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Abstract (Continued)

mechanism for using information available before the commissioning of a ccntrol
system to reduce the number of adjustable controller parameters. The ideas involved
in the design of this model reference adaptive control scheme are then generalized
to provide guidelines for the design of slowly adapting systems. An example then
illustrates thle use of these guidelines to upgrade an existing fixed parameter
controller to a slowly adapting one.
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A three-step procedure for the analysis of slowly adapting systems is presented. First.

conditions are given for the existence of an integral manifold upon which the slow adaptation

occurs in either continuous or discrete time. Second. conditions are derived under which this

integral manifold is exponentially attractive. Third. the behavior on the manifold is analyzed via

the method of averaging. In the process of developing the discrete-time part of these results, the

relationship between the method of averaging for deterministic signals and the ordinary differential

equation approach to the study of stochastic adaptive systems is clarified.

This three-step procedure for analysis is then used as a design tool. First, a model reference

adaptive control scheme which allows a reduced number of adjustable parameters is presented and

analyzed via the three-step procedure. The scheme allows considerable flexibility in the controller

parametrization. Taking advantage of this flexibility requires the use of a priori information about

the plant to be controlled. Hence. the scheme provides a mechanism for using information

available before the commissioning of a control system to reduce the number of adjustable

controller parameters. The ideas involved in the design of this model reference adaptive control

scheme are then generalized to provide guidelines for the design of slowly adapting systems. An

.0example then illustrates the use of these guidelines to upgrade an existing fixed parameter

controller to a slowly adapting one.
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CHLAPTER 1

INTRODUMTON

1.1. WhY Slow?

The first question which is asked when the topic of slow adaptation is introduced is "Why

slow?" Here are several answers to this question.

(1) In many control systems the plant parameters change very slowly with respect to the time

constants of the closed-loop system with fixed controller and plant parameters. or the plant

parameters make infrequent step changes. For such systems a fixed parameter controller

provides goad performance for some initial interval, but performance and even stability can

% be lost as the plant parameters drift from the initial values. This situation is ideal for slow

adaptation which can either continuously retune the controller parameters. or be turned on

.' for finite intervals as an on-line, on-demand tuning algorithm.

(2) Using slow adaptation. adaptive control systems can be designed for given controller

parametrizations. That is. the controller parametrization is chosen as necessary for the design

of a good fixed parameter controller, and then, a parameter update law is designed for the

given parametrization. This contrasts with the theory for fast adaptation which requires the

use of a particular controller parametrization (typically ARMA) which is chosen for the ease

of theoretical parameter convergence analysis.

(3) Slow adaptation eplaces the exact matching conditions found in the theory for fast

adaptation with a compatibility requirement that the fixed parameter controller can be tuned

to give the desired performance by adjusting only the parameters. A compatible controller

never requires more parameters than the exact matching conditions and usually requires

many fewer parameters. The reduced number of parameters reduces the number of'

frequencies which inputs to the system must contain in order to be sufficiently rich.
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1.2. Summary of Results

The systems we study in this monograph reduce when the parameters are constant to linear.

time-invariant systems driven by inputs which are independent of the parameters. Letting x

denote the states and 0 denote the parameters, we study systems in the form

x = A(O)x + B(O) w(t) (1.1)

f = f(t.O.x) (1.2)

for continuous time or. for discrete time. in the form

- x(k+l) = A(O(k)) x(k) + B(0(k)) w(k) (1.3)

0(k+1) = 0(k) + e f(k.O(k).x(k)), (1.4)

where x contains the states of the plant, the model, the dynamic controller, and any filters which

process signals before they enter the adaptation scheme, and where w(t) is a vector input

containing the reference input and any disturbances entering the system.

Slow adaptation is forced upon the system (1.1)-(1.2) by choosing e small. An intuitively

appealing approximation of the solutions of (1.1)-(1.2) is obtained by a two-step procedure. First

assume that 0 is constant in (1.1) and evaluate the solution as a function of t and 0. Assuming that

A(0) is Hurwitz. we define the frozen parameter response P(t.0) by

V(t.0) = f e A(O)(t) B(O) w(s) ds. (1.5)

which is simply the response of the linear time-invariant system (1.1) to the input w(t) with

initial condition zero at time t, -o. The second step is to substitute v(t.0) for x in (1.2). that is.

0 = f(t,0.V(t.0)). (1.6)

* 2Then, letting 0(t:t,.0,) denote the solution of (1.6) with initial data 0(t,) = 0o, and letting

x( t:t,,0 0 .x.) . 0( t~t,.0,...) denote the solution of (1.1 )-(1.2) with initial data x(t,,) x,,. 0(t") = 0,.

the approximation is gi'.en by

. . . .
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i. ~~oO.o - (t:to.,o) (1.7)

x(t:to. 0 o.Xo) ' v(t.e(t:t0 .0o)) . (1.8)

with the second approximation holding only after an initial transient in x. This implies that the

long-term behavior of the slowly adapting system (1.1)-(1.2) is approximated by the reduced-

order system (1.6). This reduced-order system is interpreted as the parameter update law without

transients in x. Because the frozen parameter response v(t.0) is simply the steady-state response of

(1.1) with 0 constant. it is easily evaluated and understood. hence. (1.6) is useful for both the

analysis and design of slowly adapting systems. This approach has been used by Astrom

(1983.1984) in an analysis of a specific adaptive scheme.

The idea of using the reduced-order system (1.6). which ignores the initial condition on x. as a

model for the complete system (1.1)-(1.2) is similar to ignoring the boundary layer in singular

perturbations. Kokotovic, Khalil, and O'Reilly. (1986). However, the presence of time-varying

input w(t) in (1.1) prevents the application of the usual singular perturbation techniques for

establishing the approximation (1.7)-(1.8). In Chapter 2 and in Riedle and Kokotovic (1986a). we

apply integral manifold theory to the study of (1.1)-(1.2) and prove that there exists a function

g(t.O;E) with the property that if x, = g(to.0o:e) then x(t:to. 0o.xo) = g(t.0(t:to.0 ox0 ) ;e) for t > to.

We also show that along solutions of (1.1)-(1.2) with x0 ;e g(t,0,:e) the difference

x(t) - g(t.O(t);e) decays exponentially to zero. That is. for certain initial conditions or after the

state transient decays, the reduced-order system

0 = Ef(t,9.g(t,0;e)) (1.9)

ant the algebraic equation x(t) = g(t.0(t):;e) provide an exact description of the slow adaptation of

I I )-( 1.2). This function g defines an integral manifold M, of (1.1)-(1.2) by

NI, = It.0.x " x = g(t.0:E)} . (1.10)

Furthermore, the difference h(tO:E) = g(t.O:E) - (t.O) between the function g and the frozen

parameter response Y' is O(E), Hence, the existence of %I, implies that the approximation (1.7)-(1. )

.'. -. -." ..,- ,t ,='i,;i - :' d , -Tf . . .. . , . -.
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and the approximate reduced-order system (1.6) are justified.

Although the reduced-order system (1.9) is easier to study than the complete system (1.1)-

(1.2). it is still a system of nonlinear time-varying differential equations. Noting that (1.9) is in a

standard Bogoliubov form for the method of averaging, the solutions of (1.9) (or (1.6)) are

approximated by the solutions of the time-invariant nonlinear differential equation

* * d'"d--'0 (1.11)

where T = et is slow time and where f is the time average of f for fixed 0.

t+T

1(0) = lim 1 f f(s.O.v(s.0))ds. (1.12)

Hale (1980). Meerkov (1973). Sethna and Moran (1968), Volosov (1962). and Bogoliubov and

"Mitropolski (1961). The method of averaging was used to simplify the analysis of (1.6) in Astrom

(1983.1984).

The method of averaging gives more than a simplification of the analysis. By interpreting the

stability and instability conditions provided by averaging theory in terms of the signals and

transfer functions in the adaptive system. we developed a signal dependent stability criterion for

slow adaptation of the Narendra and Valavani (1978) adaptive control algorithm designed for a

relative degree one, order n plant but applied to a plant of order np > n with unspecified relative

degree. Riedle and Kokotovic (1985) and Kokotovic. Riedle. and Praly (1985). At that time, the

integral manifold theory had not yet been applied to (1.1)-(1.2), hence, the transformation of

(1.1 )-(1.2) into the standard form (1.9) was not available. The stability criterion was established

by linearizing the adaptive system (1.1 )-(1.2) and then performing a time-varying transformation

of the linearized equations into a standard form for the method of averaging. This transformation

.is used in several subsequent works which also obtain local results via averaging theory. Fu.

... .Bodson. and Sastrv (1985). Kosut. Anderson. and Mareels (1985). Anderson et al. (1986). and

,Bodson et al. (1985). After showing that the Narendra and Valavani (1978) controller possesses an

- * . . .. . * . - * * .
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integral manifold under slow adaptation. Chapter 2 concludes with a more complete discussion of

g the stability criterion results and an estimate of the region of attraction which is not dependent on

linearization.

In view of the similarity between the continuous-time system (1.1)-(1.2) and the discrete-

time system (1.3)-(1.4). it is tempting to simply state that the discrete-time counterparts of the

results of Chapter 2 hold with appropriate modifications of the proofs. However. this claim has

met with some skepticism and the supporting literature for ordinary difference equations is not as

extensive as that for ordinary differential equations. Therefore. we take this opportunity to

present in Chapter 3 a complete self-contained proof of these results for the discrete-time slowly

adapting system (1.3)-(1.4). Our proof of the existence of an integral manifold follows the proof

in Chapter 2 for continuous-time except that references to Chapter VII of Hale (1980) are replaced

with a complete derivation of the required bounds. Using a different proof. Praly (1986) has also

shown the existence of an integral manifold of (1.3)-(I.4).

U With the existence of an integral manifold M, established, it follows that the system (1.3)-

(1.4) restricted to the manifold is described by x(k) = g(k.(k):e) and

0(k+) = 0(k) + ef(k.0(k).g(k.9(k):e)). (1.13)

which is analogous to (1.9). While many results are available in the cited literature for averaging

of the ordinary differential equation (1.9). very few results are available for the ordinary

difference equation (1.13) with deterministic inputs. The notable exception to this rule is Meerkov

(1973) who states theorems for discrete-time systems (but refers to the continuous-time proof).

Taking inspiration from Meerkov's continuous-time proofs, we state and prove several basic

averaging theorems relating the solution of (1.13) to the solutions of the ODE (1.11) with

7(0) - lim f(i.O.v(i.O)). (1.14)

where v is now the frozen parameter response of (1.3). In contrast to the averaging theory for

(1.13) with deterministic inputs, many articles have been written concerning the relationship

I
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between the behavior of (1.13) and the ODE (1.11) when (1.13) represents a recursive adaptive

algorithm with stochastic inputs. Ljung (1977). Kushner (1977). and Benveniste. Goursat. and

Ruget (1980). to mention a few. Our proof is easily applied to a stochastic system on a sample

path by sample path basis. Hence, some Owith probability one* results for the system (1.3)-(1.4)

can be obtained as corollaries of our basic averaging theorems. However, we use some boundedness

assumptions and many triangle inequalities in our proof. Hence. our proof does not reproduce any

of the weak convergence results.

Motivated by the method of sensitivity points (Kokotovic. 1973) and some early work on

self-adaptive systems. Medanic and Kokotovic (1965) and Kokotovic, Medanic. Vuskovic. and

Bingulac (1966). we present in Chapter 4 and in Riedle and Kokotovic (1986c) a controller

parametrization with much more flexibility than the parametrizations usually seen in the adaptive

control literature and a parameter update law which is designed with the intention of using slow

adaptation. This parametrization allows the number of adjustable gains to be chosen independently

from the order of the fixed gain feedback controller. Hence. it provides the freedom to design

adaptive control systems with only a few adjustable parameters. Along with this freedom comes

the necessity (and hence, opportunity) to use much a priori information about the plant and to

make a more extensive off-line design effort. The additional design effort is compensated by

improved performance and confidence in the on-line operation of the slowly adapting system.

As noted earlier, slow adaptation allows the controller parametrization to be specified for the

design of a good fixed parameter controller. After the controller parametrization is specified. the

design of the slowly adapting system is completed by developing a parameter update law. In

Chapter 5 we illustrate the development of a parameter update law for a given controller

parametrization. The plant is fifth order with three uncertain parameters and the controller is first

order xith three adjustable parameters. The uncertain plant parameters can vary from given

nominal values by 30%. We first do off-line numerical analysis to verify that the controller can be

tuned for all possible values of the plant parameters. We then present simulation results which

- - - - - - -
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show that the controller parameters of the slowly adapting system converge to the values which

achieve optimal tuning in the off-line numerical analysis. We conclude by showing that the

theoretical analysis of this algorithm is similar to the analysis in Chapter 4 and that the positive

simulation results are predicted by the analysis.

Or
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CHAPTER 2

INTEGRAL MANIFOLDS OF SLOW ADAPTATION IN CONTINUOUS TIME

2.1. Introduction

Continuous-time adaptive algorithms for estimation and control can be represented by the

nonlinear dynamic system

x=A(O)x + B(O)w(t) x E Rn, , wE R (2.1)

= f(t.0.x). 9 E R"O. (2.2)

The x-equation (2.1). where w(t) incorporates both the reference and disturbance inputs, describes

the plant. its controller, filters, etc.: hence, the nx-vector x is referred to as a *state." The 0-

'r4. equation (2.2) is the update law for the n0-vector of adjustable "parameters." When x and 0

strongly, interact the distinction between the "states" and "parameters" is meaningless. However. in

the case of "slow adaptation" this distinction is meaningful and greatly simplifies the analysis. In

the system (2.1)-(2.2) the slow adaptation is due to the smallness of the scalar gain e, which forces

0 to be small and the parameters 0 to evolve slowly compared to the states x. Even without this

scaling by e. a typical adaptive transient consists of a few rapid initial swings after which the

parameters continue to move slowly as f(t,0.x) becomes small. During the period of slow

adaptation the parameters may (a) remain in a bounded set where Re X(A(M)) < 0. (b) dift toward

infinity with Re X(A(O)) < 0. or (c) drift to a region where Re X(A(G)) > 0.

In this chapter the concept of slow adaptation is made precise by showing that it occurs in an

integral manilold M, of (2.1)-(2.2). a time-varying ng-dimensional surface in the n, + no-

dimensional space of x and 0. defined byI'
M, = It.O.x " x = g(t.O:e)} . (2.3)

where v(t.0) = g(t.0:O) is the steady-state response of (2.1) with constant 0. In Section 2.2 we

show that g(t.0:E) can he viewed as a similar steady-state response in the case of slow variations of
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0. For this reason we call M, a "slow manifold" of (2.1)-(2.2). The motion of the parameters 0 in

5 the slow manifold is governed by the update law (2.2). but with x replaced by g(t.O;:). that is.

e0 = f(t.0, g(t.O:e)) (2.4)

For an adaptive system this equation is an exact description of the adaptation process after the state

transients have decayed.

In Section 2.3 we formulate conditions for the existence of h(t.ke) = g(t.0;e) - Y(t.0). and in

Section 2.4 we give conditions for the slow manifold M, to be attractive, as well as a procedure for

estimating the region of attraction. By showing that M, is attractive and that h(t.0:e) -- 0 as e - 0.

we justify the use of

0 = Ef(t.OY(t.O)) (2.5)

as an approximation of (2.4) for e sufficiently small. This approximation combined with an

averaging analysis of (2.10) was instrumental in Astrom's (1983.1984) lucid explanation of the

drift instability observed by Rohrs et al. (1982. 1985). In Section 2.5 and in Riedle and Kokotovic

(1986b) we show that the given conditions for the existence of an attractive slow manifold are met

by a standard model reference adaptive control system. The results of Section 2.6 prove the

asymptotic validity of Astrom's approach and generalize the analysis which led to the local

stability criteria formulated by Riedle and Kokotovic (1985). Kokotovic. Riedle. and Praly (1985).

Kosut. Anderson. and Mareels (1985). Fu. Bodson. and Sastry (1985). and Riedle. Praly. and

Kokotovic (1986).

Before we proceed. let us mention that the concept of an integral manifold was introduced by

..W Lyapunov and used by him and Perron in their studies of conditionally stable systems. More

recently this concept is encountered in the averaging literature. Bogoliubov and Mitropolski ( 1961).

Volosov (1962). and Mitropolski and Lvkova (1973). A comprehensive treatment, independent of

averaging. is found in Pliss (1966. 1977) and Itale (1980). Closely related notions are center

V
-.,-,-.,.-.--.-.-,- ..- . . ." .
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manifolds: Fenichel (1971) and Carr (1981). and singular perturbations: Hoppensteadt (1971).

Fenichel (1979). and Kokotovic. Khalil. and O'Reilly (1986).

2.2. Interpretation and Approximation of the Slow Manifold

An integral manifold M, of (2.1)-(2.2) is simply defined by the statement that if the vector

x.0 is in M, at t = to. then it is in M, for all t. that is.

IX(t ) 1 X(t)1I ) E M,- E M, Vt. (2.6)
W~O 1 0(t)

If a manifold M, can be found for each value of e in a segment e E [O.e'). then we shall say that an

E-family of slow manifolds exists. The simplest member of this family is the *frozen parameter"

manifold Me, defined by e = 0 and the requirement that if x = v(T.0) at r = t. then x = v(i.) for all

'r E R. Noting from (2.2) that if e = 0. then 9 is constant. we have

t

Y(t.0) = eA(0Xt-,)(s.O) + f eA(9Xt--)B()w(T)dr. (2.7)
S

Assumption 2.1 : There exist a set e C Rno and constants a > 0 and K I 1 such that

I eA(oxt-5) I < Ke - o(t- ) (2.8)

where I- is the Euclidean norm.

Under this assumption we let s -- - oo and obtain from (2.7)

t

z(t.0) f eA( o x t - r ) B(O)w(r)dr. (2.9)

For a broad class of signals w(t). including almost periodic signals. this integral is well defined and

shows that M, represents the familiar "steady-state response" of the linear time-invariant system

(2.1) considered as a function of both t and 0. Although the situation is more complicated when

E > 0 and 0 is not constant, the interpretation of M as a "steady-state response" is still helpful.

. . - * =..,-. ~ V



Introducing the deviation of x from Y(t,O) as a new state variable

SZ = X - V(t.0). (2.10)

we rewrite (2.0)-2.2) in the form

z=A(O)z - eL'9(t.O)F(tO.z), (2.11)

0=ef(t.0j'(t.0) + z) =_eF(t.z). (2.12)

where vo(t.O) is the nXnO sensitivity matrix

V.' (t - I [A(O)x + B(0)u()x (,O)drT. (2.13)

The brackets indicate that is performed with x fixed. after which Y(T.0) is substituted for x.

Properties of the response i'(t.0) and its sensitivity z'o(t.0) are among the crucial factors influencing

the behavior of an adaptive scheme. We characterize these properties by assuming bounds on V and

-~ Assumption 2.2: There exist positive constants v, v1 , and V2 such that for all t E R and 0 E E e

v(t.0)I V- I IVO(t.O) I <V1 I~ ~VO(t0) - Vft(t0) (< V2 (2.14)
0

Remark 2.1: A sufficient condition for Assumption 2.2 to be satisfied is that AM0. and B(9) have

Lipschitzian derivatives and that w(t) is uniformly bounded. We make the assumption directly on

i' to Pig to simplify expressions In this sequel.
0

In the (z.0)-coordinates N1l, is defined by z=0. To define M for e > 0 we need to find a function h of

t and 0 parametrically dependent on e such that

z = h(t.O:e) (2.15)

satisfies (2.11l)-(2.12). Let us first interpret h(t.O;e) by constructing a sequence of "steady-state

responses". hj)t.O:E). hl(t.0:e). hk(t.O:E)_.. which in Section 2.3 will be shown to converge to
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h(t.O:e). Suppose that hk(t.O:E) is available for all t and each 6 E e. and substitute it for z in

(2.12). Then compute the solution Ok(s:t.O.E) of the end-value problem

d Ox(S) = EF(s.Ok(s).hk(s.Ok(SIe))) Ok(t) = 0 E e. (2.16)

With Ok(s) = k(S:t.O.e) and hk(S.Ok(S)) available, use (2.11) to evaluate hk+1 along ok(S) from

d hk+l(SOk(S):E) = A(Ok(s))hk+,(s.Ok(s):e) - eVO(S,ok(S))F(S.ok(S).hk(s.k(s):E)) "  (2.17)

ds

The state transition matrix Ok(s.r) = Ok(S.r;t,.,e) of the linear time-varying system (2.17) is

defined by

. k(s.r) = A(Ok(S))k(S,1). (k(T.r) - 1. (2.18)
CIS

If (2.18) is exponentially stable. that is. if as in (2.8). there exist positive constants K, and ci1 such
m%. :.0

that

Oi k(s-r) i K e0'(S-7)• Vs > r. VT-r E R. (2.19)

then the steady-state response of (2.17). analogous to (2.9). is

S

hk+i(S.Ok(S)) = -- ef Ck(s.7)v(r.Ok(r))F(r•Ok(r).hk(r.0k(r)))dr. (2.20)

This expression defines hk+1 along a particular trajectory Ok(S) whose "end"-point at s=t is 0. By

choosing different "end"-points 0 E 0. hence, different trajectories 0k(S) = Ok(S:t•,"), the function

hk"l(t:e =- f (t.r)VO(Ok())F(.Ok(T).hk(7.Ok(7)))dr (2.21)

can be evaluated for each 0 E 0 and all t E R. Except for the use of different trajectories

0k(r) = Ok(r:t.0.E) in place of different constant values of 0. there is a clear analogy between

%.P, hk+,(t.O:E) defined by (2.21) and v(t.0) defined by (2.9). Initialized with ho(t.0:E) =0. the

, sequence h,(t0:e). k=1.2.... is uniquely defined by (2.16) and (2.21). These expressions. which are

not recommended as a computational procedure, will be used in Section 2.3 to prove the existence.

and other properties. of h(t,0:e).

'-.I
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If a continuously differentiable h(t,O;e) is known to exist, then the substitution of

at (2.22)

into (2.11)-(2.12) shows that h(t.O:e) satisfies the partial differential equation

= A(O)h - e(Y9(t.O) + ah )F(tO.h) (2.23)
Cat

which suggests that it may be computationally feasible to approximate h(t.O;e) by a power series

in e. Substituting

,* h(t.O:e) = h°(t.0) + eh'(t.O) + e2 h2(t.0) + (2.24)

into (2.23) and evaluating the terms of the series, we see that h°(t.0) = 0 and that hl(t.0) is the

steady-state response of

h= = A(O)h' - YO(t.O)F(t.O.0). (2.25)at

j The equations for h2. h3. etc. are more complicated and. from a practical point of view. the

approximation h(t.O:e) ehl(t.0) may be all that is needed to improve the "frozen parameter"

approximation (2.5). because hl(t.0) incorporates the effects of vp(t.O), which are important when

the sensitivity of the plant with respect to adjustabl- parameters is high.

Example 2.1: The analysis of the effects of an unstable zero - > 0 on the performance of an

adaptive controller designed for a minimum phase plant is nontrivial even in the case of a first

order plant and a single adjustable parameter. Such an adaptive system, shown in Fig. 2.1. is

described by

- 1-0 X + I r (2.26)

x-/,r (x-Ar _ ) (2.27)

where r = r(t) and Ym = ym(t) are. respectively, the reference input and model output. For

r = coswt the frozen parameter response v(t.O) and its sensitivity are

S
, .-.-~~~~~~ ,. -, ,-.-.-.- -.-,-.--.,--; ;,.' .. ' ; o Ne"-"- '. -:' '¢L+ .,.."..+.', . ..: ''', ,,'' ' '
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-ym

s-I W

s A4

Fig. 2.1. Block diagram of the system (2.26)-(2.27).

V(t.0) = V(6.t)cos((at + O(0.to)) (2.28)

V(Olto) =1 -1 . O(0c)=arctanf 0 . J (2.29)". x[ ( 1-- iAO )2 toj2 + (0 - 1)2 "1 -tz

(0) = cos(tot + ) - V sin(wot + ,). (2.30)

With v and vH known. h' can be obtained as the steady-state response of (2.25). Then

v(t.0) + eh'(t.0) can serve as an approximation of h(t.0;e). which, in this case. is periodic in t.

For a clear graphic display let us consider the constant input case with r = 1. y, = .5. A

simple calculation gives

1- ii a0(O)- 1 --.
V(,) T (9-1)2 (2.31)

and, upon the substitution into (2.24). we obtain

h' = (1 -)(1 -1 O)(3-0). (2.32)
2(0- )

For 0 ?- 2.25 the sensitivity vp is small and, as predicted, the slow manifold is practically

indistinguishable from v(O). For 0 > 2.25 the trajectories plotted for Ai = .25 and E = .1 in Fig. 2.2
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4* , dx
clearly show a separation of time scales: the slope d-- is much steeper away from the manifold

than along the manifold. Again as predicted, the situation changes in the region 0 K< 2 where the

sensitivity Y@ is high. In this region, the curve v(9) + ehl(0) is a significantly better approximation

'- of the slow manifold than Y(O). The disastrous effect of the unstable zero - is aljn characteristic:

for 0 > - the manifold is repulsive, whereas for 0 < I it is attractive. For 0 = 1 the system
A A

i' .(2.26)-(2.27) is not defined. In the manifold, the slow adaptation converges to the equilibrium

0 = 3.

