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0. lNTROD(CTION

In this article, we Introduce conditions which are sufficient to guarantee

existence of a solution for a system of semillnear equations of the form

-Aul + fI(U"...un) = i

(0.1) -Au2 + f2 (u, ' , u  =P2

-Aun + fn(UiI...,u ) = n

on an open (bounded or unbounded) domain E in Rd, with Dirichlet bondary

conditions. We assume each measure p, Is positive, and we show that the solution

Is positive; i.e. u, k 0 for every I. In fact, we give a constructive procedur-e for

solving (0. 1) with general elliptic operators in place of the Laplacian, and our

methods even allow us to replace the Laplacian with certain Integro-differential

operators. See section 4 for other extensions. In (0. 1), the {pk) are assumed to

be positive measures, and each fk:Rd --+ R Is continuous. The fiunctions need not

satisfy any special conditions such as afk/axj > 0, but our methods yield new

results even in that case. Previous approaches to solvin& (0. ) in a constructive

way seem to have relied mainly on assuming that (0. 1) Is a quasi-monotone system

and on using the method of sub- and super-solutions. For discussions of this

approach, see (101 and Ii 1]. Since we do not assume the system is quasi-

monotone, such methods do not apply, and even if the system is assumed to be

quasi-monotone, It is not clear how to obtain upper and lower solutions in general.
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We introduce an Iterative scheme in which the iterates do not Increase or decrease

monotonically, but irstead, they oscillate. That is, we produce a sequence (k) so

that u2 
< u4 

< . U2k :5 u2k+ " u. 3 ! u1 " One might call this a pendulum

method, since the Iterates swing back and forth over the solution. Much more is

known about solving one equation of the form -Au+fM =p than Is known about

solving (0.1). In his survey article [8], Lions discusses the single equation

-Au+fu=y, and he points out that It Is important for applications to extend the

results for the single equation to systems. See also [1], [4], and (71 for the case

*of one equation.

For general elliptic operators, positive measures and arbitrary funclions fkS

our hypotheses and results are a bit complicated to state, and we refer the reader

to sections 1, 2, and 3. (In particular, Theorems(2.9) and (3.1) contain the main

results.) In this Introduction, we content ourselves with describing the hypotheses,

methods and results In the case where we keep the Laplacian with Dirichlet bou-id-

ary conditions on a connected domain E in (0.1), fk(O,...,Ol=O, and where

(0.2) Pk(dx) = gk(x)dx with gk > 0 on E,

and for every k and j, there is a constant Pkj > 0 so that

(0.3) cfk/xui (Ulu2,....,unl kpkj for u1 k 0, ... , un 20.

We emphasize that assumptions (0.2) and (0.3) are for the purposes of discussion

,V.i In this section only: in sections 2 and 3, we treat a much more general situation.

k' Hypothesis (0.3) is a type of quasi-monotonicity assumption. But even In this

6
1.

6 10

ff£ .= K , -' ' .¢.,e ',-' -..-- ,I-,,-..-... ,-L.--,:-,.-..- -- '.".---- -.-- .. '-,--_ • .- , . .. . - . . . , .



special case, one would need upper and lower solutions in order to apply the

monotone iteration schemes of q"s-morntone systems. It is not at all clear how

to obtain upper and lower solutions, in general, and we completely avoid this

problem. With hypotheses (0.2) and (0.3) in force, we make two crucial

assumnptlons. Here is the first one. Let V = (-A " on E, and let M be Lebesgue

measure on E. Assume

(0.4) (1) Vgk <w a.e. (M) for every k

(ii) For some k, M(Vgk> Vfk(V9g,...,V)) > 0.

Part (i) seems quite a reasonable assumption. From the potential theory point of

view, part (ii) is interesting. Part (ii) is equivalent to saying that the measure

gkdM is not a balayage of the measure fk(Vgt ... ,Vgn)dM. This is quite often

verifiable. For example, when we pass to discussing general measures y in

section 2, the analogue of this requirement will be that "y is not a balayage of the

measure G(Vp)dM" (see (2.4)). It is interesting to note that this is automatically

guaranteed if the dimension of the space d is greater than or equal to 2, and if the

measure p charges a point. Condition IiI) also implies M(Vfk(VgI,...,Vgn)(w)>O,

and it is well-known that we then have Vfk(Vg1 ,...,Vgnl)( a.e. ).

So if this first crucial assumption (0.4) holds, do the following. Set

9k(uiU2,..,u n) = fk(ui,u 2,...,un) if ui2O)...,Un>O,
0 otherwise.

etuk =V~gk-ik(g 1,...tgn)J, and define inductively u ~ V= kj~',.,

.1N,
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increases to a function ak and J 1 decreases to a function bk. It is easy to show

that ak = Vg-J(b is,...bn)l and = Vlgk-J(al,...an)].

