

	REP	ORT DOCUMENT	ATION PAGE	В	READ EFORE (INSTRUC	TIONS	DRM
<u>т</u>	REPORT NUMBER		2. GOVT ACCESSION NO	J. RECI	PIENT'S (ATALOG	NUMBE	
Ļ	ONR TR 12			E TYPE			8100 00	
4.	Photochemica Tris Fthylene) 1 Formation of Complexes From	Mononuclear Bis and	Int	erim Te	echnica	1 Rep	ort
	Pentacarbonyl	or Trirutheniu	m Dodecarcarbony1	6. PER	PORMING	ORG. REP	ORT NU	MBER
7.	AUTHOR(.)			B. CON	TRACT OF	A GRANT N	UMBER	(*)
>	Y.MWuu, J.G Wrighton	. Bentsen, C.G.	Brinkley and M.S.	NUO	014-85-	-K-0553		
- 5	PERFORMING ORGA	ANIZATION NAME AND	ADDRESS	10. PRO	GRAM EL	EMENT, P	ROJECT	TAS
	Department of Massachusetts Cambridge. MA	Chemistry Institute of T 02139	echnology	NR	-051-57	79		
	CONTROLLING OF	FICE NAME AND ADDR	E35 .	12. REI	eptemb	re er 9, 1	986	
	Office of Nava Department of	al Research the Navy		13. NUI	ABER OF	PAGES		
	Arlington, VA	22217		10 000		ASE /-/ -		()
• [[†]	4. MONÍTORING ÁGEÍ	NCY NAME & ADDRESS	(II attletent from Controlling Office)	linc	laccif [.]	ied		•••
				15. DI	CLASSIF	ICATION/	OWNGR	ADING
•				sc	HEDULE			
ļ,	United States	Government; di	stribution unlimited.	rom Report	,			
ľ	United STates 7. DISTRIBUTION ST. Distribution (Government; di	stribution unlimited. The encound in Black 20, 11 different is it is unlimited	on Report,		SE	P 1 6	1986
T.	United STates 7. DISTRIBUTION ST Distribution (8. SUPPLEMENTARY	Government; di	stribution unlimited.	on Report		SE	P16	1986
- -	United STates 7. DISTRIBUTION ST Distribution of 8. SUPPLEMENTARY Prepared for p	Government; di ATEMENT (of the ebetra of this documen NOTES publication in	stribution unlimited. The encored in Black 20, 11 different is it is unlimited <u>Inorga</u>	anic Ch	emistr	SE	P 1 6	1986
	United STates 7. DISTRIBUTION ST Distribution (8. SUPPLEMENTARY Prepared for) 9. KEY WORDS (Cont	Government; di ATEMENT (of the about of this documen NOTES publication in	stribution unlimited. The encored in Black 20, if different is it is unlimited <u>Inorga</u>	anic Ch	emistr	SE Y	P 1 6	1986
	United STates 7. DISTRIBUTION ST. Distribution (8. SUPPLEMENTARY Prepared for p 9. KEY WORDS (Contr ph al	Government; di ATEMENT (of the ebetre of this documen NOTES publication in hotocatalysis, lkene complexes	stribution unlimited. The entered in Black 20, if different is t is unlimited <u>Inorga</u> secondary and identify by block number iron carbonyl, cluster	anic Ch	emistr chemist	SE Y	P 1 6	1988
	United STates 7. DISTRIBUTION ST Distribution (8. SUPPLEMENTARY Prepared for (9. KEY WORDS (Continent) ph all 0. AUSTRACT (Continent)	Government; di ATEMENT (of the obetro of this documen NOTES publication in notocatalysis, lkene complexes	stribution unlimited. The encored in Black 20, 11 different is it is unlimited <u>Inorgi</u> secondary and identify by block number iron carbonyl, cluster	anic Ch photoc	emistr chemist	SE Y	P 1 6	1986
	United STates 7. DISTRIBUTION ST. DISTRIBUTION ST. DISTRIBUTION ST. 9. SUPPLEMENTARY Prepared for p 9. KEY WORDS (Continents) 9. AUSTRACT (Continents) Attached	Government; di ATEMENT (of the obetre of this documen NOTES publication in into an reverse olde If no hotocatalysis, lkene complexes	stribution unlimited. And encode in Black 20, 11 different is out is unlimited <u>Inorgi</u> eccencery and identify by block number iron carbonyl, cluster	anic Ch photo(emistr chemist	SE y	P 1 6	1986
ITIC FILE COPY	United STates 7. DISTRIBUTION ST. Distribution (8. SUPPLEMENTARY Prepared for ; 9. KEY WORDS (Continent) 9. AUSTRACT (Continent) Attached	Government; di ATEMENT (of the obetre of this documen NOTES publication in notocatalysis, lkene complexes	stribution unlimited. And entered in Black 20, 11 different is out is unlimited <u>Inorgi</u> encodery and identify by block number iron carbonyl, cluster recovery and identify by block number	anic Ch	emistr chemist	SE y	P 1 6	1986
ITIC FILE COPY	United STates 7. DISTRIBUTION ST. DISTRIBUTION ST. DISTRIBUTION ST. 9. SUPPLEMENTARY Prepared for p 9. KEY WORDS (Continents) 9. AUSTRACT (Continents) Attached	Government; di	stribution unlimited.	anic Ch photod	eemistr chemist	se y try,	P 1 6	1986

2025-05

OFFICE OF NAVAL RESEARCH Contract NO0014-85-K-0553 Task No. NR-051-579 TECHNICAL REPORT NO. 12

Photochemical Formation of Mononuclear Bis and Tris Ethylene Complexes From Irradiation of Iron Pentacarbonyl or Triruthenium Dodecarcarbonyl: Species Involved in Catalytic Alkene Isomerization

bу

Yee-Min Wuu, James G. Bentsen, Cynthia G. Brinkley and Mark S. Wrighton

Prepared for Publication

QUALITY INSPECTED UNANA DA

in

Inorganic Chemistry

Department of Chemistry Massachusetts Instittue of Technology Cambridge, MA 02139

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for sale; its distribution is unlimited

Wal le noi Abstract In alkane or $CF_{3}C_{6}F_{11}$ solutions which contain excess $C_{2}H_{4}$, near-UV irradiation of $Ru(CO)_4(C_2H_4)$, formed quantitatively in situ from visible light $(\chi > 420$ nm) irradiation of Ru₃(CO)₁₂, yields Ru(CO)₃(C₂H₄)₂ at 298K. At temperatures below 253K further substitution can be effected photochemically to give trans- $Ru(CO)_2(C_2H_4)_3$. Near-UV irradiation of $Ru(CO)_4(C_2H_4)$ in rigid, C_2H_4 -saturated, 3-methylpentane glasses at 90K yields $Ru(CO)_3(C_2H_4)_2$, but further CO loss to give \underline{cis} -Ru(CO)₂(C₂H₄)₃ is observed after only $\frac{1}{55}$ comsumption of $Ru(CO)_4^{r_1}(C_2^{r_1}H_4^{r_1})$. Isomerization of photogenerated $\underline{cis}-Ru(CO)^{2}(C_{2}H_{4})^{2}$ to $\underline{trans}-Ru(CO)^{2}(C_{2}H_{4})^{2}$ is only observed on warming the glass above 210K. Prolonged irradiation of photogenerated $\operatorname{cis-Ru}(CO)_2(C_2H_4)_3$ at 90K yields loss of additional CO to give a monocarbonyl complex, formulated as $Ru(CO)(C_2H_4)_4$, which reacts on warming with photoreleased CO to initially regenerate cis-Ru(CO)₂(C₂H₄)₃. The photochemistry of Fe(CO)₄(C₂H₄) is the same as that of the $Ru(CO)_4(C_2H_4)$ except that trans-Fe(CO)_2(C_2H_4)_3 could only be detected by IR spectroscopy at temperatures below 210K. The new results show that species previously formulated as $Fe_2(CO)_6(alkene)_2^{(1)}$ are in fact $Fe(CO)_{3}^{5}(a | kene)_{2}^{5}$. In solution, the M(CO)₃(C₂H₄)₂ (M = Fe, Ru) and $Ru(CO)_2(C_2H_4)_3$ are substitutionally labile and may serve as versatile reagents in preparative chemistry, Addition of deoxygenated 1-pentene to solutions of the bis and tris C_2H_4 complexes results in rapid catalytic isomerization at 293K to a mixture of 2-pentenes, thus establishing the viability of both M(CO)3 and $M(CO)_2$ species as repeating units in the catalytic alkene isomerization. Deactivation of M(CO)3(alkene)2 as a 1-pentene isomerization catalyst, in the absence of excess CO, proceeds, at least in part, by dehydrogenation of 1-pentene to form the stable, catalytically inactive (at 298K) $M(CO)_3(n^{4}-1, 3-pentadiene)$ complexes.

<u>Photochemical Formation of Mononuclear Bis and Tris Ethylene Complexes</u> From Irradiation of Iron Pentacarbonyl or Triruthenium Dodecarcarbonyl: Species Involved in Catalytic Alkene Isomerization

Yee-Min Wuu, James G. Bentsen, Cynthia G. Brinkley and Mark S. Wrighton*

Department of Chemistry

Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

*Address correspondence to this author

من *من من*

Abstract

In alkane or $CF_{3}C_{6}F_{11}$ solutions which contain excess $C_{2}H_{4}$, near-UV irradiation of $Ru(CO)_4(C_2H_4)$, formed quantitatively in situ from visible light $(\lambda > 420$ nm) irradiation of Ru₃(CO)₁₂, yields Ru(CO)₃(C₂H₄)₂ at 298K. At temperatures below 253K further substitution can be effected photochemically to give trans- $Ru(CO)_2(C_2H_4)_3$. Near-UV irradiation of $Ru(CO)_4(C_2H_4)$ in rigid, C_2H_4 -saturated, 3-methylpentane glasses at 90K yields $Ru(CO)_3(C_2H_4)_2$, but further CO loss to give cis-Ru(CO)₂(C₂H₄)₃ is observed after only ~5% comsumption of $Ru(CO)_4(C_2H_4)$. Isomerization of photogenerated $cis-Ru(CO)_2(C_2H_4)_3$ to trans-Ru(CO)_2(C_2H_4)_3 is only observed on warming the glass above 210K. Prolonged irradiation of photogenerated $cis-Ru(CO)_2(C_2H_4)_3$ at 90K yields loss of additional CO to give a monocarbonyl complex, formulated as $Ru(CO)(C_{2}H_{4})_{4}$, which reacts on warming with photoreleased CO to initially regenerate $cis-Ru(CO)_2(C_2H_4)_3$. The photochemistry of $Fe(CO)_4(C_2H_4)$ is the same as that of the $Ru(CO)_4(C_2H_4)$ except that trans-Fe(CO)_2(C_2H_4)_3 could only be detected by IR spectroscopy at temperatures below 210K. The new results show that species previously formulated as $Fe_2(CO)_6(alkene)_2$ are in fact $Fe(CO)_3(alkene)_2$. In solution, the $M(CO)_3(C_2H_4)_2$ (M = Fe, Ru) and $Ru(CO)_2(C_2H_4)_3$ are substitutionally labile and may serve as versatile reagents in preparative chemistry. Addition of deoxygenated 1-pentene to solutions of the bis and tris C2H4 complexes results in rapid catalytic isomerization at 293K to a mixture of 2-pentenes, thus establishing the viability of both M(CO)3 and $M(CO)_2$ species as repeating units in the catalytic alkene isomerization. Deactivation of M(CO)3(alkene)2 as a 1-pentene isomerization catalyst, in the absence of excess CO, proceeds, at least in part, by dehydrogenation of 1-pentene to form the stable, catalytically inactive (at 298K) $M(CO)_3(n^{4}-1, 3-pentadiene)$ complexes.

