
AD-Al?1 09 BLOCK-ORIENTED LOCAL-MEMORY LINEAR EGUATION SOLUTION ON 1
THE CRAY-2 PART 1..(U) MICHIGAN UNIV ANN RIOR
SUPERCOMPUTER ALGORITHM RESEARCH LAB. D A CAkLAHAN

7 UNCLASSIFIED 15 DEC 05 SARL-9 RFOSR-TR-06-U601 F/G 9/'2

!mmosomhhhhhil

MII IA W.22
L6

oil1 1.1
III~ l. I

IM25116I"

MICROCOPY RESOLUTION TEST CHART

NATONAL BURAAU OfSANDJARD 193 A

%

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Wen Des. Entered)

EREPORT DOCUMENTATION PAGE RAD INSTRUCTIONS
BEFORE COMPrETING FORM

1. MEPORT NU .. '. GOVT ACC SION NO. R:.*C,PlE',r'$ CATALOG NUMBS.RJFOSR.R 8 6 -0 6 81

4. TITLE lad Subtitle) S. TYPE OF REPORT B PERIOO COVERED

BLOCKORIENTED, LOCAL MEMORY Interim
LINEAR EQUATION SOLUTION ON THE CRAY-2 6. PtR'ot, ORG. REPORT NUMBER

PART I: UNIPROCESSOR ALGORITHMS SARL #9
7. AUTHOR(e) S. CONTRACT OP GRANT NUmNER(,)

D. A. Calahan AFOSR 84-0096

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10 PROGRAM ELEMENT. PROJECT. TASK
University of Michigan AREA 6 WORK UNIT NUMBERS

Dept. of Elec. Engring. & Comp. Science 9949 @&._.-I
Ann Arbor, MI, 48109 61102F P30V

* CONTROLLING OFFICE NAME AND ADODESS 12. REPORT DATE

Air Force Office of Scientific Research December 15, 1985
Bolling AFB, DC, 20332 1,. NUMDER OF PAGES

25
4. MONITORING AGENCY N AME G AODRESS$I# dilferent Im Controliinil 01ice) IS. SECURITY CLASS. ref thie opor)

UNCLASSIFIED

U IS. OECL ASSI FICATION! DOWNGRADING
SCHEDULE

. DISTIDUTION STATEMENT (of Ohio Repore)

Approved for public release; distribution unlimited E TfC
PELECTE

IT. OISTRI.UTION STATEMENT (of the beI., eed in Doc& 20. It 4".0-- Ife" .t t 5 erd- W

E
IS. SUPPLEMENTARY NOTES

O Presented at 2nd SIAM Conf. on Scientific & Parallel Computing,
Norfolk, Nov. 18, 1985

IS. KEY wpOS (Cotinue an tmete. ode of neeew7 ad idenify by block number)

LA. Supercomputers
Parallel.processing

20. AGSTRACT (Conilmam o reVere, side if n.eewr and Idenelf by blok nuu'ber)

Experience with the CRAY-2 on the effects of common memory speed
and loading on performance indicate that local-memory-based algor-
ithms have potentially a large advantage. The performance of a
number of common- and local-memory algorithms are compared for the
LU factorization of a dense system of equations on the CRAY-2.
Results of both Fortran and assembly language implementations are
given.

L ' U

AFOSR.TR. 86-0691
REPORT SARL #9

BLOCK-ORIENTED, LOCAL-MEMORY
LINEAR EQUATION SOLUTION ON THE CRAY-2.

PART I: UNIPROCESSOR ALGORITHMS

D. A. CALAHAN
Approved for public release;

distribution unlimited.

AIR FOE O,'!TCE OF "CIEN.T.FIC RESEARCH (AFSC)
r2-TCE O :zN3ITTAL TO DTIC
Th'U tcb'!i"-- repo:t h's been reviewed and is
app-cved fo- public -e le-se IAW AFR 190-12.

DECEMBER 15, 1985 Dist-ibJtion is unlimited.
MATTME" J. KEeR
Chief, Technical Information Division

Accession For
NTIS GRA&I
DTIC TAB
Unannounced I]

SPONSORED BY Justification

By
AIR FORCE OFFICE OF SCIENTIFIC RESEARCH Distribution/

UNDER GRANT AF-AFOSR-84-096 Availability Codes

~Avail and/or
Dist Special

SUPERCOMPUTER ALGORITHM RESEARCH LABORATORY
DEPARTMENT OF ELECTRICAL ENGINEERING & COMPUTER SCIENCE

86 9 15 063
T, A . .. ' . . ._, . .. ,

BLOCK-ORIENTED, LOCAL-MEMORY
LINEAR EQUATION SOLUTION ON THE CRAY-2.

PART I: UNIPROCESSOR ALGORITHMS

D. A. CALAHAN

DECEMBER 15, 1985

SPONSORED BY

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH
UNDER GRANT AF-AFOSR-84-0096

SUPERCOMPUTER ALGORITHM RESEARCH LABORATORY
DEPARTMENT OF ELECTRICAL ENGINEERING & COMPUTER SCIENCE

UNIVERSITY OF MICHIGAN

ABSTRACT

Experience with the CRAY-2 on the effects of common memory speed and loading on
performance indicate that local-memory-based algorithms have potentially a large
advantage. The performance of a number of common- and local-memory algorithms
are compared for the LU factorzation of a dense system of equations on the CRAY-2.
Results of both Fortran and assembly language implementations are given.

ACKNOWLEDGEMENT

High-performance CAL kernels used in the equation solvers were developed by
Geoffrey Carpenter, U. M. Fayyad, and Jimmy Hsiao with a CRAY-2 instruction-level
timing simulator developed by K. B. Elliott, as part of a CRAY-2 scientific library
sponsored in part by NASA Ames Research Center [11].

CRAY-2 time was provided by MFECC, Lawrence Livermore National Laboratory.

I. . ' J .%

I. INTRODUCTION

A. CRAY-2 Architecture and Algorithm Implications

The CRAY-2 architecture of Figure 1 has several features relevant to this algorithm
study.

