k.0) — y (k.0°) = W (0°.2)[0T(k.0X0—6")] (4.9)
with B,W¢;(6.2) being the transfer function fromr to y,

F(2)W(2)

W (0.2) = '
a2 = G + WD)

(4.10)

and where, by the mixed K.z notation in (4.9) we mean that y,(k.0)—y(k.0") is the steady- state

output of the transfer function W¢(6°.z) with input ¢T(k.0)(6—6").

4.3. Parameter Update Law
We denote the system matrix of (4.1) by
A(9) = A —bfC, (4.11)

where the constant matrices A, b, and C are

Ao 0 0 0 by
_ P10 AL 0 O bydy
A= . b=
0 0 Az bch 0
B 00 A Byl (4.12)
00 0 O
0 o C, di,

From Remark 4.1 it follows that Assumption 4.1 implies Assumption 3.1 holds with A(8) replaced
by A(B). that is. there exist a compact set © containing 6" and an open neighborhood of 6 and

constants A, € (0.1) and K 2 1 such that

- - - ’ - ( ’ L 'h 'I ..'
DR S TR .\'\‘-‘1. LR A ‘
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IAB)I SKA] ¥i20 ¥0€6. (4.13)

We assume that our a priori knowledge includes at least one point in the set © at which our
parameter vector is initialized. Then, the task of parameter adaptation is to improve performance

and track slow changes in the plant. Our use of slow adaptation has two advantages:

(i) the inherent stability of the fixed parameter controller quantified by (4.13) is preserved for

slow variations of the plant parameters which otherwise could cause instability,

(ii) the parameters to not overreact to the misinformation that accompanies a nonzero minimum

of the RMS tracking error.

The parameter 0 is updated at every instant k by a small step which is proportional to the

product of the filtered regressor vector {

E(k+1) = Age€i(K) + bri(k) .

. (4.14)
(k) = cei(k) . i=12,.. ., ng .
F(Z)Wm(Z) = Cmr(ZI—Amf)_l bs .
the filtered tracking error e(k). and the step size €
0(k+1) = 0(k)—e{(ke(k) . (4.15)

The choice of a constant filter to get { from ¢ and the choice of F(z)W(z) as this constant filter
have special significance for slow adaptation with the reduced parameterization (4.1). The
motivation for this choice goes back to the method of sensitivity points, (Kokotovic. 1973). By this
method the gradient of the output y.(k.0) with respect to the constant parameter  is obtained by
passing ¢ through the error filter F(z) and the exact closed-loop system transfer function W((0.2),
Fig. 4.2, In particular, this holds at 6" with @’ and W (6".2z). At 8", we obtain { by passing ¢
through F(z)W (z). If the part of the filtered output F(z){v,(k.8)] due 1o n, and n, is small relative
o the part due to r, then by the definition of " . W (2) is near the best RMS approximation of
B,W1(8".2): hence. { is proportional 10 a good approximation of the gradient. For this reason the

filtered regressor { is also called the "pseudogradient” (Kokotovic. Medanic. Vuskovic, and Bingulac,




L WCL(O'Z) > ayo L—, WCL(o.Z) — ayo -

3 a8, 0
Ll
%I
) Fig. 4.2. Sensitivity points for obtaining the gradient of the output.
.
K 1966). This gradient approximation property will be used to show that the parameters converge 1o
0
‘ Y . . . . * .
,‘ a neighborhood around 0° with radius proportional to E%(6°). Using the property (4.9) of the
b system (4.1) we see that the steady-state response of the {(k)e(k) with constant parameter 6.
L
: 2 denoted by {(k.0)e(k.0), is given by
e
"% {(k.0)e(k.0) = [F(2)W,(z) (kO] [F(2)W (8" 2)d(Kk.8)]T (—0") + e(k.0") . (4.16)
0N
:. Notice that the first term on the right side of (4.16) is the product of a time-varying. 8-dependent
':: matrix and the parameter error 8—0". This structure is used 1o develop estimates of the region of
l_!_
! attraction of an exponentially stable invariant set containing 6"
‘_
\
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o 2

:3 > Letting XT = [xT.xT.¢T] where xT=[xJ.xf.xJxT] and £T=[£'T.£27, .. . £¥] and letting
J‘.‘.
L q w(k) = [r(k).n(k).n(k).y,(k)]. we write the system (4.1). (4.7), (4.14), (4.15) in the form of
N .

I (3.1)-(3.2).

:":: -

. X(k+1) = A(6(x))X(k) + B(O(k))w(k) (4.17)
Pt
e (k+1) = (k) + € f(X(K)) . (4.18)
o %

Y where
A \..\ o
o -

e AGB) 0 0O B,(6)
< = A@) = |A,, Ar O BMO) =] B,

[ R

:3:\ A31 0 A33 B3
b "i -

" by T

o \ B4b a d2b¢
gy - w0 0 (4.19)
1 - Bsbids 0 aTdabidy 0

SO B,(6) =

AN 0 0 b O

i:r-,

e Bsbuds by aTdybd, ©

. B 2
e f(X) = —-CpX c.X

i

O . . . - : .
;(_: o with Az; . A;. By . and ¢, being the constant matrices corresponding to the tracking error filtering
<o

N u (4.7) and with Aj;. Aj3.B; ., and C,, being the constant matrices corresponding to the regressor
:' ‘g 2 vector filtering (4.14). The block triangular structure of A(0) and (4.13) imply that Assumption
AL

:;":.-' 73 3.1 holds. Defining the frozen parameter response

o

e

A k~} k—l— .
w v(k8) = F AIT(0)B(O)w(i) (4.20)

L} .‘.‘ . .".; 1= =0

Ny T
b é - it follows from the boundedness of w. the stability of A(8), and the linear dependences of A and B
[ A
h \ o
s on 6. that Assumption 3.2 holds. Finally, we note that f(X) is quadratic in X: hence. Assumption
-
:}'x 3.3 holds and Theorem 3.3 guarantees the existence of a local integral manifold of (4.17)-(4.18).
's‘.‘-
:.‘:‘ Theorem 4.1: Suppose that Assumption 4.1 holds. Then. the system (4.17)-(4.18) satisfies
NN
o v >