In addition, for each k, either ak < bk on all of E,

or ak = bk on all of E. It is easy to show that bk 2 0. What is a bit

more delicate is the fact that bk ) 0 on E. To prove this, we ueg) O and

Brownian motion (or, in general, the Markov process associated with the elliptic or

integro-differential operator). If ak = bk for every k, then

bk - V1gk-Jk(b1 ... ,bl)]. Sine b 2 0, we may rewrite this as k =

V[k-fkbl,...,bn], and we are done (take the Laplaclan of both sides -- in the sense

of distributions). If ak < bk for some k, we must restart the Iteration. Now we

need our second crucial hypothesis. Assume

(0.5) Thereis a nornegative function Fk on E and numbers 3k and

Wk so that

(1) (Fk>O} is contained in a compact set Kk which is contained in {ak>

(l) F k <5 j ( ,t , ..., _ ,- I b ,t ,+ ...,t, )-A (a I ..., ad

(ik) Fk PkVV(Fk (ak)VFk).
(iv) M(Fk>O) > 0.

We show in section 2 that the collection of all functions Fk satisfying (1) , (il) and

(iv) is nonempty: it contains lots of fuctions. One need only check whether or not

one of them also satisfies (III). Part (III) should be thought of as a geometric

!6 -
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condition: the larger the domain is, the more likely it is that (i11) will be

satisfied. (For example, It often suffices to use an elgenfuzction of -A for Fk. Let

dk > O be small and rk > 0 be large. In "nice" situations, we expect ak and bk to

be contifous flctions, so Gk = {ak > 6k, bk < rkj will be open. Choose an open

set H so that the closure of H Is contained in Gk' and let 0 be the first

elgenfunctlon of -A on H (with Dirichlet boundary conditions) and elgenvalue X > 0.

Normalize 0 so that sup({(x): xEH) = I. Let W be the inverse of -A on H - so W <

V. Asstne VO is bounded by a constant m, and set Fk = co for some constant c to

be determined below. Then pkW(cl(a k>Vc )) = W(co) provided we choose
2 P>2

c so small that 6k/C m. But pkW(cO) pkkco/X2 . This is larger than co if X

is small - that is, if G and H are large. Thus (1), (III) and (iv) are satisfied.

Condition (ii) can be achieved by choosing c small.) Hypothesis (0.5) is a

simplified version of hypothesis (2.8).

If (0.5) holds, we can restart the iteration by setting WI bk-VF and +1

= W~J(v.. N' to obtain ak , !gw%. w4 3 So wJincreasestg-j~wP'' ! vk k .. k: w k S k
to a; ak and w2J+ 1 decreases to b; bk. Clearly it may happen again that we

obtain a < b for some k. At this point, the reader will realize that we need to

apply a transfinite induction argument to show that we must restart the procedure

at most countably many times. We show in the transfirite induction argument that

each time we restart, we can use the functions cF1 , cF2 ,..., cFn, where c is a

suitably small positive constant. To summarize, if we assume 40.2), (0.3), (0.4),

and (0.5), then there are norregative functions u1 , u2 , ... , un solving (0.1).

q,

" . *.***.
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In order to treat (0.1) with general elliptic operators and measures, we depend

heavily on using potential theory as it is formulated in the probabilistic potential

theory literature. We recall most of what the reader needs to know in the text;

Chapter VI of [2] is a good reference. In section 1, we introduce the potential

theory framework. In particular, this is necessary to drop hypothesis (0.3). In

section 2, we discuss analogues in the general situation of the hypotheses we

introduced in this section, and we show how to solve (0. 1). The main result is

(2.9). The hypotheses look a bit forbidding when first encountered, but they are

actually quite natural as we have tried to Indicate, and we discuss them further in

section 3. We also give another version of (2.9) In (3.1), where we drop a

hypothesis (by replacing it with several more!). In section 4, we briefly indicate

some extensions. The appendix is devoted to a technical result necessary to show

bk> 0. All Markov processes are confined to the appendix.

ACKNOWLEDGEMENT I would like to thank P. J. McKenna and M. Rao for several

stimulating conversations on the subjects contained in this article.

NOTATION In general, notation is standard and can be found, for example, in

Chapter VI of [2]. We introduce most of it as needed. If E is any a-algebra, then

we use the same letter E to denote the collection of all E-measurable functions

which are real-valued. If D is any collection of functions, then bD (resp. pD) is the

collection of bounded (resp. positive) functions in D. Thus pbE is the collection of

positive and bounded E-measurabie real-valued functions. Let (A,Aq) be a

measure space, let (B,B) be a measurable space, and let 0: A--B be measurable.

- -m ~ ''



We denote the image measure of p under 40 by 0 (p); that is, 0(p)(G) = p(4f (G))

for every G E B. A measue putting all of Its mass at the point x will be denoted

by ex

. .__

p-

4I
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1. THE POTENTIAL TfOR Y FRAA( WORK

Let E be an open domainin ,and let E be its Borel field. For each k with

igkQn, let Pk be a suk-Markov semigro on (E,E), and let be its resolvent.

(That is, for each xEE, PNx,e) is a sub-probability measure on (E,E. If we define

P~fx E y)P ,(x~dy), then plpkf (x) =sk ~x.T hreovnisLf x
Pt~x =I resoven ts s fS kfG, (txtdt.)

NOTATION. C(E) is the collection of all continuus functions on E. Cc(E) (resp.

C2()) is the collection of all continuous functions on E with compact support In E

(resp. and having two continuous derivatives). C0 (E) is the collection of functior

in C(E) vanishing at the boundary of E. We let bEe be the collection of bounded E-

measurable functions vanishirg off a compact set contained in E.

We assume:

(1.0) For each q>0, Uq:bEc - CO(E) and limq qUqrf- whenever

f ECC(E).