(a) Common memory features. The massive common memory (CM) trades
size for access time, so that a considerable delay is encountered in
reading from CM. Also, only one data path connects common memory to
each processor's functional units.

(b) Local memory. The above speed disadvantages are compensated by a
local memory (LM), which serves as backup vector and scalar storage for
the functional unit's register storage.

(c) Chaining. The CRAY-2 does not have hardware chaining; this must be
achieved by software and/or algorithm means.

The implications of distributed memory (including hierarchies such as CM and LM) on
linear algebra algorithm organization has been studied since the existence of paged
memory systems [112)[3][4). In general, computations must be arranged so that the
number of floating-point operations on data at the low memory levels is sufficient to
warrant data transfers to these levels. This implies, for example, that a matrix-vector
multiply - which involves only two operations for each matrix data element - will
perform less efficiently than a matrix-matrix multiply.

B. Review of Vector Linear Algebra Algorithms

The asymptotic execution rate (MFLOPS) of a factorization algorithm is equal that of
the kernel that performs the add-multiplies associated with reducing rows and
columns. Three substantially different such algorithms deserve consideration.

(a) Gauss vector-scalar multiply. This requires that, in reducing the rth row
successive operations on preceding rows must be performed serially since a partial
result from each row-operation is used as an operand in the next one (the reader is
assumed familiar with this procedure). In rows with lengths longer than the vector
functional unit length, this dependency can usually be avoided by assembly coding; it
is then termed the GAXPY kernel. It has the advantage of yielding the largest average
vector length of any of the following kernels and so is a serious consideration when the
matrix size is not significantly larger than the maximum allowable vector length, and
assembly coding is allowed. This procedure does not lend itself to partitioning when
large matrices are involved, but is a potentially useful subalgorithm in such cases.

(b) Matrix-vector multiply. Early experience with the CRAY-1 indicated that
block-oriented algorithm organization had at least a pedagogical advantage for large

1!

problems[5][6]. Unfortunately, the necessary (vector - (matrix*vector)) kernel was not
made a part of the CRAY scientific library and consequently the kernel was not
syntactically distinguised from the rest of CAL-coded factorization algorithms. The
organizational concept of basing factorization on matrix-vector multiply subroutines
was developed in [7][8], where it was illustrated how unrolling Fortran loops could be
used to achieve a high performance completely from a high-level language. This
emphasized portability and maintainability. More recently, these kernels - known as
second-level BLAS - have been proposed as the basis for other common linear
algebra algorithms[9].

(c) Matrix-matrix multiply. Although it has always been clear that factorization
can be accomplished by a matrix-matrix multiply kernel, the CRAY-1 memory
hierarchy was not sufficiently distinctive to achieve a significant advantage over the
kernels of (a) and (b) above [3]. The additional memory paths of the X-MP made this
even less attractive, and partially reduced the advantage of the matrix-vector multiply
above. The disadvantages of basing factorization on matrix multiplies are the
necessity for other matrix-level kernels to perform reciprocations and substitutions and,
most important, the difficulty of partial pivoting.

The memory distribution must be quite distinctive to warrant the pro6, amming effort of
(c). This report documents this case for the CRAY-2, while laying the groundwork for a
multiprocessor implementation.

II. NON-PIVOTING ALGORITHMS AND PERFORMANCE

A. M*V-based Algorithms

Given a set of equations

AX=B

where A is an nxn matrix and X and B are vectors, the factorized solution proceeds by
forming lower and upper triangular factors L and U, viz

A = LU (1)

and then solving

LY=B

*Matrices are in bold, vectors are in upper case, and scalars are in lower case type.

2

h M2 .. &%, W.

64 MW p

DYNAMCIEOR(* 2 cp =4.1 nsec
5

P,

long 1 w/Cp

FUNCTIONAL 16K

UNITS LOCA M RY

488 MFLOPS peak / processor

459 MFLOPS attainable / processor

Figure 1. CRAY-2 architecture

3

i . . .,- .. , .. ,. , ,- :,, ,-.-. :. ,. ,...,.' " ... -. .. , ;, .. -,. . -.* . -. .

for Y and

UX=Y --

for X. The complexity of the factorization step of Eq. (1) is 0(n3). The other steps have
complexity 0(n7), with only one add-multiply for each L and U element; consequently
no algorithmic speedup results from transferring L and U to local memory, so that
these steps, if performed separately from the factorization as above, will not be studied.

In the non-pivoting algorithms based on a matrix-vector multiply (abbr. M*V-based), the
columns of L and rows of U are indicated as in Figure 2a. Here the diagonal element,
the row to its right, and the column below it are denoted a22, A1 2 , and A2 1
respectively. The steps to perform the factorization are then

Matrix-vector multiplies:

822 --- a2 2 - A21 A1 2 (2)

A32 A32 A31

A2 3 <-" A23 - A2 1 A1 3 (3)

Reciprocation:

a22 <--- 1/a22 (4)

Reciprocal propogation:

A3 2 <-- a22 A32 (5)

B. M*M-based Algorithms

Another matrix partition permits the factorization to be performed on submatrices
(Figure 2b). The equations equivalent to (2) - (5) are

4 !

-~ . .'. _

12 A 13

A 23

A~~ ~ A1a2 1 A1

A 2A 2 3 -A 23 A 2 1 Al13

(a) M*V-based factorization kernel

_ _ _A
22_"

2 A 3

A22 22 -A 21*A 1

A A12

31A 3 I4-A -A A

A23 A23 -A21 *A13

(b) M*M-based factorization kernel

Figure 2. Factorization Kernels

5

Matrix-matrix multiply:

A2 2 <--- A2 2 - A2 1 A1 2 (6)

A3 2 A3 2 A3 1

A2 3 <--- A2 3 A2 1 A1 3 (7)

Factorization:

A2 2 <--- L22 U2 2 (8)

Substitution:
-1 -1

A3 2 <--- A3 2 U2 2 L22 (9)

Alternatively, Eq. (9) can be replaced by two substitution steps

.1
A3 2 <--- A3 2 U2 2 (9a)

-1
A23 <--- L22 A2 3 (9b)

The advantage of Eq. (9) with a local memory will be discussed below.