A a Assumptions 3.1-3.3; hence. for any given D, > 0.4, > 0.D; > D,.and XA € (\,.1) there exists
AN
i *j ey €,(D.ALDLA) >0 such that for each € € {0.e,) there exists a function
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8 h(k.0:¢) € H((e/e,)Dy.(€/€,)A,) with the following properties. Let X(k).0(k) be the solution of
%
: (4.17)-(4.18) with initial data X(ko) =X,.0(ky) =6, and let g(k.0:€) = wv(k.9) + h(k.0:€). If
"#\.
& : 0(k) € © for all k € [ko.k,]. then
et
B ‘ (1) X, = g(ko.0o:€) implies X(k) = g(k.0(k):e) ¥k € [ko.k;]
\ (1) 1Xo = w(ko.0p)! € Dy/K implies that ¥k € [kq.k,]
o
P I X(k) - g(k.O(k)e!l € KA I1X,-g(ko0p€)! . (4.21)
'l' a
N Remark 4.3: If the vector of input signals w(k) is N-periodic, then g(k.0:€) is N-periodic in k.
O
48
,)-"‘ Remark 4.4: In Theorem 4.1 we have not used in any essential way the fact that 8" provides a
g;; minimum of E(8) or that the limit in the definition of E(8) exists uniformly with respect to k. We
_f-] have used only the boundedness of w(k) and the implied stability of A(8).
= .
¥ .-).
P
[
. 4.4. Stability in the Slow Manifold: Averaging
2gd
:?'I:: The adaptive system (4.17)-(4.18) restricted to the slow manifold M, = {k.0.X : X = g(k.6:¢)}
'. T
\J evolves according to X(k) = g(k.8(k):€) and
A B(k+1) = (k) + ef(g(k.0:€)) . (4.22)
}..‘ We apply the results of Section 3.5 to obtain sufficient conditions for (4.22) to possess an
o exponentially stable invariant set. We define the averaged system or ODE
n
oo
o d7=T@ (4.23)
B ar
o
P where
"’ — A
o £(8) 2 avg[f(v(-.6))]
o (4.24)
&0
Do = —avgl{(-.0)e(-.0)]
{
ﬁ.‘_: with &(Kk.8) . {(k.B) . e(k.0) denoting, respectively. the steady-state response of ¢(k) . (k). e(k).
5
.f:."
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that is,

r(k)

Cv(k.0) -
dzno(k)

&(k0) =~ (k@) =C,v(k0) . e(kB)=c v(k0). (4.25)

In order to take advantage of the structure implied by (4.9). we introduce v(k.0.8%), the frozen

parameter regressor vector ¢(k.0) filtered by F(z2)W,(6°.2).

v(k.0.0") = F(2)W¢ (6°.2)(k.0) . (4.26)

Using (4.9) and (4.25) we write {(g(k.0:0)) as

f(¥(k.0)) = ={(k.0)vT(k.0.0')(6—-6") — {(k.O)e(k .07 . (4.27)
Defining
R(0.6°) = avgl{(-.0)vT(-.0.8")] (4.28)
b(0.6") = avgl{(-.0)e(-.8")] (4.29)
we rewrite T as
T(8) = —R(0.0°)(0—0") — b(6.0) . (4.30)

From (4.30) it is clear that the averaged system (4.23) has the same structure as the averaged
system which was studied in Section 2.6. Hence, we could develop the parallel results for the
discrete-time adaptive system (4.17)-(4.18) using Theorems 3.4 and 3.5. However, we choose to

obtain our sufficient conditions for stability with the more direct approach of Theorem 3.6. Letting

y,(K,.O*) = max |l {(-.O)e('.O*)HI

* (4.31)
!-)Esu(,n )
where -l denotes the RMS value of the Euclidean norm.
| A 211 -
1gC-.0 i = {avg(|¢C-.0) . (4.32)
we note that
Y e T T e T T RS T AN T Rt S e e ;"r $ 'T":; A
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[6(0.6") < y,(K,.8) ¥0eB(K, 0" . (4.33)
Theorem 4.2 Suppose that Assumption 4.1 holds. that B(K,.8°)$©. and that

R(0.6")+RT(0.6%) > 2y,I>0 ¥9eB(K,.0") . (4.34)

Given any Dy>0.44>0.D; > D, and A€(A,.1). if
y1(K:.8") < Kiyo . (4.35)

then for any 0 €(0.K, — %) there exists €,(0)€(0.6,(Dy.A¢,D,.1)] such that for each €€(0.¢,). any
(1]
D,p,(D,)

Ko€Z. any 0,€B(K,—€"pg(Dy)—e€ — 6" and any X €B(D,/K.v(ko.0,)) the solution X(k).

0(k) of (4.17)-(4.18) with initial data X(k,) = X,. 0(k,) = 0, satisfies (4.21) and

D,p,(Dy)
1—-A

£+0'

Yo

(k) — 0°] < (1—ey)“ ™| ||9,~0"|+€,pp+e +(X+o)  (436)

Yo

for all k Zk,.

Proof: In the proof of Lemma 3.6 we replace f(k.8:€) by f(X(k)) and compute the new bound

N N-1 fi

i—=1 )
T 0k+)-0(k)| € L T [T lepe+ep, (DDA

-1
1=0 N i=0 |j=0

s < 1
6G0-00k)] € <

<IN-1
)

=0

Dlpz(Dl)

€ppit+€E
Pri =X

D,p,(D;)
< (eN—e)(pF/2)+e—$z;(A—'