Research in this group and elsewhere has established that an extraordinarily active alkene isomerization catalyst results from photolysis of $Fe(CO)_5$ in the presence of alkenes.¹⁻³ A carbonyl-bridged diiron complex⁴ and, alternatively, a mononuclear tricarbonyl iron unit^{1b,3} have been proposed to carry the catalytic cycle. A report from this group⁵ establishes that iron carbonyl intermediates in the photocatalytic systems could be observed spectroscopically at sub-ambient temperatures, including HFe(CO)₃(n³-C₃H₅) from photolysis of $Fe(CO)_4(C_3H_6)$ in a rigid alkane glass at 77K. In neat 1-pentene, warmup of photogenerated HFe(CO)₃(n³-C₅H₉) (from Fe(CO)₅/1-pentene at 77K) results in significant catalytic isomerization of 1-pentene above 243K in the dark. Eventual regeneration of Fe(CO)₄(alkene) is accompanied by decline of catalytic activity. $Fe(CO)_3(n^3-allyl)$ radical species, also detected at 143K in 1-35 yield as photoproducts of Fe(CO)₅ and olefins, have been implicated in catalytic reactions of olefins.⁶

New findings reported here reveal the nature of the dominant species resulting from near-UV irradiation of $Fe(CO)_5/alkene$ solutions. Species previously formulated as $Fe_2(CO)_6(alkene)_2^5$ are in fact mononuclear $Fe(CO)_3(alkene)_2$ complexes, consistent with a report by Fleckner, Grevels, and Hess.⁷ Other important mononuclear Fe species are reported herein including <u>bis</u> and monocarbonyl complexes. We have also extended the low temperature photochemistry to Ru(CO)_4(alkene) systems and find that mononuclear <u>bis</u> and <u>tris</u> C₂H₄ complexes can be generated photochemically via sequential photochemical reactions represented by equations (1)-(3) for the case of

$$Ru_{3}(CO)_{12} + 3C_{2}H_{4} \xrightarrow{h \vee (\lambda > 420nm)}{a lkane, 298K} 3Ru(CO)_{4}(C_{2}H_{4})$$
(1)

-3 -

$$Ru(CO)_{4}(C_{2}H_{4}) + C_{2}H_{4} \xrightarrow{h_{\nu}, (\lambda < 400nm)}{a \, lkane, 298K}} Ru(CO)_{3}(C_{2}H_{4})_{2} + CO$$
(2)

$$Ru(CO)_{3}(C_{2}H_{4})_{2} + C_{2}H_{4} \xrightarrow{hv, (\lambda < 400nm)}{alkane, 243K} \xrightarrow{trans} -Ru(CO)_{2}(C_{2}H_{4})_{3} + CO \quad (3)$$

CASESSON CASESSON

CONTRACTOR CONTRACTOR

alkene = C_{2H4} . Photochemistry according to equation (1) is known⁸⁻¹⁰ and provides an excellent route to Ru(CO)4(alkene) complexes. Ru₃(CO)₁₂ is a known photocatalyst for alkene reactions such as isomerization^{11,12} and hydrosilation;¹³ catalytically active mononuclear species have been proposed. Our key finding is that the mononuclear species Ru(CO)₃(C_{2H4})₂ and Ru(CO)₂(C_{2H4})₃ can both isomerize 1-pentene in the dark, in accord with the activity found upon photoactivation of Ru₃(CO)₁₂. Ru(CO)₄(C_{2H4}) shows very little activity. The results for both the Fe(CO)₅/alkene and Ru₃(CO)₁₂/alkene systems are consistent with photocatalysis via mononuclear species with no obvious role for cluster complexes. A contributor to deactivation of the catalysts is dehydrogenation of the alkene substrate leading to the formation of inert M(CO)₃(π^4 -1,3-diene) complexes.

Experimental

<u>Materials</u>. The Fe(CO)5 and Ru₃(CO)₁₂ were obtained from Strem Chemicals. The Fe(CO)5 was passed through Al₂O₃ prior to use and the Ru₃(CO)₁₂ was used as received. The photochemistry at low temperature was carried out using 3-methylpentane (Aldrich) or methylcyclohexane (J.T. Baker) as the glassing materials. Quantitative ¹H-NMR data were obtained using CF₃C₆F₁₁ solvent from Fluka AG. The 1-pentene (99% pure) was obtained from Aldrich and passed through Al₂O₃ prior to use. Research grade CO, C₂H₄ and C₃H₆ were obtained from Matheson. The ¹³CO (99% ¹³C) was obtained from Cambridge Isotope Laboratories. The PPh₃ was recrystallized prior to use.

<u>Instrumentation</u>. IR spectra were recorded using a Perkin Elmer 180 grating instrument or a Nicolet 7199 or 60SX Fourier transform IR spectrometer. ¹H-NMR spectra were recorded on either a Bruker 270 or 250 MHz Fourier transform instrument using cycloheptane (in the CF₃C₆F₁₁ solvent) as an internal standard, 1.54 ppm vs. SiMe₄. The 1-pentene to <u>cis-</u> and <u>trans-</u>2-pentene isomerization was analyzed by gas chromatography using a 30 ft. x 1/8 in. 20% propylene carbonate on chromasorb P column operated at 20°C.

High pressure liquid chromatography (HPLC) was accomplished with a Hewlett-Packard 1084 B chromatograph with a Hewlett-Packard 1040 rapid-scan UV-VIS detector. Detection was made at 254 nm, and separations were accomplished using a LiChrosorb Alox T 5 micron column (250mm x 4.6mm i.d.) with hexane solvent. Identities of molecules associated with the peaks were established by comparison of rapid scan UV-VIS spectra and retention times with those of an authentic sample. Gas chromatograph-mass spectra (GC-MS) were recorded on a Hewlett-Packard model 5992 mass spectrometer. All mass spectra were recorded at 70 ev. Separations were done using a 10 ft. x 1/8 in. SE-30 on chromasorb W column.

-5 -

<u>Procedures</u>. Generally, all manipulations were carried out under N₂ in a Vacuum Atmospheres dry box or under Ar using conventional Schlenk line techniques. Low temperature irradiations involved the use of a Bausch and Lomb SP200 200W high pressure Hg lamp filtered with a 10 cm Pyrex water filter. Low temperature IR spectra were recorded using a Precision Cell, Inc. Model P/N 21.000 variable temperature cell or CTI-Cryogenics Model 21 cryocooler equipped with CaF₂ windows. Sample temperatures are estimated to be \pm 2K at a fixed temperature.

Clean solutions of $Fe(CO)_4(C_2H_4)$ were prepared by near-UV photolysis of 4 x 10^{-3} M Fe(CO)₅ at 273K in C₂H₄-saturated alkane solution until no Fe(CO)₅ remained by IR. At this point, both $Fe(CO)_4(C_2H_4)$ and $Fe(CO)_3(C_2H_4)_2$ were present. The mixture was then purged with CO and warmed to 298K to yield $Fe(CO)_4(C_2H_4)$ as the only detectable metal carbonyl. Clean solutions of $Fe(CO)_3(C_2H_4)_2$ were obtained by continuing to photolyze the C_2H_4 -saturated solution at <273K until no $Fe(CO)_4(C_2H_4)$ remained, as established by IR. The $Ru(CO)_4(C_2H_4)$ was prepared quantitatively via visible light (λ >420 nm) irradiation of $\sim 1 \times 10^{-3}$ M Ru₃(CO)₁₂ in a continuously C₂H₄-purged alkane solution using a filtered Hanovia 450W medium pressure Hg lamp. The $Ru(CO)_3(C_2H_4)_2$ solutions were prepared by subsequent near-UV irradiation of a $Ru(CO)_4(C_2H_4)$ solution at 298K in the presence of C_2H_4 . Only $Ru(CO)_4(C_2H_4)$ and $Ru(CO)_3(C_2H_4)_2$ were spectroscopically detected in these solutions. After ~90% conversion of $Ru(CO)_4(C_2H_4)$, the photolysis was stopped and the solution was purged with C₂H₄ to remove photogenerated CO. The trans-Ru(CO)₂(C₂H₄)₃ solutions were prepared by irradiation at 232K (liquid N₂/CH₃CN bath) of an alkane solution containing $Ru(CO)_3(C_2H_4)_2$ and $Ru(CO)_4(C_2H_4)$ under a slow purge of C_2H_4 necessary to remove photogenerated CO. Only $Ru(CO)_3(C_2H_4)_2$ and $trans-Ru(CO)_2(C_2H_4)_3$ were detectable by IR in these solutions. In order to

-6 -

and a state of the state of a state

ATTACKS SUSSAIN DEVELOPED THERE THERE IN THE

avoid secondary photodecomposition the irradiations were discontinued after approximately 70% conversion to trans-Ru(CO)₂(C₂H₄)₃.

Photolysis of $M(CO)_4(C_2H_4)$ (M = Fe, Ru), in a C_2H_4 -saturated $CF_3C_6F_{11}$ solution, was monitored by ¹H-NMR by first generating the $M(CO)_4(C_2H_4)$ <u>in situ</u> in a septum-sealed NMR tube containing the cycloheptane internal standard. The NMR of the sample was then recorded at the temperature of the subsequent irradiation. Irradiations were carried out in a clear Dewar flask at the temperature necessary to observe the $M(CO)_3(C_2H_4)_2$ (Fe, 273K; Ru, 298K) or <u>trans</u>-Ru(CO)_2(C_2H_4)_3 (243K). IR spectral changes for the Fe(CO)_4(C_2H_4 to Fe(CO)_3(C_2H_4)_2 conversion showed the same extent conversion as determined by ¹H-NMR for the same solution, thereby establishing correlation of IR absorptions and the ¹H-NMR singlet attributed to Fe(CO)_3(C_2H_4)_2.

The 1-pentene isomerization kinetics were determined by generating a methylcyclohexane solution of the appropriate catalyst precursor and removing excess C_{2H4} , which inhibits the isomerization, by a vigorous Ar purge at 195K, a temperature at which the $M(CO)_3(C_{2H4})_2$ (M = Fe, Ru) and $Ru(CO)_2(C_{2H4})_3$ are stable in the absence of C_{2H4} . The appropriate amount of pre-cooled 1-pentene, passed through Al₂O₃ and deoxygenated by three freeze-pump-thaw cycles, was added at 195K, a temperature where no catalytic isomerization occurs. Rapid warming to 273K initiated catalysis. A syringe was used to withdraw samples from the solution for analysis. Instantaneous deactivation of the catalyst was achieved by mixing the drawn aliquot with a saturated solution of PPh₃ in methylcyclohexane. The volatiles were stripped off under vacuum and condensed in liquid N₂ cooled traps. The condensate, containing a mixture of the linear pentenes, was subsequently analyzed by gas chromatography.

 $Fe(CO)_2(1^3CO)(C_2H_4)_2$ was prepared <u>in situ</u> by reacting $Fe(CO)_3(C_2H_4)_2$ with 1 atm of 1^3CO in methylcyclohexane or 3-methylpentane at 298K to form

-7 -

Fe(CO)₃(¹³CO)(C₂H₄). Excess ¹³CO was purged from the solution by C₂H₄ at 298K and the resulting C₂H₄-saturated solution was irradiated at 273K to convert Fe(CO)₃(¹³CO)(C₂H₄) to Fe(CO)_{3-n}(¹³CO)_n(C₂H₄)₂ (n = 0, 1). The Fe(CO)_{5-n}(¹³CO)_n was prepared by $\lambda >$ 540 nm irradiation of Fe₃(CO)₁₂ in a ¹³CO-saturated 3-methylpentane solution at 298K.

Results and Discussion

a. <u>Mononuclear Ru Carbonyl-Ethylene Complexes</u>. UV-VIS, IR and ¹H-NMR spectral data for relevant complexes are reported in Tables I, II, and III respectively. Irradiation of Ru₃(CO)₁₂ in C₂H₄-saturated alkane (3-methylpentane or methylcyclohexane) or CF₃C₆F₁₁ solutions yields Ru(CO)₄(C₂H₄), equation (1), as expected. Indeed, for excitation using wavelengths of light longer than ~420 nm, where Ru(CO)₄(C₂H₄) does not absorb significantly, the generation of Ru(CO)₄(C₂H₄) is quantitative. Thus, visible irradiation of Ru₃(CO)₁₂ in the presense of C₂H₄ provides an excellent route to Ru(CO)₄(C₂H₄). If C₂H₄ is purged from solution by Ar at 298K, Ru₃(CO)₁₂ is regenerated quantitatively.

