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This thesis conducts an in-depth study of the computational issues associated with solving
o R
~ a set of coupled discrete-time Riccati equations. Briefly, the organization of this study is as fol-
o lows. First, the problem is motivated by discussing two game situations which give rise to cou- .
1 '
N9 .
pled discrete-time Riccati equations. Next, the computational aspects of solving these coupled .
’,
g equations are investigated. Finally. algorithms and software are produced that iterate these
equations in a numerically robust and computationally efficient manner. The thesis carries the .
re
o’ coupled Riccati problem from formulation to software implementation with several theoretical
i advances along the way. However. the major contribution of this work is the Riccati solution
method - i.e.. the algorithms and software which solve the problem. As the algorithms are for- .
’ ]
§ mulated. structured. and subsequently coded. the software engineering factors that influence :
‘ good software design are addressed. Furthermore. the coupled Riccati software developed here ’
o is integrated into a well-known Computer-Aided Design (CAD) software package. Thus, the
- informal computer user has easy access to software which solves both single and coupled Ric- :
cati equations. B
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j CHAPTER 1
! INTRODUCTION

This thesis conducts an in-depth study of the computationa!l issues associated with solving a
? set of coupled discrete-time Riccati equations. Briefly, the organization of this study is as follows.
y

First, the problem is motivated by discussing two game situations which give rise to coupled i

NG discrete-time Riccati equations. Next, the computational aspects of solving these coupled equations
. are investigated. Finally, algorithms and software are produced that iterate these equations in a
'

numerically robust and computationally efficient manner. The thesis carries the coupled Riccati

’ a problem from formulation to software implementation with several theoretical advances along the
way. However. the major contribution of this work is the Riccati solution method - i.e., the

~ »

; :: algorithms and software which solve the problem. As the algorithms are formulated. structured,
and subsequently coded. the software engineering factors that influence good software design are

i addressed. Furthermore. the coupled Riccati software developed here is integrated into a well- y

E:i known Computer-Aided Design (CAD) software package. Thus. the informal computer user has "

easy access to software which solves both single and coupled Riccati equations. ‘

) 1.1 Motivation

This section motivates the computational study of coupled discrete-time Riccati equations.
Historical background is presented to give the proper setting. A short discussion of the scope of the .
.. thesis contribution follows to provide some breadth to the findings. But the set of computational '
issues is the key focus of this work and the software design and implementation are of

j: fundamental concern. Hence. the Computer-Aided Control System Design (CACSD) field is -
o

introduced. Then. the L-A-S CACSD language is reviewed.




1.1.1 Background

The theory of optimal control has reached a significant level of maturity as evidenced by the
number of textbooks written on the svhject [e.g.. 1.2.3]. A classic problem often discussed in
introductory courses is the Linear Quadratic (LQ) regulator using state feedback. Here. one finds
that the optimal control is obtained by solving a single Riccati equation. Originally, the solution to
the dual (filtering) problem was given by Kalman [4]. Subsequently. both continuous-time {1.2.3]
and discrete-time [5.6] versions of the Riccati equation have been studied in detail. A key feature

of optimal control problems is that there is a single control agent or Decision Maker (DM).

A more interesting situation occurs when there are two or more DMs controlling the
underlying dynamic system. A straightforward generalization of the state-feedback regulator
problem to multiple DMs, each with its own LQ objective functional, leads to the feedback Nash
equilibrium concept [7). Here. one finds that the feedback Nash equilibrium solution. if it exists, is
obtained by solving a set of coupled Riccati equations. However, the numerical solution of these
coupled Riccati equations is substantially more difficult to characterize. Furthermore, conditions
insuring existence and uniqueness of fixed points of these coupled equations have not been

produced. Nevertheless. several results concerning the general LQ continuous-time problem have

appeared [7-12]. By contrast, the discrete-time case has received considerably less attention.

Indeed. most of the results on discrete-time feedback Nash solutions may be found in [7] or [13].
But these authors point out the need for research into the computational aspects of solving these

game problems.

In this thesis, we solve for the so-called linear. state-feedback (perfect-state information)
Nash equilibrium of a discrete-time descriptor system. For simplicity only the two DM case is
considered. The generalization to three or more DMs remains an open problem. The material
presented here suggests an obvious approach towards extending the theory. The main contribution
of this work. however. is the development of algorithms and software suitable for solving coupled

discrete-time Riccati equations arising from LQ feedback Nash games. Additionally, solutions to
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large-scale problems and single-player (control) problems follow immediately from the

descriptor-variable formulation taken here. The convergence behavior of these equations is
investigated which results in a contraction mapping argument guaranteeing existence and
uniqueness of a solution to the infinite-horizon Nash game problem. Also, a new type of game
theory called multirates is discovered via asymptotic analysis. The tools of asymptotic analysis are
also used in producing the contraction mapping result. The descriptor-variable game formulation
as well as multirate game theory have not been examined until now. These theoretical
contributions enable studies of a significantly larger class of LQ Nash game problems. Moreover,

there are several practical situations where this new theory yields more accurate and/or

numerically appealing models.

Although theory is an integral part of this work. the end product is software. Hence,
sof tware engineering is a key issue. That is. the design and implementation of the Riccati software
ought to comply with the standards ar- practices currently used for software development. This
approach ultimately assures the quality of the final package. However, before embarking on a

detailed discussion of the algorithms and the software structure, it is necessary 10 expand on this

last idea more fully.

1.1.2 Computer—Aided Control System Design

A study such as this falls under the heading of Computer-Aided Control System Design
(CACSD). Essentially. this research field strives to provide the control system and related
communities with high-quality. reliable, numerically robust algorithms and software. CACSD is
still a relativelv young area of research (about 5 years old). This remark is supported by the
observation that formal conferences on CACSD are relatively new [e.g.. 14-16]. There are several
problems, such as linear least squares or generalized eigenvalues-eigenvectors. that provide a basis

for solving more complicated control. system. and estimation problems. It is extremely important

that stable numerical methods are used for solving these simple probiems. Then solutions to more
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complicated problems rest on a firm algorithmic foundation. Some tools of modern numerical ’
’ analysis which are finding significant utility in CACSD include orthogonal transformations [17]. o
N Householder transformations [17]. Singular Value Decomposition (SVD) [17.18), invariant -
! imbedding techniques [19], and descriptor variable formulations [19.20]. Some of these tools are :':‘
useful for obtaining matrix forms with special structure (e.g.. block triangular., Hessenberg. real =
: Schur form) while others circumvent difficulties encountered in poorly or ill-conditioned problems. )
: As a consequence of the CACSD approach, one can arrive at the solution to a problem in a ‘:
straightforward and computationally efficient manner by exploiting the structure imposed by a y
: particular technique. A recent and comprehensive survey of the preceding ideas may be found in
- [21] =
a -
With regards to robust numerical software. it is widely recognized [e.g.. 21] that the .
EISPACK [22.23] and LINPACK [24] software packages are well-suited for generalized eigenvalue- :
eigenvector problems and linear equation problems, respectively. Both packages are coded in the i
(- FORTRAN [25] programming language. Furthermore, each package has demonstrated numerical ’
E superiority over the years. Hence. this software is a natural starting point for building the coupled ‘
. Riccati equation algorithms. Sometimes a CACSD package consists of a collection of subroutines. .
often using EISPACK and/or LINPACK as the lowest level routines. RICPACK {26]. a software tj"
¢ package for single algebraic Riccati equations. is an example of a CACSD package with this -
structure. Other times a more substantial undertaking vields a package capable of solving a broad
range of problems.
Despite the current evolutionary state of affairs. several trends are apparent. For instance, -
the lurge CACSD software packages emerging today mayv be classified according to the following =
groups: menu-driven. command-driven. expert svstems. and languages. Although these categories N
are distinct, examples of packages can be found that possess elements of more than one group. ‘
Because of the volatility of CACSD packages. specific examples of each tvpe are difficult to produce -
.: without dating this text. Nevertheless. a good overview of sottware packages available today may
n
e .‘-:-..-_L'_."... :4\_. u..aj...\. i ;..A A-.. A.. S .;~4,.‘~ RIS ,_..5..\_\-\'- . '-ul AR . = x )
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e be found in [27]). In particular, we mention that SIMNON [28] is representative of a command-

! driven package whereas L-A-S [27, pp. 243-261] qualifies as a CACSD language. -
- 6
Each CACSD software group has its strengths and weaknesses in terms of time invested by :"
-:: the user. For example, menu-driven packages have the advantage that the infrequent user will . :‘2
ot probably spend a minimal amount of time (re)learning how to interact with the package by virtue X
. N
) of the menu-driven environment. However, the disadvantages include the fact that working ‘.':’.
é through pages of menus is ultimately time-consuming. More importantly. if a solution procedure ::"
. does not exist as one of the choices on the menus, then the problem is quite likely unsolvable by the "'
< oo
“ given package. On the other extreme, CACSD languages typically require much more time (e.g..
2 hours) to (re)gain familiarity with the package. But. once mastered. an almost limitless class of

problems may be studied depending on the richness of the language.
‘.:; Motivated by the desire 16 conduct systematic numerical studies of 1.Q Nash games in
. discrete-time as well as the need to efficiently manipulate matrices in a user-friendly environment, -

the decision is made to integrate the coupled Riccati software into the L-A-S language [27. pp. “1

243-261]. In order to explain the subtleties of the software implementation. a brief review of the
- L-A-S language package is required. n
2 i
- 1.1.3 The L—A—S Language
’, -
- BASIC. FORTRAN. and PASCAL are standard programming languages. Each possesses n
- qualities and attributes that are characteristic of almost any ordinary programming language in use
:j.: today (e.g.. subroutine capabilities). It is desirable that a CACSD language parallels the 5
- organizational model set by these familiar and well-established computer languages. Furthermore, hy
:f for control and linear svstem problems a sophisticated matrix environment is mandatory. In E:
« addition. frequency domain techniques reguire the analvsis and manipulation of matrices of :‘._
- polvnomials. It is according to these prerequisites that the L-A-S language was created. he
! x
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L-A-S stands for Linear Algebra and Systems. Furthermore, L-A-S is a CACSD language in

the strict sense of the word. That is, L-A-S conforms to standard computer science definitions for
the syntactical specification of a programming language [see, 27, pp. 243-261, and 29). In addition,
L-A-S has been tested by industry and academia for over a decade at over a dozen locations around
the world. Numerically speaking. L-A-S is based upon the EISPACK [23] and LINPACK [24]
software. Also. the NCAR [30] graphics package is employed to provide 2D and 3D plotting
capabilities. In summary, there is ample evidence [27.29.31-36] available to support the claim that

L-A-S is a bona fide CACSD language.

In the normal interactive mode, the user types statements directly in the L-A-S language
interpreter. Each statement is either a command to the interpreter (e.g.. put L-A-S into program
debug mode) or a request to perform some kind of calculation. The former instructs L-A-S to
display or modify various status information concerning the current L-A-S work session. The
latter invokes the L-A-S language parser which subsequently calls upon the FORTRAN subroutines

needed to process the desired computation.

The fundamental concept behind any L-A-S statement is the L-A-S operator . Essentially.
operators combine input data, perform some desired calculation. and generate output data. The
utility of L-A-S operators as algorithmic "building blocks” has been established {27.35.36]. Thus,
even though a single operator may not be available to solve a particular problem, it is quite likely
that the desired result can be obtained by concatenating several "lower-level” operators. The L-A-S
operators are divided into five groups: Input/Output, Data Handling. Linear Algebra. Control
Systems. and L-A-S Program Control. Presently. there are more than 100 L-A-S operators. Also.
the user may define up to 100 matrices with the total number of matrix elements not exceeding

50.000. The maximum order of any particular matrix is not explicitly limited.

L-A-S programs are written by combining one or more operator statements. Should questions

arise. an extensive on-line help facility containing detailed information about L-A-S language usage

is at the disposal of the user. In totality, L-A-S and its supporting software consist of over 20,000
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lines of FORTRAN code (1977 Standard).

The L-A-S language will be used extensively throughout this dissertation. Therefore, it is

assumed that the reader is adequately familiar with L-A-S so that the L-A-S programs presented

here are easily understood.

1.2 i )! ntribution

This section discusses the actual computational problem studied in this thesis and the specifics
of the contribution of this work. Because the coupled discrete-time Riccati equations analyzed here
are deeply rooted in Nash game theory, two game scenarios wWhich lead to the solution of coupled
discrete-time Riccati equations are developed. First. an exposition on descriptor-variable Nash
games is presented. Then. multirate descriptor Nash games are introduced. The mathematical rigor
associated with each problem is deferred until Chapter 2. The purpose of this discussion is to
elucidate the theoretical novelty as well as the practical applicability of descriptor games. In
particular. multirate games are extremely useful for formulating optimization problems involving

digital communication channels operating at different rates.

Next. the details of the thesis contribution are highlighted. The computational obstacles
pertaining to iterating two coupled discrete-time Riccati equations are delineated. The procedure
by which they are overcome is outlined and justified. Relevant theoretical issues (such as
convergence in the limit as the number of iterations tends toward infinity) and numerical issues
(such as preserving symmetry) are addressed. Finally, the software implementation is described.
Since the Riccati software is integrated into the L-A-S language. additional care must be taken to
insure that the top-level Riccati routines conform to the L-A-S interfacing protocol. Also. the

low-level routines must be engineered properly. Hence, structured programming and modularity

concepts are discussed.
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1.2.1 Introduction

In this subsection, we describe two distinct. yet related problems where coupled discrete-time
Riccati equations arise. Both problem formulations represent new contributions to the theory of
Nash games utilizing perfect state information. However the fact that both problems lead to the
solution of two coupled Riccati equations is the main reason for their inclusion in this thesis. The

ensuing discussion is primarily qualitative.

1.2.1.1 Descriptor Games

A linear shift-invariant (LSI) discrete-time, descriptor system takes the form :

E x(k+1) = A x(k) + Byu,(k) + Byu,(k) (k 20, Ex(0)=E x,) (1.2.1)
yilk) = C,x(k) (1.2.2a)
y2Ak) = Crx(k). (1.2.2v)

This game problem has two decision makers, DM1 and DM2. The discrete-time dynamic
system is evolving at a rate indexed by the integer-valued variable, k. x (k) € R* ,u (k) € R"",
us(k) € R??, y,(k) € R™', and y,(k) € R™?. The matrix E is square and is assumed to be
nonsingular to numerical precision. The standard state-space formulatior; is recovered by

multiplying (1.2.1) by E~1. The system being described is depicted in Figure 1.

Actually, the reasons for choosing a descriptor-variable system are more compelling than is
first apparent. To begin with, many physical systems undergo a modelling phase. during which
time the physical laws of nature are applied to the problem. Often. the result of this process is a
static and/or dynamic (i.e., algebraic and/or difference equations) descriptor-variable description of
the system plant. The matrix £ plays the role of a mass matrix (when Newton's F = MA is
applied), or a sparse interconnection matrix (for distributed parameter systems). or a very singular
matrix (for economic dynamic games). Whatever the case. it is not desirable. or even feasible. to go

to the standard state-space description by inverting E. Second. the theoretical aspects of

descriptor-variable systems are a relevant issue. Allowing £ to be singular ultimately enlarges the
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Dynamic System
Ex(k+1) = A x(k) + Byu,(k) + B,uyk)

yz(k)

uz(k)

Figure 1. Two-Player, Discrete-Time, Descriptor Game.

class of problems that can be studied by game theorists. Last but not least. the descriptor-variable
formulation is numerically superior to state-space ones for two reasons. Inverting £ may be
numerically impossible or inversion of £ would destroy any inherent structure (e.g.. sparsity) in
that matrix. These facts and more support the philosophy that descriptor-variable formulations of

optimal-control and dynamic-game problems are physically, theoretically. and numerically

superior 10 state-space formulations.

Each DM has an associated LQ cost functional which is to be minimized. We solve for the
linear. state-feedback (perfect-state information) Nash equilibrium solution which. by definition.
obeys the principle of optimality. This involves extending the well-known single-player

optimization result to descriptor games. This., in turn, leads to the solution of two coupled

discrete-time Riccati equations.




1.2.1.2 Multirate Descriptor Games

This subsection introduces the theory of multirate descriptor games. The idea is that one DM

is constrained to control the system at a rate which is slower than the other DM. It turns out that

multirate descriptor games can be formulated and solved via single-rate descriptor game theory if

appropriate limiting arguments are constructed. In addition, there are several practical situations

where the optimization problem is more accurately modelled by multirates than by single rates.

Singular perturbation techniques are used successfully to exploit the presence of time scales
within continuous-time [37] and discrete-time systems [38]. These applications deal with time
scales that are inherent in the underlying system plant (i.e., the system’s eigenvalues). By contrast.
relatively little attention has been paid to the case where time scales are introduced by the control.
Consider such a case in a multiple-decision. discrete-time setting where each DM is constrained to
control the system at a different rate. Although an analysis tool has been developed for discrete-
lime systems with multirate samplers [6], it is not suitable for multiple-decision. optimization

problems.

Multirate descriptor games begin with the LSI discrete-time. noncooperative game problem of
the last subsection and constrain the DMs to play at different rates. As before. we determine the
feedback (perfect state) Nash solution [7] which leads to the periodic solution of two coupled
discrete-time Riccati equations. Again. we consider only two DMs. However, the results can be
extended to multiple DM situations as well. In addition. we restrict attention to those rates which
are related 1o all others by a positive integer constant. It is straightforward to generalize to rates
which are related by rational constants. The fast player (DM1) plays at a rate that is an integral
multiple of the rate of the slow player (DM2). Also. the control policy of the slow player relative
to the fast player is assumed to be all-digital in that the slow player applies zero or no control

during those instants when the fast player is acting on the system alone.

Such situations arise in practice. For example. consider a decentralized control problem where

the controllers must communicate with the svstem via a digital channel and the maximum




AN

s )

AP

throughput rate of each channel is different. A second application of multirate descriptor games

occurs in the field of agricultural economics. Here. the suppliers typically act upon the market at a
slow rate (e.g.. annually). whereas the consumers act upon the market at a fast rate (e.g.. daily).
There are other examples of problems that are more accurately modelled with multirates rather
than with single rates. Moreover. there are other interesting features of multirate games that are,
in general. not present in single-rate discrete-time games. For a complete, self-contained treatment

of multirate Nash game theory using a state-space formulation, the reader is referred to {39].

1.2.2 Computational Issues

The numerical aspects of iterating coupled discrete-time Riccati equations are the topic of this
thesis. The computational details are highly nontrivial because of the coupling. This fact is the
source of all numerical hardships encountered in this problem. In order to produce any algorithm

for solving these equations. the coupling must be removed.

Initially the relevant equations are gathered together and preliminary notation is defined. A
cross-substitution procedure begins the decoupling process. Eventually the equations are rewritten
in a form that permits iteration. At this point. an algorithm is presented which simultaneously
iterates the Riccati equations and solves for the feedback matrices needed if the problem is
motivated by a descriptor game. As given. the algorithm is designed to solve single-rate and
multirate descriptor games via dynamic programming. But this fact notwithstanding, the task of

iterating a set of coupled discrete-time Riccati equations is still accomplished. Furthermore. the

conditions which govern the existence of a solution to the iteration problem (i.e.. existence of the

next Riccali iterates) become apparent and are stated formally.