In the proof of .emma 3.8 we redefine f,, as

N—-1
F24(K:X000.k,0€) = _\1_ S el f(X(k)~f(w(k 8] . (4.38)

i=0

and similarly to (4.37), we replace the bound (3.128) by

5 D,p,(Dy)
If24(k:X0.00.k0.€)| € €p, + % _11’)"'_?1_ . (4.39)
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Noting that Lemma 3.6 was used to obtain (3.126) we replace it by

|

4 lpz(D )

|f22] € e(eN—€)(p,p§/2) + € —= (4.40)
:,*d
:{ The proof is completed by following the proof of Theorem 3.6 with (3.160) replaced by
Dyp,(D,)
- 71 —+0 & < 1\1—6 p -—lpz—l——
a Yo 1=
Dyp,(Dy) Dyp,(Dy) (440
“n 1 x(e”’)+ev=plpp+ep€+(e"’+ep,)—-—_—lpz Y+ e"’(pp/2)+e_.___’pz Y <
Yo 1=\ 1—A
< .
]
g Corollary 4.1: Suppose that w(k) is a sample path of a stationary ergodic stochastic process. If
i~ the hypotheses of Theorem 4.2 are satisfied by almost every sample path of the process generating
w(k), then the conclusions of Theorem 4.2 hold with probability 1.
. O
RN
- Corollary 4.2: If w(k) is N periodic, then €”pp(D,) can be replaced with €Npg(D,) in
i Theorem 4.2.
O
=

4.5. Frequency Domain Interpretation of Theorem 4.2

il

In this section we evaluate and interpret the stability condition (4.34). In the course of this

- study we relate the input signal frequency spectrum to the stability of the adaptive system

i

(4.17)-(4.18) and investigate the effect of choosing reference models for which the minimum RMS

? error E(0”) is small.

P For ease of exposition we assume temporarily that there are no disturbances. that is.
o n(k)=n (K)=0. In order to give an interpretation of the stability condition (4.34) in terms of the
:;}‘ input signal spectrum and the pertinent transfer functions, we take r(k) as a finite sum of

sinusods.

r(k) = Z rl.)ejmk . T, =r

ok )

w“w oo (4.42)

‘.

.....
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where T,, is the complex conjugate of r,. the set Q has a finite number of elements, and w€Q

implies —w€ Q. Denoting by G(6.z) the vector of transfer functions from r to . that is,

1
G0.2) = : (4.43)
—C(zI-A(0))" b
we compute the Fourier series representation of ¢. v, and §,
d(k.0) = Y G(0.e*)r er* (4.44)
wE Q
v(k.0.8%) = T G(0.e*)F(e™)Wc (8°.eM)r e | (4.45)
w€ Q
{(x.0) = ¥ G(0.e*)F(e*)W (e*)r e . (4.46)
wk
From (4.45) and (4.46) we calculate R(8.6%)
R(0.0") = T G(6.e%)GT(8.6'*) [F(em) Jr PW (e*)W e (8% e7) | (4.47)

wk Q

and restate the stability condition (4.34) in frequency domain

0 < 2yl < R(8.8%) + RT(8.8%)

) x 4.48
T G(O.IGTO.) [F(em)P [ru[?Re(W, (") Wy (8" ) . ¥OeEB(K, .07 )
w€ 2

A necessary condition for (4.48) to be satisfied is that for some y>0

0<yl € ¥ G(0.e*)GT(0.e7)|r,|
W€ 0

. (4.49)
=avglo(-.0)0T(-.0)]. WOEB(K,0).

which is clearly a persistent excitation (PE) condition on the regressor vector.

When the minimum RMS error l..{(9*) is small. we can show that a PE condition on the filtered

regressor {(k.9) is a sufficient condition for the stability condition (4.48) to hold. letiing
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| w,; = max N0

HEB(K, 6 )
. (4.50)
g= max max |G(6.e%)]

R 6EB(K, 6"

it follows that
hud HE(-8) — Bav(-8.6") 1 < gE(O") (4.51)
:'fj { o B()V W, X g . .
= where we have the clear interpretation of g as the gain from r(k) to ¢(k.0) and of E(8) as a
~e
“»

measure of transfer function mismatch B, F(z)W¢ (8*.2) — F(z)W,,(2) at the frequencies w€ Q of
- the reference input r(k). Using this bound and assuming a PE condition on the filtered regressor.
. that is,
J!
-

0 < yI < avgl((-.0)57(-.0)]

) . . . 5
N = T G(B.e®) GT(B.e™) [FemP|WolewPlrp . voeB(K, 05 . (42
o Q
i we have the following corollary to Theorem 4.2.

Corollary 4.3: Suppose that Assumption 4.1 holds, that n;=n,=0. that r(k) is given by (4.42),

and that (4.52) holds. If B:>() and

1 x
v Yo = —ly=wigE(0)] >0 (4.53)
Bo
3
ﬂf then (4.34) is satisfied: hence. if (4.35) is satisfied, then the conclusions of Theorem 4.2 hold.
O
e
- Thus. when the reference model and reference input are such that the error E(8) can be made
e small. the stability condition (4.34) reduces to a PE condition (4.52) on the filtered regressor. An
) important point to remember is that this PE condition is checked pointwise in 6 for constant values
7 ot B€B(K,;.8°). That is. the vector {(k.8) which must be PE is the output of a linear time-invariant
. svstem driven by r(k); hence, the Pt requirements on { are readily shifted to sufficient richness
ty
conditions on r. We see that r must contain frequencies lor which G I, and W, are not too small
-