Near-UV irradiation of $Ru(CO)_4(C_2H_4)$ in the presence of C_2H_4 leads to additional spectral (IR and NMR) changes that are consistent with the photosubstitution represented by equation (2), Figures 1 and 2 and Table IV. In particular, in the 1 H-NMR, Figure 1, we observe that the singlet at 2.10 ppm due to $Ru(CO)_4(C_2H_4)$ declines and a new singlet at 2.50 ppm grows. Quantitative analysis from several NMR-monitored photoreactions, Table IV, indicates that the photoproduct has a 1:2 ratio of $Ru:C_2H_4$. The IR spectral changes that occur at 298K are essentially duplicated when the $Ru(CO)_4(C_2H_4)$ is irradiated in a rigid $C_{2}H_{4}$ -saturated 3-methylpentane glass at 90K. The initial (~5% conversion) IR spectral changes for the 90K photolysis reveal the generation of free CO (2132 cm^{-1})¹⁴ in the glass and growth of the characteristic 2082 cm^{-1} feature (2081) cm^{-1} in solution at 298K) of Ru(CO)₃(C₂H₄)₂. The rigid glass precludes the rapid diffusion of a presumed $Ru(CO)_3(C_2H_4)$ intermediate, thus ruling out polynuclear species, and in particular $Ru_2(CO)_6(C_2H_4)_2$, as photoproducts. However, the low molecular weight of C₂H₄ and its high concentration, \sim 0.05 M, 15 allows reaction of the photogenerated $Ru(CO)_3(C_2H_4)$ (not observed at 90K) with C_{2H4} to form $Ru(CO)_3(C_{2H4})_2$. The $Ru(CO)_3(C_{2H4})_2$ is very photosensitive and,

-9 -

after ~5% conversion of $Ru(CO)_4(C_2H_4)$ at 90K, there is evidence for secondary product formation (<u>vide infra</u>) by further loss of CO from the $Ru(CO)_3(C_2H_4)_2$. Such is not the case at 298K in fluid solutions, where extensive accumulation of $Ru(CO)_3(C_2H_4)_2$ is achieved. Accumulation of $Ru(CO)_3(C_2H_4)_2$ is probably a result of rapid back reaction of secondary photoproducts, such as $Ru(CO)_2(C_2H_4)_3$ (<u>vide infra</u>), with liberated CO.

seesses account account homened become become

At 90K, in either 3-methylpentane or the more rigid methylcyclohexane, irradiation of Ru(CO)4(C2H4) is only observed to give Ru(CO)3(C2H4)2, presumably because excess C2H4 present in the glass reacts with the 16-electron Ru(CO)3(C2H4) fragment. By irradiating Ru(CO)4(C2H4) in a 3-methylpentane glass at 55K a new species assigned as the Ru(CO)3(C2H4) fragment can be detected. The IR spectral band pattern for Ru(CO)3(C2H4) (2055, 1978, 1972 cm⁻¹; 3-methylpentane, 55K) is similar to that for Fe(CO)3(C2H4),⁵ Table II. The ability to detect the Ru(CO)3(C2H4) at the lower temperature reflects slower C2H4 diffusion and/or a slower rate of C2H4 binding to the unsaturated Ru center. Warmup to 90K of the irradiated 55K glass results in rapid conversion of Ru(CO)3(C2H4) to Ru(CO)3(C2H4)2.

For Ru(CO)₃(C₂H₄)₂, the IR spectrum in the CO stretching region is consistent with a C_{2V} local symmetry of the Ru(CO)₃ fragment [ν (CO) = 2081 (w, A₁), 2005 (m, A₁) and 1995 cm⁻¹ (s, B₁); 3-methylpentane, 298K] possible when the alkene ligands lie in the equatorial plane of a trigonal bipyramidal structure, as predicted by theory for Fe¹⁶ complexes and established for the spectroscopically similar and structurally characterized Ru(CO)₃(n²-methylacrylate)₂,⁹ Fe(CO)₃(n²,n²-1,5-dimethylene-2, 6-dimethylcyclooctane)¹⁷ and Fe(CO)₃(n²-<u>trans</u>-cyclooctene)₂⁷ complexes. The singlet in the ¹H-NMR for Ru(CO)₃(C₂H₄)₂ is consistent with such a coordination geometry or with a dynamic geometry at temperatures as low as 243K. Near-UV irradiation of $Ru(CO)_3(C_2H_4)_2$ in low temperature fluid $CF_3C_6F_{11}$ (243K) or alkane (233K) solutions saturated with C_2H_4 leads to additional spectral changes (NMR and IR) that are consistent with the photosubstitution represented in equation (3), Figures 3 and 4 and Table V. The ¹H-NMR, Figure 3, shows that a singlet at 3.02 ppm grows at the expense of singlets attributed to $Ru(CO)_3(C_2H_4)_2$ and its precursor $Ru(CO)_4(C_2H_4)$. Quantitative analysis of the ¹H-NMR spectral changes for several experiments, Table V, shows the $Ru:C_2H_4$ ratio to be 1:3 for the 3.02 ppm feature. A corresponding single product absorption at 1956 cm⁻¹ in the CO stretching region of the IR, Figure 4, is consistent with a cylindrical local symmetry of a $Ru(CO)_2(C_2H_4)_3$ having three equatorially disposed C_2H_4 ligands in a trigonal bipyramidal structure. To our knowledge, this represents the first reported preparation of an $M(CO)_2(alkene)_3$ (M = Fe, Ru, Os) complex.

Surprisingly, <u>trans-Ru(CO)₂(C₂H₄)₃</u>, observed as a photoproduct in low temperature fluid solutions, is <u>not</u> observed as a product in the near-UV photolysis of Ru(CO)₃(C₂H₄)₂ in a C₂H₄-saturated 3-methylpentane glass at 90K. However, CO loss from Ru(CO)₃(C₂H₄)₂ does occur in low temperature organic glasses. We have exploited the properties of methylcyclohexane to establish the photochemical properties of Ru(CO)₃(C₂H₄)₂. It must be pointed out that the investigation of Ru(CO)₃(C₂H₄)₂ involves solutions which invariably contain excess C₂H₄ in order to preserve purity of the Ru(CO)₃(C₂H₄)₂ while manipulating the samples prior to cooling them to the low temperature of the rigid glasses. Unlike 3-methylpentane, a methylcyclohexane glass at 90K inhibits the reaction of excess C₂H₄, N₂, or CO with a number of well established 16-electron photoproduct species. However, warming of such a glass to ~110K retains its integrity while greatly accelerating bimolecular reactions of stationary

-11-

16-electron intermediates with diffusing small ligands to form characterized 18-electron substitution complexes.¹⁸ Near-UV irradiation of $Ru(CO)_3(C_2H_A)_2$ in a methylcyclohexane glass containing excess C2H4 at 90K results in the IR spectral changes shown in Figure 5. A feature attributed to photoejected CO (2132 cm^{-1}) and two bands attributed to the 16-electron Ru(CO)₂(C_{2H4})₂ species at 2020 and 1948 cm⁻¹ grow while features attributed to $Ru(CO)_3(C_2H_4)_2$ decline. Warming the matrix to 110K results in complete loss of $Ru(CO)_2(C_2H_4)_2$ absorptions, but there is growth of carbonyl absorptions at 2019 and 1975 cm^{-1} which remain upon recooling to 90K. Importantly, the amount of photoejected CO (2132 cm^{-1}) in the glass remains constant during annealing to 110K (see insets; Figure 5a and b), ruling out formation of another isomer of $Ru(CO)_3(C_2H_4)_2$ by reaction of CO with $Ru(CO)_2(C_2H_4)_2$. The IR shows that trans- $Ru(CO)_2(C_2H_4)_3$ $(v(CO) = 1953 \text{ cm}^{-1})$ is not formed in detectable amounts. The spectral features obtained are those observed for the 90K photolysis of $Ru(CO)_3(C_2H_4)_2$ in C₂H₄-saturated 3-methylpentane. These results imply the formation of an 18-electron $Ru(CO)_2(C_2H_4)_3$ species which we formulate as cis- $Ru(CO)_2(C_2H_4)_3$, containing one equatorial and one axial CO ligand in a trigonal bipyramidal structure. In support of this formulation, a OC-Ru-CO bond angle of 81° is calculated for the $Ru(CO)_2$ fragment by evaluation¹⁹ of the ratio of the relative intensities of the symmetric and antisymmetric carbonyl absorbances. Furthermore, warmup of $cis-Ru(CO)_2(C_2H_4)_3$ to 210K leads to net IR spectral changes which are retained on recooling to 90K, consistent with quantitative conversion to the trans-Ru(CO)₂(C₂H₄)₃ complex (1953 cm⁻¹) mentioned above. In C₂H₄-saturated 3-methylpentane glasses at 90K, photochemical isomerization of matrix isolated trans- $Ru(CO)_2(C_2H_4)_3$ to the cis-form is accompanied by loss of CO to form a monocarbonyl species (1964 cm⁻¹), presumably a $Ru(CO)(C_{2H_4})_4$ complex, related to well-characterized $Fe(CO)(diene)_2$ complexes.²⁰

-12-

Ru(CO)(C₂H₄)₄ can also be obtained directly by photolysis of <u>cis</u>-Ru(CO)₂(C₂H₄)₃ at 90K in C₂H₄-saturated 3-methylpentane. Warmup of 90K glasses containing the Ru(CO)(C₂H₄)₄ and the photogenerated CO results, initially, in formation of <u>cis</u>-Ru(CO)₂(C₂H₄)₃, and, eventually, <u>trans</u>-Ru(CO)₂(C₂H₄)₃ at higher temperatures. In methylcyclohexane the photoconversion of <u>cis</u>-Ru(CO)₂(C₂H₄)₃ to Ru(CO)(C₂H₄)₄ (1964 cm⁻¹) proceeds via transient formation of a second monocarbonyl species (1923 cm⁻¹) tentatively formulated as the coordinatively unsaturated Ru(CO)(C₂H₄)₃. At high C₂H₄ concentrations in the dark at 90K, the 1964 cm⁻¹ feature grows in at the expense of the photogenerated 1923 cm⁻¹ feature without change in the amount of free CO (2132 cm⁻¹) detected in the glass.

The thermally labile $Ru(CO)_n(C_2H_4)_{5-n}$ (n = 4, 3) complexes are stabilized by excess C_2H_4 toward decomposition in fluid solutions at 298K, but are quite stable in Ar-purged alkane solutions at sufficiently low temperatures (195K). The <u>trans</u>-Ru(CO)₂(C₂H₄)₃ is more labile than the <u>bis</u>-C₂H₄ complex and back reacts with photoreleased CO at ~253K to regenerate Ru(CO)₃(C₂H₄)₂. Purging a C₂H₄-saturated alkane solution of Ru(CO)₄(C₂H₄) with Ar at 298K rapidly generates Ru₃(CO)₁₂; purging with CO at 298K yields Ru(CO)₅; and reaction with 0.05 <u>M</u> PPh₃ at 298K yields Ru(CO)₄PPh₃. The Ru(CO)₃(C₂H₄)₂ reacts with CO to yield first Ru(CO)₄(C₂H₄), then Ru(CO)₅; reaction with 0.05 <u>M</u> PPh₃ yields Ru(CO)₃(PPh₃)₂; and reaction with <u>trans</u>-1,3-pentadiene rapidly yields Ru(CO)₃(trans-1,3-pentadiene).

b. <u>Mononuclear Fe Carbonyl-Ethylene Complexes</u>. The formation of $Ru(CO)_3(C_2H_4)_2$ from $Ru(CO)_4(C_2H_4)$, and work published by Fleckner, Grevels, and Hess⁷ prompted us to reinvestigate the alkene products derived from the low temperature photolysis of $Fe(CO)_4(C_2H_4)$. Irradiation of $Fe(CO)_4(C_2H_4)$ at 273K in the presence of C_2H_4 results in the formation of $Fe(CO)_3(C_2H_4)_2$, not $Fe_2(CO)_6(C_2H_4)_2$ as previously concluded.⁵ The 1H-NMR and IR spectral changes accompanying

-13-

photolysis of $Fe(CO)_4(C_2H_4)$ in C_2H_4 -saturated $CF_3C_6F_{11}$ solution are shown in Figures 6 and 7, respectively. The ¹H-NMR integrations show that the product associated with the singlet at 2.68 ppm has <u>two</u> C_2H_4 ligands per Fe, <u>not one</u> C_2H_4 as concluded previously, consistent with conversion of 1.05 $Fe(CO)_4(C_2H_4)$ and 1.00 C_2H_4 to 0.98 $Fe(CO)_3(C_2H_4)_2$. In the earlier work,⁵ ¹H-NMR integration data were unreliable, presumably owing to sample decomposition. In the present work IR spectral changes for the same solution show the same extent conversion as determined by ¹H-NMR, thereby establishing correlation of IR absorptions and the ¹H-NMR singlet attributed to $Fe(CO)_3(C_2H_4)_2$. The remarkable spectroscopic similarity to $Ru(CO)_3(C_2H_4)_2$ suggests the same C_{2V} structure for both the Fe and Ru species.

