'AD-R171 898

UNCLASSIFIED

DLOCK-ORIEITED LOCAL -MENORY LllEﬂR EQUATION SOLUTION ON 41/

CHIGAN UNIV ANN RRD R

THE C ART 41..<U) NI
SUPERCOMPUTER ALGORITHM RESERRCH LAB.. D A CALAHAN

15 DEC 85 SARL-9 AFOSR-TR-86-9681

F/6 972

LT T NSRRI TL g T Aot At e . o < .
a - LRI A RN e s P NIRRT B ST R UL ¢ WL WO g g faa N e e

LY
= L <
:: 40 20 —_—
‘ || E.:I- l- %}‘*

~
i3
&,

MICROCOPY RESOLUTION TEST CHART “"‘,‘f‘
NATIONAL BUREAU OF STANDARDS 1963 A

AR
I Y RIS .‘r-\'-\

VST 02 S YRR
pf\}l\'}"f..’ ...h;\ -

‘f..(&q.\- AL N
» W

g e el 3 AN 3 S OO SO RAALL S DAL It ok
U) Y, t AN .\i“v"] AN~ $n

$) e 3

T TR T AT SV

o UNCLASSIFIED @
. SECYRITY CLASSIFICATION OF THIS PAGE (When Delte Entered)

e —————em———
§. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited [:)-I-l<:::
ELECTE

REPORT DOCUMENTATION PAGE BEF e e e PR
-L__—P—Oﬂf NUMBER 2. GOVT ACCCSCION NO.| 3. REC'PIENT'S CATALDG NUMSBER '
AFOSR-TR. 86-0681 |
4. TITLE (and Subtitie) S. YYPE OF REPORT 8 PERIOD COVERED -
BLOCK_ORIENTED, LOCAL MEMORY Interim
LINEAR EQUATION SOLUTION ON THE CRAY-2 T ERFoRTNG SRE REFSRT NouseR
PART I: UNIPROCESSOR ALGORITHMS SARL #9
7. AuTHOR(s) 8. CONTRACY OP GRANT NUMBER(3s) i
{
D. A. Calahan AFOSR 84-0096 !
9. %Eg;%ﬂehﬂgdscftﬂ;lrdélfh?g:gﬁ:ﬁg;’}? AODRESS 10. ::ggﬂ‘A=°£nLKEsS'N o lMO.J:ERCsT TASK
Dept. of Elec. Engring. & Comp. Science ban 2 am s -
Ann Arbor, MI, 48109 61102F 930? HS
w . CONTROLLING QFFICE NAME AND ADDRESS 12. REPORT DATE
o Air Force Office of Scientific Research December 15, 1985
00 Bolling AFB, DC, 20332 3. NUMBER OF PAGES
25
L. MONITORING AGENCY NAME & ADORESS(If difterent lrom Controlling Oflice) 18. SECURITY CLASS. (of this report)
S UNCLASSIFIED
N~
| und 15a. DECL ASSIFICATION DOWNGRADING
< SCHEDULE
A

17. DISTRIBUTION STATEMENT (of the sbetract entered in Block 20, il diftesent trom Report)

E

18. SUPPLEMENTARY NOTES

Presented at 2nd SIAM Conf. on Scientific & Parallel Computing,
Norfolk, Nov. 18, 1985

19. KEY WORDS (Continue on reveree side I necessery and identily dy block number)

Supercomputers
Parallel.processing

{ FILE COPY

& Py

20. ABSTRACT (Continue en revarae side Il necessery end identify by bl)

Experience with the CRAY~2 on the effects of common memory speed
and loading on performance indicate that local-memory-based algor-
ithms have potentially a large advantage. The performance of a
number of common- and local-memory algorithms are compared for the
LU factorization of a dense system of equations on the CRAY-2.
Results of both Fortran and assembly language implementations are
given.

e mme e e ————————

FORM
Ll\w.‘tltl‘g‘fm&’d&xugm, AT IO 7S PR S S GTR TN I UW :

AFOSR-TR. 868-0681

BLOCK-ORIENTED, LOCAL-MEMORY

REPORT SARL #9

LINEAR EQUATION SOLUTION ON THE CRAY-2.

PART I UNIPROCESSOR ALGORITHMS

D. A. CALAHAN

Approvedforpublicrelease:
distributionunlimited.

AIRFQRTE OFFYCE CF SCIENTTFIC RESEARCH (AFSC)
ES77CE OF TRINSMITTAL TO DTIC

Thiz teahrin~l report hos beenreviewed and is
apn-cved To- puvlic ~elense IAW AFR 190-12.

DECEMBER 15, 1985
MATTHEY J. KEIPER

Dict-i{ihution isunlimited.

Chief, Technical Information Division

SPONSORED BY

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH
UNDER GRANT AF-AFOSR-84-0096

Accession For

"NTIS CRA&RI
DTIC TAB %

e e

Availabilitv Codes
Avall and/or
Dist Special

Unannounced (]
Justlfication_________T
By

Distribution/

N

¥ SUPERCOMPUTER ALGORITHM RESEARCH LABORATORY

DEPARTMENT OF ELECTRICAL ENGINEERING & COMPUTER SCIENCE

86 9 15 063

e,

NVNOP A A F RIS, T R S W R TRYRRATY S, &

§

T T L T P P P T A T A N A T N P L T P T Y L o L A L R L VL

BLOCK-ORIENTED, LOCAL-MEMORY
LINEAR EQUATION SOLUTION ON THE CRAY-2.

PART I: UNIPROCESSOR ALGORITHMS

D. A. CALAHAN

DECEMBER 15, 1985

SPONSORED BY

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH
UNDER GRANT AF-AFOSR-84-0096

SUPERCOMPUTER ALGORITHM RESEARCH LABORATORY
DEPARTMENT OF ELECTRICAL ENGINEERING & COMPUTER SCIENCE
UNIVERSITY OF MICHIGAN

ABSTRACT

Experience with the CRAY-2 on the effects of common memory speed and loading on
performance indicate that local-memory-based algorithms have potentially a large
advantage. The performance of a number of common- and local-memory algorithms
are compared for the LU factorization of a dense system of equations on the CRAY-2.
Results of both Fortran and assembly language implementations are given.

K ACKNOWLEDGEMENT

High-performance CAL kernels used in the equation solvers were developed by
Geoffrey Carpenter, U. M. Fayyad, and Jimmy Hsiao with a CRAY-2 instruction-level
: timing simulator developed by K. B. Elliott, as part of a CRAY-2 scientific library
5 sponsored in part by NASA Ames Research Center [11].

