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Abstract: In reqression analysis, the response is often transformed to

remove heteroscedasticity and/or skewness. When a model already exists

for the untransformed response, then it can be preserved by transforming

both the model and the response with the same transformation. This

methodoloqy, which we call "transform both sides" has been applied in

several recent papers, and appears highly useful in practice. When a

parametric transformation family such as power transformations is used,

then the transformation can be estimated by maximum likelihood. The MLE

however is very sensitive to outliers. In tnis article, we propose
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diagnostics which indicate cases influential for the transformation or
regression parameters. We also propose a robust bounded-influence

estimator similar to the Krasker-Welsch regression estimate. Both the

diagnostics and the robust estimator can be implemented on standard

software.
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1. INTRODUCTION

In regression analysis, the response y is often transformed for two

distinct purposes, to induce normally distributed, homoscedastic errors

and to improve the fit to some simple model involving explanatory

variables x. In many situations, however, y is already believed to fit a

known model f(x;B) a being a p-dimensional parameter vector. If a

transformation of y is still needed to remove skewness and/or

heteroscedasticity, then one can transform both y and f(x;S) in the same

manner. Specifically, let y W be a transformation indexed by the

parameter \ and assume that for some value of X
(i:X) f ( x;a) + -e. (i)

i 1

where e1,...,eN are independent and at least approximately normally

distributed. Notice the difference between (1) and the usual approach of

transforming only the response, not f(x;j), i.e.,

(X)
y = f(x; a) + 0-e (2)

It should be emphasized that model (1) is not a substitute for (2). Both

models are appropriate, but under different circumstances. Model (2) has

been amply discussed by Box and Cox (1964) and others, e.g., Draper and

Smith (1980) and Cook and Weisberg (1982). Typically in model (2),

f(x;B) is linear but in principle nonlinear models can be used. Model

(1), which we call "transform both sides", has been discussed extensively

in Carroll & Ruppert (1984), and Snee (1985), and Ruppert and Carroll

(1986) and we will only summarize those discussions. According to (1),

f(x;B) has two closely related interpretations; f(x;B) is the value of v

w when the error is zero and it is the median of the conditional

distribution of y given x. In Carroll and Ruppert (1984), we were

concerned with situations where a physical or biological model provides

IM j i l jj11 1 1
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f(x;B), but where the error structure is a priori unknown. Examples by

Snee (1985), Carroll and Ruppert (1984), Ruppert and Carroll (1986), and

Bates, Wolf, and Watts (19R5) show that transforming both sides can be

highly effective with real data, both when a theoretical model is

available and, as Snee shows, when f(x;_) is obtained empirically.

By estimatinq X, o- and a simultaneously, rather than simply fitting

the oriqinal response y to f(x;B), we achieve two purposes. Firstly, B

is estimated efficiently and therefore we obtain an efficient estimate of

the conditional median of y. Secondly, we model the entire conditional

distribution of y given x, and, in particular, we have a model wich can

account for the skewness and heteroscedasticity in the data. Carroll and

Ruppert (1984) discuss the importance of modeling the conditional

distribution of y in a special case, a spawner-recruit analysis of the

Atlantic menhaden population. To specify the conditional distribution of

y, for fixed ) let h(y,W) be the inverse of yM i.e. h(y(X)y, e k,)b h nes fy Fie y 0 ) = y,

and let F be the distribution function of e.,. We assume that F is
lW

approximately normal, but not necessarily exactly normal since if y

is the Box-Cox (1964) modified power family,

y = (yX-l)/x X$O
(3)

= loq(y) X:0,

then F must have finite support whenever \qO. The p-th cruantile of y

given x is
h f( ( ) (x;_B) + cPF- 1.(D)],X} (4)

and the conditi,., ', it, -1 of y isSE(y~x) = 0 M h{[f(X)(x;B) + (3,-EkXdF(C-), (5)

where -ax<a is the support of F. Ruppert and Carroll (1986) discuss

estimation of (4) and (5). E(ylx) is easily estimated by Duan's (1983)
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"smearing" estimate, which estimates F by the empirical distribution of

the residuals; see section 5.

Many data sets we examined have substantial outliers in the

untransformed response y, but not in the residuals y( )-f(W)(x;8); the

transformation has accommodated, or explained, the outlying y's. There

is still the dariq-gar, 1however, that a few outliers in y can greatly affect

x and a. Outliers should not be automatically deleted or downweighted,

especially when they appear to be part of the normal variation in the

response, but it should be standard practice to detect and scrutinize

influential cases and when outliers are present to compare the MLE with a

robust estimtor. In this paper we propose a diagnostic and a "bounded-

influence" estimator which can be used together for detecting influential

cases and for robustly estimating X and S.