However. it is necessarv to study the computational aspects of iterating coupled Riccati
equations in greater detail. Since these equations involve several positive-(semi)definite. symmetric
matrices and several quadratic forms. it is most wise to seek an expression where these quantities

appear explicitly and often. With this goal in mind. the Riccati equations are rewritten in a form
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more amenable to computer implementation. Then, the specifics of the coupled Riccati algorithm
are investigated. Key matrices (usually positive-(semi)definite and symmetric) are identified and
an algorithm for computing each one is presented. The LINPACK software is chosen for the task of
manipulating (i.e., decomposing. inverting, et cetera) these key matrices while exploiting their
special structure whenever possible. Not surprisingly, a reduction in the amount of computation
results from this method. These low-level algorithms are subsequently used to build the coupled
Riccati package. This structured programming technique yields highly modular and efficient code.

These aspects of the software engineering process make the coupled Riccati sof tware developed here

superior to other approaches.

Finally, existence and convergence issues are addressed. It is natural to ask if the coupled
Riccati iterates converge to a fixed point in the limit as the number of iterations tends toward
infinity. To date. neither necessary nor sufficient conditions insuring such convergence have been
established. This work investigates existence issues associated with finite horizon problems and
convergence issues associated with infinite horizon problems. In particular, a contraction mapping
argument is developed that guarantees existence of and convergence to a unique fixed point for the

infinite horizon coupled Riccati problem.

The main analysis tool used to obtain the convergence results is asymptotic analysis. First. a
small parameter, €, is introduced into one DM's cost functional. As €, — 0. the two-player LQ
descriptor Nash game problem reduces to the LQ descriptor regulator problem. Thus. an initial
"bridge” between the fields of optimal control and Nash games is established. Furthermore. by
setting €, =0 periodically. a new game called multirates is created. This is the essence of the
limiting argument mentioned in the last subsection. Moreover. there are several practical situations

where multirate game theory is more applicable than standard single-rate game theory.

Next. a second small parameter. €. is introduced into the other DM’s cost functional. Then
we let € — 0 and €, — 0 independently. Subsequently, we discover that under appropriate

assumptions, there exists a region where the coupled discrete-time Riccati iterations behave as a




U

A

pe
i

13

contraction mapping. Therefore, we produce sufficient conditions that guarantee that the Riccati
iterates will converge to a unique fixed point in the limit. Furthermore, empirical simulations have

verified the contraction mapping behavior and indicated that the bounds obtained are rather

conservative.

1.2.3 Software Implementation

The computer algorithms and software developed for solving both single and coupled
discrete-time Riccati equations are integrated into the L-A-S CACSD language as new operators.
This approach to software implementation is novel and unique. Theory [19.40] and software [26]
have been developed for the numerical solution of single algebraic Riccati equations. Additional
work that is very closely related to this problem includes [41-44]. However. until now similar
efforts for coupled. discrete-time Riccati difference equations have not been undertaken.
Furthermore, descriptor variable theory [19.20.43] is applied to the LQ Nash game formulation

which leads 1o the so-called generalized coupled Riccati equations. Thus, the class of problems that

can be solved is broadened.

Each new operator involves careful structuring of the algorithm as well as a sound software
engineering basis for writing the codes. The high-level Riccati routines interface with the L-A-S
protocol. The low-level routines are highly modular and computationally efficient. In the
computational analysis it is shown that the task of iterating coupled Riccati equations reduces to
solving systems of linear algebraic equations where one or more matrices have special properties
(like positive-definite and svmmetric). Hence, the decision to build the low-level routines from
calls to the LINPACK library is fairly justified. Further. the high-level routines are built from

frequent calls to the low-level routines as good structured programming practice dictates. The

overall software structure is depicted in Figure 2.

Altogether, there are a total of six new L-A-S operators. Their mnemonic names are SYST,

1.Q. DRE. GAME. LQNG. and MLTR. Collectively they form a single and coupled discrete-time
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-

Riccati equation solver subpackage of L-A-S. Descriptor-variable systems are handled directly. =

’ Also. auxiliary codes are required for repeatedly performing small tasks (e.g.. multiplying two ;‘:'
S

general matrices). The new 1.-A-S operators plus the associated auxiliary support routines are

written entirely in FORTRAN 77 (25] and amount to approximately 3000 lines of code. ﬁ

---------------------
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1.3 Thesis Ogmmnon

This dissertation is organized in the following manner Chapter 2 formulates two disunct
yet related two-player. LQ dynamic games using descriptor-variable theory. The first has DMs
that control the descriptor system at a single rate while the second restricts one DM to apply
control at a slower rate. Assuming perfect-state information. linear state-feedback Nash strategies
are determined for each case. The solution to both problems requires the iteration of two coupled
discrete-time Riccati equations. The purpose of this chapter is three-fold. First, bas. cepts and
notation are introduced. Second. the coupled Riccati problem is motivated. Third. the theory of

descriptor games and multirate games is formalizea and documented.

Chapter 3 investigates the computational aspects associated with iterating two coupled
discrete-time Riccati equations. A cross-substitution procedure is used to decouple the equations
A preliminary iteration algorithm is presented in a game context. Then attention 1s briefly directed
to existence issues (iterability - the ability 10 ilerate a recursive equation) Next. the coupled
Riccati equations are rewritten in a form more amenable to computer implementation Matrices are
identified that possess special structure (e.g.. positive/symmetric) and recur repeatedly throughout
the equations. Algorithms for computing these matrices are given. Next. calculations of the

feedbacks and the Riccati iterates are described. Then. the multirate Riccati algorithm is presented.

The existence of solutions to finite-horizon problems and convergence of Riccati iterates for
infinite-horizon problems are studied in greater depth. Several new results are stated. The

contraction mapping argument is developed here.

Chapter 4 is devoted to the new L-A-S operators created for solving single and coupled Riccati
iterations. Details of the design and syntax of each operator are given. Also, examples illustrate

how the L-A-S language may be used to study single-rate and multirate LQ descriptor Nash games.

Chapter 5 summarizes this work and discusses future research topics.

Three appendices are included which support the theoretical and numerical results presented

in the main body of this thesis. Appendix A contains selected software listings of the low-level

CO T I 0. L
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Riccati routines. Appendix B consists of facts and lemmas that are used in proving the contraction
mapping result. Appendix C contains the L-A-S program run which produced the data used in the :

contraction mapping example of Subsection 3.4.3.
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o This chapter formulates and solves two LQ dynamic game problems in discrete time. The
? first problem considers a descriptor-variable system where the DMs control the plant at the same
)
1

rate. The second problem, a multirate game, further restricts one DM to apply control at a slower

'SE rate. Assuming perfect-state information, linear state-feedback Nash strategies are determined for
each situation. Of more interest, however, is the fact that both problems lead to the solution of
"::' two coupled discrete-time Riccati equations.

i" Although the descriptor-variable formulation has been applied to the LQ regulator problem

[21]). it has not been attempted for dynamic games. Hence, this approach is completely new.
- Moreover, multirate descriptor game problems are heretofore posed yet unsolved. As such. this

i chapter additionally provides significant extensions to the theory of infinite dynamic games.

However, the primary purpose of the following discussion is to motivate the coupled Riccati

o

problem whose computational aspects are studied in the remainder of this thesis. Second. basic

F]

concepts and notation are defined.

a “.‘

2.1 LQ Discrete—Time Descriptor Nash Games

Subsection 2 1.1 formulates an LQ descriptor game in discrete time. Subsection 2.1.2 states

the Nash equilibrium solution to the proposed game.

2.1.1 Problem Formulation

~ Consider the linear shift-invariant discrete-time. descriptor system described by

E x(k+1) = A x(k) + Biu,(k) + B>us(k) (k 20, Ex(0)=E x,) (2.1.1)
. yalk)

Al g(k)

C, x(k) (2.1.2a)

C?_X(k) . (2.12b)
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o This game problem has two decision makers, DM1 and DM2. The discrete-time dynamic A
L]
(‘- system is evolving at a rate indexed by the integer-valued variable, k. x(k) € R* . u,(k) € R"*, !
s u (k) € R??, y (k) € R™ ., and y,(k) € R™2. The matrix £ is square and is assumed to be
4 -
o nonsingular to numerical precision. Multiplying (2.1.1) by E -1 yields the standard state-space. e
’ dynamic game formulation. <
. Each DM must have an objective, which may or may not agree with the other DM’s objective.
Assume that an LQ cost functional has been selected for assessing the payoffs/losses incurred by o
each DM. This is frequently done in modern control/game applications. Then. the performance
N criterion to be minimized by each DM is given by
N Ty )
2 J(yy.y2) i .;. T yI(k+1) S (k+1) vy (k+1) + uf (k) R (k) u (k) (2.1.32) .
k=0
A1 g
’ Jayeya) 2 5 T yEk1) So(kt D vkt D) + ul (k) RoK) uz(k) (2.1.3b) :
*, k=0 .
N where y,. ¥y, denote the mappings from the information set to the control and T denotes
transposition. The time-varying matrices S,(k+1) and R (k). i=1,2 are symmetric and positive !
:: semidefinite. Equation (2.1.3) describes a finite-time game of duration 7, . If 7, — oo, then the
- infinite-time problem can be studied. Let
sl
. HA20.1.2. .7, (2.1.4)
:; denote the index set of the horizon of the problem. Also, let N i {1, 2} be the set used to index the
decision makers. Next. recall the definition of a Nash equilibrium for a two-player game :
Definition 2.1 : Nash Equilibrium [see 7 for details]
, A set of strategies | y,. y-! constitutes a Nash equilibrium solution if and only if
. * . . .
) .11 _é_ 11(71-72) s Jl(YI'YZ) (2153)
./2' i j:(yl'. y:') S 12(71.. ')’2) (215b)

for all { y,. ya} € Q - the set of all admissible mappings. A star denotes the value of that quantity

at the Nash equilibrium solution. ™~
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In this chapter. we solve for the so-called linear, state-feedback (perfect-state information)
Nash equilibrium [7]. By definition, this solution obeys the principle of optimality. Since each DM
will assume that the other DM will play a linear. state-feedback strategy. the feedback (perfect-

state) Nash policy of each player in this game is defined by

u,(k) = yf(x(kx)) = =F (k) x (k) (2.1.6a)

u(k) = yF (x(k)) = =F(k)x(k) . (2.1.6b)
Then,

" = lyf’. yiooo.. y,”l (2.1.7a)

Y2 = [72". Yhooo.. y{’l . (2.1.70)

We solve the basic LQ game problem described above in the next subsection.

2.1.2 Nash Equilibrium Solution of LQ Discrete—Time Descriptor Games

Define the system matrix of each DM as follows :

AK) & A - B,F,(x) and (2.1.8a)

Ax) 3 A -BF ). (2.1.8b)
Then utilizing (2.1.1)-(2.1.2) and (2.1.6) as well as (2.1.8). we can write (2.1.3) as :

T,
Ii(y1y2) = % 3 x7 (k)

k=0

AL (K CIS(k+1)C, A, (k) + FI(K) R(K) Fi(k)|x(k) (2.1.9a)

7,
JaAyry2) = —;- Z x7 (k)

k=0

AL (K) CLES(k+1)C, Ac (k) + FL(K) RH(k) Fo(k)|[x(k) (2.1.9b)

where A.; (k) i AUKk) = B F (k) = A,(k)— B.F,(k). Here the subscript CL means closed

loop.

Because the feedback (perfect state) Nash equilibrium solution obeys the principle of
optimality. this two-plaver game is equivalent to two coupled one-plaver LQ regulator problems.

The following result concern.ag single-player optimization has been extended to descriptor systems.

It forms the basis for the entire coupled Riccati equation study.
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Fact 2.1 :Optimal LQ Regulator for Discrete-Time Descriptor Systems

The linear state feedback policy ¥;.i € N defined in (2.1.6) satisfies (2.1.5) subject to (2.1.1)-

(2.1.3) if and only if

u;'(k) = — (R(k) + BTK (kx+1)B))"! (BTK (k+1)A (k) x"(k)

where K (k) satisfies the f ollowing generalized discrete-time Riccati equation :

ET K(X)E

(2.1.10)

= AT (KK (k+1)A (k) — (AT (KK (k+1)B)) (T(k)1 (BTK (k+1)A (k) + Q;(k) (2.1.11a)

AT (K) [Ki(k+l)—Ki(k+l)Bi(l‘i(k))‘lBiTKi(k+l) lAi(k) + 0(K)

~1
AT (k) I(Ki(k+l))‘l + B(R (1)) 1BT ] AK) + 0,(K)

and

v

0(x) 2 cT s(x+1)C..

r(x) 2 R(x)+ BIK(k+1)B,

with terminal constraint

ET K(T,+1)E = QT,) = CT 5(T, +1)C;.

Hence.
Fi(k) = (R(k) + BIK (x+1)B )1 (BIK (k+1)A ,(k))
Fok) = (Ry(Kk) + BIK J(k+1)B,)~! (BIK ,(k+1)A (K)) .

(2.1.11b)

(2.1.11¢)

(2.1.12)

(2.1.13)

(2.1.14)

(2.1.15a)

(2.1.15b)

Proof : For the case E =1, this result is well known. A proof of this case may be found in [7,

p-221]. The extension to the case of arbitrary (and possibly singular) £ has been investigated in

[43.44]. However. it is illustrative to outline the major components of the proof. Let p (k) denote

the codescriptor vector for the i player, i € N. Then each DM faces the following two-point

boundary value problem

E 0 o] [xx+D) A, 0 B, [0
0 A7 0| |pk+D) | = |—0,ET 0 | |pK)
0-870 u(k+1) 0 R u (k)

1

with boundaryv conditions

(2.1.16)
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E x(0) = E x (2.1.17)
and
ET P,(T/) = ET Kl(T/)E x(T,). (2118)
Hence. the relationship between descriptor and codescriptor vectors is
pik) = K(K)E x(k) . (2.1.19)

In view of (2.1.5). it is well-known [7.45] that the necessary (and sufficient) conditions for
existence of a minimum of (2.1.3) restricted to the class of linear state feedback policies relies upon
application of the Matrix Minimum Principle (MMP) [46] to the cost functionals. Noting that, in
general, the elements of F, and F, are independent, it is straightforward to take the state feedback

form (2.1.9) of J, and J, in order to calculate

atg_F(J_) =0 implies u, (k) = — (R(k) + BTK (k+1)B)"1 (BTK (k+1)A (k) x"(k) .(2.1.20)

Thus, (2.1.10) and (2.1.15) are verified. The discrete-time Riccati equation (2.1.11) can be derived

from (2.1.16). Let G, 2 B, R BT . Then (2.1.16) is equivalent to

EG, x(k+1) | _ A, O x (k)

0Al | |p(k+1) -0, | |20 |- (2.1.21)
Therefore,

E x(k+1) + G,pi(k+1) = A;x(k). (2.1.22a)
But from (2.1.19) we have

k' o+ G,Ip-,(k+l) = A,x(). (2.1.22b)

Or,

-1
Al p(k+1) = AT {Kfl + G, | Aix(k) = —Q,x(k) + ET K. E x(k). (2.1.22¢)

Since (2.1.22¢) must be true for all x (k). we require that

(2.1.22d)

It is clear that (2.1.11¢) and (2.1.22d) are equal. The terminal condition (2.1.14) comes from

Al |k-! + ¢ I_IA +Q, = E' K,E
1 1 1 ] 1 1 .

setting 7, =—1in(2.1.3). See [5.7.44] for details.
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Remarks :

1) Equation (2.1.11) represents several forms of the discrete-time Riccati equation. All are
equivalent assuming the appropriate inverses exist.

2) The coupling of the Riccati equations (2.1.11), i € N occurs through the feedback matrices,
F (k). To see this. substitute (2.1.15) into (2.1.8). The resulting equations are coupled. Since
(2.1.11) depends on (2.1.8) and (2.1.15), the Riccati equations are coupled too.

3) After the lengthy discussion in Chapter 1 about the advantages of descriptor-variable
formulations, it is fortunate that the matrix £-1 appears nowhere in the derivation. However,
a close examination of (2.1.11) reveals that K (k) is not easily obtainable given the right-hand
side of the equation. In fact. the case of E singular poses an interesting problem because then
there may be zero, one. or multiple X ;(k)'s depending upon the right-hand side. Nevertheless,
the Riccati algorithm presented in Chapter 3 will recover X (k) without explicitly inverting E ..

Because of the complications which arise from a singular £ matrix, we impose the following

restriction.

Assumption 2.1 : Throughout the remainder of this thesis, the matrix E is always assumed to be

nonsingular to working numerical precision.

2.2 Multirate LQ Descriptor Nash Games

This section develops the theory of multirate descriptor Nash games. The idea is that one LM
is constrained to control the system at a rate which is slower than the other DM. It turns out that
multirate games can be formulated and solved via single-rate Nash game theory if appropriate
limiting arguments are constructed. Theorem 2.1 in this section makes the last statement precise.
In addition. there are several practical situations where the optimization problem is more

accurately modelled by multirates than by single rates. Chapter 1 contains those details.

The organization of this section is identical 1o the last one. Subsection 2.2.1 formulates the

problem. Subsection 2.2.2 discusses the Nash solution of this multirate game problem. In this
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& thesis, the multirate theory is introduced here and mentioned in subsequent chapters as a special i
* topic. The reader is referred to [39] for a complete, self-contained treatment of multirate game -
theory using a state-space formulation. '
~
R :
@ 22.1 lem Formulation '
4 Consider the linear shift-invariant discrete-time system described by (2.1.1)(2.1.2). This ‘
';‘ L) L]
:.{ game problem has two decision makers, DM1 and DM2. DM1 will be referred to as the fast
.. player and DM2 will be referred to as the "slow” player throughout the discussion. The discrete- N
e time descriptor system is evolving at a rate indexed by the integer-valued variable. k. DM1 plays -
KX at rate k. i.e., at every k. However DM2 is constrained to play slower, say at rate j, where j is also »
L !
an integer-valued variable and is related to k by a positive integer N as follows : N
::',': . A |k/N whenever k /N € {0.1.2....} (2.2.1) :
e ] = . o 2. .
= undefined otherwise _
i Thus, j simply indexes the state of the underlying dynamic system (2.1.1)-(2.1.2) sampled every
N time. But j and k are really dummy variables. Hence. it is preferable to define a real-valued r
F
o (4
.:: variable, L i k /N, for all k. Then joint interaction of DM1 and DM2 on the underlying system 4'
! occurs if and only if ;
LA X €ei0.1.2....1 8z, (2.2.2) 3
N :
By The condition (2.2.2) will play a central role in the characterization of the solution to this '

multirate game problem.