(1.1) (referere measure) There is a Radon measure mk On (EE) so that
UL(xo)<(mk for each x in E.

(1.2) (duality) There is another sub-Markov semigroup Rk on (E,E with

resolvent W so that

j (Rkf) dmr=f (Po)dm
fo viE t k E t k CE n

for every f and g in pE. For each q>O, W':bEc-+ CO(E) and

limqqWf=f whenever f E Cc(E).



(1.3) (infinitesimal generators) There are linear operators Lk and L,

with)C dmi5DX(E) and D* )C(E) so that for every f in C E

V-6)/t converges boundedly to -Lkf as t tends to zero, and (f-Rf)/t
t

converges boundedly to -Lk f as t tends to zero. In addition, Lk:

C(E) -+bE and Lk c (E) -+ E

These conditions are satisfied by a huge class of strong Feller semigroips, the

best known of which has Lk = A/2 with Dirichlet boundary conditions.

In this case, Pk is the semigroup of a Brownian motion "killed" when it reaches

the boundary of E. This example also satisfies the additional hypothesis (1.5)

below if E is connected. There is also a large class of semigroups satisfying

these conditions for which Lk and Lk are non-local integro-differential

operators.

DEFINITION A function fEpE is said to be excessive for a resolvent (Va) on (E,E)

if av'afgf for every a0 and if lima_.rVaf--f.

As a consequence of the numbered assumptions above, there is a function

uk(xy) E pExE so that:

(1.4) (i) x -4 uk(x,y) is excessive for U%

(i) y -9 uk(x,y) is excessive for W4;

(iii) Uif(x) ELkyy mk(dy) for every f E pE;

(iv) W0f(y) EUk(Xy)f(x) mk(dx) for every f E pE;

(v) For each y E E, x-+uk(x,y) is lower semicontinuous;

.Np
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(vi) For each x E E, y--L (x,y) is lower semlcontinuous.

For the construction of this f r ction, see Chapter VI of [2). This is the precise

version of the "Green function" we need to define potentials of measures. We

assumre

(1.5) uk(x,y) > 0 for every x, y E E.

DEFINITION If p is a positive measure on (EE), then the potential of p is defined

to be Ukp(x) = IE Ukx,y)p(dy). If p=p-v is the difference of the two positive

measures p and v, and if Uk(p+v) < c a.e. (mk), then we set

ukp(x) = Ukp(X)-Uk(x) on (Uk(P+v) <(O

= con (Uk(P+;)=co).

The following properties are implied by (1.4 v, vi) and (1.5):

(1.6) (1) If K is compact in E, then irf(uk(x,y):xEK) > 0, and

in(uk(x,y):yEK} > 0.

(Ii) If p is a signed measure on (E,E) with Uktpl(wo a.e. (ink), then

UkP is locally integrable. That is, f UkP(x) mk(dx) ( o whenever

K is compact in E.

See [2].

Our purpose in this section Is to develop a bit of potential theory necessary to

formulate conditions sufficient to Insure the existence of solutions for the following

system of semilinear equations:

Lo.



(1.7) -L i ui + filu1 .."u) = Pi

" + f(u...gu ) :

Here, each Ok Is a positive measure on (E,E) and each fk: Rd-iR. Our analysis of

the problem depends on adopting the following perspective which is useful in

potential theory.

Let Ei, E2 ,..., En be n distinct copies of E, and let F = Uk=I Ek. In general,

we will denote a point of E by x (without a subscript) and a point in Ek by xk (the

subscript Indicating In which copy of E the point lies). Let ek:E -- Ek be the

Injection ekx-xk. Let dE be a metric on E compatible with the topology of E.

Define a metric dF on F by setting

dF(xkyj) = dE(x,y) if k=j

= I otherwise,

whenever xk=ekx and yj=ejy. This metric indiues a topology on F which obviously

extends the topology on E. Its Borel field F is characterized by the fact that its

trace on Ek is E,, a copy of E.
Define

on

and define a new sub-Markov semigrov Pt on F by setting

(1.9) Ptf xk) = k t

. ,"



whever xk=ekx and f E bF It is easy to check that Pt is a semgroup on F, and it

has Infinitesimal generator

(1.10) L = : 2 ILk

and resolvent

Uq f Oe-OP dt.
0

Note that Uq(xk,s) = ekk(x,e)) whenever xk=ekx. If we define the measure M on

(F, F) by setting

U.11 M= % = Iek lik)

then uq(z,<<M for every z in F. The potential density u(,e) for U0 Is given by

u(xkYJ) = uk(x,y) if k = j

= 0 otherwise

for xk~ekx and y,=ejy.

We find this perspective handy because in solving (1.7), we need to analyze not

the inverse of the linear system (-Li, -L2,...,-Ln), but instead the inverse of the

perturbed linear system

'1.12) -Liu 1 - a'iu ! -a 1 2u2 - ... inun

-_nun - n1U i -U... - annUn

(The akj are positive functions on E to be chosen in sections 2 and 3. In general,

they may be unbounded and have infinities.) We may obtain the Inverse of this

*'

i 44 -. 4--. " i 
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system by perttrbing the resolvent Uq as follows. Define a kernel B(z,dy) from

(FF) to (F,F): for Vgkgn, set

B~ke = k (x),Ex (0)

where xj=ejx. For each q > O, define a new kernel on (F,F) by setting

The infinite sum makes sense since each term is positive. It is easy to check that

Vq satisfies the resolvent equation: if p2O and q;tp, then VP = Vq+(q-p)VPV q. If

the akj are too large, then VO(z,o) may not be cr-finite for some z in F. We

always assume:

(. 13) There is a strictly positive function 4, E F so that V0 4'(z) < D

for every z in F.

