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0. INTRODUCTION

In this article, we introduce conditions which are sufficient to guarantee
existence of a solution for a system of semilinear equations of the form
-Au1 + fl(ul’""un) = py
(0.1) “Auz + fz( UI ,...,un) = FZ

-Aun + fn(ui"“'un) =Ky

on an open (bounded or unbounded) domain E in Rd, with Dirichlet boundary
conditions. We assume each measure g, Is positive, and we show that the solution
is positive; i.e. u; 2 0 for every 1. In fact, we give a constructive procedure for
solving (0.1) with general elliptic operators in place of the Laplacian, and our
methods even allow us to replace the Laplacian with certain integro-differential
operators. See section 4 for other extensions. In (0.1), the (pk) are assumed to
be positive measures, and each f, :R9 — R is continuous. The functions f, need not
satisfy any special conditions such as dfy /@x ;2 0, but our methods yield new
results even in that case. Previous approaches to solving (0.1) in a constructive
way seem to have relied mainly on assuming that (0.1) is a quasi-monotone system
and on using the method of sub- and super-solutions. For discussions of this
approach, see {10] and {11]. Since we do not assume the system is quasi-
monotone, such methods do not apply, and even if the system is assumed to be

quasi-monotone, it is not clear how to obtain upper and lower solutions in general.
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We introduce an iterative scheme in which the iterates do not increase or decrease
monotonically, but instead, they oscillate. That is, we produce a sequence (uk) S0
that u, Sug €. Suy Suy ¢ S S Uz Sup. One might call this a pendulum
method, since the iterates swing back and forth over the solution. Much more is
known about solving one equation of the form -Aut+f(u)=p than is known about
solving (0.1). In his survey article [8], Lions discusses the single equation

-Autf(u)=p, and he polnts out that it is important for applications to extend the
results for the single equation to systems. See also (1], (4], and (7] for the case
of one equation.

For general elliptic operators, positive measures and arbitrary functions f,
our hypotheses and results are a bit complicated to state, and we refer the reader
to sections 1, 2, and 3. (In particular, Theorems(2.9) and (3.1) contain the main
results.) In this introduction, we content ourselves with describing the hypotheses,
methods and results In the case where we keep the Laplacian with Dirichlet bound-
ary conditions on a connected domain E in (0.1), fk(O,...,0)=0. and where

(0.2) yk(dx) = gk(x)dx with B >0onkE,
and for every k and j, there is a constant Py > 0 so that
(0.3) afk/axj(ui,uz,...,un) 2 pkj for Uy 20, ..., u 2 0.

We emphasize that assumptions (0.2) and (0.3) are for the purposes of discussion
in this section only: in sections 2 and 3, we treat a much more general situation.

Hypothesis (0.3) is a type of quasi-monotonicity assumption. But even in this

~
4

.

S,

£ r
~

?, SO
‘

E

3

N

»-‘-\.




-y -

‘0'

P N

s a s

e, e,

WU Ay &

8 W

&

NSO

%, 3

Pa ¢

1

T

special case, one would need upper and lower solutions in order to apply the
monotone iteration schemes of quasi-monotone systems. It is not at all clear how
to obtain upper and lower solutions, in general, and we completely avoid this
problem. With hypotheses (0.2) and (0.3) in force, we make two crucial
assumptions. Here Is the first one. Let V = (-8)! onE, and let M be Lebesgue

measure on E. Assume

(0.4) () Vg (wa.e. M) foreveryk
(i) For some k, M(Vg, > VA (Vgy,...,Vg )} > 0.

Part (1) seems quite a reasonable assumption. From the potential theory point of
view, part (ii) is interesting. Part (ii) is equivalent to saying that the measure
g dM is not a balayage of the measure fi (VBgse-s VR )dM. This is quite often
verifiable. For example, when we pass to discussing general measures p in
section 2, the analogue of this requirement will be that "y is not a balayage of the
measure G(Vu)dM" (see (2.4)). It is interesting to note that this is automatically
guaranteed if the dimension of the space d is greater than or equal to 2, and if the
measure u charges a point. Condition /i) also implies M(ka(Vgl,...,Vgn) {x)>0,
and it is well-known that we then have ka(Vgl,....Vgn) (o a.e. (M).

So if this first crucial assumption (0.4) holds, do the following. Set

Jk(ul’UZ’""un) = fk(ul.u ....,un) if u120,...,un20,

=0 otherwise.

Set uk V[gk Jk(gl' .gn)], and define inductively = V[gk Jk(u-j, ,un)].
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Then 1t i not difficult to see that o£ S y'< ... < 2 s @<yl 0l
increases to a function & and Léj+1 decreases to a function by. It is easy to show
that 8 = V[gk'Jk(bt""’bnn and bk = V[gk-Jk(al.....an)].