and tor which B8, W (8" jw)=W, (jw) is small.
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D¢
:-::- Equation (4.48) also points out one of the advantages of using the filtered regressor vector {in
&“-.:
" the update law rather than the regressor vector ¢. Recall from Chapter 2 that the frequency
.-
| -:::4' domain interpretation of (4.34) was the "signal dependent SPR" condition on W (6" .-). From
.:-z:j (4.48) notice that with regressor filtering by W, we have a "signal dependent SPR" condition on
'J L} !
Bl W.(e*) W (6°.e7%). For small E(8") By W (8, ) is close to W,,(z) at the frequencies w€ Q and
‘: the positivity condition on W (e®)W,(0°, e™*) is almost trivial. Hence. the regressor vector
¥ \S filtering removes the requirement that our model W be SPR
N The term yl(Kl.O*) defined in (4.33) is bounded by y, € w,E(8%) which implies that the
‘:;:"
‘_'.~_'. radius of the invariant set of the ODE (4.23) is O(E(8%)). We use the fact that {(k.9*)
"-::\
o approximates the gradient v(k.8".8") of e(k.§) with respect to 8 at 8=6" in order to show that the
invariant set actually has radius of O(E2(0")). Let
L Wy = max g0
b ? o 88 ' (4.54)
N HE B(2w,E(6 )/y,,0)
- Clearly. w, is bounded by a constant times v, (from Assumption 3.2). Letting
-::~ x wr n* ’
g = max |G(6 ev)| . (4.55)
b wk {)
we rewrite b(8.0") as the sum of two terms
~J‘ b(6.9
!
b
b(8.0") = avgl({(-6)—L(-.0"))e(-8")]
L Bl : . o . (4.56)
3 . *x .
o + avgl(Z(-.0") =B, v(-.8*.8"))e(-.07)]
e
[ and bound h(8.8") for all 0€B(2w E(8%)/y,.0")
A WWo L
S Ib8.8%)] € |g*+2 172 [F2A0™) (4.57)
" : yu
hot
‘ Using these bounds we show that after converging in finite time to the hall B(2w ,lf(e*)/y‘ 8" the
-::_"-j parameters vonverge exponentially to a smaller ball.
._ Corollary 4.4: Under the conditions of Theorem 4.2 1f n, =n = 0. (k) is given by (4.42), and
i
. ¢
W
e
) »
e A T e P B e o T e T e N et
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* W W2 * Wi Wi * D,px(Dy)
+2 E@)<S —. o< E@)—e’—€ —— (4.58)
8 Yo ’ b Yo ;;T P 1=A
then
- E(6* _ 2(9*
10(k) — 0" | € (1—ey,)* ™12 wiEO) | [1—(1—ey ) )| lg* +2 22¥2 | E f/o )+ o (4.59)
(] o 0
for all k 2 k,(€) where
JCH 2w,E(0* D,p,(D,)
k,(e) = In Kl—_\Yi_(_l—O’ ~1n _zi_(_)—e"’(D)—e_‘_p’__L (4.60)
€Yo Yo Yo P 1-A
0

In Chapter 2 without regressor filtering the best we could hope for was that the equilibrium
of the ODE was O(E(6")) from 8". Hence. a second advantage of using regressor filtering over not

using it is that it allows the slowly adapting system to converge to a smaller invariant set around

the optimal parameter value.

The model reference adaptive system (4.17)-(4.18) also allows filtering of the measured error
between y, and y_ by the transfer function F(z). We drop the assumption of no disturbances in

order to investigate the advantages of this error filtering. We suppose that the input disturbance n;

is a finite sum of sinusoids with frequencies in the set Q;,

n(k)= J n,exk, (4.61)
W€

and that the output disturbance n (k) is a finite sum of sinusoids with frequencies in the set Q,

nJ(k)= J n, ek,

we (1,

(4.62)

We allow Q and Q, to have common elements but we assume that @ N Q,=dand Q, N Q, = .
letting G(0.z) and G,(0.7) be. respectively. the transfer functions from n(k) 10 ¢(k.8) and from

n.(k) to #(k .9). we compute R(6.8")

-----
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R(6.6%) = T G(0.e") GT(B.e~™) | F(e™) 2 ir, |2 W, (e®)Wc (6" ™)
w€ Q
+ T G(8.e)GT(0.e7™) | F(em)I2r, i, Wp(e®)Wcr (0" e™)
Wk QNQ;
+ T G(6.e")GT(0.e7™) I F(e*) 12 n, Wo(e) Wi (87.e7) (4.63)
£ QnQ, )
+ T G(0.6%) GT(0.e7™) I F(e®) 12 In, 12 W (eX)Wc (8" .e™)
Wk Q,
+ ¥ G,(0.e%)GT(0.7%) I F(e®) 12 Iny 12 W ()W (8" e ™).
wk

c

Letting W,(0.2) and W (0.z) denote, respectively, the transfer function from nf(k) to y.(k) and

from ny(k) to y,(k). we compute the RMS error E(8)

E(0)= X IF(e*)1? Ir,1%18,Wci(0.e%) = W(e*) |2
Wk Q

+ X IF(e®)i2?rm, Wi(0.e7®)BWcr(0.e2) — W (er))
W€ QN0

+ Z ] F(e"") | 2 Tmniw Wi(O.e’”)(BOWCL(O.e_"“) - Wm(e"“’)) (4 64)
wE Q:NQ . .

+ ) IF(e®)12 IW(8.e®)12 In,,!?
wE

+ ) IF(e®)I12 1W,(8.e®)12 In,12.
* 0,

From (4.64) it is clear that minimizing F(@) requires the controller to make | W;(8.e®)! and
| W,(0.e%) | small at frequencies w € Q; U Q, while also making | 8,W¢;(0.e*) - W (e*)| small
at frequencies w € 1. If we further assume that the output disturbance contains only high

frequencies and that the reference input and input disturbances contain only low frequencies. that

is,

0f max lwl <w, < min lowl <7,
wE U Q R T (4.65)

and that n,(k) is measurement error which is Lo be ignored rather than compensated. then we can
take advantage of F(z) to make our cost functional E(0) compatible with our objective and to

improve robustness of the parameter update. We simply choose F(z) so that | F(e*)! is zero or
very small for all w € (w,. 7). This removes the effect of n,(k) from both E{(8) and R(8.8"). Notice

that only the magnitude of F(e*) appears in E(8) and R(8.0"). This implies that we have no
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that only the magnitude of F(e®) appears in E(8) and R(6.6%). This implies that we have no

e

constraints on the phase characteristic of F(e*) when we design its magnitude characteristic.