Iff E pF, an application of the resolvent equation shows that Vf is excessive.

Since vq is a resolvent and we are assuming (1.13), we have the following

maximum principle.

(1. 4) PROPOSITION ([9],IX,T68). Let f E pF. If h is an excessive function

for (Vq) and if VI <h on (M)0, then V h on F.

(1.15) NOTATION V(x,) -= VO(x,.).

This perturbation Vq of Uq is well-understood in the classical case when the

aki and Uq are well-behaved.

r" "',-........................- , . ....... ......- ,.. . .; . .. ... , .. .. -...... .,. ..'. ... . .



(1.16) PROIPSlTION [3) Assume F Is locally compact with a countable base and

thut Pt Is a Feller semlgroqp with strong Irflnitesimal generator (-, D(-)) on

COCF). If B is a continuous operator on C(F), then %A Is the resolvent of a strong

Feller semIgroxp on %0(F) with Irflniteslmal generator (L+B, DO{)).

We will work without such strong hypotheses. In particular, Pt may not be Feller

and B is usually not continuous.

U (17) DEFINITION Set

= B)ku(,Y)J(z) = 2 f u(wy)(UB) (zdw)

If p is a positive or signed measure on F, then the potential of p, Vp, is defined

with the density v just as Up was defined with the density u. In section 2,

hypothesis (2. Ic) will imply akj > 0, and this in turn implies v(z,y) > 0.

(1.19) LEMMA (1) If p is a signed measure on JF,F) with VjpI < a.e. M), then

K Vp dMA < whenever K C F is compact. That is, Vp is locally integrable.

(i) Assume (2.ic). If K C F Is compact, then lnf(v(z,y): yEK) > 0 for every z in F

and inf{v(z,y): zEK) > 0 for every y in F.

PROOF (I) VIpI = U(tpI + _m B(UB)kUIpI. Since the right hand side is the

U-potential of a positive measure, it must be locally integrable by (1.611) and the

definition of U. Since Vlpt is locally integrable, Vp is locally integrable.

(Hi) This follows from (1.61) and (2. Ic) since v(x,y) 2 u(x,y). Q.E.D.

(1.20) PROPOSITION Let p be a signed measure on (F,F) so that VIpI <c a.e.



. hen (L+B)Vp = -p In the sens that

(1.21) J C ~* fVp W+j - V) d -()
F F

w never f E C2(F), aid 4ase

L k=1 i Lk'E

PROOF Assume first that p is a positive measure on (F,F) and let f E PC2k).

By (. 19), Vp is locally Integrable. Since the support of Lk Is compact in E., by

hypothesis (1.3), the following Integrals are well-defined and we have

I(fVp dM- = (uB)JUp dM.

Since the Integrands are absolutely Integrable, Fubini's theorem applies, and we

may rewrite (1.22) as

(1.23) J(f) Up dM + = f~ f(Lk n(UB)JUp dM.

To analyze (1.23), we need the following result.

(1.24) LINWA If y is a positive measure on (E, E) wlth Uky( w a.e. (mk), then

(1.25) J01 Ukyl dmk=-$
E

4 fEC2E

PROOF Recall that Wklimt0Rkf-/t] = limt-.+OWk(R /t since

the convergence is bounded by hypothesis (1.3). But this last term may be

rewritten as

'.I
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-1,mt._, 1 t oft Rkf ds= -f.

t-O 0 S

Since

JEILk flUkY dmk < w

FubInI's theorem applies to the first term in (1.25) and yields

E WkLk f dy = -yf).

Q.E.D.

Thus the first term In (1.23) may be rev .,ten as -p(f), while the infinite sum in

(1.23) may be rewritten as

2 =I f (Lt)U(BU)Jp dM = - j=ifEkf(BU)JP dM.

Since fR0 and (BU)Jp k 0, we may rewrite this as

-iff2 (BU)Jp dM = - f(BVp) dM.

This proves (1.21) for p-O and fEpC(Ek). The general case follows by linearity.

Q.E.D.

Now how can this potential theory aid us in solving (1.7)7 Formally, we may

rewrite (1.7) as

U1.26) ..L iUl-c'illU f-...- nun  = PI-G I (xu , ... ,un)

4 .

-Lnun-anIuI- . . .-am un = Pn-Gn(Ui .... ,u)

where Gk(xul,...,un) aki(x)ul+...+akn(x)un+fk(ul,...,Un ) Define a function

,,

a ', .- , .,, ' o . . .". , - . . . . ..
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H:FxRd-R by setting H ,,_ = ck,,uj , . . ., u for x=ekx. If uF -+ R. let

G(xku) = H(xk,u(x),u(x2 ),...,u(xn)) where xj=ejx. If we try to solve (1.26) by

Inverting, we fInd we need to solve the following equation for u.