The critical size parameter is the dimension of the square diagonal block (nd). This
has been chosen to be 64, the maximum vector length of the CRAY-2, and a length
consistent with local memory size (see below).

C. Multiply Kernel Partitioning and Performance

1. Block partitioning

Because of the restricted size of LM, it is not feasible to load A3 2 and A2 3 into local
memory. Therefore, submatrices are defined , viz

6

All = All, 1 1 Alj,1 2 All,1 r (10)

A1 ,2 1 AIJ, 2 2 Aij,2r

AIJ,tl AiJJ 2 Alj,tr

The two dimensions of these component matrices - except at boundaries of A - is
chosen to be nd; with nd = 64, up to three such matices can be stored in the 16K LM,
with room left for system and temporary storage.

The components of Eqs. (6) and (7) are computed by a block dot product, viz

5
A23,1 j <--- A23,1i - Y A21,1 k A13,kj (11)

k=1

The complexity of such ndxnd block multiplies is O((n/nd)3) for the entire factorization

algorithm.

2. Data transfer overhead

The total number of inter-memory data transfers to form Eq. (11) is 2(1 +s)nd2 . With a
clock period of tc, a transfer rate of W words/clock and a floating point execution rate of
R0 for data resident in LM, the multiply execution rate to produce A23 ,1j above is

R0

R = (12)
1 + 1j+j tg.B

s W nd

With R0 = 430 MFLOPS, W = .8 (using CAL-coded transfer routines), and tc = 4.1 nsec,

then 402 < R < 415 MFLOPS for < s <.

3. Conflict sensitivity

The presence of bank conflicts affects the transfer rate W. It is therefore informative to
compute a normalized fractional sensitivity

7

S = (dR/R)/(dW/W)

= 1(13)
1 + s W_.

l+s tc R0

For the above values, .064> S>.033 for 1 <s< oo. Thus, with dW/W = -.5 (an
average delay of 50%, not necessarily representative), reductions in R of
approximately 12 MFLOPS are predicted. The block multiply rate is now 390 < R <
403 MFLOPS for 1 < s < oo. This execution rate is far greater than might be expected
from a multiply code executing from CM with the same interference.

S D. Block Factorization and Substitution

Both of the substitution steps of Eq. (9) can be performed with a sinlge matrix load of
LM provided that A3 2 is partitioned as above, e.g.,

-1 -1

A3 2 ,11 <--- A3 2 ,11 U2 2 L22 (14)

The execution rates of CAL-coded LU factorization and substitution steps of Eqs. (8)
and (14) operating from local memory with nd = 64 have been measured as 124 and

200 MFLOPS, respectively, including the effects of memory transfers and bank conflicts
during a daytime load..

E. Overall Performance

Figure 3 gives the performance of a CAL-coded M'M-based factorization utilizing LM in

comparison with Fortran- and CAL-coded M*V-based algorithms executing from CM.
(Recall that LM M*V kernels are inefficient and so are not studied.) These were run
during a daytime load at MFECC, using the CIVIC Fortran compiler circa November 14,
1985. The performance of a standard Gauss column-based Fortran code is also
shown.

The Fortran Gauss algorithm (Appendix A) does not permit unrolling or other
techniques for overcoming the hardware disadvantages of no chaining and a long CM
path; the result is that no overlapping can be achieved between the three vector
memory accesses, the vector multiply, or the vector add that characterize the inner
loop. A rate of 60 MFLOPS for n=2048 is the result. This is likely the asymptotic rate
of any Fortran factorzation not utilizating loop unrolling or LM (see Appendix B).

8

rI C

0 0

c~p, 0

9-

7v F 14
00
V) 0)

4-4

NO

040

0
a. I4

* (0 NUU

0

00

-NV0

CM co
CYI

tz4!IAIY
a 0 9

- ~~ ~A* {~CYZ~AA.L

The Fortran M'V-based algorithm performances for n=2048 show a speedup of 2.96:1
over Gauss, principally due to a 16-way unrolling of the matrix-vector multiply. (The
unrolling issue is studied in Appendix B in detail). Assembly coding yields another
1.62:1 speedup over Fortran, due in part to reduction of scalar operations associateq
with unrolling and to the resistance to bank conflicts which can be achieved in CAL by
pre-fetching vector operands.

The LM M'M-based factorization ranges in performance between 124 MFLOPS for
n=64 - when only the factorization of Eq. (8) must be performed - to nearly 400
MFLOPS when n=2048 and Eq. (11) is dominant. The 200-MFLOP performance of the
substitution step of Eq. (8) maintains a relatively high performance vis-a-vis the other
implementations for intermediate values of n.

Il1. PIVOTING ALGORITHMS AND PERFORMANCE

A. Influence of Pivoting

On a vector machine such as the CRAY-2, partial column pivoting has two
components: (1) the search for the maximum element of a column, and (2) exchange of
two complete rows of the matrix. The latter is usually preferred over maintenance of an
index pointer in order to avoid relatively slow indirect addressing. These two functions
are denoted

a <--- piv { s, V)

where a is the element of maximum absolute value of scalar s and the elements of
vector V.

In MV-based factorization this search is routinely performed after Eq. (2) or (3) by the
step

a2 2 <--- piv { a22 , A32 (3a)

However, in the M'M-based version, the granularity of the algorithm does not
recognize individual matrix elements and columns. The problem then becomes to
preserve the high pgerformance of the matrix-matrix multiply by performing the majority
of computations at the block-level, yet to occasionally expose individual columns to
gmit.givting The solution is the following 2-level algorithm (Figure 14).

Equations (6) and (7) are carried out, viz

10

* * * -.:- ~ ~ * * 1.~ . ~ . . ~ * ...

