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INTRODUCTION :.E

Low pressure diffuse discharge switches, operated close to the Paschen Pr
minimum, are characterized by low erosion rate and fast recovery. The é%
charge carrier balance is generally determined by electrode as well as gas %ﬁ
phenomena. With increasing pressure, however, electron molecule inter- !
actions in the gas define the discharge characteristic more and more. In 135
the pxd (pressure times gap distance) range to the right of the Paschen g%
minimun it should therefore be possible to control the resistance of the gas =
discharge through manipulation of the electron generation and depletion fg&
processes in the gas and the charge transport parameters. A way to change %;;
rate and transport coefficients in the low pressure range is through magne- %ﬁi
tic fields. Magnetic fields applied perpendicular to the electric field in fiﬁ
the discharge shift the electron energy distribution f(e) towards low %;
energies. The rate and transport coefficients are determined by the inte- E:
gral of the product of €1/2*f(¢) and the cross sections for the processes oo
being considered. It should therefore be possible to increase the resis- E ﬁ
tance of glow discharges in gases with appropriate cross sections through E:
application of magnetic fields. Applications for this effect are in the é?
field of opening switches for inductive energy storage and as means to :Ef
shorten the recovery time in low pressure closing switches operated at high £

f repetition rates. ;§1

Glow discharges are spatially characterized by four regions: the §f
cathode fall, the negative glow, the positive column, and the anode fall. e
The cathode fall voltage VC is for large current densities (j > 1 A/cm2) ;Q
in the order of Xilovolts over a distance of typically less than one R0y
millimeter (abnormal glow) (19). Voltages across the negative glow and the iﬁ
anode fall are negligible. The voltage drop in the positive column, ;:?

X
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where the electric field strength E 1is constant, is dependent on the
length of the column. Control of the abnormal glow discharge through mag-
netic control of the positive column generally requires discharges with
large electrode distance d. Since this part of the discharge can be con-
sidered as a homogeneous plasma, a condition which allows the use of zero
order codes for modeling, theoretical studies have concentrated initially on
magnetic control of rate and transport properties in the positive column.
The conductivity in the positive column is given by the product of
electron density and electron mobility, with ion contributions neglected.
Both quantities are affected by the magnetic field. The decrease of mobil-
ity with increasing magnetic field intensity B is usually expressed by the

following equation, where a constant collision frequency Ve is assumed:

v
u = $ < (1)
m vé + (eB/m)2

Mo is the electron mobility for zero magnetic field intensity, e and m
are the electron charge and mass, respectively. The effect of the magnetic
field on the conductivity through its influence on the electron density is
usually not considered as being essential. However, as will be shown, the
change in electron density due to magnetic field controlled electron genera-
tion and depletion processes can affect the conductivity in a similar way as
through changes in the mobility.

The concept for magnetically controlled reduction of electron density
and consequent reduction of conductivity in the positive column of a glow

discharge is based on the following considerations: The electron energy

distribution in the positive column is shifted towards smaller electron
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energies when a transverse magnetic field is applied. This leads to a

reduction of the ionization rate coefficient, which is given as:

2,172
ki = (“)
m

[ f (e, E/N, B/N) €172 o(e) de (2)

0

If electronegative gases with attachment cross section peaking at low
energies are used, an increase in attachment rate should occur due to the
shift in the electron energy distribution. The attachment rate coefficient
is:

1/2

Ky = B 17 F (e, EIN, BIN) €12 0 (e) de (3)
m 0

This serves as an additional mechanism to reduce the electron density. The

effect of the magnetic field on the carrier density g could in this case
-- that means by using suitable electronegative gases -- be more effective

in changing the conductivity of the positive column than the change in

mobility from Eq. (1).

THEORETICAL STUDIES
Monte-Carlo calculations were performed to simulate the positive column

of glow discharges with applied transverse magnetic fields in gas mixtures

of He and SFg at 10 Torr. The gas mixture, which we have chosen for

our studies, was 20% SFg/ 80% He and 5% SFg/ 95% He, respectively, at
10 Torr pressure. The sulfur hexafluoride (SFg) was chosen as the attacher

for this work because of its strong attachment peak at very low energy, and

the fact that its total set of collisional cross sections are more readily
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found than those for other candidate gases with similar attachment cross
sections. There are several sources for SFg data (1-13). For the first
calculations data compiled by Kline (1) were used. The results of these
calculations are published in our paper on "Magnetic Control of Diffuse
Discharges" (Appendix). Our more recent calculations were based on SFg
cross sections provided by A. Phelps (2). Even though there were
differences in the two sets of cross sections, the computed electron energy
distributions in the positive column are almost identical. The cross
sections for He, which serves as buffer gas, were taken from a paper by

Hayashi (14).