(1.27) u = V[,u-GI.u[*))]

where p and V are defined above. Once we find such a function u, Prop. (1.20)

shows that -(L+B)u = p-G(,u(.)). Thus, if we set u1(x) = u(e x). u2 (x) = u(e2 x),

u nix) = u(enX), we have that the functions u1 , u2 , .. un solve (1.26), and so

they solve (1.7).

..

A.
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2. THE MAIN ARG(AENT

In this section, we develop hypotheses which allow us to solve the equation

u=V[p-G (o,u(*))]. We assume the notation and hypotheses discussed In section 1.

(In particular, we assume (1.0) through (1.3), (1.5) and (1.13).) In addition, we

assume the following conditions throughout this section.

(2. ) (a) p is a positive measure, p(F) > 0 and Vp < a.e. (M).

(b) G(x,u) is continuous in u, and G(x,0) = 0.

(c) The functions akJ have been chosen strictly positive so that

G(x,u) < G(x,v) whenever 0 < u(s) -' v(*) < VP ().

Recall (2.ic) implies v(z,y) > 0 for every z and y in F.

For most of this section, we work with a "cutofF' of G, J(u) (z), defined as follows:

for x in E and xk=ekx,

(2.2) J(u) (xk) = G(XkU)i( {uex)0 ue,...,u enx)>0).

(2.3) PROPOSITION Assume (2.1) and the following conditior

(2.4) M(Vp > VG(Vp)) > 0.

Then there are two functions u, and vi on F so that u, & v, :5 Vp, ui =

V[p-t(v1)], and v = Vp-J(u If.

NOTATION If w E F, let H(w) = p-J(w). We also adopt the convention w-W-=-o.

REMARK By (2.4), M(VG(Vp)(wo) > 0. This implies VG(Vp) ( a.e. (M). For

if M(VG(Vp)=) > 0, then we would have aVa(VG(Vp)) w since val(ze) is

V
4!



boundled away from zero on compacts.

PROOF Set w .Vp, and define w2 --Vw )J Note that w2 is well-Wined a.e.

(M~) since Vp < woa.e. (M) and J 2!0. By (2.4), M(w 2 > 0) > 0. Since J2!0,

w2:gw, . Nlow set w3 = VH(w2): onc again, this is well-deined a.e. {M). Since

w2!Cw , J (w2)Q (w ) by (2. 1c) and (2.2). Thus w3kw 2 . Since J (w2) kO,

w3S'Vp--wI, . e have proved that w2!5w39Wl ,. This alternating or oscillating

behavior continues. By induction, define wk+ I = VH~wk). Note that wk+ I is well-

defined a.e. (Mv).

(25) LEMMVA Assmxe w2 : -.. 5 'W2k!5 w2k+l' " : 1  hen

~~w2k W2k+2 W2k+3"w2k+ I"
PROOF The lemma follows immediately from these observations:

... (I) J{W2k+l) < J(W2k-l) Implies W2k+2>W2k .

(O SJ(W2k+l > J(W2k) mpi es w2k+2 hW2k+w

(i 9W2k+2) :5 J(W2k+l) Implies W2k+3 > w2k+2.

('v) J (W2k+2) >! J (W2k) Implies w2k+3 5 W2k+ I

Q.E.D.

Therefore, the sequence {W2k) Increases to a function u, , while the sequence

(W2k+) decreases to a function v I with -co < u, :5 v, < Vp a.e. (M). (Note that

(2.4) and (1.5) imply strict Inequality In vi < Vp.) Since W2k+1 = VP-VJ(w2k) ,

the monotone convergence theorem yields V,=Vp-VJ(ul}. Sine J(wI ) 2! J{W2k+)
am VJw) < <o a.e. (M) by (2.4), we may apply the dominated convergence

theorem to the equality W2k+2 =VP-VJ(W2k+ ) to obtain uc V-VJ(vl).

,.,w.'e ae rvdta 2 w~w.Ti ~enti~o siltr

beaircnius yidrin eiew% Hw) oeta k1i el
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Q.E.D.

The measure p can always be decomposed as rodM + s, ere p is sngular

wih rpect to M and r > O. Assume

-. (2.6) r> OonF.

(2.7) LEMMA Let a and b be two funcons on F so that ui <a!5b5Vp,

M(b>a) > O, and spose that a = Vp-VJ(b) and b = Vp-VJ(a). Then b-a>O

(remember w-cv=) and b>O on F.

PROOF By hypothesis, M(b-a=V[J(b)-J(a)]>O) > 0, and b > a, so M(J(b)>J(a)) > 0
and 3(b) ? J(a). Therefore, b-a = VJ(b)-J(a)] > 0 since v(*,e) ) 0.