Remark 2.2: To avoid excessive numerical sensitivity of the unstable trajectories for 0 > 4 . they

have been obtained by simulation in reverse time.

0

'"I I

1.2
.---- v + Eh1

*4.4.1.0

0.8

X Manifold
0.6-

.. 0.4-

0.2-

1.50 2.25 3.00 3.75 4.50V e
Fig. 2.2. Trajectories of (2.26)-(2.27) with r = 1. vr- 0.5. E = 0.1. 0 = .25 converge to the

manifold for 0 < 4. In the manifold all movement is toward0 3.

*A.
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Remark 2.3: An analytical study of repulsive manifolds would involve the following

modifications. If Re X.(A(O)) > 0 for all i = 1.....rm . then (2.11).(2.13). and (2.20) are to be

integrated in reverse time, from oo to t. If A has both stable and unstable eigenvalues. then each of

these expressions would include two integrals, one from -oo to t for the stable part and one from

co to t for the unstable part of the response. We restrict our analysis to attractive slow manifolds.
0

2.3. Existence of the Slow Manifold

Expressions (2.16) and (2.21) rewritten as hk+i = Thk define a map T. Its fixed point, if it

exists. is our function h(t.0:E). As in any fixed point argument. we first specify a closed subset of a

Banach space in which to search for h(t.k;e). We let this space be the set of continuous functions

l1(t.0) equipped with the norm II H II = sup I H(t.0) and use positive constants D and A to
P . t.0E R X Rn0

.... define our closed subset H(D.A) as

H(D.A) = {H:RxR"-'R1 I 111111 D and I lt(t.0) - H(t.0) I<AP - 0. VtER; 0.0ER"61. (2.33)

Our goal is not only to establish the existence of h(t.0e). but also to characterize it by estimating D

and A in terms of e and the data about the adaptive system. In addition to Assumptions 2.1 and 2.2

about the system (2.1) with constant 0. we need the following data about the parameter update

law (2.12).

Assumption 2.3 : There exist nondecreasing positive functions pF(D). po(D). and pz(D) such that

:'.4 'F(t.O.z)I <PF(D). IF(t.0.z)-F(t.0,z)I < pj(D)IO-OI. (2.34)
%(2.34)

i F(t.0.z) - F(t..)$ I< p(D)l)z- 321. Vt E R: 0.0 E 0:. 17.1 21 I).

0

Remark 2.4: A sufficient condition for Assumption 2.3 to hold is that f(t,0.x) be bounded, and

lipschitzian in O.x uniformly with respect to tER . OEO in x in compact sets. These are very mild

onditions .x hich are met by most parameter update laws.

"A,.' IEl

4..'.,. . .. . ..... ............................ .. ,..........................................:
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In the iterative scheme (2.16), (2.21) the stability condition (2.19) is crucial. Unfortunately.

our Assumption 2.1 is not sufficient to guarantee that each trajectory 0k(s;tO.E) will remain in the

set 0 for all s, as required by (2.19). Following Carr (1981). we avoid this difficulty by proving

the existence of h(t,0:e) for a modified system. rather than for (2.11)-(2.12). In the modified

system, each 0 which is not in e is replaced by some value p(O) which remains in E. By

construction. the original and the modified systems are identical for all 0 E E. that is. p(O) = 0.

,O E E). For simplicity, we restrict the set E in Assumption 2.1 to be convex and compact. Then

p(O) is uniquely defined as the point in 9 closest to 0, namely,

p(O) = arg min p- 0. (2.35)

pE9

We henceforth analyze the modified system

z = A(p(O)) - evL'(t.p(O)) F(t.p(0).z). (2.36)

0 = F(t,.p(O),z). (2.37)

The results obtained for the modified system translate into those for the original system as

follows. Suppose that (2.36)-(2.37) has an integral manifold h(t,0:E) and a solution 0(t) of (2.37)

with z = h(t.0:e) which satisfies 0(t) E E. Vt E [t,,t 1 j. Then 0(t). z = h(t.0(t):E) is also a solution

of the original system (2.11)-(2.12) Vt E [t,).tl]. As for the modified assumptions. we note that.

because p() E E) and Ip() - p(5) I - 10-G . the bounds imposed on A(O) (O), v0(t,0), F(t,0,z)

for all 0 E 0 are satisfied by A(p(0)), v(t.p(O)), Y,(t.p(0)). F(t.p(0).z) for all 0 E R" ° . To describe

the dependence of F(t.p(0).z) and v,(t.p(O)) F(t.p(O).z) on 0 over the set H(D.A) we define p1 (DA)

and p ).A) such that

F( t~pO).J~ -F(t.p( ).H(t.6)) I< pi(D.A) 0 - 0 (2.3h)

v.,(t.p(O))F(t.p(O).ll( t.0)) - L,(t.p(2))F(t.p(O'l.lt(t.O)) p2(l),-) 10 - (2.39)

for all t E R. 0.0 E R '  and If E H(D.A). It follows from Assumptions 2.2 and 2.3 that p, and p2

exist and can be chosen to satisfy

. . . . . ." . . ..' ""' ""- " " """" p' ' ' ' ":" " ' " ' '
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,S.

pi(D.A) < p(D) + Ap,(D). P2(D.A) < v1p1(DA) + v2PF(D). (2.40)

We now perform the same modification of the iterative expressions (2.16) through (2.21). In

particular. (2.16) becomes

d0k(S) = EF(s.p(0(s)). hk(s.Ok(s):;E)). Ok(t) = 0. (2.41)
ds

As before, the trajectory Ok(s:t.0.E) is determined by its "end"-condition 0 at s=t. However. the

".* modification now guarantees that to each hk E H(DA) and each 0 E Rno there corresponds a unique

continuous solution of (2.41) Ok(s;t.OE) = Ok(s), defined for all s E R. This is a consequence of the

global character of (2.38). A more important advantage of the modification is that the stability

property (2.19) of (Dk(S.r:t,.OE), the solution

a 1k(s.r) = A(p(Ok(s))) dk(S,7), (r.r) = 1, (2.42)

can be established as follows.

Lemma 2.1 : Suppose that the Assumptions 2.1. 2.2. and 2.3 hold: choose a constant a > 0 such

that I A(O)-(0) I al 0 - 6 for all 0,0 E e and let

P3(D) = [apF(D) K lnK] . (2.43)

If hk, E H(D.A) and

EapF(D) < a2(K InK) -  (2.44)

then

-I(sr) - Ke- '(c'Ox'- ) 
). Vs > r (2.45)

\ here al(E l)) = - ,, - 'p.( I)).

Proof :By assumption, for all s.s E R.

A(p(O,(s))) - A(p(O,:(.))) < al 0,(s) -Ok() I ap(1)) I s - (2.46)

anti h,. c(onstruction. A(p(O)) satisfies (2.h,) for all 0 E R "'. The proot then follows from a standard{./'
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• theorem for systems with slowly varying coefficients, e.g., page 117 of Coppel (1965) or Section 2.5

. of Kokotovic. Khalil. and O'Reilly (1986).

We are now prepared to consider the map T defined pointwise via

(Thk)(t.;e) = -E f (k(t) V.'(TP(9k(T))) F(r.p(Ok(r)).hk(r.ok(,r):E)) dr . (2.47)

where 0
k(r) = ok(r:t.k.e) and '>k(t,") = k(t.7.t.0.E). The meaning of T is made clear by comparing

(2.47) with (2.21). that is. the map T represents the iterations (2.16) through (2.21) for the

modified system (2.36)-(2.37).

Lemna 2.2 : Suppose that Assumptions 2.1. 2.2. and 2.3 hold. If e, D. and A satisfy (2.44) and

eKvlpF(D)/aj(e.D) - D (2.48)

".'-"" po(D,,&) <.aj(eD) (2.49)

K 2(DA) + KavIPF(D) < A (2.50)a I RD) - e6 p1TD.,A) r2 o1ej6.D)

e p,(D) [Kv, + A] < 1 (2.51)

then T is a contraction mapping on H(D.A.

Proof(discussion): Omitting lengthy calculations of the bounds (2.48)-(2.51). we only indicate

their origin and discuss their meaning. Using (2.45) and (2.47) it is not difficult to see that (2.48)

assures I1 Thk 11 < D. The most complicated bound (2.50) originates from

(Th,)(t.9:E) - (Thd)(t.0:1) written as the sum of two integrals

-•* -E f (k(t )[v0(T.p(Ok(r)))F(r.p(Ok(r)).hk(r.Ok(r)))

v,,(r.p(G(r)))F(T.p(Ok(r)).hk(r.k(r)))]d7 (2.52)
t

- bl(tD .k(t.T) ( I( ', ?1( 7 P(ik ()F(T~p(6(7)).h. (T,6,(T)dr
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where 0(r) = 0,(ir:t,0.e) and $(t.) = Ok(t.,At.,.E). Now (2.49) assures that the norm of the first

integral is bounded by

O - 01Kp2 (D,A)[aI(eD) - epl(D.A)] - I  (2.53)

hence. is well defined over any infinite interval (-co.t]. The term in the brackets. also appearing in

(2.49) is of conceptual interest, because it represents a time-scale separation property. To see this.

note from (2.38) and (2.41) that I 0k(S) - bk(s) I ( 10- 1 eEpl(D'A ) s- t  hence. epl(D.A) is the

fastest exponential rate of the "steady-state solutions. On the other hand, (2.45) shows that

a1 (e,.D) is the slowest exponential decay towards a "steady-state" solution. If the difference of

these two rates is larger. the dependence of h on 0 will be "smoother." The other term in (2.50)

indicates that the smallness of the sensitivity bound v, also contributes to the "smoothness" of h.

Finally. (2.51) is a "contraction" bound for II Th k - Th Il / Il hk - h m II. For further details in this

continuous-time case see Chapter VII of Hale (1980). We give a complete proof following Hale for

the discrete-time case in Chapter 3. To conclude, let us mention that the time-scale/smoothness

relationship is clarified in Fenichel (1971).

Remark 2.5 : The only use of (2.44) in Lemma 2.2 is to ensure (2.45) holds with a 1(e.D) > 0. If

(2.45) can be established for al(e.D) > 0 without (2.44). then (2.44) can be dropped as a

hypothesis of Lemma 2.2. For example. if there exists a constant positive definite symmetric

matrix P which satisfies

AT(0)P + PA() c,,P Yo E E . (2.54)

then (2.45) is satisfied with al(.D) = a0 and K (A rax P/nunP);7.

It is clear that for any positive D,, a1 (E.D,,) will be positive for E sufficiently small. With

this observation in mind. it is obvious that (2.45)-(2.51) will be satisfied for any positive D(,. A,,

by a sufficiently small E, > 0. hence. for all 6 E [(.j. In view of the fact that pl and p, are

nondecreasing functions of I). it is clear that for 6 < E,, we can use D = (E/,,) D, and A = (E/E,) A,,

instead of' D, and A,, in the definition of H. llence, under the conditions of' Lemma 2.2 the function
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h(t0:ke) exists and is an O() quantity. This observation leads to the following summary of our

existence results.

Theorem 2.1: Suppose that Assumptions 2.1. 2.2. and 2.3 hold. Then. given any fixed DO > 0 and

AO > 0. there exists 6(, > 0 such that for each e r [0.Oe] the modified system (2.36)-(2.37) has an

integral manifold uniquely defined by

NI, = {t.O,z: z = h(t.O:e)}, h E H ((/E) Do. (teC/) Ao). (2.55)

0

When translated to the original system. this result establishes the existence of an c-family of

slow manifolds of (2.1)-(2.2). Recalling that x = z + v(t.0). that g = P + h. and that in x.0

"-* coordinates M, = {t.,x : x = g(t.O:e)} we translate Theorem 2.1 to the original system in the

following corollary.

Corollary 2.1 : Suppose that Assumptions 2.1. 2.2. and 2.3 hold. Let x(t), 0(t) be ,ie solution of

(2.1)-(2.2) with initial data 0(t) = 0 o E e and x(t,,) = g(t 1 ,0 o;E) = v(t(,,0O() + h(t).O,);e). Suppose

that 0(t) E E for all t E [to.t 1I. Given any fixed D,) > 0and Ao > 0. there exists 6,) > 0 such that

for each E E [O,E,,] the solution x(t). 0(t) of (2.1)-(2.2) satisfies

(t.O(t).x(t)) E M, = {t.0.x : x = g(t,0;E) = v(t.0) + h(t.0:6)} (2.56)

for all t E [t,,.t1 ] with h E H((./e,,)D.(e/),,).

Remark 2.6: Reference and disturbance signals are not required to be persistently exciting (PE).

Remark 2.7: It can be shown that if w(t) and f(t.0.x) are periodic (almost periodic) in t. then

h(t.0:E) is periodic (almost periodic) in t.

Example 2.2: Returning to Example 2.1, we now use Corollary 2.1 to pruve that on the segment

E = [2.25.3.75] the adaptive system (2.26)-(2.27) possesses an E-familV of local slow manifolds

with h E H(O.045e,.4.61e), VE E [0.0.2], The A estimate 4.61E is conservative due to the fact that

a, = 2.85 is evaluated at 0 = 2.25. whereas a = 192 is evaluated at 0 = 3.75. Less conservative

estimates would result f. )m a smaller segment . in this case lemma 2.1 is trivially satisfied and

. . . . . . . . . . .....- . . , . .. . . . . . . . . . . . . ".. . .. . . . " -
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K - I implies P 3(D) 0. The Assumptions 2.2 and 2.3 are satisfied by

v = 0.6. v 1 = 0.48. V2 = 0.77.

PF(D) = 0.242 + 2.52D + 5.23D2 . pz(D) = 3.64 + 512132 .

p0 (D) = 0.704 + 4.37D + 5.98D2 .

and pI(D.A) and p 2 (D.A) are taken to be

pl(D.A) = 0.704 + 4.37D + 5.98132 + (2.52 + 10.5D)A.

P2(D.A) = 0.524 + 4.04D + 6.89D2 + (1.21 + 5.04D)A.

These expressions are valid for both cases, constant input r=- and periodic input r = cos &)t. and are

used to show that we can take Do = .009 . A, = 0.922 and 6o = 0.2 in Corollary 2.1.

Before considering in the next section the attractivity of M, and sufficient conditions for the

stability or boundedness of solutions of (2.36)-(2.37). we give an instability result. The evolution
,,P

of (2.36)-(2.37) restricted to M is governed by the reduced-order system

E0 = F(t.p.(O).h(t.O:E)). (2.57)

The next theorem follows from the definitions of integral manifold and instability (in the sense of

Lyapunov).

Theorem 2.2 : Suppose that the conclusion of Theorem 2.1 holds and that e E (O.e o. Let O(t) oe

any solution of (2.57) which is bounded for finite time. If 0(t) is an unstable solution of (2.57).

then z'(t) = h(t.0"(t):6) . 0(t) is an unstable solution of (2.36)-(2.37).

Proof : Because 0" is an unstable solution of (2.57) there exists a p > 0 and t0 E R such that for

each 6 > 0 there exists a solution OJ(t) of (2.57) with IO(to) - O,(t) I < 8 and

,0'(tj.) - O,(t,) > p for some t, > t,. For the same p > 0 and to E R and each 8 > 0. the

solutions , (t) =.[ O.,, 1 +_(t)) and X(t) = (t) of (2.36)-(2.37) satisfy

1 /, + ( t ,1) -X .( t ,,) I < 8 . I X / ( a / _ ) -X ,( t _V ( )) -0 1 p . ( 2 .5 h )

NrPoF.,
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where the second inequality follows from I [z T OT] I > I 1

0

Letting B(8,0) denote the ball of radius 8 centered at 0.

~ N.B(8.0) = 0 : 10-01 < 8)

we translate this instability result to the original system.

Corollary 2.2 : Suppose that the hypotheses of Theorem 2.2 are satisfied and that B(2p.0(t)) C e

! for all t , to. Then. for t , to . x'(t) = g(t.0"(t):e) . 0"(t) is an unstable solution of (2.1)-(2.2).

2.4. Attractivity of the Slow Manifold

While the existence of an integral manifold is sufficient to show that unstable solutions of

g '. (2.57) combined with z = h(t.O;e) provide unstable solutions of (2.36)-(2.37). existence alone is not

sufficient to show that stable solutions of (2.57) lead to stable solutions of (2.36)-(2.37). In this

section we derive conditions under which M, is exponentially attractive and give an estimate of the

region of attraction. We then give examples of how this result is used to prove that the stability

properties of a solution of (2.57) are also the stability properties of the corresponding solution of

S (2.36)-(2.37).

Lemma 2.3 : Suppose that Assumptions 2.1. 2.2. and 2.3 hold and let e. D. and A be such that

N = {t.0.z: z = h(t.O:e)} with h E H(D.A) is an integral manifold of (2.36)-(2.37). Then for every

D1 > (K + 1 )D such that

EK(vj + A)p,(Dl) < Q1 (E.D1 ) (2.59)

the solutions z(t), 0(t) of the modified system (2.36)-(2.37) starting from any bounded

0(t) = 0,, E R"O and any z(t,,) z,, bounded by

K -- D (2.60)

satisfy
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I z(t) - h(t.0(t);E) I 4 K o - h(to.00 ;E) I e- 2(e ' -Xtt) (2.61)

for all t )> to and any to E R. where a 2 (e.D,) = al(e,DI) - EK(v, + A)p,(DI).

Proof: Suppose that I z(t) I< D, for all t >- to. By Lemma 2.1

z= A(0(t))i (2.62)

is exponentially stable with constant K and rate cr1(ED 1 ). A converse Lyapunov theorem from

Yoshizawa (1966. p. 90) shows that there exists a Lyapunov function V(t.i) satisfying

i 14 V(t.) < K 12 1. 1 V(t.j) - V(t,j) ] <K [--, (2.63)

0

V(2 .36 )(t.z) a - 1(e.Dl) V(t.2). t > to, (2.64)

where V(2. 3 6 ) is the upper right derivative of V along solutions of (2.36). Because V(t.z) is

Lipschitzian in z. h is Lipschitzian in 0. and 0(t) is Lipschitzian in t. V(tz - h(t0;e)) is a

continuous function of t along the solutions of (2.36)-(2.37). In order to evaluate

V(2. 36 )-((, 37 )(t.z-h(t.O:E)) it is helpful to first determine expressions for z(t+A) given z(t) = z and

h(t + A.0(t+A):E) given 0(t) = 0:

z(t+A) = z + A[A(p(0))z - EYo(t.p(0))F(t.p(0).z))] + O(A 2 ) (2.65)

h(t+A.e(t+A):e) = h(t+A.0 + AeF(t.p(0).h(t.0;e)):e)

+ h(t+A.0(t+A):E) - h(t+A,0 + AEF(t.p(0).h(t.,0;e)):e)

- h(t.0:e) + A[A(p(0)))h(t.0:e) - e PO(t.p(O))F(tp(9)).h(t,OE))] (2.66)

+ [h(t+A.0 + AEF(t,0.z):e) - h(t+A.0 + eF(t.0.h(t.0:e):E)]

From+ O(A-).

From these expressions and (2.63)-(2.64) it follows that V(t.z - h(t.0;e)) satisfies
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V( 2.3 6 )-(2.3 7 )(t.z - h(tO:e)) < -tj(e.D)V(t.z - h(t.O;e))

+ K e(v 1 +A) I F(t.p(O)).z) - F(tp(O)).h(t.6;e)) I

K, -al(e.Di)V(t.z - h(t.k;e)) (2.67)

+ e K(vI+A)pz(DI) I z - h(t,0:e) I

-< -a 2(e.D1 )V(t.z - h(t.0:e))

for all t > to. which in view of (2.63) proves (2.61) for all t > to. This argument. conditioned on

the assumption that Iz(t)I D, for all t > to. also proves that (2.61) holds for t E [to.t11 if

I z(t) D D on this interval. The proof that t1  co is by contradiction . Assume that there exists

t. E [to.oo) such that I z(t.) > D, and let tj be the smallest such time. Since I z(to) I < DI. t1 > to

and

I z(t,) I I h(ti.O(tI):e) I + I z(tI) - h(t,0.(tl);e) < D + KIz - h(t,0o) I K< Dl, (2.68)

which contradicts I z(tj) I > D1.K0
Remark 2.8: If e and D, satisfy

'€e KV1PF(Dj)/oq(1EDj) < D,. (2.69)

then (2.60) can be relaxed to K Iz)I I D when K > 1 or z0 I < D, when K 1. See Lemma 3.5

in Chapter 3.

°.J.0

With this remark in mind we summarize the existence and attractivity of M, in the following

theorem.

Theorem 2.3: Suppose that Assumptions 2.1, 2.2. and 2.3 hold. Given any fixed

A,, > (). D, > 0 1), > D, , and a E (O.a ), there exists E, > 0 such that for each E E [(.El1 there

exists h E H((E/Ej)D.(/)A,,) such that M, = {t.O.z z = h(t.0:e)} is an integral manifold of

(2.36)-(2.37), and furthermore, solutions z(t). 0(t) of (2.36)-(2.37) with t,) = z, and

K I z,, I < D, satisfy (2.61) with 0,2(E.D 1 ) > a.

Proof: Choose E,, as for Theorem 2.1. Then choose E K< E,, such that a.,(E E.l)1 ) > a. Thus. E, is
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chosen to satisfy the most restrictive of five inequalities; hence, it is easily computed given the

functions p.

Similarly to Theorem 2.1 this result can be translated to the original system (2.1)-(2.2).

Corollary 2.,3 Suppose that Assumptions 2.1. 2.2. and 2.3 hold. Let x(t). 0(t) be the solution of

(2.1)-(2.2) with initial data x(to) = xo , 0(t 0 ) = 00 E e. Suppose that 0(t) E e for all t E [to.t1 ].

Given any fixed Ao > 0 . Do > 0 . D, > Do. and a E (0.ao), there exists el > 0 such that for each

e E [O.F 1] there exists h E H((e/e1 )Do . (e/e 1 )Ao ) with the following properties:

i) if (t,).O(,.x)) E M. then (t.O(t).x(t)) E M, for all t E [to,t1 ].

ii) if K I xj)-v(to. 0o) I < D1. then for all t E [to.til

I x(t) - g(t.O(t): e) I < Ke ' (t- tO) I Xo - g(to.00 :1) I . (2.70)

Theorem 2.3 suggests that solutions of the modified system (2.36)-(2.37) have two "time-

decoupled" parts, one being rapid convergence to the slow manifold NI, and the other being

evolution near M. Motivated by this observation we rewrite (2.37) in the form of (2.57) with a

rapidly exponentially decaying perturbation.

= eF(t.p(6).h(t.9:e)) + E[ F(t.p(0).z) - F(t.p(0).h(t.9:e))]. (2.71)

and use it to show that the stability properties of a solution 0(t) of (2.57) are inherited by the

solution 0(t). z(t) = h(t.6(t):e) of (2.36)-(2.37). We show this for the case of a uniformly stable

solution 0" of (3.25). The first step is to recall a converse lvapunov theorem: see. for example.

Yoshizawa (1966).

Lemma 2.4: Suppose that 0*(t) is a uniformly stable solution of (2.57). that B(K.0(t)) L e for all

t E R. and that f(t.0.x) is a continuous function of t. Then. there exist K2 E (OKI). a l.yapunov

function l(t.0), two strictly increasing positive functions yv and V2 and a constant I . such that.

for t >,t..0-0"1 K, and Ii-l < K,.

S- I0-0'1 ) < L(t.0-0") y'( 0-01) y(O) = y0(O =() (2.72)

. ..

44r
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IL(t.t-.) - -0)I 0-1 -0' (2.73)

L( 57)(t.0 -0) < 0. Y0.0 E e. (2.74)

0

From (2.71) it is clear that for (2.36)-(2.37) with I z I < D, and 10 - 0S < K2 . L satisfies

L(236)-(237)(t.0 - 0) * L(2.5 7 )(t.0 - 0") + el p,(D1 ) I z - h(t,0:e) I (2.75)

(el p,(DI)V(t.z - h(t.0);6).

It follows from (2.59).(2.67). and (2.75) that the composite Lyapunov function

W(t.0.z) = L(t.0 - 0*) + 3 V(t.z - h(t.0)) (2.76)

with

, , =El p (D )/ci (2.77)

satisfies W( 2 3 6 )_( 2 .3 7 )(t.0.Z) < 0 if z z D, and 10 - 0"[ < K2. This proves the following theorem.

Theorem 2.4: Suppose that the conclusions of Lemma 2.4 and Theorem 2.3 hold and that e E (O.61].