Error filtering is. however, not a cure for all problems. If we want our controller to make the

e

A,

response of the plant due to the input disturbance n,(k) small, then | F(e*)! should be nonzero for

ﬂ all w € Q; so that our cost functional reflects our objective. However, if ! F(e®)!| is not zero for
'&i

| each w € ;. then we want to have Re(W_(e®) W (8" .e7%)) > 0 and Im(W,(e*) W (0 e7))
40

‘.:: small for all w€Q; so that R+RT stays positive. This may be difficult to ensure or justify for
)ﬁ frequencies w€ Q; which are not close to the frequencies in 2. Hence, in the design of the adaptive
: system, | F(e®)!| large to include n, in the cost functional E(8) may have to be traded off against
a I F(e*)! small to keep R+RT positive. Theorem 4.2 and the expressions (4.63) and (4.64) offer
- guidelines for this step in the design.
::'. Remark 4.5: If the input w(k) is generated by a stationary ergodic random process. then the
.. frequency domain interpretation remains valid. but the sums over finite sets are replaced by
. integrals over (—.7) and the Fourier series coefficients are replaced by the spectral density.
4 "

'
E 4.6. Concluding Remarks

o~ We have presented an adaptive control scheme with a controller parameter parametrization
:: that allows for the design of model reference adaptive control systems with a reduced number of
g parameters. Verification of the stability conditions for the parameter update may require
) significant off-line design effort or a priori knowledge. This, however, should be considered as an
o
'&:, opportunity rather than a burden because it allows the designer to use available information 10
R reduce the number of parameters in the adaptive control system.
RS

9
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CHAPTER §

DESIGN OF SLOWLY ADAPTING CONTROL SYSTEMS: AN EXAMPLE

5.1. Introduction

Successful application of the model reference adaptive control system introduced in Chapter 4
consists of two separate developments. both of which relate to the control system (4.1) with
constant values of the adjustable gains 0. First. the compensator blocks F,. F;, and F, must be
designed so that the fixed gain control system can be tuned to give acceptable performance by
adjusting only the gains 6. Since the main reason for having adaptive control is to combat
parameter uncertainty or variability in the plant, the possibility to tune the control system by
adjusting only the gains @ should exist for the entire range of possibie plants. The second step is 10
design the reference model. the error filter, and .if applicable, the input signals so that the 8" which
. minimizes the RMS filtered tracking error E(8) provides good tuning of the control system. The
value of 8 which minimizes E(8) should depend on which plant in the range of possible plants is
used. but the property that 0" provides good tuning of the control system should hold for any
plant in the.range of possible plants. We remark that if 8" is the same for each plant, then adaptive
control is not necessary. Following Kokotovic. Medanic. Vuskovic. and Bingulac (1966). we shall
) say that a controller is compatible if it can be tuned for each possible plant by changing only 6.

These two steps can be generalized to provide guidelines for the design of slowly adapting

control systems.

(1) Given the range of possible linear time-invariant plants. choose a controller parametrization

with adjustable parameter vector 6 such that, for each possible plant,
(a) the fixed parameter controller is compatible, and '

§'- (b) if the closed-loop system is writlen in the state space form

x(k+1) = A(0)x + B(8)w(k) . (5.1)
o then A(6) and B(0) are differentiable with Lipschitzian derivatives.
(]
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(2) Given such a controller, find a cost functional J(@) such that

LA

(a) for each possible plant. the 8" which minimizes J(8) provides acceptable tuning of the fixed
| P 8

parameter control system. and

- b‘w

AR

(b) J(8) is differentiable and its derivative is Lipschitzian.

(3) Construct filters with state £. inputs x and w. and output {. and construct a parameter

28

2

-

update law

-y,

0(k+1) = 0(k) + ef(w(k).0(k),x(k).{(k)) (5.2)

oy Ty
")t“}'tl’_x'."
Pl

p

so that, in the averaged system

D 3:
L) ' ks
b ) -
NS L3=1@ . (5.3)
iy dr
.‘. 8] 'h
’5‘! where
by T(0) 2 avgl f(w(-).0.x(-0).L-)] . (5.4)
L. .
.\-:\, "« f satisfies
VY
3% J J
Y TT = 6 TT= a
e ﬁ f 'l or ¥ (5.5)
i 0 ' Assuming that acceptable performance implies all eigenvalues of A(8") are strictly inside the unit
:-_“: circle. it follows that we can establish the existence of an exponentially attractive integral
w
» x
)
Rl Q manifold in a ball around 8° for the slowly adapting control system (5.1)-(5.2). In the manifold
., 3 we apply averaging to investigate the evolution of the parameters. Assuming isolated local
0
v - . . . o *
o ~ minima. (5.5) quarantees that solutions of the the ODE (5.3) beginning close enough to 8" converge
BN S
(% *
to 8" or a small invariant set containing 6.
. i
i ' o
:3 We point out that step (1) is required in the design of any linear time-invariant controller
(L
I . . . _ . . . . .
-.: < which is applied to an uncertain plant, to a nonlinear plant linearized at different operating points,
Vgl “w
- !
i or to different copies of the same product. Step (2) is related to the off-line tuning of such a
<. Y
;\ " controller. If the controller has more than three parameters. manual tuning is often a difficult task.
'
P
N Automated tuning requires the specification of a cost functional to be minimized. However. in off-
!". "
'~ ! line tuning with a human supervisor. good performance does not have to occur at the minimum of
'(31 ~ J(8). The supervisor can monitor performance during each step of an iterative tuning procedure
ST :
y i
&
1
AN
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\
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and stop when the performance is good. Since the adaptive control system is not supposed to need

-

a supervisor, the cost functional for adaptive control must be chosen with more care than the one
" ‘ for supervised automatic tuning. The ability to construct the required filters and the function f in
Yok

step (3) is often related to the ability to do off-line automatic tuning because the cost functional

J(8) often has the form

%5 J(0) = avgl J,(x(-.0)) ] . (5.6)

In this case. we take

G gx
T . =1 Wi
fT(w(k).0(k).x(k).L(k)) i B (5.7

J
o In Chapter 4, for example, we used J, = .5(y(k)=y,(k))? so that %‘;,1’ = y(k)=yn(k) and { was

L X used to approximate %—
- In this chapter we use these guidelines to design a slowly adapting control system for a

X simplified model of gasoline engine idle-speed control.

o 5.2. Problem Statement

e The plant and controller parametrization are given: see Fig. 5.1. The plant uncertainty is

hy s parametrized by the vector of plant parameters p=[p, p. ps;}/T with nominal value

R (0.67 0.017 0.75]". Each element of p can vary by 30% of its nominal value. The elements 6.
O N 6,. and 03 of the controller parameter vector 6 are the proportional gain from the output y to the
-’” input u,. the proportional gain from y to the input u;, and the integral gain from y to the input u;.
é; >

2

o

respectively. A state space representation of the closed-loop svstem is

994 p, 0 0 0 0
—108,~5p; 0 .5 .4 250 '
—(1+p)pa ¢
0 0 0 25 o |FR)+ ) jd(k)
0 0 —2% 4 -6, 0

0 0 0 0 |
vik)=[1 0 0 0 0 0]x(k)

"“‘ A\r
¥ X rl r il g’ ¥
AL 1Y

L Y

<

x(k+1) =

2 Y 4
A

%-
I

«
|
-
3

8.