CRAY-2 time was provided by MFECC, Lawrence Livermore National Laboratory.

3 .
T N R Vo T L S g S0 e S R L e T e e L e e 0

) >
Kt

T4
AN) "

. INTRODUCTION

A. CRAY-2 Architecture and Algorithm Implications

The CRAY-2 architecture of Figure 1 has several features relevant to this algorithm.
study.

(a) Common memory features. The massive common memory (CM) trades
size for access time, so that a considerable delay is encountered in
reading from CM. Also, only one data path connects common memory to
each processor's functional units.

(b) Local memory. The above speed disadvantages are compensated by a
local memory (LM), which serves as backup vector and scalar storage for
the functional unit's register storage.

(c) Chaining. The CRAY-2 does not have hardware chaining; this must be
achieved by software and/or algorithm means.

The implications of distributed memory (including hierarchies such as CM and LM) on
linear algebra algorithm organization has been studied since the existence of paged
memory systems [1[2]{3][4]. In general, computations must be arranged so that the
number of floating-point operations on data at the low memory levels is sufficient to
warrant data transfers to these levels. This implies, for example, that a matrix-vector
multiply - which involves only two operations for each matrix data element - will
perform less efficiently than a matrix-matrix multiply.

B. Review of Vector Linear Algebra Algorithms

The asymptotic execution rate (MFLOPS) of a factorization algorithm is equal that of
the kernel that performs the add-multiplies associated with reducing rows and
columns. Three substantially different such algorithms deserve consideration.

(a) Gauss vector-scalar multiply. This requires that, in reducing the rth row ,
successive operations on preceding rows must be performed serially since a partial
result from each row-operation is used as an operand in the next one (the reader is
assumed familiar with this procedure). In rows with lengths longer than the vector
functional unit length, this dependency can usually be avoided by assembly coding; it
is then termed the GAXPY kernel. It has the advantage of yielding the largest average
vector length of any of the following kernels and so is a serious consideration when the
matrix size is not significantly larger than the maximum allowable vector length, and
assembly coding is allowed. This procedure does not lend itself to partitioning when
large matrices are involved, but is a potentially useful subalgorithm in such cases.

(b) Matrix-vector multiply. Early experience with the CRAY-1 indicated that
block-oriented algorithm organization had at least a pedagogical advantage for large

problems[5](6]. Unfortunately, the necessary {vector - (matrix*vector)} kernel was not
made a part of the CRAY scientific library and consequently the kernel was not
syntactically distinguised from the rest of CAL-coded factorization algorithms. The
organizational concept of basing factorization on matrix-vector multiply subroutines
was developed in [7](8], where it was illustrated how unrolling Fortran loops could be
used to achieve a high performance completely from a high-level language. This
emphasized portability and maintainability. More recently, these kernels - known as
second-level BLAS - have been proposed as the basis for other common linear
algebra algorithms[9].

(c) Matrix-matrix multiply. Although it has always been clear that factorization
can be accomplished by a matrix-matrix muitiply kernel, the CRAY-1 memory
hierarchy was not sufficiently distinctive to achieve a significant advantage over the
kernels of (a) and (b) above [3]. The additional memory paths of the X-MP made this
even less attractive, and partially reduced the advantage of the matrix-vector multiply
above. The disadvantages of basing factorization on matrix multiplies are the
necessity for other matrix-level kernels to perform reciprocations and substitutions and,
most important, the difficulty of partial pivoting.

The memory distribution must be quite distinctive to warrant the prog.amming effort of

(c). This report documents this case for the CRAY-2, while laying the groundwork for a
multiprocessor implementation.

IIl. NON-PIVOTING ALGORITHMS AND PERFORMANCE
A. M*'V-based Algorithms
Given a set of equations'
AX=B

where A is an nxn matrix and X and B are vectors, the factorized solution proceeds by
forming lower and upper triangular factors L and U, viz

A=LU (1)
and then solving

LY =8B

*Matrices are in bold, vectors are in upper case, and scalars are in lower case type.

R RN A S R A N N RN N RN RO S N N R YO KN N R Ay R R N P R N N

64 MW —>p)
DYNAMC MEMORY |a—+ op = 4.1 nsec
(CM) PP 4
P
‘ long ! o— 1wicp
; FUNCTIONAL l 16K
: short LOCAL MEMORY
N
UNITS (M)

488 MFLOPS peak / processor

459 MFLOPS attainable / processor

Figure 1. CRAY-2 architecture

3
;
for Y and :

UX =Y .

for X. The oomglexity of the factorization step of Eq. (1) is 0(n3). The other steps have

complexity O(n<), with only one add-multiply for each L and U element; consequently
no algorithmic speedup resuits from transferring L and U to local memory, so that N
these steps, if performed separately from the factorization as above, will not be studied.

In the non-pivoting algorithms based on a matrix-vector multiply (abbr. M*V-based), the ;
columns of L and rows of U are indicated as in Figure 2a. Here the diagonal element,
the row to its right, and the column below it are denoted asy, A1a, and Ay '

respectively. The steps to perform the factorization are then !

Matrix-vector multiplies: by

agy | <= |az2| - | A21 | Aq2 (2) 4

A3a A3z A3

Az < Az - A1 Aq3 (3) p

9

Reciprocation: E
azo <=-- 1/aso (4)

Reciprocal propogation:

]
F2 LSS

Azz <= a3 A3 (5)

B. M*M-based Algorithms J

Another matrix partition permits the factorization to be performed on submatrices
(Figure 2b). The equations equivalent to (2) - (5) are

a8 e a8

(a) M*vV-based factorization kernel

A2

A

A2

A1

Ay

(b) M*M-based factorization kernel

Figure 2.

Y S -‘_‘ - ‘D" - ‘-' ‘.

'I",-'.{{'- -

Factorization Kernels

altel s
- .

Matrix-matrix multiply:

A2z | <= | Ag2| - | A2y

A3z A3q

Az - A2zq

Factorization:

A22 L22 Va2

Substitution:

4 -1
A3z U222 L2z

A3a

Alternatively, Eq. (9) can be replaced by two substitution steps

-1
Az2 < A3z Uz (9a)

-1
Az <= L2 Az3 (9b)

The advantage of Eq. (9) with a local memory will be discussed below.

The critical size parameter is the dimension of the square diagonal block (ng). This

has been chosen to be 64, the maximum vector length of the CRAY-2, and a length
consistent with local memory size (see below).

C. Multiply Kernel Partitioning and Performance

1. Block partitioning

Because of the restricted size of LM, it is not feasible to load Aga and Ag4 into local
memory. Therefore, submatrices are defined , viz

I R N R T P T e et ety g e

.....................
..................