Irradiation of $Fe(CO)_4(C_2H_4)$ in a C_2H_4-saturated 3-methylpentane glass at low temperature results in the ultimate formation of a monocarbonyl Fe complex, possibly $Fe(CO)(C_2H_4)_4$, not trans- $Fe(CO)_3(C_2H_4)_2$ as previously concluded.⁵ As with $Ru(CO)_4(C_2H_4)$, loss of CO (2132 cm⁻¹) from $Fe(CO)_4(C_2H_4)$ initially yields Fe(CO)₃(C₂H₄)₂ (Figure 7b); here competitive loss of C₂H₄ leads to formation of some $Fe(CO)_4$ (1946 cm⁻¹). [The $Fe(CO)_4$ can be photogenerated independently by irradiation of Fe(CO)5 under the same conditions.] However, just beyond the initial stages of reaction we find that further photoreaction of $Fe(CO)_3(C_2H_4)_2$ occurs to yield new carbonyl features at 1955 and 1998 cm^{-1} which are only detected by spectral subtraction of masking absorptions of unreacted $Fe(CO)_4(C_2H_4)$. The 1955 and 1998 cm⁻¹ features are associated with $cis-Fe(CO)_2(C_2H_4)_3$ (vide infra). This secondary photoproduct is also photosensitive and continued irradiation, Figure 7c (320 sec hv), yields only a single carbonyl product band at 1952 cm^{-1} . The total yield of liberated CO (2132 cm^{-1}) per Fe(CO)₄(C₂H₄) molecule consumed is three times that observed in the initial photoconversion (4 sec hv) to $Fe(CO)_3(C_2H_4)_2$. The

-14-

<u>cis</u>-Fe(CO)₂(C₂H₄)₃ escaped detection in previous work,⁵ presumably as a result of spectral masking by unreacted Fe(CO)₄(C₂H₄) and the 1952 cm⁻¹ product band.

SAMANAN SELECTION PRODUCT DEPARTURE - MARADADA

Sec. 1

As for $Ru(CO)_3(C_2H_4)_2$, photolysis at 100K of a C_2H_4 -saturated 3-methylpentane glass containing only $Fe(CO)_3(C_2H_4)_2$ proceeds cleanly at low extent conversion to give well resolved spectral features associated with cis-Fe(CO)₂(C_{2H4})₃, 1955 and 1998 cm^{-1} with a calculated OC-M-CO angle of 82°, Figure 8. Our new data show that trans-Fe(CO)₂(C₂H₄)₃ is not observed in C₂H₄-saturated alkane glasses as a product of 100K photolysis of $Fe(CO)_n(C_2H_4)_{5-n}$ (n = 5, 4, 3). However, warmup of photogenerated cis-Fe(CO)₂(C₂H₄)₃ to 200K, Figure 8b, results in decline of its spectral features, significant regeneration of $Fe(CO)_3(C_2H_4)_2$, and growth of a single band at 1942 cm^{-1} which remains upon recooling to 100K. We attribute this band to trans-Fe(CO)₂(C₂H₄)₃, in analogy with the 1 H-NMR characterized trans-Ru(CO)₂(C₂H₄)₃. The trans-Fe(CO)₂(C₂H₄)₃ back reacts with the free CO upon warming above 210K. The trans-Fe(CO)₂(C₂H₄)₃ cannot be detected by 1 H-NMR upon photolysis of $Fe(CO)_3(C_2H_4)_2$ in C_2H_4 -saturated $CF_3C_6F_{11}$ solutions at temperatures as low as 243K, presumably because back reaction of the tris-C₂H₄ complex with CO occurs rapidly. Photolysis of photogenerated $cis-Fe(CO)_2(C_2H_4)_3$ at 90K in the presence of C₂H₄ generates only the 1952 cm^{-1} feature and free CO (2132 cm^{-1}). Here, the final yield of liberated CO per $Fe(CO)_3(C_2H_4)_2$ molecule consumed is two times that observed in the initial conversion to $cis-Fe(CO)_2(C_2H_4)_3$. Warmup to 150K of alkane glasses exhibiting only the 1952 cm^{-1} band and liberated CO results in regeneration of only \underline{cis} -Fe(CO)₂(C₂H₄)₃ in high yield with respect to the known concentration of starting material, be it $Fe(CO)_4(C_2H_4)$ or $Fe(CO)_3(C_2H_4)_2$. The $cis-Fe(CO)_2(C_2H_4)_3$ spectral features are retained upon recooling to 90K, and subsequent near-UV irradiation results in liberation of free CO and regeneration of the 1952 cm⁻¹ feature at the expense of cis-Fe(CO)₂(C₂H₄)₃ features. The new data show that both $Fe(CO)_3(C_2H_4)_2$ and <u>cis</u>- $Fe(CO)_2(C_2H_4)_3$ are extremely photosensitive

-15-

and simply do not accumulate during irradiation of $Fe(CO)_4(C_2H_4)$ in C_{2H_4} -saturated alkane glasses. The 1952 cm⁻¹ feature was previously attributed^{5,21} to <u>trans</u>-Fe(CO)_3(C_{2H_4})_2. However, this new set of experiments suggests that the 1952 cm⁻¹ band is associated with a metal-alkene complex retaining only one CO, namely Fe(CO)(C_{2H_4})_4. Fe(CO)(C_{2H_4})_4 is relatively photoinert and is unchanged after 1 h of irradiation at 100K where ~15 min is required to convert Fe(CO)_4(C_{2H_4}) to the Fe(CO)(C_{2H_4})_4.

Isotopic labelling experiments further support the IR spectral assignments for $Fe(CO)_{5-n}(C_2H_4)_n$ complexes. $Fe(CO)_3(^{13}CO)(C_2H_4)$ is prepared by reacting $Fe(CO)_3(C_2H_4)_2$ with ¹³CO in 3-methylpentane at 298K. Subsequent near-UV irradiation in a C₂H₄-saturated solution at 273K yields $Fe(CO)_{3-n}(^{13}CO)_n(C_{2}H_4)_2$ (n = 0, 1, vide infra). After cooling the solution of $Fe(CO)_{3-n}(1^{3}CO)_{n}(C_{2}H_{4})_{2}$ to 90K, extended near-UV irradiation yields species formulated as $Fe(CO)(C_2H_4)_4$ (1952 cm^{-1}) and Fe $(13CO)(C_2H_4)_4$ (1908 cm⁻¹) in a 3:1 ratio, assuming the absorptivities of the 12CO and 13CO species to be the same. The absence of observable vibrational coupling is consistent with a monocarbonyl formulation. Warmup to 150K yields cis-Fe(CO)₂(C₂H₄)₃ (1998, 1955 cm⁻¹; 3-methylpentane, 90K) and cis-Fe(CO)(13 CO)(C₂H₄)₃ (1984, 1924 cm⁻¹; 3-methylpentane, 90K) as the only products, which persist on recooling to 90K. The CO stretching (K) and interaction (K_i) force constants have been calculated for the C_{2v} Fe(CO)₂ fragment of $cis-Fe(CO)_2(C_2H_4)_3$ by normal coordinate analysis²² (K = 1578.3, K₁ = 34.3 Nm⁻¹) and used to correctly predict (1985.0, 1923.8 cm^{-1}) the observed frequencies for $cis-Fe(CO)(13CO)(C_{2H_4})_3$. Warmup of $cis-tris-C_{2H_4}$ complex to 200K yields $trans-Fe(CO)_2(C_2H_4)_3$ (1945 cm⁻¹) and $trans-Fe(CO)(1_3CO)(C_2H_4)_3$ (1918 cm⁻¹). The small wavenumber shift between these two features ($\Delta v = 27 \text{ cm}^{-1}$) rules out formulation as a monocarbonyl species and suggests a strong interaction force constant for the cylindrical $Fe(CO)_2$ fragment of trans- $Fe(CO)_2(C_2H_4)_3$ (K = 1570.4,

 $K_i = 39.8 \text{ Nm}^{-1}$). At low temperature, the monocarbonyl photoproduct distribution and the absence of <u>cis-</u> or <u>trans-Fe(13C0)₂(C₂H₄)₃</u> during subsequent warmup (1) rules out rapid disproportionation of Fe(CO)₂(13CO)(C₂H₄)₂ or Fe(CO)₃(13CO)(C₂H₄) at < 273K or < 298K, respectively, or thermal substitution of 12CO by excess 13CO on Fe(CO)₃(13CO)(C₂H₄) at < 298K and (2) suggests predominant recombination of the matrix isolated monocarbonyl with CO initially photoejected from the same metal center to form <u>cis-</u>, then <u>trans-Fe(CO)_{2-n}(13CO)_n(C₂H₄)₃ (n = 0, 1) during warmup from 90K to 200K.</u>

The conspicuous absence of trans- $M(CO)_2(C_2H_4)_3$ species (M = Fe, Ru) as initial photoproducts from $M(CO)_3(C_2H_4)_2$ in alkane glasses has been investigated further. In a methylcyclohexane glass, FTIR spectral features attributed to the 16-electron $Fe(CO)_2(C_2H_4)_2$, (2003 1938 cm⁻¹; methylcyclohexane, 100K) and free CO are generated upon photolysis of matrix isolated $Fe(CO)_3(C_2H_4)_2$, Figure 9, in analogy with data for the Ru analog. However, the growth of additional features at 2041(m), 1963(m) and 1957(s) cm⁻¹ in constant ratio with these is attributed to the concomitant generation of $Fe(CO)_3(C_2H_4)$, Table II, which has been characterized previously in alkane⁵ and Ar^{23} matrices as the product obtained upon light-induced loss of CO from $Fe(CO)_4(C_2H_4)$. Competitive loss of CO and olefin has previously been observed for $Fe(CO)_3(\eta^{4}-1, 3-diene)$ species.²³ We cannot rule out a similar competition for $Ru(CO)_3(C_2H_4)_2$, since we are unable to remove excess C_2H_4 which might scavange $Ru(CO)_3(C_2H_4)$, if it formed. $Fe(CO)_3(C_2H_4)$ exhibits a weak electronic absorption at 447 nm, consistent with a coordinatively unsaturated product, Table I. In the presence of excess C₂H₄, warmup of a 90K glass containing $Fe(CO)_2(C_2H_4)_2$ and $Fe(CO)_3(C_2H_4)$ to 110K yields net FTIR spectral changes which persist on recooling to 90K. These spectral changes are consistent with conversion of $Fe(CO)_2(C_2H_4)_2$ to <u>cis</u>-Fe(CO)_2(C_2H_4)_3 (as observed for Ru), and also regeneration of the C_{2y} symmetry isomer of $Fe(CO)_3(C_2H_4)_2$ as a result of thermal back reaction

of Fe(CO)₃(C₂H₄) with C₂H₄. These results are consistent with the net conversion of $M(CO)_3(C_2H_4)_2$ to <u>cis-M(CO)₂(C₂H₄)_3</u> via the 16-electron $M(CO)_2(C_2H_4)_2$ intermediate and the net conversion of $M(CO)_4(C_2H_4)$ to the C_{2V} isomer of $M(CO)_3(C_2H_4)_2$ via the 16-electron $M(CO)_3(C_2H_4)$ intermediate in C₂H₄-saturated 3-methylpentane. The metal carbonyl features for the 16-electron Fe(CO)₃(C₂H₄) show similarities in relative energy and intensity to those of the C_{2V} Fe(CO)₃(C₂H₄)₂, Table II, thereby suggesting little rearrangement of the Fe(CO)₃ unit of Fe(CO)₃(C₂H₄) on reaction with C₂H₄. Also, 0C-M-CO¹⁹ bond angles of 97° (M = Ru) and 94° (M = Fe) are calculated for 16-electron $M(CO)_2(C_2H_4)_2$ complexes. A <u>cis</u>- geometry for the $M(CO)_2$ fragment of the coordinatively unsaturated $M(CO)_2(C_2H_4)_2$ intermediate is apparently retained upon reaction with C₂H₄, explaining the conspicuous absence of the thermodynamically favored <u>trans-M(CO)_2(C_2H_4)_2</u> (M = Ru, Fe) to yield <u>cis-M(CO)_2(C_2H_4)_3</u>.

