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- In regression analysis, the response is often transformed to remove heteroscedasticity
and/or skewness. When a model already exists for the untransformed response, then it can
be preserved by transfomxng both the model and the response with the same transformation.
This methodology, which-we-call zt/ransfom both sxdes‘j;xas been applied in several recent
) papers, and appears highly useful in practice. When a parametric transformation family
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disgnostics which indicate cases influential for the transformation regression parameters.
also proposef».a robust bounded influence estiutor smilar to the Krasker-"elsch reress'
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Diagnostics and Robust Estimation When Transforming

: The Regression Model and The Response

I..!
)
.
A
A Accession For
, (NTIE GRARI g
‘l. ' QUALITY DTIC TAB
o '“":m Unannounced a
A Justification
By
B Distribution/
L) e - AR
% Availability Codes
.zfg, lAvail and/or
:‘:‘x Ro Jo Ca!‘toll Dist Special
X | and
. 1A
}:s:‘* David Ruppert
-
R
" Department of Statistics
:?fe“ -
@g University of North Carolina
4
N Chapel Hill, N.C. 27514
Lo
e
%é :
)
e
) ' . .
:o::f Abstract: In reqression analysis, the response is often transformed to
§, ————
1
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diagnostics which indicate cases influential for the transformation or

regression parameters. We also propose a robust bounded-influence

estimator similar to the Krasker-Welsch regression estimate. Both the

diagnostics and the robust estimator can be implemented on standard

software.
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1. INTRODUCTION

" In regression analysis, the response y is often transformed for two
hey distinct purposes, to induce normally distributed, homoscedastic errors

BB ' and to improve the fit to some simple model involving explanatory

o variables x. In many situations, however, y is already believed to fit a
{$ known model f(x;8) B8 being a p-dimensional parameter vector. If a
.:(;i‘

1yt transformation of vy 1is still needed to remove skewness and/or

heteroscedasticity, then one can transform both y and f(x;8) in the same
W g (\)

NS manner. Specifically, let vy be a transformation indexed by the
:’gsl;

ﬂ&. parameter )\ and assume that for some value of )\

v YS)\) = f()‘)(x:ﬁ) + o€, (1)
e 1 == 1

(27,0 . .

ﬁk where el,...,eN are independent and at 1least approximately normally
3

"*o' .

A distributed. Notice the difference between (1) and the usual approach of

' transforming only the response, not f(x:8), i.e.,
o y N = x84 oy (2)
20 It should be emphasized that model (1) is not a substitute for (2). Both

b models are appropriate, but under different circumstances. Model (2) has

¢y been amply discussed by Box and Cox (1964) and others, e.g., Draper and
lv)e!".
“ﬂﬁ Smith (1980) and Cook and Weisberg (1982). Typically in model (2},

4 f(x;8) is linear but in principle nonlinear models can be used. Model
(1), which we call "transform both sides", has been discussed extensively
in Carroll & Ruppert (1984), and Snee (1985), and Ruppert and Carroll
N (1986) and we will only summarize those discussions. According to (1),
qu f(x;8) has two closely related interpretations; f(x;8) is the value of vy
B * when the error 1is zero and it 1is the median of the conditional
distribution of y given x. In Carroll and Ruppert (1984), we were

concerned with situations where a physical or biological model provides

LI M SO\ 0 Syi
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f(x;8), but where the error structure is a priori unknown. Examples by
Snee (1985), Carroll and Ruppert (1984), Ruppert and Carroll (1986), and
Bates, Wolf, and Watts (1985) <show that transforming both sides can be
highly effective with real data, both when a theoretical model is
available and, as Snee shows, when f(x;8) is obtained empirically.

By ectimating )\, o and 8 simultaneously, rather than simply fitting
the original response y to f(x;8), we achieve two purposes. Firstly, 8
is estimated efficiently and therefore we obtain an efficient estimate of
the conditional median of vy. Secondly, we model the entire conditional
distribution of y given x, and, in particular, we have a model wich can
account for the skewness and heteroscedasticity in the data. Carroll and
Ruppert (1984) discuss the importance of modeling the conditional
distribution of y in a special case, a spawner-recruit analysis of the
Atlantic menhaden population. To specify the conditional distribution of
y, for fixed )\ let h(y,\) be the inverse of y(x), i.e. h(y(x),X) =Y,
and let F be the distribution function of ei. We assume that F is

approximately normal, but not necessarily exactly normal since if y(x)
is the Box-Cox (1964) modified power family,

y OV =y 1y/x A#0

= log(y) \=0,

(3

then F must have finite support whenever )\#0. The p-th quantile of vy

given x is

nite N (x:8) + oF Lp)1, N\ (4)
and the conditional m - a of y is
etylo = 12 a0t N xie + el nar@), (5)

where -a<x<a is the support of F. kuppert and Carroll (1986) discuss

estimation of (4) and (5). E(y|x) is easily estimated by Duan's (1983)
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"smearing" estimate, which estimates F by the empirical distribution of
the residuals; see section 5.
Many data sets we examined have substantial outliers in the

untransformed response y, but not in the residuals y(x)—f(x)

(x;8); the
transformation has accommodated, or explained, the outlying vy's. There
is still the dange2r, however, that a few outliers in y can greatly affect
x and é. Outliers should not be automatically deleted or downweighted,
especially when they appear to be part of the normal variation in the
response, but it should be standard practice to detect and scrutinize
influential cases and when outliers are present to compare the MLE with a
robust estimtor. 1In this paper we propose a diagnostic and a "bounded-
influence" estimator which can be used together for detecting influential
cases and for robustly estimating )\ and 8.