-
-

-
i
¥
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d
S(z+1) P2 1 Y
™ zZ=-p z z—.994 —
u;
0, j#—m—1 —10
(t)= Ps -1
Sz + .2 u
Z= 4z + .07 9, ~1
—1
1 9 z—1

Fig. 5.1. Block diagram of the closed-loop system (5.8) with plant parameters P1. P2. and p;

and controller parameters 0, 6,. and 8.
The desired value of the output is zero. However, the system is subject to infrequent (separated by
more than 50 samples) step changes in the unmeasured disturbance d, representing load changes.
Good tuning of the contreller should achieve several objectives simultaneously. The response of v
10 a unit step change in d at time k, should have magnitude less than 0.1 for all k 2 k, + 25 and
magnitude less than 0.01 for all k 2 Kk, + 50. The response should be well damped. The closed-
loop eigenvalues should all have magnitudes less than 0.9 so that integrator windup is not a

problem. These three objectives were stated in order of increasing importance.

In terms of the guidelines presented in the introduction, the choice of the controller
parametrization has heen given and it satisfies the smoothness condition (1b). The compatibility

requirement (1a) that the controller can be tuned for different values of the plant parameter p is to

» Y.

ol _Bak e e d

& .
L) ‘!“.’ l"..
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&
! ': be checked by actually tuning the controller for different values of p. The development of a cost

functional with the properties described in (2) is presented as an iterative procedure in which an
e appropriate cost functional is determined for tuning the plant with the nominal value of p, and
. then. it is tested to verify that it provides good tuning for all possible values of p. The

construction of a parameter update law is straightforward because the the cost functional has the

) form (5.6).

') 5.3. Tuning of the Nominal Plant

10 Using the method of sensitivity points (Kokotovic, 1973), the gradient of the output of y(k)
g with respect to constant controller parameters is vI(k) =[ v,(k) v,(k) v3(k)]. where v,. v,. and

r vy are signals at the indicated points in the block diagram of the sensitivity model, Fig. 5.2. A state
S . al

)= z—.994 > z > z—p

<

3 Vi

b | P3 -1
L o

o 6 V2 - Sz+ 2
\; : 22— 4z + .07

N 93

b Fig. 5.2. Block diagram of the sensitivity model (5.9) for the svstem (5.8) showing the sensi-
UVILY POINLS Vi, Vs, Vy.
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';‘:, ~ space represention of the sensitivity model is
"
W,
-t ! 994 —p,(100,+.5p;) —.5p, —.80, —.50, —0;
Yo 1 0 0 0 0 o 1
N 0 (1+p))p P 0 o0 O 0
4\'}» S 1792 1 0
AR €)= | o 0 o o 25 o [fK* 0 y(k)
e 0 .5p2 S5 -28 4 O o (5.9)
= 0 0 0 8 5 1
g
N ® 0 -10p, 0O 0 0 O
W W vik)=10 0 0 -8 -5 0 [¢Kk)
W o o 00 o0 -
Ay .
- \J' Because the plant parameter vector p is unknown, this sensitivity model cannot be realized on line.

We use it for off-line simulation studies. For an implementable algorithm, we shall use (5.9) with

L) »
{ X the given nominal value of p and the constant value of 8 which gives good tuning for the nominal
i
- » plant.
v\ )
DY
: 3 Since the input d is not measured. the usual model reference approach of using the squared
{
™ ﬁ tracking error for the cost functional results in
)
j::; - =avgl y2() . (5.10)
J‘-‘) “'-
IS
)

L For testing candidate cost functionals, we let d(k) be a square wave of period 100 taking values 1

N

and 0. The average of y? is minimized for the nominal plant by the controller parameter value

)

"‘ . - . . . .
"';. . 0" =[54 108 3.7]7. As shown in Fig. 5.3 the response is oscillatory. As one of the objectives is
'@-‘.( -

o to have a well-damped response. something needs to be added to the cost functional to penalize the
< ~

AN oscillations.
! L%

3' o~ We used the parameter update law

)

S

. B(k+1) = 0(k) — ev(k)y(k) (5.11)
»}- )

Y
" o and slow adaptation to search for 0" Examining the response for different values of 8 along the

‘o

o’ :
:s.., g trajectory of the slowlv adapting system (5.8).(5.9).(5.11), we observe that for some values of the
TS parameters the response is close to that of a well-damped second order system with L0 zeros. If
\ )

»
s
WIS

Y ‘_-'n‘,‘-'\‘- o R, Trw \7— s "r b ‘- E LIS ’-.’.v-"-r.-'_-_.-r.rn.(.‘ L"), -‘v*‘.:{,w.( 0 b '-k:"‘ -
“ “'" -",-‘ , ¥ "‘g .57‘f‘,~f‘,.-?l 0 ' ﬂ, n ‘ ]" '. i‘v » 'J’ AN v’u “"0.. DM
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e Fig. 5.3. The response of the y over one period of d for 8 =[5.4 10.8 3.7 ]T. the value which
O minimizes avg[ y? ].