In addition, for each k, either & < bk onall of E,

or a, =bkonall ofE. Tt lseasytosfnwt.hatbk 2 0. What is a bit

more delicate isthefactthatbk) OonE. To prove this, wetsegk> 0 and
Brownian motion (or, in general, the Markov process associated with the elliptic or
integro-differential operator). If a, = by for every k, then

bk= v[gk"]k(bi""'bn)]' Since bk 2 0, we may rewrite this as bk =
V[gk-fk(bi,...,bn)], and we are done (take the Laplacian of both sides -- in the sense

AT T L. T T A S %

of distributions). If a 4 bk for some k, we must restart the iteration. Now we

need our second crucial hypothesis. Assume

(0.5) Thereis a nonnegative function Fy on E and numbers 4, and

LI that
(1) {Fk>0} is contained in a compact set Kk which 1s contained in {ak>

6k}ﬂ{bk<"k}
(ii) Fk S Jk(bl’bz,-n’bk_l.bk‘VFk’bk+1,..-'bn)'Jk(aj ’---’an)
(v MFD0) > 0.

We show in section 2 that the collection of all functions F, satisfying (1) , (ii) and
(iv) is nonempty: it contains lots of functions. One need only check whether or not
one of them also satisfies (111). Part (iii) should be thought of as a geometric
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condition: the larger the domain is, the more likely it is that (1ii) will be
satisfled. (For example, it often suffices to use an eigenfunction of -A for Fk. Let
Jk > 0 be small and M > 0 be large. In “nice" situations, we expect 3 and bk to
be continuous functions, so Gk = {ak > Jk' bk < 1rk} will be open. Choose an open
set H so that the closure of H is contained in Gk’ and let ¢ be the first
eigenfunction of -A on H (with Dirichlet boundary conditions) and eigenvalue A > 0.
Normalize ¢ so that sup{¢(x): x€H} = 1. Let W be the inverse of -AonH — so W <
V. Assume V¢ is bounded by a constant m, and set Fk = c¢ for some constant ¢ to
be determined below. Then pkkW(ch [a Ve ¢}) pkkW(c¢) provided we choose
¢ so small that 6k/c > m. But PkkW(CW 2 pkkc¢/)\ This is larger than c¢ if A
is small — that is, if G and H are large. Thus (i), (iii) and (iv) are satisfied.
Conditlon (ii) can be achieved by choosing ¢ small.) Hypothesis (0.5) is a
simplified version of hypothesis (2.8).

If (0.5) holds, we can restart the iteration by semng wk by -VF,., and w&ﬂ
= Vig T, (., )] to obtain a, S wf < w <... Swdswish. So whd increases
toa; 22 and w&j 1 decreases to by < by. Clearly it may happen again that we
obtain a < by for some k. At this point, the reader will realize that we need to
apply a transfinite induction argument to show that we must restart the procedure
at most countably many times. We show in the transfinite induction argument that
each time we restart, we can use the functions CFI' cFZ..... an. where ¢ is a
suitably small positive constant. To summarize, if we assume {0.2), (0.3), (0.4),

and (0.5), then there are nonnegative functions Ugs U, .ovy U solving (0.1).
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In order to treat (0.1) with general elliptic operators and measures, we depend
heavily on using potential theory as it is formulated in the probabilistic potentlal
theory literature. We recall most of what the reader needs to know in the text;
Chapter VI of [2] Is a good reference. In section {, we introduce the potential
theory framework. In particular, this is necessary to drop hypothesis (0.3). In
section 2, we discuss analogues in the general situation of the hypotheses we
introduced in this section, and we show how to solve (0.1). The main result is
(2.9). The hypotheses look a bit forbidding when first encountered, but they are
actually quite natural as we have tried to indicate, and we discuss them further in
section 3. We also give another version of (2.9) in (3.1), where we drop a
hypothesis (by replacing it with several more!). In section 4, we briefly indicate
some extensions. The appendix is devoted to a technical result necessary to show
b > 0. All Markov processes are confined to the appendix.

ACKNOWLEDGEMENT I would like to thank P. J. McKenna and M. Rao for several

stimulating conversations on the subjects contained in this article.

NOTATION In general, notation is standard and can be found, for example, in
Chapter VI of [2]). We introduce most of it as needed. If E is any o-algebra, then
we use the same letter E to denote the collection of all E-measurable functions
which are real-valued. If D is any collection of functions, then bD (resp. pD) is the
collection of bounded (resp. positive) functions in D. Thus pbE is the collection of
positive and bounded E-measuratie real-valued functions. Let (A,A,u) be a

measure space, let (B,B) be a measurable space, and let ¢: A—B be measurable.




E

We denote the image measure of p under ® by ®(u); that is, ®(u)(C) = ;.l(dfl (G)
for every G € B. A measure putting all of its mass at the point x will be denoted
by €
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1.  THE POTENTIAL THEORY FRAMEWORK

Let E be an open domaln In RY, and let £ be its Borel fleld. For each k with
15kn, let PX be a sub-Markov semigroup on (E,6), and let UJ be its resolvent.
(Thet is, for each xEE, PX{x,e) Is a sb-probabllity measure on (E,E). If we define
PXF(d = fFiy)Pix,dy), then PPXF) = PX £, The resolvent 1s U3F(x) =
[P TP
NOTATION. C(E) is the collection of all continuous functions on E. C_(E) (resp.
CZC(E)) Is the collection of all continuous functions on E with compact support in E
(resp. and having two continuous derivatives). Cj(E) is the collection of functions
1n C(E) vanishing at the boundary of E. We let bE_ be the collection of bounded E-

measurable functions vanishing off a compact set contained in E.
We assume:

(1.0) For each >0, UB:bE_ — Cy(E) and lim
FE€C_E).