Case deletion diagnostics for 1linear regression are discussed in
Belsley, Kuh, and Welsch (1980) and Cook and Weisberqg (1982), and have
been extended to the response transformation model (2) by Cook and Wang
(1983) and Atkinson (1986). The last two papers approximate the change
in i as single cases or subsets of cases are deleted, Subset deletion
can be unwieldly because of the large number of possible subsets. If
influential subsets are to be detected, one needs some strategy to
searching for them. Alternatively, one can examine weights from a robust
estimator with good breakdown properties.

Bounded-influence regression estimators, so-called because they
place a bound on the influence of each observation, have been proposed by
Krasker (1980), Hampel (1978), and Krasker and Welsch (1982), and this
last paper provides a good overview., Carroll and Ruppert (198%5) proposed

a bounded influence transformation (BIT) estimator extending the Krasker-

Welsch estimator to the response transformation model (2).
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i In this paper we adapt Atkinson's (1986) diagnostics and the BIT
) estimator to the "transform both sides" model. The basic technique is to
linearize the model (1) by a Taylor approximation at the MLE, and then to
R apply ordinary regression diagnostics and bounded-influence estimates.
My Our methods are designed to be easily implemented on standard
software. All our computations were performed on the SAS package using
R PROC NLIN and rather simple data manipulations in PROC MATRIX and DATA
§&, steps. The computations would also be straightforward on other software
c packages. Our computational techniques can be applied to a bounded-
y@: influence estimate for the response-transformation model (2), thus

eliminating the need for a lengthy FORTRAN program used in Carroll and

- Ruppert (1985).
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MAXIMUM LIKELIHOOD ESTIMATION

(\)

Throughout this paper vy is the modified power transformation

+« (3). Under model (1) the log-likelinood is

L(B,\,0) = log f(8,\,0)

“T\/1Z
d

where

log £(8,\,0) = -}log(2Xe-) + (A\-1)logly;)

—1/(2&2)[yi(x)—f(x)(x.:g)] . (6)

° For fixed f and \

maximizes L(8,\,o) in o. Thus, the MLE of 8 and )\ maximizes

(8,0 = LB, N, 2(8,\))

-1

: = -(N/2)1og{N [(yix)—f(x)(§i:§))/?x-llz} + constant (7)

'r\/1z

=
]
[

where ¥ is the geometric mean of Yyreeer¥ye Therefore, 8 and )\ minimize

N
N ¢ -1.2
Z_ (Mg g 180 40 (8)

=1
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5 Following Box and Cox (1964), é and i can be computed as follows.
¢ For fixed )\, minimize (8) in 8 by ordinary (typically nonlinear) least-
squares and call the minimizer é(X). Plot Lmax(é(X),\) on a grid and
2‘ maximize graphically or numerically. This technique 1is particularly
€ attractive when f is not transformed and f(x;8) = ETQ for then (8) can be

minimized in B by 1linear least-squares. When transforming both sides,

‘.

{ the technique 1is less attractive computationally but it does give the
¢

)

.a confidence interval

.‘g‘

" - o 0 2

: {)\- Lmax(ﬁ()\)r)\) Z Lmax(_ﬁ_()\)r)\)-*xl(l—a)}l (9)
A

f where Xf(l-a) is the (1-x) quantile of the chi-square distribution with

-
S

(Gt Wl ad as

one degree of freedom. Minimizing (8) simultaneously in X\ and 8 1is

straightforward with standard nonlinear regression software. One simply

2

fits the dummy variable D, = 0 to the pseudo-model

s"'(Il
J
|
<

- (o N ) N1
: v -E N (x8) 1/ (10)

with regression parameter (8,\). Not only is the least-squares estimate

of (8,\) the MLE, but for small values of o and large N estimating the

o AR,

covariance matrix of B8 wusing the pseudo regression model (10} 1is
) essentially eguivalent to inverting the Fisher information for ()\,8,0),
»
f sze the aopendix.
i

L

!
! .
ot
£l
}
i
N

A o \\.\;-rv-_\.
OLLO ) I. LA "Q'?\\)_“ 3
& * sﬂo? w;* ' & «_ q

g llltii Qo~.1|



R R R L NN VA THUN VR VRN N DN R N LY UN LU/ Y U AT L L Ly I R | T R R N NI N N R T O T TR T Ty T

w%lj\r‘ 10

g

!:Q':“

'|..

Mo 3. DIAGNOSTICS

.@‘0

“"‘

I«!"‘l -~ - -~ -~

:::2' Let (\,8) and ()‘(i)'-B-(i)) be the MLE's with and without case i,
o - -~ - - - -

5‘ respectively. The changes AX; = (A-\(;,) and A8, = (8-8;) are easily
AN

. interpreted measures of influence, called the sample influence curve
W -
§§' (Cook and Weisberg (1982)). Unlike in linear regression, A)‘i and /_\_13_i
A

:::, cannot be computed exactly without actually recomputing the MLE with case
A

i deleted. However, A)‘i and _/_\_13i can be approximated by applying

O
"::::': Atkinson's (1986) "quick estimate" to a linearization of model (1).