The performance index to be minimized by each DM is given by (2.1.3) as before. The time-
varying matrices S;(k+1) and R(k)., i=1,2 are symmetric and positive semidefinite. Equation
(2.1.3) describes a finite-time game of duration I’y . If T, — oo, then the infinite horizon multirate

LQ descriptor Nash game may be studied. The definitions (2.1.6) and (2.1.7) are valid as well.

o
-
-
»
R
N
)

Furthermore. we seek the feedback Nash equilibrium. so (2.1.8)-(2.1.9) hold. However, this Nash

equilibrium will be for a multirate game: hence. some differences in problem formulation are to be

expected.
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In order to account for the fact that one DM is applying control at a slower rate, we define the
all-digital control policy as follows :
Ly & [0 ezt : (22.3)
= 1o else (no control applied)
Remark : In some applications, a multirate Nash game may arise where the "slow” player(s)

employs a sampled-data control policy, that is. the control law is held at its previoué value until k

is such that the condition (2.2.2) holds. Such problems will be addressed elsewhere.

We solve the basic multirate, LQ game problem described above in the next subsection. In

doing so. we will discuss the meaning of a Nash equilibrium in a multirate setting.

2.2.2 Nash Equilibrium Solution of Multirate Descriptor Games

In this subsection, we show that under appropriate assumptions, the multirate game defined in
Subsection 2.2.1 can be solved using standard single-rate game theory with minor modifications.
The discussion and results of Subsection 2.1.2 are valid here. Now. we construct a limiting

argument which shows that as the small parameter € — O, the all-digital control policy (2.2.3) is

achieved asymptotically.

For notational reasons. let us study a slightly simplified version of the all-digital multirate
game formulated in the previous subsection. Consider the weighting matrices as an ordered pair.
Then. we are interested in the quantities (§,{k+1), R,(k)) and (S5(k+1). R »(k)).

Define :

($,(k+1). R{(k)) = (§,,R,) where S, 2 0Oand R, > O are constant matrices for all k. (2.2.4)

and

($5. R2) where$, 2 0Oand R. > 0 when L € zt

= 1 : (2.2.5)
(0, ?I) where €—0 otherwise

[*

(S(k+1). R5(k))

Here. O is the zero matrix and I is the identity matrix.
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The main results are equally applicable to arbitrary but bounded S,(k+1). Sy(k+1), R (k).

and R(k). ( when L € Z¥ ). Furthermore. this setup accounts for the fact that DM2 is applying
control at a slower rate. In fact, as €é—0, the optimal control of DM2 approaches. in the limit, the
all-digital control policy described by (2.2.3). Furthermore, under mild boundedness assumptions.

both J, and J, are finite. Hence, the problem is well-posed. These last statements are supported

by the next result.

Theorem 2.1 : Characterization of Multirate Nash Games
For the pair (S,(k+1), R»(k)) as defined in (2.2.5), if A{(k) and K (k+1). i=1.2 remain bounded

for all k € H, then as €=0, Jlu, (k) %0 whenever L ¢Z%. Further. whenever L ¢Z7.

Il AJ 3 (k) I = O where
AT (k) 2 3T (k+ DS (k+ Dy (k+1) + ul (OR (K (k) (2.2.6)

Moreover. u; (k) is O (€) and so is AJ 5 (k).

Proof : Throughout the proof all norms taken are assumed to be the standard Euclidean norm.
Also, it is useful to define :
o() é largest singular value of (1) = 11, and
a() i smallest singular value of (*) .
It is given in the problem statement that B,, B,. S;. S». and R, are matrices with bounded
entries. Now as € = 0.l Ro(k) Il = -2- — oo whenever L €Z*. In fact, g(RA(K)) =T(R(k)) = %

by construction. For the moment. assume that K ;(k+1), K>(k+1). A (k). and A,(k) exist and are

finite. This requirement is investigated further in the next chapter. Consequentiy. for sufficiently

smalle. 1T(K)I = % — oo. Specifically, from the relationship

Hx)>lr = Fx)rl) =

for any matrix X where (X )=0 . (2.2.7)

ag(X)
and the fact that for anv two positive semidefinite symmetric matrices X . Y.

RIPAP




LA

1(x+y)-11 = 1 < 1 =1x)yh (2.2.8)
a(X+Y)  a(X) s
we conclude that )
-1 -1 .
ro] "1 = [etroo | B
< ( -1 11 -1 - ~
; < |gR2(k))] = |e =€—0. &
y Hence. .
L
bud ()1 = 1= (Ry(K) + BIK (k+1)B,)"1 (BIK (k+1)A (k) x'(K)1 (2.2.9a) -
; = 1= (T (01 (BIK(k+1A(K)) x(K) (2.2.90) ¥
g < 1= (L)1 - 1BIK (k+1DAL0)1 - 1x°(K) 1 (2.2.90)
€ 1 BIK(k+1A(K)1 - 1x"(k)} =0 foralllx" (k)1 < oo . (2.2.94) i

Thus. us(k) is O(e). That is. there exist non-negative constants, M, and M. such that

Mie S lu,(k)) € M;e. For example, choose M;=0 and

M, =1(BIK (k+1)A,(k)) x*(k) 1. Obviously. R (k) and I'»(k) are O l_:- l . i

L d
e

.

Having established that u, (k) is O (€), we show that AJ; (k) is also. When L € Z*. we have

from (2.2.5) and (2.2.6) that

A3 (k) = ul’(k) Ry(K)us; (k) . (2.2.10)

Clearly. 875 (k) is O (e) O[%l Ot = O«

LI

u e
L]
-1
Remark : From Theorem 2.1, we conclude that lim | [I‘z(k)] ! = O whenever L €Z% . Hence
€—0

the discrete-time Riccati equation (2.1.11a) reduces to the discrete-time Lyapunov equation :

ET K-(K)E = AT(KK(k+1)A-(k) + Qa(k).

Therefore. as €—0, lu, (k) I as well as 1 AJ, (k) I = 0. and the all-digital control policy of

(2.2.3) is realized in the limit. Hence. the multirate descriptor Nash game problem proposed in

....................
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XA

Subsection 2.2.1 can be completely characterized using single-rate theory, if the pair

oy

(8(k+1). R5(k)) = (0. —:-I) and €~0 whenever L € Z* . Indeed. the multirate Riccati iterations

are decoupled when L ¢ Z*. But when L € Z*, the coupling is present as in the first problem of

"rﬁ
¥ Section 2.1. Thus, multirate games require the periodic iteration of coupled discrete-time Riccati
:‘:\' equations.
;J
5 2.3 A Numerical Example .
In this section, a numerical example is constructed which illustrates that there are situations
) where a descriptor-variable game formulation is computationally superior to the corresponding
. state-space game formulation in terms of numerical accuracy. Consider the system (2.1.1)-(2.1.2)
. with performance indices (2.1.3). LetC, =C, =R, = R, =1 Then choose
3
05-1.0 -1.0 9.87e2 1.37
. A = (00077 -1.0 B, = 1.23 . By = 1—1.0e—-3

. 0.0 0.0 0.001 —1.01e -3 1.0e =5

and
3
- 1.0e0  1.0e3 1.0e6

E = 0.0 995 1.0e9 | .

(] —1.95677¢e—~1 0.0 1.0e15

Notice the wide range of magnitudes in E. As a descriptor game formulation. the scalings are
Y

confined to the matrix £. However, if a state-space formulation is sought. the extreme separation

of magnitudes is spread throughout the matrices A. B,. and B,. This is precisely the case which

.,

o degrades the numerical accuracy of the final results. Next. let ,
°9
]
3 12345 1.98752¢3  9.0e6 1.94731 1.566e3  1.0¢6 “d
-~ S1 = | 198752¢3 1.0e12 1.0e 15 and S, = |1.566e3 1.0e12 1.0e15 .
9.0e 6 1.0e 15 1.10102¢ 38 1.0e6 1.0e15 1.23976e 35

The weighting matrices §| and S, also contain elements with a wide range of scalings.

It is customary to employ single precision arithmetic when demonstrating numerical I
. difficulties. The effect is to show how serious errors can result from even low-order problems. N

Assuming single precision (8 significant digits of accuracy). the feedbacks are computed using the -
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methods described in the thesis. The result is

Fy

[ 5.06829¢ —4 —1.01567e ~3 —9.86917e —4]
F,

[-1.73157¢ ~4 1.22620e ~3 —1.44510e 2] .

Now. multiply equation (2.1.1) by E=!. This yields three new matrices :

- 0.5 —1.00078 —0.99899
A = |—9.88268e—14 1.77778e -7 -1.0101e -6
9.78385¢ —17 —1.95829¢ —16 —1.94479% —16
- 9.86999¢ 2 - 1.37000
B,= | 1.24223¢—6 |. and B,= |—1.01037e-9] .
1.93132¢ —13 2.68088¢ —16

Although E =1, the matrices 4, B,. and B, are now very poorly conditioned. Assuming the same

weighting matrices, we again compute the feedbacks using the best methods available. The result is

F

[ 5.07253¢ —4 —1.01652¢ ~3 —9.87737¢ —4]

F, = [~4.78691e —4 1.84028e ~3 —1.3860¢ —2] .

Obviously, there is quite a difference - especially in the first element of F, where there is well over
a factor of two difference. In order to get an accurate appraisal of the deviations, consider the

descriptor system and run the feedback calculation using double precision arithmetic (16 significant

digits of accuracy). The result is

Fl_

[ 5.06600e —4 —1.01521e ~3 —9.86498¢ —4]

F, = [ —7.68264e —6 8.94645¢ ~4 —1.47528¢ —2] .
The reduced precision coupled with the scalings present in the matrix £ are responsible for the

decreased accuracy. Assuming this last set of values to be most accurate. we compute a percent

difference which is summarized in Table 2.1.

The interesting item to note for this example is that the state-space formulation always yields
numbers which are three times less accurate in terms of percent difference from true value. One is
led to conclude that the descriptor formulation is more numerically accurate (robust) for game

problems with nearly singular £ matrices. Clearly. if E is singular, the state-space formulation is

not even applicable. Also. if E is sparse. then multiplying by E-1 is undesirable because sparsity
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Table 2.1. Percent Difference Calculation

Component 1 | Component 2 | Component 3
F | Descriptor 0.045% 0.004% 0.042%
F, State-Space 0.13% 0.13% 0.125%
F ; Descriptor 2154% 37% 2%
F ; State-Space 6131% 106% 6%
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CHAPTER 3
COMPUTATIONAL ASPECTS OF COUPLED DISCRETE-TIME RICCATI EQUATIONS

This chapter investigates the computational aspects of iterating the coupled discrete-time
Riccati equations presented in the last chapter. It was shown there that coupled Riccati equations
solve both single-rate and multirate descriptor Nash game problems. Though these games have

been solved in theory. the computational details of iterating coupled Riccati equations are highly

nontrivial.

As pointed out in Remark 2 following Fact 2.1, the Riccati equations are coupled through the
feedback matrices. That is. the ability to iterate the Riccati equations hinges upon the knowledge
of both feedbacks. But the calculation of one DM's feedback requires the knowledge of the other
DM's feedback (substitute (2.1.8) into (2.1.15)). This fact is the source of all numerical hardships
encountered when attempting to iterate coupled discrete-time Riccati equations. In order to

produce any algorithm for iterating the Riccati equations. the coupling must be removed.

Towards this end. Section 3.1 describes a feedback decoupling procedure. The equations of
Chapter 2 are manipulated in such a way that the coupling vanishes. Then an algorithm is stated
which solves for the feedback matrices and iterates the Riccati equations. Hence both Nash game
problems posed in the last chapter are solved numerically via dynamic programming. More
important., however. is the fact that the task of iterating two coupled discrete-time Riccati
equations is accomplished. Additionally, more notation is introduced. The section is concluded
with an existence analysis of the algorithm. Conditions are stated which insure that the Riccati

equations can be iterated.

Section 3.2 presents the computationally superior coupled discrete-time Riccati iteration
algorithm. To begin with. all relevant equations are assembled together. Assuming the feedback
matrices are known, the problem of efficientlv iterating a Riccati equation is resolved by
considering numerous forms of the equation. Thus the final choice is well-justified. Then it is

observed that the terms in the Riccati and feedback expressions are composed of posilive-

n
Loy}
“




(semi)definite, symmetric matrices and quadratic forms. Therefore, algorithms are devised for

computing these frequently-used quantities. Also, routines for multiplying general matrices and

matrices with special structure are given.

The task of computing the feedback matrices is addressed next. Unfortunately, the (implicit)
inversion of one general square matrix is required. In fact, one of two square matrices must be
inverted. Hence. the computational burden is heavy at this stage because the condition number of
each matrix must be estimated. Furthermore. matrices with special structure (e.g.. symmetric) are
less prevalent in the feedback expressions so the computational intensiveness problem is
exacerbated. Nevertheless, it is possible to rewrite the feedback equations in a form that exposes
additional structure thus alleviating the computational complexity a bit. At this juncture, the
feedback algorithm is presented. Finally, the coupled Riccati algorithm is built from the various

low-level algorithms defined earlier in the discussion.

Section 3.3 studies the existence of solutions to finite-horizon problems. It is here that
previous results (in Section 3.1) are strengthened. Section 3.4 investigates the convergence behavior
of Riccati iterations for infinite-horizon problems. The existence of a region where the coupled
Riccati equations constitute a contraction mapping is established. The bulk of the section is devoted
to proving the contraction. The contraction mapping argument guarantees existence of and

convergence to a unique fixed point for an infinite number of Riccati iterations.

3.1 A Decoupling Procedure

This section considers some preliminary computational aspects of iterating the coupled
discrete-time Riccati equations obtained in the previous chapter. First. the Riccati equations are
decoupled. Then an LQ Nash game algorithm is presented. Finally. various necessary and sufficient
conditions which govern existence and uniqueness of solutions to finite-horizon LQ Nash game

problems (and hence coupled Riccati iterations) are stated.
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Beginning with (2.1.6) use (2.1.8). (2.1.10) and (2.1.13) to obtain :

u;"(k) = = F (k) x*(k)

—(F (k)1 [BIK (k+1) (A — B,F,(k)] x'(k)

and

up (k) = — Fa(k)x"(k) = = (Fy(k))"} [BIK(k+1) (A — B ,F (k)] x"(k) .

(3.1.1)

(3.1.2)

Notice that (3.1.1)-(3.1.2) are coupled equations where the coupling occurs through the

feedback matrices F,(k) and F (k). In order to present an algorithm for solving the Riccati

iteration problem, this coupling must be addressed. Towards this end. we will use a cross-

substitution procedure to derive the functional relationships :

F (k)

21K (k+1), K 5(k+1))

F (k)

gz(K 1(k+1). Kz(k+1)) .

To simplif v notation, we introduce

(k) & ()1 BT K (k+1).i=1.2.
Therefore. from (3.1.1) and (3.1.2) we conclude that :

Fi(x) = (I, 1 | BIK (k+1) (A = B,F(k))

= Wl(k)A - W](k)Bng(k)
= V(KA — \P,(k)BZI(I‘z(k))'l BIK(k+1) (A4 — B,F (k)

= ¥,(x) ll—Bz\Pg(k) IA + W (KB LY(K)B F (k) -
Hence.

I—W,(R)BZWZ(R)BllFl(k) - \V,(k)[l—Bz‘Pz(k)lA .

Similarly. for the feedback, F (k). we get :

]"' W;’(k)Bl‘yl(k)B:lix:(k) = \yg(l\)‘[— B,‘lf,(k)IA -

Define.

20 21— v (K)B.VA(K)B,

i
r
N
*
<
ne

I— ¥.(k)B,¥,(K)B> .

(3.1.3a)

(3.1.3b)

(3.1.4)

(3.1.5a)

(3.1.5b)

(3.1.5¢)

(3.1.5d)

(3.1.6a)

(3.1.6b)

(3.1.7a)

(3.1.7b)
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Then the functions g, and g, described in (3.1.3) are given by

Fi®) [s,(m]‘l .00 [1- 89,00 4 (3.1.8a)

Fy(k) = ‘Ez(k)]'l ¥,(k) ll-Blwl(k)lA (3.1.8b)

-1 -1 -
assuming that [E ,(k)] and Ez(k)] exist. Given the definitions of the weighting matrices, it
-1 -1
is clear that 'l‘l(k)| and |I'2(k)] always exist if X ;(k+1) and K ;(k+1) are matrices with

-1
bounded entries. Existence of lEi(k)l i=1,2 is a more delicate issue that will be dealt with

shortly.

We may now present an algorithm for solving the LQ descriptor Nash game problem.
Dynamic programming [5] dictates that the feedbacks must be solved for in reverse time. The

requirement of iterating two coupled discrete-time Riccati equations is automatically satisfied.

LQ Descriptor Nash Game Algorithm

Step 1: Initializations
Set COUNT =T, .
Set E7 K (COUNT+1)E = CT S(COUNT +1)C,. i=1.2. (Terminal Constraint)

Step 2: Beginning of Majn Loop
Compute ll‘,(COUNT)] . 1=1,2 using (2.1.13).

Step 3: Core Calculations
Compute ¥,(COUNT ), i=1.2 using (3.1.4).
Compute Z(COUNT ), i=1.2 using (3.1.7).

-1
If [':',(COUNT )I exists. then compute it, otherwise go to Step 5.

-1
If [E;(COUNT )I exists. then compute it. otherwise go to Step 5.

Compute F (COUNT ). i=1.2 using (3.1.8).
Compute A (COUNT ), i=1.2 using (2.1.8).

Step 4: Update Data

Store F (COUNT ). i=1.2 for this value of COUNT .

Iterate the coupled discrete-time Riccati equations according to (2.1.11) with i=1.2 thus obtaining
K (COUNT ) from K (COUNT +1). i=1.2.

Set COUNT — COUNT — 1.

If COUNT 2 0. then go to Step 2. otherwise STOP the algorithm.

Tl oLt
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' Step S : Error Condition
' Print an Error Message that indicates that one or more of the feedbacks are infinite at this stage of
the game. Then STOP the algorithm.

] |

’ Remark : Multirate LQ Descriptor Nash Game Algorithm

nap

The corresponding multirate algorithm may be obtained by simply replacing step 2 with

-

-1 -1 <

Compute ll‘i(COUNT)l ., i=1,2 using (2.1.13). If L €Z*, then Set [l‘z(COUNT )l = 0. -
Moreover. other simplifications are possible for a multirate game. If L ¢€Z*. then ;‘é

-1
[I'Z(COUNT )I = 0 which implies that ¥,(COUNT) = 0. Furthermore. (3.1.7) implies that

Z,(COUNT) = Z,(COUNT) = I which, in turn, implies that F ,(COUNT) = ¥,(COUNT) A

and F,(COUNT ) = 0. Hence, the Riccati equations that have to be iterated reduce to

ET K(K)E = AT | K (k+1) — K (x+1)B (T (k)" 1BIK (k+1) [A + Q,(k)

ET KX(K)E = AT(K)K(k+1)A,(k) + Q,(Kk) .