9 _quEfzf whenever
(1.1) (reference measure) There is a Radon measure m on (E,E) so that
UE(X,O) <(mk for each x in E.
(1.2) (duality) There is another sub-Markov semigroup RI: on (E,£) with
resolvent Wz so that
I R¥ng dm, = f(P“g) dm,
for every f and g in pE. For each q>0, WJ:bE_— C;,(E) and
lim _,  qWEF=F whenever f € C ().
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(1.3) (infinitesimal generators) There are linear operators L end L.:
with domains 0, C2 (E) and Dy, XC2(E) so that for every f in C2(E),
(f-P‘{ﬂ/t converges boundedly to -L.kf as t tends to zero, and (f-R':f)/t
converges boundedly to -L:f as t tends to zero. In addition, L :
C2E) —+bE_and L, : C2E) —+ bE,

These conditions are satisfied by a huge class of strong Feller semigroups, the

best known of which has L, = A/2 with Dirichlet boundary conditions.

In this case, PI: is the semigroup of a Brownian motion "killed" when it reaches

the boundary of E. This example also satisfies the additional hypothesis (1.5)

below if E is connected. There is also a large class of semigroups satisfying

these conditions for which L and L: are non-local integro-differential

operators.

DEFINITION A function fEpE is said to be excessive for a resolvent (V) on (E,f)
if aV7FSF for every a>0 and if lim _, aVf=f.

As a consequence of the numbered assumptions above, there is a function

uk(x,y) € pExE so that:

(1.4) (1) x —+u (x,y) is excessive for ud;
(i) y —+ 4 (x,y) is excessive for Wz;
(i11) Uof(x) J uk(x,y)f(y) m, (dy) for every f € pE;
(iv) Wk fly) =f uk(x,y)f(x) mk(dx) for every f € pE;

(v) Foreachy E E, x—+uk(x, ) is lower semicontinuous;




(vi) Foreachx€E, y--buk(x,y) is lower semicontinuous.

For the construction of this function, see Chapter VI of [2]). This is the precise
version of the “Green function” we need to define potentials of measures. We
assume

(1.5) u (x,y) > O for every x, y €E.

DEFINITION If p is a positive measure on (E,E), then the potential of u is defined

to be U plx) = ]Euk(x,y)p(dy). If p=p-v is the difference of the two positive
measures p ard v, and if Uk(y-w) { o a.e. (mk), then we set

U p) = Upp()-Uvix) on (U (p+1) <o}
= o on {Uk(p+y)=co).
The following properties are implied by (1.4 v, vi) and (1.5):
(1.6) (i) If K is compact in E, then 1nf{uk(x,y):x€K} > 0, and
inf{uk(x,y):yGK} > 0.
(1) If p is a signed measure on (E,E) with Uklpl(co a.e. (mk), then

U, p is locally integrable. That is, fKUkp(x) my (dx) < o whenever
K is compact in E.

See [2].
Our purpose in this section is to develop a bit of potential theory necessary to

formulate conditions sufficient to insure the existence of solutions for the following

system of semilinear equations:
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‘ Loy, + ) =y
’ Here, each My is a positive measure on (E,E) and each fk: Rd—#R. Our analysis of
L
‘. the problem depends on adopting the following perspective which is useful in
:_'. potential theory.

) Let E,, Ey,..., E_ be ndistinct coples of E, and let F = U, 1 E, . In general,
; we will denote a point of E by x (without a subscript) and a point in E by x (the
j subscript indicating in which copy of E the point lies). Let e :E —E, be the

‘ Injection e x=x. Let dg be a metric on E compatible with the topology of E.

.:; Define a metric di- on F by setting
<

j dF(xk,yj) = dE(X,Y) if k:j

=1 otherwise,

g
N whenever x, =e, x and y 8- This metric induces a topology on F which obviously
LY
3 extends the topology on E. Its Borel field F is characterized by the fact that its

trace on E,_ Is Ek‘ a copy of E.

. Define

N .

o 8 B= ey gl
and define a new sub-Markov semigroup Pl on F by setting
\ (1.9 Pflg) =/ Ekf (y)ek(P‘{(x.dy))
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4 whenever x, =e,x and f € bF. It is easy to check that P, is a semigroup on F, and 1t

; has infinitesimal generator

a

s _<n

: (1.10) L= z(___lLklEk y .

! and resolvent

W= [:e'tht dt .

3 Note that Uq(xk,O) = ek(UE(x,O)) whenever X e X If we define the measure M on

(F, F) by setting _ H

\

: (1.11) M=32 e m),

: then U9(z,0) (<M for every z in F. The potential density ufe,e) for W0 is given by
()

~ ulqey) = u Ooy) i k = } H
\ =0 otherwise

for x e x and y 5785

,. We find this perspective handy because in solving (1.7), we need to analyze not

E the inverse of the linear system H"l’ -Lz,...,-Ln), but instead the inverse of the

perturbed linear system

(1-12) ’Liui - dilul - alzuz ~ ees T ainun

Loth ™ Tt " %% T " It
(The a; jare positive functions on E to be chosen in sections 2 and 3. In general,
they may be unbounded and have infinities.) We may obtain the inverse of this

o o
> asrrd
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[}
" system by perturbing the resolvent U9 as follows. Define a kernel B(z,dy) from
E (F,F) to (F,F): for 1sk<n, set
_<n

: B(xk’.) = 2j=1akj (X)ij(.)
‘ where «x j=e - For each q 2 0, define a new kernel on (F,F) by setting
i
: _x ™

Vi=5.2 LBk,
) : The infinite sum makes sense since each term is positive. It is easy to check that

VA catisfies the resolvent equation: if p20 and q2p, then VP = V3+(g-p)VPVA. If

’ the a j are too large, then Vo(z.O) may not be g-finite for some z in F. We

always assume:
(1.13) There is a strictly positive function ¥ € F so that Vo\P(z) (o

for every z in F.