Choose K3 < () such that yl( 10 ) K3 implies 10 1 < K2 . Then. the solution of (2.36)(2.37)

with initial data z(t,1 ) = z, . O(to) = 0o for any (to.0o.zo) in the set

So= t.0.z : K I z I < D1 . W(t.O,z) < K3 ) . (2.7h)

remains in the set S1 = It.O.z: I z I < Dl . W(t.Oz) < K3 ) for all t t,) and along each solution

f 2 -2 3,)(t.0.z) < 0. Moreover, for every constant 8 > 0. there exists t, > 0 such that
It.0(t).A))} E S for all t > t,, + tb where

" , t.O./ z - h(tO:E) I < 5 l.(t.0-0*(t)) W(t,,.0,,.z,) . (2.79)

This theorem shows that the uniform stability of 0(t) as a solution of (2.57) combined with the

existence of an exponentially attractive integral manifold M, implies that z*(t) = h(t,0"(t):). 0*(t)

is a uniformly stable solution of (2.36)-(2.37). Since (t.O.z) E S, implies that 0 E E. Theorem 2.4

can he translated to the original system (2.1 )-(2.2).

o i y

.. . . . . .... bf-i " K K " ": ". .. . .
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Corollary 2.4: Suppose that the hypotheses of Theorem 2.4 hold. Then, the solution of (2.4)-(2.2)

with initial data x(to) = xo. 0(to) = 0o for any t.0 0 .xo in the set

So = {t.O.x : K I x - v(t,0) I < D, . W(t.0,x-'(t.0)) < K3} (2.80)

remains in the set S, = {t.O.x : I x-v(t.0) I < D1 . W(t.8.x-P(t.0)) < K31 for all t < to and along

each such solution W('2.1 )_(22 )(t.O.x-v(t.0)) < 0. Moreover. for every constant 8 > 0. there exists

t6 > 0 such that

S6= t.O.x I x-g(t.0:e) I -< 8 . L(t.0--0(t)) 4< W(t,O)O.x)-v(tO.o)} . (2.81)

0

Remark 2.9. Whereas results similar to those of Theorem 2.4 are usually obtained under the more

restrictive assumption of the uniform asymptotic stability of 0'(t) as a solution of (2.57). in

Theorem 2.4 0'(t) is only assumed to be uniformly stable. This stronger result which is due to the

fact that 0" is a solution of the exact manifold equation (2.57). rather than an approximation. is of

conceptual interest. The hypothesis of Lemma 2.4 may not be verifiable which limits the direct

applicability of the result.

.4-,
Remark 2.10. The same proof technique can be applied to show that uniform asymptotic stability

or exponential stability of 0"(t) implies uniform asymptotic stability or exponential stability.
a-

respectively, of x*(t) = g(t.0(t);e). 0"(t). Similar techniques apply when 0"(t) is replaced by an

invariant set. The use of a quadratic Lvapunov function in place of W may provide better

estimates of the region of atL. iction: see Saberi and Khalil (1981).
'-a--.%

Remark 2.11: It may not be necessary to find the manifold function h(t.0:E) in order to determine

a solution 0(t) of (2.57). For example, if (236)-(2.37) has an equilibrium at z = O. 0 = 0. then

,% 0'(t) = 0' is a solution of (2.57).
D

In specific case studies a more elaborate tonstruction can lead to an estimate of the domain of

attraction less conservatie than S,, in Theorem 2.4.

Example 2.3: (onstider again lIxample 2.1 -with constant r=1I. v, 0.5 Let E0, he a segment

V%
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[X, . A,] 9 0. Similarly to Lemma 2.3 we can show that if I z I D, and 0 E 0,. then the derivative

of V(z - h(O):e) z - h(O;e) I satisfies

1- 1 A ______ _ _ V(z-h(0:e))
V(2 3 6 H 2 3 7 )(zh(Oe)) < - -- e + (2.82)

and the derivative of L(0) =10-3 1satisfies

2D+D - h(+:e)) (2.83)

L(2 .36 )-(2.37 )(0) ( L(2. 7 2(0) + 2-I 1  + - A. I -JO

. For small enough e the right-hand side of (2.82) is negative. We use A = .25. .1. Taking W as

an appropriate linear combination of V and L., we can achieve W(2. 3 6 )_(2 .3 7 )(O.z) L(2.57)(0) < 0 if

L(0) >i .09. Choosing different linear combinations of V and L for different subsets of E, of E we

create a comparison function

I
W(0.z) = 3.66 (miL(O) + V(z - h(0:6)) + y1 ) ifO E 0i (2.84)

with in,. /, and Oi listed in Table 2.1. The constants /i are chosen so that W(0.z) = cl. a constant.

is the boundary of a compact set. This construction is such that if cI < c2 . then

q {O.z: W(G.z) < c~l C {O.z: W(0.z) < c,). The m,'s are chosen so that

Wf? 36)_(2, 37 )(O.Z) ( L, 57)(0) < 0 if L(O) > .09 and m, = 0 if L(O) -< .09 . Thus any solution of

(2.36)-(2.37) with (01,,.z,) E SI = 10.z : W(0.z) < 0.751 remains in So for all t > t, and converges in

Table 2.1. Parameters of W(0.z)

I' il _,O m,=m_., ,=_

1 [2 91.3.00] [3.O0.3.O] 0.00 1.143
2 [2.85.2.91] [3.09.3.15] 1.80 0.91 I
3 [2.75.2.h5] [3-15.3.25] 1.92 0.963
4 [2.05.2.75] [3.25.3.351 2.04 0.933
5 [2.55.2.05] [3.35.3.45] 2.20 0.877
6 [2.45.2.55] [3.45.3.551 2.31) 07914
7 [2.35.2.45] [3.55.3.651 2.73 0.6045
S. [2.25.2.351 [3.65.3.751 3.66 0(.).0

-.

t*-
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finite time to S6 = 10 .z: 10 -31 <  0.09. Iz - h(0;E) I < S. By construction (O.z) E So 0 ;E ;

hence. these solutions can be related to solutions of (2.26)-(2.27) with x = v(0) + z as in Corollary

2.4. The trajectories in Fig. 2.3 which begin from the vertices of the polygon W(O.x-v(O)) = 0.75

clearly show that the equilibrium 0 = 3. x - v(3) = 0.375 has a domain of attraction containing So.

For 0 < 3 the trajectories cross the boundary of S, almost perpendicularly indicating that in this

region So is a conservative estimate of the domain of attraction. However. this estimate is designed

to guarantee that 0(t) -< 3.75 for all t > t,, and is much less conservative for 0 > 3. This can be

seen from the trajectory (a) converging to the manifold and the close-by divergent trajectory (b).

2.5. Attractive Integral Manifolds of a Model Reference Adaptive Control System

In this section we put a model reference adaptive control system (MRAS) in the form of

(2.1)-(2.2). Then, in order to show that the MRAS possesses a slow manifold, it is sufficient to

show that Assumptions 2.1. 2.2. and 2.3 are not restrictive.

As the first two assumptions are oncerned only with properties of (2.1) for constant values

, of 0. we postpone the specification of the parameter update law (2.2) until later. The controller

parametrization of Narendra and Valavani (1978) is common to several MRASs; a block diagram of

the controlled system is shown in Fig. 2.4. Assuming. for ease of exposition, that the plant is

strictly proper, the controlled system is described by (2.1) with

A(0W A,, + blOT 0 B(G) = [0,, b' I b3 I 01b' + b21
(21 

(2.85)
A . I ' Jb I  

b 2  )I b3

A,= 0 b , = () 0
b0hb0 ()

C,
T : htr(t)

C 0 x v . w(t)= nt(t) , =
() V2 .i , ) d

where r is the reference input, and n,. n2 are disturbances and without loss of generalitx

h. =1. We get the Narendra and Valavani controller designed br a plant of relative degree one

and order n bv assigning the dimensins c,, E R d,, E R c E R '  d E R ' . E R . E R"
gn hd i . .l E'

-I- . '' ".-" . -'"" . . - '-' ' ' r : . , '' " " ' . . - ,
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3.0 1  1 11

1.5

23.00 375

Fig. 2.3. The trajectories of (2.26 )-2.27) beginning at the vertices of W(O.X-V(O)) =0.75 converge
to the equilibrium. Along trajectory (a) 0 leaves the set e) = [ 2.25 3.75 ], but con-
verges to the manifold. and then. to the equilibrium. Initially nearby trajectory (b) isj divergent.

r v i

c T

-1.5

Fig. 2.4. hlock diagram of the Narendra and alavani 19t h) controller parametrization
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'

and choosing the eigenvalues of A to be the zeros of the reference model. In order to show that an

integral manifold exists we require A, B. and w to satisfy Assumptions 2.1 and 2.2.

Assumption 2.1 implies the stabilizability of the unknown plant by the chosen controller. In

order to see that it is not very restrictive we state a proposition.

wI
Proposition 2.1: If there exist 0" E R"O and cto > 0 such that

Re X(A(0°)) < -o (2.86)

* then -%ssumption 2.1 is satisfied.

Proof Iron (2 6) it follows that exp[tA(0O")] < K exp[-aot] for some K < cc. From standard

arguments about the stability of perturbed linear systems, it follows that Assumption 2.1 is

satisfied with a,, a,,/2 and E -{0 E RM " 10-0" 1 < K I bl 1/(2 a ))

Thus our stabilizability assumption does not require the knowledge of the plant order, nor

does it require the plant to match a reference model. We shall take the hypothesis of Proposition

2.1 as a hypothesis of Theorem 2.5. However, a,, K. and E are important quantities in the

analysis of the previous sections and estimating them via the proof of Proposition 2.1 is, in general,

very conservative. We suggest that they be estimated in an off-line analysis via analytic

expressions. simulation, or experimentation.

The following proposition shows that Assumption 2.2 is not restrictive.

Proposition 2.2: If Assumption 2.1 holds, and w(t) is uniformly bounded. piecewise Lipschitz

continuous, and there exists 6 > 0 such that all points of discontinuity are separated by at least S.

then Assumption 2.2 is satisfied.

Proof: The boundedness and regularity of w(t) combined with Assumption 2.1 are sufficient to

guarantee that v(t.O) is a Iipschitz continuous function of time. Letting 1r = sup r(t)' we can

4.



compute bounds on v, v, and v2 as

v~, < K sugII O0br + b
3n, + (Olb' + b2 )n2 II

ao O

v1 vI  ..K I bI' [llril +v+ 11n211] (2.87)

k' V2  2 K I v,

o 0

- Thus Assumption 2.2 is a regularity and boundedness assumption on the external inputs to

the system. An important observation concerning the applicability of this analysis in the design of

adaptive control schemes is that these assumptions are stated for the system with constant

parameters. These are assumptions about the chosen controller structure and the signals expected

• . to enter the controlled system.

While the previous two assumptions were independent of the parameter update law. the last

,,.assumption depends only upon the parameter update law. For the MRAS which we are considering,

-the update law is given by (2.2) with

f(t.O.x) = f(t.x) - + (hpx + n2 - yn (t)) (2.88)
CX.

where

t
Sym (t) f hmexp[A,,(t-r)lb ..r(,r)d7" (2.89)

A,, E Rnxn is Hurwitz. and Wi(s) = hT( s-Am)-lbm is strictly positive real (SPR). The update law

- must satisfy Assumption 2.3. It is straightforward to establish that I x I x< I) implies that

If(t.x) I < PF(D) = ( 1ri + 11 nII + D)( 1 n,-v,,, I + D) (2.9))

af (t.x)i p(l))= ir i + in,IIl + In 2 -,,l + 21) .(291)

Then. under Assumption 2.2. Assumption 2.3 is satisfied with
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pF(D) -< p(v+D). p,(D) < px(v+D). po(D) < vlpx(v+D). (2.92)

Hence. we have the following result concerning the existence of an attractive integral manifold M,

for the MRAS described by (2.1)-(2.2). (2.85). (2.88)-(2.89).

Theorem 2.5: Suppose that the hypotheses of Propositions 2.1 and 2.2 hold. Then. with A.B. w.

and f given by (2.85). (2.88)-(2.89). the conclusions of Theorem 2.3 hold for the modified system

(2.34)-(2.35) and the conclusions of Corollary 2.3 hold for (2.1)-(2.2).
0

. Remark 2.12: To this point we have made no assumptions about persistent excitation. sufficient

",.p richness, periodicity or almost periodicity of the signals entering the adaptive system.
0

Remark 2.13: If w(t) and f(t.0.x) are periodic (almost periodic) in t, then v(t.0) and h(t.0;e) are

periodic (almost periodic) in t.
0

2.6. Stability in the Manifold: Averaging

In Sections 2.3 and 2.4 we derived conditions for the existence of an attractive local integralJlocal

manifold Mf of (2.1)-(2.2) and showed that the stability properties of a solution 0(t) of

, = 6f(t..g(t.ke)) (2.93)

* which remains in E for all t ?- t4 are also the stability properties of the solution

x(t) = g(t.0(t);) . 0(t) of (2.1)-(2.2). We have established these conclusions without recourse to an

averaging argument. However, equation (2.93) is in the standard Bogoliubov form for the method

of averaging. Hale (1980). Meerkov (1973). Sethna and Moran (1968), Volosov (1962). Bogoliubov

and .Mitropolski (1961). Although averaging is not the only means for analyzing (2.93). it is the

one which we shall apply. The method of averaging gives very strong results for (2.93) in general,

and especially. when (2.1)-(2.2) represent an adaptive system as in Section 2.5. including
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(i) analysis with enough precision to provide sufficient conditions for instability as well as

sufficient conditions for stability, and

(ii) interpretation in terms of the frequency spectrum of the signals entering the system and

certain transfer functions in the adaptive system.

The method of averaging relates solutions of (2.93) to solutions of

d--6 =f(') (2.94)

where T = e(t-t,)) is the slow time scale and using g(t.0:0) = P(t.O).T(O) is the average of f with 0

constant defined by

t T

7(0) = lim Tf f(s.O.v(s.0))ds. (2.95)T-.o "T

We assume w(t) and f(t.0.x) are almost periodic in t so that the limit in (2.95) exists uniformly

with respect to t. Because (2.94) is time-invariant and independent of e. it is easier to study both

S analytically and experimentally via computer simulation, than (2.93).

Three theorems from the method of averaging lead to immediate and useful results for

adaptive systems. One theorem gives conditions under which the existence of a constant solution of

(2.94) implies the existence of an almost periodic solution to (2.93). This theorem also relates the

stability or instability of the constant solution of (2.94) to the almost periodic solution of (2.93).

It is the essential part of the theorem used to establish a stability-instability criterion for adaptive

systems in Riedle and Kokotovic (1985) and Kokotovic, Riedle. and Praly (1985). The other two

theorems give conditions under which tne solution of (2.94) approximates the solution of (2.93).

The first of these applies on a finite time interval;hence, it applies when solutions of (2.93) or

(2.9-4) leave 0 in finite time. This result was used by Astrom (1983.1984) in his explanation of the

instability mechanisms in a model reference adaptive control system. The second approximation

theorem applies on infinite intervals. We shall use it to provide sufficient conditions for the

uniform asymptotic stability of an almost periodic solution of (2.93) and to provide an estimate of
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the region of attraction which is not restricted by linearization.

We consider first the finite interval approximation theorem

Theorem 2.6: Suppose that Assumptions 2.1. 2.2. and 2.3 hold. If the solution'U(7) of (2.94) with

W(O) = 0(to) and its o-neighborhood are in 8 for all r E [0.Tr). that is. if

B(or'(T)) Q 0 V T E [0.1) (2.96)

for any 71 E (O.oo) and any o' > 0. then there exists e.(Tpo-) E (0.Me1] such that for each e E (0Me.)

I 0(t) - '(e(t-to)) I < o" V t E [to.to + 71/1) . (2.97)

J.4 0

Let 01 C 0 be a set and o', > 0 a constant such that 0 E 81 implies B(o'1 .0) C 0.

Corollary 2.5: Suppose that Assumptions 2.1, 2.2. and 2.3 hold and that every solution of (2.94)

with F(O) E E) 2  OE) leaves 01 before Tl. Then there exists e. E (OXI] such that for each e E (0..)

V and for any to E R. every solution of (2.93) with 0(t) E 02 leaves 01 before to + l/4E.

0

Remark 2.14: The phrase "solution of (2.93) with 0(t,) E E2" can of course be replaced by

"solution of (2.1)-(2.2) with 0(to) E e2 and x(to) = g(t,00(t,):e)." Using the exponential decay of

I x - g I one can modify the proof of Theorem 2.6 to show that off-manifold initial values of x are

also allowed.

0

VIf the averaged system (2.94) has an instability mechanism which causes its solutions to

escape in finite time from el. then this result shows that an explanation of the instability of (2.94)

is a valid explanation of the predicted instability of the original system (2.93) for sufficiently slow

adaptation.

Rather than repeat more of the general averaging theorems which apply to (2.93) and can be

found in the cited literature, we illustrate the use of averaging theorems in the analysis of the

particular MRAS presented in Section 2.5. We first use the theorem on existence and stability of
%

almost periodic solutions of (2.93) to strengthen, by a precise definition of the tuned parameter. our

4I9.4 ,
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. stability criterion. The weakness of the criterion was the arbitrariness of the choice of the tuned

value of the parameter 0 around which the system (2.1)-(2.2) was linearized in Riedle and

Kokotovic (1985) and Kokotovic. Riedle. and Praly (1985). In terms of the update law (2.14). the

function f in (2.93) is

f(t.(t.0)) = -- O(t.0)e(t.0) (2.98)

where (t.O) and e(t.0) are. respectively, the values of the regressor vector and the tracking error

for constant values of 0:

OUR) CY(t.0) e(t.0) = [hp 0 O]v(t.O) + n 2(t)--Ym(t). (2.99)

Using the regressor vector O(t.O) as the input to the transfer function

WCL(U.s) = [hT 001(s] - A())-lb' (2.100)

results in a vector

v(t,O,F) = WCL(O'.S)O(tO). (2.101)

This vector is important because when " = 0, it can be shown that v is the sensitivity of e(t.0)

with respect to 0. that is.

e,(t.0) a (t.0) = vT(t.0.0). (2.102)

-4

Bv the mixed notation t.s in (2.101). we mean that the ith component of v is the almost periodic

response of the closed-loop transfer function WCL(U"s) to the almost periodic ith component of .

Letting 0" be an arbitrary "tuned" parameter, we derive the equation from which the stability

criterion was developed. Linearizing (2.94) around - = 0" we get

9= (avg[(O)v(0 vg[,('0 )e(-.0")1("-0) - avg[O(.O")e( .0)] (2.103)

where

% %
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avgfe(..Oo)] lir f e(t.0o)dt.
-T- 0

Our previous analysis. (Riedle and Kokotovic .1985. and Kokotovic. Riedle. and Praly .1985).

neglected the terms containing e(t.0O) and investigated the linear system

dF - aVg[(..0o)vT(-.go. o)](Fg-0 ) .  (2.104)
dT

Its equilibrium F = 0" is exponentially stable or unstable depending on the eigenvalues of R(G".0 0 )

where

R(O. ) avg[0(-.0)v T(.0.ff)] . (2.105)

The stability criterion on (2.104) was practical because the eigenvalue condition on the matrix

R(O'.0o) is easily interpretable in terms of signals and transfer functions in the system (2.1)-(2.2).

Consider. for example. the case when 0(t.0) is the sum of a finite number of sinusoids

( l,(.w) eM . (2.106)

Because q5 is real valued, wE f0 implies -aE f( and 0(0.-a) is the complex conjugate of 1#,(0.W).

Then we compute v(t.e.if) and R(Of)

V(t.O.F) = t pi(O,w) WCL(U',joI) eM  (2.107)
WE f?

R(Off) = q j(0.-w) ¢Ir(0.,W) WCL(".j'). (2.108)

Hence, the matrix R(0.0o) is easily computed if we know the Fourier series representation of

"h(t.0") and the transfer function WCL(O°.jto). An interesting sufficient condition for (2.104) to be

exponentially stable is that R(0°.01' ) + RT(0,0 °o) be positive definite, that is,

0 < R(O'.0) + RT(O°.0)) = E '4.(0".--) 1I(01.w) Re WCL(O"jco) . (2.109)

The condition (2.109) has been called "signal-dependent SPR" (Riedle and kokotovic. 1985. and

Kokotovic. Riedle. and Praly, 1985) because it resembles the usual strict positive realness

.-..-.. K,>kot~ c. Redle. %m %he usua -strict~e
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requirement that Re WCL(Oo.Lj,) > 0 for all w. but relaxes this requirement by incorporating

information about the signals entering the adaptive system.

In this analysis we do not neglect e(t.00) but instead assume that an equilibrium P0 of the

averaged equation (2.94) exists, that is,

0 = T() = avg[O(-.U'O)e('.9'°)]. (2.110)

Then we select 0 = to be the tuned parameter 0°. With this choice, the forcing term in the

linearized equation (2.103) is zero and (2.103) is the linearization of the averaged system (2.94)

around its equilibrium. Clearly, the stability or instability of this equilibrium is determined by

the eigenvalues of

T(O° ) - OT(0°) - R(00.0 ° ) - R1(00) (2.111)

R1(0°) = avg[&(.0)e(.O°)]. (2.112)

In addition to the easily interpretable matrix R. a stability criterion for (2.103) must deal with R1.

which is much more difficult to interpret. Since a criterion for stability and instability based on

* the eigenvalues of R + R1 is much less appealing than the criterion for (2.104). our goal is to

formulate sufficient conditions for stability and instability in terms of the RMS error

E(0) = favg[e(..)] "' , (2.113)

which will appear in a bound for RI, and the eigenvalues of R(0.0°).

In the noncritical case. that is, when no eigenvalues of R(00,00) have zero real parts, we can always

find a transformation T(0') such that

A+
-I'(0i R,(0 .0") TF(O') = . T-1 (00) < 1 (2.114)

I , here all the eigenvalue, )I .\. hae positj\e real parts and all the eigenvalues of A.- have negative

real parts. Furthermore, there exist positi'e constants m and X such that

G'
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I ep thA, 0 1 ( me-". (2.115)

Theorem 2.7: Suppose that Assumptions 2.1. 2.2. and 2.3 hold. Let O0 = g0 be an equilibrium of

the averaged system (2.94) in the interior of E. Suppose that no eigenvalues of R(0".00) have zero

real parts. Let T(0 °) be a transformation satisfying (2.114) and mA be constants such that (2.115)

holds. If the RMS error (2.113) is bounded by

E(OO) < I T() I2116)~m III k0(',O°) III

where 0 = and

III <b(..0 ° ) Ill 4 {avg[ I 09(-.0o) 12]1}12 (2.117)

then there exists e. E (0.e1] such that for each e E (0.6.]. the original system (2.93) possesses a

unique almost periodic solution 0*(t.e) which tends to 00 as e tends to zero, that is.

lim I 0(t.)-0 I = 0. Furthermore, 0"(te) is uniformly asymptotically stable if all the

eigenvalues of R(W0 .0) have positive real parts (that is. the dimension of A- is zero). and 0*(t.e) is

unstable if one eigenvalue of R(0O.0) has a negative real part (that is. the dimension of A is

greater than zero).

Proof: It is sufficient to show that no eigenvalues of R(0O.0) + Ri(0)have zero real parts and that

the dimension of A- is equal to the number of eigenvalues of R(0 0 ,00 ) + RI(0 0 ) with negative real

parts. The conclusions then follow from averaging theorems such as Theorem V.3.1 of Hale

(1980). Applying the transformation 9 = T(O,,)(-O") to (2.103) we have

d - AT(0')R(0)'l ' ) 0 . (2.1 18)
-d0 0 A +

.9-" 1v the Cauchv-Schwartz inequality

,,

'-.9.> ,, ., . -,,, .,.,;
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I Ri(O°) I ( II(t.0 0) III E(O°) ( viE(0O) (2.119)

where the second inequality follows from

°0
09(t.O°) = Cvo(t.0) (2.120)

I C I = 1. and Assumption 2.2. Then (2.115)-(2.116) and the fact that

0 + T(0O)RI(0O)T-l(0 ° ) is similar to R(0 0 ,00) + R1 (0) imply that no eigenvalues of

0- I

T(0O) = -R(0O.00) - Rl(0) have zero real parts and that the dimension of A. is equal to the

number of eigenvalues of T0(01) with positive real parts.

0

In light of Corollary 2.2 and the results of Section 2.4, we have the following corollary.

Corollary 2.6: Under the conditions of Theorem 2.7. for each E E (0.6,] the system (2.1)-(2.2)

with definitions (2.85). (2.88)-(2.89) possesses a unique almost periodic solution

x*(t.e) = g(t,9*(t.e):e) . 0'(t.e) in a neighborhood of v(t,00) , 00. Furthermore, this solution is u.a.s. if

all the eigenvalues of R(00.0o) have positive real parts and unstable if one eigenvalue of R(00.90) has

a negative real part.

Although Theorem 2.7 and Corollary 2.6 are also based on linearization, this result is more

complete than the original stability criterion results of Riedle and Kokotovic (1985) and Kokotovic.

* Riedle. and Praly (1985). It is more complete because the choice of the tuned parameter 00 =W'

allows the conclusions to apply to the actual MRAS (2.1)-(2.2). However, by itself, the choice of

the tuned parameter 0" = ' does not provide sufficient guidance for the design and analysis of an

\IRAS. The existence of ' is not obvious and, except for the case F(0") = 0, defining the tuned

parameter 0" as the solution of (2.110) does not give a characterization of 01' which is easily

interpreted or checked in terms of the properties ol the controlled system (2.1) with constant 0.