'-{ﬁ"-‘\ N Y

Lol

Ay = | Ai11 Ajj12 oo Ajgar (10)
Ajj,21 Ajj22 - Ajjar
At A2 - Ajtr

The two dimensions of these component matrices - except at boundaries of A - is
chosen to be ng; with nq = 64, up to three such matices can be stored in the 16K LM,

with room left for system and temporary storage.
The components of Egs. (6) and (7) are computed by a block dot product, viz

S
A3 1) < A23q) - I A21,1k A13k] (11)
k=1

The complexity of such nyqxngy block multiplies is O((n/nd)3) for the entire factorization
algorithm.

2. Data transfer overhead

The total number of inter-memory data transfers to form Eq. (11) is 2(1 +s)nd2. With a

clock period of tc, a transfer rate of W words/clock and a floating point execution rate of
R for data resident in LM, the multiply execution rate to produce A3 jj above is

Ro
R = (12)
1+ 1+s _IcBy
S Wnd

With Rg = 430 MFLOPS, W = .8 (using CAL-coded transfer routines), and tc = 4.1 nsec,
then 402<R< 415 MFLOPS for 1 <s < e,

3. Conflict sensitivity

The presence of bank conflicts affects tne transter rate W. It is therefore informative to
compute a normalized fractional sensitivity

AL S R LT P TLI E IR e T A e Y e et e o, Lt e T S ST T ST I ST SRPY S et e .
s\'y.-.-_\.‘y.\"‘. Tt AT AN N N, N T A S N N A R IO o o

‘l o A A I

PNl

S = (dR/R)(AW/W)

1 (13)
1+_8s Wiy

1+s f{c RO

For the above values, .064 > S > .033 for 1 < s <. Thus, with dW/W = -5 (an
average delay of 50%, not necessarily representative), reductions in R of
approximately 12 MFLOPS are predicted. The block multiply rate is now 390 < R <
403 MFLOPS for 1 < s <. This execution rate is far greater than might be expected
from a multiply code executing from CM with the same interference.

D. Block Factorization and Substitution

Both of the substitution steps of Eq. (9) can be performed with a sinlge matrix load of
LM provided that A3 is partitioned as above, e.g.,

a4 A
A32i1 < Agzjt U2 L2 (14)

The execution rates of CAL-coded LU factorization and substitution steps of Eqs. (8)
and (14) operating from local memory with nq = 64 have been measured as 124 and

200 MFLOPS, respectively, including the effects of memory transfers and bank conflicts
during a daytime load..

E. Overall Performance

Figure 3 gives the performance of a CAL-coded M*M-based factorization utilizing LM in
comparison with Fortran- and CAL-coded M*V-based algorithms executing from CM.
(Recall that LM M*V kernels are inefficient and so are not studied.) These were run
during a daytime load at MFECC, using the CIVIC Fortran compiler circa November 14,
1985. The performance of a standard Gauss column-based Fortran code is also
shown.

The Fortran Gauss algorithm (Appendix A) does not permit unrolling or other
techniques for overcoming the hardware disadvantages of no chaining and a long CM
path; the result is that no overlapping can be achieved between the three vector
memory accesses, the vector multiply, or the vector add that characterize the inner
loop. A rate of €0 MFLOPS for n=2048 is the result. This is likely the asymptotic rate
of any Fortran factorization not utilizating loop unroliing or LM (see Appendix B).

384

237

°00000¢0000000
= [52525¢505¢5¢¢RY!

‘A‘

365

232
\

173

59

331

'.'.‘.""'.'."'."'
1200000262622 % %%
bt fvvw%&ﬁﬂ§vwﬂ

277

Non-pivoting _

B cAuss cvic
B3 MV UNROLLED CIVIC

1 3 ‘3'

33 —

2=

£ 5 o3

aa N
, N — *
8 8 8

2w a0awm

N e s A T e e s

Y

PRI A
n . ‘.‘ a

o,

2048

1024

512
MATRIX SIZE

256

128

Performance of non-pivoting factorization

Figure 3.

-

The Fortran M*V-based algorithm performances for n=2048 show a speedup of 2.96:1
over Gauss, principally due to a 16-way unrolling of the matrix-vector multiply. (The
unrolling issue is studied in Appendix B in detail). Assembly coding yields another
1.62:1 speedup over Fortran, due in part to reduction of scalar operations associateq
with unrolling and to the resistance to bank conflicts which can be achieved in CAL by
pre-fetching vector operands.

The LM M*M-based factorization ranges in performance between 124 MFLOPS for
n=64 - when only the factorization of Eq. (8) must be performed - to nearly 400
MFLOPS when n=2048 and Eq. (11) is dominant. The 200-MFLOP performance of the
substitution step of Eq. (8) maintains a relatively high performance vis-a-vis the other
implementations for intermediate values of n.

ll. PIVOTING ALGORITHMS AND PERFORMANCE

A. Influence of Pivoting
On a vector machine such as the CRAY-2, partial column pivoting has two
components: (1) the search for the maximum element of a column, and (2) exchange of
two complete rows of the matrix. The latter is usually preferred over maintenance of an

index pointer in order to avoid relatively slow indirect addressing. These two functions
are denoted

a <-- piv{s,V}

where a is the element of maximum absolute value of scalar s and the elements of
vector V.

In M*V-based factorization this search is routinely performed after Eq. (2) or (3) by the
step

axo <-- piv{iags, A3z} (3a)

However, in the M*M-based version, the granularity of the algorithm does not
recogmze mdnvndual matrix elements and columns The problem then becomes to

pﬂmn_mxmlng The solutlon is the followmg 2|evel algonthm (Flgure 14)

Equations (6) and (7) are carried out, viz

10

IUWd1:

Ay
Asa

pivot A
column

Aol <1829 = [By Ay,

A32 A32 A31

Bog < Byy - By 7 Ay

Figure 4. 2-~level pivoting algorithm.

Matrix-matrix multiply:

A2 | < |A22 |- |A2i
Az2 | Az2 A3q
A2z <— A23 - A13 (16)

as an O((n/nd)3) process. The columns of the resulting Ay = [Ags A3z il

block-column matrix are at this point partially reduced, with all the accumulations from
the columns of Azq performed but without contributions from the internal columns of

Ay. Ay is then reduced using either a Gauss column reduction or the M*V method of
Egs. (2)-(5), viz (an underline represents components of this second reduction level)

82| < |azp| - | A21 | A12 (17)

A3z | Az2 A3q

Ax3 Az3z - (18)
22 piv { 2p2 , A3z} (19)

222 1222 (20)

Az2 822 Az2 (21)

The computations of Eq. (17-21) are performed from CM and will so be slowed by
memory access delays.