: If f € pF, an application of the resolvent equation shows that VF is excessive.

N.

. Since VI is a resolvent and we are assuming (1.13), we have the following

A maximum principle.
(1.14) PROPOSITION ([9],IX,T68). Let f € pF. If h Is an excessive function
for (V) and if Vf < hon {0}, then VS honF.

: (1.15) NOTATION Vix,e) = VO (x,e).

This perturbation V3 of U9 is well-understood in the classical case when the

%5 and U9 are well-behaved.
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2 (1.16) PROPOSITION [3] Assume F Is Jocally compact with a countable base and

that Pt is a Feller semigroup with strong infinitesimal generator (L, D{L)) on

:: . Coﬂ-'). lfBlsammnsoperatormCo(F),ﬁ\en\ﬂlsthersolventofastrwg
f{, Feller semigroup on CO(F) with infinitesimal generator (L+B, D(L)).

\}

N} We will work without such strong hypotheses. In particular, Pt may not be Feller
N and B is usually not continuous.

w (1.17) DEFINITION Set

: | (1.18)  vizy) = 3.5 [UBKule, @) = 5,2 | ulwiy) UB)K(z,dw)
P : 2 =0 2y z(_—,o F 3/ ) .

N
. If p is a positive or signed measure on F, then the potential of p, Vp, is defined
R * with the density v just as Uy was defined with the density u. In section 2,

» hypothesis (2.1c) will imply a; 5 > 0, and this in turn implies v(z,y) > 0.

<
‘ (1.19) LEMMA (i) If p Is a signed measure on (F,F) with V|p] { © a.e. (M), then
; [KVp dM { o whenever KC F is compact. That is, Vp is locally integrable.
R _
N (i1) Assume (2.1c). If K C F is compact, then Inf{v(z,y): y€K} > O for every z in F
- and inf{v(z,y): zEK} ) O for every y inF.

- PROOF (1) Vipl = U(lpl + 3% BIUBXUIpl). Strce the right hand side is the

- U-potential of a positive measure, it must be locally integrable by (1.61i) and the
P definition of U. Since Vlpl is locally integrable, Vp is locally integrable.

(1) This follows from (1.61) and (2.1c) since v(x,y) 2 ulx,y). Q.E.D.

,

(1.20) PROPOSITION Let p be a signed measure on (F,F) so that Vip} { o a.e.

2

)

g

«3
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M) Then (L+B)Vp = -p In the sense that
(1.21) [Fu.*nvp &M+ - FBVA) M =500
whenever £ € C2(F), and where
* n ¥
L =24 W g -
PROOF Assume first that p is a positive measure on (F,F) and let f € Pczc(Ek)

By (1.19), Vp is locally integrable. Since the support of L: Is compact in E; by
hypothesis (1.3), the following integrals are well-defined and we have

* *

!Ek(Lk AVp dM = ]Ek(Lk 35 UB)JUp aM.
Since the Integrands are absolutely integrable, Fubini’s theorem applies, and we
may rewrite (1.22) as

(1.23) ]Ek(l_:f)Up M+ 3% ;Eka;n (UB)Up aM.

To analyze (1.23), we need the following result.

(1.24) LEMMA If y Is a positive measure on (E, E) with U,y < @ a.e. (m,), then
129 f 0 AUy dmy =y

*e _ k _ k
PROOF Recall that WL f= Wk[llrnt _’O(Rtf-f)/t] = lim,_, oW, R F-N/t  since
the convergence is bounded by hypothesis (1.3). But this last term may be
rewritten as

-------
-----
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Since

IEIL:fIUky dmy < w,
Fubini's theorem applies to the first term in (1.25) and ylelds

f_ W, Lf dy = -y(.
QE.D.

Thus the first term in (1.23) may be rev - ..ten as -p(f), while the infinite sum in

(1.23) may be rewritten as

o) lEk(l{' AUBUYp M = -5 j:JEkf(BU)jp dM.
Since 20 and (BU)Jp 2 0, we may rewrite this as

"lEJZjS | BUYp aM = -lEkf(BVp) dM.

This proves (1.21) for p20 and fEpCZ(E,). The general case follows by linearity.
QE.D.