Like Ru(CO)₃(C₂H₄)₂, Fe(CO)₃(C₂H₄)₂ is very labile at 298K. However, Fe(CO)₄(C₂H₄) is less labile than Ru(CO)₄(C₂H₄). For example, purging an alkane solution of Fe(CO)₃(C₂H₄)₂ with CO yields a pure solution of Fe(CO)₄(C₂H₄), a substance that is difficult to obtain in a pure state by conventional procedures. As noted above, CO reacts rapidly with Ru(CO)₄(C₂H₄) to yield Ru(CO)₅ under conditions where Fe(CO)₄(C₂H₄) is inert. Further, the reaction of Fe(CO)₃(C₂H₄)₂ with 0.05 <u>M</u> PPh₃ at room temperature yields Fe(CO)₃(C₂H₄)(PPh₃), with only minor amounts of Fe(CO)₃(C₂H₄)₂ with <u>trans</u>-1,3- or 1,4-pentadiene yields Fe(CO)₃(<u>trans</u>-1,3-pentadiene) in analogy to the Ru species. The simple generation of pure alkane solutions of Fe(CO)₃(C₂H₄)₂ allows this complex to serve as an excellent, versatile Fe(CO)₃ transfer reagent promising a wide range of applications including its use in mechanistic studies of the Fe(CO)₅ photocatalyzed reactions of alkenes. The second second

المكث فيعتمنه فالمناف

26.6

R. L. L. L.

c. Catalytic Isomerization of 1-Pentene. $Ru(CO)_3(C_2H_4)_2$ readily undergoes alkene exchange as detected by IR spectroscopy. Addition of precooled 1-pentene to an Ar-purged methylcyclohexane (no excess C_2H_4 present) solution containing ~1 mM $Ru(CO)_3(C_2H_4)_2$ at 195K, followed by warming to 260K, results in the decline of spectral features for $Ru(CO)_3(C_2H_4)_2$ and growth of new features attributed to $Ru(CO)_3(pentene)_2$, Table II. This assignment is based on the spectral similarity to the $bis-C_2H_4$ complex and the shift to lower frequencies consistent with the substitution of C₂H₄ by 1-pentene [cf. the IR data of the corresponding $Fe(CO)_4(n^2-a)$ kene) complexes]. Continued warming leaves the IR spectral features initially unchanged at 293K. However, gas chromatographic analysis of the solution shows that 1-pentene undergoes catalytic isomerization above 260K, yielding cisand trans-2-pentene. Turnover numbers exceeding 250 have been obtained in the dark. The trans- $Ru(CO)_2(C_2H_4)_3$ is more labile than $Ru(CO)_3(C_2H_4)_2$ and undergoes substitution by added 1-pentene at 240K to form trans-Ru(CO)2(pentene)3, Table II. Interestingly, catalytic activity is displayed by trans-Ru(CO)₂(alkene)₃ above 240K with turnover numbers near 50. Some representative data for catalytic 1-pentene isomerization are given in Table VI. Turnover rates, Table VI, decrease systematically with reaction time at 293K in correlation with declining $Ru(CO)_3(pentene)_2$ or $Ru(CO)_2(pentene)_3$ spectral features. The range of catalyst concentrations used is limited to <6 mM by solubility of the $Ru_3(CO)_{12}$ precursor and to >1 mM by low turnover numbers. With these restrictions we note that for two different catalyst concentrations within this range the average turnover rates after similar reaction times are in close agreement, suggesting kinetics first-order in metal concentration for both the $Ru(CO)_3(a)$ (a) kene)₂ and trans-Ru(CO)₂(alkene)₃ complexes, in accord with the more detailed report⁷ for $Fe(CO)_3(pentene)_2$. Importantly, the initial (1 minute) average turnover rate achieved with trans-Ru(CO)₂(pentene)₃ (>9 min⁻¹) at 293K represents a lower limit due to rapid catalyst deactivation, and it clearly exceeds the rate achieved with

-19-

ALLER SAMARY SCORES WARRAN . MAD

 $Ru(CO)_3(pentene)_2$ (~4 min⁻¹) under the same conditions ([catalyst] = 2.78 mM, [pentene] = 1.83 M , 293K, methylcyclohexane). Under photocatalytic conditions, efficient photochemical conversion of $Ru(CO)_3(pentene)_2$ to trans- $Ru(CO)_2(pentene)_3$ is offset by facile thermal back reaction unless liberated CO is diliberately removed. The importance of $M(CO)_2$ (pentene)₃ species (M = Fe, Ru) under photocatalysis conditions is therefore ambiguous. Our results suggest that substitutionally labile $Ru(CO)_3(a | kene)_2$ and $Ru(CO)_2(a | kene)_3$ complexes play key roles in the $Ru_3(CO)_{12}$ photocatalyzed alkene isomerization, since we have demonstrated that their photogeneration from $Ru_3(CO)_{12}$ provides an entrance to the catalytic cycle, Table VI.¹¹ With $Fe(CO)_3(C_2H_4)_2$ we have been able to achieve turnover numbers in the dark approaching 2000, and turnover rates of $\sim 600 \text{ min}^{-1}$ at 293K. These results are in qualitative agreement with the report by Grevels and coworkers⁷ in which $Fe(CO)_3(n^2-cis-cyclooctene)_2$ was used as a catalyst precursor. Although solutions of $Fe(CO)_3(a | kene)_2$ containing 1-pentene approach the equilibrium of the three pentene isomers rapidly and in constant thermodynamic ratio²⁴ (trans/cis-2-pentene = 3.8), the same cannot be said for the Ru catalysts. An initial ratio of ~6 for trans/cis-2-pentene is achieved photochemically using $Ru_3(CO)_{12}$ or thermally using $Ru(CO)_n(C_2H_4)_{5-n}$ (n = 3, 2).

The turnover rate of catalysis for both Ru and Fe catalysts decreases with reaction time at 293K. This decrease in rate is accompanied by loss of IR spectral features attributed to $M(CO)_3(pentene)_2$ and the corresponding growth of spectral features attributed to $M(CO)_3(1,3-pentadiene)$ (~75%) and $M(CO)_4(pentene)$ (~25%) Table II, identified by comparison of IR spectra with those of authentic samples. These complexes, especially $M(CO)_3(1,3-pentadiene)$, once formed are relatively inert and show no catalytic activity. Formation of $M(CO)_4(pentene)$ is reasonable, considering that catalyst decomposition would release CO which can react with $M(CO)_3(pentene)_2$ to give $M(CO)_4(pentene)$. The dehydrogenation of 1-pentene to yield inert 1,3-pentadiene complexes is a new finding. The mechanism of 1-pentene

-20-

dehydrogenation deserves further study; previous work²⁵ rules out the intermediacy of 1,3,4,5-n-pent-4-ene-3,1-yliron tricarbonyl as an intermediate leading to $Fe(CO)_3(1,3-pentadiene)$. Evidence for the formation of $Ru(CO)_3(1,3-pentadiene)$ comes from GC-mass spectra and HPLC analysis of the metal containing product from the catalytic mixture. The GC-mass spectra show a molecular ion peak (M⁺=254) and fragmentation pattern consistent with M⁺-CO, M⁺-2CO, M⁺-3CO. This pattern is indistinguishable from that obtained from an authentic sample of $Ru(CO)_3(1,3-pentadiene)$. In addition, both GC and HPLC show the same retention time for the organometallic species recovered from the catalytic samples and an authentic sample.

d. <u>Photochemical Formation of HM(CO)₃(n³-allyl)</u>. We expect the catalytic cycle for Ru to be similar to that for Fe(CO)₅-photocatalyzed alkene isomerization. Beyond the involvement of the M(CO)₃(alkene)₂ we prefer not to speculate extensively here about the particular steps of the catalytic cycle, except to note the previous observation⁵ of HFe(CO)₃(n³-allyl), potentially the essential intermediate in the catalytic cycle. We find that the major product of irradiation of Fe(CO)₄(C₃H₆) in a 90K methylcyclohexane glass exhibits two features, one sharp feature at 2064 cm⁻¹ and a broader absorbance with a maximum at about 1994 cm⁻¹. These features are unrelated to those for Fe(CO)₃(C₂H₄); Fe(CO)₄ is also a minor product which accounts completely for the remaining 1946 cm⁻¹ product feature previously attributed to one of three characteristic carbonyl features for HFe(CO)₃(n³-C₃H₅). Warmup of the irradiated 90K glass to 173K yields conversion to a three band pattern attributable to HFe(CO)₃(n³-C₃H₅)⁵ (2066, 2003 and 1994 cm⁻¹) on the basis of spectral similarity to BrFe(CO)₃(n³-C₃H₅)²⁶ and the structurally related 1,3,4,5,-n-pent-4-ene-3,1-yliron tricarbonyl,²⁵ Table II.

Chemical evidence for the HFe(CO)₃(n^3 -C₃H₅) has been obtained by producing HFe(CO)₃(n^3 -C₃H₅) in a methylcyclohexane/1-bromo-2-methylpropane matrix (~50/50 by volume) at 90K. Warming above ~200K yields IR spectral changes consistent with

-21-

regeneration of Fe(CO)₄(C₃H₆) (~80%) and formation of the known BrFe(CO)₃(n^{3} -C₃H₅) (~20%).²⁶ Similarly, irradiation of Fe(CO)₄(C₃H₆) in a 90K methylcyclohexane glass followed by addition of CCl₄ and warmup to 298K yields CHCl₃ and the known²⁶ ClFe(CO)₃(n^{3} -C₃H₅). Metal hydrides are known to react with alkyl halides²⁷ providing evidence for the existence of HFe(CO)₃(n^{3} -allyl). It should also be pointed out that metal-centered radicals can also react with alkyl halides to produce the metal halide,²⁸ and radicals, e.g. Fe(CO)₃(n^{3} -C₃H₅), are known to be produced upon irradation of Fe(CO)₅ in the presence of C₃H₆.⁶ We have irradiated Fe(CO)₄(C₃H₆) through Pyrex (λ >280 nm) and find no IR evidence for the known²⁹ Fe(CO)₃(n^{3} -C₃H₅) to be the dominant, essential species in the catalyzed isomerization of alkenes upon irradiation of Fe(CO)₅ through Pyrex.

The three IR band pattern (2066, 2003, 1994 cm⁻¹) attributed to HFe(CO)₃(n³-C₃H₅) at 173K is retained on cooling to 90K, but photochemical reaction occurs at 90K to give the initial two band pattern, (2064, 1994 cm⁻¹), without additional CO loss, consistent with the existence of two isomers of HFe(CO)₃(n³-C₃H₅). Two isomers of XFe(CO)₃(n³-C₃H₅) (X = Cl, Br, I) are known³⁰ and we believe these to be related to the two isomers of HFe(CO)₃(n³-C₃H₅). Preliminary results show that the thermodynamically stable isomer of XM(CO)₃(n³-C₃H₅) (X = Cl, Br; M = Fe, Ru) can photochemically converted to the less stable isomer.³¹

Irradiation of the two band isomer of $HFe(CO)_3(n^3-C_3H_5)$ at 90K in a C_3H_6 -containing alkane glass yields loss of additional CO and growth of a single CO-stretching feature at 1929 cm⁻¹, too low in energy to be attributable to an $Fe(CO)(alkene)_4$ species analogous to $Fe(CO)(C_2H_4)_4$. The product responsible for the 1929 cm⁻¹ feature was previously misidentified as <u>trans</u>-Fe(CO)_3(C_3H_6)_2. Our