(R)
D '5 -
,:éﬁ: To approximate AN\ ;, and /\B(l) we linearize the model

L2

!"

r’.h‘q hd - . -
A :. y()‘)/y)‘ 1. f()‘)(_{;ﬁ)/y)‘ 1 + error (1)
A ) -~ ~

T~ about )\, 8. Let
Ml -

-~
;%E;‘: 200, 8) = [y N -g N (x;8)1/90NT,
18
z.“ W()\:_B_) = (3/dN)Vz(\,8),
LR M

. u (N8) = (3/382(0,8) = ~(3/a8) N x5 NE,
)
D

M
g:'. and
o W(h,8) = (u;(N,8) ... u (X, 8))7

o == i - p '=
kv
P Sometimes we will write z(y,x;8,\) instead of z(8,\) to emphasize the
Y
::: dependence on y and x. The same holds for w()\,8) and p_()\,g). Also let
'\_»f.l - - ~ -~ an
PN z = 2(\,8), w= w(\,8), and u = u(\,8) Then (1l1) is approximated by
5"’..":' - R B
Sy z = -(\-\)w - (8-8)"u + error. (12)
I e e’ -~
v.'\ ~ If we fit equation (12) to the full data, then of course ) = \ and
'a' . -
m._i; 8 = 8. 1If instead we fit (12) with the ith case deleted, then we obtain
A -

§
"'.’ Atkinson's (1986) "guick estimate" approximatiorn, which we call )\?1) and
:,
w4
o

(]

Ty
N
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é?i)’ Let Z}\iQ = (i—i?i)) and Zkéio = (é-é?i)) be the resulting
approximations to Z&ii and Zkéi. Because (12) 1is 1linear, refitting
without case i is easy using standard matrix identities, which have been
programmed in many statistical packages.

We used the following computational scheme on SAS. First (8) was
minimized by PROC NLIN to obtain (i,é), then z, w, and u were generated
in a DATA step, and finally the linear model (12) was fit on PROC REG.
PROC REG calculates the regression diagnostic DFBETASi (Belsley, Kuh, and
Welsch 1980), which is a scaled version of (ZﬁiiQ,Z&éiQ). The unscaled
(gxxiQ,ZléiQ) is DF‘BETAi in the Belsley, Kuh, Welsch nomenclature and is
not part of standard SAS output. If we are interested in cases with
relatively large values of Zﬁii then the scaling is immaterial.

Atkinson's (1986) equation (19) gives a simple formula for
calculating ZkiiQ alone. We feel, however, that influence for both i and
é should probably be assessed together and DFBETASi is ideal for this.
When only the response is transformed, é depends heavily on ; and it is
sensible to estimate i first and then to estimate é. When transforming
both sides, é is usually very stable as i is perturbed and i and é can
be treatesd simultaneously.

In the example in section 5 and in other examples that we will not
report, Zﬁii and ZﬁiiQ were often considerably different, which |is

surprising since the quick estimate is reasonably accurate when y alone

is transformed (Atkinson 1986). The difference is that here u depends on
i and é. The approximation ZﬁiiQ does indicate cases with relatively
large values of Zﬁii' and Z&iiQ seems adeguate for diagnostic purposes.

To obtain a single measure of joint inlluence for (\,8) one can

compute Cook's D or DFFITS (Belsley, Kuh, and Welsch (1980)) for the

psuedo model (12).
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4. ROBUST ESTIMATION

A general approach to robust estimation is to minimize asymptotic
variance subject to a bound on the gross-error sensitivity. This
approach was begun by Hampel (1968, 1974), applied to regression by
Hampel (1978), Krasker (1980) and Krasker and Welsch (1982), and used in
the response transformation problem by Carroll and Ruppert (1885).

Here we will find an estimator bounding the influence for the
parameters )\ and 8. We will ignore o, which can be estimated separately
with a robust scale functional, e.g. the MAD, applied to the residuals.

Let t(x,y;\,8) be the score function

I/IN
E(x,yiN,8) = ¥( )z (\,8) (13)
9/d8
wi\,8)
= z(\,8)( ).
ul(\,8)

Since tne MLE minimizes (8) it solves

=

f(ii rYi;)\r_ﬂ_) = 0,
1

e
W

at least when )\ and 8 are unconstrained and f(x;8) is a smooth function
of 8. The MLE is highly sensitive to cases with large values of z(),8),
w(\,8), or u(\,8) corresponding to response outliers, high leverage

ooints for \, and high leverage points for 8, respectively.

A robust bounded-influence estimator (\,8) is found by solving




13

where W is a scalar weight function such that Wt is bounded. The optimal
choice of W was first studied bv Hampel (1968, 1974) for general
univariate parametric families. When choosing W, asymptotic efficiency
measured by the covariance of (i,g) must be balanced against robustness
measured by the norm of Wi For a multivariate parameter such as (\,8),
this balancing raises philosophical gquestions since there are many ways
of comparing covariance matrices or of norming vector functions. The
approach we take generalizes the Krasker-Welsch (1982) bounded-influence
regression estimates. Whether the Krasker-Welsch estimator is optimal in
any meaningful sense is an open question (Ruppert 1985), but it seems
guite satisfactory in practice.