Now how can this potential theory aid us in solving (1.7)7 Formally, we may

rewrite (1.7) as

(1.26) ’Liul'ql Uy U = ”l'Gl(x’ui""’un)

'Lnun‘anlul-""amun =yn-Gn(x,u1....,un) .

where Gk(x,ui....,un) = “kl(X)ui+"‘+“kn(x)un+fk(“1'""un)‘ Define a function

L T )
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H:FxRI-R by setting Hiq .4 = Gy (x,uy 5.t ) for x =g, x. If wF — R, let
G(xk,u) H(xk,u(xl).u(xz), .u(x }) where x J Jx. If we try to solve (1.26) by
Inverting, we find we need to solve the following equation for u:

(1.27) u = V[p-Gle,ule})] ,

where p and V are defined above. Once we find such a function u, Prop. (1.20)
shows that -(L+B)u = p-G(e,u(s)). Thus, if we set u, (x) = u(eix), uz(x) = u(ezx).

vers un(x) = u(enx). we have that the functions Ugs Upy eeny U solve (1.26), and so
they solve (1.7).

e
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2. THE MAIN ARGUMENT

In this section, we develop hypotheses which allow us to solve the equation
u=V[u-G(e,ufe))]. We assume the notation and hypotheses discussed in section 1.
(In particular, we assume (1.0) through (1.3), (1.5) and (1.13).) In addition, we
assume the following conditions throughout this section.

2.1) (a) p is a positive measure, u(F) > 0 and Vp ( @ a.e. M).
(b) G(x,u) is continuous in u, and G(x,0) = 0.
(c) The functions a; 3 have been chosen strictly positive so that
Gix,u) < G(x,v) whenever 0 < u(e) < v(e) S Vul(e).

Recall (2.1c) implies v(z,y) > O for every zand y in F.

For most of this section, we work with a "cutoff” of G, J(u)(z), defined as follows:
for x in E and X e X

22 Jbg) =Gl 920,...,ule, 020}

(2.3) PROPOSITION Assume (2.1) and the following condition:
(2.9 M(Vy > VG(Vu)) > 0.

Then there are two functions u, and v, onFsothatuy Svy SVp,u =
Vhril(vl)], and vy = V[p-J(ui)].

NOTATION If w € F, let H(w) = p-J(w). We also adopt the convention co-w=c.
REMARK By (2.4), M(VG(Vp)<w) > 0. This implies VG(Vy) (  a.e. (M). For
If M(VG(Vp)=w) > 0, then we would have aV*(VG(Vp)) = o since v¥(z,0) is
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bounded away from zero on compacts.

PROOF Set wy = Vi, and define w, = VH(w,). Note that w, is well-defined a.e.
M) since Vyu ( w a.e. (M) and J 20. By (2.4), M(w, > 0) > 0. Since J20,
wzswi. Now set w3 = VH(wZ): once again, this is well-defined a.e. (M). Since
woSwy, J(wo)SJ(w,) by (2.1c) and (2.2). Thus wy2w,. Since J(w,)20,
waSVp=w,. Ve have proved that w,Sw,Sw,. This alternating or oscillating
behavior continues. By induction, define w ,, = VH(w,). Note that w +q Is well-
defined a.e. M).

(2.5) LEMMA Assume \) ... % Wok < ka“S Swl. Then
Yo%k 25V 2k 435V 2k 1

PROOF The lemma follows immediately from these observations:
M) Jwypg) S Jwy, o) Implies wy, 2w, .
i) Jlwyp ) 230wy implies wo, +25%op et
(1) Jwpiyg) * J0zi1) Implies Wi i3 2 Wore2:
(ivi J (Wope2) 2] (w2k) implies Wolt3 S Wor +H
Q.E.D.

Therefore, the sequence (ka) increases to a function ug, while the sequence
(w2k+1) decreases to a function vy with -0 € Uy < vy { Vu a.e. M). (Note that
(2.4) and (1.5) imply strict inequality in vy < Vu.) Since Woral = Vu-V] (Wor)s
the monotone convergence theorem yields vy =Vu-VJ (ul). Since J (wi) 2] (w2k + 1)
and VJ(w y) { = a.e. M) by (2.4), we may apply the dominated convergence

theorem to the equality Wors2 = Vu-VJ (wZk +1) to obtain uy = Vu-V] (vi).
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Q.E.D.

The measure y can always be decomposed as r-dM+ps. where 45 is singular ‘
with rospect toM and r 2 0. Assume

(26)  r>OonF. |

(2.7) LEMMA Let a and b betwofucuorsmFsoﬂ\atulSaSbSVp,
M(@®>a) > 0, and suppose that a = Vp-VI(®) and b = Vpr-VI{a). Then b-a)0
{remember co-o=m) and b)>0 on F.

PROOF By hypothesis, M(b-a=V([J(b)-J(a)}>0) > 0, and b 2 a, so MJ(®)>J(a)) > O

and J(b) 2 J(a). Therefore, b-a = V{J(b)-J(a)] D O since v(e,s) > O.

Since b + VI(a) = Vy, e have that V](a) <

Vi on {6>0}. Thus we have VI(a) € Vp on {a>0} J {J(a)>0} since a< b. By

(1.14), VI(a) £ VuonF. Thus b must be nonnegative. Now assume {b=0} is

nonempty, and let z € {b=0}. Then we have Vu(2)=VJ(a)(z){w. Since b-a > 0,

a(z)<0 and VI(b)(2)>Vpu(z). Note that {VI(b)>Vp} is a finely open set (for the

fine topology generated by the resolvent (V7). By (A.1) and (2.6),

Vju(w) <VI(a) (w) for some w in F. But this contradicts b 20. Therefore, {b=0} =

. _ Q.E.D.
The next hypothesis will be used in a cruclal way in the main theorem in this

section. It will be discussed further in the remark following it and also in section

3. See also the djscussion in the introduction. Assume:

(2.8) (a) There are positive functions pkj:F — R so that




................
..............
.......................