Exclusive of the pivoting of Eq. (19), the result of these level-2 steps is the equivalent of
factoring Agg in Eq. (8) and performing Aga (U2)'1 in Eq. (9a). The substitution
with Lag may then be performed either on the resultant Aga as in Eq. (9) or on Ap3

as in Eq. (9b). In either case, this can be carried out in local memory at a speed
somewhat less than the 200 MFLOPS noted above.

BT R RN Y,

With ny fixed, the complexity of level 2 is readily shown to be O(nz). whereas the M'M

kernel complexity remains O((n/nd)3). For large n, the execution rate should therefore
approach that of the multiply kernel or approximately 400 MFLOPS.

B. Implementation and Performance

Figure 5 presents the results of the same algorithms as Figure 3 but with pivoting. The
rise of the M*M algorithm to the asymptotic rate is now slower. Several explanations
are offered for this performance.

(a) M*'M vs M*V CAL performance. Without pivoting, the advantage of
M*M-based factorization was maintained for all n; in Figure 5 this occurs only for large
n. This is explained in part by the complete CAL-coding of the diagonal block
M*M-based factorization of Eq. (8) without pivoting (Figure 3), and the mixed Fortran-
and CAL-coding of this step in both M*V-based factorization - with and without pivoting
- and in level 2 of the M*'M-based pivoting algorithm. With a mixed coding, all
matrix-vector multiplies and searches for the maximum element of a column are
performed in CAL, but the subroutine linkage to these routines introduces an
overhead with O(n) complexity. Thus, comparisons in Figure 3 for small n include the
effects of different codings, whereas those of Figure 5 do not.

(b) Effect of 2-level aigorithm. The CRAY-2 implementation the piv{ s, V } function
of Eq. (3a) requires a fixed overhead dependent only on the length of V and
independent of the matrix element values. Consequently, it is possible to delineate
between the pivoting speedown due to piv{ s, V } and that due to the 2-level nature of
the algorithm. These are presented in Figure 6 for the M*M algorithm. For n > 256 -
where the effect of the coding differences of (a) is largely dissipated - the larger
degradation is the result of the piv { s, V } function. Since the latter cannot be avoided,
the algorithmic speedown from the introduction of a second level does not appear
significant.

IV. CONCLUSIONS

In general, the paritioning of an algorithm into larger computational tasks favors a
parallel implementation since fewer task startups are involved. However, in a CRAY-2
system dedicated to an equation solution, equalizing the workioad among the
processors (load-leveling) also becomes an issue; this favors smaller tasks associated
with M*V-based factorization. These issues will be investigated in a companion
report.

13

356

Pivoting

216
165
2048

59

304
210(

NN §
S
S POOOOOOOOOO]
LOOOOOOOOOO0) -
ol %020 e % et % % %
[-+]
n
L
o
o™
N
[=] \
=AY «
DYOOOOOCKXT 0

™
o~ pOOOOOOOC)
Ll %%t tetetete 0!

256

128

3

N Gauss cvic

3 m*v CAL
O m*M CAL

N

400 v

s

300 + | ©) MV UNROLLED cvC

200 1
100 ¢
0

20 a0a®m

MATRIX SIZE

Performance of pivoting factorization

Figure 5.

e a0 .=

P R T R R S S G T O N O T N R T T W N T TV R DU T o T IOV T3 W wTY

M 2L EVELWITHPW. J

400 | 3 2-LEVEL WOUT PIV. .

M O NONPVOTNG 315331 !

L 300 '

o t,

P 200 '

S 200

100 ;
64 128 256 512 1024 2048

MATRIX SIZE :

Figure 6. Effect of pivoting components

15 .

REFERENCES

[11 McKellar, A. C., and E. G. Coffman, "Organizing Matrices and Matrix Operations
for Paged Memory Systems,” CACM, vol. 12, no. 3, March, 1969, pp153-155.

[2) Von Fuchs, G., J. R. Roy, and E. Schrem, "Hypermatrix Solution of Large Sets of

Symmetric Positive Definite Linear Equations,” Comput. Math Appl. Mech. Engring.,
vol. 1, 1972, pp197-216.

(3] Calahan, D. A, "A Block-Oriented Sparse Equation Solver for the CRAY-1," Proc.
1979 Intl. Conf. on Parallel Processing, Bellaire, Ml, pp234-239.

[4] Liu, P.S., and T. Y. Young, "VLSI Array Design Under Constraint of Limited /O
Bandwidth,” Trans. IEEE, vol. C-32, no. 12, December, 1983, pp1160-1170.

{5] Calahan, D. A., "Preliminary Report on Results of Matrix Benchmarks on Vector
Processors,” Report #96, Systems Engineering Laboratory, University of Michigan,
May, 1976.

[6}] Fong, K. and T. Jordan, "Some Linear Algebraic Algorithms and Their
Performance on the CRAY-1," Report LA-7664, Los Alamos Scientific Laboratory,
June, 1977.

[77 Dongarra, J. J., and S. C. Eisenstat, "Squeezing the Most out of an Algorithm in
CRAY Fortran,” Report ANL/MCS-TM-9, Mathematics and Computer Science Division,
Argonne National Laboratory, May, 1983; also in ACM Trans. on Mathematical
Software, vol. 10, no. 3, pp221-230, 1984.

[8) Dongarra, J. J., F.G. Gustavson, and A. Karp, "Implementing Linear Aigebra
Algorithms for Dense Matrices on a Vector Pipeline Machine,” SIAM Review, vol. 26,
pp91-112, 1984.

[9) Dongarra, J. J., J. DU Croz, S. Hammarling, and R. J. Hanson, "A Proposal for an
Extended Set of Fortran Basic Linear Algebra Subprograms,” Report ANL/MCS-TM-41,

Mathematics and Computer Science Division, Argonne National Laboratory,
December, 1984, '

[10]) Saad, Youcef, "Communication Complexity of the Gaussian Elimination
Algorithm on Multiprocessors,” Report YALEU/DCS/RR-348, Department of Computer
Science, Yale University, January, 1985.

[11] Calahan, D.A., P.L. Berry, G.C. Carpenter, K.B. Elliott, U.M. Fayyad and C.M.
Hsiao. "MICHPAK: A Scientific Library for the CRAY-2," Report SARL #8,
Supercomputer Algorithm Research Laboratory, Department of Electrical Engineering
and Computer Science, University of Michigan, December 1, 1985.