....-. .-. ... .., .-.. .-: ..v .;- -, ../ ..,,, -,..v .-."". "" .-.: ,-',-. -'-'- -'.'.,,; ' - '\%-
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In the ideal case. no disturbances and no unmodeled dynamics. the parameter update law

drives the tracking error to zero. An assumption of persistent excitation on the regressor vector

then implies that the function E(O) has a unique global minimum with min E() =0. In the

nonideal case we are studying, suppose that the function E(9) has an isolated local minimum at 9".

an interior point of E. As the existence and properties of '* are more easily checked and

understood than those of P-. our next goal is to derive conditions under which the existence of '

implies that TO exists and is close to ". We rewrite f from the update law (2.93) as

f(t.y(t.O)) = - + e(tF)]. (2.121)

Using (2.12 1) to rewrite T of the averaged system (2.94) as

f( ) = -R (.)(0-" ) - a vg[(..)e(.)]. (2.122)

we state the following result.

Theorem 2.8: Suppose that *. an interior point of 0. provides an isolated local minimum E(T") of

E(O) and that R(- , T") is nonsingular. Under these conditions there exist /.,, > 0 and ,, < co such

that if E(T") < A,. then the equilibrium TO exists and

, TO-l < -yoE("). (2.123)
,-4

Proof: Factoring e(t.F" ) as the product of el(t). with unit amplitude, and I. a scaling factor.

- e(tff") = /Ael(t) . avg[e(.)] = 1 (2.124)

we prove the continuity of the function T"(A) implicitly defined by

0 = TA(O.It) a.O-) -/iavg[( .O)e 1 () (2.125)

Srnce - T .()) I-) (' .())= and T,1(".) = avg[ (.f )e1( f], the claim loilo'xs from

the mnplicit func.tion theorem.

'I7



43

With the combination of Theorems 2.1 and 2.2 we have a result which is strong enough to be

practically applicable for the design of adaptive systems. Doing off-line analysis or simulation of

(2.1) for constant values of parameters. we can check for typical signals w(t) entering the system.

whether or not E(O) has a minimum for some value 9" in the interior of the set e. If this

minimum exists we can then check the fact that the slowly adapting system has an almost periodicw

solution which preserves its u.a.s. property in the presence of a nonzero tracking error. It is

convenient that the restrictions Theorem 2.2 places on the tracking error are for the minimum

value of the RMS error E(Y"). However, this result is local and does not give estimates of Ao . yo or

the region of attraction of the u.a.s. solution. Theorems 2.1 and 2.2 are local because their

hypotheses depend on the eigenvalues of the constant matrices R(Wf'" ) and R(".F). respectively.

Our next result considers R(OF) as a function of 0 in e and makes use of the infinite time

approximation theorem to address these weaknesses.

Theorem 2.9. Suppose that provides a local minimum E(O") of E(0) in the set B(0,9) 9 e and

that

R(O.F) + RT(O.') > 2XI > 0 VO E B(O.ff). (2.126)

If the minimum RMS error E(") satisfies

E(0") < X2/(2wv-V2 + XV- 1 ) (2.127a)

E(T") < X/(37) (2.127b)

where

v max d6( .0) 111 < v

v _max lb..( 0)11 1
' B, ir ,7"

with v and from Assumption 2.2. then

% .. ?CI
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(i) the averaged system (2.94) has a u.a.s. equilibrium Y" such that

1 9°-- 1 E-o). (2.128)

(ii) every solution of (2.94) with Y(0) E B(t.F) satisfies

•(i) E B(0.O) VT > 0. lir I T(r)-- "° I = 0: (2.129)

(iii) given o" > 0 there exists E.(cT) E (0.El l] such that for each E E (0.E.] the original system system

(2.93) possesses an almost periodic solution 0*(t.E) which is u.a.s. and

lrn IO(t.E)--WoI =0" (2.130)

(iv) every solution of (2.93) with 0(t,.e) = CO() E B(O-oO) satisfies for each E E (0.6.]

,"-V' O(t.e) E B(3.O) . O(t. )-(E(t-to)) I < a" , t >1 t,, (2.131)

and

lin I 0(t.E)- 0(tE) I = 0. (2.132)

Proof: Because the Sethna and Moran (1968) theorem. together with Gi) and GOi. implies (iii) and

(iv). we need only establish (i) and (ii). Define the mapping

T B(v-XiE(6"),T" ) -, B(vX-'E(U").U" ) by

T(0) "-R-(.)avg[ ( -,)e(--)]. (2.133)

The inequalities (2.127) are sufficient for T to be a contraction mapping on B(vX-F(F").f"); hence.

T has a unique fixed point T' E B(vX-E(").f). Clearly. the fixed point of T is a solution of

St(O) =0 (Thus (2.94) has an equilibrium V"' satisfying the bound (2.128). We establish that this

equilibrium is exponentially stable with the Lvapunov function V(O) 0 0. Rex riting (294) in

the form

-,.i°.5
*1":V ..- , .-- ... , --.- ... . .... .. ..... ., .. .. .. . ... .... . .-,, , -, -, -,- -.
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d = - _gg)( - )_ [b(g)_b(Oo)]
dT (2-134)

+ [R(".) - R('O°f)(-0"F).

where

b(O) = avg[O(-.O)e(,.,*)]

it follows that

d V(0--) < 2[_X+(2wovijv 2X- + V7)E(0.)]V(-_0o) (2.135)

for all 9" E B(f3 "). The inequalities (2.127b) and (2.135) imply that 9" is exponentially stable

and that its region of attraction includes B(20/3.0'"). that is. there exists X, > 0 such that solutions

of (2.94) with 0(r,,) E B(2)/3 . 00i 9 B(.F) for any r,, > 0 satisfy for all r > T,,

0(r)-- ""' (< I (r,)- " exp[-- 1 (r-r()] . (2.136)

F, sho~v that the region of attraction of - includes B(ff"). that is. to establish (2.129) it is

enough to show that solutions of (2.94) with D7(0) E B(ff") enter B(20/3.V"') in finite time. Using

the form ofT in (2.122) we compute the inequality

d V (-"--X) I - - 1" 
2  + v E ( ) " I .1(2 .13 7 )

Choosing 8 > 0 such that 8 + v -'E(P ' ) < 0/3. it is clear from (2.137) that solutions of (2.94)

o". beginning in B(fB.f) enter B(8 + vA-E(").f) C B(20/3.P"') in finite time.

Fhe stabilitv condition (2.126) is again the signal-dependent SPR condition. lowever. it is

nil e.aluated pointwise in 0 for each 0 in a ball around 6- rather than at only the point 0 = 0*.

[he fo rmula (2.1()h) for R(Off) is still valj i: hence. the frequency domain interpretations of

2 120, ) re analogous to those of (2.109)fl [inallv. Xe point out that as 0 varies over B(.') the

transfer Iunction \V ( "s) does not change. That is . the condition (2.126) is a signal-dependent

SPR condtion on the fixed transf-er [unction for(0 .s) for the different signals 6(t.0) as 0 varies

. :,~ ,,. r t he halIl B( .- )

...-
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2.7. Concluding Remarks

Pursuing the intuitively appealing distinction between states and parameters, we have

established conditions for the existence of an integral manifold - the slow manifold - and used it

for an exact description of the slow adaptation process. Conditions for the exponential attractivity

of the slow manifold are formulated, and the exponential attractivity is shown to imply that the

stability properties of a solution of the reduced-order system on the manifold are also the stability

properties of the corresponding solution of the full-order system. Based on this reduced-order

exact description, we have examined the validity of earlier results obtained via the averaging of

what is now shown to be a "frozen parameter" approximation of the slow manifold. A particular

model reference adaptive control system is shown to possess an exponentially attractive slow

manifold. The stability of this svstem is then analv;:cd via averaging of the equation describing the

motion in the manifold. This analysis extends and completes earlier results based on a linearization

near a "tuned svstem.

%%

*11A
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CHAPTER 3

5 INTEGRAL MANIFOLDS OF SLOW ADAPTATION IN DISCRETE TIME

3.1. Introduction

Many discrete time adaptive control schemes are described by ordinary difference equations of

the form

x(k+l) = A(0(k))xk) + B(0(k))w(k) (3.1)

0(k+l) = 0(k) + ef(k.O(k).x(k)) . (3.2)

where, as in (2.1)-(2.2). x contains the states of the plant. controller, filters, etc.. and 0 is the vector

of adjustable parameters. We remark that if the update law is of the Newton or least-squares

type. then 0 contains the columns of the Newton matrix. As in Chapter 2. we first derive

conditions under which (3.1)-(3.2) possesses an integral manifold M, of the form

M, =kG.x: x = g(kO;e) . (3.3)

and then consider its attractivity. Restricted to the slow manifold M. the system (3.1)-(3.2)

evolves according to x(k) = g(k,0(k):e) and

0(k+l) = 0(k) + ef(k.(k).g(k.0(k):e)) (3.4)

which is in the standard form for averaging. Discrete time averaging theory relates the solutions of

(3.4) to the solutions of the ordinary differential equation (ODE)

"' - (-aC) (3.5)
dr

where

I +N-1

7(0) lim F f(j.0.g(j.0:o)) (3.6)

Leaving the application of this theory to a specific adaptive system for Chapter 4. we give proofs of

several discrete-time averaging theorems using deterministic assumptions. By making appropriate

assumptions on the stochastic process which generates the inputs to (3.1)-(3.2), we conclude this
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'chapter with a lemma that relates the trajectories of some stochastic adaptive control systems in

the form (3.1)-(3.2) to solutions of the ODE (3.5).

3.2. Approximation of the Slow Manifold

As in the continuous-time case. an integral manifold M, of (3.1)-(3.2) is defined by the

statement that if x. is in ME at k=ko. then it is in M, for all k>ko, that is.

(k0.0(k 0).x(k 0 ))EMf -> (k.O(k).x(k")EM, Vk YkoEZ. (3.7)

4'-"."- In general. solving for the function g(k.k:e). which determines M, via (3.3). is as difficult as solving

J* , . the complete system (3.1)-(3.2). Our approach, then. is to find an easily computable and

meaningful approximation of g(k.O:e). Note that at e=0. 0 is constant and (3.1) is a linear time-
invariant system with input w(k). Hence. we can compute the solution of (3.1)-(3.2) for e=0. The

.''. variation of constants formula applied to (3.1) with 0(k) =0. a constant, givesii-
k-k o ( k-1

x(k) = A O(0)x(k,) + E Ak--(0)B(0)w(i) . k>,k,,+l (3.8)
I=ko

',V," Assumption 3.1: There exist a set e and constants KE[1.oo) and X(,E(O.1) such that

JA'9. -< C).iO.V~ 394,.

.Making use of this stability assumption, we let k,---oo in (3.8) and take the steady-state response

k-1

m(k.0) = " Ak-(0)B(0)w(i) (3.10)

as the manifold function g(k.O:0) = v(k.0) defining the frozen parameter manifold M. This

* function is both meaningful and easy to compute. Therefore, in addition to proving that M exists.

we adopt the goal of showing that g(k.0:0) = v(k.0) is a good approximation of g(k.0:E) for small E.

In order to meet both goals simultaneously, we introduce the deviation of x from v(k.0) as a new

state variable

49!
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z = x- v(k.0) . (3.11)

and transform (3.1)-(3.2) into

z(k+l) = A(9(k))z(k) - G(k+1.(k).z(k)) (3.12)

0(k+) = 0(k) + eF(k.0(k).z(k)) (3.13)

where

G(k+1.Oz) v(k+1.O+eF(k.O.z))- v(k+1.0) (3.14)

F(k.z) f(k,O.v(k.O) + z) . (3.15)

The goals are met by proving that (3.12)-(3.13) possesses an integral manifold M, determined by

M, = Ik.Oz: z = h(k.Oke)} (3.16)

with h(k.6:E) = O().

Before proving the existence of h(k.0:E). we consider formal (without proof) approximations

of h(k.O;E). From the definition of M, it follows that the function h(k.0;e) evaluated along a

trajectory of (3.12)-(3.13) which is in M, must satisfy (3.12)-(3.13) with z replaced by h.

Performing this substitution, we get the functional difference equation

h(k+1.0+eF(k.O.h(k.0;e));e) = A(O)h(k.0:e) - G(k+ 1.O.h(k.0:e)) (3.17)

This is no longer an ordinary difference equation in k because of the variations in the second

argument of h. Rewriting (3.17) as

h(k+1.O:e) = A(O)h(k.O:e) - G(k+1.G.h(k.:E)) (8)

- [h(k+lO+c-F(k.Oh(k.O:E)):E) - h(k+.O:e)]

we bring (3.17) to a discrete-time analog of the partial differential equation (2.23). Under an

i. appropriate smoothness assumption we can approximate h(k.O:e) by a power series in E

h(k.O:E) = h,,(k.O) + eh 1 (k.O) + E2h,(k.O) +'' (3.19)

Substituting this series for h(k.O:E) in (3.lh) and equating the coefficients of like powers of E. the

equation for h,,(k.) is an ordinary difference equation in k whose steady-state response is zero:

A.

-. , * -.* . . . . - € o,-- ." , . ".~., ' , ," . ""5'"""?
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ho(k+1.0) = A(0)ho(k.0) --> ho(k.0)-0 (3.20)

For the e term h(k.0) the ordinary difference equation is

h(k+1.0) = A(0)hj(k.0)-vO(k+1,0)F(k.0,0) (3.21)

and its steady-state solution for each fixed 0 is given by

k--I

hl(k.0) = E Ak-l-i(O)V(i+l)F(i.0.0) (3.22)

Here use is made of F(k.6.ho(k.0)) = F(k.0.O). This process of successively evaluating the hj's

continues with each coefficient hf(k.0) in the expansion (3.19) being the steady-state response of a

linear ordinary difference equation in k. parametrically dependent on 0, and driven by terms with

h, and derivatives of hi only for i < j.

3.3. Existence of a Slow Manifold

As in the continuous-time case, we derive conditions under which ME exists by constructing a

map T, whose fixed point is h(k.0:e) and finding conditions for T, to be a contraction. We first

specify a closed subset of a Banach space in which to search for h(k.:e). Letting the space be the

set of continuous functions H(k.O) equipped with the norm IHII - sup IH(k,0), we use positive
k.OE ZxR e

4',

constants D. A to define our closed subset H(D. A) as

H(D.A) = {H:ZxR n-R' IIHII(D and IH(k.0)-H(k.O)I < A 0-0IkEZ:W.E"R'0I .(3.23)

Recall that our goal is not only to prove that h(k.O:e) exists but also to show that D and A are
%.4.

V.4 . ()(e In addition to the stability assumption we require the parameterization A(O). B(0) to be

ontinuouslv differentiable and to have Lipschitz first derivatives for OEO and w(k) to be

unitormlv bounded. We quantify this requirement in the following assumption.

Ass" ,tion 3.2: There exist positive constants v.v l .v, such that

-4 •

.. Ivk.O)l v. Iv -(k.O)l jv - (k.O)-v- (k,) v,10-61 (3.24)

%*.''.N% % %%%* %-''% ' % % '%
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for all kEZ, and all 6EO.

With this assumption. the existence of bEH(D.A) implies that g is uniformly bounded and

Lipschitz continuous in 0. Finally, we must use a parameter update law (3.2) with F(k.O.x) being

bounded and Lipschitzian in O.x uniformly with respect to kEz.OEe. and x in compact sets.

Assumption 3.3.- There exist nondecreasing positive functions PF(D). pe(D), and p,(D) such that

IF(k .0,z)1 4< p(D). JF(k.Oz)-F(k ,.z)J p,(D)10-O1 (3.25)

for all k E Z for 0.6 Ee. and for all z.i with Jzi < D.IiI 4< D.

Anticipating the same type of stability conditions that were encountered in Chapter 2, we

again introduce a modified system where 0 is replaced by p(O)E0 in A. G. and F. Notice that

G(k,+1.0.z) contains x(k+l.0+eF(k.0.z)). In order to ensure that p(O)+EF(k.p(0).z)Ee) we must

choose p(O) strictly inside e. Let e1(e.D) be a compact. convex subset of E) such that OEeI(Fe.D)

implies B(epF(D).)QE). We take p(O) to be the unique element of e 1(e.D) which is closest to 0.

namely.

p(O) =arg min IP-01 (3.26)

Remark 3.1: With this definition p is potentially a function of E and D. However, the meaning of

p and the choice of the set 9 1 are generally clear. Hlence. for notational simplicity we do not

explicitly indicate the dependence of p on 4E or D.

Wie henceforth analyze the modified system

~(kl A(p((k))flk)-(G(k+l.p(0(k)).Ak)) (3.27)

O~k~) = ~k)eE~kr(~kfl.k))(3.28)

This modified svstemn is similar to but not identical to the usual kind ol parameter update lawXs

incorporating projection, which have the form

Lac.; - -
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O(k+l) = p[0(k)+eF(k.0(k).z(k))] (3.29)

Update laws such as (3.29) ensure O(k)Ee for all k which makes the p(9) in A and G unnecessary.

whereas (3.28) allows 0(k) to leave e but (k+l)--O(k) is always computed using p(O(k))EO. The

study of (3.29) introduces technical difficulties at the boundary of e. A topic of future research is

how to avoid the technical difficulties associated with the usual projection algorithm (3.29) while

*avoiding the potential unboundedness associated with the modified update law (3.28).

With the use of A(p(9)). B(p(O)). G(p(O)). F(k.p(9).z). the fact that Ip(0)-p(6) < 1001

implies that the modified system satisfies Assumptions 3.1-3.3 for all OER4. We describe the

dependence of F(k.p(O).H(k.0) and G(k+l,O,H(k.0)) on 0 for HEH(DA) by defining pl(D.A) and

p,(D.A) such that

JF(k.p(0).H(k.0)) - F(k'p(*))H(kO)) < PI()A)0-OI (3.30)

IG(k+1.p(0).H(k.0)) - G(k+l.p(*).H(k.b)) < ep2(DA)10-I(3

for all kEZ. for all 0.6ERo and all HEH(D.A). It follows from Assumptions 3.2 and 3.3 that P,

and p, exist and can be chosen to satisfy

pl(D.A) -< p(D)+Ap,(D), P2(D.A) < vl.(D.A)+V.PF(D) (3.31)

Our first step in constructing the map T, is to define Oj(i;k.0,6) for i<k as the solution of the

end-value problem

0.(i+1) = 0 (i)+EF(ip(0j(i)).Hl(i.0j(i))). Of(k) = 0 (3.32)

where the subscript j implies dependence on H. We bound the dependence of 0j(i:k.,0e) on 0 and 11l

in the following lemma.

Lemma 3.1: Suppose that Assumptions 3.1-3.3 hold. Let E,(D.A) = I/p1 (D.A). For each

EE[O.El). if ll.EH([).A) and 11., EH(I).A), then

i)f-I
llO ]0i:k.O.E) - 1 (l:k.O.E)] l_ lD A) (3 )

10a:( .3
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In/ ~ln\ < p,(D) 1 k-i

I00.~)OOREj< -111jH1 (3.34)

for all i-<k.

Proof: Letting 9,0i) and 9 1(G) denote Of(i~k .8e) and 6OiikkOe), respectively, we have

j~ j~ i 1) 4 j i~ l - [10ei ( .~3II63 ( D .-O (i) 4 j iI( . 5

for all i<,k-l. Dividing both sides of (3.35) by l-ep1 (D.A)>O. we get the desired result.

I -J10 )- 1 ( ) (3 .36 )

I e p 1 D. T

Letting 01(0) and 0Om(i) denote 0,(i;k.O.e) and OmikOE.respectively, we have

1 ji )-O,,(i+i )j > 10j(i)'Om..(01 - Epi(D.A)Ij0(i)0m,,(i)I (3.37)

for all i <,k-1. We again divide by 1-epj(D.zA) to obtain the desired result,

4 0 4Ep (D ) I Hj

Z4fl l-e1 EI (D.A) ji~i 1)Om(i+1 )l + 1--Epl(D.A) iIJm

< p!(D) k-is-1 1____

Z(i+l ) =A(p(O1 ( i))z( i) (3.39)

%
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where 01(i) = gj(i;k.O.e) is considered as a given function of time for a given HjEH(D.A). The state

transition matrix of (3.39) is given by

I nI = n 24 j(n 1.n2:k.O.E) =(3.40)
A(p(Oj(n-1)))A(Q(O(n-2)))'"A(p(0j(n 2))) nj > n2

and we establish its stability in the following lemma.

Lemma 3.2: Suppose that Assumptions (3.1)-(3.3) hold. Let a be the Lipschitz constant of A()

for OEO. that is,

IA(O)-A()I < a1041 (3.41)

for all 36.EO. Denoting the 11-rgest integer less than or equal to N by INI. let

N(e.D) eKap(D) . (3.42)

If HCH(D.A). then

%"i Ijjnj.n2;k.0.E)j KL Kn,-n2CE.D) n n-) (3.43)

where

I(e.D) K(I/N(iD))[X,,+Kap(D)N(e.D)/4] , if N(e.D) > 1
KX, . if N(e.D) = 0

In the proof of Lemma 3.2 and several results in the remainder of this chapter we use the

following discrete-time version of the Gronwall inequality.

Lemma 3.3: If r(k). p(k) are sequences of nonnegative numbers satisfying

r(k) X< kk"r(k,,) + F KXk-'p(i)r(i) (3.45)

then

V%
,,,t. ..4. . - --- .-. ' -- : -"-" ". . ', . .". ." . ."- .", .": / .".'',."."
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k-1
r(k) Kr(k0)) HI [X+Kp(i)I (3,46)

Proof: Letting r1 (k) =X-kr(k). we have

r1 (k) (Krj(k 0 ) + pk-IIK i 3.7
I=kO

Letting r2 (k,0 ) =Krj(kO) and

r,(k) =Kr 2(kO) + ~ p)r 2(1) (3.48)

we see that r2 (k) satisfies the scalar ordinary difference equation

r,(k+l) =[1+-p(k)]r,(k)

k K (3.49)

i H[i+-p(i)I -(k,

Comparing (3.47) and (3.48) it is clear that rj(k)-<r 2(k): hence,

r=k kAkk K

Klk)<r~k,)X 1 +p()] (.0
k-1 X

k-1

= Kr(k,) f1 [X+Kp(i)I

Proof of Lemma 3.2: Letting AMi) denote A(p(Q,(i))). it follows from Assumption 3.3 and (3.41)

that

IA(ni)-A(n,)j < EaPF(D)Inl-nIl (3.51)

In order to prove (3.43) it is sufficient to show that the solution of (3.39) satisfies

jz(ni)I < Kjz(n,9IY4Ilfl'(E.D) . j >,n (3.52)

S for an arhitrarv z(n,) and arbitrarv n,. For any integer u. we can rewrite (3.39) as

AM M
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zGi+I) =A(u)zGi) + (A(i)-A(u))z(i) (3.53)

Applying the variation of constants formula to (3.53) and taking norms we have

Iz(nl)I 4 Kiz(n2)1ki EK + ~ 'eap(D)i-uI 14i)I (3.54)

which in light of Lemma 3.3 implies

ni-I

Iz(n,)I < Klz(n )I rI (Xo+eKapF(D)Ii-uI) (3.55)
i~n

2

For any given n, and n 2 we choose u as the integer n -2 or n-2-I hne

T_ 1 -n-ul Noting that ln(x 1 +X2) (< ln(xl)+.- we have
1=n 2  

4X

ni-I ni-I
C. rH Lx 4,+eKapF(D)i-ujj = exp In Hl (Xjo+eKaPF(D)Ii-uII

2~n

1-1

= exp 7' lnRXO+eKaPF(D)Ii-uI]
i=n 2

Nn
1  ni-n, ni-I jn

(exp E ln[X,+eKapF(D) -I+ T eKapF(D)[i-uI- 4 (.6

* 
.. exp T, ln[X,,+eKaPF(D 4

[X,,+eKaPF(D) nj-n 2 ],n
* 4

z Thus. (3.55) is replaced by

For n1-n,<,N(E.l). we have

ni-n 2k,,+EkapF() 4 X1(rz.D) .(3.5h)

hence. (3.43) holds for ni-n,-<N(EDDE A\t nin,+(E.1) we have
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1 (ED~I L~oE~ap~D)N(e.D)]NED4ID) K[Xo+eKaPF(D).4 (3.59)

which implies that for any integer m.>0

Iz(n 2 +mN(e.D))l XmNl(.D(e D)z(n,) (3.60)

Since any interval of length n-n 2 can be broken up into an interval of length mN(e.D) and one of

"" length less than N(e.D). this completes the proof. Note that the proof holds for any integer N in

place of N(e.D). The particular choice of N(e.D) given by (3.42) approximately minimizes XI(e.D).