Case deletion diagnostics for linear regression are discussed in

Belsley, Kuh, and Welsch (1980) and Cook and Weisberq (1982), and have

been extended to the response transformation model (2) by Cook and Wang

(1983) and Atkinson (1986). The last two papers approximate the change

in ) as single cases or subsets of cases are deleted. Subset deletion

can be unwieldly because of the large number of possible subsets. If

influential subsets are to be detected, one needs some strategy to

searching for them. Alternatively, one can examine weights from a robust

estimator with good breakdown properties.

Bounded-influence regression estimators, so-called because they

place a bound on the influence of. each observation, have been proposed by

Krasker (1980), Hampel (1978), and Krasker and Welsch (1982), and this

last paper provides a good overview. Carroll and Ruppert (1985) proposed

a bounded influence transformation (BIT) estimator extending the Krasker-

Welsch estimator to the response transformation model (2).

FM62A ' I4 I. I .



In this paper we adapt Atkinson's (1986) diagnostics and the BIT

estimator to the "transform both sides" model. The basic technique is to

linearize the model (1) by a Taylor approximation at the MLE, and then to

apply ordinary regression diagnostics and bounded-influence estimates.

Our methods are designed to be easily implemented on standard

software. All our computations were performed on the SAS package using

PROC NLIN and rather simple data manipulations in PROC MATRIX and DATA

steps. The computations would also be straightforward on other software

packages. Our computational techniques can be applied to a bounded-

influence estimate for the response-transformation model (2), thus

eliminating the need for a lengthy FORTRAN program used in Carroll and

Ruppert (1985).

I



MAXIMUM LIKELIHOOD ESTIMATION

Throuqhout this paper y W is the modified power transformation

a(3). Under model (1) the log-likelinood is

N

L(B,\o-) \ log f (8,.X,0-)
L

where

loq f(8,\,o-) 7 -Ilog(21To- 2 + (X-l)log(y.)

_1( c, [ i f ( i f) (6)

For fixed 8 and X

N

maximizes L(B,X,o-) in o3-. Thus, the MLE of B and X maximizes

L mx(13,X) = L(13,X,o (I23a. ))

N

=-(N/2)1ogN 
1 \ ((y :W)f(W (x.;B))/X-1 12}) + constant (7)

ii

where ~'is the geomnetric mean of Yl'***'N* Therefore, 6 and X minimize

N

y' W-fW(-S)/ - (8)
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Following Box and Cox (1964), 8 and \ can be computed as follows.

For fixed X, minimize (8) in 8 by ordinary (typic-illy nonlinear) least-

squares and call the minimizer S(W). Plot Lmax(1(\),>) on a grid and

maximize graphically or numerically. This technique is particularly

attractive when f is not transformed and f(x;B) =x TB for then (8) can be

minimized in a by linear least-squares. When transforming both sides,

the technique is less attractive computationally but it does give the

confidence interval

{\: Lm(t(\),>) > L a 2I(9)
max -max

2

where X (-ac) is the (1-ac) quantile of the chi-square distribution with
1

one degree of freedom. Mininizinq (8) simultaneously in X and B is

straightforward with standard nonlinear regression software. One simply

fits the dummy variable i  0 to the oseudo-model

Di = f (10)

with reqression parameter (B,X). Not only is the least-squares estimate

of (3,X) the MLE, but for small values of o and large N estimating the

covariance matrix of B using the pseudo reqression model (10) is

essentially equivalent to inverting the Fisher information for (X,B,o),

see the appendix.
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3. DIAGNOSTICS

Let (,B) and (X ),_() be the MLE's with and without case i,
(i) -13(i)

respectively. The changes AX i = (N-X(i)) and /k. i = (8-8.i) are easily

interpreted measures of influence, called the sample influence curve

(Cook and Weisberg (1982)). Unlike in linear regression, AXi and Ai

cannot be computed exactly without actually recomputing the MLE with case

i deleted. However, AX, and Ai can be approximated by applying

Atkinson's (1986) "quick estimate" to a linearization of model (1).

To approximate AX(i) and As(i) we linearize the model

*~ * X-1~ = '" X)t ~Ky /Y (x;B)/ + error (11)

about X, 3. Let

z(XB) [ [ k -f ()x;8l/y -l

w(X,B) = (J/J )z(X,8),

Sui(X ,) = ( /J i )z(\ ,f ) =  -(_/ i)f W (x ;f)/9 - 1

and

_ ( , _) = ( u i ( X j 8 ) , ... ,U p ( X S ) ) T .