Let ¢ be the gradient of log f(8,\,0) with respect to (8,\). For

any weighting function W, the influence function evaluated at (yi,gi)

will be defined as

IF(y,x;\,8) = B W(y,x:\,8)E(y,x:\,8)
where
N
B =N Y E (WY, X N8I ECY, X N8I Ty, X 3N, 8) )
! /.y Yo Y2 Yv_ir 8 YI_il 81
=1

This definition of IF coincides wiith the usual definition when the x's
are 1i,i.d. for some H, and the averaging over {xl,...,x } in the
definition of B is replaced by expectation with respect to H. Our
definition is appropriate for fixed or random xX's. In the definition of
B on page 5 of Carroll and Ruppert (1985), W is incorrectly squared. 1In

that article, but not here, £ = 1. The asymptotic covariance matrix of

1 1
‘ OO0 05
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(i,g) is v = B a8™H 7T where
N
A= N-1> EY{WZ(YrEiI\:_B_)t(y'f_ii)\vg)tT(Yvﬁi7)\15)}-
i=1

An intuitively reasonable way to norm Wt is to use the asymptotic
covariance; see Krasker and Welsch (1982) for further motivation and
discussion. The resultant measure of influence, the so-called self-

standardized gross-error sensitivity is

A To-1
Y, = m?x [IF(yi,§i:X:§) V TIF((y; X,/ \,8)]
2

Note that W has been incorrectly omitted from the last term in eguation
(15) of Carroll and Ruppert (1985). Vz must be at 1least (p+1)}. From
experience with other problems we suggest bounding YZ by a(p+l)§, where
"a" is between 1.1 and 1.5, and a = 1.2 or 1.3 has generally been

satistactory. To bound Y2 by a(p+1)§, we use the weighting function
i . 3 T,-1 -4

Here A is defined implicitly since it depends upon W and vice versa. 1In
practice, A\, 8, and A are estimated iteratively.
We used a simple iterative scheme:

(1) Fix a>1. Let C be the total number of cycles. Set c=1. Let \p

-

<o

<

oe creliminary estimates, probably the MLEs. Set wi =1.

(2) Derine

i OSOEANA, ‘es'h‘ »
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-

N
A=N 1§;b SH(y, X, ,x gp)t (y 'Xy ,x sp).
i=

In ¢ use the weighted geometric mean y = exp(\ w.logy‘/\ w
/i i

(3) Update the weights:

e@ W. = min{l, a(p+l)§[t(y X \ TA-lt(y.,x.;x ] )]-§}.
*5 i i'=i’""p’'=
B (4) solve
'y,
i _N_.
X N Wy, ,x.iN,8) = 0
. .(__ i jrojr N2
“ i=1
M
0(1 -~ -~ -~ -~
. (5) 1f c<C, set \p = \ and gp = 8, c=c+l and return to (2). If c=C then
o
b
P t .
S
:$- In the examples discussed in section 5 and other examples that we
“Q": -~ -
will not report, )\ and B8 stabilized at C=2. Therefore, we recommend
°n
o
;ﬂ; C=2, or perhaps C=3 for small N or data sets with extremely influential
K;"
LIS
ga points., In fact C=1 seems adequate, at 1least for diagnostic purposes.
e

We calculated step (3) with a short program in PROC MATRIX and step (4)
a“ was performed in PROC NLIN. PROC MATRIX is needed only to invert A, and
\ the program should be easily modified when PROC MATRIX is replaced by an
interactive matrix language. Undoubtedly, the computations would also be

X easy on other packages. We will call the final estimate the BITBS.

ﬁ% This iterative method <can also be | used for the response
.é ¥

_ transformation model. Instead of using (3) one sets

.U

o

o d/d\

)

2 E(x,yiN,B) = ( 1y N -fix801 /912,

o d/38

e It should be noted that this approach differs from the BIT estimate of
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\ Carroll and Ruppert (1985), since the BIT estimates o simultaneously.
Because the likelihood scores for 8 and o are, respectively, linear and
quadratic in the residual, the joint bounded-influence estimator of )\,8,
and o behaves as a rescending "psi-function", e.g. a Hampel M-estimator

. (Hampel 1978). Therefore, the influence on \ and B of extreme response

outliers approaches zero when the influence for o is simultaneously

bounded,

a, :.'. ) . -;' *J'.; ; ; ) .n. .d- ‘-' J, ‘s" "A. Ae _Jk’a~ oo
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S. AN EXAMPLE

‘3;; When managing a fish stock, one must model the relationshiop between
N the annual spawning stock size and the eventual production of new
325': catchable-sized fish (returns or recruits) from the spawning. Ricker and
s:'%:‘ Smith (1975) give numbers of spawners (S) and returns (R) from 1940 until
" 1967 for the Skeena River sockeye salmon stock. Using some simple
" assumptions about factors influencing the survival of juvenile fish,
o

‘i.‘:‘:‘ Ricker (1954) derived the theoretical model

'“ R =8, S exp(8,5) = £(5;8) (14)
E't; relating R and S. Other models have been proposed, e.g. by Beverton and
;:3\:2 Holt (1957). However, the Ricker model appears adequate and, in
3"" particular, gives almost the same fit for this stock as the Beverton-Holt
E‘:{:é: model.