A 12 A1 3

A21 r22 A 2 3

Level 1:

A22 A 22 " A21 A12

,31 2 A3 2 A 32 A 31

pivot A23 A-- A A21 A13
column

4-64

Level 2:
A12A3

21 2 3 22 " 22 - 1 A 1 2

A 22 A32 A32 A3 1AAJ31 Z2

23 3 1 3

Figure 4. 2-1evel pivoting algorithm.

11

,w
i

Matnx-matnx multiply:

A22 < --- A22 - A21 A12 (15)

A3 2 A3 2 A3 1

A23 <--- A2 3 - A2 1 A13 (16)

as an O((n/nd) 3) process. The columns of the resulting Ax = [A 2 2 A3 2]T

block-column matrix are at this point partially reduced, with all the accumulations from
the columns of A3 1 performed but without contributions from the internal columns of
Ax. Ax is then reduced using either a Gauss column reduction or the M*V method of
Eqs. (2)-(5), viz (an underline represents components of this second reduction level)

J222 <-- A2 - A2 1 A 12 (17)

A32 A 32 A31

A23 <--- A23 - A21 A1 3 (18)

a22 <--- piv { a 2 2 , A32 (19)

a22 < 1/a22 (20)

A3 2 < a22 A32 (21)

The computations of Eq. (17-21) are performed from CM and will so be slowed by

memory access delays.

Exclusive of the pivoting of Eq. (19), the result of these level-2 steps is the equivalent of

factoring A2 2 in Eq. (8) and performing A3 2 (U22)1 in Eq. (9a). The substitution
with L22 may then be performed either on the resultant A32 as in Eq. (9) or on A2 3

as in Eq. (9b). In either case, this can be carried out in local memory at a speed
somewhat less than the 200 MFLOPS noted above.

12

With nd fixed, the complexity of level 2 is readily shown to be O(n2), whereas the M°M

kernel complexity remains 0((n/nd)3). For large n, the execution rate should therefore
approach that of the multiply kernel or approximately 400 MFLOPS.

B. Implementation and Performance

Figure 5 presents the results of the same algorithms as Figure 3 but with pivoting. The
rise of the M*M algorithm to the asymptotic rate is now slower. Several explanations
are offered for this performance.

(a) M*M vs M*V CAL performance. Without pivoting, the advantage of
M*M-based factorization was maintained for all n; in Figure 5 this occurs only for large
n. This is explained in part by the complete CAL-coding of the diagonal block
M*M-based factorization of Eq. (8) without pivoting (Figure 3), and the mixed Fortran-
and CAL-coding of this step in both M*V-based factorization - with and without pivoting
- and in level 2 of the MM-based pivoting algorithm. With a mixed coding, all
matrix-vector multiplies and searches for the maximum element of a column are
performed in CAL, but the subroutine linkage to these routines introduces an
overhead with O(n) complexity. Thus, comparisons in Figure 3 for small n include the
effects of different codings, whereas those of Figure 5 do not.

(b) Effect of 2-level algorithm. The CRAY-2 implementation the piv{ s, V) function
of Eq. (3a) requires a fixed overhead dependent only on the length of V and
independent of the matrix element values. Consequently, it is possible to delineate
between the pivoting speedown due to piv{ s, V I and that due to the 2-level nature of
the algorithm. These are presented in Figure 6 for the M*M algorithm. For n > 256 -
where the effect of the coding differences of (a) is largely dissipated - the larger
degradation is the result of the piv { s, V) function. Since the latter cannot be avoided,
the algorithmic speedown from the introduction of a second level does not appear
significant.

IV. CONCLUSIONS

In general, the partitioning of an algorithm into larger computational tasks favors a
parallel implementation since fewer task startups are involved. However, in a CRAY-2
system dedicated to an equation solution, equalizing the workload among the
processors (load-leveling) also becomes an issue; this favors smaller tasks associated
with MV-based factorization. These issues will be investigated in a companion
report.

13

cv)o

Qa

V-4
V) k)
C4 N

-V4C4 ~44
0

N44

4

U)V)

N

49 84

1.14

U 2-LEVELWfTH PIV.

400 2-LEVEL W/OUT PIV. 380384

F NN.wN 315 352

L 300 277
0 240 230
P 200

121 13 151

0
64 128 256 512 1024 2048

MATFXSIZE

Figure 6. Effect of pivoting components

15

a ***a *4 *.~*q. ' t'~

-- 7 7 . 7 7 77 Ic "2 -c z.-

REFERENCES

[1] McKellar, A. C., and E. G. Coffman, "Organizing Matrices and Matrix Operations
for Paged Memory Systems," CACM, vol. 12, no. 3, March, 1969, ppl53-155.

[21 Von Fuchs, G., J. R. Roy, and E. Schrem, "Hypermatrix Solution of Large Sets of
Symmetric Positive Definite Linear Equations," Comput. Math Appl. Mech. Engring.,
vol. 1, 1972, pp197-216.

[3] Calahan, D. A., "A Block-Oriented Sparse Equation Solver for the CRAY-1," Proc.
1979 Intl. Conf. on Parallel Processing, Bellaire, MI, pp234-239.

[4] Liu, P. S., and T. Y. Young, "VLSI Array Design Under Constraint of Limited 1/O
Bandwidth," Trans. IEEE, vol. C-32, no. 12, December, 1983, ppl 160-1170.

[5] Calahan, D. A., "Preliminary Report on Results of Matrix Benchmarks on Vector
Processors," Report #96, Systems Engineering Laboratory, University of Michigan,
May, 1976.

[6] Fong, K. and T. Jordan, "Some Linear Algebraic Algorithms and Their
Performance on the CRAY-I," Report LA-7664, Los Alamos Scientific Laboratory,
June, 1977.

[7] Dongarra, J. J., and S. C. Eisenstat, "Squeezing the Most out of an Algorithm in
CRAY Fortran," Report ANL/MCS-TM-9, Mathematics and Computer Science Division,
Argonne National Laboratory, May, 1983; also in ACM Trans. on Mathematical
Software, vol. 10, no. 3, pp221-230, 1984.