":' Sometimes we will write z(y,x;B,X) instead of z(B,X) to emphasize the

dependence on y and x. The same holds for w(X,_) and u('X,B). Also let

z = z(X,3), w = w(X,B), and u = u(X,_). Then (11) is approximated by

Z = -(X-X)w - (B-B) u + error. (12)

If we fit equation (12) to the full data, then of course X = \ and

B = B. If instead we fit (12) with the ith case deleted, then we obtain

Atkinson's (1986) "quick estimate" approximation, which we call X Q and
(i)

I ~ *f * .11n P-11 I'l' 'IR j 11Vji I II 3 .'I'M-QUi
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SQ. Let Q X- and A63 Q f-8 be the resulting

approximations to AXi and M--i. Because (12) is linear, refitting

without case i is easy using standard matrix identities, which have been

programmed in many statistical packages.

We used the following computational scheme on SAS. First (8) was

minimized by PROC NLIN to obtain (,), then z, w, and u were generated

in a DATA step, and finally the linear model (12) was fit on PROC REG.

PROC REG calculates the regression diagnostic DFBETAS i (Belsley, Kuh, and1

Welsch 1980), which is a scaled version of (Ai QIAii Q). The unscaled

(AxiQ 'A61Q ) is DFBETAi in the Belsley, Kuh, Welsch nomenclature and is

not part of standard SAS output. If we are interested in cases with

relatively large values of AXi then the scaling is immaterial.

Atkinson's (1986) equation (19) gives a simple formula for

calculating AX. alone. We feel, however, that influence for both X and

a should probably be assessed together and DFBETASi is ideal for this.

When only the response is transformed, S depends heavily on X and it is

sensible to estimate X first and then to estimate S. When transforminq

both sides, 6 is usually very stable as X is perturbed and X and ; can

be treated simultaneously.

In the example in section 5 and in other examples that we will not

aQ

report, AX i and AXi were often considerably different, which is

surprising since the quick estimate is reasonably accurate when y alone

is transformed (Atkinson 1986). The difference is that here u depends on

and a. The approximation AX. does indicate cases with relatively

large values of AXi and !ki seems adequate for diagnostic purposes.

To obtain a single measure of joint ini]luence for (XB) one can

compute Cook's D or DFFITS (Belsley, Kuh, and Welsch (1980)) for the

psuedo model (12).
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4. ROBUST ESTIMATION

A general approach to robust estimation is to minimize asymptotic

variance subject to a bound on the gross-error sensitivity. This

approach was begun by Hampel (1968, 1974), applied to regression by

Hampel (1978), Krasker (1980) and Krasker and Welsch (1982), and used in

the response transformation problem by Carroll and Ruppert (1985).

Here we will find an estimator bounding the influence for the

parameters X and S. We will ignore o-, which can be estimated separately

with a robust scale functional, e.g. the MAD, applied to the residuals.

Let t(x,y;X,B) be the score function

f(x'y;X\,) = 1( )z 2(,B) (13)3/J2

w(\,8)
= z(\.)

u(\,B)

Since tne MLE minimizes (8) it solves

N

t(xiyi;X,8) = 0,
i=l1

az least when \ and B are unconstrained and f(x;B) is a smooth function

of 3. The MLE is highly sensitive to cases with large values of z(\,B),

w(,i) , or u(\,i) corresponding to response outliers, high lV-rA(Ji

))jnts for X, and high leverage points for B, respectively.

A robust bounded-influence t-stimator (X,B) is found by solvinq
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N

/ W(yi, i;,)t(yi,.i;,) = 0

where W is a scalar weight function such that Wt is bounded. The optimal

choice of W was first studied by Hampel (1968, 1974) for qeneral

univariate parametric families. When choosing W, asymptotic efficiency

measured by the covariance of (\,S) must be balanced against robustness

measured by the norm of Wt For a multivariate parameter such as (,B),

this balancing raises philosophical questions since there are many ways

of comparing covariance matrices or of norming vector functions. The

approach we take generalizes the Krasker-Welsch (1982) bounded-influence

regression estimates. Whether the Krasker-Welsch estimator is optimal in

any meaningful sense is an open question (Ruppert 1985), but it seems

quite satisfactory in practice.