16

AMIe e wywy S

APPENDIX A
FORTRAN PROGRAM LISTINGS

17

Ceecone Dml)33 FuilTORIZATION

s
’

>
>

IMPLICIT FEmLtA - H, 0 - 2>
DIMENSION TEMP<{2048), A(2049,2048)
NDIM = 2049
CALLLINKC("UNIT4=sTERMINALS ")
CALLLINK("UNITS=sTERMINAL/ /")

>Cexnw READ MATRIX SIZEDL

s 10
> 20
> 30

WRITE ¢S5,20)

FORMAT (’ ENTER MATRIX SI2E")
READ (5,30) N

FORMAT (IS

yCnun FORMULATE DIAGONALL v~-DOMINANT MATRIX

7

~

;40
> S0
>
>
>
>
>
»
>
> 80
>
>
b
5
>
P4
> 10
>
>
> 20
>
> 30
>
Y
> 40
>
> 50
sCnnn
>
>
>
>Cunn
>
> &0
YCunn
>
>
Vs
>
> 70
>Cone
> 86
>
>

DO S0 I = |, N
DO 40 J = 1, N
Al ,J) = =N + [ABS(I ~ I
ACL,I> = 1.1 # (N = 1)#N = (] = 1)#]/2 = (N -1 ¢ 1)8(N - 1H/2)
Ti = SECOND(D)>
CALL FACI(N, NDIM, A, TEMP)
T1 = SECONDCO) - Ti
AN = N
AN2 = AN #* AN
AN3 = aN2 # AN
OP = ((2.%AN3)/3.) = (AN2/2.) ¢+ (S, #AN/6.)
FLOPS = 0P / T1
WRITE (5,80 AIN,N)
WRITE (5,60 T1, OP, FLOPS
FORMAT (3E14.8)
GO TO 10
END
SUBROUTINE FAC(N, NP1, ‘A, TEMP)
PLICIT REALCA - H,0 - 2D
DIMENSION ACNPL,1), TEMP(1)
MMt = N - |
IF (NMi ‘EQ. 0> GO TO 80
DO 70 J = 1, NMI
NMJPt = N - J ¢+ |
JJ = ISAMAX(NMJIPL ,A(J,J),1) ¢+ J -
T = ABS(A(JJ,J))
IF (T .EQ. 0) WRITE (4,20
FORMAT (- ZERO PIVOT")
DO 30 I = 1, N
TEMPCI) = ACJ, D)

COIRs IVDEP

DO 40 I = 1, N
A, 1) = ACII, DD
DO SO I = 1, N
ACJJ,1) = TEMPCI)
RECIPROCATE DIAGONAL
AT, = 1. / ACI,D
ALPNA = A(J,J)
V= J e+
PROPOGATE RECIPROCATED DIAGONAL DOWN COLUMN
00 60 I = 1J, N
ACL,J) = ALPMA # ACI,J)
MULTIPLY COL. BY ELEMENT & SUBTRACT FROM ANOTHER COL.
00 70 [= IJ, N
ALPHA = ACl,)

sCOIRS IVOEP

DO 70 K = 1J, N
ACL,K) = ACI,K) - ALPHA ® ACJ,K)
RECIPROCATE LAST DIAGONAL
ANLN) = 1, / ACN,N)
RETURN
END

Table A-1. Gauss factorization
leo

e e e 7

N AR T AN L o T e D S 1 SR e et

-y

> av
AN %!

¥

Conse

;10
20

30

Bt X Y)

40
S0
&0

*Cun

.C2
.C
. 70
\
> 80
>

> 90

FRCTORIZATION USIMNG $~bum HROILLED MmTFI

IMPLICIT REAL(A - H,0 - &
DIMENSION TEMP(1024)>, ACICZ3,1024)
CALLLINKC "UNITS = TERMINAL ~/ ">
CALLLINKC "UNITS = TERMINAL // ")
HDIM = 1028
WRITE (S,20)
FORMAT «° ENTER MATRIX SIZE»
RERD (5,30 N
FORMAT 1%

FORMULATE DIAGONALL -DOMINANT MATRI ~
OS0! =1, N

0O 40 J =, N

ATL,I) = =N + [ABSC(I - I

S=UECTOR MULTIPLIES

AT,y = 1,1 % (N - 108N - (1 = 1#[/2 = (N - 1 ¢ tO#N - 1,2

T2 = SECOND(D)
0O 140 J = 1, N
IF ¢(J .EQ. 1> GO TO 70

CALL SMXPY(A(L1,d), AWJ,J), AWJ, 1D, N = J + 1,

SEARCH FOR PIVOT
CONT INUE
FORM JTH ROW OF U

NMJPL = N - J + 1

JJ = [SAMAX(NMJPL ,A(J,J),1) + J -1
T = ABSCACJIJ,, I

IF (T .EQ. 0> WRITE (4,80

FORMAT (- ZERQ PIVOT >

DO %0 Il =1, N

TEMPC(I) = AdJ, D>

sCOIRS IVOEP

00O 100 1 = 1, N

J -1, NDIM)

19

Y100 AW, D) = A, D

; DO 110 I = 1, N

> 110 AWJ, Iy = TEMP(D

> AL, D = 1, / AWJ, D)

> IF (J .EQ. N) GO TO 150

> IF ¢J .EQ. 1) GO TO 120

> CALL SXMP/(ACJ,1), AC(J,J + 1), ACL,J ¢+ 1D, N - J, J - 1, NDIM,

> 1 NDIM)

> 120 T = AWLD

> JPl = J + |

> 00 130 1 = JP1, N

> 130 AWJ,I) =T » A(J, D

> 140 CONTINUE

> 150 T1 = SECOND(O) - T2

> AN = N

> AN2 = AN # AN

> AN3 = AN2 # AN

” OP = ((2.%AN3)/3.) = (AN2/72.) + (3.%AN/§.)

> FLOPS = OP ~ T!