[8] Dongarra, J. J., F.G. Gustavson, and A. Karp, "Implementing Linear Algebra
Algorithms for Dense Matrices on a Vector Pipeline Machine," SIAM Review, vol. 26,
pp9l-112, 1984.

[9] Dongarra, J. J., J. DU Croz, S. Hammarling, and R. J. Hanson, "A Proposal for an
Extended Set of Fortran Basic Linear Algebra Subprograms," Report ANL/MCS-TM-41,
Mathematics and Computer Science Division, Argonne National Laboratory,
December, 1984.

[10] Saad, Youcef, "Communication Complexity of the Gaussian Elimination
Algorithm on Multiprocessors," Report YALEUIDCS/RR-348, Department of Computer
Science, Yale University, January, 1985.

[11] Calahan, D.A., P.L. Berry, G.C. Carpenter, K.B. Elliott, U.M. Fayyad and C.M.
Hsiao. "MICHPAK: A Scientific Library for the CRAY-2," Report SARL #8,
Supercomputer Algorithm Research Laboratory, Department of Electrical Engineering
and Computer Science, University of Michigan, December 1, 1985.

16

* C ~ 1.~j.1Z .L~~C ~A.

APPENDIX A

FORTRAN PROGRAM LISTINGS

17

LwI

IMPLICIT PE#4LkA - H.0 -Z,

DIMENSION TEMP(2048,, Ak2049,2048)
NDIM - 2049

) CALLLINK(*"NIT6-TERMINAL/,'",
> CALLLINK("UNIT5-TERMINAL//")
>C**,* READ MATRIX SIZEDL

10 WRITE (5,20)
> 20 FORMAT (' ENTER MATRIX SIZE')

READ (5,30) N
30 FORMAT %I5)

>C**** FORMULATE DIAGONALLf-DOMINANT MATRIX
D0 50 I - , N
00 40 J = 1, N

40 A(I.J) - -N + IABS(I - J)
50 A(I,1) - 1.1 * ((N - 1)*N - (I - 1)*I/2 - (N - I * 1)*(N - 1)/2)

TI - SECOND(0)
CALL FAC(N, NDIM, A, TEMP)
TI = SECOND(0) - TI
AN - N
AN2 AN *AN
> -N3 - AN2 *AN
OP - ((2.*AN3)/3.) - (AN2/2.) + (5.*AN/6.)
FLOPS - OP / TI
WRITE (5.60) A(N,N)
WRITE (5,60) TI, OP, FLOPS

60 FORMAT (3E14.6)
GO TO 10
END
SUBROUTINE FAC(N, NPI, A, TEMP)
.:IPLICIT REAL(A - H,0 - Z)
DIMENSION A(NPI,I), TEMP(I)
NMI N- I
IF (NMI .EO. 0) GO TO 80
DO 70 J - 1, NMI

10 NMJPI - N - J + 1
JJ ISAMAX(NMJPI,A(J,J>,I) J 3 - I
T - ABS(A(JJ,J))
IF (T .EQ. 0) WRITE (6,20)

20 FORMAT (" ZERO PIVOT')
DO 30 I 1, N

30 TEMP(I) , A(J,I)
)CDlRO IVDEP

DO 40 I 1, N
> 40 A(J,I) - A(JJ,I)

DO 50 I I, N
50 A(JJ,I) - TEP(I)

>C*** RECIPROCATE DIAGONAL
> A(J,J) - 1. / A(J,J)
) ALPHA - A(J,J)
> IJ' aJ + I
>C*** PROPOGATE RECIPROCATED DIAGONAL DOWN COLUMN
> 00 60 I - IJ, N
> 60 A(I,J) - ALPHA * A(I,J)
>C*** MULTIPLY COL. BY ELEME4T & SUBTRACT FROM OTHER COL.
) 00 70 I - IJ, N
> ALPI - A(I,J)
COIR$ IVOEP
) DO 70 K - IJ, N
> 70 A(I,K) - A(I,K) - ALPHA * A(J,K)
>C*** RECIPROCATE LAST DIAGOINL
) 00 A(N,N) - 1. / A(NN)
> RETURN

FND

Table A-i. Gauss factorization

lo

C".'. FCTORIZATION USING 1.b-7,,,.. .rPOi.LED t1,-T;I .- 0ECTOR MULTIPLIES
IMPLICIT REAL(A - H,0 - Z)
DIMENSION TEMP(1024), A(10,c5,1024)
CALLLINK("UNIT5 - TERMINAL // ">
CALLLINK("UNIT6 - TERMINAL // ".
NDIM - 1025

10) WRITE k5,20)
20 FORMAT (' ENTER MATRIX SIZE')

, READ t.530) N
30 FORMAT , I5

C*.* FORMULATE DIAGONALLi-DOMINANT MATRIX
>' DO 50 I - 1. N
* DO 40 J - 1, N

40 AiI.J) = -N + IABS(I - J)
50 QAkII) I- I.1 * (tN- 1)*N- (I - 1I)*I/2 -(N- I 1)*(N -I,2A
60 T2 - SECOND(0)

00 140 J = 1, N
IF (J .EQ. 1) GO TO. 70
CALL SMXPY(A(I,J), A(J,J), A(J,I), N - J * 1, J - 1, NDIM)

>C** SEARCH FOR PIVOT
'C2 CONTINUE
1C FORM JTH ROW OF U

SNMJPI - N - J I
JJ ISAMX(NMJPI,A(J,J),I) 4 J - I

> T ASS(A(JJ,J))
IF (T .EQ. 0) WRITE (6,80)

> 80 FORMAT (ZERO PIVOT"
> DO 90 1 1, N

90 TEMP(I) = A(JII)
>CDIR$ IVOEP

00 100 1 1, N
100 A(J,I) = A(JJ,I)

DO 110 I -I. N
110 AkJJ,I' , TEMP(I)

) A(JJ) 1 / A(J.J)
IF (J .EQ. N) GO TO 150
IF (J .EQ. 1) GO TO 120
CALL SXMP((A(J,I), A(JJ 1 1), A(1,J 1 1), N - J, J - 1. NDIM,

> I NDIM)
> 120 T - A(J,J)

JP1 = J+ I
DO 130 I - JPI, N

130 A(JI) = T * A(JI)
140 CONTINUE
150 TI = SECOND(O) - T2

AN=N
AN2 - AN AN

> PN3 a AN2 A N
OP - ((2.*AN3)/3.) - (AN2/2.) + (5.*AN/6.)