1. Steady State Characteristics of the Positive Column

When describing the steady-state characteristics of the positive
column, spatial uniformity of electric and magnetic field intensity was
assumed. A Monte-Carlo code was used to calculate the electron-energy
distribution, ionization rate coefficient, the attachment rate coefficient,
the collision frequency and the drift velocity in a gas mixture of 20% SFg
and 80% He. Because of the steady-state situation and the homogeneity of
the gas and the applied fields, it is sufficient to simulate the motion of
one single electron. From ergodicity it can be assumed that a sufficiently
long path of this sample electron will give information on the behavior of
the entire electron gas. Each run of the progran considered 106 colli-
sions. The range of the reduced electric field E/N investigated was 60 to
2400 Td and the range of magnetic flux density B was from 0 to 9
Tesla.

Results of these calculations, obtained with Kline's set of cross sec-
tions (1), are shown and discussed in the paper on "Magnetic Control of

Diffuse Discharges" (Appendix). The ionization rate coefficient and the

e W W eV
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attachment rate coefficient, calculated by using Phelps' set of cross sec-
tions (2), are plotted in Fig. la and Fig. 1lb, respectively. The collision
frequency Ve and the drift velocity vq are shown in Fig. 2a and 2b as a
function of reduced electric field with magnetic field intensity B as a
parameter. The drift velocity shows the expected decay with increasing
magnetic field, however, due to the reduction in collision frequency with

B, the decay is not as strong as predicted by the simple model (see Eq. 1).
The main effect of a magnetic field on the conductivity of our electro-

negative gas mixture seems to be the reduction of the effective ionization

rate coefficient (ki'ka) rather than the reduction of the mobility Mo

In order to determine the effect of SFg concentration in the buffer
gas on the characteristics of the positive column, similar calculations as
for 20% SF,/ 80% He have been performed for 5% SF./ 95% He. Figures 3a
and 3b show the ionization and attachment rate coefficient ki and ka for
this gas mixture as a function of electric and magnetic field intensity.
There is a strong effect of the magnetic field on the ionization rate
coefficient in the entire range of electric field strength (0.4 to 4 1V/cm).
The attachment rate coefficient, however, is strongly influenced by the
magnetic field only at high electric field strengths.

The computed rate coefficients ki and ka can be used in a simpli-
fied continuity equation for electrons, where detachment, recombination and
diffusion processes are neglected, to calculate the equilibriun reduced
field strength E/N for the positive column of a discharge plasma as a
function of B/N. This equilibrium E/N, or limiting E/N, is the electric

field intensity at which
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dne
= =k; Nng -k, Nyn, =0 (4)

The results from such calculations are shown in Fig. 4 for 20% SFg/ 80% He
and 5% SFg/ 95% He. Except for small values of B/N, the E/N versus B

curves increase linearly with a slope of E/B =1 (kV/cm)/Tesla and ~ 0.25

(kV/cm)/Tesla, respectively. That means that the application of a magnetic

field of 1 Tesla forces an increase of the voltage across the positive
column of a glow discharge by 1 kV*d, where d is the length of the
positive column, in order to sustain the discharge at a reduced current
level. If the external electrical circuit does not allow the discharge

voltage to rise, the discharge will be turned off by the magnetic field.