S, v(k) was indeed the output of a second order system with two zeros and input d(k), then it would
P satisfy
it y(k) = —a;y(k—1) —a,y(k—2) +b;d(k—1) +b,d(k—2) +byd(k—3) . (5.12)

Because of the integral feedback. one of the zeros must be at z=1 which implies that

: o b;+b,+h; = 0. This. in turn. implies that the response to a step at k = k,, satisfies

Yo'

s 0 = y(k)+a;y(k—1)+a,v(k—2) (5.13)
,,.-' for all k2K, + 3. Hence. using the equation error

o)
r o e(k) = v(k)+av(k—=1)+a,v(k—2) . (5.13)

!

4 Y]

—— we can incorporate a reference model into our cost functional. With some experimentation. we
® ol

~
'-I':\ found that tor the nominal plant the cost functional
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.:: J=avgl y¥(-) ]+ aavg] *() ] (5.14)

. with the relative weighting a = 100 and reference mode) coefficients a; = —1.5 and a, = 0.5725 has
a minimum at 8° =[3.0 3.5 1.34]T, which provides the good response shown in Fig.5.4. The

;j eigenvalues of the closed-loop system (5.8) all have magnitudes less than 0.80.

N 5.4. Tuning of All Possible Plants

o The next step in the design of a slowly adapting control system for (5.1) is to verify that the

e controller can be tuned for all possible values of the plant parameters and to check that the

?E minimum of J provides a good controller parameter setting. An exhaustive search over the range of

plant parameter variations reveals that the closed-loop system (5.1) with controller parameter

fixedat =0"=[3.0 3.5 1.34]" is exponentially stable for all possible plants. This is important

‘_ for the application of a slowly adapting controller because it suggests that we may be able to
-

<
]

L A B

@ ’a -9 k &a Ra 148
Fig. 5.4. The response of v over one period of d for 8 =[3.0 3.5 1.34]" the value which
minimizes J given by (5.14) with & = 100, a; = ~1.5, a, = 0.5725.
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O
\-"_: initialize our controller at this value of 8 for all possible plants. Although the closed-loop system
"
- has all its eigenvalues inside the unit circle for all possible plants, the response is not good for all
.::-:: possible plants. The extreme cases are generated by letting the plant parameter p' take the values
A
2 [0.871 0.0221 09751 [0.871 0.0119 0.525]. [0.469 0.0119 0.525]. and
o
[0.469 0.0221 0.975]. From Fig. 5.5, where the responses for the nominal value of p and each
a1
_‘35% of these extreme values of p are shown, it is clear that the plant parameter variations are significant
’:: enough to require retuning of the controller. By tuning the system, we verified that the given
3 .
Rl N
controller is compatible and that the same cost functional which was used to tune the nominal
W)
o plant can be used 1o tune all possible plants. The tuned responses. which are shown in Fig. 5.6. are
'E: very good. The values of 6 that minimized J and tuned the control system are given in Table 5.1.
"
[
( : For each tuned system the eigenvalues all have magnitudes less than 0.88.
kN
iy
~n 5.5. Simulation Results for an Implementable Algorithm
N
: As mentioned before. we create an implementable algorithm by using the nominal value of
N the plant parameter vector p=[0.67 0.017 0.75 ]T and the corresponding value of the controller
et
NN parameter vector 8 =[ 3.0 3.5 1.34] in the sensitivity model (5.9). In order to differentiate this
,-c:-,
] approximate gradient from the true gradient., we replace v by { as the output of (5.9). Then. the
..'-:: parameter update law is given by
.
Y
.':[
o
;w Table 5.1. The nominal plant parameter values and 4 sets of plant parameters which represent ex-
O treme changes from nominal along with the corresponding value of the controller
[ parameter after tuning to minimize the cost functional J in (5.14) with a = 100,
o a, = —1.5. and a, = 0.5725.
Ao
A %
- P P> P 0, 9, 0,
o 0670 00170 0750 30 35 134
g TO8T1 00221 0975 23 22 0.40
3 ;0871 00119 0525 44 53 073
L0469 00119 0525 44 52 3.1
i L0469 00221 0975 23 25 167
i
oY
v~ e,
N
ol
O
\ -_::_ v
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Fig.5.5. The responses for 8 =[3.0 3.5 1.34]T and different values of the plant parameter vec-
tor p. The dashed response is for the nominal value of p.

-3 k (23] RA 183

Fig. 5.6. The responses for the same values of p as in Fig. 5.5 after retuning 8. The values of p
and 0 are given in Table 5.1.
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o B(k+1) = 0k )—€eTIL(K)y(K) + 100[L(K)=1.5¢(k=1)+ 5725Lk=2)e()] . (5.15)
- Bv experimentation we found that € =0.01 and I =diag(2 30 1.5) provided good parameter
" convergence as illustrated by the trajectories of 8 converging from its tuned value for the nominal
plant to its tuned value for each of the extreme plants in Figs. 5.7-5.10. In Fig. 5.7 the controller
.‘,‘ parameters 0, and 0; converge quickly with monotonically decreasing‘average values. while the
_‘ parameter 8, converges more slowly and its average moves initially in the wrong direction. For
>

:-\.: this value p =[.871 .0221 .975 J™ the output is not very sensitive to the controller parameter 6,.
” This can be seen from the fact that the output changes very little after k=500, but 6, does not
::?_ converge until after k=1000. In Fig. 5.8 all three parameters converge very quickly. The averages
7 of 6, and 0 are again monotonic, while the average of 8, overshoots slightly its tuned value before
AA converging slowly to the value predicted in Table 5.1. The response with this value

'*- p=[.871 .0119 .525]F and 0 constant at its nominal value 8 =[3.0 3.5 1.34 ] is the large

:-:" magnitude oscillatory response in Fig. 5.5. Notice that with adaptation the response of vy to the
b change in d at k=50 is almos.l the tuned response. This is the plant parameter change to which the
\ : controller is most sensitive: hence. it is the one used to tune the gain matrix I’ in the parameter

2, :' update law. The diagonal elements of I' were chosen as large as possible without causing the
J parameters to significantly overshoot the tuned values. The convergence of the parameters shown

-:: in Fig. 5.9 and Fig. 5.10 is about the same speed as that in Fig. 5.7, which is slower than that in Fig.
:"T:: 5.8 This indicates that the controller is less sensitive to these plant parameter changes.