0
S, KaPF(D)

Remark 3.2: N(e.D) = 0 is a degenerate case where (K-I)Xo<e 4 When K is so close to It" " 4

or X,, is so close to zero. we let X =KXo and note from (3.9) that IA(0)I Xg q(0)EO. Hence.

solutions of (3.39) satisfy Iz(i) < (xO)'- lz(io) no matter how fast or slowly 0j moves.
0

I -/N) KIFrom the fact that K( +--. and from equations (3.42). and (3.44). we bound XI(E.D)

4kF() epFD-Kk-)

X1(E.D) ( + apE(D)K 1+4X(. (3.61)

- 4X4 (K-I)

S -" Since X,,< it is clear from (3.61) that E can be chosen small enough so that A(.D)<I; hence, fore

sufticientlv small (3.39) is exponentially stable. We complete the construction of the map T, with

the pointwise definition

.- k-I

(THj)(k.0) = (k-l~i k.0.e)G(i+l.p(0(i:k.0.e)).tl(i.0 (rk.0.e))) . (3.62)

lecause (;(k.p(0).H(i.0)) is unitorrnlv hounded and ., is exponentiaIly decaying for E sufficiently

V ..mall. the right-hand side of (3.62) is hounded for each k EZ and each OE "'. If h is a fixed point
L

of F. then given an" k,. 0,, choosing Xk,) = h(k,.0,,;E) results in a solutioi z(k). 0(k) such that

k)= h( k .0( k ):e. Hence. the fixed point of T, is indeed the manifold function h which we are

n
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seeking. We derive conditions for T, to be a contraction on H(D.A) in the following lemma.

Lemma 3.4: Suppose that Assumptions 3.1-3.3 hold and that (3.41) holds. If e>O. D>O. and

A> 0 satisfy

Kvp(D) < D (3.63)

-\I( e.D)

X.(e.D) < 1-- p(D.A) (3.64)

K 1O2(D. KavfpF(D)

1-Epo(DA)-(eD) ( + [1-X(.D)] < (3.65)

.,-::pz(D)

e l (D ) (Kvl+A) < 1 (3.66)

where X(e.D) is given by (3.44). then T, is a contraction mapping on H(D.A).

Proof: Let HrH.. EH(D.A) be arbitrary. The first bound (3.63) is the easiest to obtain. As

EV IPF(D) bounds 1(;(i+ Ip(0 (i:k.0.e)).Hj(i.0j(i:k,0.e))), we have

k-i KvIPF(D )I(T,H,)(k.0) < T KXlk-I-t(e.D)vPF(D) = e : (3.67)
I=- l--X(E.D)

hence. (3.63) ensures IITtHJ - D. The bound (3.64) arises in the derivation of (3.65) and (3.66)

which guarantee that i(TH,)(k.0)-(THj)(k.h)I < A10-01 and IIT H-T H ml < I-Hm.[

respectively. The most difficult step in establishing (3.65) and (3.66) is determining the dependence
'S .

of (P(ni.n 2 ;k.0.e) on 0 and H . We do this now. Denoting *b(n1 ,n2 ;k.0.E). 0m(n,.n2 ;k,6.E),

0,(i:k.0.). and 0,,,(i:k.0.E) by (ni.n 2 ).i(ni,n,), 0(i), and 0(i). respectively, we write the ordinary

difference equation in n,

(n 1 +l.n,)_4(nj+l.n,) = .A(p(0(nl)))[ (nl 5 n)--(n.n 2 )]

+ [A(p(O(n)))-A(p(O(nl)))]'(n.n 2 )

A -ppI inL the ,ariation of constants Iormula. \we obtain

,,")nl.n,)- (n,.n,)= [) ,(nJn )- (n.n,_)J + 1(n 1 -|.i)[-(p(0( )))-A(p((0(i)))1F(In,) (3.69)

5." -- ... ".. ... .- ,..- ''' .'
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for ll 2~n~k. sin ?'n,. 2 ) 4n2. 2 ) I,(3.41), (3.43) and the triangle inequality, we

bound V)n.n)-jP(n1 .n,) by

Note that (3.64) implies e<e1 (D4A): hence, the bounds (3.33). (3.34) hold. Substituting from

Lemma 3.1 we arrive at the key to (3.65).

-,K 2aX- 2 n(,E.D) 10-41 k~ -2 p(. -

aX k-I-nl(DA)

=K
2aIO-O1X'-2-(,ED 1 1-1 (3.71)

K2ajO-5I X I(E. D) 1~

and the key to (3.66).

I( ,k- I -.k.O.E)-4 .. (k-l.n~k.0.E)I

I-IaX 2(r, )I , H~ p,(D) 1 -

p 1 (D~) _ 1cp1 (.A)i-I(3.72)

K k2 ap,( I))II H,-H 1 II X I(E, D) k-I-n

EpI2(D.A~A1 ( E.D) I-EpIM1 XI--(,)F (D.A)(k I-XA ''-(E.D)

Using the inequality (3.71 ) we bound the dependence of Tl 1 , on 0. With the same notation as in

F (3-6h) and j-m. the triangle inequality gives

.
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'I-

-14-

10-0

( EK~'(ED~,(..) -ep 1 Ix o-o (3.73)

+V1EVIPF(D)KajO-OI XI(e.D) k-i-I-xkliED

,= pT(D.A)-X,(,E.D) 1-E::p 1 (D.A) I X'ED

E6 lp(D )-X 1  D ~P2 (D.A) + V1 Kap11(D)

where the last line holds because of (3.64). Thus. (3.63)-(3.65) imply that THJEH(D.A) if

HJEH(D .A). Denoting ''3 (k-.i:k.O.e). Oj(i;k.O~e) by Of(k-i ,i) Oj(i), respectively, and similarly for

cPin9i.we have

+ 1 4J(k-1 .i)[G(i+1 p(On(i)) .H(i .(i)))-G(i+.p(Om()).H(.O~i)))I

k-I Ep(.~ 2 DIH- (,) 1 --

p1 (D,AAI1-EPj(D.A)j I -p, (DA7

* + E~kvIp(D)(IHJIHmI(X-'-'(E.D)(34

*+k-I EVIPr(D)K 2 ap(D)IIH,-H .1 1I X1(E,D) X k-I-i.I)

- -- ~~' EP12(D.A)X 1 (E.D) 1-C6P 1 (D AT X-I( )

E- e(D.A)(k- I -i OX -'-(E. D)

E(W1) )El-l~l K P2 ) A 1 Kapv(D)

'4
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Remark 3.3: Lemma 3.4 uses X(e.D) given by (3.44) only to imply that the stability bound

* (3.43) holds. If (3.43) can be established with X1 replaced by A1'. then X1' can be used in (3.63)-

(3.66). For example. if there exists a positive definite matrix P such that

AT(O)PA(O) X YO h EP .E (3.75)

then (3.43) is satisfied with Xi(e.D) = X4 and K = (XmaxP/xminP) /-.

In light of (3.61). the fact that X0 < 1. and the fact that X (E.D) is a nondecreasing function of

E and D. it is clear that for any fixed D0 >O. A0 >O we can find an E2 (D0 .A0 ) such that (3.63)-(3.66)

hold for all EE[O.E-). Because PF, p. P1, and p2 are nondecreasing functions of D. A. it follows that

(3.63)-(3.66) hold with D = (E/E2)Do and A = (E/e)A(, for all EE[0.6,). We illustrate the last

statement with (3.63),
KvPF(-/E)D) KV pF(Do,) D(,

E < E E (3.76)
I -X" I -- (.(E/E,)D) l-X(E.D,) E

By the Banach fixed point theorem, there exists a unique function h(',-;E)EH((E/E 2 )D,,.(E/-E2 )A,,)

which is the fixed point of T,. and, hence, defines via (3.16) the integral manifold M, of (3.27)-

(3.28) for all EE[0.e,). This result is summarized in'the following theorem.

Theorem 3.1: Suppose that Assumptions 3.1-3.3 hold and that (3.41) holds. Given any fixed

i'. D,,>O, ., >0. there exists E,(D,,.A,,)>O such that for each EE[0.6.) the modified system (3.27)-

(3.28) possesses an integral manifold M defined bv (3.16) with h(-.-;E)EH((E/E)D,,,(E/E 2 )A,,).

• ?This result translates to the original system (3.1 )-(3.2 as follows-

Corollary 3.1: Under the conditions of Theorem 3.1 suppose thai < ,(L),,.-). let x(k). 0(k) be

the solution of (3.1)-(3.2) with initial data x(k,,) = x,. 0(k,,) = 0, Suppose that

-"" 0(lk)EEOj(.(E/6,)),,) for all kEk,.k1 ]. If (k,,.0,,.x, l, . then (k.0(k).x(k)EM, for all kE[k,,.k1 ]

where N1, is defined by (3.3).

4 N

%i .
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Remark 3A, Up to this point the only assumption we have made about the external inputs to the

system. w(k) and f(k.'-), is that they are uniformly bounded. If they are periodic (almost

periodic), then v(k,0) and h(k,0:6) are periodic (almost periodic) in k.

Before considering the attractivity of Mf in the next section, we give an instability result.

The evolution of (3.27)-(3.28) restricted to M, is governed by the reduced-order system

O(k+l) = 0(k) + eF(k.p(O(k)).h(k.O(k)E)) - (3.77)

The proof of the following theorem is identical to the proof of Theorem 2.2.

Theorem 3.2: Under the conditions of Theorem 3.1. suppose that e<e-(Do,Ao). Let O*(k) be a

solution of (3.77). If 0*(k) is an unstable solution of (3.77). then z*= h(k.O*(k):C). O*( is an

unstable solution of (3.27)-(3.28).

3.4. Attractivity of the Slow Manifold

Theorem 3.2 showed that the existence of M, is sufficient to prove that instability in the

reduced-order system (3.77) implies instabilty in the full-order system (3.27)-(3.28). However.

existence of N1, is not sufficient to show that the existence of a stable solution of (3.77) implies the

existence of a stable solution of (3.27)-(3.28). In this section we establish the exponential

attractivity of NI, which is sufficient to show that the existence of a uniformly (asymptotically)

stable solution of (3.77) implies the existence of a uniformly (asymptotically) stable solution of

% ! (3.27)43.2h).

We begin with a boundedness result for A k) which justifies Remark 2.h.

Lemma 3.5: Suppose that Assumptions 3.1-3.3 hold and that (3.41) holds. Given any fixed

A E ( ,,.l) D,, > 0 . and D, > D,,. let p(O) take values in el(E.l) 1 ). There exists EI(1),.D .A) > ()

such that tor each E E[O.E,3] if I z(k,,) Di, IK and !0(k) I < oo, then

%
%
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I z(k) I - K Xk-  I z(k0 ) I + (e/e 3 )Do(I-Xk- k
.) D D (3.78)

Proof: Choose e3(DoDIA) so that

:b) . 1(e3Dj) 4 X,. e3KvjpF(Dj) 4< Do(1-Xl(63,Dj)). (3.79)

By (3.61) it is clear that such an e3 > 0 exists. We prove (3.78) by induction. Suppose that

I z(i) 1 4 D1 for all i E [ko.k-1]. Then I F(i.p(0(i)),z(i)) 1 PF(Dj) for all i E [ko.k-1]; hence.

0(i) 1 < oo for all i E [ko.k-1]. Letting 0 be the state transition matrix of z(i+l) = A(0(i))z(i) it

follows from Lemma 3.2 that I C(nl.n 2 )1 < K X ln-n2(E.Dj) for all njn 2 E [k,).k]. Applying the

variation of constants formula to (3.27). we have

k-i
z(k) = (k.ko)z(ko)- 7, D(k-l.i)G(i+l.p(0(i)).z(i)) (3.80)

Because Iz(i) 1 4 D, implies that I Gi+ 1.0(i),z(i)) I Evp(D) Itflos from (3.80) that

z(k) I K, K XOeD)I z(k,,) I + Kvp(E 31~k~k~D)1-X 1 E, (i

which implies for 4E E [0.,li that I z(k) I Kl D. Hence, if (3.78) holds for all iE[kk]. then it holds

. .-. "

for all i E[k0 ek+ 1. Since I z(k ) I -<D Dn. (3.78) holds for all k it kld

0

Remark 3.5: For Lemma 3.5 it is sufficient that z(k.0) be Lipschitzian in 0 and that F(k.0.z) be

" *"I- bounded for all k E [k,4 .oo), 0 E E. and z in compact sets. That is. the assumption of a

~ , l'ipschitzian derivative of v and the assumption that F(k.0.z) is lipschitzian in 0. z can be dropped

from Assumptions 3.2 and 3.3. respectively.
A -~ 0

Although I-emma 3.5 shows that z(k) converges exponentially to a hall with radius )(E). it

.'s does not show that M, is exponentially attractive. In order to establish the exponential attractivitv

of ., we introduce the deviation of z from h(k.0:E) as a new state variable

-r) = z-h(k.0kE). (3.82)

i Using the fact that h satisfies the functional diflerence equation
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h(k+1.0 + eF(k.p(6).h(k.,:e)):E) = A(p(O))h(k.0;e) - G(k+l.p(O),h(k.O:e)), (3.83)

we obtain the system of ordinary difference equations for (3.27)-(3.28) in 1) . 0 coordinates

-(k+l) = A(p(O(k)))(k)- G (k+l.0(k).,)(k):E) (3.84)

0(k+l) = 0(k) + eF (k.0(k),l(k):E). (3.85)

where

G (k+l.0.fl;e) = v(k+l.p(O) + ,EF (k.0.)e) - v(k+l.p(O) + eF (k.0.O)e) (3.86)
I I

+ h(k+1.p(O) + eF (k,0,'};e):e) - h(k+lp(6) + eF (k.0.O);e).

Ft(k.0.T:e) = F(k.p(O).h(k,O;e) + -i ). (3.87)

Remark 3.6: We could not use 7 = z-h as a state variable in the continuous-time case in Chapter 2

because we did not prove that Oh existed and h = a h
at

0

With the help of Lemma 3.5 it is straightforward to show that T) converges exponentially to

zero We summarize the existence and attractivitv results in the following theorem.

A Theorem 3.3: Suppose that Assumptions 3.1-3.3 hold and that (3.41) holds. Given any fixed

X E (X,,.l) . D,, > 0. A(, > 0. and D, > Do. let p(O) take values in E1 (e.D 1 ). There exists

•4 (D,.A,,.D.A) > 0 such that for each e E [" 4 ) (3.27)-(3.28) possesses an integral manifold M,

given by (3.16) with h(-o-:E) E H((e/e,)Do, (E/F2)Ao). where e2 = E-(Do.Ao) ?- e4 is from Theorem

3.1. Furthermore. if z(k). 0(k) is the solution of (3.27)-(3.28) with initial data

V. 0(k,,) = 0,, E Rn. z(k 1 ) = z4. and if I z, I < DI/K. then z(k) satisfies (3.78) and

'r(k) = z(k)-h(k.0(k):E) satisfies

171{ (k) I< KeA- " 171(k,,) (388)

Proof: Choose E4(D,,.A,. 1)1 .A) < min6E,(D,,.,) . such that

A1(64 .l 1) +E 4 Kp,(l) 1 )[vl + (E4/E2 )A,,] -< A. (3.$N)

., The existence of M, follows from E4 E- That z(k) satisfies (3.7h) follows from E4  E j . With

- WVV
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Iz{ I h+ nI -< DI. we bound G' by

1 G'(k+1.0.7;e) I - e p2(D 1 )[v i + (e/ 2 )A T (3.90)

Applying the variation of constants formula to (3.84). we have

k-I
-(k) = (k.ko) 'n(ko) - E 4(k-l.i)G'(i+1.0(i).-n(i):e) . (3.91)

i=k0

where D is the same state transition matrix as in Lemma 3.5. Taking norms and applying Lemma

3.3 give

7I i(k) I K< K[XI(e,D 1 ) + e Kp,(D1)(vi + (e/E 2),o)] k - ko i 17(ko) 1 (3.92)

which, in light of (3.89). completes the proof.

We illustrate the use of Theorem 3.3 in an example. First we rewrite (3.85) as a perturbed

version of (3.77)

0(k+l) = 0(k) + eF(k.p(0(k)).h(k.0(k);))

+ e[F'(k.0(k).1(k):e) - F'(k.0(k).O:e)]

where the perturbation is exponentially decaying to zero. For simplicity we consider the case

Swhere 0 = 0 is an equilibrium of (3.77). B(C.O)CO. and for each 4 E [0.E4(D,.A(,,D 1 A)) we have

10 + eF(k.Oh(k.0:e)) I < (l-Eb) 10 . V 0 E B(C.0) (3.94)

where X2 E [O.pl(O.O)). Note that this implies I p(O) + eF(k.p(O).h(k.0;E)) I < I p(O) I hence, we

can take 01 (e.D)=B(C.O). Note, also that (3.94) is almost never satisfied with X, > 0 in adaptive

systems of the type (3.1)-(3.2). However. the basic idea does not change if the right-hand side of

(3.94) is changed to (1-eX 2 )010+E8 where 8E[OAC).

Because (3.94) implies that 0 = 0 is a uniformly stable or an exponentially stable equilibrium

of (3.77) and because the perturbation in (3.93) is exponentially decaying to zero, it follows that

0 = ) s a uniformly stable or an exponentially stable, respectively, equilibrium of (3.93).

'herelore. the solution =O 0 . 0 = of (3.84)-(3.85) is uniformly stable if ,= 0 and

m"
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exponentially stable if X2 > 0. The interesting problem is to estimate the region of attraction of

this solution. Letting r,,(k) satisfy

r(k+l) = Xr,(k), r(ko) = KI(ko) 1 (3.95)

it is clear that I 7)(k) I < r,(k) for all k > ko for each 6 E [0,e4(Do,Ao.D 1.x)). Letting re(k) satisfy

rq(k+l) = (1-X 2 ) rq(k) + epz(DI) r,(k). rq(ko) = 10(ko) I . (3.96)

it follows that if 0(i) E B(C.0) for all i E [ko.k-1]. then O(k) E B(C.0). Thus, we can estimate the

region of attraction by finding conditions such that the solution of the linear time-invariant system

(3.95)-(3.96) keeps r&(k) < C for all k > ko. Taking

V(rg.r ;e) = rp + ep-(DI) (3.97)

L we have

V(ro(k+l).r(k+l);e) = (1-eX2 ) V(ro(k). ro(k):e) (3.98)
= ( --E 2) - k ° V(r,(k,,). r T(k,,);e).!

which proves the following corollary. Because we are proving 0 E E for all k > k,. we can state

the result directly for the original system (3.1)-(3.2).

Corollary 3.2.- Suppose that Assumptions 3.1-3.3, (3.41). and (3.94) hold. that e < E4(D,1 .A,,.D1 .X)

and that B(C.0) C e. Let x(k). 0(k) be the solution of (3.)-(3.2) with initial data

x(k 4 ) = x 0(k) = 0(,. If I x-v(k.O0 ,) I < D, and

V = V( 10,1 . K Ixo-g(k.O0 ,e)I ;:4) < C . (3.99)
then

tx(k)-g(k.0(k):E) I < Kk -  I x,,-g(k,,.0,,:E ) I I 0(k) I < K\,.( 1-EX ) . (3.1 0)

In many algorithms the dependence of f(k.0.x) on x is quadratic or higher order. Then there

exist p0(I),,) and P4(D1 ) such that

no~~ 4, .
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P,(Izl) p3(D,)+p 4 (D1 )I •l (3.101)

In such cases we can arrive at a less conservative estimate of the region of attraction.

%.t , Corollary 3,3: In Corollary 3.2. if (3.101) holds. then V(ro,r';e) given by (3.97) can be replaced

1  ," by

P3(Do) p4(DI) r 2, Vr0rn ) r + _ ),_ rn  (3.102)

0

Thus. we have shown that the possession of an exponentially attractive integral manifold M,

by (3.27)-(3.28) implies that the full-order system has the property that the existence of a

uniformly (asymptotically) stable, an exponentially stable, or an unstable solution of the

reduced-order system in M, (3.77) implies the existence of a uniformly (asymptotically) stable. an

exponentially stable, or an unstable solution of the full-order system (3.27)-(3.28). respectively.

Furthermore, if this solution of (3.77) lies in the interior of e. then the corresponding solution of

the modified system (.7-32)is transformed vi ~)=vk9k)+zk noasouinfth

original system (3.1)-(3.2). In the next section we study via averaging the behavior of solutions of

(3.77). We conclude this section with a reminder that the assumptions under which these results

were derived are very mild. This is especially true on the inputs to the system. namely. w(k) and

the k dependence of f(k..x), which are only required to be uniformly bounded.
-S.

3.5. Analysis in the Manifold: Averaging

The system (3.1)-(3.2) restricted to (l, behaves according to (3.4) which is in the standard

•* " Bogoliubov form for the method of averaging. However. the literature on the method of averaging

for discrete-time systems with deterministic inputs is almost nonexistent. Meerkov (1973)

presents elegant proofs using simple mathematics of several standard averaging theorems for

continuous-time systems. fie then states the corresponding theorems for discrete-time systems

pointing out that the discrete-time proof, which is not given. is virtually a copy of the continuous-

time proof. As the hypotheses of the theorems pro,, ided h% \eerko\. are somexhat different than

C7
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the hypotheses which our system satisfies. we shall state and prove several basic theorems from the

method of averaging. Our proofs are modelled on Meerkov's but our theorem statements are in the

style of Sethna and Moran (1968). While the literature on the naethod of averaging for discrete-

time systems with deterministic inputs is scarce, there are many references which relate the

behavior of (3.4) or (3.1)-(3.2) with stochastic inputs to the behavior of the ODE (3.5):

Derevitskii and Fradkov (1974). Ljung (1977). Kushner (1977). Kushner and Clark (1978).

Benveniste. Goursat. and Ruget (1980). Benveniste. Ruget (1982). Kushner and Swartz (1984).

Metivier and Priouret (1984). just to mention a few. We conclude this section by showing that
.that

some with probability one results relating the behavior of (3.1)-(3.2) to that of the ODE (3.5) can

be stated as corollaries to our basic averaging theorems. We feel that our approach of giving a

complete deterministic proof and then adding stochastic assumptions offers the simplest

introduction to this area, and is at least of pedestrian interest.

In order to simplify the appearance of the equations. we shall make a few notational changes.

We assume that constants Do > 0. Ao > 0. D, > Do . and X E (Xo,1) have been chosen. We let

61 = E4 (Do.Ao.Di.A) . Pr = PF((e 4 /E2) DO). and PI = P1((e4/E 2 ) Do . (e 4/e,)Ao) where E2 = e,(Do.A,).

Finally. we use f(k,0;e) to denote f(k.0,g(k.0:E)) = F(k.0.h(k,0;e)) and we define

p, = (1/e 2 ) D(,p((e 4 /62) Do). It follows that for each f E [0.E4 ). every 0.0 E e. and all k E Z

I f(k.k:e) I <' P• I f(k.0.x)-f(k.0 :e) i - Pi, 10-0 1 . I f(k.0e)-f(k.0:0) I K ep,. (3.103)

As we are interested in the behavior of solutions of (3.4) or (3.77) only for 9 E e. we do not

need the projection p(9): hence, we study

0(k+1) = 0(k) + Ef(k.0:e), (3.104)

We use the classical notation 0(k:0.k,) to represent the solution of (3.104) with initial data

' ,0(k,) = 0,,.

Assumption 3.4: The limit on the right-hand side of the definition
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k+N-1

T (0) N- rn E f(i.0;O) (3.105)
N-o N k

exists uniformly with respect to k E Z and 0 E E. That is. there exists a strictly increasing

continuous function K(.) with K(O) = 0 such that

1 k+N-1 1
IT(0)- TM f(i.0:0) 1 < C(-,) (3.106)

forallk EZ and eEE .

Remark 3.7: If f(k.0:0) is N-periodic then we define T by

T(0) = .- f(i.0;0) (3.107)

NNand we take K(1)_ 0 in the following derivations.

0

We relate solutions of (3.104) to solutions of the ODE

d 9- = T(O'). (3.108)
dT

We use the notation (:00) to represent the solution of (3.108) with initial data (0) = 0,. (Since

(3.108) is time-invariant, there is no loss of generality in taking r=0 as the initial time in (3.108).)

Because T represents the average of f. (3.108) is also referred to as the averaged system. Our tool

for establishing relationships between the trajectory of (3.104). 0(k:,.k0 ). and the trajectory of

(3.108) sampled at tk = e(k-k,,) . (tk;0O). is the averaged trajectory defined by

11+N-1

, = ± 0(i:0..k4 ). (3.109)
=N =I'

%k here N is to be determined and is possibly a function of E. The averaged trajectory 0(k:0,.k,) is

simply a moving average of length N of the trajectory (i:0.k 0 ) over a window beginning at i = k.

We make use of the average trajectory in a two-step procedure. First, we bound the distance

between 0(k:O,,.k,,) and 6(k:0,,.k,) and second, we bound the distance between (k:0,,.k) and

S L
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9(t:9,). Then the triangle inequality gives us a bound on the distance between

@(k;0o.k 0 ) and T(tk-0o).

Lemma 3.6. Suppose that 0(k:0o.ko) E E for all k E [ko.k+N-1]. Then. for each e E (0.64) the

distance between the original and averaged trajectories is bounded by

I 0(k:0o.ko) - i(k;0o.ko) 1 4 (EN-e)(pF/2) (3.110)

for all k E [k,.kl].

Proof: Using (3.103) we have the bound for i E [ko.ki+N-l]

I 0(i+1; 0.k o ) - 0(iOo.ko) 1 4 epF. (3.111)

which implies that for k E [k,.k1 ] and i E [k.k 1+N-1]

I 0(i; 0 o.ko) - 0(k;0o.k 0 ) 1 p (i-k) - (3.112)

From the definition of i and the triangle inequality we get

I 0(k:00 .ko) - -(k:00 ,k0 ) I < I 0(j;O,.ko) - 0(k:0O.ko) I
A.,=k (3.113)1k+N-1

< I EPF(i-k)

ePF N(N-I) (eN-)(P/2)

N 2

for all k E [k,.kl].