Since b + VJ(a) -Vp, we have that VJ(a) <

Vy on {b>O). Thus we have VJ(a) 15 Vp on (a>O) 3 (J(a)>O) since aK b. By

(1. 14), VJ (a) :9 Vp on F. Thus b must be nomegative. Now assume {b=O) is

e. roempty, and let z E {b=O). Then we have Vp(z)=VJ(a)(z)<o. Since b-a ) 0,

'.. a(z)<0 and VJ1(b) (z)>Vp(z). Note that (VJ (b)> Vp) is a finely open set (for the

fine topology generated by the resolvent (Va)). By (A.i) and (2.6),

Vp (w) (VJ (a) (w) for some w in F. But this contradicts b >0. Therefore, (b0) =

0. Q.E.D.

The next hypothesis will be used in a crucial way in the main theorem in this

section. It will be discussed further in the remark following it and also in section

3. See also the discussion in the introduction. Assume:

(2.8) (a) There are positive functions j:F -* R so that

4.
°.
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(1) J(c+Y)(xk)-J(c)(xk)2tjnl pkj(xj)yxj) a.e. (M) whenever

xj=ejx and c and y are functions with u 1 Cc+y-v 1 ;

(i) Whenever K C Ek is compact, inff{pkk(z): z E K) > 0.

(NOTATION: Let 0(y)(xk) -ij(xl)y(xj).

(b) There is a nonmgative bounded function f on F and numbers 6>0 and

i0>0 so that

(i) the set (f>0) is contained in a compact set Kf and Kf C

{u1>6)n{v1 (r); Mf)0) > 0.
,(ti) f 5; J(v -Vf)-J(ul).

(wl) f:5 0V[¢(Vf)1(u1>Vf).

REMARK Condition (2.8b(iii)) is the difficult one to fulfill, consistent with

achieving (1.13). Let us show that (2.8b(i)) and (2.8b(ii)) can always be

achieved. If u1 (vi, we may choose 6)0 and r>0 so that

M(u 1>6, vi( ) > 0. Let g be any bounded mmegative function so

that (g>0) has compact closure in F contained in (u1>OlflNv 1(ir), Vg is everywhere

finite on F, M(g>O)>O and J(vl)-J(u1 ) e g. Let O<p<i. Then IJ(v 1-Vpg)-J(uj)R

O(V-u 1 -Vpg) on {v -u,>wpg}. Recall that v1 -u1=V[J(v)-J(u1 )]. Since (i.5,2.1b)

imply inf((v1 -u1 )(z): z E (g>0)) > 0, we also have that inf{(J(v 1 )-J(u,))(z): z E

fg>O)) = c0. If we choose p so small that pg < J(v1 )-J(u1 ) on (g>0), we have that

0(v I- U-Vpg)>d>O on (g>O) since inf{pkk(z):z E (g>o)nEk)>O, lk~n. Thus, by

taking an even smaller p so that pg ( d, we obtain pg < J(vi-Vpg)-J(u 1 ), and we set

f-pg.

,

*" " .. . . ..
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(2.9) 7HEOREM Assrmn (2.1), (2.4), (2.6) and (2.8). There is a fuiction u so

that 0 5 u 5 Vp and u = Vt-G(*,u(-))1.

PROOF The heart of this proof is a transfinite induction argunent. We construft

two collections of functions (u9 C F and (v9 C F: they are indexed by the ordinals

NOTATION Set a, = -w and b= Vu. For every ordinal P-"2, set ap = suplu

, iry<}, and setbP = Irf (v : i!y<}.

For each ordinal &I, define the proposition 0() to be the statement:

(2.10) If M(a<b6)>O. then there are functions up and vp so that

ap 5; up 5: vp:5be Vp, M(v<b)>O, up V[-J(v)lj, and

v#=VP-J(uA)J.

We have already verified the truth of 0(1) in Prop. (2.3). Let us assume 0(y) is

true for every y < P, and prove 0(fl) is true. Since by = VP-VJ(a 2 for every

y<, the monotone convergence theorem lets us conclude that bp=VP-VJ(ap).

Similarly, the dominated convergence theorem lets us conclude that a,=V-VJ(b.).

Set a = a # and b = b , and assume M(a<b) > 0. By (2.7), b>a and b>O on F.

Let f be the function chosen in (2.8b). We now show that for some p with

O~p(l, pf satisfies the conditions in (2.8b) if we replace ui with a and v, with b.

(We essentially repeat the argument given in the remark following (2.8).)

First note that (pf>O) C (u,>6, v(ir) C {a(, b<ir), and M(pf>O)>O. Second,

since inf{(b-a)(z)=V[J(b)-J(a)](z): z E Opf>})) > 0, p can be chosen small so that

J(b)-J(a)>pf on {f0). Thus b-a-Vpf)c>O on {pf)O). It follows that t(b-a-Vpf)>d>O

•.4
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2_.3

on (pf)O) since Inf{pkk(z): z E {pf)O)nEk) > 0' 1 < k : n.

We may take an even smaller p

so that G(b-a-Vpfn > pf and we obtain pf ! J(b-Vpf)-J(a). Third, and finally, we

show that pf ! t(V[4)(Vpf) {a>Vpf)1). Multiplying (2.8b(iiI)) by p yields pf <

,*(V[G(Vpf)l{lu>V1). Since {u1>Vf) C (a>Vpf), we have the result.

Set e = Vpf, w,=b-e, w2 =VH(w 1 ) and w 3=VH(w 2 ).

(2.11) LEMMA a w2 9w 3 !w1 .

PROOF Since pf - J(b-Vpt)-j(a), V[3(b)-J(a)] ! c, or b-e-a. Thus wi > a. To

obtain w2 > a, we need VH(b-E) 2! VH(b), or V[J(b)-J(b-E)] 2 0. This holds since J

is increasing and b > b-E. To obtain w2 : w,, we need VH(a)-VH(b-IE) iE, or

V[J(b-E)-J(a)]>Vpf. This holds since pf<J(b-Vpf)-J(a). Since w2 !w I , we obtain

w3 >w 2 . Finally, to obtain w3 15w 1 , we need VH(w 2) -<b-c, or VH(VH(b-c))Sb-e.