Let k. be the gradient of log f(S,X,&) with respect to (8,X). For

any weighting function W, the influence function evaluated at (yi, i5

will be defined as

IF(y,x;X,B) = B- W(yx;'5A)(yx;,)

where

N
-1 \TSN- {W(y,xi,\,X)t(yxi;XB)i (y,xi;X,)}./ y - _' ,_

i=l

This definition of IF coincides wiith the usual definition when the x's

are i.i.d. for some H, and the averxtqing over {Xl,...,xN) in the

definition of B is replaced by expectation with respect to H. Our

definition is appropriate for fixed or random x's. In the definition of

B on page 5 of Carroll and Ruppert (1985), W is incorrectly squared. In

that article, but not here, f = 1. The asymptotic covariance matrix of
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-1 -T
(\X,) is V = B A(B-) where

N

A = N -1 -- Ey(W2 T y'x
i=l

An intuitively reasonable way to norm Wt is to use the asymptotic

covariance; see Krasker and Welsch (1982) for further motivation and

discussion. The resultant measure of influence, the so-called self-

standardized gross-error sensitivity is

T-1
= max [IF(yi,X.i;, )T-V IF((y,X,,)]

= max {[A(yii,\,1) t(yix2.,,B) ]W 2(yi,i;>,8)).
i

Note that W2 has been incorrectly omitted from the last term in equation

(15) of Carroll and Ruppert (1985). Y2 must be at least (p+l) . From

experience with other problems we suggest bounding Y2 by a(p+l) , where

"a" is between 1.1 and 1.5, and a = 1.2 or 1.3 has generally been

satisfactory. To bound Y2 by a(p+1)1, we use the weighting function

W(' ,x;\,3) = min{l,a(p+l)t T(y,x ,)A- I f(y,x;x,)] -i.

Here A is defined implicitly since it depends upon W and vice versa. In

practice, X, 8, and A are estimated iteratively.

We used a simple iterative scheme:

(1) Fix a>l. Let C be the total number of cycles. Set c=l. Let )p and

b 2e o iirninary estimates, probably the MLEs. Set W. -1.

(2) Define
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N

A = N-1 Wit(yixj,\ , ):t T(y.,x, 4 ).

In use the weighted geometric mean = logy/W.)

(3) Update the weights:

W. = minfl, a(p+l) [t(yiai a TA-tcyi x ;Xp,8p)

(4) Solve

N

/ Wit(yixi;X,8) = 0- / 1--

(5) If c<C, set P = X and S = 8, c=c+l and return to (2). If c=C then

'~stop.

In the examples discussed in section 5 and other examples that we

will not report, \ and i stabilized at C=2. Therefore, we recommend

C=2, or oerhaps C=3 for small N or data sets with extremely influential

points. In fact C=l seems adequate, at least for diagnostic purposes.

We calculated step (3) with a short program in PROC MATRIX and step (4)

was performed in PROC NLIN. PROC MATRIX is needed only to invert A, and

the program should be easily modified when PROC MATRIX is replaced by an

interactive matrix language. Undoubtedly, the computations would also be

easy on other packages. We will call the final estimate the BITBS.

This iterative method can also be used for the response

transformation model. Instead of using (3) one sets

t(_,y;XS) = (){y f( ; / X 2

It should be noted that this approach differs from the BIT estimate of

129111N! 

Ia 113
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Carroll and Ruppert (1985), since the BIT estimates o- simultaneously.

Because the likelihood scores for B and o- are, respectively, linear and

quadratic in the residual, the joint bounded-influence estimator of X,6,

and o- behaves as a rescending "psi-function", e.g. a Hampel M-estimator

(Hampel 1978). Therefore, the influence on X and a of extreme response

outliers approaches zero when the influence for o is simultaneously

bounded.

-4



5. AN EXAMPLE

When managing a fish stock, one must model the relationship between

the annual spawning stock size and the eventual production of new

catchable-sized fish (returns or recruits) from the spawning. Ricker and

Smith (1975) give numbers of spawners (S) and returns (R) from 1940 until

1967 for the Skeena River sockeye salmon stock. Using some simple

assumptions about factors influencing the survival of juvenile fish,

Ricker (1954) derived the theoretical model

R = 1 S exp(8 2S) = f(S;B) (14)

relating R and S. Other models have been proposed, e.g. by Beverton and

Holt (1957). However, the Ricker model appears adequate and, in

particular, gives almost the same fit for this stock as the Beverton-Holt

model.

From figure 1, a plot of R against S, it is clear that R is highly

variable and heteroscedastic, with the variance of R increasing with its

mean. Several cases appear somewhat outlying, in particular #5, #19, and

#25. The model (14) was linearized about the MLE to form the pseudo

model (12) and the square root of Cook's D was plotted against case

number; see fiaure 2. Case #5 and especially case #12 stand out. In

figure 1 case #12 is somewhat masked by the heteroscedasticity since the

residual on the original scale [R1 2-f(S1 2 ;13)] is relatively small, but

after transformation by the MLE \ .314 the residual [R 1 2 (X)-f (S;2)]

is substantially larger though still not excessive. Case #12 is an

extremely high leverage point, and its Hat matrix diagonal accordinq to

model (12) is h1 2 = 0.685. An h value exceeding 2p/N = 6/28 = .214 is

considered high by Hoaglin and Welsch (1978). Since h5 = .23, case #5 is

also a leverage point by this criterion. In fiaure 3, the residuals

[R k-f ~ (Si,A)] =. are plotted against S ari though #12 stands out,
4
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it does not seem extremely outlying until one accounts for leverage. To

compensate for leverage, Belsley, Kuh, and Welsch (1980) suggest

standardizing Ai by its estimated standard error to produce

RSTUDENT = i/S(i)(l-hi) F

where S(i) is the root mean square *rror without case i. For this data

set RSTUDENT12 = -4.40!