> WRITE ¢(3,160) Tt, OP, FLOPS

> 160 FORMAT (3E13.4

> GO TO 10

> END

Table A-2. Matrix-vector multiply-based factorization

‘.1 “.f s ". v-..- ! \- c IO '. - "l' .t P, '..l,. .!_ -’."f-. e ... IR .._-.'...\.--‘ N

“n

5

- 1NN LI, - 'q-' R Y ..
PRI AN -\\ VRIS

> v e _a

Cenee TRANSPOSED UMROLLED MaTRIX-VECTOR M LTIPL:

» SUBROUTINE SXMPY (¢, ¥, M, N1, N2, HOCM, 1O 1)

> REAL XC(NDXY . 1+, ({NDxt 1>, M(NDEM,1)

; J = MOD(N2,2)

v IF «J .LT. 1> GO TO 20 .
P 0O 10 1 = |, Nt

P10 1,1 m (YL, 1) = XC1,Jd) #® M,

y 20 J = MOD(N2,4)

> IF ¢J .LT. 2) GO TO 40

0O 30 I = 1, NI
30 Yil,l) ® (ord1,10) = XC1,J = L)#M(d = 1,10 = X(1,J) €« McJ, D)
40 J = MOD(N2,8)
IF ¢J ..T. 4> GO TO &0
DO S0 I = 1, it
SO0 ril,1) = (CCival, 100 = XCL1yJ =~ 30#MCJ = 3,100 = XC1,J ~ 2)#M(J -
12,100 = X$1,J = 1,aM(J = 1,120 = Xt1,J) # MAJ, D)
a0 J = MOD(N2,1e)
IF ¢(J .LT. 8» GO TO S0
DO 70 1 = §, Ni
SOl D) B G CCY L, T = XCL T = PIEMCS - 7,10) - X0, J - &) M
1J ~ 6,1)) = X{1,J = S)aMcJ - S,1)) = X(1,J - d:#M(J - 4,1>)» - X1,
2J - MM - 3,10 - Xi1,J - MM - 2,10 - X(1,J - 1IMI -1,
310 - XC1,J) # M(J, DD
30 JMIN = J + 16
IF ¢JMIN .GT. N2> GO TO 100
D0 100 J = JMIN, N2, 146
00O 90 1 = 1, NIt
PO YC1, 1) = C(CCCCCCECECCC(CYCl, D) = XC1,J = 15)#MJ - 15,1)) - X(C
1,0 = 14)#M(J - 14,1)) - X(1,J = 1)>#M(J = 13,1)) = X(1,J = 12>#
M(J = 12,1)) = X(1,J = 11)#CJ - 11,1)) = X(1,J - 10)yeM<J - 10,
1)) = X(1,J =~ 9I#M(J = 9,1)) = X(1,J - 8)#(J ~ 8,1>) -~ X(1,J -
IMCT -~ 2,1)) = X1, - &)M(I = &,1)) = X(1,J - SHmJ - 5,15)
“X(1,J ~ &HMMJ = 4,107 = X(1,J = DI - 3,1)) = X(1,J = 2)#
J = 2,107 = X(1,J = 10T = 1,12 = X1,y #» M(J, D)
100 CONTINUE
RETURN
END)
Canan (UNROLLED MATRIX-VECTOR MULTIPLY
SUBROUTINE SMXPY(X, Y, M, N1, N2, NOIM)
REAL X(1), Y(1), M(NDIM,1)
J = MOD(N2,2)
IF <J .LT. 1) GO TO 20 -
0O 10 I = §, Nt
10 YCI) = (YCD)) - XCJ) # MC1, 0
20 J = MOD(N2,4)
IF <(J .LT. 2) GO TO 40
DO 30 1 = 1, NI
30 YCI) = (CYCDD) = XCJ = 1)aMCL,J = 1)) = X(J) # MCT, D
40 J = MOD(NZ,8)
IF ¢J .LT. 4) GO TG 40
DO S0 I = 1, Ny
S0 YCI) ® (CCCYCD)) = XCJ =~ DML, J - 3)) = XCJ - >l ,J - 2)) ~
IXCS = 1ML, J = 1)) = X # ML, D
40 J = MOD(N2,16)
IF <J .LT. 8) GO TO 80
DO 720 I = 1, NI

T N N Ny

~

[OV VYA YAV IRVER VIR VAV IV T 20 A T AT e
AW~

WOW W W WV WV WV WV W WV WV Y N N

Table A-2. Continued

20

ey e T e D ST S
et et S e
SN AP SR AR &)'A'.fl R R -

SRS RERDESATILATL T T T TR T N T

-

SOl = g oo =] = ThueMil S = T =] - sl D - s

- LI -

I - X(J = So#M(I ,J = T = ACS = JoeM(I,] = 35 = 0 d = JeeM] -
23y = alJ = DML, J - 2)) = X(J - LyeM(Ll L d - 1)) = x{Jr ® MO, D)
8u JMIN = J + 16

; IF (JMIN .GT. N2> GO TO 100

; 00 100 J = JMIN, N2, 16 .

> DS) 1 = 1, NI

. ?0 MOI) = Qe CCY (D)) = X<J = 15)sMC],J - 195)) - x(J -
1 1MCI,J = 18)) = X¢J = 1DMMCT,J =~ 13)) = X(J - 12)#MCI,J -

; 2 12)) = X(J - 1ML, = 110> = X(J = 10)%MC1,J = 100} - X(J =

> 3 MCL,J - 9 = K(J = BIMMCL,T - 8)) = X(J ~ PIMM(I,J - 7)) -

> 4 X(J = O>M(L,J - 4)) = X(J ~ SO)MM(I,J - 5)) ~ X(J - 4rsM(1,J ~

> S 4)) - X{J -~ DML,J = 39 ~ X(J - DML, T =) = X(J ~ 1)#MC

: 5 1,0 = 1) =~ XD * MUI, M

* 100 CONTIMNUE

> RETURN
: END

Table A-2. Continued

Copy available to DTIC does not
permit fully leg

ible 1eproduction

21

" e T e LR T B S e -
MR RITRICTRINTE JR AT SRy
.

>Cunun CIVIC2 BLOCKED FACTORIZATION & SOLUTION WITH PIVOTING

YC# THIS VERSION HAS ASSEMBLY-CODED SLM3D.LLM3D .
; >C» MXMPMA ,MXVUPUA , SUBPIV, AND 1SAMAX ROUTINES
: > IMPLICIT REAL(A - H. 0 - 2O

INTEGER QDIM

DIMENSION B(2048), AS(1,1), TEMP(2048), AC2049,2048)
DIMENSION TIME(4)

REGFILELM!, LM2, LM3

COMMON /LM1/ AT(64,64)

COMMON /LM2/ Q. 24.04)

)
>
>
>
>
>
4 > COMMON /LM3/ SUB(&4,44)
) > CALLLI NK("UNIT46=TEMRINAL // *)
" > CALLLI NK("UNITS=TERMINAL // ")
3 > NDIM = 2049
. > QDIM = &4
>Canu% READ MATRIX SI2E,.BLOCK SIZE
- > 10 WRITE (5,20
X > 20 FORMAT ¢’ ENTER N. NSIZE.”)
A > READ (5,30) N, NSIZE
. > 30 FORMAT (2I%)
: yCeuun FORMULATE DIAGONALLTY-DOMINANT MATRIX
\ >C# AND RHS WITH SOLUTION BC(J)=J+i
> 0O SO I = {, N
. B(1) = 0,
. DO 40 J = 1, N
Y AC1,J) = =N + 1ABSC1 - D
s 40 IF ¢I .NE. J) B(l) = B(I) + ACL,J) # (J + 1)
b, ACL,I) = 1,1 # ((N - 1D8N = (] = 1O#1/2 = (N =1 + D®N - 1)/2)

>
>
>
>
>
> S50 B¢l) m B(I) + AL, 1) #» (1 + 1D
> 60 NMl =N -1

> DO 70 LL =1, 4

> 70 TIMEC(LL) = 0.