Lemma 3.7: Suppose that E(r:,,) E G for all r E [0.rI]. Let kl(e) = [rl/d]1 that is, the largest

integer less than or equal to r1/e. Then. for each e E (0.4) the trajectory W(r:Oo) of the ODE

(3 10) sampled at tk = d(k-k,,) satisfies the ordinary difference equation

6"( = '(tk) + jt( '(tk)) + fI(9'(tk):e) (3.114)

for all k E [k,,.k,,+k 1 (E)-l]. Furthermore. fI defined by

fl(O:E) = "(E);)-(0 +C(O)) (3.115)

0 ";
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i.,

satisfies

I f 1(U'(t11;Oo):) I < E2(plpF/2) (3.116)

for all k E [k(,kq,+kl(e)-I].

Proof: It is clear from the time-invariant nature of (3.108) and tk+.-tk = E that

0"(tk+: 0 ) = (Ef"(tk;0o)): hence. (3.114) follows from the definition (3.115). To establish (3.116)

we let 0 denote "(tk:o) for any k E [ko.ko+k()-1 and compute the bound

'(E:9)---O--IT(O) - I f (T'((r:6)) -T(O))dT I
1 0

:": <f p, I TcrO0) - o 1 d-r
4) (3.117)

= f o,,+ f (V(s:O)))ds-1 dr

". PP f fds dr _2(plpF/2)

% 0 0

Lemma 3.8: Suppose that Assumption 3.4 holds and that O(k:O.k) E E for all k E [kc,,k 1 +N-1].

. " .Then. for each e E (O.C 4 ) the averaged trajectory i(k:0.k,) satisfies the ordinary difference equation

* (k+l) = 6(k) + T((k)) + f2 (k0o,koE) (3.118)

for all k E [k,.k-l] where f2 satisfies

e.: I f2(k;0O.ko.e) I < OE (-) + e(eN-E)P1PF + E:?P (3.119)

-. '- for all k E [k..k -l].

Proof: From the definition of 0 it follows that for all k E [k,,,k-l]

".

N4

-~~~~~~~~ %'. %f 'Z -'* .~~~N 4 '' ~ s '
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N-' O(k+1:Oo.ko)-4(k:Oo.k0 ) =. (O(k+N;0 0.k0 ) - 0(k:60).k0))

N-1
-- ef (k +.ONk+ i:O,,.k,):e)
N-

E N-ef(k+i.O(k:0 0.ko):,O)
.4 N I0 ( 3 .1 2 0 )

+ E [ef(k+i.6(k+i:O0.k,,):0) - ef(k+i;6(k:00 .ko):0)]

N-1

+ [ef(k+i.O(k+i:0 0.k0 ):E) - ef(k+i.O(k+j:0 0.k0 ):0)I

= f(6(k:00.k0 )) + f2(k;00.,k.0 .e)

where f2 f2 l f22 + f-13 + f24 with

=,(-O,,oe ef f(k + ik;9 0.kO):0) - (k:0 0,k(,))(.2)

-4.I

E (3.122)

4-'I

f234(k;B(.kO.E) = 4 Ef(k+i.O(k+i:Oo.k()):e) - ef(k+i.6(k;6o00k(?)0) (3.124)

By Assumption 3.4 f21 is bounded by

1 f~j(k:O(,.kOc) I (eK(). (3.125)N

Using Lemma 3.6 it follows that

4.-I

I f2 (k:~.k4 .~)I ~ f-PI(eN-E)(PF/2)
4,=0

4.4 (3.126)
V.- =E(EN-E)(PpF/2)-

Smlr- to i he pofof Lemma 3.6 weObtain the bound for f,.,

It,(k:,K l ± IEP1 Epi E(E\-E)(PIPF/2) (3.127)

Finally -xe hound f,, by



73

N-1

f24(k:0.k°.e) I N1= (3.128)

The triangle inequality and (3.125)-(3.128) imply (3.119).
-% 0

Thus, we have shown that " and 0 are both solutions of ordinary difference equations which
1P

are perturbations of

0(k+l) = 0(k) + T(0). (3.129)

From (3.116) it is clear that the perturbation fI in (3.114) can be made arbitrarily small with

respect to ET by taking e sufficiently small. If we take N = N(e) = e-r for r E (0.1) it follows from

(3.119) that the perturbation f, in (3.118) can also be made arbitrarily small with respect to ef.

Notice also from (3.110) that this choice of N(e) allows us to make the distance between 0 and

arbitrarily small. Hence, with these three lemmas we can generate many results relating solutions

of the ordinary difference equation (3.104) and the ODE (3.108). We present first a result on finite

time approximation.

Theorem 3.4: Suppose that Assumption 3.4 holds. Given any positive constant r < 0. no matter

how large. and any a" > 0. no matter how small, if

B(of'(r:Oo)) e (3.130)

for all r E [O.r]]. then there exists e5(r.a') E (W.E4] such that for each e E (0.Me5 ) and any k, E Z

0(k:0,,.k,- (tk:0,,) I < a" (3.131)

for all k E [k,.k,,+kj(e)] where k1(e) = jr , /El and tk = e(k-k,,).

Proof: Let bdr1 .a') he the smaller of E4 and the solution of

0= e - (3.132)
-( a =E'(PF/2)(3 + e' 1 ) + (K(&) + E p~p;- + ep ) 332

~P1

let N = ( = j. We prove (3.131) by induction. Suppose that

('(t :, < o ' p (3.131')



LV.

,JA 74

holds for all k E [ko.i] for some E [kO.ko+k-1Ij. Then B(eFpF.9(i;Oo.ko)) C e which implies

0(k:0o.ko) E eO for all k E [ko.i+N]. From this it follows that i(k:0 o.ko) is well defined for all

k E [k,.i+1]. Using Lemmas 3.6-3.8 we have for all k E [ko.il

I i(k+l:0,.ko) - -(tk+;00) 1< (1 + eP1 ) 1 (k:O.k)-(tk;OO) I

+ e(r(e") + e'pjpr-E(ptpF/2) + ep,)

(1+ p)i+l-OE(pF/2)

• -€ (l+ 4J1)f -ko- (.13

+ (r(e) + e ppjF- .E(pjp/2) +,Ep) P)k+l (3.133)

PI

< 3 /.

f EPF.

Lemma 3.6. the triangle inequality and (3.133) imply that (3.131') holds for all k E [ko1.i+lI.

, Hence, if (3.131') holds for all k E [ko1.i] for any i E [ko.ko+k 1-1]. then it holds for all

k E [k,,.i+ I]. Since 0(ko:O.k) =0 = '(0:0,) which guarantees that (3.131') holds for k=k,.

(3.131') holds for all kk o.

0

Remark 3.8: We can get a larger estimate for e5 by letting N = 6-. defining e 5(r 1 ,or) as the

solution of

,P I
,.,r' a" = E-r(p /2)(3 + e iI) + (K(El-r) + -PP + Ep ) J ,(314

and taking E5(T .O-) = minle 4 .max jE 5(1r.o-.r)II. The proof using this estimate requires a change on

- the right-hand side of (3.131') from o - E Pi to 0- - E PF where r. E [0,11 is the value for which

E, attains its maximum. In general, the bounds provided by Lemma 3.6-3.8 are so conservative

that this procedure still results in a very conservative bound for E5.

Remark 3.9: It t(k.O:O) is N-periodic. then we replace (3.132) by

%a
a'" " - - , ' ". . -""' . . " """-''
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plrl-
a = eN(pr/2)( 3 + eplul) + (ENpIpF + eO.) e (3.135)

* 0
In order to give a more complete connection with the ODE literature in the stochastic setting.

we consider the system

0(k+1) = 0(k) + al f(kO(k):ak), k 0 0. (3.136)

where ak is a monotonically decreasing sequence which satisfies

lim ak = 0. ak > ak+' c> a[- i. Vi>k/>O (3.137)

We note that ak = (k+1)- r for r E (0,11 satisfies (3.137). Letting 0 (kO,,.k,) denote the solution of

(3.136) with initial data 0 (k0 ) = 00, we have the following corollary to Theorem 3.4.

Corollary 3.4: Suppose that Assumption (3.4) holds and that (3.103) holds for all e E [0,4).
.-

Given positive constants r 1 and o*, if (3.130) is satisfied for all T" E [O.1 1], then there exists

.* M(r 1 .o') such that for any k(, > M

10 (k.&,.k,) - "(tk:,)) I < c (3.138)

'4=

k-I
for all k E [k,,.k(,+kl(E)] where tk =F aj and kl(e) is the largest integer such that t T <

i=ko kI

Proof: Clearly the bound (3.110) in Lemma 3.6 holds with 0 replaced by 0 and e replaced by Qk."

Likewise, in the difference equation (3.114) in Lemma 3.7. we replace tk+ by t k+l tk by tk. and

E by ak. Hence, in the 1ound (3.116) we replace e by ak0 " In Lemma 3.8 we let 0 be the average of

* .i 0'. redefine f2 , ,- . and f 24 , acd another term I2. to ,,. and replace ET(0(k)) y otT(0(k)). In the

term f 21 we replace c by ak 0 'k,. Because we changed E to Ckk and not 1k+, in f 2 we must add

another term 12 to f-

a N-I

, .,,) = (ak+,- ) f(k+i,@(k:O,,k,,)O). (3.139)

.i

sing (3.137) we bound f2-, ha,

aA % %
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N-i(34)

If25(k:00 .ko) 1 - i = aco(akoN -ako)(PF/2)
j=o

Replacing the bound (3.119) with

' f 2(k;0o.ko) I < ak o(K( . ) + (akoN-ako)(Pl + 2 -)PF + akPe) (3.141)

the proof is completed as in the proof of Theorem 3.4 with M(rTl.o) chosen large enough so that

aM <6'4 and

a >c (pF/2)(3+ePlri) + (K(a ') + a'(pl + 1)pF + ckM(p+pF/2)) e -pil J (3.142)

ARemark 3.10: As in Remark 3.8 we can get a smaller estimate of M(i.cr) by letting N = air and

optimizing with respect to r. The estimate can also be improved if a specific ao, sequence is chosen

or a decaying upper bound is used in (3.137).

'Before giving results on infinite time approximation of 0(k) by 9'(tk). we make several

'". 'observations about the finite time results which we just presented. The conditions under which

Theorem 3.4 and Corollary 3.4 are established are very mild. namely, that f is bounded and

Lipschitzian in 0 and e and that the average f exists. We also emphasize that the same conditions

are required for the constant gain case. (3.104). and the decaying gain case. (3.136). and that the

same ODE. (3.108). is associated with the constant gain case and the decaying gain case. The

difference between the two cases is that for the constant gain case we sample the ODE periodically

I k-i

at tk = e(k-k 4 ). whereas in the decaying gain case we sample the ODE at times t" = Ea, which
Iko

are closer together as k increases. The price we pay for not using more information about f is that

the approximation of @(k:0,.k,,) by 6'(tk:O,,) and the approximation of 0(k:O.k,) bv -(tk:,) are

guaranteed only for a finite time interval. In fact. e\.en if (3.130) holds for all r 0 (. the

approximations do not hold for all r > 0. For example. 0, could be an unstable equilibrium of

(3.10h) with the property that '(r:O1 ) reaches the boundary of 0 in finite time for everv 01 e 0,

.%
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If f(k.0,0 e) is not identically equal to zero, then for some k, > k,. 0(k:O,.k0 ) 01 * 0(. Hence. for

e E sufficiently small and k > k1 , 0(k:0.ko) = 0(k:01 .k) follows U(Tr:0 l ) to some neighborhood of the

boundary of 9 in finite time which implies V'(tk:Oo) = 0, is not a good approximation of 0(k:00 .ko)

for all k > ko.

pClearly we must make some additional assumptions about T(0) or the solutions of the ODE

(3.108) in order to be able to relate "(tk;0O) and 0(k;0,) over infinite intervals. We shall consider

two different assumptions. For continuity with respect to the deterministic averaging theory. we

prove an infinite time result under the assumption that the ODE has an asymptotically stable

constant solution. For continuity with respect to the literature on the ODE method in adaptive

systems and for ease of application in Chapter 4. we prove an infinite time result under the

assumption that a Lyapunov function with certain properties exists.

We let 0. in the interior of E be an asymptotically stable equilibrium of the ODE (3.108) and

denote the region of attraction by OA.

A {0, E E E (r:0,) E r 0 0 and lim (r:0O) = 0.}. (3.143)

As in Theorem 3.4 we need a ball around " to be in 9: hence, we define a subset eA(-) of 4A .

e)A(o) = {o, E (A: B(o-.(r:0,)) 9 o r >, 0). (3.144)

* Theorem 3.5: Suppose that Assumption 3.4 holds and that 0. in the interior of ( is an

asymptotically stable equilibrium of the ODE (3.108). Given any a' > 0 for which OA(a') is not

. empty. there exists E,(o') E (0.e4 ;uch that for each E (0.E ). any k,, E Z and any 0 E (o')

0( k:0,.kI,)- (t:0,) < a" (3.145)

-'." or all k A k,,. , here t, 6(k-k).

Proof: The proof follows Nleerkov (1973). \Ve use the following twxo consequence-, oI the tact

that 0. is an asymptotically stable solution of the ODE (3.108). Let y,, > () be chosen so that

, 0O(o). There exists r.(,u) < oo such that for each E E (0,j and tor every 0,, E E (c-),

* L 4
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we have

I I<(:0o) -1 I < /2 (3.146)

for all r 3> i'.(#). There exists a continuous function 8 (IA) with 8(0)= 0 such that for each

jA E (0.Lo] and for every 01 with 101 - 0. I < ;.

1(r:0 1) - 0. I < 8(j#) (3.147)

for all -r > 0. Letting E 5 (/.) = e5(r,(/) + e:;/2). we have for each A E i(O.#o) n (0.20-)) and any

k,, E Z

I 0(k;O0 ,ko ) - F(tk;0O,) I < AL/2 (3.148)

for all k E [kl,.klI where k, = kl(A.e) = Ir.(s)/6j + I and tk =e(k-k). Hence, from the triangle

inequality. (3.146). and (3.148) we have

I 0(k;0,).k,) - 0. I < 1A (3.149)

at k = ko+kl. Now we consider the interval [k,)+kl.k,4 +2k 1 ]. Let 01 = 0(ko+kj:9.kt). We note

that 0(k:0O.kI) = 0(k:0 1.k(,+kl) for k > k,+kl and that 101-0. 1 < /. Applying Theorem 3.4

again, we get

I 0(k;0o.k,) - 9(tk-tk,;01) I < #/2 (3.150)

for all k E [k,,+kl.ko+2k]. We point out that in (3.150) we are comparing 0(k0O(,.k,) with a

different trajectory of the ODE than in (3.148). Applying the triangle inequality. (3.147), and

(3.150). we have

I 0(k:0,,.k,,) -0.1 < /u/2 + 8(4) (3.151)

for all k E [k,,+kt.k,+2k]. Furthermore. from the definition of 7. and k, we have

< A412 (3.152)

at k = k,,+2k,: hence. (3.149) holds at k = k,,+2k1. We prove by induction that (3.151) holds for

all k - k,.+kl and that (3.149) holds at k = k,,+nk1 for all integers n I 1 which implies that

I
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.! (3.151) holds for all k>-ko+kl. Suppose that (3.149) holds at k = ko+nk1 for any integer n I -

ULetting 91 = 0(k,,+nk; 0 o.k0 ) it follows that (3.150) holds for all k E [ko+nkl.ko+(n+l)kl] with

., tk - tk, replaced by tk - tnkl. Then the triangle inequality. (3.150). and (3.147) imply that (3.151)

holds for all k E [ko+nkl.ko+(n+l)kl+k]. Clearly. (3.152) holds at k = ko+(n+l)kl+kl with

ti t--, replaced by tk - tnk1 : hence. (3.149) holds at k = ko+(n+l)+k. Since (3.149) holds at

k = k0+k 1 , it follows that (3.149) holds at k = ko+nk, for all n >, I and (3.151) holds for all

k > ko+kl. One more application of the triangle inequality gives

. ]j0(k:0o.ko)-(tk:0O) < 10(k:0o.k,,)-.- + j-(tm:0o)-0,I/,t+8(/s) (3.153)
for all k>ko+kl. Then choosing ,z(c')E(O./io) such that juj+8(Aj)-<o" and taking E6(o-)=e, 5(g)

.complete the proof.

0

Corollary 3.5: Suppose that Assumption 3.4 holds, that (3.103) holds for all eE[0.E4 ). and that 0.

in the interior of e is an asymptotically stable equilibrium of the ODE (3.108). Given any o>o

for which OA(o-) is not empty. there exists M(o-)<oo such that for any k(,M and any 0EEA(o)

S10(k;O,.k,,) --- (tk:;0,) < 0 -ak'PF (3.154)

k-1
for all k > k,. where tk = c. Furthermore.

I~k

..j .; lim O(k:,,' = 0, (3.155)
k-as

Proof: In order to establish (3.154) we follow the proof of Theorem 3.5. except that the repeated

applications of Theorem 3.4 over intervals [k,+nkl.k,,+(n+l)k] are replaced by repeated

applications of' Corollary 3.5 over intervals [k,)+k, .k,,+lk ] where k is chosen so that

-. k
*.. t = E[r.(N),~r.)+a ,] and k,,-, is chosen so that t -t . O, E[r.(M).r.(gu)+a ,

for n>: 1. We note that (3.137) implies that lim a, =oo which, in turn. implies that k,,<oo for
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each integer nE[O.oo). To see that (3.155) is true we point out that in the proof of (3.154) we have

shown that for any k0?,M(o-) and any 0OtEOA(O). 10 (k:o,ko)--O.I < o- for all k.>kl. Given any

o E(O.oT) it follows that 0 (k;0O.ko)EOA(o") for all k,>k. Choosing io so that io,?M(o) and

it z- k; and taking 01=0 (io,ko,0 0) we have 10 (i:0o.k)-0.J = j0 (i;l0jio)-0,I < ' for all i,>i.
0

Our proofs of Theorem 3.5 and Corollary 3.5 use only the definition of uniform asymptotic

stability. (Asymptotic stability of 0. as a solution of the ODE (3.108) is uniform by virtue of the

fact that (3.108) is time-invariant.) In an application of these results any demonstration of the

asymptotic stability of 0. is sufficient. Two of the most commonly used methods are verification

via simulation or an application of Lasalle's theorem. Another approach to obtaining information

*about 0(k:0$1 .k(,) that is valid for all k>k, is to first find a Lyapunov function which proves the

asymptotic or exponential stability of a solution or an invariant set of he ODE (3.108) and.

second, make use of this Lyapunov function in a study of (3.104) or (3.136). This approach does
I I

not explicitly relate 0 or 0 to . but instead, provides information about the behavior of 0 or 0

relative to the asymptotically stable solution or set. In the case of an asymptotically stable

equilibrium arguments similar to the proofs of Theorem 3.5 or Corollary 3.5 can be applied to

V obtain the infinite time approximation results such as (3.145) or (3.154)-(3.155). In the case of an

invariant set. the best one can hope for is to establish the existence of an invariant set for (3.104)

or (3.136) and to apply Theorem 3.4 or Corollary 3.4 over finite time intervals. For simplicity and

p.- because it fits an application in Chapter 4. we illustrate this approach for the constant gain case

under the following assumption.

Assumption 3.5: There exist scalars c,,> O. -y,,>O. and y 1 E(.cY,) and a vector 0.E0 such that

B(c,.,)CO (3.156)

%
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and

for all OEB(co0 .).

Theorem 3.6.- Suppose that Assumptions 3.4 and 3.5 hold. Given any crE(Oc 0 -- ). there exists

61 (o-KE (". 411 such that for each eE e(. 7). any k E Z and any 00 EBWco-e~PFA6)

jO( k;6(0.kO)-G.j < (1 -eYvo) ( I00-0Os+e"'PF)+[1-~( 1 -. Y)kO]( ± +0-) (3.158)

for all k-k).

Proof: Choose 67 SO that

0<67(64 . +O* (C"-e42PF .... (K(7)67 P1PF+E7pE)+67(PF/2) (,o (3.159)

Let N-~ Suppose that 0(k:a,).k(,)EB(c,-e"'pF.O,) for all kE[k0 .i]. Then 0(k.00 .k0 )Ee for all

kEjk,),i+.N] which implies that O&kO,,.k 4,) is defined for kE[k(,.i+lJ. Using (3.157) and Lemma (3.8)

we have for all k E[k).i]

j5(k+I:0,.k))-0.j -< (1-ey)IO)j(k:0,.k)-OsI + 1f2(k;0o.k0.6)I (3.160)

from %nich it follows that (3.158) holds for all kE[k0 .i+I]. But this implies that

0(k:6,,.k.)EB(c,f-6pF:.9.) for all kE~kf,,i+l]. Thus. if e(k-,9ok0)EB(C'o-6*/2PF.G.) for all kE[kf).i] and

an arbitrary i. then (k:.0k,)EB(c,-e "pr..) for all kE[kf).i+I]. Since 0()EB(C(,-6"-'pO). it follows

that 0(k;G0,k,)EB(C,-E-PFO*) for all k.,o Hence (3,160) and (3.158) hold for all k.>k,

It is clear that this result can be combined with Theorem 3.3 to obtain results si1 ilar to

1/ Corollaries 3.2 and 3.3 for the system (3.1)-(3.2). It is also obv ,ious that we could postulate many

different assumptions about the behavior of 4Cr:O,) or about f(O). and then, using Lemmas 3.6-3.8

deri'~e results that apply to OWk:.-Ok, or 0(: 4 k.However, we feel that Trheorems 3.1-3.6 and

!!'N Coollaries 3.4-3.5 provide sufficient illustration of the use of Lemmas 3.6-3.?1 tor the reader io be
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able to state and prove results which are applicable in each different situation.

We now consider the problem of establishing a connection between solutions of the ODE

(3.108) and the system (3.104) or (3.136) when the input to the system is a sample path of a

stochastic process. Since every sample path of the input process is a deterministic time sequence.

we can check whether Assumptions 3.1-3.4 are satisfied on a sample path by sample path basis.

For each sample path for which the assumptions are satisfied Theorems 3.4 and 3.5 hold. Hence. if

we place conditions on the stochastic process which generates the input such that Assumptions

3.1-3.4 are satisfied for almost every sample path. then Theorems 3.4 and 3.5 hold with probability

one (w.p.1). If. in addition. Assumption 3.5 is satisfied w.p.1, then Theorem 3.6 holds w.p.1.

Recall from the previous sections that the only property of the input that is used in

Assumptions 3.1-3.3 is uniform boundedness. Therefore. we shall require almost every sample

path to be a uniformly bounded sequence. The supremum over kEZ can depend on the sample

path. However. there -hould exist a single bound which holds for almost every sample path. It is

easier to give sufficient conditions for Assumption 3.4 to be satisfied along any particular sample

path than to say what conditions are necessary for Assumption 3.4 to be satisfied. Each sample

path could, for example. be the sum of a finite number of sinusoids with different sample paths

having different magnitudes, phases. frequencies, or numbers of sinusoids. The lack of dependence

of f on k is most easily met by restricting the input process to be a stationary stochastic process.

This is. in fact, a very natural restriction given that our goal is to reduce the study of (3.104) to

the study of a time-invariant system. Since f is defined as a time average after a sample path has

been chosen it can depend on the sample path. If f does depend on the sample path. then we have

gained little or nothing by considering the input to be a sample path of a stochastic process. This

claim follows from the fact that we then must study the ODE for each possible f in order to have a

complete analysis. that is. we must make a series of studies for different deterministic inputs. The

easiest way to avoid this complication is to restrict the input process to be ergodic. In this case the

time average f(O) of f(k,0:O) is equal to the ensemble average of f(k.0:O), that is. the expected value

I
*:-:..;* ~.~ S W-
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of f(k.O:O). We summarize this discussion with the following lemma.

Lemma 3.9. Le the input to the system (3.1)-(3.2), that is. w(k) and the k dependence of

Mf(l be a sample path of a stationary ergodic stochastic process. If Assumptions 3.1-3.3 hold

for almost ev ery sample path. then Assumption 3.4 holds with probability 1 and f(0) = Eff(k.0;0)].
0

Remark 3.11: An interesting special case is when f(k.0:e) is linear in 0. f(k.O:e) = 0. and

-k~ Assumptions 3.4 and 3.5 hold with probability one for 0"= 0.l = 0. Theorem 3.6 then

guarantees exponential convergence to an arbitrary small ball around the origin with probability

'. one. This is related to the results of Bitmead and Anderson (1980a.b) and Shi and Kozin (19 6).