> FLOPS - OP / TI
WRITE (5,160) TI, OP, FLOPS

> 160 FORMAT (3E13.4)
00 TO 10

> END

Table A-2. Matrix-vector multiply-based factorization

19

~ 'f N

C**TRANSPOSED UNiROLLED M,- ,TRI X-YECTOR t,. LT ICLr
SUBROUTINE SXMPYv', '(, M, NI , N2. !40CM. (JO0 i

REAL ('(NDXY . ,. ((ND. , 11, MCNDCI. I)
J - MOD(N2,2)
IF (J .LT. 1) GO TO 20
DO 10 1 1 , NI

>10 (.1.1) U Y(1,I)) - XCI,J) * MCJ,
>20 J -MODCN2,4
> IF (J3 LT. 2) GO TO 40

DO030 1 1. N1
30 Y 1,I) kkf.i(j,I)) - XC1,j - 1)*M(J -1,1)) -X(1 ,J) *M(J.I)
40 J - MOD(N2,8)

IF (J .LT. 4) GO TO 60
DO 50 1 1. fi-1

50 't1,I) U(&''1')- K((1,J - 3)*tl(J - 3,1)) - X(1,J - 2)*M(J-
12.1)) - X(I ,J - 1.,*FM(J - 1 ,1) - X 1 ,J) * MUJ,!)

so J3 M0D(N2,16)
> IF (J LT. a,# GO TO 80

DO 70 1 1, NI
~14 U(((('f 11) -X(I.J - 7)*M(J - 7,1)) - K-"I,J - 6*,

13 6,1) - X(1,J -5)*tlCJ - 5,1)) - (I,J -4)*M(J - 4,!)) -X(1,

/ 2J 3)*tICJ -3,1) - X(I,J - 2)411(J 2,1)) -Xk1,J - -)t(1.
3!',) X(I,J) * M(J,I)

> 80 JMIN J + 16
IF UJMIN .GT. N2)GOT 10

> DO 100 J3 - .MIN, N2, 16
00 90 1 IN1

90 YC 1,!) - C ((Y ,) XCI ,3 15)*MCJ - 15,1)) - X(
I 1,J - 14)*M(J - 14,1)) - XC1,J - 13)11(J 13,1)) - XC1,J - 12)*

> 2 M(J - 12.!)) - X(1,J - 1I)*M(J - 1111)) -XCI,J - 10)*MC.3 - t0.
a 31)) - X(l,J - 9)*M(J - 9,!)) - X(I,J - 8)11C3 - 8,1)) - X(1,J -

) 4 7)411(J - 7.1))- X(1,J -6)411(J - -6,1)) -X(I,J -5)411(J -5,)

> -X(1,.3 - 4)*M(J -4,1)) X(l.J - 3)*M(J 3,1)) -XCI,.3 - 2)411'
) 6 .3 - 2,1)) - X'<1,J - 1)*MC.3 - 1.1)) - XCI,J) *M(J,I)

> 100 CONTINUE
> RETURN
> END

>C**** UN4ROLLED MATRIX-VECTOR MULTIPLY
> SUBROUTINE SMXPY(X. Y, M, NI, N2, NOIM)

REAL X(I), Y(t), M(NDIM,1)
J - MO0(N2,2)

> IF CJ .LT. 1) GO TO 20
DO 10 1 - 1, Ni

)10 Y(I) - CY(I)) - XCJ) * mCI,J)
> 20 J - MOD(N2,4)

> IF J .LT. 2) 00 TO 40
DO 030 1 -1,NI,

> 30 YCI) - C(Y(I)) - X(J - 1)411(1,J 1)) -XCJ) UMCI,J)

> 40 J3 - MODCN2,8)
> IF (J .LT. 4) GO TO 60
> DO 501-1, Ni
> 50 Y(I) - (((CYCI)) - X(CJ - 3)NM(I,J - 3)) -X(J -2)411(1,3 2))-
> IX(J - 1)411(1,3 - 1)) - XCJ) * MCI,J)
> 60. J MOD(N2,16)

IF (J3 LT. 9) 00 TO 80
> DO070 1 -1, N1

Table A-2. Continued

20

i diw , .,.~* ~. *. . . . *

1*1'~~~~ *H I~...'. .s J ~lI - 7' J i-:tI!--
- XJ- 5) *M(I. J 5u A J 4 4*M(I , j 4. .. .fq.

23)) Al xJ - 2) *M(I. - 2)) - J- *M(lIJ - I) M- Itj .1.J)

Su JMIN J + 16
IF (JMIN .GT. NZ) GO TO 100
DO 100 J =JMIN, N2, 16
D,-j 1, NI

P0 'H)-(((c(((((() - X(J - 15)*M(I,J -15)) -(-

I 14)*1(1,3 14)) - X(J - I3)*Mtl.J - 13)) - X(J -12)*MU.~J -

2 12)) - XJi - 1)01< ,J - 11)) - x(J - 10)01(1.3 10)) - X(J -

> 3 Th.M(I,J - 9)) - X(J - 8)*M(1,3 - 8)) - X(J - 7)*M(I,J - 7)) -

4 X(J - 6)*t1(I,J - 6)) - X'J - 5)*M(1,J - 5)) - X(J - 4)*1(.I,J -

5 4)) - X(3 3)*M(I,J - 3)) - X(J -2)*M(1,3 - 2)) - X(J -)M

1, , - "((J) w tIJ)
100 CONTINUE
> RETURN

END

Table A-2. Continued

Copy available to DTIC does not

permit fully legible repiodUo 21

>C** CIVIC2 BLOCKED FACTORIZATION & SOLUTION WITH PIVOTING
)C* THIS VERSION HAS ASSEMBLY-COOED SLM3D.LLM3D
>C* MXMPHAMXVPYA,SUBPIV, AND ISAMAX ROUTINES
> IMPLICIT REALCA - H.0 - Z)