(1) Je+y)ix)-J(e) (xk)Zijgi ij(" j)y(x J) a.e. (M) whenever
X =e X and c and y are functions with u; ScSctySv,;
(11) Whenever K C E; s compact, inflp, (2): 2€K} > 0.
(NOTATION: Let &(y) 64 )=3,2 1y x, Y(x)-
(b) There is a nonnegative bounded function f on F and numbers 4>0 and
10 so that
(1) the set {f>0} is contained in a compact set K. and K, C
fu>dN{v <) MIDO) > 0.
(ifs J(vl—Vf)-J(ul).
() f < 0(V[4>(Vf)1{u1>vﬂ]).

REMARK Condition (2.8b(iii)) is the difficult one to fulfill, consistent with
achieving (1.13). Let us show that (2.8b(1)) and (2.8b(i1)) can always be

achieved. If u, {v,, we may choose 6>0 and >0 so that

Mluy>é, v <m) > 0. Let g be any bounded nonnegative function so

that {g>0} has compact closure in F contained in [ui)é'}ﬂ[v1 (n}, Vg is everywhere
finite on F, M(g>0)>0 and J(vl)-J(ul) 2 g. Let 0<p<1. Then IJ(vi-Vpg)-J(ui)IZ
®(v,-u,-Vpg) on {v,-u, 2Vpg}. Recall that vqug =V (v)-J(uy)]. Since (1.5,2.1b)
imply inf{(vi-ul)(z): z € {g>0}} > 0, we also have that inf{(J(vl)-J(ui)) (2):z€
{£>0}} = c>0. If we choose p so small that pg < J(v)-J{u;) on {g>0}, we have that
0(v1-ul-Vpg)>d)O on {g>0} since lnf[pkk(z):z € {g)O}ﬂEk})O, 1<k<n. Thus, by
taking an even smaller p so that pg < d, we obtain pg < J(v,-Vpg)-J(u,), and we set

f=pg.

...............
. 2N

.......
......



(2.9) THEOREM Assume (2.1), (2.4), (2.6) and (2.8). There Is a function u so
that 0 < u < Vp and u = V[pr-Gle,ule))].
PROOF The heart of this proof is a transfinite induction argument. We construct
two collections of functions (u T) CF and (vy) C F: they are indexed by the ordinals
'ERE
NOTATION Set ay =~ and b { = Vu. For every ordinal §22, set ag = sc.p{uy:
1Sy<B}, and set bﬁ = inf {vy: 1<y<p).

For each ordinal §21, define the proposition ¢(8) to be the statement:

(2.10) If M(ap(bﬂbo. then there are functions uB and Vﬂ so that
ag < uﬁ < vg Sbﬁ <V, M(vp(bﬁ))O. ug = V[p-J(vB)], and
vB=V[p-J (up)].

We have already verified the truth of ¢(1) in Prop. (2.3). Let us assume ¢(y) is
true for every y < B, and prove ¢(p) is true. Since bY =Vu-V] (ay) for every
y<B, the monotone convergence theorem lets us conclude that bB=Vp-VJ (a B).
Similarly, the dominated convergence theorem lets us conclude that a B=Vy-VJ ® B).
Seta= ap and b = by, and assume M(a<b) > 0. By (2.7), bda and b>0 on F.

Let f be the function chosen in (2.8b). We now show that for some p with
0<p<1, pf satisfies the conditions in (2.8b) if we replace uy with a and vy with b.
(We essentially repeat the argument given in the remark following (2.8).)

First note that {pf>0} C [u1)6, vy (m} C {a>$, b<n}, and M(pf>0)>0. Second,
since inf{(b-a) (2)=V[I(b)-J(a)](z): z € {pf>0}} > 0, p can be chosen small so that
J(b)-J(a)>pf on {H0}. Thus b-a-VpHcH0 on {pH0}. It follows that ®(b-a-Vpf)>d>0




on {pH 0} since lnf{pkk(z): z€ {pf)O}nEk} »0,1<ks<n

We may take an even smaller p

so that ®(b-a-Vpf) > pf and we obtain pf < J(b-Vpf)-J(a). Third, and finally, we
show that pf < ®(V[®(VpH1 {a)fo}])' Multiplying (2.8b(111)) by p yields pf <
Q(V[Nfo)l(ul)vn]). Since {u1>Vf} C {a>Vpf}, we have the result.

Set € = Vpf, w1=b-e, w2=VH(w1) and vy3=VH(w2).

(2.11) LEMMA a<w, < wq Sw,.