2. Transient Behavior of the Positive Column

To describe the temporal response of the positive column to the appli-
cation of a transverse magnetic field a Monte-Carlo code was developed,
where 10* electrons were simulated independently with appropriate distri-
butions of initial conditions. The equilibrium electron energy distribution
in the positive column at zero magnetic field was chosen to be the initial
distribution. For a mixture of 20% SFg/ 80% He this distribution occurs
at E/N =105 Td. At time t = 0 a step magnetic field was applied and the
temporal development of the energy distribution of the initial 10% elec-
trons was recorded until the distribution approaches the steady-state curve
for the applied magnetic field with the electric field being constant. The
temporal development of the electron energy distribution is shown in Fig. 5

for E/N = 105 Td and B = 0.5 Tesla * u(t), where u(t) is the unit step

function,

AR
LA ,

e
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1300 202 SF6 - 80% He

E/N (Td]

1000
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Fig. 4. Calculated positive column E/N as a function of reduced magnetic
flux density B/N.
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The temporal change of the ionization rate coefficient ki and the
attachment rate coefficient ka for this case is shown in Fig. 6. The rate
coefficient for attachment is multiplied by the ratio of attaching gas
density Na to total gas density N to allow direct comparison between
electron generation and depletion rates in this gas mixture. At t =0, ki

and ka*Na/N are equal. During the first nanosecond they both decrease by
the same amount, then, however, the two curves approach different steady-
state values. The reduced attachment rate coefficient is larger than the
ionization rate coefficient by about a factor of two. The temporal

development of the electron density can be estimated using the simplified

continuity equation (4):
dn N
e a

== = My = 2 k) g (5)

For steady-state values of ki and ka this differential equation can be

integrated analytically and the result is
Na
ng = ny exp [N(k; i ky) t] (6)

This theoretical result corresponds to an experiment where the voltage
across the discharge is kept at a constant value after the magnetic field is
applied. This is the situation which is characteristic of capacitive dis-
charge circuits. Consequently in a capacitive discharge circuit a 10 Torr,
20% SFg/ 80% He glow discharge used as a switch should turn off with a

time constant of t ~ 100 ns when a magnetic field of 0.5 Tesla is

applied.
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3. Steady State Characteristics of the Cathode Fall

In order to reach current densities in excess of 1 A/cm2, values which
are desirable for pulsed power applications, the discharge has to be
operated in a range which is characterized by large values of the cathode
fall voltage VC. To study the influence of magnetic fields on the cathode
fall, we have developed a Monte-Carlo code which allows us to calculate the
electron energy distribution in this region as a function of position. 1In a
first approximation data were used which are characteristic for normal
cathode falls, a region for which Monte-Carlo calculations have already been
performed (15, 16), however, not for crossed electric and magnetic fields.
As in these studies the cathode fall distance dC was assumed to be 1 cm,

and the cathode fall voltage vc was set to 400 V, with the electric field
decreasing linearly from cathode to the negative glow region. The energy
distribution function of the electrons leaving the cathode was assumed to be
constant between 0 and 10 eV, and zero for higher energies (17). Ensem-
bles of 500 initial electrons were used to simulate the cathode fall. The
program was repeated twenty times to achieve a reasonable accuracy in elec-
tron energy distribution and transport coefficients.

Results for 0 and 0.5 Tesla are shown in Fig. 7a and 7b, respective-
ly. The effect of the magnetic field on the electron energy distribution is
almost negligible in the vicinity of the cathode. However, it becomes very
pronounced in the region adjacent to the negative glow. Here the number of
high energy electrons is greatly reduced by the magnetic field. Consequent-
1y, the effective ionization coefficient is lower in this region, which
causes the cathode fall voltage to rise in order to sustain the dis-

charge.
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EXPERIMENTAL STUDIES
1. Experimental Setup

The experimental setup is described in the paper on "Magnetic Control
of Diffuse Discharges" (Appendix). The diagnostic system has been improved.
Besides monitoring the current it is now possible to record the voltage
simultaneously, using the recently acquired fast digitizers (Tektronix 7912
AD). The voltage probe consits of a capacitive divider, integrated in the
coaxial discharge system, with a resistive divider in series. The voltage

divider ratio is 62000.