E&:!i" From figure 1, a plot of R against S, it is clear that R is highly
Rt variable and heteroscedastic, with the variance of R increasing with its
EE::';‘ mean. Several cases app=ar somewhat outlying, in particular #5, #19, and
%g: #25., The model (14) was linearized about the MLE to form the pseudo
N model (12) and the square root of Cook's D was plotted against case
:E?ée number; see f{igqure 2., Case #5 and especially case #12 stand out. 1In
’:‘E';E:‘ figure 1 case #12 is somewhat masked by the heteroscedasticity since the
"i‘.' residual on the original scale [R12 f(slz;é_)] is relatively smaﬂll, but
‘z;,;:‘: after transformation by the MLE )\ = .314 the residual [Rlz()‘)-f()‘)(s;é)l
:.".E: is substantially larger though still not excessive. Case #12 1is an

extremely high leverage point, and its Hat matrix diagonal according to

N model (12) is h]2 = (0,685, An h value exceedina 2p/N = 6/28 = .214 is

::‘E:: considered high by Hoaglin and Welsch (1978). Since h5 = ,23, casc #5 is
b

:'i alSO a lnverago point by this criterion. In figure 3, the residuals
;::? [R()‘) ’()‘) i,g)] = éi are plotted against S§ arn. though #12 stands out,
e

v
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it does not seem extremely outlyinag until one accounts for leverage. To
compensate for leverage, Belsley, Kuh, and Welsch (1980) suggest

standardizing éi by its estimated standard error to produce

;g RSTUDENT, = éi/sci)(l-hi)*,

% - where S(i) is the root mean square -:rror without case i. For this data
4‘! set RSTUD!E:NT12 = =-4,40!

%{ In table 1 we present influence diagnostics applied to model (12),
gz the exact change Zﬁ;i' the quick estimate Z&iio, and another
. approximation ZﬁiiN It is evident that Zliio is not always close to
'ﬁ Zsii' and there are at least two possible causes of inaccuracy: (i)
%‘ Z&iiQ uses a linearization of the parameters and (ii) in model (12) V¥ is
;' held fixed rather than readjusted as cases are deleted. To isolate the
é' effects of cause (ii), we experimented with a different approximation.
i& " We computed the nonlinear least squares estimate i(i)N minimizing (8)
:; when the ¥ is calculated from the full data but the sum of squares in (8)
R .

i is over Jj#i. Then we set ZliiN = (i-i(i)N). Of course, Z&iiN is as
%' difficult to compute as Zﬁii itself and is not of interest as a practical
. approximation; we have calculated Z&iiN just to learn why Z&{io is
iﬁ .naccurate. 1In table 1, i[ﬁiil is large for i=5 and 12. 1In both cases,
%E ZﬁiiN approxXximates Zﬁii much better than Z;iio which suggests that cause
«s (1) is the primary problem. It is clear, though, that small changes in ¥
Eg from deleting an outlying y; can have a notable effect on i. We have
Lg compared A\, and ZSXiQ for several other data sets, the kinetics data of
; Carr (1960) analyzed in Box and Hill (1974) and Carroll and Ruppert
j (1984), the Atlantic menhaden spawner-recruit data in Carroll and Ruppert
%? . 1985), 4nd the “"population A" spawner-recruit data in Ruppert and

Carroll (1986). In all cases Zg\io, though not an accurate

5&‘3
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approximation, did indicate large values of iz;iil, and Z}Xio appears to
be an effective diagnostic of high influence.

We computed the BITBS estimate with bound a=1.2 and C=3 cycles. In
table 2, i, 31’82 and non-unit ﬂi are given for the MLE and each
iteration of BITBS. The changes in the estimates and weights from the
first to the second iteration are small, and one iteration seems adequate
for most practical purposes; certainly two iterations suffice. Although
the BITBS estimate severely downweights case #12, the estimate of )\ only
changes from .31 to .13 in two iterations of BITBS, while the MLE becomes
i = ~,2 1if #12 1is Aeleted, For these Adata, the BITBS detects the
influential points and reduces, but does not eliminate, their influence.
Case #12 was the year 1951 when a rock slide severely reduced recruitment
{(Ricker and Smith 1975). To model recruitment under normal conditions
one would delete case #12 and refit. Without #12, the MLE and the BITBS
estimate are similar (table 3), and one would probably use the MLE. The
bulk of the data indicate that recruitment is highly heteroscedastic and
a severe transformation (i = -,2) 1is needed to induce homoscedastic

errors. Because the anomalous #12 occurs where S is small, it indicates

less h»-eroscedasticity and a more moderate transformation (\ = .3) is

used 1f #12 1is not deleted. Since case #12 1is not from the target
sopuiati-a of ncrmal spawning years, it seems safe to delete it.This data
set is an example where one might consider a robust estimator that gives
essentially zero influence to extreme outliers, e.g. a generalization to
transformation models of a redescending-psi M-estimator. We normally
prefer using a redescending M-estimator to rejecting outliers, since an M-

“rima*nr has a ¥xnown large sample distribut~ion. The effects o/ outlier

rejection methods  upon the MLE are not well understood, even

X asymptotically, Here we distinquish between re® .cting outliers based on
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some statistical criterion, say a hypothesis test, and deleting
observations known to come from a non-target population.