In many adaptive systems the function f(k.9.x) in the parameter update (3.2) has the form

-'. .4-. f(k.O.x) = f,,(O)+fi(O)col(w(k)wT(k))+f,(O)col(xxT)

- + f 3(0)cOl(xwT(k))+f 4 (O)w(k)+fs(O)x

Vith this form it follows that under the conditions of Lemma 3.9

"(0) = fo(O)+f 1 (O)col(R,(O))+f 2 (0)col(R,(O.O)• 5."(3.162)
+ f3(0)col(R,,w(O.O))+f 4 (0)E[w(k)]+f 5 (0)E[iv(k.0)I

where R, . R,. and R, are the autocorrelation of w . the autocorrelation of P and the

crosscorrelation of v and w. respectively. Because v(k.0) is the output of a linear time-invariant

system with stationary input w(k). we can compute R,(O.O) and R,,(0,0) via Parseval's theorem

using the power spectral density of w and the transfer function from w to V. Hence. we can use

the Theorems 3.3-3.6 and Lemma 3.9 to analyze the effect of the frequency content of w(k)

relatlve to the transfer function of the system (3.1) on the behavior of the system (3.1)-(3.2).

lT111'. is dscussed in more detail in Chapter 4.

A%
.

- | - .*mu
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3.6. Concluding Remarks

Following continuous-time proofs, we have established conditions for the existence of an

exponentially attractive integral manifold for slow adaptation in discrete time. We have also given

proofs of averaging theorems for the analysis of the on-manifold behavior of slowly adapting

systems with deterministic inputs. Finally, we have discussed the relationship between the

deterministic averaging results and the ODE method for the analysis of stochastic adaptive

systems.
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10 CHAPTER 4

U REDUCED-ORDER MODEL REFERENCE ADAPTIVE CONTROL

4.1. Introduction

In Chapter 2 we established the existence of an integral manifold for a standard model

reference adaptive control system, namely, the Narendra. Valavani (1978) controller for relative

degree one. Then using the method of averaging we analyzed the behavior of the adaptive system

when this controller is applied to a plant that does not satisfy the exact matching and SPR

assumptions under which the controller was designed. For slow adaptation, we showed that the

exact matching and SPR assumptions can be replaced by approximate matching. that is. small RMS

error and "signal dependent SPR" assumptions.

This result, by itself, gives us the ability to design reduced-order model reference adaptive

control systems because we can design the usual full-order controller for an assumed plant of

lower dimension then the actual plant. However, such an approach suffers from the inadequacies

of the usual full-order controller design. First. the number of adjustable parameters is determined
N.

by the assumed order of the plant and not by the number of adjustable parameters which the

controller needs to achieve acceptable performance. Second. the usual procedures assume only that

the plant is a black box of known order, hence, do not take advantage of much information which

is usually available about the plant. Clearly. the two problems are related. By assuming that so

little information is available about the plant and by making exact matching the only acceptable

- performance. the design is forced to include as many adjustable parameters as required by the

assumed order of the plant.

In this chapter we present an alternative parameterization of the adjustable controller which

separates the dynamic order of the controller and plant from the number of adjustable parameters.

This provides the freedom to design a model reference adaptive controller with many fewer

adjustable parameters than in the conventional design. The analysis then prnceed' under

assumptions which. in general, can be verified only in the analysis, simulation, and testing phases
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of a control system design. The use of these assumptions provides our method with a very natural

way to make use of information which is available prior to the commissioning of a control system.

The analysis is carried out in several parts. We first establish the existence of an attractive integral

.- manifold. Then, sufficient conditions for stability are derived using the averaging theorems of

Chapter 3. We conclude this chapter with frequency domain interpretations of the stability

conditions.

4.2. A Reduced-order Controller Parametrization

Earlier adaptive control schemes adjusted as many parameters as required by the assumed

order of the plant. This choice was motivated by the desire of perfect matching in the

disturbance-free case. However. even if the plant order were exactly known. the adjustment of

more than a few of the most important parameters creates difficulies, especially when the inputs

are not persistently exciting. We introduce a controller parametrization which permits a reduced

number of adjustable parameters. One adjustal _e gain is assigned to each element in the vectors of

transfer functions F, and F, and to the input r as shown in Fig. 4.1. The state representation of this

parametrization with adjustable parameter vector 0 [1 3.3T.a]T is given by

x0(k+l) = A,,xo(k) + b,,OTO(k)

xl(k+l) = bc ox(,(k) + AlxI(k) + bldOTO(k) (4.1)

x,(k+l) = A2x,(k) + bicx,)(k) + b2 n0(k)

x ,(k+ 1) = bpCoxo(k) + ApXP(k) + bpd "0rT(k) + bpn,(k)

where Xx, x. x,. and x, are the states of F,, F,. F2. and W, respectively, where the regressor vector

=, =[r.6' 1.62 T]T is given by

r(k)

6(k) -Cx,(k) yV'(k) =CPxI(k)+n((k) .(4.2)

.ind .xhpre rf -kI , the reterencc ;nput and n 1,k), i,(k) ale disturbances. 'We have inciuded an input

'.
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. heFig. 4.1. Reduced-order parametrization with one gain per transfer function.

disturbance and an output disturbance with the idea that the input disturbance should represent

U" inputs to the plant such loaa s a nd the output d itorde ou represent.or

example. measurement noise. The only output to which we refer is yo representing the measured

- ~ output. This must be taken into account when specifying the desired performance or evaluating

the actual performance of the system. The compensator transfer functions F,, F, and F, and the

plant transfer function W are related to (4.044.2) by

F,,(z) =c,,(zl-Aq 4 V'b, + d, . FI() Cl(zl-A 1 Y-'b 1

F-,(z C,(z -) 1 h, + d, W(Z) = c (z-A -'b.

The number of adjustable parameters is determined h\. the number of compensator outputs. that is.

n.= m +n+ I %x here C1 has m rows and C, has n row-s_ The dynamic order of the compensators1.

04,'s V- is at the designer's disposal and the number of Parameters is not dependeni o~n the oIrder ol

the compensators. While we ha, t combined all the states of I-, and [2. respectivel, into x, an x,
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for a convenient state representation. we do not imply by (4.3) that the poles of each transfer

function element of F1 or F2 are the same. That is, C, . A,. C2, andA2 can be block diagonal.

However, we note that if

T,n.":' [IZ nT.... Z-] DIzfl
r

.. ...

F(z)= 1. F )(z) -z . F2(z) 1 . z.(4.4)
Zm"(Z)

where Zm(Z) has order m+l. then this parametrization is equivalent to the full-order

parametrization normally used in the design of adaptive controllers based on the black boxI
assumption. Hence, our parametrization, which allows a reduced number of parameters. is more

general, not less general. than the controller parametrizations usually encountered in the adaptive

control literature.

Taking advantage of the freedom offered by this parametrization to work with a reduced

- . number of parameters precludes, in general. the possibility of exact transfer function matching via

the Bezout identity. We replace the goal of Bezout matching with the goal of minimizing the mean

squared filtered tracking error between the reference model output y,(k) and the plant output

y(k) with the parameter held constant. We let the reterence model transfer function and its

output be

... W ,I(z) C,,(zl-a,,)-1b , (4.5)

k-I

..(k) =-- - -Al'bmr(i) (4.6)

and .xe define the filtered tracking error e(k) bv

xf(k+1) = Arxl.(k) + bf(v,,(k) - v (k)) ( .7)'q

e(k) = cfx.(k) , [(z) = cf(zl-.%f)-' bf .

I ettinm e(k.O) denote e(k) when the adjustable parameter is neld constant at 0 and the resulting

lici dirne-invariant s\ stem (4.1 ) (4 7) - initialized with zero in;tial conditions at k = -w. is.

letting e(k.0) be the steadv-sta te response of e( k ) when the parameter is constant at 0. ke ma ke the

6 k.
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following assumption.

Assumption 4.1: For the uniformly bounded signals r(k). ni(k) , no(k) entering the system (4.1)

and for the reference model Wm(z). there exists 0* which provides an isolated local minimum of the

RMS tracking error

E(0) I {avg[e 2 (-.0)]}

k N- (4.8)

i.J k

where the limit exists uniformly in k E Z.

Remark 4.1: Assumption 4.1 implies that the linear time-invariant system (4.1) with constant 0 is

exponentially stable at 0=0" and in an open neighborhood around 0".
0

This assumption requires the use of a priori knowledge about the plant or range of possible

plants W(z). However, because the assumption is made for the linear time-invariant system (4.1)

with constant 0. it requires essentially the same information that is necessary to design a fixed

parameter controller with this structure. First the compensators FO . F, , and F2 must be chosen so

that each fixed plant in the range of possible plants can be stabilized for some value of 0. Then.

taking into account the expected input signals. or designing the input signal, a reference model and

an error filter are chosen which reflect an estimate of the achievable performance. That is. the

reference model and error filter should be chosen so that the RMS error E(0) can be made small.

The advantages of a small E(0") become clear in the sequel. While the satisfaction of these

requirements may imply a significant off-line design effort. this effort is justified by the improved

robustness in the on-line adaptation.

N€ Remark 4.2: Small E(0") imply transfer function matching. It only requires that the transfer

functions be close at the dominant frequencies ot the inputs to the system.

Although the number of parameters has been reduced, the structure of the proposed controller

" preserves the appearance of the parameter vetor 0 in (4.1) in the familiar parameter-regressor

IN' % -
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product OTO. Letting yo(k.0) . 0(k.0) denote the steady-state of yo(k). O(k). respectively, with the

parameter vector held constant at 0. we note that the system (4.1) has the property

yo(k.0) - yo(k.0") = WCL(O*.)[O T(k.O)(O-O)] (4.9)

with 0oWCL(O.z) being the transfer function from r to y.

WcL(OZ) = Fo(z)W(z)
1 + Fo(z)(3TFI(z) + aTF2(z)W(z)) (4.10)

and where, by the mixed k.z notation in (4.9) we meani that yo(k.0)-yo(k.0*) is the steady- state

output of the transfer function WCL(O".Z) with input tOT(k,0)(0--*0).

4.3. Parameter Update Law

We denote the system matrix of (4.1) by

A(O)= bOTC. (4.11)

where the constant matrices , b. and C are

A4) 0 0 0 bo

b1co A, 0 0 b1do
A=b=

0 0 A2 bcp 0

bpCi 0 0 Ap bpd, (4.12)

C= 0C, 0 0

0 C, d2cp

From Remark 4.1 it follows that Assumption 4.1 implies Assumption 3.1 holds with A(0) replaced

by A(M). that is. there exist a compact set 0 containing 0* and an open neighborhood of 0' and

constants X. E (0.1) and K 1 such that

S%
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IA (O) l -< Kk Vi >0 V E e. (4.13)

We assume that our a priori knowledge includes at least one point in the set e at which our

* parameter vector is initialized. Then, the task of parameter adaptation is to improve performance

and track slow changes in the plant. Our use of slow adaptation has two advantages:

(i) the inherent stability of the fixed parameter controller quantified by (4.13) is preserved for

slow variations of the plant parameters which otherwise could cause instability,

(ii) the parameters to not overreact to the misinformation that accompanies a nonzero minimum

of the RMS tracking error.

The parameter 0 is updated at every instant k by a small step which is proportional to the

product of the filtered regressor vector

"i(k+l) = Amffi(k) + bmtfi(k) (4.14)

(k) = cmf i(k) . i=1.2. n(.

F(z)Wm(z) = cmf(zl-Amf) - ' b.r.

the filtered tracking error e(k), and the step size 6

0(k+l) = 0(k)-e(k)e(k). (4.15)

The choice of a constant filter to get from 0 and the choice of F(z)Wm(z) as this constant filter

have special significance for slow adaptation with the reduced parameterization (4.1). The

motivation for this choice goes back to the method of sensitivity points. (Kokotovic. 1973). By this

method the gradient of the output yo(k,O) with respect to the constant parameter 0 is obtained by

passing 0 through the error filter F(z) and the exact closed-loop system transfer function WCL(O.z).

Fig. 4.2. In particular, this holds at 0" with 6" and WCL(0".z). At 0. we obtain # by passing b

through F(z)W..(z). If the part of the filtered output F(z)(yjk.0)] due to n1 and n,, is small relative

to the part due to r. then by the definition of 0' . W1.. (z) is near the best RNIS approximation of

o,\-,L(O.z); hence. t is proportional to a good approximation of the gradient. For this reason the

filtered regressor is also called the "pseudogradient" (Kokotovic. Medanic. Vuskovic. and Bingulac,
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ni(k) no(k)

a',

WcL(0.z) 
YWcL(O.z)

Fig. 4.2. Sensitivity points for obtaining the gradient of the output.

1966). This gradient approximation property will be used to show that the parameters converge to

a neighborhood around 0' with radius proportional to E2(). Using the property (4.9) of the

system (4.1) we see that the steady-state response of the (k)e(k) with constant parameter 0.

b~jdenoted by (k,0)e(k.0), is given by

((k.0)e(k.0) = [F(z)VW,,(z)' ¢(k.0)] [ (z) W(.€L(0 .z) ,( k.0 )]T (0-0) + e(k.0'). ( .16)

X~~oice that the first term on the right side of (4.16) is the product of a time-varyi. -endn

PO:Fo- E W4L:a

, matrix and the parameter error 0-0. Thi structure is ued to develop estimates of the region of

attraction of an exponentially stable invariant set containing 0".

jii
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Letting XT = [xT.x T.T] XT = [X T X and T - [fl T.f2T. 6-01 and letting

w(k) = [r(k).ni(k).no(k).ym(k)]. we write the system (4.1). (4.7), (4.14). (4.15) in the form of

(3.1)-3.2).
A

X(k+l) = A(O(k))X(k) + B(O(k))w(k) (4.17)

0(k+1) = e(k) + 6 f(X(k)) (4.18)

where

A() 0 0 BI(O)

A(M)= A21 Af 0 B(O)= B2

A3 1 0 A33  B3

0 ( b ad2b 0(
(4.19)'.

B IM b ld o , 0 a 'd ~b jd o , O

0 0 b2  0

-",bbdo bp aTd2bpd, 0

f(X)= -CX ceX

with A, 1 A • B, and ce being the constant matrices corresponding to the tracking error filtering

(4.7) and with A3 1 . A33 . B3 , and Cm being the constant matrices corresponding to the regressor

vector filtering (4.14). The block triangular structure of A(O) and (4.13) imply that Assumption

•,, : e3.1 holds. Defining the frozen parameter response

v(k.O) - E Ak-l-,(O)B(O)w(i) (4.20)

it follows from the boundedness of w, the stability of A(M). and the linear dependences of A and B

on 0. that Assumption 3.2 holds. Finally, we note that f(X) is quadratic in X: hence. Assumption

%, 3.3 holds and Theorem 3.3 guarantees the existence of a local integral manifold of (4.17)-(4.18).

Theorem 4.1: Suppose that Assumption 4.1 holds. Then. the system (4.17)-(4.18) satisfies

Assumptions 3.1-3.3; hence, for any given D, > 0 . A, > 0, D, > D(,. and X E (X,.1) there exists

,,()..A) > () such that for each E E [0.64) there exists a function

.. I.- -
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h(k.0;e) E H((e/E4 )D 0 ,(e/E 4 )Ao) with the following properties. Let X(k),0(k) be the solution of

(4.17)-(4.18) with initial data X(ko) = Xo . 0(ko) = 00 and let g(k,0:E) = v(k,0) + h(k,0;E). If

0(k) E e for all k E [ko.kl], then

(i) X0 = g(ko,00 ;e) implies X(k) = g(k.O(k);E) Vk E [k0,kj]

(ii) XO - Y(ko.00 ) 1 - DI/K implies that Vk E [ko.k l]

I X(k) - g(k.0(k):e I < K \k - 'o I Xo -- g(ko.,0;e) I . (4.21)

0

Remark 4.3: If the vector of input signals w(k) is N-periodic, then g(k.0:ke) is N-periodic in k.

0

Remark 4.4* In Theorem 4.1 we have not used in any essential way the fact that 0' provides a

minimum of E(0) or that the limit in the definition of E(0) exists uniformly with respect to k. We

have used only the boundedness of w(k) and the implied stability of A(0).

4.4. Stability in the Slow Manifold: Averaging

The adaptive system (4.17)-(4.18) restricted to the slow manifold M, = jk.0.X X = g(k.0:e)I

evolves according to X(k) = g(k.0(k);e) and

"(k+l) = 0(k) + ef(g(kO;E)). (4.22)

We apply the results of Section 3.5 to obtain sufficient conditions for (4.22) to possess an

exponentially stable invariant set. We define the averaged system or ODE

d P " = T ( -) (4.23)

where

(4.24)
'V= -avg[ (-.0 )e( ,011

with 6(k,@) ,(k.0) . e(k.0) denoting. respectively, the steady-state response of 0(k) . (k). e(k).

., ..
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that is.

0
r( k)

- 0 (kO) C. Y(k.6) .e(k.O) cv(k.O) (4.25)
CY(k.0)

d2 n0 (k)

In order to take advantage of the structure implied by (4.9). we introduce v(k.O.0*). the frozen

parameter regressor vector io(kO) filtered by F(Z)WCL(0.,Z).

v(k.600) = F(Z)WCL(O.z)-O(k.0) . (4.26)

Using (4.9) and (4.25) we write f(g(k.0:0)) as

"-S f(,v(k.O)) = ~(k O)VT~kO6)6O - (k.O)e(k.OD. (4.27)

Defining

R(O.OD) = avg[ (_.O)VT(_.O.O*)I (4.28)

we rewrite f as

*T(O) = -R(0O.6)(O-O*D - b(0.0*) .(4.30)

-From (4.30) it is clear that the averaged system (4.23) has the same structure as the averaged

svstem which was studied in Section 2.6. Hence, we could develop the parallel results for the

*discrete-time adaptive system (4.17)-(4.18) using Theorems 3.4 and 3.5. However, we choose to

obtain our sufficient conditions for stability with the more direct approach of Theorem 3.6. Letting

yiK.O)= max I LO(.*)(4.31)

where k III denotes the RMS value of the Euclidean norm.

ii ~.O I avg[j (.O0)j~R . (4.32)

we note that

'r ,



Theorem 4.2: Suppose that Assumption 4.1 holds, that B(K,*)-E). and that

R(0,0*)+RT(0.0*) >, 2 voI>O pO E B(K 1.0*) (4.34)

Given any D 0 >040&>O,D1 >D0 . and XE(X 0 .1). if

* ," y(K.0*) < Kj'>'4.35

then for any oTE(O.Kl - V)there exists e*(cT-)E(O.e 4 (DO.AOD 1,X)] such that for each eE(O.6*). any

'to)

k0)EZ. any O0EB(Kl--E"PF(Do)-.e .-0) and any X0 EB(D 1 /K.Y(ko.0o)) the solution X(k).

0(k) of (4.17)-(4.18) with initial data X(kf)) = Xo. O(ko4 ) = 00 satisfies (4.21) and

( 60 )k-ko IoI+P+EDp(DI) Y Io Y (4.36)
10(k) - 01< 2..ey Io01'2F' IX I-1o+'1 (LiYo) (.6

for all k.>k0 .

Proof: In the proof of Lemma 3.6 we replace fOkk0e) by f(X(k)) and compute the new bound

jik)-Ok~ < Nj 0(k+i)-0(k)l Nil _ -I[F+z(lDXk+f-o]

0 N i=0 __1=O

1 N-1 Dp(D)

((eN-e)(PF/2)+e Dp(l
1-X

In the proof of Lemma 3.8 we redefine f14 as

iN-1
f=' ± (kEf(Xk-f)zk,0(k))] (4.38)

and similarly to (4.37). we replace the bound (3.12h) by

"'. f24(k:X,,0(.kI,E6)I E2 + 'E Djp,(T)1) (4.39)
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Noting that Lemma 3.6 was used to obtain (3.126) we replace it by

If22I < e(eN-e)(plpF/2) + e2 p lpz(DI) (4.40)1-X,

The proof is completed by following the proof of Theorem 3.6 with (3.160) replaced by

YI +- <K1-'!P--eDlp.(DI)

Dp(D 1) + D(pp(D/)2) (4.41)

-I I K(E'z)+e'ppF+6P+(E+E P) - + 1(PF/2)+ a-X
2YO

Corollary 4.1: Suppose that w(k) is a sample path of a stationary ergodic stochastic process. If

the hypotheses of Theorem 4.2 are satisfied by almost every sample path of the process generating

w(k), then the conclusions of Theorem 4.2 hold with probability 1.
0

Corollary 4.2: If w(k) is N periodic, then e';pF(Df) can be replaced with ENPF(Do) in

Theorem 4.2.

4.5. Frequency Domain Interpretation of Theorem 4.2

In this section we evaluate and interpret the stability condition (4.34). In the course of this

study we relate the input signal frequency spectrum to the stability of the adaptive system

(4.17)-(4.18) and investigate the effect of choosing reference models for which the minimum RMS

error E(O*) is small.

For ease of exposition we assume temporarily that there are no disturbances, that is.

n,( k )=n .( k )=-(). In order to give an interpretation of the stability condition (4.34) in terms of the

rnput signal spectrum and the pertinent transfer functions, we take r(k) as a finite sum of

,,;in usoitd,.

U.r(k) = " reJ". r .. r (4.42)
,., 0t

"'
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where r. is the complex conjugate of r,. the set 0l has a finite number of elements. and (OE 0

implies -GE fl. Denoting by G(O.,) the vector of transfer functions from r to '. that is.

1

G(O.z) = (4.43)
-C(zI-A(O))-lb

we compute the Fourier series representation of 0. v, and ,

O(k.O) = T G(0.e-)r. e k  (4.44)

v(k.,O*) = T G(O.eJ-)F(e )W.L(O*.eI)rejwk  (4.45)

(k.O) = E G(8.e-)F(ew)Wm(ejw)rew k  (4.46)

From (4.45) and (4.46) we calculate R(O.0*)

R(0.0*) = E G(O.ejw)GT(0.eIj) IF(ew)12 IrJ2Wm(e))WcL(O*.e - Y-) . (4.47)

and restate the stability condition (4.34) in frequency domain

0 < 2yoI R(0.0*) + RT(0,0*)

= G(,eJ-)GT(0.e
-Jw) IF(e') 2 Ir 2 Re(Wm(ej)WcL(Q*.e')). VOEB(K.O*). (4.48)

A necessary condition for (4.48) to be satisfied is that for some y>O

/I0 < E < G(O,e -)GT(O.e - ") Ir.I2

WE Q ( 4 .4 9 )

= avg[o(-,0)d6T(. 0)] • VOEB(KI.O*)

w ' hich is clearly a persistent excitation (PE) condition on the regressor vector.

When the minimum RMIS error 1(0*) is small, we can show that a PE condition on the filtered

reoressor (k.O) is a sufficient condition for the stabilitv condition (4.48) to hold. Letting

V,

... . .. . . ,, ,, -. -. -. . .. . * . . .- - . , , . - ..... ... -, . . . - . . ,,, , ,,



99

wi = max Ill (..) Ill
OiE (K1 .O*)

(4.50)

g = max max IG(O.eJO)j
OE B(K 1 .O*)

it follows that

Y ll~(.O ~(..e)Ill < gE(O*) (4.51)

where we have the clear interpretation of g as the gain from r(k) to 0(k.O) and of E(O*) as a

measure of transfer function mismatch P:F(z)WcL(O*.z) - F(z)Wm(z) at the frequencies oe fl of

*- the reference input r(k). Using this bound and assuming a PE condition on the filtered regressor.

that is.

0 < ),l avg[ ('.O)Q(-.O)]
= E G(O.ej-) GT(O.e -J- ) IF(eJ-)121W (ep)1'1r, " . VOEB(Ki.O*) (4.52)

we have the following corollary to Theorem 4.2.

Corollary 4.3: Suppose that Assumption 4.1 holds, that n,=n,O. that r(k) is given by (4.42).

and that (4.52) holds. If 3, >0 and

= f--[y-wgE(O*)] > 0 (453)

then (4.34) is satisfied: hence, if (4.35) is satisfied, then the conclusions of Theorem 4.2 hold.

Thus, when the reference model and reference input are such that the error E(O) can be made

small, the stabilit, condition (4.34) reduces to a PE condition (4.52) on the filtered regressor. An
.4

important point to remember is that this PE condition is checked pointx ise in 0 for constant values

o, OEB(K,.0*). That is. the vector (k.0) which must be P11 is the output of a linear time-invariant

s\ stem driven bv r(k): hence, the Pt1 requirements on are readil\ shifted to sufficient richness

B conditions on r. We see that r must contain freuuencies Ior \hich (G F. and \V,, are not too small

and tor which O, \VCL(9 jW)-W(j(o) is small.
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Equation (4.48) also points out one of the advantages of using the filtered regressor vector in

the update law rather than the regressor vector 0. Recall from Chapter 2 that the frequency

domain interpretation of (4.34) was the "signal dependent SPR" condition on WCt(6 . "). From

'- (4.48) notice that with regressor filtering by Wm we have a "signal dependent SPR" condition on

Wm,(eJ-) WcL(O.e-j). For small E(O") ,OjWCL(0 , -) is close to Wn(z) at the frequencies wE 0 and

the positivity condition on Wm(eJw)WcL( 0 , e- ) is almost trivial. Hence. the regressor vector

filtering removes the requirement that our model Wm be SPR

The term yi,(KL.O*) defined in (4.33) is bounded by Yi(wE(19*) which implies that the

radius of the invariant set of the ODE (4.23) is O(E(0*)). We use the fact that '(k.0)

approximates the gradient v(k.0* .*) of e(k.0) with respect to 0 at 0=0" in order to show that the

invariant set actually has radius of O(E2(0*)). Let
?,1.