Many facts become apparent from the descriptor Nash game algorithm. They are summarized

by the following :

Proposition 3.1 : Existence of Feedbacks he
v ¥
-1
: K (k) exists if and only if Il,.‘-'-.'l(k)] I < oo . Likewise., K,(k) exists if and only if
* -1 * . .':::
: [ lE:(k)] 1 < oo . Equivalently, there exists a unique solution (y{'. y¥') .k € H to the k" stage .
) of the LQ descriptor Nash game described in Chapter 2 if and only if g(Z,(k)) = 0 and ::.-f

o(=,(k)) # O for that k. Therefore. there exists a unique solution policy (y;.7y2) to the entire

| AL

Nash game if and only if 0 €{ o(Z(k) | k€H. i=1.2}.

5

a
*

Proof : Consider only single-rate games and let k=T, . Then, K (k+1).i=1.2 are well-defined

.

by (2.1.14). Assumption 2.1 guarantees that K (k+1) is unique. Since. 0 < R; < o and

]

L|

-1 -1
I B, < oo, |I'1(k)) exists. Similarly. 0 < R, < o0 and I B, < oo implies that [F:(k)] exists.

-1
Thus, F,(k)l . i=1.2 exists if and only if K (k+1) exists, respectively.

...............................
-------
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N Now, given that [ri(k)l—l' i=1.2 exists. then by (3.1.4) so does ¥i(k). Furthermore, from

g (3.1.8). it is clear that F;(k).i=1,2 exists if and only if the corresponding l,:-'.i(k)l-1 exists. This

i condition is the same as requiring g(Z;(k)) # 0, i=1,2. From (2.1.11a), it is obvious that

£l boundedness of K (k) hinges upon boundedness of A;(k) which, from (2.1.8). occurs if and only if

:": 1 F(k)1 < o0, i=1,2. Therefore. X (k) exists if and only if F‘(Ei(k))‘l ] = ( l( s < oo. That
ag(=(k

is, o(Z,(k)) # 0.i=1.2. Uniqueness comes from the fact that (2.1.11a) defines a single matrix.

| MO

ET K (k) E given all quantities on the right-hand side of (2.1.11a) and Assumption 2.1. Finally,

the proof is completed by inductively applying the above argument to the next (i.e.. k—17 ) stage

of the game as long as {K (k). i=1.2} exists. If not, then the given LQ descriptor Nash game is ill-

@ posed because either u; (k)=co or u; (k)=co or both for some k € H.

-_ Remark : Existence of Multirate Feedbacks

If L €Z" then the result of Proposition 3.1 applies. However, whenever L ¢Z*. the remark

. following the LQ descriptor Nash game algorithm indicates that both feedbacks always exist.
! Notice that if N =2, then the conditions L € Z* and L ¢ Z* occur with equal frequency. But if

N >2. then L ¢Z% occurs more often. Hence, as N increases, the frequency with which the

. feedbacks are guaranteed to exist increases.

-, As an immediate consequence of Proposition 3.1, we have :

Corollary 3.1 : A sufficient condition for existence of a unique solution to the finite-horizon LQ

Nash game problem is that @(¥,(k)B,¥,(k)B;) < 1 and T(¥,(k)B,¥(k)B,) < 1 forallk € H.

Proof : Itis well known [18,47] that the singular values of a matrix are intimately related to the

. problem of rank degeneracy. In particular. given a square matrix X with _O'_(X)ig__\' >0 and

another square matrix Y of compatible dimension with 5(}’)26)~ 20. then if 0y < gy the
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! matrix (X+Y ) has full rank. Consider (3.1.7a) and take X =1 and ¥ = ¥,(k)B,¥,(k)B, .
Obviously, T(I) = g(I) = 1. Hence as long as 5(Y ) = 3(¥,(k)B,¥,(k)B,) < 1. the matrix Z,(k) -:
; -1
] can never be singular. Thus, [El(k)] always exists. Similarly, consider (3.1.7b) and take
: )
‘ Y = ¥,(k)B,¥,(k)B; leaving X as before. The same singular value argument can be applied to
-
this case, which then proves the Corollary. =
a .
Corollary 3.2 : Another sufficient condition for existence of a unique solution to the finite-horizon )
N
LQ Nash game problem is that o(¥,(k)B,¥,(k)B,) > 1 and a{¥,(k)B,¥,(k)B,) > 1 forall k € "
H o
o
y Proof : Using the same singular value argument as discussed in Corollary 3.1. consider (3.1.7a)

and take Y =T and X = ¥,(k)B,¥,(k)B,. As long as g(X) > &(Y ) = 1, the matrix Z,(k) can

never be singular. Similarly, consider (3.1.7b) and take X = ¥,(k)B,¥,(k)B; leaving Y as before. g
. The same singular value argument can be applied to this case. which then proves the Corollary.
E o »%
We can carry these last two corollaries one step further by restricting attention to those =
games in which both players have a single input to the system. In this case. define the scalars : g
w (k) 3 w,(0)8, p
w:(k) A v, (008, . N
Then. Z1(k) = 1 ~ w,(k)wa(k) = 1 — wo(k)w (k) = Z,(k) . Hence.
4
Corollary 3.3 : A unique solution to the finite horizon LQ Nash game problem with single inputs
for each player exists if and only if w,(k) = (wz(k))'] for all k € H. :::
-
y
Proof : Obviously. =,(k) = Z,(k) are scalar quantities for the situation when each player has a N
, single input. Therefore. singularity of both occurs if and only if
‘ -
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w1 (Kwy(k) = ax(k)wy(k) = 1

This condition is equivalent to

@y(k) = (@, (k)71 or wy(k) = (wy(k))-1 .
0
In summary, these results provide on-line checkable conditions so that the descriptor-game
algorithm can monitor itself and determine if a Nash solution strategy exists. In the next section,

algorithms are developed for iterating coupled discrete-time Riccati equations in a computationally

efficient manner.

3.2 The Coupled Discrete—Time Riccati Algorithm

In Section 3.1 an algorithm is presented for solving LQ descriptor Nash games. The process
involves iterating coupled discrete-time Riccati equations. This section describes a more efficient
and numerically robust procedure for performing one iteration of two coupled. discrete-time
Riccati equations. As a byproduct of the analysis. we obtain an equally efficient procedure for

iterating a single discrete-time Riccati equation which arises in the study of the optimal LQ

regulator problem.

3.2.1 Algorithm Implementation

This subsection reviews the pertinent equations involved in iterating two coupled discrete-
time Riccati equations. A complete discussion of the equations may be found in Section 3.1.
Because positive-(semi)definite symmetric matrices are frequently encountered in this coupled
Riccati problem, the Cholesky factorization [17.24] will be used to expedite the calculations. Recall
that any positive-(semi)definite symmetric matrix, A . may be factored as A = XIX, where X, is
upper triangular. It is preferable to work with X, rather than directly with A because of the
triangular structure. For example, it is often necessary to calculate C = A-1 B where B is some

other compatibly-dimensioned matrix. This can be accomplished by solving the symmetric linear
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system A C = B for C. However, if the Cholesky factor of A is available then the linear system
is equivalent to solving two triangular systems X D =B and X, C = D. This technique has !

! two major advantages over working directly with the original system A C = B. First, triangular

o

systems are extremely easy to solve. Second, the inverse of A is never explicitly computed. As a

general rule of thumb, the explicit computation of an inverse should be avoided at almost any cost.

ALt

.

For the case where A is dense and has no special structure. the Cholesky factorization is replaced

"l .' .o : ..

by the LU factorization. In this factorization. U is upper triangular and L is the product of

elementary lower triangular and permutation matrices.

r v

Ly

AR

Remarks : Software Engineering

(R

The solution of this coupled Riccati problem requires software designed to handle linear algebraic
equations. Frequently, positive-(semi)definite symmetric matrices appear which require special
handling. The LINPACK [24] FORTRAN library is the best known and the most widely

recommended [21] software package used for these situations. For all the algorithms which follow,

(.

Single (S) precision arithmetic is assumed. Therefore, only subroutines beginning with 'S’ are

. v e
Tatate

referenced from the LINPACK library. If Double (D) precision is used. then the first letter of the

corresponding LINPACK routine is 'D’. However, L-A-S is a double precision package. Since the

! .

coupled Riccati software will be integrated into L-A-S. the software listings in Appendix A refer to
the double precision versions of LINPACK. Second. all of the Riccati software discussed here is
coded in FORTRAN. This decision is primarily motivated by the fact that both L-A-S and
LINPACK are FORTRAN-based packages. In addition. FORTRAN is generally chosen for coding

numerical software.

Y

Several of the algorithms require at least one multiplication of two matrices with no special .
structure (like upper/lower triangular). For this reason. we define algorithm MLTPLY, which

e

multiplies two arbitrary. but compatible matrices. In particular given the matrices A and B. .

MLTPLY is useful for computing the forms A B and A’ B. Notice that the case where both A .

)

o

and B are symmetric offers no advantages since the resulting matrix is, in general. not symmetric. ~

» et .
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Hence, algorithm MLTPLY is applicable. Since MLTPLY is too simple to be given as a sequence of

steps. a copy of the FORTRAN source code is included in Appendix A.

Now the equations needed to iterate coupled Riccatis are reviewed. The Riccati equation for

<

Decision Maker i (DMi),i € N : { 1. 2} at stage k is given by

g ET K(KE |
g " = AT(KK (k+1)A (k) — AT (KK (k+1)B, (T(x))"! BTK (k+1)A (k) + Q(k) (3.2.1) y
3 where
: I:S r() 2 R(x)+ BIK (x+1)B, . (322)

. Ak) 2 A -B,Fyx) .and (3.2.3a) ,

% AdK) 3 A -BF ). (3.2.3b)

The feedback employed by each DM is

F (k) = (R,(x)+ BIK ,(k+1)B )" (BIK (k+1)A (k) (3.2.42)
- = (F())"V[BIK (k+1) (A — B,F (k)] (3.2.4b)
: -1
= IE,(k)] ¥, (k) ll—B;.\llz(k)IA (3.2.4c)
) g‘ and "
N Fo(k) = (Ro(k)+ BiK(k+1)B,)" 1 (BIK ,(k+1)A 5(k)) (3.2.52)
oY
* = (L) [BIK (k+1) (A — B\ F,(x))] (3.2.56)
-1 .
! = lE;.(k)l ¥,(k) Il—B,W,(k)IA (3.2.5¢0)
where
&
%
V(k) A (k)1 BT K (k+1).i=1.2 . (3.2.6)
:§ El(l\) i l—\yl(k)Bz‘l’z(k)Bl ., and (327d)
i 2.k) 2 1= W,(k)B,¥,(K)B,. (3.2.76)




3.2.2 Iterating a Riccati Equation

This subsection determines an algorithm for iterating a Riccati equation assuming the
feedbacks are known. The goal here is to minimize the number of inverses appearing in equation
(3.2.1). From a computational viewpoint. the right-hand side of the Riccati equation (3.2.1) is
most efficiently calculated by using a slightly modified form of (3.2.1). To see this. start with

(3.2.1) and use the relations (3.2.4) and (3.2.5) to write

ET K(X)E

AT K(k+1) A, — AT K(k+1) B, (T)"1 B K (x+1) A, + Q, (3.2.8a)

= AT K(k+1) A, — AT K(x+1) B, (1)~ |r., r,—lls,f K(k+DA, + 0, (3.2.8b)

AT K(k+1D A, — (AT K(x+1)B, T L1 (r71 BT K(k+1)A) + Q, (3.2.8¢)
= AT K(k+1)A, — FIT' T, F, + Q, (3.2.8d)
where the dependence on k has been dropped for all variables except X ,.
Remark : It is a simple exercise Lo verify that (3.2.8d) can be written as:

ET K(KE = Al K(k+1)Ac; + FT R F, + Q, (3.2.8e)
where A, i A —B,F,~-B,F, This form is as compact as (3.2.8d). Indeed. this
computationally attractive form may be found in [7.p.253] where the setting is largely theoretical.
However, it will become evident that it is less efficient to use (3.2.8¢) to iterate the Riccati

equations, because the Cholesky factor of R, is never computed whereas the Cholesky factor of T,

will be available from another calculation.

One additional simplification is possible. In view of (3.2.6). equation (3.2.8¢) can be rewritten

ECK(KE = A] [K(kk+1) — ¥/ T ¥ |A, + 0, (3.2.81)

which 1s extremely compact.

It is true that each Riccati equation can be computed directly as a function of K (k) and

K (k). but the resulting equation 15 very complex and quite often the feedbacks are needed.

S N e
~ Ca v



Furthermore, once the feedbacks are calculated, the Riccati iterations are most efficiently computed

using (3.2.8f) - an equation with no inverses.

- Before presenting the algorithm for iterating a Riccati equation, several small algorithms must
'.:; be defined. This is done in the next few subsections. Algorithm QDFORM computes a quadratic
- form or variations of a quadratic form. Algorithm PSICOM computes the variable ¥;(k) as defined
~

b in (3.2.6). Algorithm XTRACT computes K;(k) given the right-hand side of (3.2.8f). Algorithm
:'.':; DISRIC combines these algorithms to perform one iteration of a Riccati equation.

-~ 3.2.2.1 Algorithm QDFORM

' It is clear that the quadratic form B7 A B where B is arbitrary and A is a positive-
. (semi)definite. symmetric matrix appears frequently. Anticipating the need to compute several
g quadratic forms, let us introduce the following algorithm.

g7
L}

Algorithm QDFORM

Step 1: Factor A __A= X1 X, where X, is upper triangular. X, is called the Cholesky factor of A

! and is obtained via the LINPACK subroutine SPOFA.

. Step 2: Compute Y = X, B taking advantage of the fact that X, is upper triangular.

o

- Step 3: Compute D = Y7 Y taking advantage of the fact that D is symmetric.

o Remarks : As coded in Appendix A. Step 1 can be bypassed if the Cholesky factor of A is already
o available. Steps 2 and 3 require one optimized matrix multiply DO-Loop in FORTRAN. Also, if
¥

the quantity C + B7 A B. where C is symmetric. is desired. then algorithm QDFORM is

applicable if Step 3 is modified to include the array C as the initial condition in the multiply DO-

Loop. The same can be said for the formC — B” A B.
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] P
R =
N 3.2.2.2 Algorithm PSICOM
“ n
. The computation of W(k),i=1.2 establishes the foundation upon which all subsequent o
X calculations are built. Observe that (3.2.4), (3.2.5). (3.2.7) and (3.2.8) depend on ¥;(k). It is o
" apparent that a thorough investigation of the computation of ¥;(k) is needed. From the definition v
. (3.2.6), it would seem that the explicit computation of (I';(k))~! is necessary. However, this is not g
: the case. Since ['(k) is a positive-definite, symmetric matrix, the LINPACK [24. Chapter 3]
: software for general positive-definite matrices is used to circumvent this problem. ..;
. Although ¥;(k) can be found in 4 easy steps. the result of each step of the calculation is j:Z:
. :- n.:‘
K- needed in later computations. For example, the quantity W defined in Step 1 of algorithm PSICOM
N
. L?
: is used later, so let h
N W,(k) 4 BI K,(k+1).and (3.2.9a) o
. A R
» Wy(k) 2 BY Ki(k+1) . (3.2.9b) .
Hence it is desirable 1o create an algorithm that computes and returns ¥(k) as well as all the =
-~ intermediate quantities. Since ¥,(k) is a function of T;, B, and K, the subscript i can be dropped. -
. o
-~ X
- Also. the dependency on k can be suppressed. The algorithm for computing ¥ is now stated. .
' -
3 Algorithm PSICOM
o .
\4 .
~' "
Step 1: Compute W i BT K using algorithm MLTPLY.
= Step 2: Compute I' using algorithm QDFORM.
' Step 3: Factor T = X[ X[ where X is upper triangular. Xy is called the Cholesky factor of T o
_ and is obtained using the LINPACK subroutine SPOFA.

'\: Step4: Form ¥ =T"1 W without explicitly computing r-1 using the LLINPACK subroutine -
& N
9 SPOSL.. .
' - wd

N
:: Remarks : Step 4 soives the linear equation [ ¥ = W for ¥ one column at a time using the

Cholesky factor X . Thus. it is not necessary to explicitly form the inverse of I'. Algorithm e




PR

&L

[
-

-

A

v

s

-

/e

.

r

. *
N

[ ’."" -

I
aan

43

PSICOM takes B. X, and R as input and subsequently produces W, I', X, and ¥ as output.
Hence. if ¥ is needed for a later calculation and algorithm PSICOM is invoked, then I' need not be
computed using algorithm QDFORM because PSICOM will return it as a byproduct of the

calculation of ¥. The Riccati algorithms will exploit this savings in computation.

3.2.2.3 Algorithm XTRACT

Given the right-hand side of (3.2.8f), the quantity X (k) is immediately known only if £ =L
If E differs from the identity matrix, then additional steps must be taken to extract K ;,(k) from
the quadratic form E7 K (k) E. Algorithm XTRACT performs exactly that function. Specifically,

suppose the right-hand side of (3.2.8f) evaluates to a positive-definite. symmetric matrix called Z .

Then Z has a Cholesky factorization. Z i X7 Xz . Similarly, the kernel of the left-hand side of

(3.2.8f) has a Cholesky factorization X 2 X% Xy . Equating both quantities yields

ET XL Xy E = X X, . :

Algorithm XTRACT is based on this observation. :
Since £ is assumed to be dense and with no special siructure, the LINPACK software for
general matrices is employed. Assumption 2.1 guarantees that the inverse of E exists. However, as
with algorithm PSICOM. the inverse is never explicitly computed. Instead the LU factorization of

E is used. Now. the algorithm for extracting X (k) is stated. »

Algorithm XTRACT .

Step 1: Factor Z = XJ X; where X, is upper triangular. X, is called the Cholesky factor of Z
and is obtained using the LINPACK subroutine SPOFA. i
Step 2: Factor £ = Ly {/r where Uy is upper triangular and Ly is the product of elementary

lower triangular and permutation matrices. Ly Ugr is called the LU factorization of E

and is obtained using the LINPACK subroutine SGEFA.
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Step 3: Solve the linear system E7 X = XJ for Xy without explicitly computing £-1 using

i

the LINPACK subroutine SGESL..