Although the MLE and the BITBS Aare similar, when #12 is deleted, two
cases, #4 and #5, are substantially downweighted by the BITBS. Case #4
had been masked when #12 was included, but #5 was already influential in
the presence of #12. One might explore further deletions though without
further information we feel that #4 and #5 should be retained in the
final analysis. If in addition to #12, case #4, case #5, or both are
deleted, then the MLE changes noticeably; see Table 4. The deletion of
#5 and the deletion of #4 affect the MLE in somewhat opposite directions,
though deleting #4 affects the MLE more severely. The BITBS downweights
#4 somewhat more than #5, so effects of downweighting #4 and #5 tend to
cancel,

We do not view the "transform both sides" method chiefly as choosing
a new scale for analyzing the response, but rather as modeling the
conditional Adistribution of y on the original scale. By "original"
scale, we mean the scale of primary scientific interest, usually also the
scale on which direct measurements have been made. The model

Y(X) = f(x)(§;§)+€

A

~

v = ov(e) = (f <5;g>+xe>1/\ \ #0,
= exp(log f(x;8) + \€) A\ = 0.
W:> ar~ assuming that € is approximately normal and in particular
aoproximately symmetric, and this last point suggests that the
cunditional median of y given x can be estimated by
iy ¥y) = f(_}g:é_).
The conditional mean is easily estimated by the "smearing" estimate of

Duan (198?). Let r, by rhe i-th residual
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( )_(N)

Then the smearing estimate is

N - -
E(Ylﬁ) =Nt ;— X (x;8) + ri}l/x, (15)

with obvious changes if )\ =

If )\ is 0 or 1if \-1 is an integer, then E(ylg) can be estimated by
methods of Miller {(1984)., Miller's estimators are particularly simple
when )\ is in the set {-1,-%,0,%,1}. It is a common practice to round i
to a value in this set, in which case Miller's (1984) estimate is
applicable. We do not necessarily advocate rounding ; especially since
there is some theoretical evidence against this practice (Carroll 1982),
but when the rounded valuve is very plausible according to a hypothesis
test, then the rounding should have 1little effect on subsequent
inference. The common rationale for rounding i, to make the
transformation easily interpretable, is less compelling when one views )\
as part of a model for y on the original scale. 1In the present example,

R'3 Gr R-‘2 is admittedly of 1little direct biological and economic

interes:, but the same is true of, say, log(R).

ir figure 1, m(R|S) and E(R|/S), both calculated without #12, are

plotted. E(R|S) was also estimated by fixing \ =

-~

o, and u51nq Mlller s (1984) estimate:
o /?

0, re-estimating 8 and

t(x;8)e
The smearing estimate and Miller's estimate are so close that they wculd

be barely distinguishable had Miller's estimate be included in figure 1.

m
o,

Y

o =the influence of case #12 on m(R|S) and E(R|S), these

<

estimates were calculated both with and without case #12. When #12 is
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deleted then not only are i and é set equal to the MLE without #12, but
also the averaging in (15) is over i#l2.

The changes in the estimated median and mean caused by deletion of
case #12 are graphed in figure 4. As might be expected, deleting #12
caused the estimated median and mean recruitment to increase for small S,
especially for S near 300-400. The most dramatic change when deleting
#lé is a decrease in estimated median and mean recruitment for large S.
This decrease is largely brought about by the decrease in ;2, since 82
controls the shape of the Ricker curve.

The "transform both sides" model is certainly not the only model
that would be appropriate for this example. Since R is heteroscedastic
but not greatly skewed one should consider heteroscedastic models such as

R = £(5;8) + os%e (16)

or

R = £(3;8) + o£%(S:8)€,

where the variance of R is proportional to a power of S or of f. In
Ruppert and Carroll (1986), the model
xV = £V (5;8) + o5%e (17)

was fit to the Skeena River data, with case #12 included. The MLE was

N = .7% and x = .5. However, both Ho: x = 0 and Ho: A = 1 are accepted
by 1likelihood ratio tests at 1level .10, so models (14) and (16) both
appear reasonable for these data, though a re-analysis without case #12
would be of interest., We plan to study diagnostics and robust estimation

for model (17) in the future,

BRI SR n A
T 1" *‘L", M‘,&’ AN A‘y 2 :‘h.. H AN

oY -

4 . Y \. ~
( "i y |"l -‘ ,C*_‘,\f \"l( ,( " N »“ h i' (AN l"h LN v...h

ARy RN \'\-“!».1, 4.\’-"» ',.‘\\\\* ARR LA
N \\ d‘h}} ot t X } \ <+ ;‘
AP Ko ,.

¥y




W W N TR T A=

23

6. SUMMARY

When a response y is thought to fit a model f(x;8), but y |is
heteroscedastic and/or nonnormally distributed, then y and f(x;8) can be

transformed in the same manner to induce approximately homos.celastic,

."ﬁ normal errors while retaining the model f(x;8) for the conditional median
33%" of v. Often outliers in the original response are accommodated by
o transformation; that is, the outliers are seen to be the result of the
“:"::: skewness or heteroscedasticity in the untransformed data.

EE:':: In some situations, an outlier will indicate a substantially
¥

z“'.‘ different transformation than that fitting the bulk of the data. In our
:::: example with 28 observations, case #12 is a response outlier associated
S

':"i with a small value of the conditional median (and mean) response.
i Therefore, case #12 counter-indicates the severe heteroscedasticity in
: the rest of the data, and deleting #12 changes the estimated power
" transformation from ;\ = .3 to ;\ = -.2.

()

Q_" Intluential cases should be detected and scrutinized as a matter of
:::: standar: good statistical practice. In some situations, such as with
E'E.::' case #.Z 1in our example, there are good reasons for removing an
e influential case. In other cases, the appropriate treatment of the
3:.: outliers will be less clear-cut.