. : max iii 0) 111 . (4.54)
HEB(2wlE(f)*)/),o,O*) tv

* -Clearlv. w, is bounded by a constant times v, (from Assumption 3.2). Letting

* I(e.)l(4;55)
g = max IG(e (.

we rewrite b(0.O*) as the sum of two terms

b(0.0*) = avg[Q(-.0)-(.0*))e(-,0*)]". ' ,(4.56)

+

and bound b(0.0*) for all OEB(2wE(0 )17,,.0*)

i,(00*)i g +2 1w, 457)
1Y

L" sing these hounds \xe show that after con'.erging in finite time to the ha I B(2w !( 0")/y, .0*) the

parameter s cn, er.,e exronentoal) to a smaller hall.

Corollary 4.4: L nder the conditions of' Theorem 4.2. if n, = n, 0. r( k ) is gven K. (4.42). and

"J
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g*+2 12 E(0*) W I a' < E(O*)-,E DIPF(D)(4.58)
Yo Yo 7 P-

then

0(k) - 0"I (1-<) - 2 + [l(lEo)kk1] +2 +o (4.59)

for all k >I k1(e) where

kl(e) In K, - I o" -In e4(D) - 1  (4.60)

4 E1/ 0  V10

In Chapter 2 without regressor filtering the best we could hope for was that the equilibrium

- of the ODE was O(E(0*)) from 0*. Hence. a second advantage of using regressor filtering over not

using it is that it allows the slowly adapting system to converge to a smaller invariant set around

the optimal parameter value.

The model reference adaptive system (4.17)-(4.18) also allows filtering of the measured error

S- between yo and ym by the transfer function F(z). We drop the assumption of no disturbances in

order to investigate the advantages of this error filtering. We suppose that the input disturbance n

is a finite sum of sinusoids with frequencies in the set (1j.

wE k

n~k)=Z e k . (4.61)

and that the output disturbance n,,(k) is a finite sum of sinusoids with frequencies in the set fl,

n,,(k) = n( Je . (4.62)

We allow fQ and f(I to have common elements but we assume that fl n Q, = 6 and f , ,, =

Letting (;O(O.z) and G,,(O.z) be. respectively, the transfer functions from n,(k) to $(k.O) and from

n,,(k) to d(k.O). we compute R(0.0*)

4
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R(0.0*) = G(O.ei-) GT(.e - M) I F(eJO) 12 1 r.12 Wm(e)WcL(O*.e-*)

+ G(O.eP) GT(O.e - ') I F(e*) I 2r.. li,, Wm(e)WCL(O*.e-*)

+ E Gi(O.e') GT(9.e-jo) I F(eiw) 12 rnt Wm(&W)WcL(O*.e - *) (4.63)
WE fla I i

+ E G(O.el) GT(O.e-jw) I F(ew) 2 1 ni 12 Wm(ew)WcL(O*.e-,)
wJE nj

+ _ Go(O.eJ) GoT(O.e-F) I Ieja) I n 12 Wm(ejs)WcL(O*.e-* ).

Letting W,(O.z) and W0 (6.z) denote, respectively, the transfer function from ni(k) to yo(k) and

from no(k) to yo(k). we compute the RMS error E(O)

SE(O) = E_ I FRei) 1t2 1 r., 12 1 0oWcL(O-esw) - Wn(ejw) 12

+ E I F(e') 1 2 r~a~j Wi(Oe-)(3oWcL(O.eP) - Wm(e)))
wE n,no

+ E I F(eJw) 12 r2ni W,(O.eJw)(3oWcL(O.e - P) - Wm(e-))) (4.64)
(A ufl a

+ F IF(eJw)1 2 IW,(O.eJw)1 2 Ini 12

+ T IF(&e)1 2 1Wo(O.e)1 2 InI 2 .
W o

From (4.64) it is clear that minimizing E(O) requires the controller to make I Wi(O.ep) and

I W0 (O.ej'o) I small at frequencies w' E fl i U fl, while also making I 03oWcL(6.eyw) - Wm(e)w) I small

at frequencies (o E fl. If we further assume that the output disturbance contains only high

frequencies and that the reference input and input disturbances contain only low frequencies. that

is,

0-< max IwI <wo,<min IwI <.r (4.65)
wE S2,0 UuWE u

and that n,(k) is measurement error which is to be ignored rather than compensated, then we can

take advantage of [dz) to make our cost functional F(O) compatible with our objective and to

improve robustness of the parameter update. We simply choose F(z) so that I F(eya) I is zero or

very small for all w E (o,.rr). This removes the effect of n ,(k) from both E(G) and R(0.0*). Notice

that only the magnitude of F(eo) appears in E(O) and R(0,0*). This implies that we have no

" 61
- ~' ~ %~ . U,
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that only the magnitude of F(eid) appears in E(O) and R(OO*). This implies that we have no

constraints on the phase characteristic of F(e*) when we design its magnitude characteristic.

Error filtering is. however, not a cure for all problems. If we want our controller to make the

response of the plant due to the input disturbance ni(k) small, then I F(eJ') I should be nonzero for

4Pall (a E f0i so that our cost functional reflects our objective. However, if I F(e) I is not zero for

each o) E I.i, then we want to have Re(Wm(e-) WcL(O*,e-w)) > 0 and Im(Wm(e') WcL(O*,e-i))

.N small for all waE fl i so that R+RT stays positive. This may be difficult to ensure or justify for

frequencies wE fli which are not close to the frequencies in fl. Hence. in the design of the adaptive

system. I F(eJw) I large to include ni, in the cost functional E(O) may have to be traded off against

I F(e1) small to keep R+RT positive. Theorem 4.2 and the expressions (4.63) and (4.64) offer

guidelines for this step in the design.

Remark 4.5: If the input oa(k) is generated by a stationary ergodic random process. then the

frequency domain interpretation remains valid, but the sums over finite sets are replaced by

integrals over (-'rr,'n) and the Fourier series coefficients are replaced by the spectral density.
0

S 4.6. Concluding Remarks

We have presented an adaptive control scheme with a controller parameter parametrization

that allows for the design of model reference adaptive control systems with a reduced number of

parameters. Verification of the stability conditions for the parameter update may require

significant off-line design effort or a priori knowledge. This, however, should be considered as an

opportunity rather than a burden because it allows the designer to use available information to

reduce the number of parameters in the adaptive control system.

UV
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CHAPTER 5

DESIGN OF SLOWLY ADAPTING CONTROL SYSTEMS: AN EXAMPLE

5.1. Introduction

Successful application of the model reference adaptive control system introduced in Chapter 4

consists of two separate developments, both of which relate to the control system (4.1) with

constant values of the adjustable gains 0. First. the compensator blocks F0 . F1. and F2 must be

designed so that the fixed gain control system can be tuned to give acceptable performance by

adjusting only the gains 0. Since the main reason for having adaptive control is to combat

parameter uncertainty or variability in the plant, the possibility to tune the control system by

adjusting only the gains 0 should exist for the entire range of possible plants. The second step is to

design the reference model, the error filter, and ,if applicable, the input signals so that the 0* which

S.1' minimizes the RMS filtered tracking error E(0) provides good tuning of the control system. The

value of 0* which minimizes E(0) should depend on which plant in the range of possible plants is

used, but the property that 0* provides good tuning of the control system should hold for any

plant in the range of possible plants. We remark that if 0* is the same for each plant, then adaptive

control is not necessary. Following Kokotovic. Medanic. Vuskovic. and Bingulac (1966). we shall

say that a controller is compatible if it can be tuned for each possible plant by changing only 0.

These two steps can be generalized to provide guidelines for the design of slowly adapting

control systems.

(I) Given the range of possible linear time-invariant plants. choose a controller parametrization

with adjustable parameter vector 0 such that. for each possible plant.

(a) the fixed parameter controller is compatible, and

(h) if the closed-loop system is written in the state space form

x(k+l) = A(0)x + B(0)w(k) (5.1)

then A(0) and B(0) are differentiable with Lipschitzian derivatives.

4



L o

(2) Given such a controller, find a cost functional J(0) such that

(a) for each possible plant, the 0* which minimizes J(0) provides acceptable tuning of the fixed

parameter control system, and

(b) J(0) is differentiable and its derivative is Lipschitzian.

(3) Construct filters with state f. inputs x and w. and output . and construct a parameter

update law

0(k+l) = 0(k) + ef(w(k).0(k),x(k). (k)) (5.2)

so that, in the averaged system

,., T-f (5.3)
dr

where

7(0) A avg[ f(w().0.x(-0).(,0)) ] (5.4)

" -". f satisfies

TT or , -fT - (5.5)

Assuming that acceptable performance implies all eigenvalues of A(0*) are strictly inside the unit

circle, it follows that we can establish the existence of an exponentially attractive integral

manifold in a ball around 0* for the slowly adapting control system (5.)-(5.2). In the manifold

we apply averaging to investigate the evolution of the parameters. Assuming isolated local

: minima. (5.5) quarantees that solutions of the the ODE (5.3) beginning close enough to 0* converge

to 0* or a small invariant set containing 0*.

We point out that step (1) is required in the design of any linear time-invariant controller

which is applied to an uncertain plant, to a nonlinear plant linearized at different operating points.

or to different copies of the same product. Step (2) is related to the off-line tuning of such a

controller. If the controller has more than three parameters. manual tuning is often a difficult task.

Automated tuning requires the specification of a cost functional to he minimized. However, in off-

line tuning wvith a human supervisor, good performance does not have to occur at the minimum of

-V J(0). The super\isor can monitor performance during each step of an iterative tuning procedure
%°
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and stop when the performance is good. Since the adaptive control system is not supposed to need

a supervisor, the cost functional for adaptive control must be chosen with more care than the one

for supervised automatic tuning. The ability to construct the required filters and the function f in

step (3) is often related to the ability to do off-line automatic tuning because the cost functional

J(0) often has the form

J(O) = avg[ JI(x(.O)) . (5.6)

In this case. we take

fT(w(k).(k),x(k).4(k)) =- - ax (5.7)

' OJ i
In Chapter 4. for example, we used J, = .5(y(k)-ym(k)) 2 so that - = y(k)-ym(k) and was

used to approximate aY

In this chapter we use these guidelines to design a slowly adapting control system for a

simplified model of gasoline engine idle-speed control.

5.2. Problem Statement

The plant and controller parametrization are given; see Fig. 5.1. The plant uncertainty is

parametrized by the vector of plant parameters p = [PI P2 P3 ]T with nominal value

[0.67 0.017 0.751
T. Each element of p can vary by 30% of its nominal value. The elements 01.

M 02. and 03 of the controller parameter vector 0 are the proportional gain from the output y to the

input u2. the proportional gain from y to the input ul. and the integral gain from y to the input ul.

respectively. A state space representation of the closed-loop system is

.994 P2 0 0 () ()

-l00-. 5 p. 0 .5 .4 .25 I

-(Ilp () . (l+pl) .5(l+p 0)
,'4' x(k+l)= () () () () .25 () x(k)+ d(k) (5.)

S-0 () () -. 2h .4 -01 ()
S1 (0 () ) 0) 1

,v(k)=[I () o 0) (o ]x(k)

2. a - A . . .-.. . . . , . _ . .., _ . .. .. ..... .< . .. .17.. .
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.5(z + 1) P1 E Y
.- z --Pi z z-.994

',F,

U23

Fig. 5.1. Block diagram of the closed-loop system (5.8) with plant parameters P1,. P2. and P3
and controller parameters 01. 02. and 03.

The desired value of the output is zero. However, the system is subject to infrequent (separated by

more than 50 samples) step changes in the unmeasured disturbance d, representing load changes.

Good tuning of the controller should achieve several objectives simultaneously. The response of y

to a unit step change in d at time k) should have magnitude less than 0.1 for all k > k,, + 25 and

magnitude less than 0.01 for all k t> k, + 50. The response should be well damped. The closed-

loop eigenvalues should all have magnitudes less than 0.9 so that integrator windup is not a

problem. These three objectives were stated in order of increasing importance.

In terms of the guidelines presented in the introduction, the choice o1 the controller

parametrization has been given and it satisfies the smoothness condition (Ib). The compatibility

requirement (la) that the controller can be tuned for different values of the plant parameter p is to
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be checked by actually tuning the controller for different values of p. The development of a cost

functional with the properties described in (2) is presented as an iterative procedure in which an

appropriate cost functional is determined for tuning the plant with the nominal value of p. and

then. it is tested to verify that it provides good tuning for all possible values of p. The

construction of a parameter update law is straightforward because the the cost functional has the

form (5.6).

5.3. Tuning of the Nominal Plant

Using the method of sensitivity points (Kokotovic. 1973). the gradient of the output of y(k)

with respect to constant controller parameters is vT(k) = [vl(k) v2(k) v(k) ]. where vj. v2, and

v3 are signals at the indicated points in the block diagram of the sensitivity model, Fig. 5.2. A state

z -99 z z - p i

z -- .4z + .07
,,

03 -lz-1

'.C

Fig. 5.2. Block diagram of the sensitivity model (5.9) for the system (5.h) showing the sensi-
tivity points \ .I v,. V3.

-..
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'space represention of the sensitivity model is

.994 -P2(lOl+-SP3) --.5p3 -. 802 -.5 2 -03
1 0 0 0 0 0 1

0 (1+p)P2 Pi 0 0 0 0

,(k+ ) o o o o .25 o e(k)+ 0 y(k)

vk) 0 .51P2 .5 -.28 .4 0 00 (5.9)
0 0 0 .8 .5 1

,,v(k): 0 0 0O-.8 -. 5 0 f(k)
0 0 0 0 0 -1

Because the plant parameter vector p is unknown, this sensitivity model cannot be realized on line.

We use it for off-line simulation studies. For an implernentable algorithm, we shall use (5.9) with

:the given nominal value of p and the constant value of 6 which gives good tuning for the nominal

plant.

Since the input d is not measured. the usual model reference approach of using the squared

tracking error for the cost functional results in

J = avg[ y2(-)]. (5.10)

For testing candidate cost functionals, we let d(k) be a square wave of period 100 taking values 1

and 0. The average of y2 is minimized for the nominal plant by the controller parameter value

0*= [5.4 10.8 3.7 ]T. As shown in Fig. 5.3 the response is oscillatory. As one of the objectives is

to have a well-damped response. something needs to be added to the cost functional to penalize the

A oscillations.

We used the parameter update law

O(k+ 1 )O(k) -ev(k)v(k) (5.11)

and slo, adaptation to search for 0*. Examining the response for different values of 0 along the

trajectory of the slowly adapting system (5.8).(5.9).(;.l 1). we observe that for some values of the

rarameters the response is close to that of a well-damped second order system with t\.o zeros. If

9,
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y 9

29 40 k SO so lee

Fig. 5.3. The response of the y over one period of d for 0 = [5.4 10.8 3.7 ]T, the value which
minimizes avg[ y2 ].

v(k) was indeed the output of a second order system with two zeros and input d(k). then it would

satisf v

v(k) = -aly(k-1) -av(k-2) +bld(k-1) +b 2d(k-2) +b 3d(k-3) (5.12)

Because of the integral feedback, one of the zeros must be at z = 1 which implies that

bl+b.++b 3 = 0. This, in turn, implies that the response to a step at k = k, satisfies

S0= v(k)+aly(k-I )+a 2y(k-2) (5.13)

for all k ? k,, + 3. Hlence, using the equation error

A e(k) = v(k)+a 1v(k-l)+a~v(k-2) (5.13)

we can incorporate a reference model into our cost f unctional. With some experimentation, we

found that I or the nominal plant the cost functional

N,



J = avg[ y2(-) ] + a avg[ e2(.) (5.14)

with the relative weighting a = 100 and reference model coefficients a, = -1.5 and a2 = 0.5725 has

a minimum at 1= [30 3.5 1.34 ]T. which provides the good response shown in Fig.5.4. The

eigenvalues of the closed-loop system (5.8) all have magnitudes less than 0.80.

5.4. Tuning of All Possible Plants

The next step in the design of a slowly adapting control system for (5.1) is to verify that the

controller can be tuned for all possible values of the plant parameters and to check that the

*minimum of J provides a good controller parameter setting. An exhaustive search over the range of

plant parameter variations reveals that the closed-loop system (5.1) with controller parameter

fixed at 0 = 0* = [ 3.0 3.5 1.34 IT is exponentially stable for all possible plants. This is important

-" for the application of a slowly adapting controller because it suggests that we may be able to
-.

v

em -I

k

Fig. 5.4. The reponse of y over one period of d for 0 [3.0 3.5 1.34 T, the value which
minimizes J given h\, (5.14) with oe = 100. a, = 1. 5. a, = 0.5725.

.J.

min mizs gien v .5.4) it c =1(. a 
=

- .. a = .. 2. ~ .. .
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initialize our controller at this value of 0 for all possible plants. Although the closed-loop system

has all its eigenvalues inside the unit circle for all possible plants. the response is not good for all

possible plants. The extreme cases are generated by letting the plant parameter pT take the values

[0.871 0.0221 0.975]. [0.871 0.0119 0.5251. [0.469 0.0119 0.525]. and

[0.469 0.0221 0.975]. From Fig. 5.5. where the responses for the nominal value of p and each

of these extreme values of p are shown, it is clear that the plant parameter variations are significant

enough to require retuning of the controller. By tuning the system, we verified that the given

controller is compatible and that the same cost functional which was used to tune the nominal

plant can be used to tune all possible plants. The tuned responses. which are shown in Fig. 5.6. are

very good. The values of 0 that minimized J and tuned the control system are given in Table 5.1.

For each tuned system the eigenvalues all have magnitudes less than 0.88.

5.5. Simulation Results for an Implementable Algorithm

As mentioned before, we create an implementable algorithm by using the nominal value of

the plant parameter vector p = [ 0.67 0.017 0.75 ]T and the corresponding value of the controller

parameter vector 0 = [ 3.0 3.5 1.34 ] in the sensitivity model (5.9). In order to differentiate this

approximate gradient from the true gradient, we replace v by as the output of (5.9). Then. the

parameter update law is given by

Table 5.1. The nominal plant parameter values and 4 sets of plant parameters which represent ex-
treme .hanges from nominal along with the corresponding value of the controller
parameter after tuning to minimize the cost functional J in (5.14) with a = 100.

-, a, = -1.5. and a2 = 0.5725.

PI P2 P3 01 0' 03

0.670 0.0170 0.750 3.0 3.5 1.34
0.h7l 0.0221 0.975 2.3 2.2 0.40

0.871 ().0 ') ().525 4.4 5.3 0.73
.0.469 ().() 11)  0.525 4.4 5.2 3.1
(.409 0.0221 0.975 2.3 2.5 1.67

% (*

.. 4 -.%' ; '... . * * **i, S
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-2

*1j

2 .2 42 62 82 1220

* k

-. .Fig. 5.5. The responses for 0 = [ 3.0 3.5 1.34 ]T and different values of the plant parameter vec-
* tor p. The dashed response is for the nominal value of p.

S3

., -
-; 2

• -4

k [.I"III ' I IO

Fig. 5.6. The responses for the same values of p as in Fig. 5.5 after retuning 0. The values of p
and 0 are given in Table 5.1.
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0(k+l) = 0(k)-r'[W(k)y(k) + 100[ (k)-l.5 (k-1)+.5725t(k-2)]e(k)] (5.15)

By experimentation we found that E = 0.01 and F = diag( 2 30 1.5 ) provided good parameter

convergence as illustrated by the trajectories of 0 converging from its tuned value for the nominal

plant to its tuned value for each of the extreme plants in Figs. 5.7-5.10. In Fig. 5.7 the controller

parameters 01 and 03 converge quickly with monotonically decreasing average values, while the
.r

parameter 02 converges more slowly and its average moves initially in the wrong direction. For

this value p = [ .871 .0221 .975 IT the output is not very sensitive to the controller parameter 02.

This can be seen from the fact that the output changes very little after k=500. but 02 does not

converge until after k=l000. In Fig. 5.8 all three parameters converge very quickly. The averages

of 0 and 03 are again monotonic, while the average of 02 overshoots slightly its tuned value before

converging slowly to the value predicted in Table 5.1. The response with this value

p .=[871 .0119 .525 ]T and 0 constant at its nominal value 0=[3.0 3.5 1.34 ]T is the large

"* magnitude oscillatory response in Fig. 5.5. Notice that with adaptation the response of y to the

change in d at k=50 is almost the tuned response. This is the plant parameter change to which the

controller is most sensitive: hence, it is the one used to tune the gain matrix F in the parameter

update law. The diagonal elements of r were chosen as large as possible without causing the

parameters to significantly overshoot the tuned values. The convergence of the parameters shown

in Fig. 5.9 and Fig. 5.10 is about the same speed as that in Fig. 5.7, which is slower than that in Fig.

5.8. This indicates that the controller is less sensitive to these plant parameter changes.

5.6. Analysis of the Implementable Algorithm

Suppose that p is given and fixed. [.et 0* he the value of 0 which tunes the controller for the

given value of p. We denote by p" and 0" the nominal value of p and the associated tuned value of

0. 1Bv design, all of the assumptions for the existence of an exponentially attractive integral

manifold are satisfied in some ball around 0 in the parameter space. In order to analy e the

I eha\ior in the mani' fl,. ,ke appl v aeraging iheo ,r. We could analyze the slowly adapting

::' ,,' em (5 .h ).( 5.9). 5 1 5 by\ irst Nh ew, ng that s a oood approxim ation of the true gradient \, and

'p.e 5N) 59 5 1 )I) is ,o~iota

9-A
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Fig. 5.7a. The controller parameters converging from nominal values to the tuned values for the
plat armetr ecorp .871 .022 1 .975]
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Fig. 5.7b. The output y during this tuning transient.
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Fig. 5.9a. The controller parameters converging from nominal values to the tuned values for the
plant parameter vector p =[.469 .0119 .525 I
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Fig. 5.9b. The ouiput v during this tuningo transient.
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Fig. 5.10a. The controller parameters converging from nominal values to the tuned values for the
plant parameter vector p =(.469 .0221 .915 1
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Fig. 5.10b. The output y during this tuning transient.
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then. using J(9) as a Lyapunov function to quarantee that the solutions of the ODE converge to a

S neighborhood of 0*. This approach relies heavily on the knowledge of J(9) which can be evaluated
numerically but is difficult to describe analytically. We choose. instead, to follow the analysis in

Chapter 4. Letting

,(k) = (k) - 1.5 (k-l) + .5725 (k-2) (5.16)

the averaged system is described by

*~ T(0) =-avgf (-)y(-) I aavg[ ~~)(].(5.17)

Defining

-10

.5z+.2 .5(z+1)

z
.5z+.2 .5(z+1) I

z -. 4z+.07 z-pn Z-1

where WCL is the transfer function from d to y.

WcL~.O~) =z-.994

P2 1 I .5(z+l) 03 5Sz+.2 (5.19)
1+- 100 ~ +0. - ____z z-.994 Z-P1  3 Z- 1 Z2 -.4z+.07

we rewrite (5.17) in the form

-F0) -R(p.0pIUI.0 )(0-0) b(p6.pn.On.0q*) (5.20)

with

R(p.O.pt.0II,@*) =avg[ (.p6plO )Qp 0)](5.21)

+ aavg[ 4,L-p.0.pU0)e T(..p.q~p.q*)

-: hb(p.0.p.0".0*) =avg[ (..p.0.pt,,0n)V(..p.e*) I(~2

+ otavg[ ,L-p,.pn .Or)e(-.p.O*)]

The analvsis then proceeds as in Chapter 4 with Theorem 4.2 providing a sufficient condition for
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the exponential stability of an invariant set containing 0*. From the closeness of the tuned

responses in Fig. 5.6. we conclude that WcL(pn.On.z)y(k.p.0) f W*(p.Oz)y(k.p.0) for all 0 in a

ball around 0*. Then. the difference between (k.p.0.pn.0 n ) and (k.p.0.p.0*) is due to the difference

in the transfer functions I and . Since , is simply a moving average of . the difference
Iz-p z-pI

between ,(k.p.0.pn.0 n ) and 4e(k.p.0.p.0*) is also due to the difference in these two transfer

functions. The fact that Pi varies no more than 30% from pn ensures that the matrix R + RT is

positive semidefinite. From the convergence of the parameters in Figs. 5.7-5.10. we conclude that

% .w is persistently exciting for the three controller parameters. This implies that R + RT is in fact

positive definite. Hence R satifies the hypotheses of Theorem 4.2 and our analysis agrees with our

simulations. We remark that with the computer-aided design tools available today it is more

efficient to estimate via simulation and other numerical tests the size of the balls around 0* which

arise in the analysis than to estimate these balls analytically.

5.7. Concluding Remarks

In this chapter we designed a slowly adapting control system for a given plant with uncertain

parameters and a given controller parametrization. We illustrated the use of an equation error

approach for including reference model information in the cost functional used for tuning the

system. Using our guidelines for the development of a slowly adapting system. we were able to

make use of a priori information in the design. analysis, and testing phases of the development.

We point out that many of the steps involved in developing a slowly adapting control system are

already included in the design of fixed parameter control systems. Finally. we emphasize that by

taking advantage of slow adaptation. we can develop adaptive control systems for controllers with

given structures. Hence. existing fixed gain control systems can be upgraded to slowly adapting

control systems without reparametrization.V.
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