Step 4: Compute K = Xf Xy taking advantage of the fact that D is symmetric.

vy
>,SS

Remarks : Step 3 solves the linear equation £7 X[ = XJ for Xx one column at a time using the

LU factorization Ly Ug. Thus, it is not necessary to explicitly form the inverse of E. Step 4 :
requires one optimized matrix multiply DO-Loop in FORTRAN. Algorithm XTRACT is only o
invoked if £ # L. However, if £ should possess additional structure (e.g.. diagonal), then steps 2 =
and 3 should be replaced by another algorithm which exploits that structure. '.-::
3.2.2.4 Algorithm DISRIC -
This algorithm combines the previous algorithms to perform one iteration of a Riccati :;:
equation. It is assumed that the feedbacks ( and therefore A, i€EN ) are known. First the right-
hand side of (3.2.8f) is computed. Then X (k) is extracted. The algorithm for iterating a Riccati -
equation is stated below.
Algorithm DISRIC .
Step 1: Compute V¥ using algorithm PSICOM. T and X will also be computed and provided upon -
return. )
Step2: Form V = K — ¥/ T ¥ using algorithm QDFORM taking advantage of the fact that \
X r is already available. -
Step3: FormZ = Q + AT V A using algorithm QDFORM. =
Step4: Compute K (k) from the right-hand side of (3.2.8f) using algorithm XTRACT, if
necessary.
- _ , ‘ o
Remarks : Notice that everyv step of algorithm DISRIC is a call to one of the previously-defined
algorithms. This indicates that the low-level routines are very modular. This is one of the :i'_
g -
u
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trademarks of a good structured-programming approach.
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3.2.3 Calculating the Feedbacks

2 :
o i
E) Having devised a method for iterating a Riccati equation. we turn our attention to calculating
" the feedbacks. Using (3.2.6) we can rewrite (3.2.4a) and (3.2.5a) as
-
r
Fi(k) = ¥(k)A(k). i€N. (3.2.10)
l»'

v

But. this form assumes knowledge of the other DM’s feedback matrix. Initially neither F, nor F,
is known. Hence either (3.2.4c) or (3.2.5¢c) must be used to compute one of these matrices based
upon some criterion. Each equation is undesirable because it contains an inverse. Thus, it is
. ultimately necessary to compute the inverse of one general square matrix. Furthermore, the

decoupling procedure used to produce (3.2.4c) and (3.2.5¢) clouds the presence of symmetric and

o ¥
o positive-definite matrices. Therefore. it is worthwhile to study these equations with the intention R
i of exposing any additional symmetry and/or positive definiteness. Towards this end take (3.2.4c)

and premultiply by =,(k). The result is

N £, Fi(K) = %K) 1= B0 4 (3.2.11a)

Substitute (3.2.6) and (3.2.7a) into (3.2.11a) to obtain

[ I- (r,(k))-lB{K,(k+1)Bz(rz(k))‘lngz(kH)B,] F (k) (3.2.11b)
4 = (T, () BIK (k+1)A — (T, () 1BTK (k+1)Bo(T(k)"1BIK (k+1)A . 4
- Premultiplying by I';(k) yields
= :
' [r,(k) - B{K,(k+1)Bz(l‘g(k))'lB{;K:(k+1)B1]F,(k) (3.2.11c) :
_..,_‘ = BIK (k+1)A = BIK (k+1)B,(T2(k)"1BIK (k+1)A

Define the positive-(semi)definite, svmmetric matrices

X(x) 2 B (rx) 1B ieN. (3.2.12)

Then in view of (3.2.9) and (3.2.12), equation (3.2.11c) reduces to

T(K) — W, (k) Xa(k) Ko(k+1) B, | Fi(k) = Wi(k) [T—Xa(k) Ko(k+1)|A . (3.2.13a)

.’l.'\"
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A similar derivation applied to (3.2.5¢) gives

I2(k) = Wo(k) Xa(k) K (k+1) B,| Fo(k) = W,o(k) [I-=Xi(k) K (x+1)[A4 . (3.2.13b)
Define

Y, () 2 k) ~ W) Xa(k) K,(k+1) B,, and (3.2.14a)
YAk) 2 (k) = Wak) Xa(k) K (k+1) B, . (3.2.14b)
Then. it is wise to choose Y;(k) such that it has smallest condition number over all other Y;s.
i € N. Specifically. suppose that DM i has Y;(k) with smallest condition number. Obviously we

~1
want 1o compute [Y;] first.

It is apparent that the matrices Xi(k).i € N are needed for the feedback calculation. Since
algorithm QDFORM is not suited to handle an inverse as the kernel of the quadratic form.

algorithm CHICOM is presented.

Algorithm CHICOM

~-T
Step 1: Compute Y = ‘Xrl BT using LINPACK subroutine STRSL. X is the Cholesky factor

of T obtained from algorithm PSICOM.

Step 2: Compute X = Y7 Y t1aking advantage of the fact that X is symmetric.

The following algorithm determines i and also computes Y;(k), for all i € N. Since the final result
of this algorithm is the computation of i, it is most advantageous to code this as an INTEGER
FUNCTION in FORTRAN which returns an integer equal to i. Note that for this algorithm the

dependence on i€ N cannot be suppressed.

Algorithm EYEHAT

Step 1: Compute Xi(k). i € N using algorithm CHICOM.

Step 2: Compute 7 (k) = W (k) X2(k) and T »(k) = W ,(k) X1(k) using algorithm MLTPLY.

4 1)

s |
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5 :
b Step 3: Compute V (k) = T (k) K ,(k+1) and V (k) = T 5(k) K ,(k+1) using algorithm MLTPLY. X
Step4: Compute Y (k) =T (k)—V(k)B; and Yy(k)=T,k)—=V,k)B, in one matrix °
‘? multiply DO-Loop. N
:EE Step 53 Factor Y (k) = Ly, Uy, and Y5(k) = Ly, Uy, where Uy, is an upper triangular matrix and :
- Ly, is the product of elementary lower triangular and permutation matrices, i € N. ]
These factors are obtained via the LINPACK subroutine SGECO. As a byproduct of this
__ subroutine call, an estimate of the conditions numbers of Y, «; i x(Y;), is returned.
- Step 6 : Compute i such that K= lueurx;x {r;}.
o Remarks : Since Y;(k) has no special structure and an estimate of the condition number is needed. .,
a the LINPACK subroutine SGECO is the obvious choice in step 5. Algorithm EYEHAT is :
":.‘ computationally intensive! This is the price paid for basing the choice of which matrix to invert on
R the lowest condition number criterion. Another guideline might be to invert the matrix with R
. smallest dimension. This would lessen the computational burden born by the algorithm, but might
lead to inaccurate results in unusually conditioned circumstances.
- It is clear that the first feedback must be found by finding an inverse of an arbitrary matrix. -
| Subsequently. the other feedback can be calculated via (3.2.10) using algorithm MLTPLY. The i
next algorithm computes the feedbacks for a 2-player game where the value of iis already :
. available from the criterion defined in algorithm EYEHAT. :
o Algorithm FEEDBK
o Step1: Compute T, = IY; ]_1 W using the LINPACK subroutine SGESI. where the L-U '
.. decomposition is obtained from algorithm EYEHAT. :ﬂ
y Step 2: Compute U; =1 — X (k) K (k+1), j = i in one matrix multiply Do-Loop. X
2 Step 3: Compute V, =T, U; using algorithm MLTPLY. ;
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Y
Step 4: Compute F;(k) = V; A using algorithm MLTPLY.
s i
Step5: FormA;=A — B ; F ; where j # i in one matrix multiply DO-Loop. x
]
q Step 6 : Form the other feedback F; = ¥; A ; where j %= i. -
! t
: b
Remarks : Algorithm FEEDBK is sufficient for computing the feedbacks only. However. the -
ultimate goal is to perform one iteration of each Riccati equation described by (3.2.8). For that e
reason, it is desirable to modify step 5 above so that other quantities are available. Specifically. o
! =
changeittoForm A, =A — B, F,and A, =A — B, F, in one matrix multiply DO-Loop.
3.2.4 Computation of Coupled Riccati Iterations -
From (3.2.8f), notice that if F; = 0, then just compute the Lyapunov equation o
ET K(k)E = AT(k) K(k+1)A (k) + Q; (3.2.15)
using algorithm QDFORM. Otherwise, if F;=0. j # i then compute
ET K(K)E = AT |K(k+1) — ¥/, ¥ A + Q, (3.2.16) E
using algorithm DISRIC. Regardless of the condition encountered. the following algorithm -

performs one iteration of coupled discrete-time Riccati equations.

Algorithm RICCAT

Step 1: Compute the feedbacks using algorithm FEEDBK.

Step 2: Iterate each Riccati equation using algorithm DISRIC.

*N

Remarks : Computation of Multirate Coupled Riccati Iterations Ca
If L €Z*, the Riccati equations to be iterated are the same. However. whenever L ¢ Z*. several .

simplifications are possible. First, N

N

Fyk) = ¥(k)A (3.2.17a) ]

Fyk) =0. (3.2.17b) .

Hence, the Riccati equations that have to be iterated reduce to -.
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e ETK(KE = AT |K(k+1)=-¥]/T, ¥, |A +0, (3.2.18a) ‘
a ET Ky K)E = AJ(K) Ky(k+1) Ax(k) + @, . (3.2.18b) ;7
@ Concluding Remarks
:‘! Section 3.2 describes the numerical solution of a coupled discrete-time Riccati equation ‘
problem motivated in Chapters 1 and 2. During the development of the solution method, several ‘
:_ algorithms are defined. Collectively, they serve to provide a rich numerical foundation upon which :
w more sophisticated algorithms can be built. Thus, the Riccati algorithms presented here are an ‘.
- example of using software to efficiently solve a frequently-formulated game problem. This is the
Y overall spirit behind CACSD endeavors. The results discussed in this subsection apply to the
. standard LQ regulator problem and the Nash equilibrium solution of an LQ state-feedback problem .
:fr.- (the coupled Riccati case). The issues associated with solving single and coupled discrete-time '
- ‘
, Riccati equations are delineated. As a consequence of this analysis, it is shown that the numerical ¥
‘ intensiveness is directly related 1o the criterion used for determining i via algorithm EYEHAT. 2
'5: Beyond that fact. the Riccati iteration procedure basically boils down to computing one or more !
- quadratic forms, most conveniently calculated by algorithm QDFORM. 2
-.‘_' e
) '.
A 3.3 Finite Horizon Problems — Existence Issues }
! In this section we investigate conditions for which the existence of solutions to finite-horizon '
~ problems is guaranteed. To begin with, Proposition 3.1 in Section 3.1 is based upon a singular value '::
. argument applied to £(k). However utilizing the definition (3.1.7), a stronger result can be stated. :
:‘: Define : B
o 0,k 4 v, ()8, (3.3.1a) i:
) Q.0 2 w008, . (3.3.1b)

! Then. El(k) =1- le(k) 021(]() and sg(k) =1- Qz](k) ng(k) . Hence.
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Proposition 3.2 : Existence of Feedbacks for Finite-Time Problems
K (k) exists if and only if A( Q,5(k) Q5,(k)) # 1 for all eigenvalues. K (k) exists if and only if

AC Q,(k) Qx(k)) = 1 for all eigenvalues.

! Proof : Apply the similarity transform that puts Q,,(k) ©5,(k) into Jordan form to £,(k) and

9

.

the first statement follows immediately. Apply the similarity transform that puts Q;;(k) @ 5(k)

into Jordan form to =,(k) and the second statement follows immediately.

3.4 Infinite Horizon Problems — Convergence Issues

Before concluding this chapter. an investigation of the existence of solutions to the infinite-
time LQ Nash game is conducted. To the author’s knowledge, virtually no work has produced
either necessary or sufficient conditions regarding existence of solutions even though the theory
governing the one-player optimal infinite-time LQ regulator problem is well-established {5.48].
Solutions to single-rate infinite-time LQ Nash games will be studied. We determine conditions

under which the existence of an infinite-time solution is guaranteed.

3.4.1 Preliminaries

Let X denote the space of all nxn symmetric matrices. Let Y C X denote the set of all
positive-semidefinite symmetric matrices in X . Clearly X is a linear vector space and Y is a closed
subset of X. Let X .} € X be any two arbitrary elements of the space X. Then
0

0 Y

denotes an arbitrary element of the product space X X X. Now, let |-l denote the standard -

(x.v) 4

induced matrix 2-norm. Then for any (X .} ) € X X X . define

X YN IX L +IY L, (3.4.1)

to be the norm on the product space. Obviously, the space X X X with the norm defined by (3.4.1)

-----------------------------



is a complete normed linear vector space. Hence, it is a Banach space.

Assumption 3.1: Throughout the remainder of this section, the matrix E is always assumed to

"Ag equal the identity.

We have two maps :

Ry : XXX = X and Ry : XXX — X.
) Specifically, from (2.1.11c). consider

>

-1
R, (X.v) 2 AT(X.Y) [x-1+B,R;18{ l AX.Y) + Q,

(X -1
- R, (x.v) A A1(x.v) IY'1+BZR2‘IB£ ] AXX.Y) + Q,

a where A (X .Y) _é_ A —B,F,(X.Y)and A)X.Y) g A — B ,F(X.Y). Define

-1
o(x) 4 X'1+BiRi"lBiTl .

i Then.,

R, (X.¥v) 4 Alix.v)yox)a(x.v) + 0, 42
) 3.4.2
- Ry (X.¥) A AI(X.Y)@(r)AxX.Y) + @,

Notice that A;(X.Y ) and A,(X.Y ) serve to couple the two equations of (3.4.2). Consider

W stacking the previous two equations. Then define :

R, (X.Y) 0
0 R, (X.Y)|"°

Given this setup we observe that

R(x.v)?4

E R:XxX - XxX.
The following result is the most important one of this chapter. It provides sufficient

conditions for existence of and convergence to the single-rate infinite-time LQ Nash equilibrium

i solution.

Theorem 3.1 : Existence and Convergence of Solutions to the Infinite-Time LQ Nash Game
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Given the system (2.1.1)-(2.1.2) with performance indices (2.1.3). then there exist constants.

0 < &§ < 1 and 0 < & < 1 which define the matrices 17, al —1Iland R, Al I such that for all

& &

R, and R, where o(R,)> —é. and o(R,) > ?1_- and all system matrices A Wwith
€ 2

1AlIKL E( €. &) < 1, the set of coupled difference equations :

K,(k)
K (k)

-1
AT(K) |(K,(k+1))-1 + B(R,(K)"1BT ] ALK + 0,
(3.4.3)

AT(k) l(Kz(k+l))‘1 + B,(R,(k)"1B7 ] AxK) + 0,

constitutes a contraction mapping and hence converges to a unique fixed point denoted (X 1-K2).

Proof : To begin with, let &§ — 0 and & — O independently. From Theorem 2.1 we know that in
the limit, 1 Fy1 =1 F,1= 0 which implies that A; # A and A, = A in the limit. Furthermore,
KR )~lt=& - 0 and KR,)"li=& — 0 by construction. Hence, the two coupled discrete-time

Riccati equations tend toward two decoupled discrete-time Lyapunov equations given by

K (k) T K(k+1)A + Q,

(3.4.4)

K (k) T Kyk+1)A + Q,
in the limitas € = Oand & — 0.
It is well known that this set of equations has a unique positive-definite symmetric fixed point

(K;.K;) if and only if 1A | < 1. Moreover, (3.4.4) is a contraction mapping. so that for any

positive-semidefinite symmetric initial guess (K ,(0), K,(0)). convergence to the fixed point is

assured as kK =+ —co.

Now we must argue that for a given problem. there exists an open neighborhood of
El‘l =17;,‘1 =0 characterized by the constants € and & such that for all A with

1A | < £( &.&) < 1. equation (3.4.3) constitutes a contraction mapping. The next subsection

will more than fulfill this requirement.
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3.4.2 Contraction Mapping Argument

e

If the mapping R is to be a contraction. then the following condition must be satisfied :

IRKX.Y) - R(Z.W)I £ al(X.Y) - (Z.W)} (3.4.5)

[

foral X.Y.Z.W € Yand 0 € & < 1. Straightforwardly, compute :

.-‘

IRX.Y) - R(Z.W)Il = IR, (X.Y) - R, (Z.W)h + IR, (X.Y) — R (Z. W)L,
Similarly,

IX.Y)=(Z. W)l = IX-ZL+I1Y-WL.

::'.: Therefore. the condition (3.4.5) is equivalent to
'i IR, (X.Y) — Ry (Z.W)h + IR, (X.Y) — R, (Z.W)},
. (3.4.6)
S allX-ZL+IY -WL
- .
. The purpose of the ensuing discussion is to completely characterize those cases for which (3.4.6)
i holds. The contraction mapping that we seek occurs on a closed subset of Y X Y . Hence it must be

shown that there exists a region A C Y X Y where (3.4.2) maps A into itself. Toward this end. the

following facts are established.

- Fact 3.1: Givenany X € Y ,theni ®(X)hL S1X L foralli€ {12}
Proof : Since X 2 0and B,R-1BT 20,
= 1 < 1 =
] 1o(X)), = < =X
o~ a(x-1+B.R-1BT) a(x-1)

where g( - ) denotes the smallest singular value of ( - ).

To simplify the derivation. introduce the following definitions :

p(x. ¥) Buax. v =12 (3.4.7)

P, ]
10,
‘ 5(p) & Q.k i=1.2 (3.4.8)
1—-(p(X.Y))2
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By Sixexinixyn<s). (3.4.9)
Equation (3.4.9) describes a closed ball of radius 8.

Then we have :

Claim 3.1 : Existence of a Region where the Riccati maps are Into

10.
Suppose p(X.Y) €7, <1 and §; 2 —----f—"?—)-i for i=1,2. Given any (X.Y) € Y XY such
1-(p;

that IX b <8,and 1Y 1, €3, . then forallsuch X, ¥ itfollowsthat()?.);)iR(X.Y)hasthe

property that IX b <3, and 1Y I, €3, Hence.R(X.Y)mapsAgB;l X By, C Y XY into

itself.

Proof : Notice that from (3.4.2):

IXEL = 1AT(X. YY)D, (X)A(X.Y) + O b
SHIAX.Y)IE10,(X)L + 10, b

SIAX. VIR 1X b +10Q,h
where Fact 3.1 has been utilized in the last step.

Thus.