2. Experimental Results

The electrical characteristics of glow discharges in transverse mag-
netic fields were measured in a 20% SFg/ 80% He mixture. The pressure was
8 Torr, well to the right of the Paschen minimum value. The measured
Paschen curve for the gas mixture is shown in Fig. 8 together with that for

pure He. Current and voltage traces for a discharge at B = 1.2 Tesla are

shown in Fig. 9. When the spark gap in the discharge circuit breaks down,

a large voltage is applied to the discharge chamber. After it reaches the
breakdown value, the voltage drops and the current rises rapidly. After a
current overswing and a corresponding dip in the voltage the current and
voltage approach in some tens of nanoseconds a steady state. The resistance
in this phase is about 30 ohms. For most shots the duration of this phase
is not determined by the discharge circuit (200 ns transmission line) but by
transition into an arc. The onset of the glow-to-arc transition varies
statistically, but generally it becomes faster with increasing magnetic

field. The strong variations of voltage and current at about 200 ns after
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Fig. 8. Paschen curve for 100% He and 20% SFg-80% He. (electrode material:
brass).
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. s
L breakdown are caused by reflections of the spark gap trigger pulse. This NN
: v

i temporal behavior is typical for discharges in transverse magnetic fields

Y above 0.1 Tesla. For small magnetic fields and large currents (150 A) a ;ﬁ
!..\.

discontinuity in the discharge current was observed and by using circuit :;
'_n* '

data it was concluded that this corresponds to a voltage discontinuity (Fig. '

7, Appendix). Voltage measurements, however, have yet to confirm this 5;“

’-

conclusion. v

RS
The current-voltage characteristics for 80% He/ 20% SFg with the mag- .

netic field strength as parameter is plotted in Fig. 10. The dots represent Q:
experimental values with an error of about 10%, due to the uncertainty in %.

voltage data. According to our simple model for the positive column (Eq. ii

4), E/N and therefore also the voltage -- at least in the positive column -- ;f
should not depend on the current. This is approximately true for low values ;j:
2d
of magnetic field intensity. At higher magnetic field strengths, however, :i
there is a distinct increase of voltage with increasing current. This Q}

: RN

effect might be due to the increasing importance of recombination processes E‘

Ly
at higher magnetic fields, processes which so far have been neglected in our rtf

'.c "'
'y

model,

[
o
[J

The voltage is rising with increasing Magnetic field as expected from

.
v
U

L.,
| 200

our theoretical studies. Besides this qualitative correspondence there is a

reasonable agreement of theory and experiment what the rate of change of

electric field with increasing magnetic field concerns. In Fig. 11 the

theoretical E/N versus B/N curve is compared with curves derived from

experimentally obtained values at currents of 60 A and 100 A. For these

curves it was assumed that the positive column extends over the entire dis-

tance between the electrodes and that E/N 1is constant in this region., The

agreement in the slopes of experimentally and theoretically optained E/N

19
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densities of 0.6 A/cm?, 1.0 &/cm? (60 A and 100 A) and the
computed curve which is independent of current density. The
experimental values were deduced from the voltage current
characteristics assuming that the eilectric field is uniform
over the length of the discharge.
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versus B/N curves seems to become better with increasing current density.
Discharges in pure He show the opposite tendency in the current volt-
age characteristics than discharges in SF;/He. The discharge voltage de-
creases with increasing magnetic field. This does not agree with the con-
sideration for the positive column., For this part of the discharge we would
expect an increase in electric field even in gases without attachment. The
decrease in voltage is therefore determined by processes in the cathode fall
region. For He the cathode fall is, according to our measurements, domi-

nating the voltage distribution along the axis of the discharge.

CONCLUSIONS AND CONSEQUENCES
1. Experiment

The experimental results show that in SFg/He glow discharges the dis-
charge impedance increases when a transverse magnetic field is applied. The
rate of change in voltage with magnetic field intensity at magnetic fields
above .3 Tesla, in our system, approaches the value 2 kV/Tesla, a value
which we assume can be increased linearly by increasing the geometric length
of the discharge.

A problem which imposes restraints to the use of magnetically con-
trolled discharges as switches is the relatively high forward voltage at
zero magnetic field, which in our system is greater than 1 kV and is
increasing with current density. A considerable contribution to this volt-
age comes from the cathode fall. There are several ways to reduce the
cathode fall without sacrificing current density, including the use of
cathodes with higher secondary Townsend coefficients, thermionic cathodes,
and hollow cathodes. Of these, hollow cathodes (18) seem to be easiest to

integrate in our present discharge. It is therefore planned to build a

-
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+
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small planar discharge chamber which will allow the investigation of cath-
odes for abnormal glow discharges.