::_ 5.6. Analysis of the Implementable Algorithm

.j Suppose that p s given and fixed. Let 8" be the value of 8 which tunes the controller for the
i.-‘ given value of p. We denote by p" and 0" the nominal value of p and the associated tuned value ol
>~

:"' 6. By design. all of the assumptions for the existence of an exponentially attractive integral
I\: _ ~ ,

< manifold are sausfied 1n some ball around 8 in the parameter space. In order to anaivze the
_ hbehavior in the mani'Hid. we apply averagmy theors. We could analvze the slowly adapting
oy

‘;: svstem (S3)(S.9).(515) by first showing that § s a4 good approximation of the true gradient v, and
,g'.‘

e
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Fig. 5.7a. The controller parameters converging from nominal values to the tuned values for the
plant parameter vector p=[ .871 .0221 .975 1.
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2043 Fig. 5.8a. The controller paraineters converging from nominal values to the tuned values for the
‘ plant parameter vector p=[.871 .0119 .525]
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Fig. 5.9a. The controller parameters converging from nominal values to the tuned values for the

plant parameter vector p = [ .469 .0119 5251
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Fig. 5.9b. The ouiput y during this tuning transient.
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Fig. 5.10a. The controller parameters converging from nominal values to the tuned values for the
plant parameter vector p = [ .469 .0221 .9751].
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Fig. 5.10b. The output y during this tuning transient.

- -, . .

22 DT (T S e TR SO

T R R A T K AT
p -;.w ,ny LA - ,!51.033,




A aaaaes Ak 4ia Sund 2 diShdl et el et salutat dhec il T T v TS

C

. 119
b4

- A
bk .2::
J o
X 3
U
0

!;.l

then, using J(6) as a Lyapunov function to quarantee that the solutions of the ODE converge to a

neighborhood of 0°. This approach relies heavily on the knowledge of J(8) which can be evaluated

% numerically but is difficult to describe analytically. We choose, instead. to follow the analysis in
. Chapter 4. Letting
(3%
D {e(k) = {(k) — 1.5¢(k—1) + .5725¢(k=2) . (5.16)
," 3, ﬁ
::§ < the averaged system is described by
i~ _
$}- £(8) = —avg[ {()y(-) 1 — aavgl L(De(-) ] . (5.17)
h A
Defining
\ 244
o3
~ -10
, & _ .52+.2  5(z+1)
1 2 — R
d Ukpoprgy=| Z 42407 z=pi |pd % Weulp 6 2)y(k.p9) . (5.18)
o Sz+2 S(z+1) 1
:": g z°—~.4z+.07 z—pd 2z—1
)
| n where W is the transfer function fromd to y.
L)
>3
:'J} . 1
§ A WcL(p,o.Z) - Z—.994
R (5.19)
0
B ; 1+ P21 100, + S(z+1) Pyt [0, + 2 Sz+.2
S z 2—.994 z—p © 0 z=1 | 22— 42+.07
e
g
o
e we rewrite (5.17) in the form
[N
) = T(8) = —R(p.0.p".6"0")(8-6") — b(p.0.p".0".0") (5.20)
¥
o with
hl
S
Ly & R(p.0.p".0".0") = avgl ¢Cp8.p70° )T p.0.p.8%) ] (5.21)
o + aavgl {.(.p.0.p".0"XT(-.p.0.p.6") ] .
»“

b(p.8.pu.0".6 ) = avgl {(-.p.0.p".0")v(-.p.") ] * (5.22)
é + aavgl {(-.p.8.p".0")e(-.p.67) ] .

-

FHIHERE

. -

‘:E The analyvsis then proceeds as in Chapter 4 with Theorem 4.2 providing a sufficient condition for
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i
:Q..' the exponential stability of an invariant set containing 8. From the closeness of the tuned
B
) responses in Fig. 5.6. we conclude that W (p".0°.2)y(k.p.0) T W (p.8% 2)y(k.p.9) for all 0 in a
Sl
‘o0 ball around 8°. Then. the difference between {(k.p.9.p*.8°) and ¢(k.p.6. 0%) is due to the difference
N p.v.p p.Y.p
1 300
A , : 1 1 i : :
P oy in the transfer functions — and p—— Since ¢, is simply a moving average of {. the difference
Rl =p —P1
]
Ko~ between {.(k.p.0.p".0°) and {.(k.p.0.p.8") is also due to the difference in these two transfer
-'{‘:-
‘_ - functions. The fact that p, varies no more than 30% from p{ ensures that the matrix R + RT is
K'Y i . . . . .
positive semidefinite. From the convergence of the parameters in Figs. 5.7-5.10. we conclude that {
. : is persistently exciting for the three controller parameters. This implies that R + RT is in fact
N‘\
AN positive definite. Hence R satifies the hypotheses of Theorem 4.2 and our analysis agrees with our
LS
':} simulations. We remark that with the computer-aided design tools available today it is more
fﬁ:jj efficient to estimate via simulation and other numerical tests the size of the balls around 8 which
i ¥
T e
arise in the analysis than to estimate these balls analytically.
o
o 5.7. Concluding Remarks
105
! -s"_‘ . . . . . .
Lo In this chapter we designed a slowly adapting control system for a given plant with uncertain
's-!
s parameters and a given controller parametrization. We illustrated the use of an equation error
jé'ﬁ' approach for including reference model information in the cost functional used for tuning the
P W
. N system. Using our guidelines for the development of a slowly adapting system. we were able to
ey
o
L% make use of a priori information in the design. analysis. and testing phases of the development.
ﬂ?;‘.‘ '
i:.': We point out that many of the steps involved in developing a slowly adapting control system are
1
Aoty . ‘ , . .
::::. s already included in the design of fixed parameter control systems. Finally, we emphasize that by
"" »
"'/',f taking advantage of slow adaptation. we can develop adaptive control systems for controllers with
=
o,
j-:-: given structures. Hence. existing fixed gain control systems can be upgraded to slowly adapting
0
S
t X control systems without reparametrization.
;'"‘;0;
et
s
Wl
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