-22-

data clearly indicate that there are between two and three photoejected CO's (2132 cm^{-1}) for each Fe(CO)₄(C₃H₆) molecule consumed.³² Near-UV irradiation of $Fe(CO)_3(C_3H_6)_2$ (formed in situ via photolysis of $Fe(CO)_4(C_3H_6)$ plus C_3H_6 at 210K) at 100K in the presence of a large excess of C₃H₆, Figure 10, yields free CO (2132 cm^{-1}), the two band isomer of HFe(CO)₃(η^3 -C₃H₅), and a strong feature at 1929 cm⁻¹. The amount of photogenerated CO^{32} is consistent with loss of two CO's per molecule of $Fe(CO)_3(C_3H_6)_2$ converted to the 1929 cm⁻¹ product based on quantitation of consumed Fe(CO)₃(C₃H₆)₂ [v, cm⁻¹(ε , M⁻¹cm⁻¹) = 2052 (1,200 ± 100); 3-methylpentane, 90K] and photogenerated HFe(CO)₃(η^3 -C₃H₅) [v, cm⁻¹(ϵ , M⁻¹cm⁻¹)= 2065 (7,200 ± 700); 3-methylpentane, 90K] by FTIR. The cis-Fe(CO) $_2(C_3H_6)_3$ complex is never observed as a photoproduct from irradiation of $Fe(CO)_4(C_3H_6)$ or $Fe(CO)_3(C_3H_6)_2$ in the presense of excess $C_{3}H_{6}$. In the presence of only small amounts of $C_{3}H_{6}$, the 1929 cm⁻¹ feature grows in only very weakly, suggesting that comsumption of C_{3H6} by the (unobserved) product of CO loss from $Fe(CO)_3(C_3H_6)_2$ leads to formation of the 1929 cm^{-1} product. When samples containing the 1929 cm^{-1} absorber are warmed to ~150K, the 1929 cm^{-1} feature disappears and Fe(CO)₃(C₃H₆)₂ is formed with associated consumption of free CO. Interestingly, spectral changes similar to those accompanying irradiation of $Fe(CO)_4(C_3H_6)$ characterize the low temperature photochemistry of $Fe(CO)_4(1-pentene)$ in a neat 1-pentene glass, while cis-Fe(CO)₂(3,3-dimethyl-1-pentene)₃ is the final product of near-UV irradiation of $Fe(CO)_4(3,3-dimethy)-1-pentene)$ in a 3-methylpentane glass containing 2 M 3,3-dimethy1-1-pentene at 90K. These results suggest that the low energy feature at $\sim 1929 \text{ cm}^{-1}$ obtains only for alkenes containing allylic hydrogens, for which cis-Fe(CO)₂(alkene)₃ complexes are not accumulated as photoproducts. The 90K irradiation of $Fe(CO)_{5-n}(^{13}CO)_n$ (~20% ^{13}C) in a C₃H₆-saturated 3-methylpentane glass yields final product features at 1929 and 1885 cm^{-1} consistent with formulation of the 1929 cm⁻¹ absorber as monocarbonyl or a trans-dicarbonyl species exhibiting an interaction force constant $K_i = 0$. The two dicarbonyl complexes <u>cis</u>-

-23-

and <u>trans</u>-Fe(CO)₂(C₂H₄)₃ exhibit significant interaction force constants and it is therefore unlikely that an Fe(CO)₂(C₃H₆)_n complex would have K₁ = 0. On the basis of the evidence available, we tentatively formulate the 1929 cm⁻¹ absorber as HFe(CO)(C₃H₆)₂(n³-C₃H₅). We do not find evidence for formation of $(n^{3}-C_{3}H_{5})_{2}$ Fe(CO)₂.³³

G

Complete conversion of $Ru_3(CO)_{12}$ to $Ru(CO)_4(1-pentene)$ can only be done in the presence of a large excess of 1-pentene (>1 M). Photolysis of Ru(CO)4(1-pentene) in either methylcyclohexane or 3-methylpentane glasses containing 1.0 M 1-pentene at 90K results in photoejection of CO (2132 cm^{-1}) and formation of mostly $Ru(CO)_3(1-pentene)_2$. The generation of $Ru(CO)_3(1-pentene)_2$ is probably due to reaction of 1-pentene present in the glass with the 16-electron $Ru(CO)_3(1-pentene)$ fragment (not observed). When a 3-methylpentane matrix containing $Ru(CO)_4(1-pentene)$ is photolyzed at 55K, IR spectral changes for the photolysis reveal the generation of free CO (2132 cm^{-1}) and growth of new spectral features which are different from those observed with alkene = C_2H_4 . These new features are attributed to $HRu(CO)_3(n^3-C_5H_9)$ on the basis of spectral similarity to the IR bands of HFe(CO)₃(n^3 -C₅H₉). The ability to detect the HRu(CO)₃(n^3 -C₅H₉) at the lower temperature reflects slower 1-pentene diffusion and/or a slower rate of 1-pentene binding to the unsaturated Ru center. Due to the experimental difficulty, the trapping reaction of $HRu(CO)_3(n^3-C_5H_9)$ with alkyl halides has not yet been successful.

Conversion of $Ru_3(CO)_{12}$ to $Ru(CO)_4(C_3H_6)$ is not complete, even after prolonged irradiation in solution saturated with C_3H_6 . Presumably, a photostationary state is reached, and upon switching off the light source, we observe reformation of $Ru_3(CO)_{12}$. However, $HRu(CO)_3(n^3-C_3H_5)$ can still be generated as a minor product (<10%) at 90K by photolysis of $Ru(CO)_4(C_3H_6)$ in the presence of $Ru_3(CO)_{12}$ in a C₃H₆-containing methylcyclohexane glass. The other products are $Ru_3(CO)_{11}(C_{3}H_6)$ and $Ru(CO)_3(C_{3}H_6)_2$.

-24-

Conclusions

Received seedoore opposite sources and

Scheme I summarizes the photochemistry of $M(CO)_n(C_2H_4)_{5-n}$ (M = Fe, Ru; n = 4,3,2) Interestingly, warmup of glasses containing $M(CO)(C_2H_4)_4$ leads to nearly quantitative regeneration at 298 K of $M(CO)_4(C_2H_4)$ (M = Ru) or a mixture of $M(CO)_4(C_2H_4)$ and $M(CO)_3(C_2H_4)_2$ (M = Fe). Thus, the photochemical substitution of CO by C_2H_4 is reversible. The $M(CO)_2(C_2H_4)_3$ and $M(CO)_3(C_2H_4)_2$ complexes serve as catalyst presursors for the isomerization of 1-pentene, consistent with the conclusion that π -allyl hydride species are essential in the catalytic cycle. The photochemistry of the Fe(CO)_n(C_{3H_6})_{5-n} complexes, Scheme II, shows that π -allyl-hydride species can actually be detected. The π -allyl-hydride reacts thermally with alkyl halides, providing additional chemical evidence for its formulation.

The data for the M(CO)₃(alkene)₂ complexes support the conclusion that, in general, the loss of CO or alkene can be expected from complexes containing both CO and alkene. This finding is consistent with the fact that CO and alkene are both π -acceptor ligands. The relative importance of CO vs. alkene loss has not been determined, but since we now know the various product identities, we are in a position to make a systematic investigation for the Fe and Ru complexes as has been done with W(CO)₅(alkene).³² Our finding that alkene can be dissociated photochemically is consistent with work on Fe(CO)₃(n⁴-1,3-butadiene) which forms Fe(CO)₂(n⁴-1,3-butadiene) <u>and</u> Fe(CO)₃(n²-1,3-butadiene) upon photoexcitation in rigid media at low temperature.²³

The photogenerated $M(CO)_3(alkene)_2$ and $M(CO)_2(alkene)_3$ complexes provide useful entries to derivatives of $M(CO)_5$ because the alkenes are so labile. Such reactive complexes may be useful in preparing substitution derivatives which are thermally or photochemically sensitive. In terms of understanding photocatalyzed reactions of alkenes, the characterization of the photoreactions of $M(CO)_n(alkene)_{5-n}$ is an important step in providing a step-by-step rationale of the

Ĺ

2224-142

^aNot detected for M = Ru ^bDetection requires T < 90K for M = Ru

<u>Scheme II.</u> Summary of the photochemistry of $Fe(CO)_n(C_3H_6)_{5-n}$ (n = 4, 3).

アイン

COLORADA ISSNERAN ANALADADA

^aIdentification of this compound is tentative.

catalytic chemistry. Further, the eventual finding of $M(CO)_3(1,3-pentadiene)$ in ~75% yield (~25% $M(CO)_4(pentene)$) from thermal reaction of $M(CO)_3(C_2H_4)_2$ with 1-pentene provides a rationale for finite turnover number from a system that appears to be so reversible when considering only the C₂H₄ complexes. Further work is needed to establish the mechanism of the dehydrogenation of 1-pentene, but the consequence is clear: the 1,3 pentadiene effectively suppresses catalytic action by leading to formation of $M(CO)_3(1,3-pentadiene)$.

One final point should be made concerning intermediates formed from $M(CO)_n(alkene)_{5-n}$ (n = 4, 3, 2,). We find no evidence for high concentrations of radical species, consistent with the levels of such species previously suggested.⁶ However, it is well-appreciated that very active species, though present in small concentration, can be catalytically significant. While it is known that $Fe(CO)_3(n^3-C_3H_5)$ radicals are very active catalysts for alkene isomerization, ³⁴ it appears that the $M(CO)_3(alkene)_2$ and $M(CO)_2(alkene)_3$ can account for the photocatalytic activity of $Fe(CO)_5$ or $M_3(CO)_{12}$.

Contraction Description Contraction

<u>Acknowledgements</u>. We thank the National Science Foundation and the Office of Naval Research for partial support of this work. We thank Dr. J. A. Crayston for use of the computer program used in the normal coordinate analyses of ¹³C-enriched iron carbonyl olefin complexes by F and G matrix techniques.

-26-

References

- (a) Mitchener, J.C.; Wrighton, M.S. <u>J. Am. Chem. Soc.</u>, <u>1981</u>, <u>103</u>, 975.
 (b) Schroeder, M.A.; Wrighton, M.S. <u>ibid</u>, <u>1976</u>, <u>98</u>, 551; <u>J. Organomet</u>. <u>Chem. 1977</u>, <u>128</u>, 345.
- 2. Chase, D.B.; Weigert, F.J. J. Am. Chem. Soc., 1981, 103, 977.
- 3. Whetten, R.L.; Fu, K.-J.; Grant, E.R. J. Am. Chem. Soc., 1982, 104, 4270.
- Swartz, G. L.; Clark, R.J. <u>Inorg. Chem. 1980</u>, <u>19</u>, 3191 and Swartz, G. L.,
 Ph. D. Dissertation, Florida State University, 1977.
- 5. Mitchener, J.C.; Wrighton, M.S. J. Am. Chem. Soc., 1983, 105, 1065.
- 6. (a) Krusic, P.J.; Briere, R.; Rey, P. <u>Organometallics</u>, <u>1985</u>, <u>4</u>, 801.
 (b) Krusic, P.J.; Filippo, J.S. Jr.; Hutchinson, B.; Hance, R.L.; Daniels, L.M. <u>J. Am. Chem. Soc.</u>, <u>1981</u>, <u>103</u>, 2129.
- 7. Fleckner, H.; Grevels, F.-W.; Hess, D. J. Am. Chem. Soc., 1984, 106, 2027.
- 8. Johnson, B.F.G.; Lewis, J.; Twigg, M.V. J. Organomet. Chem., 1974, 67, C75.
- 9. The actual isolation and characterization of several $Ru(CO)_4(n^2-olefin)$ complexes have been reported and mechanistic aspects relating to equation (1) have been discussed. Grevels, F.-W.; Reuvers, J.G.A.; Takats, J. <u>J. Am. Chem. Soc.</u>, <u>1981</u>, <u>103</u>, 4069.
- 10. We note the report of the surprisingly stable Ru(CO)₃(n²-methylacrylate)₂ formed photochemically by methods related to equations (1) and (2). Grevels, F.-W.; Reuvers, J.G.A.; Takats, J. <u>Agnew. Chem., Int. Ed. Engl.</u> <u>1981</u>, <u>20</u>, 452.
- Graff, J.L.; Sanner, R.D.; Wrighton, M.S. J. Am. Chem. Soc., 1979, 101, 273; Organometallics, 1982, 1, 837.
- 12. Castiglioni, M.; Milone, L.; Ostella, D.; Vaglio, G.A.; Valle, M. <u>Inorg.</u> <u>Chem., 1976, 15, 394.</u>

13.	Austin, R.G.; Paonessa, R.S.; Giordano, P.J.; Wrighton M.S. <u>Adv. Chem.</u>
	<u>Ser., 1978, 68, 189.</u>
14.	Ewing, G.E.; Pimentel, G.C. J. Chem. Phys., 1961, 35, 925.
15.	Stephen, H.; Stephen, T. "Solubility of Inorganic and Organic Compounds",
	Macmillan, New York, 1963.
16.	Stockis, A.; Hoffmann, R. <u>J. Am. Chem. Soc</u> ., <u>102</u> , <u>1980</u> , 2952.
17.	Grevels, FW.; Schneider, K.; Kruger, C; Goddard, R. <u>Z. Naturforsch. B</u> .
	<u>1980, 35,</u> 360.
18.	Bentsen, J.G.; Wrighton, M.S. to be submitted.
19.	Cotton, F.A.; Wilkinson, G.F.R.S. "Advanced Inorganic Chemistry", 4th ed.,
	Wiley, New York, 1980, p. 1074.
20.	(a) von Gustorf, E.K.; Buchkremer, J.; Pfajfer, Z.; Grevels, FW. <u>Angew</u> .
	<u>Chem., Internat. Ed., 1971, 10,</u> 260. (b) Kruger, C., Tsay, YH. <u>Angew</u> .
	<u>Chem., Internat. Ed., 1971, 10, 261.</u>
21.	The feature attributed to $trans$ -Fe(CO) ₂ (C ₂ H ₄) ₃ appears in the original
	spectral data at 1952 cm ⁻¹ and was incorrectly reported at 1929 cm ⁻¹ in Ref. 5.
22.	Cotton, F.A.; Kraihanzel, C.S. <u>J. Am. Chem. Soc., 1962</u> , <u>84</u> , 4432.
23.	Ellerhorst, G. ; Gerhartz, W.; Grevels, FW. Inorg. Chem. 1980, 19, 67.
24.	Bond, G.C.; Hellier, M. J. Catal. 1965, 4, 1.
25.	Aumann, R. <u>J. Am. Chem. Soc., 1974, 96</u> , 2631.
26.	Simon, F.G.; Lauher, J.W. Inorg. Chem., 1980, 19, 2338.
27.	Collman, J.P.; Hegedus, L.S. "Principles and Applications of Organotransition
	Metal Chemistry", University Science Books, Mill Valley, California, 1980,
	p. 70.