IXbL € (p(X. YN 1X L +10,h

512
< PP, 40, = UL 3

s + 101k = B,
l—(l-'Tl)
Similarly,
1Y, = 1AD(X.Y)®(Y)ANX.Y) + Qsh
SHALX. Y)Y Il +1Q,0,
5221050k
= PGk h o = T,

Therefore. I X I, €3, .17 I, €3,.and (X.¥) € A2 By x B3, .

xva
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Now. we proceed to derive conditions such that (3.4.6) holds in the region A . In particular.

focus on the map R; (X,Y ). A parallel argument can be developed for the map R, (X.Y).
Givenany (X.Y)and(Z. W) € X x X,

R, (X.Y)—-R,(Z2.W) (3.4.10)
= AT(X.Y)O(X)AX.Y) — AT(Z . W)P(Z)A(Z. W) o
Application of the matrix identity
WX -vz = 3 |w-nx+n+ wan -2 | (3.4.11)

to (3.4.10) yields :

Rl (X.Y) - Rl (Z.W)

1

2

[A{(x.y)-A‘f;(z.w) ] [¢,(X)A,(X.Y)+<I>I(Z)A1(Z.W) |

+ [A{(x.y)+A{(z.W) | |<»,(X)A,(x.Y)—¢,(z)A,(z.w) ]]

%- (Bz(Fz(Z,W)—Fz(X.Y)) (’ - '¢,(X)A1(X.Y)+¢,(Z)A,(Z.W)]

+ IA{<x.Y)+A§(z.W)]» 'd)l(X)Al(X.Y)—(D,(Z)Al(Z.W) || i

But, from an additional use of (3.4.11)

q’](X)Al(X.Y)—(b[(Z)Al(Z.W)

1.
2

[¢1(X)—¢,(Z) ] |A,(X.Y)+A,(z.w)|

Therefore, we conclude that :
R, (X.Y)—- R, (Z, W)

B (FAZ . W)=FxX.Y)) l’
, -[(D,(X)A,(X.Y)+d>,(Z)A,(Z,W)

e e T “'...n- e WAL N

et
’.‘_-‘.w. RO

X A

IR RS
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lA’{(X.Y)-kA{(Z.W)].
)

+

[ol(x)—o,(Z) ] [AI(X.Y)+A,(Z.W) ll

\ [A{(X.Y)+A{(Z.W)] |
y}

[¢,(x)+¢,(2) ] le(Fz(Z.W)—-Fz(X.Y)) | l .,

Applying the matrix 2-norm and then the triangle inequality on the last equation gives

IR, (X.Y) — R, (Z. W)}
< 1O(X)A(X.Y)+0,(ZYA(Z. W) B, (FAZ. W)= FoAX. YD)l +

2
2 (3.4.12a)
lAl(X.Y)+4A1(Z.W)'2 A,(X) =, (Z)L, + ( :
lAl(X.Y):Al(Z.W)lz ADX)+ O(Z)G 1B (FAZ . W)—FAX.Y))h

The corresponding inequality for the map R, (X.Y)is

le (X.Y) - Rz (Z.W)ilg
DAY )ANX.Y)+ ®(W)AJ(Z . W)Y,

< 3 IBI(FI(Z.W)'—FI(X'Y))“Z-"
i 2 (3.4.12b)
14X )+ ALZ W yayr) - axw)t, +
] . a5 ,W [
Az(x Y)‘:A‘_(Z )"ﬂd)z(Y)'l'd)z(w)uz"BI(FI(Z'W)_FI(X'Y))I‘:"

In order to produce the conditions for which (3.4.6) holds in the region A i By, X Bg, .

take
s 1 .
R, 2 E.1.e,>o,,e{1.2} (3.4.13)
and show that for any and all positive-semidefinite symmetric R, with a(R) 2 — (1—8-) >0,
€10
FR(X.Y) = R(Z. W), € a(B) [IX=Z1 + 1Y =W, (3.4.14)

where (X.Y).(Z. W) € A, 0<a(3)<1.andE(3) is yet to be determined. Then, the

contraction mapping argument will become obvious.

Therefore. some useful facts are stated. The proofs may be found in Appendix B. The

following result introduces the important variables v, and v; .
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.................
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5 :
Fact 3.2 : Given any X.Y € By and R, __é_ 1 1. €>0, then whenever € < 1 holds for o
¥ alli€ {12}, 10(X)—d ()L € — 1 IX ~Y Lwherer, 281812 <1 . 3
. (1 "Vi)z :
\3 ‘3
N
Proof : See Appendix B
D N
A Al 5
:' Fact 3.3: Given any (X.Y)€A_Bg XBp, and R;_ - 1. €>0. then whenever by
i
" - 1 . . N
5 0<e <% (T8 holds for all i € {1.2}. it follows that
> S A VNP .
X
1+v3 A, _ _ o
- PX.Y) = 1AX. V)L € &< Tz =&/ . K21
1+ 7 _
i PAX.Y) = 1ALX. V)L € £ - - A, w2
-

whereﬁéeigilBiI}andgilA by .

g 1
'

. Proof : See Appendix B ;
- 0 -
n Consider (3.4.12a) and (3.4.12b) where (X.Y ). (Z.W) € A. Consequently, (3.4.12a) coupled o
&, -
B with Facts 3.1, 3.2, and 3.3 yields :
*, -
A 1Ry (X.Y) — R, (Z. W)
X L 1AX . Y)L+IZ L 1A (Z. W)
= < 2 14 22 boiA )2-uBz(F;,(z,W)—Fz(x.Y))nz+
— 2 o
2 o
__(____g"‘)z-ux—zuz+ i
;:: 4( I - D—l) -'.
- 2 .
_i_"_‘. IX b +0Z b [ IB(FAZ. W)=F)X.Y))l .
. ’
\‘
N - 2 fl
N g'(l .
S 8,/ 1B (FAZ . W)=FX.Y))I, + = X =71, + R
o N 2
i €5, VB2(FAZ. W)= Fo(X. ¥, ‘
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.
tr (3.4.15) W
S 2£88,i) IB,(F(Z.W)—F) X, Y))L + — AX -2 h .
1 -
N
and (3.4.12b) becomes >
-
IR, (X.Y) — R, (Z. W)L -
— 2 .
K (3.4.16)
€ 268, 1B, (F(Z.W)=F(X.Y))L + 1§ :’/‘ Yy - Wi, .,
- V2
=
Equations (3.4.15)-(3.4.16) are nearing the form of (3.4.14). The next result allows the
contraction mapping argument to be completed. The ‘details of the proof may be found in
Appendix B. -
Theorem 3.2 : Lipschitz Constants for the Feedbacks -
Given (X.Y).(Z.W) € A, then
"B,(F,(Z.W)—F,(X.Y))llz <a,,lX—ZH2+a,2IY-WH2 s
“Bz(Fz(Z.W)_Fz(X.Y))uz $a21lX—Z||2+0122|Y—WII-_, -
_ _ _ o b
_Erkig _ €k _énnkk _Eémkig
wherea“ s —_— 0 F —— , U T — .aﬂdazz—
1 —8_2 -51 2 !
Proof : See Appendix B )
u) N
Making use of Theorem 3.2, (3.4.15) may be rewritten as :
||R| (X.Y)—Rl (Z.W)": :\'
= — . . 43 ,
< 2£3, ,[al,||X~/II3+a12H}—Wllzl+ Ll ax -z )
-V o
- - - é '?1- - . w® = . o
= 2§8] 1a”+ — ||X—le-,+2§31K,alzll) —W": R
1 —v - -
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8,

2

2 —
= 252171(:7,)2?2+£L')22 AX —-Zh + 28 nhin(gPiolYy =wh
1-7

1
(1-5; )

§2 ( ,-(—l)z

25, +

]~IX -Zh (3.4.17a)

+ 28 [_? ()P 1Yy Wi .
2

Likewise. (3.4.16) reduces to
|R2 (X.Y) - Rz (Z.W)lz

€ 2¢ nn(GPIX -2 (3.4.17v)

1

1
(1-7;
Finally. adding (3.4.17a) and (3.4.17b) yields the desired result.

+ E(i)P (25K + QY =W, .

)2

IR, (X.Y) = Ry (Z.W)h + IR, (X.¥) — R, (Z.W)L

=\2 3
S 125 (/PRG + _("L +2 |2 |nma(GR | I1X -2 +
(1—-7; )2 8,
i3 )2 s
£ 2-72,?1(@2\»_&;)_ +2 |2 am(gRe; | 1Y =W
(1-55)2 3,
A 2
€ & max{o o) (WX =Z 1 + 1Y =W |. (3.4.18)

Clearly. (3.4.18) and (3.4.6) are of the same form with

a = & max {a;. a,} (3.4.19)

Moreover. ¢ é FA 1, can always be chosen sufficiently small enough so that 0 € @ < 1. Hence, the

existence of a non-trivial region where coupled discrete-time Riccati equations behave as a

contraction mapping is established.

It is apparent that there are 3 parameters which govern the region where a contraction mapping
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occurs. These are €, €, ., and £. Before concluding this section, a procedure is developed for .
determining those ranges of values for which a contraction mapping is guaranteed. Essentially. .
these quantities must be chosen small enough so that all the assumptions of the derivation remain
—_ ~
valid. To begin with, £ is required to be smaller than some £ as yet to be determined. From ~
(3.4.7) and Claim 3.1 : o
pX.Y) 2 1ax.v)L €5, < 1. (3.4.20) ‘
But in view of Fact 3.3 and without loss of generality : _,
d A .
: Pi - €x < 1 (3.4.21) --j
' provided £ < min ; -_17 and 0 < ¢ <€ (5, A —1—---f .i=1,2. However, there is 2 more .
K1 K; T 8,1B, ¥ R
o
restrictive condition imposed on £ by (3.4.19). That is
. 1 1
¢ < min . . (3.4.22)
\/a, Y/ a: .
In fact. 1t is easily shown that min L -1— £ min ?1_- — 1 with equality if and only if ' f
\/al '\[az Kl K2 ¢
=€, = Zz4 1 1 . - r
€, = €; = 0. Therefore. define § _ min . and pick £ such that § < £ . .
al oz;. .

Now, a moment’s reflection reveals that. in general. the 3 parameters €, . €, , and £ cannot be
explicitly solved for. To see this, consider £ which must be chosen smaller than—f.. Well.E is a
function of a; and a; which, in turn, are functions of 8, and §, through (3.4.18). But.§; is a
z function of p, by (3.4.8) and (3.4.21) indicates that p, is a function of £ . Hence £ is a nonlinear .

function of itself. Similar arguments can be stated for €, and €, .

[ 2t S
s

Therefore. the task at hand is to enumerate the cases where €, , €, and £ vield a contraction

v
.

mapping. The following algorithm accomplishes this task.

Contraction Mapping Surface Generator Algorithm

Step 1: For b, . b5 € (0. 1} but fixed do the following : ~
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Step 2: Compute K; and k; as defined in Fact 3.3. v
! o1 1 :
-, Step 3: Choose £ = min{—, — H
1 K2 <
e
.:;' Step 4: For £ € (0, £). compute 3, (£) and 3, (£) . L'
Step 5: Compute a; and a; as defined in (3.4.18) . .
o) R 1 - o _ . o
Step 6: If £ < min , then pick € and & to give ¥; and ¥; as fixed in Step 1. N,
v @ A =3
"J » g
“
ol Save the triple (&]. &. £) as a valid combination. ~
o Step 7 ¢ If not done then go to Step 1 else stop.
" 4
ﬁ If this algorithm is implemented on a computer, then a list of possible maximal values can be .
g compiled. Actually. the roles of 7] and ¥; are completely interchangeable insofar as the norms of -
A ’
* Q, and Q, are equal. Table 3.1 summarizes various maximal ranges of the 3 parameters. f
_i For example, let 1B, 4 = #B,l, = 10,1, = 1Q,l, = 1. Given any ﬁl and §2 with ‘,
7 2(}51) -Q'_(R?z) > 04;00 =2.0833 and any A with £ =0(4) < 0.1, then the corresponding ‘::
coupled discrete-time Riccati equation iterations will be a contraction mapping for all initial .
" hE
conditions ( X,. Y',) where 7(X,) . @(Y,) £ 1.04. Note that if dynamic programming were used "
\.
- to solve these equations. then the initial condition would be ( X,.Y ) =(Q,.Q3) and hence the ::
- [
- requirement that the initial conditions lie in a ball of radius 1.04 times the magnitude of Q; is .
. automatically satisfied. Furthermore. the contraction mapping constant defined by (3.4.19) is
& < (0.1)2-28.0 =0.28 . Obviously. the requirement that (A ) < 0.1 is a conservative one. ::'
.’.' .
:: This is due, in part, to the large discretization increment of Table 3.1.
: N
.\a )
:\' o~
- 3.4.3 A Numerical Example :
““ e
. In this subsection. we construct a numerical example that illustrates the contraction mapping -
. derived in the last subsection. Consider the system (2.1.1)-(2.1.2) with performance indices i
- -
. (213). letC;=C>=F =5, =5,=1 Then choose

DN

-
~
'w
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Table 3.1. Normalized‘ Maximal Ranges of Values for Which the Coupled Riccatis Are Contractions
vy ] £ 8, 8, € € ay a; - ‘
0.10 0.10 0.70 2.53¢+00 2.53¢+00 0.0395 0.0395 1.83¢+00 1.83¢+00 Y
0.10 0.20 0.60 2.17¢+00 1.83¢+00 0.0460 0.1093 2.24¢+00 2.67¢+00 E
0.10 0.30 0.50 1.82¢+00 1.47¢+00 0.0551 0.2035 2.71e+00 3.81e+00 .
0.10 0.40 0.40 1.52¢+00 1.27¢+00 0.0660 0.3160 3.24¢+00 5.412+00 -
0.10 0.50 0.30 1.29¢+00 1.14¢+00 0.0776 0.4397 3.84¢+00 7.81¢+00 :j.
0.10 0.60 0.20 1.13¢+00 1.06¢+00 0.0884 0.5671 4.52¢+00 1.18¢+01 4
0.10 0.70 0.20 1.15¢+00 1.06¢+00 0.0866 0.6608 5.24¢+00 1.97¢+01 k.
0.10 0.80 0.10 1.04¢+00 1.01¢+00 0.0962 0.7886 6.08¢+00 4.10e+01 AN
020 0.20 0.50 1.64¢+00 1.64¢+00 0.1219 0.1219 3.38¢+00 3.38¢+00 —
0.20 0.30 0.40 1.44¢+00 1.35¢+00 0.1388 0.2218 4.22e+00 4.99¢+00
0.20 0.40 0.30 1.26¢+00 1.18¢+00 0.1583 0.3388 5.21e+00 7.31e+00 A
1 0.20 0.50 0.30 1.33¢+00 1.19¢+00 0.1500 0.4200 6.35¢+00 1.09¢+01 P
- 0.20 0.60 0.20 1.15¢+00 1.08¢+00 0.1736 0.5554 7.73¢+00 1.68¢+01 B
] 0.20 0.70 0.10 1.04¢+00 1.02¢+00 0.1922 0.6864 9.34¢+00 2.86¢+01 3
0.20 0.50 0.10 1.05¢+00 1.02¢+00 0.1908 0.7837 1.12e+01 6.02¢+01 ‘
0.30 0.30 0.30 1.23¢+00 1.23¢+00 0.2449 0.2449 6.44¢+00 6.44¢+00
0.30 0.40 0.30 1.29¢+00 1.24¢+00 0.2317 0.3214 8.21e+00 9.77¢+00 K
0.30 0.50 0.20 1.14¢+00 1.10¢+00 0.2626 0.4532 1.04¢+01 1.50¢+01 :-’,: -
0.30 0.60 0.20 1.18e+00 1.11e+00 0.2543 0.5397 1.31¢+01 2.39¢+01 VO
0.30 0.70 0.10 1.05¢+00 1.03¢+00 0.2861 0.6810 1.64¢+01 4.15¢+01
0.30 0.80 0.10 1.06¢+00 1.03e+00 0.2832 0.7766 2.04¢+01 8.90e+01 i i
0.40 0.40 0.20 1.13e+00 1.13¢+00 0.3556 0.3556 1.29¢+01 1.29¢+01 =
0.40 0.50 0.20 1.16e+00 1.14e+00 0.3438 0.4388 1.69¢+01 2.05¢+01 -
0.40 0.60 0.10 1.05¢+00 1.04¢+00 0.3823 0.5796 2.22¢+01 3.37¢+01 .
040 | 070 | 0.10 | 1.06e+00 1.04¢+00 0.3777 0.6735 2.91e+01 6.07¢+01 O
0.50 0.50 0.10 1.04¢+00 1.04¢+00 0.4800 0.4800 2.80e+01 2.80¢+01 e
0.50 0.60 0.10 1.06¢+00 1.05¢+00 0.4739 0.5724 3.83¢+01 4.81e+01
0.50 0.70 0.10 1.07¢+00 1.06€+00 0.4658 0.6627 5.27¢+01 8.99¢+01 - K
0.60 | 0.60 0.10 1.07¢+00 1.07e+00 0.5625 0.5625 6.91¢+01 6.91¢+01 WL
.
-, :
SR
* AssumesiQ, b = 1Q,hb =1 =1B,h = 18,1 DN
ool
0.4755 0.0459  —1.13¢—4
A = 0.0459 0.345 —7.175e¢-5] .
—1.13e =4 —-7.175¢—5 0.25 e
AT
-
9.87e2 1.37
B, = 1.23 and B, = |—10e-3] . -
-1.01e-3 1.0e =5 : K
-
The eigenvalues of A are 0.49, 0.33, and 0.25. Next. let R; = R, =11.0. From Table 3.1 it is “
L {
observed that this case falls within the region of contraction mapping. To illustrate the contraction B
mapping behavior, this problem is run for 14 iterations us.ng the L-A-S operators described in -
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Chapter 4. A full listing of this run may be found in Appendix C. The important results are

summarized in Table 3.2. The values of K, and X, at the end of the iterations are

1.00233 1.76897e —2 —3.43357¢ -5
K, = | 1.76897e -2 1.13453 —5.14615e -5
—3.43357¢ =5 —5.14615¢ -5  1.06667

1.00233 1.76895¢ —2 —3.43351e —5
K, = | 1.76895¢ -2 1.13453  —5.14618e —5
—3.43351e —5 —5.14618¢ -5 1.06667

Observe that the iterations converge rapidly. After 14 iterations. X ,(k) and K (k) are
changing by no more than 1.0e-13. Even more remarkable is the fact that a is almost constant
throughout the iterations. One final thing to note is that the predicted contraction mapping
constant is (0.5)% - 3.38 = 0.845, while the observed constant is almost an order of magnitude less

than that. In general, this large difference occurs because the inequalities used in proving the

contiraction mapping are not all tight simultaneously.

Since the contraction mapping argument guarantees convergence to a unique fixed point and

the values of K; and X, are accurate to 1.0e-13. then we conclude that these values for K, and X,

Table 3.2. Results of Contraction Mapping Iterations

Iteration # AK, AK, a
0 1.00000e+00 | 1.00000e-00 | 1.20666e-01
1 1.20666e-01 | 1.20666e-01 11.18329e-01
2 1.42782e-02 | 1.42782e-02 |1.18053e-01
3 1.68558e-03 | 1.68558e-03 [1.18020e-01
4 1.98932e-04 | 1.98933e-04 |1.18016e-01
5 2.34772e-05 | 2.34773e-05 |1.18016e-01
6 2.77068e-06 | 2.77069e-06 {1.18016e-01
7 3.26983e-07 | 3.26986e-07 {1.18016e-01
8 3.85891e-08 | 3.85894e-08 |1.18016e-01
9 4.55412e-09 | 4.55416e-09 {1.18016e-01
10 5.37457e~-10 | 5.37463e-10 |1.18016e-01
11 6.34284e-11 | 6.34291e-11 |1.18016e-01
12 7.48554e-12 | 7.48565e-12 [1.18014e-01
13 8.83404e-13 | 8.83404e-13 [1.18020e-01
14 1.04246e-13 | 1.04273e-13 |1.18080e-01

| - LA
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satisfy the Algebraic Riccati Equations (ARE) to 13 significant digits. Thus, for some cases. the

coupled Riccati iteration algorithm provides a method for obtaining the solution to two coupled

discrete-time AREs. This solution may also be the solution to the infinite-horizon LQ Nash game

problem.
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" CHAPTER 4

L-A-S OPERATORS FOR SINGLE AND COUPLED DISCRETE-TIME RICCATI ITERATIONS

L
S -

N This chapter describes the L-A-S [32-36] operators created for the task of iterating single and
:g coupled discrete-time Riccati equations. There are a total of six new operators to the L-A-S
3 package. As presented in this chapter, they are SYST, LQ, DRE. GAME, LQNG, and MLTR. Single
" Riccati iterations are addressed first. Then the coupled (game) case is described. Operators SYST
i and DRE fall into the first category, while operators GAME, LQNG, and MLTR fall into the second
. category. L-A-S operator LQ is used for both single and coupled Riccati iterations.

o First, a brief description of the operator is given. Next, the corresponding excerpt from the
N L-A-S Help-File is presented. Then a typical example of the usage of the operator is demonstrated.
\ 4.1 L—A—S Operator SYST

The L-A-S operator named SYST is used to define a linear shift-invariant descriptor system. -

.