> INTEGER ODIN
> DIMENSION 8(2048), AS(1,1), TEMP(2049), A(2049.2048)
> DIMENSION TINE(4)
> REOFILELMI. 1312, L3

> COMMON /LM1/ AT(64,64)
> COMMON /LM2/ O :.4

> C OMM ON /LM3/ SUB(64.64)
> CALLLI NK("LtNIT6iTEMRINAL //)

> CALLLI NK("IMITS-TERMINAL/1)
> NOIM - 2049

O DM -64
>c*.** READ MATRIX SIZE.BLOCK SIZE
> 10 WRITE (5.20)
> 20 FORMAT C7 ENTER N, NSIZE.')

*) READ (5,30) N, NSIZE
*> 30 FORMAlT (215)

>C**** FORMULATE DIAGONALLY-DOMINANT MATRIX
)C AND RHS WITH SOLUTION 9(J)-J+1

> D050 11. N
>B(I)in0.
>DO 40 J - 1.,N

> A(I.J) - -N + IABS(I - J)

> 40 IF (I .NE. J) B(I) - (I) + A(I,J) * (J 1)
J-A(I,I) - 1.1 * ((N -1)*N - (I - 1)*I/2 -(N -I 4)*(N -1)/2)

- 50 B(I) - (I) + ACI.I) *(I + 1)
) 60*11I-N-I

00DO70 LL 1, 4
) 70 TIME(LL) -0.

* >C**** MAIN FACTORIZATION ALGORITHMI
) DO 120OLLI- .N.NSIZE
>TIMi - SECONOCO)
>LLNS - MINO(LL + NSIZE - 1,N)
>L~Ll - LL - 1
>NDIAG -LLNS -LL* 1
>CALL ALUPIV(A, B, TEMP. LL, LLNS, NOIM, N)
>TIM2 - SECONOCO)
)TIMS - TIM2

TIM4 - TINS
*>C**** FORM (A23*L2200-1)

> 90 *1LLNS -N- LLNS
>IF (*1LLNS E. 0) GO TO 110

*>C**** LOAD LMI WITH L & U AS TWO SEPARATE ARRAYS REQUIRED BY SUBPIV
CALL LLMSD(A(LL,LL), 1, NDIAG, NOZAG. 1, 1, NOIM. 1, ODIN, 1)

CALL LLM3D(A(LL,LL), 2, NDIAG, NDIAG, 1, NDIN, 1, 1, ODIN. 1)

)JX -LLNS. I
)LK -LLNS-LL
)LKPI -LK + I

DO 0100 J a JX, N, NSIZE
> *13 - MINO(N - J + 1,NSIZE)

*)C.*.* L(1AD BLOCK OF A23 FROM LMI INTO LMI

Table A-3. Blocked factorization with pivoting

* 22

CALL LLM3D(AJ.LL). 3, NMJ. LKPI. 1, 1. NDIM. 1, QDIM. 1)
>C*.** SUBSTITUTE INTO BLOCK
) CALL SUBPIV(NMJ, LK. QDIM)
)C**** STORE BLOCK FROM LM INTO CM
) 90 CALL SLM3D(A(JLL), 3, NMJ. LKPI, 1, 1. NDIM. 1. ODIM. 1)
) 100 CONTINUE

TIM3 - SECOND(0)
)C**** INNER LOOP BLOCK MULTIPLIES
> ,MJX - N - JX + I
> LLNSI - MINO(LLNS + NSIZEN)
) CALL MXMPI(A(JX,1), 1, NOIM, A(1,JX), 1, NDIM, A(JX,JX), 1,
> I NOIM, NMJX, LLNS. LLNSI - LLNS, -1)
> LLNS2 - N - LLNSI
> IF (LLNS2 .EQ. 0) GO TO 110
> CALL MXMPt%(A(JX,I), 1. NOIM, A(I,LLNSI + 1), 1, NDIM.
> I A(JX,LLNSI + 1), 1, NDIM, LLNSI - LLNS. LLNS, LLNS2. -1)
> 110 TIM4 - SECOND(0)
> TIME(d) - TIME(1) - TIMI + TIM2
> TIME(2) - TIME(2) - TIM2 + TIM3
> TIME(3) - TIME(3) - TIM3 + TIM4
> 120 CONTINUE
> TIMS - SECOND(O)
>C**** FACTORIZATION ENDED: FORWARD SUBSTITUTION
S DO 130 LL - 1, N, NSIZE

> LSAVE - LL
IF (LL .EQ. 1) G0 TO 130

) LLNS - MINO(LL + NSIZE - 1,N) - LL + 1
> CALL MXVPVA(A(LL,I), 1, NOIM, B, 1, BILL), to LLNS, LL - 1. -1)
) 130 CONTINUE
C.**#* BACK SUBSTITUTION HAS TWO STEPS
)C* IST STEPa M*B
> LZ - LSAVE
> DO 210 LM - 1. N, NSIZE
) 140 IF (LM .EQ. 1) 00 TO 150
> LL - LZ + NSIZE
) NO - N - LL + I