% In this paper, we propose an approximation to the sample influence
:" curve, Although the approximation is not highly accurate it 1is an
03 effective diagnostic for influence cases. We also propose a bounded
*;:;:, "afluenc.. estimator, which can be used to pinpoint influencial cases, or
o to accommodate them, or both. The diagnostic and the robust estimator
;: can botn be computed with standard software.
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APPENDIX

There are at least three methods of estimating the covariance matrix
of (8,\): (i) Evaluate the Hessian of -L(8,\,o) at (8,\,0). This is
the observed Fisher information matrix, I. Use the (p+l)X(p+l) upper-

- *
left submatrix of 1 l. (ii) Let I be the Hessian of -Lmax(g,\)

evaluated at (é,i). Use (I*)—l. (iii) Use the estimate from model (10)
treated as a nonlinear rearession problem. Also there is a fourth method
which only estimates the covariance matrix of é. Suppose we followed the
Box-Cox method of estimation described in section 2. Then we have

-~ -~

obtained )\ and we have estimated 8 by B8(\), which is the least squares

(\) (\)(5;5) with )\ fixed at \. This fit also

estimate when y is fit to £
gives an estimated covariance matrix for é, which we will call the method
(iv) estimate.

Metnods (iii) and (iv) are the easiest to use since they can be
implemented on standard nonlinear regression software. Method (i) is
justified by the well-known large sample theory of maximum 1likelihood
estimation. Method (ii) ignores o and treats Lmax(g,)J as a likelihood
for (5,0,

in theorem A.2 below, we show that methods (i) and (ii) are
identicail, not 1Jjust for the transformation problem under study but in
gereral for parametric estimation where a parameter is eliminated by
maximiz.ng the likelihood over that parameter.

In gen~ral, methods (i) and (ii) are not egquivalent to (iii) even as
N = oo, bkur by theorem A.l1 below all three estimates of var(é) are the
sam> in ta~ limit as N 2 o and & = 0., Bickel and Doksum (1981) and
arrclt o oan !l Rippert (1984) have let N = o anl o - 0 simultaneously to

nrovids a simnle asymptotic theory for transformations, since the usual

N 2 w and o fixed theory is complicated. "5mall o" asymptotics have
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iﬁ? often proved to be good approximations to finite sample results when
Y

f%g checked against Monte Carlo. Moreover, in many data sets, especially
o from engineering and the physical sciences, o does seem small in the
E%g sense that the model fits the data very well.

%%é In Carroll and Ruppert (1984) we show that methods (i) and (iv) are
;;; equivalent estimates of var(é) as N > oo and o = 0.

%%i In summary, methods (i) and (ii) are identical, except of course
?% that method (ii) does not estimate var(;d or the covariance of o with é
h and i. All four methods give asymptotically equivalent estimates of
:":EE:‘ var(é) as N - o and o - 0. It does not appear that method (iii)
ﬁ?‘ correctly estimates var(i) or cov(i,é). The confidence interval (9) for
:i. i can be used in place of a standard error for i, but a é-method
ﬁ:- standard error of é(ylg) or ;(ylz) will require an estimate of cov(i,é)
g&f and var(i).

Programming method (ii) by computing the analytic second derivative
f: matrix of Lmax is somewhat a bother, but the gradient of Lmax 1s easily
Yo programmed and can be differentiated numerically. Since

-2

_";t;: where

(i, \) =N

# and since the gradieat of <§2 at (8,\) is zero, the Hessian of Lmax at
L0 -

. (B, 1) is

Ny ~“ o~ N ](J/JB)T(zu) (J/JX)(zu)]
1l . =2 \ - - ‘
. - /

[u/am (zw) (3/3N)(zw)

-

[N

B{ where ali quantities on the right hand side ar. evaluated at (8,\). 1t
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is not difficult to numerically compute the derivatives of (zu) and (zw)

with respect to 8 and \.

In table A,1 we compare the method (ii), (iii) and (iv) standard
errors for the Skeena River data with case #12 deleted. The three

methods produce similar standard errurs of Bl and 82. The standard error

of \ by method (iii) seems substantially inflated.

Theorem A.l

are i.i.d. Then as N - oo and

Suppose that XyrXoyreeo

o -> 0, methods (i) and (iii) of estimating the covariance matrix of 8

are asymptotically eguivalent.

Sketch of proof: Define:
N
- -~ T -~ -~

N
% 12 = 2_ E(Yl:ﬁiiﬁr)\)W(YI:§17§')\)

N
2 _ \— 2 . ~
222 T ) WYieXi8N)
! i=1

and

pl _ 7

211 212
T

1212 222

L .

~ -~ ‘1

Tnen tne estimated covariance matrix of (8,\) by method (iii) is 32$
2

where 3

is the mean square arror. Now as N = o
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;%: N'li 11 > S := Eg(yl,gl:g.X)gT(yl.gl,g,X),

B and by Taylor expansions

-1
(No-) ¥ 12 > 0

‘,e"):.c and

40 - 2
o (No-2) 1# 2p > Di= E[(3/3€ Wiy, X ,8, )\)l NN

as N - oo and o = 0. (Note that Yy is a function of el; see equation
0 (1).) Therefore, by method (iii) the estimate of var((Ni/ongN§X)
g converges to

L}

- -1
Sl 0

\ -
o 0o D
K -

By theorem 1 of Carroll and Ruppert (1984) method (i) has the same

fﬁ asymptotic estimate of var((Ni/odg) but a different estimate of var(NiX).