In table 1 we present influence diagnostics applied to model (12),

the exact change AXi' the quick estimate A/.k , and another

approximation AX i. It is evident that xi o is not always close to

/ki, and there are at least two possible causes of inaccuracy: (i)

AXi uses a linearization of the parameters and (ii) in model (12) k is

held fixed rather than readjusted as cases are deleted. To isolate the

effects of cause (ii), we experimented with a different approximation.

NWe computed the nonlinear least squares estimate X(i) minimizing (8)

when the , is calculated from the full data but the sum of squares in (8)

N (N N
is over j~i. Then we set Ai = (X-i ). Of course, Axi is as

difficult to compute as AXi itself and is not of interest as a practical

approximation; we have calculated /X. just to learn why !i Q is

,naccurite. In table 1, 1AX/ I is large for i=5 and 12. In both cases,

Ai\i a:proximates /x i much better than AXi which suggests that cause

(i) is the primary problem. It is clear, though, that small changes in

from deleting an outlying yi can have a notable effect on X. We have

compared AXi and AX Q for several other data sets, the kinetics data of

Carr (1960) analyzed in Box and Hill (1974) and Carroll and Ruppert

(1984), the Atlantic menhaden spawncor-recruit data in Carroll and Ruppert

995), -ni the "population A" soawner-recruit data in Ruppert and

,"arrol1 (1986). In all cases Q though not an accurate
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approximation, did indicate large values of i/k\i, and / appears to

be an effective diagnostic of high influence.

We computed the BITBS estimate with bound a=l.2 and C=3 cycles. In

table 2, \, 81 ,12 and non-unit vi are given for the MLE and each

iteration of BITBS. The changes in the estimates and weights from the

first to the second iteration are small, and one iteration seems adequate

for most practical purposes; certainly two iterations suffice. Although

the BITBS estimate severely downweights case #12, the estimate of X only

changes from .31 to .13 in two iterations of BITBS, while the MLE becomes

= -.2 if #12 is deleted. For these data, the BITBS detects the

influential points and reduces, but does not eliminate, their influence.

Case #12 was the year 1951 when a rock slide severely reduced recruitment

(Ricker and Smith 1975). To model recruitment under normal conditions

one would delete case #12 and refit. Without #12, the MLE and the BITBS

estimate are similar (table 3), and one would probably use the XLE. The

bulk of the data indicate that recruitment is highly heteroscedastic and

a severe transformation (X = -.2) is needed to induce homoscedastic

errors. Because the anomalous #12 occurs where S is small, it indicates

less t-?eroscedasticity and a more moderate transformation (X = .3) is

used iI *12 is not deleted. Since case #12 is not from the target

:)ooulati - of normal svawninq years, it seems safe to delete it.This data

set is an example where one might consider a robust estimator that gives

essentially zero influence to extreme outliers, e.q. a generalization to

transformation models of a redescendinq-psi M-estimator. We normally

prefer using a redescending M-estimator to rejecting outliers, since an M-

,ltiman- ' as a known larqe sample distribution. The effects (),- outlier

rejection methods upon the MLE are not well understood, even

asymptotically. Here we distinquish between re& cting outliers based on
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some statistical criterion, say a hypothesis test, and deleting

observations known to come from a non-target population.

Althouqh the MLE and the BITBS are similar, when #12 is deleted, two

cases, #4 and #5, are substantially downweighted by the BITBS. Case #4

had been masked when #12 was included, but #5 was already influential in

the presence of #12. One might explore further deletions though without

further information we feel that #4 and #5 should be retained in the

final analysis. If in addition to #12, case #4, case #5, or both are

deleted, then the MLE changes noticeably; see Table 4. The deletion of

#5 and the deletion of #4 affect the MLE in somewhat opposite directions,

though deleting #4 affects the MLE more severely. The BITBS downweiqhts

#4 somewhat more than #5, so effects of downweighting #4 and #5 tend to

cancel.