YCuuun MAIN FACTORIZATION ALGORITHM

> DO 120 LL = 1, N, NSIZE

> TIMI = SECOND(O)

> LLNS = MINOCLL + NSIZE - 1.N)

> LMl = LL - 1

> NDIAG = LLNS - LL + 1

> CALL ALUPIVC(A, B, TEMP, LL, LLNS, NDIM, N)
>

>

>

>

[N B D I 4

TIM2 = SECOND(O)
TIM3 = TIM2
TIMG = TIM3

Cannn FORM (A238L2288-1)

s s 8 3 ' 8¢

> 80 NMLLNS = N - LLNS

> IF (NMLLNS .EG. 0) 6O TO 110

sCenan LOAD LM WITH L & U AS TWO SEPARATE ARRAYS REQUIRED BY SUBPIV
> CALL LLM3D¢ACLL,LL), 1, NDIAG, NDIAG, 1, 1, NDIM, 1, GDIM, 1)
> CALL LLM3D¢ACLL,LL), 2, NDIAG, NDIAG, 1, NDIM, 1, I, QDIM, D
> JX = LLNS + 1

> LK = LLNS - LL

> LKP! = LK ¢+

> 00 100 J = JX, N, NSIZE

> NMJ = MINOCN - J + {,NSIZE)

>Conna LiAD BLOCK OF A23 FROM LM INTO LM

Table A-3. Blocked factorization with pivoting

-

22

PP S A B IR
a"ol.‘ n“‘h\u"-\‘ “Q“."‘

S P I R LR T R R T
\u e e et e et e ‘\-. R A L L R Y ‘v.. AR L
L - N ., .)

¥ .

>Cuunn
>
dJCuunn
> 90
> 100
>
dSCunun

110

VVVVVVVVVVVVVVVVVVvVVvYYVv

CALL LLM3DC{ACT,LL) . 3, NMJ, LKP1, 1, 1. NDIM, 1, QDIM. 1)
SUBSTITUTE INTO BLOCK
CALL SUBPIV(NMJ, LK. GDIM)
STORE BLOCK FROM LM INTO CM
CALL SLM3DC(AC(J,LL), 3, NMJ, LKPL, 1, 1, NDIM, I, GDIM, 1)
CONTINUE
TIM3 = SECOND(0)
INNER LOOP BLOCK MULTIPLIES
NMIX = N = JX ¢ 1
LLNS1 = MINOCLLNS + NSIZE,N)
CALL MMPMACACIX,1), 1, NDIM, AC1,JX>, 1, NDIM, ACIX,IX), I,
NDIM, NMJX, LLNS. LLNSt - LLNS, ~1)
LLNS2 = N -~ LLNSt
IF (LLNS2 .EQ. 0) GO TO 110
CALL MXMPMACA(JIX,1), 1, NDIM, ACL,LLNS1 + 1), 1, NDIM,
ACIX,LLNST + 1), 1, NDIM, LLNS1 =~ LLNS, LLNS, LLNS2, -1)
TIM4 = SECOND(O0)
TIMEC1) = TIMEC1) - TIM1 ¢ TIM2
TIME(2) = TIME(2) - TIM2 + TIM3
TIME(3) = TIME(3) - TIM3 + TIM4

120 CONTINUE
TIMS = SECOND(0)

Cuunn FACTORIZATION ENDED: FORWARD SUBSTI!TUTION
DO 130 LL = 1, N, NSIZ2E

LSAVE = LL

1IF (LL .EQ. 1) GO TO 130

LLNS = MINOCLL + NSIZ2E - 1,N) - LL + 1

CALL MXUM(A(LL,I), lu NDIM. Bg ‘. B(LL)' lg LLNS| LL - ‘o -1)

> 130 CONTINUE

S e

v
[y}

140

160
170

160
190
200

WVVVVVVVVVVVVVVVVVYVYVYVYVVYVvYvVv

BACK SUBSTITUTION HAS TWO STEPS
1ST STEP: M»B

LZ = LSAVE
00 210 LM = t, N, NSIZ2E

IF (LM .EQ. 1) GO TO 1S0
LL = LZ + NSIZE
NG =N - LL ¢+ 1
CALL MXVPUACACLZ,LL), 1, NDIM, B(LL), 1, BCL2)>., 1, NSIZE. NQ,
=-1)

2ND STEP: (Um#=-{ Luu~1 B)
LLNS = MINO(N,LZ + NSIZE - 1)
LLNSMZ = LLNS - L2
IF (LLNSMZ .LE. 0> GO TO 170
LLNSM1 = LLNS ~ | .
DO 140 J = L2, LLNSMI

JP1L = J ¢+ |

DO 160 K = JP1, LLNS
B(K) = B(K) - A(K,J> #» BC(J)
B(LLNS) = B(LLNS) » A(LLNS,LLNS)
IF (LLNSMZ .LE. 0> GO TO 200
DO 190 J = LZ, LLNSMi

JJ = LZ ¢+ LLNS - J

JIML = JJ - ¢

D0 180 K = L2, JuMi

B(K) = B(K) = ACK,JJ) # B(JJ)
B(JIML) = B(JIM1) #» ACJIML,JIML)
LZ = L2 - NSI2E

Table A-3. Continued

> 210 CONTINUE

> TIME(4) = SECOND(O)> - TIMS
>Cennn COMPUTE PERFORMANCE
> CALL RESULT(TIME, N. NSIZE)