That is, we need V[p-J(VIH(b-e))j]V[y-J(a)f-e, or VJ(a)+Vpf- VJ(VH(b-e)). To

obtain this, we need only have J(a)+pf ! J(VHt(b-E)), or pf<J(VH(b-c)) - J(a) =

J(a+V[J(b)-J(b-c)])-J(a). By (2.8a), it suffices to have pf 5 (V[J(b)-J(b-e)])

on {u>0} C {a>O}. Applying (2.8a) again, we see it suffices to lzve pf <

)(V[)(Vpf)lb V I]). Since {Vpf<a} C {Vpf<b}, we see that it suffices to have

(2.12) pf S VV[VVp' I {Vpf(a1)

We showed before (2. 11) that f has this property. Q.E.D.

Now we can set wk+1 = VH(wk) as we did earlier in this section. The proof of

Prop. (2.3) shows that we obtain funtions u vp so that v, = V-VJ(up) and u=

-C ' ' ' - -; -.t"-".' "' . .'" . . - - -"" : ,.: ".. .. '. -' .- ' ' :" • -". - - . . .. '.'



Vp-VJ(v): we have verified *(.). Choose a finite measure N on (F,F) which is

equivalent to M so that N(vI-uI)<w. The sequence r(P)--N(v#-u) Is a positive and

strictly decreasing sequence. Thus ir()=O for some countable ordinal P. That Is,

there is a so that u =b-v-u. But then u = Vp-VJ(u). By (2.7), u 0, so we

have u = VM-VG(ou(o)). This concludes the proof of (2.9).

Q.E.D.

,
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3. THE FINAL RESLT AND DISCUSSION OF HYPOTHESES

In this section, we again assume'the notations and hypotheses of section I.

This next result drops the hypothesis (2.6) (but adds some others 1).

(3.1) THEOREM Assune (2.1) and suppose there Is a decreasing sequence of

functions hk on F so that

(i) b>Ooan F ;(11 1Ik04.Vh =

"(ii) M(V(p ])>VG(V4P+fh)) > 0.

Assume (2.8). (Note: the functon f may vary with L) Then there Is a

function u>0 with Lu=Vl [-G(,u(.o]l.

PROOF By (ill), VJV(p+hk) = VGV(p+h k) < o on a set of positive measure, and

hence a.e. (M). Let t = J(V(P+h1)), so V0 < w a.e. (M). For each k, the

hypotheses of Theorem (2.9) are satisfied, so there Is a function uk with 0 ! uk 
<

V(Iu+hk) and uk = V[p+hk-J(Uk)]. Since uk :< V/a +hk), J(uk) ' 0, so Ck = J()/!

is a bounded sequence in LOM). By Alaoglu's theorem, there is a subsequence

ck(i) of ck and a function w 2 0 so that fck(J)g dM converges to fwg dM for every

g E L (MI). For almost every z, v(z,°){0() E (I), so Vck(W) = VJ(uk(l))

converges to Vw. Since u,(,) = V[p+hkf()-J k (1)], uk/)} must converge (a.e.) to a

function u 2 0. Since J(uk) < 0 and V0 < a.e. (M), we may apply the dominated

convergence theorem to conclude lim VJ(u()) = VJ(u), and we have proved that

u = V[P-J(u)J. Q.E.D.

-n tt



Theorem (3.1) is perhaps not quite as satlsfyir as the result In section 2

since u is obtained by a compact Ass method Instead of monotone approximation.

One might hope that since the hk decrease, the uk should also decrease. This does

not seem to be the case, however, and one must be careful to recall that J is not a

local function of its argument. For example, supose we try to prove the

decrease. By subtracting, we obtain Uk-Uk+ ! VfJ(uk)-J(uk+i)] = V[hk-hk+ 1 ], so

VlJ(uk)-J(uk+}] :9 Vjhk-h+ 1 on {uk +I}. At this point it is tempting to say

{J(Q>+J(uk+i))Cfuk>uk+i) (which is incorrect), so the maximum principle yields

V[Iuk)J~u+,) '- Vjhk4h+,) everywhere. This would lead to the (incorrect)

conclusion that Uk> uk+i"

We now discuss the hypotheses in sections I and 2.

Hypotheses (1.0) through (1.3), (1.5). These hypotheses are quite reasonable and

cover a large class of elliptic ad integro-differential operators.

Hypothesis(. 3) The condition V < (w is necessary to insure we have a non-

trivial potential theory: whether or not it is satisfied depends on how large the

O kj are.

Hypothesis (2.1) Parts (a) and (b) are simple requirements. Part (c) is the tricky

one. Note that Vp depends on the akj: as the akj grow, so does Vp. There are

two situations in which this hypothesis might be easily satisfied. First, if

fk/axj > 0 for all k and J, then the akj can be chosen to be zero. In this case,

(1.13) is instantly satisfied. Or it may be the case that 8 fk/Bxj is bounded below,

say by tkJ" If tkj<0, set akj= "tkj; otherwise, set akj=O. In this case, (I. 13)



may or may not be satisfied. In the general case, it is best to adopt the following

phlosophy. Having chosen akjinO so that (1.13) holds, hypotheses (2.1), (2.4) and

(2.8) delineate a class of measures j for which (1.7) can be solved. It would be

nice to have a deeper riderstanding of the relationships between (2.1) and (1.13).