PROOF Since pf < J(b-Vpf-J(a), V[I(®)-J(a)] 2 €, or b-e2a. Thus Wy 2a. To
obtain Wo 2 a, we need VH(b-€¢) 2 VH(b), or V[J(b)-J(b-€)] 2 0. This holds since J
is Increasing and b 2 b-e. To obtain Wo < Wy we need VH(a)-VH(b-€} 2 €, or
V{J{b-¢)-(a))2Vpf. This holds since pfSJ(b-Vpf)-J(a). Since w,Sw,, we obtain
w32w2. Finally, to obtain w3Sw1, we need VH(WZ) <b-€, or VH{VH(b-¢€)}Sb-¢.
That is, we need V[u-J(VH(b-€))]<V([p-J(a)]-€, or VI(a)+VpfSVI(VH(b-€)). To
obtain this, we need only have J(a)+pf < J(VH(b-€)), or pf<J(VH(b-¢)) - J(a) =
J(@+V{I®)-J(b-€)))-J(a). By (2.8a), it suffices to have pf < ®(V[I(b)-J(b-€)]))

on {uy >0} C {a>0}. Applying (2.8a) again, we see it suffices to have pf S
®(VI®(VpH 1 (b)fo}])' Since {Vpf<a) C {Vpf<b}, we see that it suffices to have

(2.12) pf < 4’(V[¢(fo}1{vpf<a}]).
We showed before (2.11) that f has this property. Q.E.D.

Now we can set w .y = VH(w) as we did earlier in this section. The proof of

Prop. (2.3) shows that we obtain functions ug S vg 0 that vg = Vy-VJ(uﬁ) and ug=
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Vi-Vivg): we have verified ¢(). Choose a finite measure N on (F,F) which 1s j
equivalent to M so that N(vl-u1)<oo.. The sequence u(8)=N(vp-uﬂ) Is a positive and
strictly decreasing sequence. Thus m(§)=0 for some countable ordinal 8. That is,
there is a f§ so that uB=bB=vB=u. But then u = Vu-VI(u). By (2.7), u2 0, so we
have u = Vp-VG(e,u(s)). This concludes the proof of (2.9).

Q.E.D.
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3. THE FINAL RESWLT AM) DISCUSSION OF HYPOTHESES

In this section, we again assume the notations and hypotheses of section {.
This next result drops the hypothesis (2.6) {but adds some others !).

(3.1) THEOREM Assume (2.1) and suppose there is a decreasing sequence of
functions by on F so that
) RX0onF;
) lm Vb =03
T MV DVGV(p+h ) > 0.
Assume (2.8). (Note: the function f may vary with k.) Then there iIs a
function u20 with ,=V[p-G(e,u(e))].

PROOF By (ill), VIV (p+hk) = VGV(u+hy ) (o on a set of positive measure, and
hence a.e. M). Let & = J(V(,u-l-hi)), so V& ( o a.e. (M). For each k, the
hypotheses of Theorem (2.9) are satisfied, so there is a function Y with0 < U <
V(p-!hk) and y = V[p+hk-J(uk)]. Since Y SV +hk). J(uk) <P, s0 o = J(uk)/tb
is a bounded sequence in L®(M). By Alaoglu’s theorem, there is a subsequence
Sl of ¢, and a function w 2 0 so that fcku)g dM converges to fwg dM for every
g€ Ll(M). For almost every z, v(z,0)®(e) € Li(M), S0 VOckw = VJ(ukw)
converges to Vw. Since Y = V[F“'\((n)""%u)”' U () MuSt converge (a.e.) toa
functionu 2 0. Since J (uk) < & and VP {  a.e. (M), we may apply the dominated

convergence theorem to conclude 1im VJ (uk U)) = VJ(u), and we have proved that
u= V[}l'J(U)]- O'EQD.
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Theorem (3.1) Is perhaps not quite as satisfylng as the result in section 2
since u is obtained by a compactiéss method instead of monotone approximation.
One might hope that since the hy decrease, the u should also decrease. This does
not seem to be the'case, however, and one must be careful to recall that J is not a
local function of its argument. For example, suppose we try to prove the u
decrease. By subtracting, we obtain y-u .y +VII(4)-Jlu )] = Vih-h 4], s0
VI (uk)-J(uk +1)] < V[hk-hk +1] on {uk>uk +1). At this point it is tempting to say
{3 (uk))J (uk “)}C{uk>uk + 1} (which is incorrect), so the maximum principle ylelds
ViJ (uk)-J (uk +1)] < V[hk-hk + 1] everywhere. This would lead to the (incorrect)
conclusion that LA WeE

We now discuss the hypotheses in sections { and 2.
Hypotheses (1.0) throuph (1.3), (1.5). These hypotheses are quite reasonable and

cover a large class of elliptic and integro-differential operators.
Hypothesis(1.13) The condition V¥ { o is necessary to insure we have a non-

trivial potential theory: whether or not it is satisfied depends on how large the
ay j are.

Hypothesis (2.1) Parts‘(a) and (b) are simple requirements. Part (c) is the tricky

one. Note that Vp depends on the a 5 8s the ap § Brow, so does V. There are
two situations in which this hypothesis might be easily satisfied. First, if

afk/ax.j > O for all k and j, then the a4 can be chosen to be zero. In this case,

(1.13) is instantly satisfied. Or it may be the case that of, /9x : is bounded below,

say by Ekj‘ If Ekj<0, set ak_j: -{kj; otherwise, set akj=0. In this case, (1.13)

------ agw.