>Cenns CHECK SOLUTION
DO 220 UK = 1, N
BJK = JK ¢ 1
IF (ABS(BC(JK) - BJK) .GT. 1.D~é) GO TO 230
220 CONTINUE
WRITE ¢5,2%0)
GO TO 240
230 WRITE (6,240) N, NSIZ2E, (B(JK),JK=1,N)
240 FORMAT (214, 4(1PE16.8)/(4(IPE16.8)))
STOP 2
250 FORMAT ¢’ OK’)
260 CONTINUE
GO TO 10
END
SUBROUTINE ALUPIV(A., B, TEMP, LL., LLNS, NDIM, N)
DIMENSION TEMP(1), A(NDIM,1), B(1)
DO 90 K = LL. LLNS
KPl == K + 1
JK = LLNS - K
KMLL = K - LL
NMK = N - K
NMKP1 = NMK + 1
IF (KMLL .EQ. 0> GO TO 10
CALL MXVPVACACK,LLY, 1, NDIM, AacCLL,K), 1, A(K,K), 1, NMKPIL,
t KMLL, -1)
10 KK = ISAMAX(NMKP1 ,A(K,K),1) ¢ K = 1
T = ABS(A(KK,K))
IF (T .EQ. 0) WRITE ¢4,20)
20 FORMAT (’ ZERO PIVOT’)
00O 30 I = 1, N
30 TEMP(I) = A(K.I)
COIRS IVDEP
DO 40 1 = 1, N
40 A(K,1) = A(KK,])
DO S0 I = 1, N
SO ACKK,I) = TEMP(I)
TEM = B(K)
B(K) = B(KK)
B(KK) = TEM
AlK,K) = 1, / ACK,K)
IF (KMLL .EQ. 0 .OR., JK .EQ. 0) GO TO 70
60 CALL MXVPVACACLL,KP1)>, NDIM, 1, ACK,LL), NDIM, ACK,KP1), NDIM,
1 JK, MMLL, =-1)
70 IF (NMK .EQ. 0) GO TO %0
00 80 ILI = 1, NMK
80 A(K ¢ ILI,K) = T #» ACK + ILI,K)
90 CONTINUE
RETURN
END
>Canan THIS ROUTINE COMPUTES PERFORMANCE OF COMPONENTS OF
>Ce FACTORIZATION AND OF SOLUTION
> SUBROUTINE RESULT(TIME, N, NSI2E)

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV

VVVVVVVVVVVVVVVYVYV

Table A-3. Continued

24

POy A TR P S L L ey g, Y5 NI NPT A ARy NI,
’.‘ 0 b & s $¥s i E 9 L &

>

XAB, " . (TR : R R R RS AR W RS R
w? T L AR LN AN LA T LA " 0§ *.‘P LA

DIMENSION TiME(1>, FLOP(4), OP(4)
00 10 J =1, 4
10 OPC(J) = 0.
DO 20 J = 1, N, NSIZE
AN = MIN(N - J + |,NSIZE)
AN2 = AN # AN
AN3 = AN # AN2

1 AN2

RES = MAXO(O,N ~ J + | - NSIZE)
OP(2) = OP(2) + RES # (AN2 - AN)
20 OP(3) = QOP(3) + 2. # RES # AN # RES
AN = N
OP(4) = (2,.8AN#AN) - AN
PO 30 J=1, 4
FLOP(J) = Q.
30 IF (TIMECJ)> .NE. 0.) FLOP(J) = QP(J) / TIME(D)
WRITE (5,40) (TIME(J),0PC(J),FLOP(J) ,J=1,4)
40 FORMAT (3<1PE12.4))
Cxunn TOTAL FACTORIZATION PERFORMANCE
TIMEC1) = TIMEC)) + TIME(2) + TIME(D)
OPC1) = OP(1) + OP(2) + OP(®
FLOP(1) = OPC1) / TIME(D)
WRITE (3,40 TIME(1)>, OP(1), FLOP(1)
RETURN
END

vvvvvvvvvvvvvvvvv)vvvvvvvvv

Table A-3. Continued

Tt et
DR

ey

OP(1) = OP(1) + ((2.%AN3)>/3.) - (AN2/2,) + (S.#AN/6.) + RES #»

25

T T T T L O AP, SN &y
aﬁkﬁxNﬁiﬂﬁilﬁﬂuﬁdhﬁdhﬂhLﬁd&ﬂu&

T

»?

APPENDIX B
UNROLLED MATRIX - VECTOR MULTIPLY PERFORMANCE
26
" - OO RORN ORIt \-'\-~‘ T e e o ...'.-.".‘-..,-.’,_ Cens _‘. oo

COMMENTS ON CHARACTERISTICS

The performance of Table B-1 was obtained between 5-8am on 12/10/85 at MFECC. .

The execution rates were obtained from averaging rates of 100-1200 runs of each
code. As much as a 20% variation in average rates was noted in the 64-way unrolled
code by running at different times of the day; in general, the average rates of Figure
B-1 tend to be lower than rates measured at other times. Small ditferences in
performance for different unrollings probably can be attributed to memory loading
variations.

it should be noted that 2-way unrolling shows no advantage over 1-way unrolling for
small matrices; 4-way unrolling shows a marked advantage for all sizes. The
consistent degradation of 64-way vis-a-vis 32-way unrolling is not explained.

it was decided that 16-way unrolling offered a reasonable performance-complexity

compromise, and was adopted for use in the Fortran M*V factorization codes of Figures
3 and 5. See Appendix A for listing of an unrolled multiply.

27

Py

e 2 N0 N e o s 2t

L
L
.....' .'...’...'.""..'.'.......''.." .'.. x -

QOOOOOOOOOOOOOOOOOOOCOC 2

R - ° °®) N

D R &

0¥0%0%6%0 %% %00 %0 %% %60 %6 %0 %% %% %% %% % 7]
X ' v
M~ 0

-
i @ Gt
™~ H
- @
)
' o RN AA AR NI AN XN K AN ﬁ >
» ROOOOOQOOOONGONANAA A AT b
3 o
—
-
"""" XANNNNNUNNXA & S
0%6%6%%% %% I =]
N
L]

! Gt
* U
e e .,

q POOOOOOOOOOC 8 .

POOOOOOOOOOC] —
0 [}
N -
5 a
L]
. b
X <%}
]

B 1-WAY
H 2-WAY
B «WAY

e

2
L4
8 3 °
-

zoov
150 4+

TNy

- .
., S LA

P T T T e wt -« g~
'-'.-'\' '-\'-"" '- 'l‘\-‘.,.‘n . e ‘r.\‘ . -.\' q'\ ‘. \.‘ .~'

LA

AR 3 :'}

PN

\

L

1S, Y 3\ .i L) ‘

R S T I R A N S R N SR RN R

Y'-" -_" M

e \ - - “‘;: :ﬁ#f FX‘E
Ay
vt X .‘ AN y

o gy S oM T A

.,

A A e

LA

<

h)
]
AN