We do not view the "transform both sides" method chiefly as choosing

a new scale for analyzing the response, but rather as modeling the

conditional distribution of y on the original scale. By "original"

scale, we mean the scale of primary scientific interest, usually also the

scale on which direct measurements have been made. The model
(X) (X)

y = f (x;a)+e

leads

v v(G) = (fX(x;a)+Xe)l/ X 9 0,

= exp(loq f(x;3) + Xe) X = 0.

Wo art. assuming that e is approximately normal and in particular

a.)proxiinately symmetric, and this last point suggests that the

conditional median of y qiven x can be estimated by

,( x) = E(X;83).

The conditional mean is easily estimated by the "smearing" estimate of

Duan (1981). Let r. by The i-th residual

Mall,
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r i = yikfX(xij) ) (y) -f (i,%3)).

Then the smearing estimate is

N

E(y -x) = N (fX(x;83) + r i 1  (15)/ -- -

with obvious changes if \ = 0.

If X is 0 or if X-  is an integer, then E(yix) can be estimated by

methods of Miller (1984). Miller's estimators are particularly simple

when \ is in the set {-,-4,0, ,i}. It is a common practice to round

to a value in this set, in which case Miller's (1984) estimate is

applicable. We do not necessarily advocate rounding \ especially since

there is some theoretical evidence against this practice (Carroll 1982),

but when the rounded value is very plausible according to a hypothesis

test, then the rounding should have little effect on subsequent

inference. The common rationale for rounding \, to make the

transformation easily interpretable, is less compelling when one views \

as part of a model for y on the original scale. In the present example,

R'"3 or R- '2 is admittedly of little direct biological and economic

interes:, but the same is true of, say, log(R).

irn fLgure 1, m(RIS) and E(RIS), both calculated without #12, are

Dlotted. E(RIS) was also estimated by fixing = 0, re-estimating B and

o-, and using Miller's (1984) estimate:

f(x;B)e

The smearing estimate and Miller's estimate are so close that they would

be barely distinguishable had Miller's estimate be included in figure 1.
To - -he influence of case #12 on m(RIS) and E(RIS), these

estimates were calculated both with and without case #12. When #12 is
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deleted then not only are \ and a set equal to the MLE without #12, but

also the averaging in (15) is over i342.

The changes in the estimated modian and mean caused by deletion of

case #12 are graphed in figure 4. As might be expected, deleting #12

caused the estimated median and mean recruitment to increase for small S,

especially for S near 300-400. The most dramatic change when deleting

#12 is a decrease in estimated median and mean recruitment for large S.

This decrease is largely brought about by the decrease in a 2' since B2

controls the shape of the Ricker curve.

The "transform both sides" model is certainly not the only model

that would be appropriate for this example. Since R is heteroscedastic

but not greatly skewed one should consider heteroscedastic models such as

R = f(S;8) + c,-S(ce (16)

or

R f(S;3) + ,-f (S;B)e,

where the variance of R is proportional to a power of S or of f. In

Ruppert and Carroll (1986), the model

K(X\) = (X) (X
Rk - f(S;;) + -S (3 (17)

was Fiz to the Skeena River data, with case #12 included. The MLE was

= .75 and c = .5. However, both H0 : cx = 0 and H = 1 are accepted

b, likelihood ratio tests at level .10, so models (14) and (16) both

appear reasonable for these data, thouqh a re-analysis without case #12

would be of interest. We plan to study diagnostics and robust estimation

for model (17) in the futurr-.
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6. SUMMARY

When a response y is thought to fit a model f(x;B), but y is

heteroscedastic and/or nonnormallv distributed, then y and f(x;B) can be

traistormed in the same manner to induce approximately homos tic,

normal errors while retaining the model f(x;B) for the conditional median

of y. Often outliers in the original response are accommodated by

transformation; that is, the outliers are seen to be the result of the

skewness or heteroscedasticity in the untransformed data.

In some situations, an outlier will indicate a substantially

different transformation than that fitting the bulk of the data. In our

example with 28 observations, case #12 is a response outlier associated

with a small value of the conditional median (and mean) response.

Therefore, case #12 counter-indicates the severe heteroscedasticity in

the rest of the data, and deleting #12 changes the estimated power

transformation from \ = .3 to \ = -.2.

Influential cases should be detected and scrutinized as a matter of

standar! good statistical practice. In some situations, such as with

case L2 in our example, there are good reasons for removing an

influential case. In other cases, the appropriate treatment of the

outliers will be less clear-cut.

In this paper, we propose an approximation to the sample influence

curve. Although the approximation is not hiqhly accurate it is an

effective diagnostic for influence cases. We also propose a bounded

-fn. . 'etimator, which can be used to pinpoint influencial case.;, or

to accommodate them, or both. The diagnostic and the robust estimator

can botn be computed with standard software.