Note: fome type of reqularity conditions on {51} are needed for the
e asymptotics to hold. The assumption that {x;} are i.i.d. is convenient
e but other assumptions could be used instead. For a rigorous result, an

appropriate regqularity condition on f would also be needed.

k

W pecrcs 4.2: Let L(8,0), 6€ER” and <>€Rq, be a real-valued function.

- T.et r_.g and Lo- be the first partial derivatives and 1let [%9, I%c—' and
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Loo be the second partial derivatives of L. For each 8 suppose o (§)
satisfies
L(8,0-(8)) = sup L(8,0). (A.1)
o
Then
2 -1
{(a/3848)L(8,0-(8))}
is the upper left kXk submatrix of
- 4 -1
Lpﬁ(g,cr(e)) Lgo_(_e_,o-(g))
(A.2)
T
f L g&(g,mg)) Lo_o_(g,o-(_e_))
L. -
Proof: It is enough to prove the theorem when g=1, for then the general
E case follows by induction. By (A.1l)
- L, (8,0(8)) = 0,
so that
¢ 0 = u/ag)Lo(g,o-(g)) = Lgo_(g,o-(_o_)) + Lcro(g,o-(g))(ao-(g)/ag).
X
’4
L)
Therefore
E dc-(8)/38 = - go_(g,o-(g))/Lo_o_(_O_,o-(g)). (A.3)
K Next
)
¢ 2 _
(3°/3648)L(8,0-(8)) = Lﬁf LGO_(JO-/JQ) + “"’/"9”‘90-
h
r
. + (3o-/d8)(d0-/a8)°L (A.4)
4
! where all terms on the right-hand side of (A.4) are evaluated at §,c-(8).

-
o

Substituting (A.3) into (A.4) we have

-
-
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2 T
(47/2838)L(8,0-(8)) = Lgo-Ly Lo /L .
Using the identity, (A"l+uovD)™! = a7 -a"lyvTal/(1+vTalu) if aer¥>X ang
u, v GRk (see problem 2.8, page 33 of Rao 1973) we have
2 -1
{(d3%/4838)L(8,0-(8))}
= -1 -1 -1 T -1
= Dgg * (LgglgoLgo-Log )/<L°°_—L20Lﬁ Lgo-) - (A.5)

By another identity (see problem 2.7, page 33 of Rao 1973), (A.5) is the

k>Xk upper left submatrix of (A.2).
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Table 1

Diagnostics for the Skeena River sockeye salmon data.

Diagnostics Case Number

S 12 19 25
] Residual 917 -939 -882 -922
» RSTUDENT 2.25 -4.40 -1.93 -2.04
) Hat diagonal .23 .68 .08 .08
o Cook's D .43 8.09 .09 .11
DFFITS 1.23 -6.49 -.55 -.62
DFBETAS-8, -.46 -.71 .13 .19
;& DFBETAS—Ez

- DFBETAS-\ -1.01 6.06 -.11 -.11

.55 1.38 -.33 ~.41

AN -.31 1.56 -.04 -.04

T*;’ti A)\i -.10 -51 l"003 -003
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Table 2
Maximum likelihood and bounded-influence estimates

by for the Skeena River data. No cases deleted.

C=0 (MLE) C=1 C=2 C=3
8y 3.295 3.590 3.619 3.622
b 8,  -6.9998x10"%  -g.307x107%  -s.49x10™*  -g.s0x107*
. \ .3141 .1921 .1329 .1138
. 1.0 .448 .579 .647
o Ve 1.0 .931 1.0 1.0
' 12 1.0 .253 .188 .172
L g 1.0 .811 .857 .874

A Woe 1.0 .733 .776 .790




Table 3
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Maximum likelihood and bounded-influence estimates for

the Skeena River data.

C=0 (MLE) c=1

L 51 3.78 3.98
g g, -9.54x107% -10.2x1074

\ -.199 -.254
g Vs 1.0 .377
é we 1.0 .448
k e 1.0 1.0
ﬁ Wy 1.0 1.0
E T W, This case is deleted
.i W18 1.0 1.0
§ Yi9 1.0 .781
% Wss 1.0 .703

e

)
[y f.'.“

Case #12 deleted,

C=2

3.89
-9.93x10" 4

-.235

.575

.753

.946

.954
.904

.860
.846

i ‘7‘\ 4"J %, £ ¥
e ‘z‘;‘l’(.
REE Rt

Ay
3




Table 4 ‘
Maximum likelihood estimation for the

SkeenaRiver data with selected cases removed

Cases Removed

12 #4, #12 #5, #12 $4, 45, #12
El 3.78 4.20 3.89 4.30
Ez —9.54x10"% -11.2x10"%  -10.5%107? -12.1x1074

N -.199 -.428 -.126 -.392
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Method
(ii)
(iii)

(iv)

Table A.1l

Estimated standard errors for the Skeena River

sockeye salmon data without case #12

s.e(al) s.e.(az) s.e.(i)
0.698 3.17x10"4 0.369
0.711 3.33x1074 0.624
0.694 3.06x10"% -
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LIST OF FIGURES

Fig. 1 - Plot of returns (or recruits) against spawners with mean and

median recruitment estimated withrut case #12. Selected cases are

identified,

Fig. 2 - Square root of Cook's distance plotted against case number.

-~

Fig. 3 - Residuals = [Rx-f(S,g)\] from the full-data MLE plotted against

spawners, Selected cases are identified,

Fig. 4 - Differences in mean and median recruitment estimated without and

with case #12 plotted against spawners.
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