A second problem for the use of abnormal glow discharges as switches is
the rapid transition from glow to arc with increasing magnetic field and
corresponding increasing discharge voltage. It is assumed that the insta-
bilities which lead to the termination of the current flow have their origin
in the cathode fall, the discharge region with the highest electric field
strength. In order to study the onset of these instabilities, optical
diagnostics of the discharge by means of an image-converter camera with
10 ns shutter time is planned.

So far the discharge has been operated in a semistatic magnetic field
with a pulsed electric field applied. This method of operation allows the
steady-state characteristics of glow discharges in crossed fields to be
found using a relatively simple experimental setup. In order to determine
the discharge behavior when used as an opening switch, the discharge must be
operated in a semistatic electric field, and the magnetic field has to be
applied in a pulsed mode. A system is under construction which will allow
the application of pulsed magnetic fields up to 1 Tesla with a rise time

of about 200 ns,

2. Theory

Theoretical investigations of the positive column in a magnetically
controlled glow discharge in 20% SF,/80% He have been performed, both
steady-state and time-dependent. The steady-state calculations indicate
that a magnetically induced increase in electric field strength [of about
1(kV/cm)/Tesla], corresponding to an increase in resistance, can be
expected. This result is in reasonable agreement with our experimental

observations (Fig. 11). The positive column model does not give the
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absolute value of the discharge voltage. At current densities in excess of ?ﬁ
1 A/em?2, corresponding to currents greater than 100 A in our system, it is o
.y
expected that the voltage across the discharge is determined more and more (ﬁ
by the cathode fall rather than the positive column [19]. Therefore, and Li
because of the importance of this region for the stability of the discharge
i it is planned to expand the theoretical investigations of the cathode fall fﬁ;
Ayt
iy
by developing a self consistant model of the cathode region in crossed o
electric and magnetic fields. Py
A The time-dependent investigations of the positive column gave an esti- ff
mate of the time scale of the dynamic response of the plasma to changes in ?\:
¥ [2C:
the magnetic field for a constant electric field. In order to model the =
3 transient behavior of an opening switch in an inductive energy storage E:'
(] gAY
i system the influence of the circuit parameters on the electric field have to ; f
, cs
be considered. As a next step in the theoretical description of the glow =
i discharge as a switch it is planned to model the discharge as part of an ,;
1 inductive circuit by means of rate equations and circuit equations, with 3?2
time dependent rate coefficients obtained with a first order Monte-Carlo $
code for the positive column. éﬁ
) H.
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MAGNETIC CONTROL OF DIFFUSE DISCHARGES ﬁj
0
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and G. Schaefer, Senior Memper, IEEE ny
’r'
’
l.p
Abstract - By application of a crossed magnetic field, the electron ener- ﬁﬂ
gy distribution in a gas discharge can be shifted to lower energy values, as L
demonstrated by means of Monte Carlo calculations for electrons in He:SFg oy
mixtures. Consequently, through the change in the rate coefficients for rs
jonization and attachment, the sustaining field in the discharge plasma is ~§i
increased. This magnetically induced voltage rise was studied in a low- (2
] pressure glow discharge. The cathode fall was found to be the dominant NS
component in determining the characteristics of this magnetically controlled b
discharge. The drastic rise of the cathode fall above a threshold value -
N could be utilized in operating a glow discharge as an opening switch for an :gm
' inductive energy storage system. :*!
: I. INTRODUCTION et
Low-pressure diffuse discharges have been studied extensively with respect i§§
. ) l\
: to tneir application as closing switches. Examples of switching devices g
f operating at low pressures are thyratrons [1], tacitrons [2], and cross- lfé
E atrons {3]. Common to all these devices is their operation on the low pd N,
E side of the Paschen minimum, with p being the gas pressure and d the ;x
v ~
electrode spacing. The application of crossed magnetic fields in tnis pd L
range leads to a decrease in breakdown strength and plasma resistivity in b
)
; the on state of a switch, an effect which has been successfully used in B¢
"¢
i operating crossed field tubes as closing switches. L
j If the gas pressure is such that pd is on the high side of the Paschen 3;
s KN
minimum, the application of a crossed magnetic field has the opposite tﬁ’

effect. In this pd range, where the characteristic of the discharge is

' determined by electron-molecule collisions, rather than by electrode (y)