“-.“‘ -t
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may or may not be satisfied. In the general case, it is best to adopt the following

philosophy. Having chosen a jZO so that (1.13) holds, hypotheses (2.1), (2.4) and
(2.8) delineate a class of measures u for which (1.7) can be solved. It would be
nice to have a deeper understanding of the relationships between (2.1) and (1.13).
Hypothesis (2.4) This is an interesting and suggestive one. If VusVG(Vp)

everywhere, 1t is known in probability and potential theory that p is a balayage of
G(Vp). It Is easy to cite at least one condition forbidding this and so guaranteeing
that (2.4) holds: if u charges a polar set (i.e. a set contained in the infinitles of an
excessive function), then it cannot be the balayage of a function (and note that

G(Vp) 1s a function).

Hypothesis (2.8) Part (a) is a simple requirement which can always be achieved by

Increasing the a,( slightly if necessary. Part (b) is a nontrivial assumption.
Parts (i) and (ii) can always be achieved, as is shown in the Remark following the
hypothesis. Part (ii1) is the hard part. Since Uy 2 a, it may sometimes be easier
to check (ill) with a replacing u,. Notice that while hypotheses (2.1) and (2.4)
seem pretty close to optimal for our presentation, hypothesis(2.8) is really more
than is needed. We present it in this form as an attempt to render a complicated
result a bit more palatable. By following the proof of (2.9), the reader will see
exactly what is needed.
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4. EXTENSIONS

The methods and theorems we have discussed can be extended to parabolic

BE Iy

N
)
)
%
A
§
i
X




¥,
]
| 21
"
2,
o~
? semigroups. For example, Ly could be 3/8t-A. Hypotheses (1.5) and (1.61) fail in
2 this case, but slight modifications to some of the proofs overcome these
J, difficulties. It is also possible to solve infinite systems of semllinear equations |
» using these methods. Once again, some slight modifications to some of the
"
3 hypotheses are needed, and we leave these to the interested reader. It is an
elementary exercise to reformulate all of these results to solve equations in which
>
z the local nonlinearities fi are replaced with nonlocal nonlinearities of the form
"; £, Dgu; &),....D u (), where £, :R"R and where D, =D, (x,e) is a positive kernel.
.
\:
I
L4
C4
.l
Ca
4
]
o
2
. )
]
%)
v,
‘.
A
b
“
B
]
4
:
3

T T S R NI R L S 4
» .

£an




A e
oo ,

L -

e © O r .

APPENDIX.

At one crucial point in the proof of (2.7), we need the following fact. (All
hypotheses and notations of sections 1 and 2 are assumed here.)

(A.1) PROPOSITION Let z € {(VI®)>Vp} = {a<0} C {J(a)=0). If Vu(2)=VI(a)(2),
then Vu(w)<{VI(a)(w) for some w in F.

This proposition depends on hypothesis (2.6), among others. There is
undoubtedly a purely potential theoretic way to prove this result, but we resort to a
proof using Markov processes. In order to do this, we apply some work of
Bouleau [3]. ‘

Let h = UV¥: this function is finite on F by (1.13) and is bounded away from
zero on compacts in F by (1.61). Define two new kernels Y and C on (F,F) by
setting Y(z,0)=h"! (2)U(z,s) and C(z,)=B(z,®)h(e). Recall that Y is the zero
potential YO of a sub-Markovian resolvent (Y % on (F,F). Hypothesis (1.0) implies
that (Y?) is the resolvent of a right Markov process on (F,F). For more
information about (Y®), see [6). For information about right processes, see [5]
and [2]. Now let 8 be a new point not contained in F, set F* =F U {8}, and F* =
o(F,d). Extend the resolvent (YY) to F* by setting aY%(z,{3}) = 1-aY%(z,F) for
every z in F and aY%(3,{3))=1: (Y%) so extended is a Markovian resolvent on (F’,
F*). Extend C to F* by setting C(z,{3})=0 for every z in F and C(3,F')=0. Note
that if we define

2% = 3.5 Yoy’




® f}ﬁﬁﬁ-

-

}]2,.

LA,

Sh b ik

N/ )
P ver

ALY

then ZF = b }VF for every f € pF with £(3)=0. Let us compute the function

b= 3,5 OK 1 = 10 + 152, UBMUW

< ip + KV (o

The function b is invariant for the resolvent (Z%) [3]. Bouleau [3] shows that since
buis finite, the resolvent (D%) defined by D%(z,0)=b"} (2)Z%(z,e)ble} is the resolvent
of a right Markov process X = (2, G, G, X;, 6,, (P*),¢ps). We use this process
to prove (A.1). Note that Df = 5120 = 6™ h v, so G = (VIBIV) =
{D(b-iJ(b)))D(b.lp)]: this set is finely open for X. What does this mean? It
means that If we define T = inf{t > 0: X, € G, then T>0 PZ almost surely
whenever z € G. Recall that p = redM + p° and r>0 on F. By the strong Markov
property, |
(A.2) EZ Db r(xp)] = Ezf:b'jr(xs)ds CEY :b'ir(xs)ds = Db lr(),
since b ir > 0 and TYO P almost surely. Thus Ez[Db'lp(XT)] < Db'ly(z) =
Db i@ @. Now compute

A3 ETE a0 = T e xgds = B 0 0y ds
=06 @,
since J(a)(X,) is zero provided s<T (recall J(a) = 0 on G). Thus we see
EZ0b" u X)) < EZIDb ™ Jia) 0],

and so Db piw) € Db'll (8)(w) for some w in F. That is, Vu(w)<VI(a)(w).
Q.E.D.
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