Often, it is the first operator issued to the L-A-S interpreter when a linear quadratic regulator

:.::: problem is being studied.
g L —A —S Help—File Description

SYST - Descriptor SYSTem description
Syntax : A.B,C [.D[.E]] (SYST) =
Input Data : A[N.N] . B[N,P] , C[M.N] .

D [M.P] . E[N.N] (these last two arrays optional)
Options : EL.T

Description : ldentifies the following discrete-time descriptor system

b E x(k+1) = A x(k) + B u(k)
y(k) = C x(kx) + D u(k)
2 Note . If E is omitted. it is assumed to be the identity matrix.

If D is omitted, it is assumed to be a zero matrix.

.
LA

.......
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Example of Usage X
i 4
An example of the usage of operator SYST is given below. The following segment is an L-A-S O
t
program that identifies a discrete-time descriptor system. ) .
N
: Descriptor System Identification 3
(inp)=a,b.c.d.e -~ B
a,b.c.d.e(out)= NN
a.b.c.d.e(syst)= R
Notice that the program is completely generic in the sense that the dimensions of the matrices a, b, i: t
c. d. and e are not specified. This is an imporiant feature of the L-A-S language. The same program
can be run over and over again using different matrices (of different order) each time. If this :
program is executed for a simple second-order system, the following output would result. .4 .
!.J .
-
> Descriptor System Identification oot
>(inp)=a.b.c.d.e ' .
*** Matrix a *** =
Enter the dimensions of this matrix. >2.2 i R
Matrix:a  Enter C.D.E.LN.,P.R.Z or H for Help. >R o
ROW 1 >12 SO
ROW 2 >3.4 BN
**% Matrix b *** ! .
Enter the dimensions of this matrix. >2.1 &N
Matrix:b  Enter CD.E.LN.P.R,Z or H for Help. >C KR p
COL1>10 AN
% Matrix ¢ *** . -
Enter the dimensions of this matrix. >1.2 .o
Matrix : ¢ Enter C.D.ELN.P.R.Z or H for Help. >R Ll
ROW 1 >0.1 e
% Matrix d *** o
Enter the dimensions of this matrix. >1.1 N
I‘\ *
» .
Enter the scalar:d >0 "
4
*»* Matrix e *** ! R
Enter the dimensions of this matrix. >2.2
N
Matrix :e  Enter C.D.ELN.P.R.Z or H for Help. >1 !

.
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>a,b.c.d.e(out)=
a
1.000 2.000
3.000 4.000
b

1.000
0.

0. 1.000

e

1.000 0.

0. 1.000

>a,b.c.d.e(syst)=
The matrices d and e are optional as indicated in the Help-File description. However, if matrix e is
specified then matrix d must also be provided to serve as a placeholder. That is, a statement such

as

a.b.c..e(syst)=

is not permitted.

4.2 L—A~S Operator LQ

The L-A-S operator named LQ is used to define the weighting matrices in a discrete-time
system or game problem. Often, it is the second operator issued to the L-A-S interpreter when a

linear quadratic regulator or Nash game problem is being studied.

L —A —S Help —File Description

[.LQ - Linear Quadratic weighting matrices for system or game theoretic probiems
Svntax : Q1.R1 [, Q2.R2] (LQ) =
Input Data : Q1 [N.N] . R1[P1.P1] . Q2(N.N] . R2[P2.P2]
(These last two arrays only required for game)
Options ELT
Description : Identifies the weighting matrices in a linear-quadratic discrete-time
system or game problem

AR

Py
-
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Example of Usage

An example of the usage of operator LQ is given below. Consider the discrete-time system
defined in Section 4.1. The following segment is an L-A-S program that identifies the same system
and then defines two weighting matrices in preparation for the study of a linear quadratic regulator

problem. Rather than inputting the matrices from the keyboard, the RDF (Read Data File)

operator is used.

) : Linear Quadratic Regulator Problem

: System and Weighting Matrix Identification -

. :1
. : System Definition 2.
. (rdf)=a.b.c

a.b.clout)=

. a,b.c(syst)=

: Weighting Matrices Definition .
8 (rdf)=q.r -
. q.r(out)= -
q.r(lq)=

If this program is run using the second-order system of Section 4.1. the following output results.

|

> Linear Quadratic Regulator Problem

A

[

> System and Weighting Matrix Identification

. .
D)
T

>,
> System Definition

> (rdf )=a.b.c

Enter name of the Data File (DF) for matrixa >syst e
\ Opening file named : syst.DF N
; Reading array named : a -
| Reading array named : b o

Reading array named : ¢ -

>a.b.c(out)=

a .
1.000 2.000 o
3.000 4.000

b LY
1()()0 “h,
0.

e s et e T T P S
DAL SRR et RN RS




!
i o :
4 *fi
J C : 4
0. 1.000
! >a,b.c(syst)= Q:
X > e
l‘.: ‘ “I':
* >: Weighting Matrices Definition Pl
@ > (rdf)=q.r t’ f
Ly
Enter name of the Data File (DF) for matrixq >Iq £
- Opening file named : 1q.DF .s
() Reading array named : q -
Reading array named : r
~ ::‘u
‘j >q.r(out)= i
=
-, q _;
i 1.000 0. -
= r 3
DS R
A 1.000 t 1y
b
i >q.r(lq)= '
"o 4.3 L—A—S Operator DRE i‘
“ oy
The L-A-S operator named DRE is used to iterate a single discrete-time Riccati equation.

8

L~A—S Help—File Description T

Y

-

A DRE - Discrete-time Riccati Equation iteration i
Syntax : K (DRE) = KNEW ]
Input Data : K [N.N] .

s Output Data : KNEW [N,N] -
- Options :E.L.T ~
Description : Assuming that operators SYST and LQ have been issued.
W this operator performs one iteration of the discrete-time 5
é Riccati equation defined by =
ET KNEWE = AT(K - V¥ T¥)A +Q ‘:'?'

- wherel = R + B’ K B.and ¥ = (I')"1B” K.

A, B.and E are identified by the SYST operator. Q and R are K!

identified by the LQ operator.




|

70

&5

Example of Usage

An example of the usage of operator DRE is given below. Consider the discrete-time system o
defined in Section 4.1. The following segment is an L-A-S program that identifies the same system %A
24
and then defines two weighting matrices in preparation for the study of a linear quadratic regulator
problem. Rather than inputting the matrices from the keyboard. the RDF (Read Data File) fj—f
operator is used. Since the matrix £ is equal to the identity for this problem. the terminal
-
o
constraint (2.1.14) reduces to X = Q which is performed in step 13 below. -
1 :Linear Quadratic Regulator Problem
2 -
3 :System and Weighting Matrix Identification )
4 ; — System Definition -— .
5 (rdf)=a,b.c .
6 a.,b.c(out)=
7 a.b.c(syst)=
8 . --- Weighting Matrices Definition ——- -
9 (rdf)=q.r -
10 g.r(out)=
11 q.r(lq)= =
12 :Initialization i
13 gq(mcp)=k
14 1(dsc)=one
15 ; :;
16 "Enter the total number of iterations to perform. (A scalar)" -
17 (inp)=num
18 ; o
19 ; Main Loop kY
20 Z:k(out)=
21 k(dre)=knew -
22 knew(mcp)=k ‘.
23 num.one(-)=num
24 num(if)=Z ~
25 . _\
26 ; Done. Print out final k. ‘-
27 k(out)= .
28 (stop)= .
-
If this program is run for five iterations using the second-order system of Section 4.1. the following
output results.
> Linear Quadratic Regulator Problem .
> )
> System and Weighting Matrix Identification "
[ ]
~

) . L. . e et
P P T L et » LIRS S - . ‘..' AP . . . . <™\ RN
G, (%, LS R AR N C R AR S CA RS S R OOy e . PRI, LIV .
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>; — System Definition —
> (rdf)=a.b.c

Enter name of the Data File (DF) for matrixa >syst
Opening file named : syst.DF
Reading array named : a
Reading array named : b
Reading array named : ¢
>a,b.c(out)=
a
1.000 2.000
3.000 4.000
b

1.000
0.

c
0. 1.000

>a.b.c(syst)=

> — Weighting Matrices Definition ——

>(rdf)=q.r
Enter name of the Data File (DF) for matrixq >Iq
Opening file named : 1q.DF
Reading array named : q

Reading array named : r

>q.r(out)=

q
1.000 0.

0. 2.000

r
1.000

>q.r(lq)=

> :Initialization
>q(mep)=k

> 1(dsc)=one

>,

'n'~..'\ "-‘.'b-.‘-;-‘\.r\.\* h)

RN,

o
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>"Enter the total number of iterations to perform. (A scalar)”
Enter the total number of iterations to perform. (A scalar)

> (inp)=num

A A

*** Matrix num ***

Enter the dimensions of this matrix. >1,1 &
Enter the scalar : num >35 -
>: Main Loop - ;
>Z:k(out)= S
k =
1.000 0. C
0. 2.000 p!
> k(dre)=knew i" .

>knew(mcp)=k

g o
2

> num.one(-)=num

p

>num(if )=Z F {
o c

>Z:k(out)= !

b

k A
19.500 25.000 .
25.000 36.000 g
> k(dre)=knew o
> knew(mcp)=k .
>num.one(-)=num
>num(if )=Z ;-: 5
>7Z:k(out)= o -
"

k P p‘
58.878 80.244 )
80.244 113.512 2 B

> k(dre)=knew

> knew(mcp)=k

---------

R . Jt T ) \ LN S
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:
B ;
‘ >num.one(-)=num o4
! > num(if)=Z S
L] -
>Z:k(out)= b
Gl w
3 k £
’ 63.804 87.075
- 87.075 122.984 8
I... (::"
& > k(dre)=knew e
t:’_ >knew(mcp)=k )
-
>num,.one(-)=num
“‘ -
'\d . S
2 > num(if )=Z oy
,,‘ >Z:k(out)= ~
k -
63.918 87.234 o
3 87.234 123.208 i
- N
>k(dre)=knew
|
g >knew(mcp)=k -
- >num.one(-)=num ‘::
';\ e
\ ..
- >num(if )=Z e
g >: _f
-~ <
>: Done. Print out final k. oy
IR .'.'-
T >k(out)= "4
o k i3
< 63.922 87.240 s
) 87.240 123.216 ::"
S
) -
n > (stop)= "
[~
Notice the speed with which the Riccati iterations converge. The value of k is settled to three ;',:
..‘ [y
. N
R significant digits in only five iterations. N
¢
i "

LW §

[N
£ 0
LI

.

W
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4.4 L—A—S Operator GAME

The L-A-S operator named GAME is used to define a linear shift-invariant descriptor game.
Often, it is the first operator issued to the L-A-S interpreter when a linear quadratic descriptor

Nash game problem is being studied.

L —A —S Help —File Description

GAME - 2-player GAME description
Syntax : A.B1,B2,C1,C2 [(E] (GAME) =
Input Data : A [N.N] , B1[N,P1] , B2[N.P2] .
Ci[M1N] . C2[M2N] . E [N.N]
Matrix E is optional.
Options :ELT
Description : Identifies the following discrete-time game :

E x(k+1) = A x(k) + B u,(k) + B,us(k)

yi(k) = C,x(k)

yz(k) = sz(k)

Note: If E is omitted. it is assumed to be the identity matrix.

Example of Usage

An example of the usage of operator GAME is given below. The following L-A-S program
segment identifies a discrete-time descriptor game.

; Descriptor Game Identification
(rdf)=a.bl.b2.c1.c2
a.bl.b2.c1.c2(out)=
a.b1,b2.c1.c2(game)=

If this program is executed for a third-order game problem. the following output would result.

> : Descriptor Game Identification
>(rdf)=a.b1.b2.c1.c2

Enter name of the Data File (DF) for matrixa >ab
Opening file named : ab.DF

Reading array named : a

Reading array named : bl

Reading array named : b2
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- Enter name of the Data File (DF) for matrix c1 >cc Byt
Opening file named : cc.DF =
! Reading array named : c1 +3
v Reading array named : ¢c2 ,
[ %
. >a.bl.b2.c1.c2(out)= g
v §
; A
a
” 0.435 -1.401 -0.896 X
~ -0.172 -0.569 1.391 S
™ -1.655 0.008 0.134 N
. Y
- bl <
D 1.000 2.000 i
3.000 4.000 ™4
. 5.000 6.000 o
b2 .
~ 1.000 v
1.000 )
o 0. o
::'_ cl ‘ :
r. 1.000 0. oO. -
0. 1.000 0. N
i 0. 0. 1.000
_ c2 ;.'
1.000 0. 0.
R 0. 1.000 0.
0. 0. 1.000
. >a.bl,b2.cl.c2(game)= K
= 4.5 L—A—S Operator LQNG K
.. 13
. The L-A-S operator named LQNG is used to iterate two coupled discrete-time Riccati -
N equations.
o L —A —S Help—File Description .
~ LQNG - Linear Quadratic Nash Game (Coupled Riccati lterations) o
w Svntax : K1.K2 (LQNG) = KIN.K2N [.F1[. F2]] N
- Input Data : K1[N.N] . K2 [N.N] .
Output Data : KIN[N.N] . K2N[N.N] . F1[P1.N] . F2 [P2.N] :

Arrays F1 and F2 are optional.

Options cELT

Description @ Assuming that operators GAME and 1.Q have been issued.
this operator performs one iteration of two coupled
discrete-time Riccati equations. K1N and K2N are the

w|-

s

i
e
~
-

-
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-:"' '
new Riccati gain matrices. F1 and F2 (if provided) ‘
are the corresponding feedback matrices. ™

K
Example of Usage ™

R

An example of the usage of operator LQNG is given below. Consider the discrete-time game d

-

' defined in Section 4.4. The following segment is an L-A-S program that identifies the same system N
4
and then defines two weighting matrices in preparation for the study of a linear quadratic Nash ,

d
game. Rather than inputting the matrices from the keyboard. the RDF (Read Data File) operator is =
used. Since the matrix E is equal to the identity for this problem, the terminal constraint (2.1.14) C::
reduces to X'; = Q; which is performed in step 10 below. :

1 ; Linear Quadratic Nash Game ﬁ .
2 (rdf)=a.bl.b2.c1.c2
3 abl.b2.cl.c2(out)=
4 a,bl.b2.cl.c2(game)=
5 (zdf)=r1.r2.s1.s2
6 rl.r2.s1.s2(out)= o
7 c1(1).s1(*).c1(*)=q1 "
8 c2(1).52(*).c2(*)=q2 24
9 q1.,r1.q2.r2(lq)= R
10 q1.q2(mcp)=k1.k2 <
x 11 A
12 1(dsc)=one 3
13 "Enter the total number of stages in this game." -
14 (inp)=ii =
} 15 : Main Loop T
16 ak1.k2(out)=
17 k1.k2(Igng)=k1n.k2n
18 k1n.k2n(out)= .
19 kink2n(mcp=k1.k2
20 ii.one(-)=ii ol
21 ii(if)=a
If this program is run for five iterations using the third-order system of Section 4.4, the following -

N
output results. -

g

R

> Linear Quadratic Nash Game Voot

>(rdf)=a.b1,b2.c1,c2 W
|

Enter name of the Data File (DF) for matrixa >ab :

Opening file named : ab.DF .«

Reading array named : a O

Reading array named : bl v




(1
......

Reading array named : b2

Enter name of the Data File (DF) for matrix c1 >cc
Opening file named : cc.DF

Reading array named : c1

Reading array named : c2

>a,bl,b2.cl1.c2(out)=

a
0.435 -1.401 -0.896
-0.172 -0.569 1.391
-1.655 0.008 0.134

bl
1.000 2.000
3.000 4.000
5.000 6.000
b2
1.000
1.000
0.
cl
1.000 0. 0.
0. 1.000 0.
0. 0. 1.000
c2
1.000 0. 0.
0. 1.000 0.

0. 0. 1.000
>a.bl,b2.cl.c2(game)=
>(rdf)=r1.r2.s1.s2

Enter name of the Data File (DF) for matrix r1 >rs
Opening file named : rs.DF

Reading array named : rl

Reading array named : r2

Reading array named : sl

Reading array named : s2

>rl,r2.s51.s2(out)=

rl
1.000 0.
0. 1.000

r2
1.000
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s1
1.000 O. 0.
0. 1.000 O.
0. 0. 1.000

s2
1.000 O. 0.
0. 1.000 0.
0. 0. 1.000
>c1(t).s1(*).c1(*)=q1
#1,51(*).c1(*)=q1
#2.c1(*)=q1
>c2(1).52(*).c2(*)=q2
#1,52(*).c2(*)=q2
#2,c2(*)=q2
>ql.rl.q2.r2(lq)=
>q1.q2(mcp)=k1.k2
>

> 1(dsc)=one

>"Enter the total number of stages in this game.”

Enter the total number of stages in this game.
> (inp)=ii

**x Matrix ii ***
Enter the dimensions of this matrix. >1,1

Enter the scalar:ii >5
>: Main Loop
>ak1.k2(out)=

k1
1.000 O. 0.
0. 1.000 O.
0. 0. 1.000
k2
1.000 O. 0.
0. 1.000 O.
0. 0. 1.000

>k1.k2(lgng)=kin.k2n
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N

>kin.k2n(out)= N !

kin iy

1.236 -0.229 0.003 'y

-0.229 1.569 0.817 ?3

0.003 0.817 3.291 N

U

3

k2n -

1.393 -0.432 0.090 ¢
-0.432 1.771 0.709

0.090 0.709 3.235 .

"y

>k1n.k2n(mcp)=k1,k2 X

> ii,one(-)=ii .