processes, the applied magnetic field causes a change in the transport prop-

A Ay Y
NN N

erties of the discharge such that an increase in both breakdown field

strength [4) and resistivity [5] occurs. This effect provides a means for f;
~
: »
)
b 28 LS
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the use of magnetically controlled low-pressure discharges as opening

switches,

II. THEORY AND COMPUTATIONAL RESULTS

The application of a magnetic flux density §, which is transverse to
the electric field £ in the discharge, changes the transport parameters of
the electrons by changing the electron energy distribution f(e). This was
demonstrated by means of Monte Carlo calculations in pure SFg. Fig. 1
illustrates this shift in the distribution function for a mixture of He
and SFg. These data were generated again by Monte Carlo calculations [7].
The cross sections for this calculation for He were taken from a paper by
Hayashi [8] and those for SFg were taken from Kline [9]. The electron
scattering was assumed to be isotropic. The major points of interest in the
crossed field induced changes in f(e) are the reduction in the high-energy
tail of the distribution and the shift of the mean energy to lower values
with increasing reduced magnetic flux density B/N, N being the number
density of the gas molecules. The mean energies for the B/N = 0 and
B/N=1.5x 10-18 T « cm3 distributions are 11.6 and 8.0 eV, respectively.

The effect on the tail of f(e) can be explained by considering the
electron trajectories in crossed electric and magnetic fields. The elec-
trons that make up the high-energy part of the electron energy distribution
in a gas with an electric field only are those which have been forward
scattered, i.e., scattered in tne direction of the electric field lines.
The forward-scattered electrons in a crossed field discharge travel paths
that are curved due to the v x B forces acting on the particle. This
means that forward-scattered electrons will not gain as much energy as in

the "electric-field-only" case, so the high-energy tail of the electron
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enerygy distribution is reduced. The shift in the mean energy has been
derived both analytically (10] and in computer simulations (5], [11] for
crossed field discharges.

The changes in the distribution function significantly affect the elec-
tron transport parameters of a discharge in a gas mixture of 20-percent SFg
and 80-percent He, as shown by the plots of ionization and attachment rate
coefficients in Figs. 2 and 3, respectively. These data were generated by
counting the number of ionization and attachment processes with the same
Monte Carlo calculations as were used to produce the distribution functions

of Fig. 1. Rate coefficients in a gas are defined by the equation

m
e

/2
kj = <_E.> / oj(e) el/2 f(e)de (1)

where kj is the rate coefficient, oj(e) is the corresponding collision
cross section, my is the electron mass, and e 1is the electron energy.
In Fig. 2 it can be seen that the ionization rate coefficient ki is re-
duced by more than three orders of magnitude by the application of a mag-
netic field of B/N = 1.5 x 10-18 T . cm3 for 20-percent SFg; and 80-per-
cent He. The attachment rate coefficient ka is strongly affected by the
magnetic field only below some threshold value. For E/N = 2400 Td, this
threshold is at B/N = 6 x 10-18 T . cm3, as shown in Fig. 3. The rate
coefficient remains fairly constant above this value of B/N. This behavior
is typical for an attacher whose attachment cross section peaks at low
energies, such as SFe [9]. The drift velocity V4 for a particular E/N
is also reduced if a transverse magnetic field is present. This is due to

the lowered electron mobility in the electric field direction caused by the

gyrating path of the electrons in crossed fields.
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The computed rate coefficients ki and ka can be used in the continu- ES

ity equation for electrons to calculate the equilibriun E/N for the posi- ) $§

tive column of a discharge plasma as a function of B/N. This equilibrium sg

E/N, or limiting E/N, 1is the electric field intensity at which sg

dne/dt = ki""e - kaNane = 0. (2) ;Q

o

The results from such a calculation for a 20-percent SFg-80-percent He o

: gas mixture are shown in Fig. 4. Except for sinall values of B/N (<0.1 x é?
) 107 T - cm3), the E/N versus B/N curve increases linearly with a slope g;
of E/B~1KkV/(T « cm). i

III. EXPERIMENTAL RESULTS %

Experimental studies of low-pressure glow discharges in crossed electric ‘ié

. and magnetic fields were performed with the apparatus shown in Fig. 5. The ;?g
discharge is produced by overvolting a coaxial gap whose dc breakdown volt- '5§

age in 8 torr of 20-percent SFg-80-percent He is approximately 2 kV. iz!