-28-

5

28.	Meyer, T.J.; Caspar, J.V. Chem. Rev., 1985, 85, 187, and references therein.
29.	Murdoch, J. D. Lucken, G.A.C. <u>Helv. Chim. Acta., 1964</u> , <u>47</u> , 1517.
30.	Faller, J.W.; Adams, M.A. J. Organomet. Chem., 1979, 170, 71.
31.	Wuu, Y.M.; Wrighton, M.S., unpublished results.
32.	The molar extinction coefficient for free CO in an alkane glass has been
	determined to be 400 M^{-1} cm ⁻¹ , ±20%. Pope, K.R.; Wrighton, M.S. <u>Inorg</u> .
	<u>Chem., 1985, 24, 2792.</u>
33.	Nesmeyanov, A. N.; Kristskaya, I.I.; Vstynyuk, Y.A.; Fedin, E.I. <u>Dokladay</u>
	<u>Akademii Nauk. SSSR, 1967, 176, 341.</u>
34.	Putnik, C.F.; Welter, J.J.; Stucky, G.D.; D'Aniello, M.J.D., Jr.; Sosinsky,
	B.A.; Kirner, J.F.; Muetterties, E.L. <u>J. Am. Chem. Soc., 1978, 100</u> , 4107.

-29-

1000000000

Table I. UV-Visible Data for Relevant Compounds.

AND TREESCOND TREESCOND

ä

0.727.8354

Species	Medium (T,K)	λ, nm (ε)
Ru3(CO) ₁₂	MCH (298)	237(30,200),278(sh),325(sh)391(7200)
$Ru(CO)_4(C_2H_4)$	MCH (298)	240(3400),266(1700)
Ru(CO) ₃ (C ₂ H ₄) ₂	MCH (298)	220(11,700),262(4900)
Ru(CO)3(1,3-pentadiene)	MCH (298)	245 (10,000),280(7600)
Fe(CO)5	3MP (90)	242(21,000),290(5200)
Fe(CO)4	3MP (90)	390
Fe(CO)4(C2H4)	MCH (298)	255(sh, ~10,000)
Fe(CO) ₃ (C ₂ H ₄)	MCH(298)	234,447
Fe(CO)4(C3H6)	MCH(298)	255(sh, ~10,000)

a MCH \equiv methylcyclohexane; 3MP \equiv 3-methylpentane.

Table II. IR Data for Relevant Complexes.

Species	Medium (T, K)a	ν , cm ⁻¹ (ε or Rel. Abs.)
Ru3(CO)12	3MP (298)	2061(24,500);2031(14,600);2012(9000)
Ru(CO)5	3MP (298)	2037(1.0);2002(1.4)
Ru(CO)4(C2H4)	3MP (298) 3MP (90)	2104(470);2023(8100);1996(4000) 2106(980);2023(9900);1994(8000)
Ru(CO)3(C2H4)	3MP (55)	2055(1.0);1978(1.2);1972(1.3)
Ru(CO)3(C2H4)2	3MP (298) 3MP (90)	2081(320);2005(2100);1995(6500) 2082(350);2004(1300);1993(7200)
<u>trans</u> -Ru(CO) ₂ (C ₂ H ₄) ₃	3MP (233) 3MP (90)	1956 1953
<u>cis</u> -Ru(CO) ₂ (C ₂ H ₄) ₃	MCH (90)	2019(1.4); 1975(1.0)
Ru(CO) ₂ (C ₂ H ₄) ₂	MCH (90)	2020(1.0); 1948(1.3)
Ru(CO)(C ₂ H ₄) ₄	MCH (90)	1964
Ru(CO)(C ₂ H ₄)3 ^b	MCH (90)	1923
Ru(CO)4(C3H6)	3MP (298) MCH (90)	2100(1.0); 2018(10.6); 1991(6.4) 2101(1.0); 2018(11.5); 1987(6.4)
HRu(CO)3(n ³ -C ₃ H ₅) isomer(a)	MCH (90)	2082(1.0); 2008(1.2)
<u>endo</u> -BrRu(CO)3(n ³ -C3H5)	3MP (298)	2109(1.0);2060(1.4);2019(1.3)
<u>exo</u> -BrRu(CO)3(ŋ ³ -C3H5)	3MP (298)	2107(1.0);2055(1.1);2025(1.2)
Ru(CO)3(C3H6)2	3MP (298)	2075(1.0); 2005(3.3); 1988(14)
trans-Ru(CO) ₂ (C ₃ H ₆) ₃	3MP (233)	1949
Ru(CO)4(1-pentene)	3MP (298) 3MP (90) 3MP (55) 1-pentene (90)	2100(1.9); 2018(9.3); 1989(5.8) 2102(1.0); 2019(8.9); 1988(6.0) 2102(1.0); 2019(8.5); 1987(5.5) 2102 (1.0); 2020(10.1); 1983(7.0)
HRu(CO)3(n ³ -C5H9)	MCH (90) 3MP (55)	2078(1.0); 2004(1.2) 2078(1.0); 2003(1.2)
Ru(CO) ₃ (1-pentene) ₂	3MP (298) 3MP (90) 1-pentene (90)	2072(1.0); 2000(2.6); 1987(9.4) 2073(1.0); 2000(1.6); 1987(8.4) 2076(1.0); 2000(1.8); 1984(8.9)
trans-Ru(CO) ₂ (1-pentene) ₃	3MP (233)	1946

and received sectors bootses exercise bootses

1. Arte Carlor

Table II. (continued)

Ru(CO) ₄ (3,3-dimethyl-1-pentene)	(CH ₃) ₂ C ₅ H ₈ (298)	2099(1.0); 2017(5.6); 1990(3.6)
Ru(CO) ₃ (3,3-dimethy1-1-pentene) ₂	(CH ₃) ₂ C ₅ H ₈ (233)	2077(1.0); 1995(2.3); 1986(10.0)
Ru(CO) ₃ (<u>trans-1</u> ,3-pentadiene)	3MP (298)	2062(3600); 1997(6500); 1986(5400)
Ru(CO)4(PPh3)	3MP (298)	2061(2600); 1987(1000); 1954(4300)
Ru(CO) ₃ (PPh ₃) ₂	3MP (298)	1907(3300)
Fe(CO)5	3MP (298) 3MP (90)	2023(9600); 2001(14,000) 2023(15,000); 1996(19,000)
Fe(CO) ₄	MCH (90)	2083(1.0); 1988(12); 1979(4.5) 1946(14)
Fe(CO)4(C ₂ H ₄)	MCH (298) MCH (90)	2087(1300);2013(sh);2007(10,000);1984(6700) 2088(2200);2011(sh);2006(12,000);1980(10,000
Fe(CO) ₃ (C ₂ H ₄)	MCH (90) Ar (10) ^c	2041(1.0); 1963(1.3); 1957(1.6) 2039, 1976, 1950
Fe(CO) ₃ (C ₂ H ₄) ₂	MCH (273) MCH (90) CF ₃ C ₆ F ₁₁ (273)	2060(940);1988(sh,~5100);1981(12,600) 2060(1.0); 1988(4.8); 1981(12) 2064(1.0); 1997(5.0); 1988(13.6)
trans-Fe(CO) ₂ (C ₂ H ₄) ₃	MCH (90)	1942
\underline{cis} -Fe(CO) ₂ (C ₂ H ₄) ₃	MCH (90)	1998(1.5); 1955(1.0)
Fe(CO) ₂ (C ₂ H ₄) ₂	MCH (90)	2003(1.0); 1938(1.3)
Fe(CO)(C ₂ H ₄) ₄	MCH (90)	1952
Fe(¹³ CO)(C ₂ H ₄) ₄	MCH (90)	1908
Fe(CO)4(C3H6)	MCH (298)	2082(1800);2006(sh);2001(12,000);
	MCH (90)	1980(7500) 2083(2900);2006(sh);2001(15,000); 1976(12,000)
HFe(CO) ₃ (n ³ -C ₃ H ₅) isomer(a) isomer(b)	MCH (90) MCH (173)	2064(1.0); 1994(1.5) 2066(1.0); 2003(1.5); 1994(1.2)
Fe(CO) ₃ (n ³ -C ₃ H ₅) ^d	Pet. Ether (298)	2046,1968,1960
Fe(CO)3(C3H6)2	MCH (90)	2051(1.0); 1971(11)

Table II. (continued)

HFe(CO)(C ₃ H ₆) ₂ (n ³ -C ₃ H ₅) ^b	MCH (90)	1929
Fe(CO)4(3,3-dimethyl-1-pentene)	3MP (298)	2079(1.0); 2003(sh); 1997(4.0)
	3MP (90)	2080(1.0); 2003(1.6); 1996(3.3) 1973(2.9)
Fe(CO) ₃ (3,3-dimethyl-1-pentene)	3MP (90)	2041(1.0); 1966(1.1); 1953(1.2)
Fe(CO) ₃ (3,3-dimethyl-1-pentene) ₂	3MP (195)	2046(1.0); 1970(15)
cis-Fe(CO) ₂ (3,3-dimethyl-1-pentene) ₃	3MP (90)	1989(~1.2); 1929(1.0)
Fe(CO)4(1~pentene) ^e	3MP (298)	2083(1.0); 2002(5.4); 1981(4.2)
Fe(CO)(n ⁴ -1,3-butadiene)2 ^f	hexane (298)	1984.5
HFe(CO) ₃ (η ³ -C ₅ H ₉)	MCH (90)	2059(1.0); 1989(1.5)
Fe(CO)3(1-pentene)2	1-pentene (195)	2048(1.0); 1972(16.6)
HFe(CO)(C ₅ H ₁₀) ₂ (η ³ -C ₅ H ₉) ^b	1-pentene (90)	1925
Fe(CO)3(<u>trans</u> -1,3-pentadiene)	MCH (298)	2049(1.0); 1982(1.6); 1973(1.1)
B rFe (CO)3(n ³ -C3H5)	MCH (298)	2089(1.1); 2043(1.4); 2010(1.0)
Fe(CO)3(n ⁴ -C5H8)9		2053, 1994, 1989
Fe(CO)4PPh3	MCH (298)	2052(4200);1979(3000);1946(11,000)
Fe(CO)3(PPh3)2	MCH (298)	1895(10,500)
Fe(CO)3(C2H4)(PPh3)	MCH (298)	2022(1.0); 1961(~1.0); 1931(1.0)

a 3MP = 3-methylpentane, MCH = methycyclohexane.

^b Tentative assignment; see text.

^C Band positions obtained from Ref. 23.

d Band positions obtained from ref. 29.

e Contaminated with Fe(CO)5.

f Band position obtained from Ref. 20.

9 Band positions for 1,3,4,5-n-pent-4-ene-3,1-ylirontricarbonyl obtained from Ref. 25.

Species	Temp, K	PPM vs. SiMe ₄	
Ru(CO)4(C2H4)	243	2.10	
Ru(CO) ₃ (C ₂ H ₄) ₂	243	2.50	
Ru(CO)2(C2H4)3	243	3.02	
Fe(CO)4(C ₂ H ₄)	273	2.37	
Fe(CO) ₃ (C ₂ H ₄) ₂	273	2.68	
C2H4	243	5.28	
C7H14	243	1.54	

Table III. ¹H-NMR Data for C₂H₄ Complexes.^a

a All data are for $CF_3C_6F_{11}$ solutions.