APPENDIX

There are at least three methods of estimating the covariance matrix

of ( ,X): (i) Evaluate the Hessian of -L(3,Xkci-) at (B,X,o-). This is

the observed Fisher information matrix, I. Use the (p+l)X(p+l) upper-
-i *

left submatrix of Il. (ii) Let I be the Hessian of -Lmax (8',X)

evaluated at (8,X). Use (I ) . (iii) Use the estimate from model (10)

treated as a nonlinear rearession problem. Also there is a fourth method

which only estimates the covariance matrix of 8. Suppose we followed the

Box-Cox method of estimation described in section 2. Then we have

obtained \ and we have estimated 6 by -(a), which is the least squares

estimate when y(X) is fit to f(W (x;B) with \ fixed at \. This fit also

gives an estimated covariance matrix for 3, which we will call the method

(iv) estimate.

Methods (iii) and (iv) are the easiest to use since they can be

implemented on standard nonlinear regression software. Method (i) is

justified by the well-known large sample theory of maximum likelihood

estimation. Method (ii) ignores o. and treats L max(_,k) as a likelihood

for C; ,\)

r theorem A.2 below, we show that methods (i) and (ii) are

identici-l, not iust for the transformation problem under study but in

qerer~a fcr parametric estimation where a parameter is eliminated by

maximizn: tho likelihood over that parameter.

In cien*-irai, m,,thods (i) and (ii) are not equivalent to (iii) even as

N -; oo, ut by theorem A.1 below all three estimates of var(B) are the

samr in t n, limit as N -- co and or -) 0. Bickel and Doksum (1981) and

* . i.R:-tperi: (1984) have let N --> ax an.] o- --> 0 simultaneously to

nroviri,. a simpe asymptotic theory for transformations, since the usual

- co and fixed theory is complicated. "S o-" asymptotics have
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often proved to be good approximations to finite sample results when

checked against Monte Carlo. Moreover, in many data sets, especially

from engineering and the physical sciences, o- does seem small in the

sense that the model fits the data very well.

In Carroll and Ruppert (1984) we show that methods (i) and (iv) are

equivalent estimates of var(i) as N -> o and o- -> 0.

In summary, methods (i) and (ii) are identical, except of course

that method (ii) does not estimate var(o-) or the covariance of o- with a

and X. All four methods give asymptotically equivalent estimates of

var(S) as N -> o and o- -- 0. It does not appear that method (iii)

correctly estimates var(W) or cov(X,_). The confidence interval (9) for

can be used in place of a standard error for \, but a c-method

standard error of E(ylx) or m(ylx) will require an estimate of cov(\,B)

and var(X).

Proqramminq method (ii) by computing the analytic second derivative

matrix of La is somewhat a bother, but the gradient of Lmax is easily

proqrammed and can be differentiated numerically. Since

'nax ( , ) = -(N/2)logi 2 (BI )

where

N
-1I 2

o- N z (yi,xi;B,X)
A i=l

and since the gra,'ieit of , 2 at is zero, the Hessian of [,max at

(_,>\) is

2~a \__ -) --c /
m a/[ B--)T (zw ) (J/ J X)(zw

where all quantities on the right hand side ar, evaluated at (a,\). it

! 1 1 1 1 C 111
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is not difficult to numerically compute the derivatives of (zu) and (zw)

with respect to 8 and X.

In table A.1 we compare the method (ii), (iii) and (iv) standard

errors for the Skeena River data with case #12 deleted. The three

methods produce similar standard err u)rs of 8 1 and 8 2* The standard error

of \by method (iii) seems substantially inflated.

Theorem A.l1 Suppose that x 1'x2 P.. are i.i.d. Then as N --> o and

o- -> 0, methods (i) and (iii) of estimating the covariance matrix of 8

are asymptotically equivalent.

Sketch of proof: Define:

N

41 1=,~U(Yifxi;sfX)j (y. ,x. ;sx)

N

12(ifi=BII )W y 2i

N

an d

>11 1

112 122

tiie- ~I e stinat-i covariance marix or (B,X) by method (iii) is s2
where s' is the mean square orror. Now as N
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N ~ S Eu (yl,2; 8, X) u (y 1 Xi~X)

and by Taylor expansions

( No-)11 12 0

and

( No- 2  D: E[(/eWYis e ) 2

as N -), and o- ->0. (Note that y1 is a function of e see equation

(1).) Therefore, by method (iii) the estimate of var((N /o-)B,N~\

converges to

By thearem 1 of Carroll and Ruppert (1984) method (i) has the same

asymptot-ic estimate of var((Ni/o-)i) but a different estimate of var(N')).