' The brass center conductor is the cathode, which has a diameter of 3.18 cm 527
' and a surface area of 100 cm?. The anode is a set of twelve 0.32-cm-diam- ?Eﬁ
eter stainless steel rods arranged to form a cylinder around the cathode. :;

; The anode-cathode gap spacing is 2.06 cm at the minimum point. The ﬁg
; spacing between the rods allows the magnetic field to permeate the discharge ;;
! with a time constant determined by the plasma conductivity. The discharge 3
: can be ariven by either a 50-R, 1l-us Pulse Forming Network (PFN) or by a ;g
: section of 50-2 cable and is switched by a midplane triggered spark gap §i
using a krytron trigger circuit. The discharge system, which is matched to Ei
:
. v
31 04
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50 @, is designed to deliver voltage pulses of up to 40 kV to the dis-
charge chamber with rise times on the order of nanoseconds.

The magnetic field is applied axially to the discharge chamber by a coil
which is driven by a 20-kV capacitor bank. The total capacitance of this
bank is 45uyF, the inductance of the magnetic field coil, which is wound on
a form and placed around the discharge chamber, is 970 uH, and the circuit
is overdamped to prevent voltage reversals on the capacitors. The current
is switched to the coil through a spark gap. Magnetic flux densities of up
to 0.8 T can be obtained with this circuit. The time scale of the pulse
is such that the magnetic field strength is constant for the duration of the
glow discharge. Timing for the system is accomplished by picking off a
portion of the magnetic field coil current to trigger a delay generator
which in turn fires the krytron trigger pulser and initiates the discharge.
The delay can be adjusted so that the discharge occurs during the time when
the magnetic flux density is at its desired level. The discharge current
was measured with a Rogowski coil, and the total discharge voltage was cal-
culateo using this measured current and transmission line data.

The effect of the magnetic field on the discharge impedance is strongly
dependent on the pressure range where the discharge is operated. Results of
impedance measurements with and without magnetic field over a pressure range
from 0.5 to 7 torr are shown in Fig. 6. Below 5 torr, the application of a
magnetic field causes the impedance to drop, a fact which is utilized in
crossed field tubes [3]. Above approximately 5 torr, the discharge charac-
teristics are determined by electron-molecule collisions as discussed prev-
jously. In this range, the impedance increases in crossed field configura-
tions. Experiments attempted with a magnetic field at higher values of B/N

lead to filamentary discharges with onset times on a nanosecond time scale.
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The equilibrium voltage of the glow discharge with varying magnetic
fields at a pressure of 8 torr in a 20-percent SFg-80-percent He gas
mixture is given in Fig. 7. The discharge current in this experiment was on
the order of 150 A. The measured discharge voltage shows a linear increase
with a slope of approximately 6 kV/T wup to 0.02 T. Above this value of
B, the voltage rises sharply with a slope on the order of 100 kV/T. At
values above 4 kV further measurements were not possible due to the
increasingly rapid glow-to-arc transitions at higher voltages, which lead to
a sudden drop in discharge impedance.

Comparing the experimental values with computational results allows esti-
mation of the cathode voltage drop in the glow discharge. We have assumed
that the positive column extends over the entire distance between the elec-
trodes and that E/N is constant in this region. Using the computed equi-
librium values of the reduced electric field strength, the positive column
shows a magnetic field dependence, as shown in Fig. 7. The difference be-
tween the measured voltage and the positive column voltage is the sum of the
anode and cathode fall voltages. The cathode fall is typically the much
Targer of the two under the conditions of the experiment. Under these
assumptions, the calculated cathode fall was found to be constant up to B ~
0.02 T. Above this value it rises drastically, with a slope of approxi-
mately 100 kV/T. That means that above a certain magnetic field strength
the total voltage seems to be primarily determined by fall processes for the

range studied experimentally,

IV. OISCUSSION
From the computationally obtained values for the voltage drop across the

positive column and the total discharge voltage, it is apparent that the
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cathode fall region strongly influences the discharge characteristics, poth
with and without an applied magnetic field. For B = 0, the cathode fall
was found to be 1.5 kV, wnich is almost an order of magnitude higher than
the values normally reported [12], [13]. This high value is typical for
abnormal glow discharges, i.e., glow discharges whose current is so high
that the current density at the cathode is determined by the area of the
cathode rather than the external circuit parameters. Studies by von Engel
[11] show that the abnormal cathode fall voltage is an increasing function
of jc/pz, where jC is the current density at the cathode and p is the
gas pressure. This means that for abnormal glows the discharge is in a
range of operation in which the V-I characteristic has a positive slope.