CALL MXVPVA(A(LZ,LL), 1, NDIM, BILL), 1, B(LZ). 1, NSIZEo NO,
) 1 -1)
)C* 2ND STEP: (U**-1 L**-1 B)
> 150 LLNS - MINO(N,LZ + NSIZE - 1)
> LLNSMZ - LLNS - LZ
> IF (LLNSMZ .LE. 0) 00 TO 170
) LLNSMI - LLNS - I
> DO 160 J - LZ, LLNSM1
> JPl - J + l
) DO 160 K - JP1, LLNS
> 160 B(K) - B(K) -A(K,J) 0 B(J)
) 170 B(LLNS) - B(L.NS) * A(LLNS,LLNS)
) IF (LLNSIZ .LE. 0) 00 TO 200
) DO 190 J - LZ, LLNSMI

JJ - LZ + LLNS - J
) JJMI " JJ-
) DO 180 K " LZ, JJMI
) Io B(K) - B(K) - A(K,JJ) * B(JJ)
) 190 B(JJMI) . B(JJMI) * A(JJMI,JJMI)
) 200 LZ LZ -NSIZE

Table A-3. Continued

does

C opeq c 1 b le to oduC t

l1~ egible top, 23

) 210 CONTINUE
TIME(4) - SECOND(0) - TIM5

>C***e COMPUTE PERFORMANCE
) CALL RESULT(TIME, N, NSIZE)
)C**** CHECK SOLUTION
) DO 221-JK - 1, N
) BJK JK + I
) IF (ABS(S(JK) - SJK) .GT. 1.D-6) O0 TO 230
> 220 CONTINUE
> WRITE (5,250)
S 00 TO 260
) 230 WRITE (6,240) N. NSIZE, (B(JK),JK-1,N)
> 240 FORMAT (214, 4(IPEI6.8)/(4(IPEI6.S)))
) STOP 2
) 250 FORMAT (' OK')
> 260 CONTINUE
> 0 TO 10
> END
) SUBROUTINE ALUPIV(A. B, TEMP, LL. LLNS, NDIM, N)
> DIMENSION TEMP(1), A(NDIMl), B(I)
> DO 90 K - LL. LLNS
) KPI - K. +
> JK - LLNS- K
> KLL - K -LL
> NK -N -K
) NMtKPI -NMK 1 I
> IF (KMLL .EQ. 0) G0 TO 10
> CALL MXVPVA(A(K,LL), 1, NDIM, A(LLK), 1. A(KK), 1, NMKP1.
> I KMLL, -1)
> 10 KK " IS*AMX(NMKPI.A(KK),l) + K - I

T " ABS(A(KK.K))
> IF (T .EQ. 0) WRITE (6,20)
> 20 FORMAT C' ZERO PIVOT')
S 00 30 1 1, N
> 30 TEMP(M) - A(KI)
>CDIR$ IVDEP
) DO 40 1 .i N
) 40 A(KI) - A(KK,I)
) DO50 I - , N
> 50 A(KK,I) - TEMP(I)
> TEM S(K)
> S(K) - S(KK)
) B(KK) - TEM
) A(K,K) - 1. / A(K,K)
) IF (KLL .EQ. 0 .OR. JK .E0. 0) 00 TO 70
> 60 CALL IXVPV(A(LLKPI), NDIM, 1, A(K,LL). NDIM. A(K,KPI). NDIM.
) I JK, GILL, -1)
) 70 IF (NMK .EQ. 0) 00 TO 90
) DO 80 ILI - 1, NMK
) S0 A(K * ILI,K) - T * A(K 4 ILI,K)
) 90 CONTINUE
) RETURN
> END
>C***. THIS ROUTINE COMPUTES PERFOMNCE OF COMPONENTS OF
)C* FACTORIZATION AND OF SOLUTION
) SUBROUTINE RESULT(TIME, N, NSIZE)

Table A-3. Continued

24

> DIMENSION TiME(1). FLOP(4). OP(4)
> DO 10 J - 1. 4

)10 OP(J) a 0.
DO 20 Jm -I. N. NSIZE

> AN MIN(N - J + 1,NSIZE)
A.2 N .* AN

>OP(I) - OP(l) + ((2.uwA43)/3.) - (AN2/2.) 4(5.*AN/6.) RES
) I AIJ2

A
)RES - MAXO(0,N - J + I - NSIZE)

OP(2) - OP(2) + RES * (AN2 AN~)
> 20 OP(3) - OP(3) + 2. *RES * N RES

> OP(4) - (2.*AN1AN) -AN

> DO030J -1, 4
>FLOP(J) - 0.

> 30 IF (TIME(J) .NE. 0.) FLOP(J) -OP(J) / TIME(J)
WRITE (5,40) (TIME(J),OPCJ),FLOP(J).J-1.4)

> 40 FORMAT (3(IPE12.4))
>C*** TOTAL FACTORIZATION PERFORMANCE

> TIMECI) - TIME(i) + TIME(2) + TIME(3)
> OP(I) - OP(1) + OP(2) + OP(3)

FLOP(1) - OP(1) / TIMECI)
)WRITE (5,40) TIME(d), OP(1), FLOP(l)
> RETURN

) END

Table A-3. Continued

2.5

...........................

APPENDIX B

UNROLLED MATRIX- VECTOR MULTIPLY PERFORMANCE

26

4.pe

COMMENTS ON CHARACTERISTICS

The performance of Table B-1 was obtained between 5-8am on 12/10/85 at MFECC.
The execution rates were obtained from averaging rates of 100-1200 runs of each
code. As much as a 20% variation in average rates was noted in the 64-way unrolled
code by running at different times of the day; in general, the average rates of Figure
B-1 tend to be lower than rates measured at other times. Small differences in
performance for different unrollings probably can be attributed to memory loading
variations.

It should be noted that 2-way unrolling shows no advantage over 1-way unrolling for
small matrices; 4-way unrolling shows a marked advantage for all sizes. The
consistent degradation of 64-way vis-a-vis 32-way unrolling is not explained.

It was decided that 16-way unrolling offered a reasonable performance-complexity
compromise, and was adopted for use in the Fortran M*V factorization codes of Figures
3 and 5. See Appendix A for listing of an unrolled multiply.

27

4.4

44

- 40)
u

a 0)
44

44

r-4

$4
03
ON4

g 44-g

Z0

28

.

/I.