Table IV. ¹H-NMR Peak Integration vs. Irradiation Time for $Ru(CO)_4(C_2H_4)$ in C_2H_4 -saturated CF_3C_6F_{11} solution at 298K.^a

Irradiation time (min)	(Ru(CO)4(C2H4) (2.10ppm)	Ru(CO)3(C2H4)2 (2.50ppm)	C7H14 ^D (1.54ppm)	[Ru]d
0.0	0.64	0	1.00	1.00
0.5	0.50	0.36 (0.28) ^c	1.00	1.06 (1.00) ^e
1.0	0.37	0.63 (0.62) ^c	1.00	1.07 (1.01)e

Integration of $^{1}H-NMR$ Singlet

- ^a Cf. Figure 1 for actual spectra at t = 0 and t = 1 min.
- ^b Used as an internal standard.

Contract of the second s

- ^C "Predicted" integral for $Ru(CO)_3(C_2H_4)_2$ based on consumption of $Ru(CO)_4(C_2H_4)$ from preceding irradiation time.
- ^d Total (relative) Ru concentration assuming the only species present are $Ru(CO)_4(C_2H_4)$ and $Ru(CO)_3(C_2H_4)_2$.
- e Calculated using only t = 0.5 and 1 min data.

<u>Table V.</u> ¹H-NMR Peak Integration vs. Irradiation Time for $Ru(CO)_4(C_2H_4)$ in C_2H_4 -saturated $CF_3C_6F_{11}$ Solution at 243K.^a

		Integration of 4H-NMR Singlet						
Irradiation time (min)	Ru(CO)4(C2H4) (2.10ppm)	Ru(CO)3(C2H4)2 (2.50ppm)	Ru(CO)2(C2H4)3 (3.02ppm)	C _{7H14} b (1.54ppm)	[Ru]C			
0	1.46	0.09	0	1.00	1.00			
0.33	1.35	0.28	0	1.00	0.99			
1	1.09	0.74	0.07	1.00	0.99			
2	0.91	1.06	0.15	1.00	0.99			
4	0.66	1.33	0.45	1.00	0.99			

^a Cf. Figure 3 for actual spectra at t = 0, 0.33, and 4 min.

^b Used as an internal standard.

^c Total (relative) Ru concentration assuming only Ru species present are $Ru(CO)_n(C_2H_4)_{5-n}$ (n = 4, 3, 2).

Received and received and

Catalyst Precursor, m <u>M</u>		1-pentene, t, <u>M</u> min.		1- <u>trans</u> -2- <u>cis</u> -2-			turnover rate 1-pentene/catalyst min.	
Fe(CO)3(C2H4)2	5.0 2.0	4.12 6.60	0.33 0.33	76.99 93.78	16.82 4.28	6.19 1.94	568 615	
Ru(CO)3(C2H 4)2	5.32	1.83	1 5 30 120 1440	98.56 96.22 91.28 85.07 60.37	1.31 3.54 8.31 15.16 36.17	0.13 0.24 0.41 0.77 3.46	4.95 2.60 1.00 0.43 0.09	
	5.32	1.83	1 5 30 120 1440	98.13 96.40 90.83 85.35 61.07	1.20 3.39 8.72 13.91 35.18	0.07 0.21 0.45 0.74 3.75	4.37 2.47 1.05 0.41 0.09	
	2.78	1.83	4 20 120	97.93 96.62 89.79	1.92 3.21 9.72	0.15 0.17 0.49	3.41 1.11 0.56	
Ru(CO) ₂ (C ₂ H ₄) ₃	2.78	1.83	1 5 30 60 120	98.71 97.44 95.55 93.98 91.44	1.09 2.24 3.95 5.43 7.80	0.20 0.32 0.50 0.59 0.76	8.53 3.37 0.98 0.66 0.47	
	2.78	1.83	1 5 30 60 120	98.58 97.40 95.25 93.65 91.11	1.20 2.29 4.23 5.74 8.07	0.22 0.31 0.52 0.61 0.82	9.34 3.42 1.04 0.70 0.49	
	1.40	1.83	5 30	98.81 97.78	1.11 2.10	0.08 0.12	3.11 0.97	
	1.40	1.83	5 30	99.09 98.08	0.86 1.82	0.05 0.10	2.38 0.84	

Table VI. Turnover Rates for 1-Pentene Isomerization by $M(CO)_3(C_2H_4)_2$ (M = Fe, Ru), $Ru(CO)_2(C_2H_4)_3$ and Irradiated $Ru_3(CO)_{12}$ at 293K.

THE THERE WELLESS RELEASE WELLESS THE PROPERTY PRODUCT INSPADE RELATED TO AND THE PROPERTY STATISTICS.

<u>Table VI</u> . (co	ontinued)						
Ru3(CO)12 ^a	0.85	1.83	10 20 60	97.51 96.10 88.07	2.26 3.46 10.78	0.23 0.31 1.15	>5b >4b >4D
	0.85	1.83	10 20 60	97.17 96.33 87.91	2.56 3.36 10.92	0.24 0.38 1.17	>6b >4b >4b

- ^a Conversion of $Ru_3(CO)_{12}$ to mononuclear species is complete within the first 7 minutes of continuous near-UV irradiation with a 550 W medium pressure Hg lamp.
- ^b Turnover rate is not defined in these cases, because higher excitation rate will increase the rate of observed product formation. Thus, the numbers are lower limits, at the light intensity used, 10^{-6} ein/min. The quantum yield was observed to be ~5, similar to that in ref. 11.

Figure Captions

Figure 1. ¹H-NMR spectral changes accompanying near-UV irradiation of $Ru(CO)_4(C_2H_4)$ in C_2H_4 -saturated $CF_3C_6F_{11}$ solution at 298K (a) before irradiation and (b) after 1 min irradiation. Cf. Table IV for summary of integration data.

<u>Figure 2.</u> IR spectral changes accompanying near-UV irradiation of $Ru(CO)_4(C_2H_4)$ in C_2H_4 -saturated 3-methylpentane solution at 298K (a) before irradation, (b) after 1 min irradiation, (c) difference spectrum of (a) and (b).

Figure 3. ¹H-NMR spectral changes accompanying near-UV irradiation of $Ru(CO)_4(C_2H_4)$ in C_2H_4 -saturated $CF_3C_6F_{11}$ solution at 243K (a) before irradiation, (b) after 20 s irradiation, (c) after 4 min irradiation.

<u>Figure 4</u>. IR spectral changes accompanying near-UV irradiation of predominantly $Ru(CO)_3(C_2H_4)_2$ [$v(cm^{-1}) = 2081$, 2005, 1994] and some $Ru(CO)_4(C_2H_4)$ [$v(cm^{-1}) = 2105$, 2023, 1995] in C₂H₄-saturated 3-methylpentane solution at 233K (a) before irradiation, (b) after 1 min irradiation, (c) difference spectrum of (a) and (b).

Figure 5. IR difference spectral changes accompanying near-UV irradiation of Ru(CO)₃(C₂H₄)₂ in a C₂H₄-containing methylcyclohexane glass at 90K (a) after 5 min. irradiation, (b) after subsequent warming to 110K and recooling to 90K, (c) after subsequent warming to 210K and recooling to 90K. All difference spectra are obtained by digital subtraction of the IR spectrum for the glass prior to irradiation from spectra obtained in the subsequent designated treatments; declining spectral features in spectra a-c are associated with loss of Ru(CO)₃(C₂H₄)₂ in the initial 90K irradiation. Insets display the feature at 2132 cm⁻¹ associated with growth of free CO in the glass. The amount of CO in the glass after irradiation is unaffected by annealing to 110K. The 2020 and 1948 cm⁻¹ features are due to $Ru(CO)_2(C_2H_4)_2$; the 2018 and 1975 cm⁻¹ features are due to cis-Ru(CO)₂(C₂H₄)₃, and the 1953 cm⁻¹ feature is due to trans-Ru(CO)₂(C₂H₄)₃. <u>Figure 6</u>. ¹H-NMR spectral changes accompanying near-UV irradiation of $Fe(CO)_4(C_{2H_4})$ in a C₂H₄-saturated CF₃C₆F₁₁ solution at 273K, (a) before irradiation, (b) after 30 seconds irradiation. The integrals are consistent with the photochemical conversion of Fe(CO)₄(C₂H₄) to Fe(CO)₃(C₂H₄)₂.

Figure 7. (a) IR difference spectrum accompanying the same near-UV irradiation of $Fe(CO)_4(C_2H_4)$ in C_2H_4 -saturated $CF_3C_6F_{11}$ solution at 273K for which ¹H-NMR spectral changes were acquired, Figure 6; (b) IR difference spectral changes accompanying the near-UV irradiation of $Fe(CO)_4(C_2H_4)$ in a C_2H_4 saturated 3-methylpentane glass at 90K for 4 s and (c) 320 s.

Figure 8. (a) IR difference spectrum accompanying the near-UV irradiation of $Fe(CO)_3(C_2H_4)_2$ in a C_2H_4 -containing 3-methylpentane glass at 100K, the 2133 cm⁻¹ feature is associated with the growth of free CO in the glass; (b) IR difference spectrum for the irradiated sample (spectrum a) after warming to 200K and recooling to 100K. The <u>cis</u>-Fe(CO)_2(C_2H_4)_3 [v(cm⁻¹) = 1998, 1955, (a)] has isomerized to the <u>trans</u>-isomer [v(cm⁻¹) = 1942 (b)], and some Fe(CO)_3(C_2H_4)_2 [v(cm⁻¹) = 2060, 1981] has been regenerated (based on change in negative absorbances).

<u>Figure 9</u>. IR difference spectral changes accompanying near-UV irradiation of $Fe(CO)_3(C_2H_4)_2$ in a methylcyclohexane glass at 100K. The 2132 cm⁻¹ feature is associated with growth of free CO; the 2041, 1963 and 1957 cm⁻¹ features are attributed to $Fe(CO)_3(C_2H_4)$; the 2003 and 1938 cm⁻¹ features are attributed to $Fe(CO)_3(C_2H_4)$; the 2003 and 1938 cm⁻¹ features are attributed to $Fe(CO)_2(C_2H_4)_2$ (see text).

Figure 10. Infrared difference spectral changes accompanying near-UV irradiation of $Fe(CO)_3(C_3H_6)_2$ in a C₃H₆-containing methylcyclohexane glass at 100K. The 2132 cm⁻¹ feature is associated with growth of free CO. The features at 2064, 1994 cm⁻¹ are due to HFe(CO)₃(n^3 -C₃H₅), and the 1929 cm⁻¹ feature is tentatively assigned as HFe(CO)(C₃H₆)₂(n^3 -C₃H₅).

2.2.2.2.2.5.9

the support destants and the support

and a second second

いたいのからし、このなんないのか

PAZANANAN I

فالمحمد المحمد المحمد المرابع

.

الاردة والمترجة ومترجة ومرجو

DL/413/83/01 GEN/413-2

12222222

(and the second

1

TECHNICAL REPORT DISTRIBUTION LIST, GEN

	No. Copies	<u>(</u>	No. Copies
Office of Naval Research Attn: Code 413 800 N. Quincy Street Arlington, Virginia 22217	2	Dr. David Young Code 334 NORDA NSTL, Mississippi 39529	1
Dr. Bernard Douda Naval Weapons Support Center Code 5042 Crane, Indiana 47522	1	Naval Weapons Center Attn: Dr. Ron Atkins Chemistry Division China Lake, California 93555	1
Commander, Naval Air Systems Command Attn: Code 310C (H. Rosenwasser) Washington, D.C. 20360	I	Scientific Advisor Commandant of the Marine Corps Code RD-1 Washington, D.C. 20380	1
Naval Civil Engineering Laboratory Attn: Dr. R. W. Drisko Port Hueneme, California 93401	1	U.S. Army Research Office Attn: CRD-AA-IP P.O. Box 12211 Research Triangle Park, NC 27709	1
Defense Technical Information Center Building 5, Cameron Station Alexandria, Virginia 22314	12	Mr. John Boyle Materials Branch Naval Ship Engineering Center Philadelphia, Pennsylvania 19112	1
DTNSRDC Attn: Dr. G. Bosmajian Applied Chemistry Division Annapolis, Maryland 21401	1	Naval Ocean Systems Center Attn: Dr. S. Yamamoto Marine Sciences Division San Diego, California 91232	1
Dr. William Tolles Superintendent Chemistry Division, Code 6100	1		

Naval Research Laboratory Washington, D.C. 20375

and in the party