For our experimental values, I ~ 150 A, cathode area Ac = 100 cm?, and

p = 8 torr, the value for J‘C/p2 falls well into the region of abnormal glow
discharges for He. Since the pressure of SF, in the gas mixture contrib-
utes to the properties of the cathode fall as well, direct comparison to the
von Engel data is not possible.

For B # 0, there is a sharp increase in voltage above a threshold value
of B =0.02 7. A qualitative understanding of the strong magnetic field
dependence of the cathode voltage can be gained by observing the character-
istics of the electron energy distribution of the cathode fall at B8 = 0.
The electron energy distribution in the cathode fall in a normal glow at the
edge of the negative flow region has been calculated by An et al. [14].
Their results show that a large number of electrons oroduced at the cathode
do not collide in the cathode fall region, so that there is a peak in the
distribution at an energy corresponding to the full cathode fall voltage.
The characteristics of the electron energy distribution of an abnormal glow

cathode fall should be similar except for tne difference in energy caused by
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the higher cathode fall voltage. If a transverse magnetic field is applied,
this high energy peak will be greatly reduced. In order to compensate for
the resulting decrease in the ionization rate, the cathode fall voltage must
increase.

If such a discharge is considered as a switch in an electric discharge
circuit, the current will decrease with increasing magnetic field. This
decrease in current will eventually turn the initially abnormal discharge
into a normal one with reduced cathode fall. This means that at high mag-
netic field strengths the total hold off voltage of the switch will be
determined mainly by the voltage across the positive column, rather than the
cathode fall.

Whereas the sharp increase in discharge voltage at a threshold B/N is a
desirable effect for an opening switch, the increasingly rapid transition
from glow to arc with higher magnetic fields could impose certain restraints
to the use of a magnetically controlled discharge as a switch. However, if
operated as an opening switch, in which the magnetic field is applied after
the discharge is fully established, rather than before breakdown (as in our
experiment), the device should exhibit reduced arcing compared to the
results previously discussed. A way to improve the discharge further with
respect to its application as a switch is to reduce the strong electric
field in the cathode region during the conduction phase (B = 0). Two types
of cathodes which could help to achieve this end are the thermionic cathodes
and hollow cathodes [15]. Both of these electrodes have the capability to
produce high current densities while maintaining a lower forward voltage
drop across the discharge.

The lower forward voltage drop not only aids in delaying the insta-

bilities in the cathode region (16), but is also important for reduced power
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loading in the gas during conduction. The higher current density is neces-
sary to achieve reasonable power gains in inductive energy storage systems
with a magnetically controlled discharge as the opening switch. The power
gain G can be defined as the power transferred into the load divided by

the change in magnetic field energy necessary to generate an electric field

Epmax dveraged over the axis of the discharge. For a resistive load of

resistivity Emax/J’ G is on the order of

1
2 (J Emax) (3)

L (82/2u,)
dt

Assuming that the discharge is biased at a static magnetic flux density Bo

just below the sharp increase in voltage with B (see Fig. 7), a drastic
increase in electric field intensity can be obtained with rather moderate
transient B fields on the order of 0.01 T. With opening times of approx-
imately 0.1 ys, and electric field intensities of E;;; ~ 1 kV/cm,

current densities of J > 1 A/cm? are required to obtain power gains in

excess of unity.
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Fig. 4, Calculated positive column equilibrium reduced electric field
strength E/N versus reduced magnetic flux density B/N for 20-percent SFg-
80-percent He.
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Fig. 6. Discharge impedance with magnetic field, Z,, normalized to dis-
charge impedance without magnetic field, Z,, as a function of gas pressure

p for 20-percent SFg-80-percent He and B = 0.2 T. The circles are the
experimental points.
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