Note: lomne type of reqularity conditions on (x.} are needed for the

asymptotics to hold. The assumption that {x 11 are i.i.d. is convenient

but other assumptlions could be used instead. For a rigorous result, an

appropriate regularity condition on f would also be needed.

le~: .2: Le t L (), o-) , OeR kand o-~ be a real-valued function.

Let Le and L be the first partial derivatives and let L, Lo-i and

01- ee
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LOI be the second partial derivatives of L. For each e suppose o- (0)

satisf ies

L (0, o-()) sup L (O,o-1 (A.l1)

Then

2J /JOJG)L(0,o-(G))

is the upper left k>(k submatrix of

L 00-(e,- (Q)) L 0.-(Q,o-(O))

Proof: It is enough to prove the th-orem when q=l, for then the general

case follows by induction. By (A.1)

L 0-(0,0-o) = 0,

so that

0 = (J/JQ)L (Q,o-(Q)) L L 0 (O,(o)) + L (0,o0-(0))(J- (0) /jQ) .

There fore

J . 4)/ = -LGo..((, o- (0) )/L 0 0-(0,-9) (A.3)

Next

( _/,9 O L _-() = L + L ( _0 + (j -J )T

+ (Jo-/JOH)(-/J0 ) T (A. 4)

where all terms on the right-hand side of (A.4) are evaluated at 9,0-(e).

Substitutinq (A.3) into (A.4) we have
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(J/JeJG)L(g,o-(e)) = L eL L T/L

Using the identity, (A1 +UV T) = A - -A1 UV TA- /(l+V TA -1U) if AeR k and

U, V eRk(see problem 2.8, page 33 of Rao 1973) we have

{(j /JeOje) L (e,o- (0)) ) 1

L- 1+(-1O(,e-l ')/(L -LTLee 1 L (A. 5)ee +(ee e0L&0e 00 __ Le)

By another identity (see problem 2.7, page 33 of Rao 1973), (A.5) is the

kXk upper left submatrix of (A.2).
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Table 1

Diagnostics for the Skeena River sockeye salmon data.

Diagnostics Case Number

5 12 19 25

Residual 917 -939 -882 -922

RSTUDENT 2.25 -4.40 -1.93 -2.04

Hat diagonal .23 .68 .08 .08

Cook's D .43 8.09 .09 .11

DFFITS 1.23 -6.49 -.55 -.62

DFBETAS-3 1  -.46 -.71 .13 .19

DFBETAS-2 2  .55 1.38 -.33 -.41

DFBETAS-x -1.01 6.06 -.11 -.11

A Q-.31 1.56 -.04 -.04

A N -.17 .77 -.01 -.01

AXi -.10 .51 -.03 -.03
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Table 2

maximum likelihood and bounded-influence estimates

for the Skeena River data. No cases deleted.

C=0 (t4LE) C=l C=2 C=3

3.295 3.590 3.619 3.622

22 -6.9998x104  -8.307x1 4  -8.49x104  -8.50x104

.3141 .1921 .1329 .1138

w51.0 .448 .579 .647

w 6  1.0 .931 1.0 1.0

w 21.0 .253 .188 .172

w 91.0 .811 .857 .874

w 51.0 .733 .776 .790
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Table 3

Maximum likelihood and bounded-influence estimates for

the Skeena River data. Case #12 deleted.

C=O (MLE) C=l C=2

3.78 3.98 3.89

a82 -9.54x104  -l0.2x104  -9.93x10-

-.199 -.254 -.235

w41.0 .377 .575

w51.0 .448 .753

w61.0 1.0 .946

w91.0 1.0 .954

w 12 This case is deleted

w 18  1.0 1.0 .904

w 91.0 .781 .860

w 51.0 .703 .846



Table 4

Maximum likelihood estimation for the

SkeenaRiver data with selected cases removed

Cases Removed

#12 #4, #12 #5, #12 #4, #5, #12

3.78 4.20 3.89 4.30
a 2  9.54X10A -11.2X1 -  -10.5X10 -  -12.1X10 -

-.199 -.428 -.126 -.392
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Table A. 1

Estimated standard errors for the Skeena River

sockeye salmon data without case #12

Method s.e(S1  s.e.(B2  s.e.(K)

ii) 0.698 3.17X10O 0.369

(iii) 0.711 3. 33XIO0 0.624

(iv) 0.694 3.06X10-4 --
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LIST OF FIGURES

Fig. 1 - Plot of returns (or recruits) against spawners with mean and

median recruitment estimated without case #12. Selected cases are

identified.

Fig. 2 - Square root of Cook's distance plotted against case number.

Fig. 3 - Residuals = [R -f(S,8)X] from the full-data MLE plotted against

spawners. Selected cases are identified.

Fig. 4 - Differences in mean and median recruitment estimated without and

with case #12 plotted against spawners.
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