Hypothesis (2.4) This is an Interesting and suggestive one. If VpVG(Vp)

everywhere, it is known in probability and potential theory that p is a balayage of

G(Vyp). It is easy to cite at least one condition forbidding this and so guaranteeing

that (2.4) holds: if p charges a polar set (i.e. a set contained In the Infinitles of an

excessive ftnction), then it carrot be the balayage of a function (and note that

G(Vp) is a function).

Hypothesis (2.8) Part (a) is a simple requirement which can always be achieved by

increasing the akk slightly if necessary. Part (b) is a nontrIvial assumption.

Parts (I) and (11) can always be achieved, as is shown in the Remark following the

hypothesis. Part (III) is the hard part. Since ui k a, it may sometimes be easier

to check (i1) with a replacing u1 . Notice that while hypotheses (2.1) and (2.4)

seem pretty close to optimal for our presentation, hypothesls(2.8) is really more

than is needed. We present it in this form as an attempt to render a complicated

result a bit more palatable. By following the proof of (2.9), the reader will see

exactly what is needed.

4. EXTENiONS

The methods and theorems we have discussed can be extended to parabolic

I I
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semigru.ps. For example, Lk could be a/at-A. Hypotheses (1.5) and (1.61) fall In

this case, but slight modifications to some of the proofs overcome these

difficulties. It Is also possible to solve infinite systems of semillnear equations

using these methods. Once again, some slight modifications to some of the

hypotheses are needed, and we leave these to the interested reader. It is an

elementary exercise to reformulate all of these results to solve equations in which

the local nonlinearities fk are replaced with nonlocal nonlinearities of the form

.k(Diu (x),...,Dnn(x)), where fk:R--+R and where Dk=Dk(x) is a positive kernel.ik

r'
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APPEM IX.

At one crucial point in the proof of (2.7), we need the following fact. (All

hypotheses and notations of sections I and 2 are assumed here.)

(A.I) PROPOSITION Let z E {VJ(b)>Vp) = {a<0) C (J(a)=0). If Vp(z)=VJ(a)(z.),

then Vp(w)VJ(a)(w) for some w In F.

This proposition depends on hypothesis (2.6), among others. There is

unzdoubtedly a purely potential theoretic way to prove this result, but we resort to a

proof using Markov processes. In order to do this, we apply some work of

Bouleau (3].

, Let h = U41: this function is finite on F by (1.13) and is bounded away from

zero on compacts in F by (1.61). Define two new kernels Y and C on (F,F) by

setting Y(z,}h - (z)U(z,.) and C(z,.)=B(z,e)h(*). Recall that Y is the zero

potential Y0 of a sub-Markovian resolvent (ya) on (F,F). Hypothesis (1.0) implies

that (ya) is the resolvent of a right Markov process on (F,F). For more

information about (Ya), see [6]. For Information about right processes, see [5]

and [2]. Now let a be a new point not contained in F, set F' = F U {a), and =

o,(F,8). Extend the resolvent (Ya) to i" by setting aYa(z,{8)) = I-aYa(z,F) for

every z in F and aYa(8,{8})=1: (ya) so extended Is a Markovian resolvent on (F',

F'). Extend C to F' by setting C(z,(a)=O for every z in F and C(8,F')=O. Note

that if we define

=a Co QY
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then f vf for every f E pF with f()--O. Let us compute the function

b = _ (YC)k 1 F 1 F, + h 'I CI (uB)kU4*
1 P + h7-1V41 < OD.

The function b Is Invariant for the resolvent (Z ) [3]. Bouleau [31 shows that since

b,ls finite, the resolvent (Or) defined by Df(z,*)=b (z)Za(z,o)b(*) is the resolvent

of a right Markov process X = (2, G, Gt, Xt, et , (px)xEF,). We use this process

to prove (A.i). Note that Df = b-Z(bf) = b-h'V(bf), so G = (VJ(b)>Vp} =

JD(b-'J(b))D~b-'p)): this set is finely open for X. What does this mean? It

means that if we define T = inf(t > O: Xt EGC, then T)O Pz almost surely

d whenever z E G. Recall that p = r~dM + ps and r0 on F. By the strong Markov

property,

(A.2) Ez[Db-ir(XT)] = Ez %r(X.)ds < EZf0 blr(X,)ds = Db'ir(z),
T 0

since br > 0 and TO PZ almost surely. Thus Ez[D-lp(XT)] < Dbp(z) =

D(b'3J(a))(z). Now compute

(A.3) EZ[D(b-lJ(a))(XT)] = EZJfb'lJ(a)(Xs)ds = EzJ"b 1J(a)(Xs) ds
T 0:D(O-tJ(a))(z),

since J(a)(Xs ) is zero provided s(T (recall J(a) = 0 on G). Thus we see

A EZ[DbJ(a)(XT)],

and so Db-t p(w) (Db J(a)(w) for some w in F. That is, Vp(w)(VJ(a)(w).

Q.E.D.
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