>ii(if )=a Y

\'

>a:k1.k2(out)= *

k1 e

1.236 -0.229 0.003 3

-0.229 1.569 0.817 N

0.003 0.817 3.291 4

k2 i

1.393 -0.432 0.090

-0.432 1.771 0.709 Y

0.090 0.709 3.235 o

Y

>k1.k2(1gng)=k1n.k2n ry

>k1n.k2n(out)=

.

kln -

1.242 -0.238 -0.009 s

-0.238 1.715 1.192 =

-0.009 1.192 4.282 "

k2n

1.402 -0.418 0.159
-0.418 1971 1.302
0.159 1.302 5.081

>k1n.k2n(mep)=k1.k2 '

> ii.one(-)=ij

.‘i

7,

> ii(if)=a N

>a:kl.k2(out)= ;:;

k1 )

K2

k'Y
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1.242 -0.238 -0.009 -

-0.238 1.715 1.192 i
-0.009 1.192 4.282 o o

k2 e

1.402 -0.418 0.159 8

-0.418 1971 1.302
0.159 1.302 5.081

K%
>k1,k2(Igng)=k1n.k2n R

>kink2n(out)= ¢

o’

kln =

1.247 -0238 0.007

0238 1.710 1.181 .

0.007 1.181 4304

k2n _,

1.403 -0.416 0.168 (]
-0.416 1977 1.321 ;
0.168 1.321 5.155 Ry y

>k1n,k2n(mcp)=k1.k2

> ii,one(-)=ii i
, > ii(if )=a o
>a:k1.k2(out)= &y
k1 = B
1.247 -0.238 0.007 r::, 3

-0.238 1.710 1.181 .

0.007 1.181 4.304 .~
’ *.

2

k2 .
1.403 -0.416 0.168 X
-0.416 1977 1.321 SO
0.168 1.321 5.155 O
>k1,k2(lgng)=k1n,k2n 3 ’
M -

>k1n.k2n(out)= =
kin '.:'\: .
1.247 -0.238 0.006 :
-0.238 1.714 1.192 -
0.006 1.192 4.330 -y 0
k2n .
1.403 -0.416 0.169 :'_-' i
-0.416 1.976 1.320 PO

]

-

O
)
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0.169 1.320

5.155

>k1n.k2n(mcp)=k1.k2

> ii,one(-)=ii

>ii(if )=a

>ak1,k2(out)=

k1
1.247 -0.238
-0.238 1.714
0.006 1.192

k2
1.403 -0.416
-0.416 1.976
0.169 1.320

0.006
1.192
4.330

0.169
1.320
5.155

>k1.k2(Igng)=k1n.k2n

>k1n.k2n(out)=

kln
1.247 -0.238
-0.238 1.714
0.006 1.192

k2n
1.403 -0.416
-0.416 1.976
0.169 1.320

0.006
1.192
4.330

0.169
1.320
5.156

>k1n.k2n(mcp)=k1.k2

>ii,one(-)=ii

>ii(if )=a

4.6 L~A—S Operator MLTR

The L-A-S operator named MLTR is used to iterate two coupled discrete-time Riccati

equations where multirates are involved.

L—A—S Help—File Description

MLTR - MulL.TiRate nash game (Multirate Coupled Riccati Iterations)
(MLTR) = KIN,K2N [, F1 [, F2]]

Syntax
Input Data

: KI.K2. K, N

: KI[N.N] . K2[N.N] . K[1.1] . N[1.1]
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: Output Data : KIN[N,N] . K2N [N.N] , F1[P1.N] . F2[P2.N]

¥ Arrays F1 and F2 are optional. )
Options :ELT N
Description : Assuming that operators GAME and LQ have been issued, )

$ this operator performs one iteration of two coupled

discrete-time Riccati equations where multirates
are involved. K is the current time instant and
N is the multirate parameter. K1N and K2N are the

L2

. new Riccati gain matrices. F1 and F2 (if provided) f:‘
'j are the corresponding feedback matrices. Y
J
f o
. Example of Usage :.__
. An example of the usage of operator MLTR is given below. Consider a third-order discrete- <
A -
3 time system that is being controlled by two computers operating at different speeds. The
: computers are decentralized in that they are located at different physical places. They control the é
A plant through a telephone hookup. DM1 is equipped with a 1200 baud modem. but DM2 has only .
. A
N a 300 baud modem. Thus. N = 4 for this problem. Because of the interface between the plant and
the controllers, the input of DM2 is the all-digital control policy (2.2.3). The following L-A-S i
Y. program is used to study this multirate game.
: A
¥ 1 : Linear Quadratic Multirate Nash Game w
‘ 2 (rdf)=a.bl,b2.cl.c2 -
! 3 a.bl.b2.cl.c2(out)=
4 a.bl.b2.c1.c2(game)= "
5 (rdf)=sl,r1.s2,r2 -
N 6 c1(1).s1(*).c1(*)=ql
- 7 c2(1).52(*).c2(*)=q2
o 8 ql.rl.q2.r2(out)=
x 9 ql.rl.q2.r2(lq)=
10 ;
11 q1.92(mcp)=k1.k2
: 12 1(dsc)=one
::j 13 "Enter the total number of stages in this game” .
14 (inp)=ii e
. 15 "Enter the multirate parameter. N" -
‘ 16 (inp)=N
o 17 : Main Loop w,
. 18 ak1.k2(out)= A
: 19 k1.k2.1i.N(mltr)=k1n k2n.f1.12
~

20 f1.f2(out.e)=
21 kiIn.k2n(mcp)=k1.k2

WX

] 22 ii.one(-)=ii
" 23 ii(if)=a )
g 24 o
> 25 k1.k2.ii,N(mltr)=kIn.k2n.f1.12
W,
]

N
- <
>
‘h. - ~

.
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26 f1,f2(out.e)=

If this program is run for six iterations using an arbitrary third-order system, the following output

‘:.

results. v

% ]

g '

> Linear Quadratic Multirate Nash Game )

~™ N
% >(rdf)=a.bl.b2.c1.c2 5

. Enter name of the Data File (DF) for matrixa > ACC1 v

- Opening file named : ACC1.DF ¢

o Reading array named : a .
Reading array named : bl '

o Reading array named : b2 It

) Reading array named : cl1 Z

Reading array named : c2

'}

&

-

>a.bl.b2.cl.c2(out)=

a -

E§ 0.435 -1.401 -0.896 '
- -0.172 -0.569 1.391 -
-1.655 0.008 0.134
. bl
1.000 _
- 0. -1
o 1.000 .
b2 :
. 1000 ;
BN 1.000 .
0.
!' ct '
1.000 0. 0. 5
e, 0. 1.000 0. iy
e 0. 0. 1.000 ]
. N
2 “\
L Y C I
N 1.000 0. oO. =
hnd 0. 1.000 0.
0. 0. 1.000 ;
) S
' >a.bl,b2.c1.c2(game)= ¢
*
i > (rdf)=sl.r1,s2.r2 ‘
Enter name of the Data File (DF) for matrix s1 > ACC2 :
Opening fi'e named : ACC2.DF -
e Reading array named : sl :::
° ~
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A Reading array named : rl
] Reading array named : s2 i
Reading array named : r2 X
) ;
¥ >c1(1).s1(*).c1(M=q1 .
, #1.51(*).c1(*)=q1 ;-'
) #2.C1(‘)‘q1 “
) >¢2(1).52(*).c2(*)=q2 g
a #1.52(%).c2(*)=q2 -~
: #2.c2(*)=q2
;' >ql.r1.q2.r2(out)= E
ql
) 1.000 0. O. o
’ 0. 1.000 0. -

0 o 1.000

rl -

1.000
\ q2 o
- 1.000 0. 0. '
. 0. 1.000 0. n
: 0. 0. 1000 ]
L r2 .
. 1.000
¢ >ql.r1,q2.r2(1q)= -
: o

A >; -
>
9 >q1.92(mcp)=k1.k2 -
:
) > 1(dsc)=one >
" >"Enter the total number of stages in this game"
3 Enter the total number of stages in this game
7 ,-.’
. > (inp)=ii f_
i *** Matrix i *** S
j Enter the dimensions of this matrix. >1.1 :\
Y >’
v Enter the scalar:ii  >6
1 i

>"Enter the multirate parameter, N" _
E)
w Enter the multirate parameter, N
» -

Y R g T
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> (inp)=N

*** Matrix N ***
Enter the dimensions of this matrix. >1.1

Enter the scalar : N >4
>: Main Loop
>ak1.k2(out)=

k1
1.000 O. 0.

0. 1.000 0.
0. 0. 1000

k2
1.000 0. 0.
0. 1.000 0.
0. O 1.000

>k1.k2,ii, N(mltr)=k 1n.k2n.f1.2
>f1.f2(out.e)=

f1
~4.06588e-01 -4.64582e-01 -2.54176e-01

f2

0.00000e+00  0.00000e+00  0.00000e+00

>k1in.k2n(mep)=k1.k2
> ii,one(-)=ii
>ii(if )=a
>a:k1l.k2(out)=
k1
3.461 -1.091 -1.160
-1.091 2.640 0.112
~1.160 0.112 3.562
k2
3.295 -1.280 -1.264
-1.280 2.424 -0.006
~1.264 -0.006 3.497
>k1.k2.ii.N(mitr)=k1n.k2n.f1.12

>f1.f2(out.e)=

) ¥~
v

v 8 2, A

-
3,4,

i®
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f1
-4.91982¢-01 -4.64462e-01 -5.44093e-01

f2
0.00000e+00  0.00000e+00  0.00000e+00

>k1nk2n(mcp)=k1.k2
> ii,one(-)=ii
>ii(if )=a
>ak1l.k2(out)=
kil
12.002 -5.782 -7.172
-5.782 5.706 2611
-7.172 2.611 10.304
k2
11.760 -6.010 -7.441
-6.010 5214 2.712
-7.441 2.712 9.552
>k1.k2.ii. N(mltr)=k1n.k2n.f1.f2
>f1.f2(out.e)=

f1
-6.28113e-01 -3.24123e-01 -7.37706e-01

f2
1.86462e+00 -1.22783e+00 -1.03105e+00

>k1n.k2n(mep)=k1.k2
> ii,one(-)=ii
>ii(if )=a
>a:k1.k2(out)=
k1
23.862 -8.100-23.483
-8.100 4.268 9.051
-23.483 9.051 27.654
k2
23.198 -9.483 -21.761
-9.483 5.342 8.857
-21.761 8.857 23.593

>k1.k2.ii.N(mltr)=k1n,k2n.f1.f2

R AT
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b _
3 >f1.f2(out.e)= §
R £1 .
& -1.24307e+00 -1.87479e-01 2.77446e-01 "
" £2 he
> 0.00000e+00  0.00000e+00  0.00000e+00 4]
x >kin.k2n(mcp)=k1.k2 by’
e X
> ii.one(-)=ii 3
» N
o > ii(if )=a -
-
N >azk1.k2(out)=
112.932 -61.747 -77.912 3
~ -61.747 36.568 42.550 .
i -77.912 42.550 57.697 "
K2 S
" 107.254 -57.781 -79.740 -

-57.781 33.065 42.170
-79.740 42.170 63.870

>k1.k2.ii.N(mltr)=k1n.k2n.f1.f2

- >f1.f2(out.e)=
) f1 *
- 3.28894e+00 -2.42437e+00 -3.84678e+00 i
.:'A » \
f2 <
. 0.00000e+00  0.00000e+00  0.00000e+00 N
N
[ >k1n.k2n(mcp)=k1.k2 A
N > ii,one(-)=ii o
f.~ Ly
>ii(if )=a by
o >a'k1.k2(out)= N
-
k1 R

1.56022e+02 -8.05226e+01 -1.31445e+02
-8.05226e+01 4.46216e+01 6.68516e+01
-1.31445e+02 6.68516e+01 1.18129e+02

«'aa

L
[

k2
2.01401e+02 -1.03781e+02 -1.59092e+0)2
-1.03781e+02 5.55282e+01 8.09325e+01
-1.59092e+02 8.09325e+01 1.30365e+(2

v
Y
L)
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>k1.k2.ii. N(mltr)=k1n.k2n.f1.f2
>f1.f2(out.e)=

f1
2.86026e+00 -2.18331e+00 -3.49269e+00

f2
0.00000e+00  0.00000e+00  0.00000e+00

>k1ink2n(mep)=k1.k2

> ii,one(-)=ii

>ii(if )=a

>,
>k1.k2,ii.N(mltr)=k1n.k2n,f1,f2
>f1,f2(out.e)=

f1
-4.35703e-01 -4.13821e-01 -9.23808e-01

f2
3.93805e+00 -2.10267e+00 -3.12784e+00

............

»
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CHAPTER §

K CONCLUSIONS

Y

. This dissertation studies the computational aspects of iterating two coupled discrete-time
A Riccati equations. These equations arise as a result of solving LQ descriptor Nash games. The
?.: presence of coupling in the Riccati equations complicates the iteration process. This work devises a
" method which removes the coupling in a numerically robust manner. Then algorithms are
:‘:: engineered that compute the quantities needed to iterate the Riccati equations. Every opportunity
.. is taken to exploit the properties of matrices (e.g., positive-definiteness) that enter into the
“:: calculations so as to obtain a savings in computation. The algorithms are coded and the coupled
‘ Riccati software is integrated into the L-A-S CACSD language. The novelty of this work is two-
= fold. First, a new problem is formulated. solved and the solution procedure is implemented as
computer code. Second. numerical theory and software are combined under the heading of CACSD

to vield a package that allows others 10 solve single and coupled Riccati equations.

N

' The numerical issues associated with iterating coupled discrete-time Riccati equations are the
_: key focus of this thesis. The software developed for the iteration task is coded in FORTRAN and

makes extensive use of the LINPACK library. A structured programming approach has produced
low-level algorithms that are very modular and extremely efficient. The final result is a set of six

new L-A-S operators that are collectively capable of iterating single and coupled discrete-time

Riccati equations.

Although the main contribution of this thesis is the software engineering of the coupled

Riccati problem, there are several theoretical advancements which add breadth tc the work. The

b most important of these are the existence and convergence theorems which define the iteration

- behavior for both finite-horizon and infinite-horizon problems. Of less relevance but not
significance is the development of descriptor-variable dynamic games. In addition to theoretical

¢

. extensions, there are physical and numerical advantages associated with descriptor game

formulations. Multirate 1.Q Nash games were heretofore unposed.
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There are several directions for future research. For example, the assumption that E is
nonsingular could be relaxed. Then uniqueness of the Riccati iterates is lost. Less restrictive
conditions insuring convergence for infinite-horizon problems could be sought. A contraction
mapping argument could be attempted for the case of unstable plants. Lyapunov-type stability
results could be applied to the coupled Riccati maps. A completely different research topic would

be the determination of Leader-Follower strategies for descriptor games.
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APPENDIX A

‘
-

SOFTWARE LISTINGS

L
o

N
) This appendix contains the FORTRAN computer codes used for a selected number of the low- :"
\‘: L]
.\' level, coupled Riccati algorithms. In alphabetical order, the algorithms are MLTPLY. PSICOM and K .,:’
VS QDFORM. N0y
ﬂl.) b)*
- }.\.
Algorithm MLTPLY i
5 :
::-. C EXXEEXTEXTEXEXXAL XS SRR XX & .E_
“ C * MLTPLY bl -
C I EE P EREER NS EEEEREERRER R RN N .;':.
:4 C L B -
| C **+ Given the double precision matrices A and B, this subroutine -
C ** computes and returns the variable C defined as the product RLx
- C %% Ik
o C ** C = A *B . if the logical variable ATFLAG is False. or e
L C *x ,‘;.-.
C . *= T -
i C ** C = A * B, if the logical variable ATFLAG is True. .
by C *x "{-,(
C ** where A is an NxM arbitrary matrix (for ATFLAG = False). :::
= C * % is an MxN arbitrary matrix (for ATFLAG = True). N
N C b B is an MxP arbitrary matrix, v';,‘
C bl and C is the resulting NxP matrix. =
[ C ** g
! SUBROUTINE MLTPLY (A.B.C.N,M,P.ATFLAG) :
C x % .t"
. DOUBLE PRECISION A(1) . B(Q) . C (1) S
-_;j INTEGER N . M ., P -
b LOGICAL ATFLAG =
C xx -
- INTEGER 1. 11, 12 .13 . J . K Y
v C % <oy
C ** Branch depending on the value of ATFLAG. R
b C x X t".
& IF (ATFLAG) GO TO 2 o
C xx X
. C ** Compute A * B and store in C. \
b cC ** RN
DO 1 J=1.P e
) 13 = (J-1)*N 5
'.‘ DO 1 I=1.N ‘
! I =1 - N .
12 = (J-1)*M o
-, 13 = 13 + 1 o
e C (13) = 0.0 e
A -\(
-

T

o
*
K3
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L %
DO 1 K=1.M
Il = J1 + N
12 = 12 + 1

C (I3) =C (13) + A (I1) * B (I2)
CONT INUE

RETURN
X
X% T
** Compute A * B and store in C.
*x
CONT INUE
DO 3 J=1.P
13 = (J-1)*N
DO 3 1I=1.N
11 = (I-1)*M
12 = (J-1)*M
13 =13 + 1
C (13) = 0.0
%
DO 3 K=1.M
I =11 + 1
12 = 12 + 1

C (13) =C (13) + A (I1) * B (I2)
CONT INUE

RETURN

END

. PR ol [Ty e im . fha%
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Algorithm PSICOM

I EEEEREE SRR ERE R R R R EEE R

* PSI1COM b
XTI TREBAXERRIAREERARRRES
s

** Given B, KK and R, this subroutine computes and returns
** the variable named PSI defined as

L %

s _l T

** PSI = GAMMA * B * KK

%

xx% T

** where GAMMA = R + B * KK * B

g B is a NxP matrix,

*x KK is a NxN., positive-semidefinite matrix.

*3 and R is a PxP, positive matrix.

x X

** Note : It is assumed that P is less than or equal to N!
x %X

** Several other quantities are calculated and returned for
** possible later use. These quantities include

xx ']"

*x W= B * KK , GAMMA . XK. and XG where XG is the Cholesky
xx T

i factor of GAMMA. That is, GAMMA = XG * XG.

* Likewise XK is the Cholesky factor of KK.

LR

SUBROUTINE PSICOM (B.GAMMA .KK.R.W.XG.XK.N.P.PSI)

*x

** GAMMA contains enough room for 1 double precision PxP matrix.
** W contains enough room for 1 doutle precision NxN matrix.
** XG contains enough room for 1 double precision PxP matrix.
** XK contains enough room for 1 double precision NxN matrix.
xx%
DOUBLE PRECISION B (1) ., GAMMA (1) . KK (1) . R (1)
DOUBLE PRECISION W (1) . XG (1) . XK (1) , PSI (1)
INTEGER N P
x %
INTEGER I .11 ., J . K . L . USER
%
DATA USER /6/
xx
rx T

** Compute B * KK and store in W using algorithm MLTPLY.

x X

CALL MLTPLY (B.KK.W.P.N.N, TRUE.)

xx

xx T

** (Compute GAMMA = R + B * KK * B using algorithm QDFORM.
** Note : Since XG is only computed later. il i1s used here as a
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) 2
; 2
: C kg dummy variable for temporary storage by QDFORM.
; C bl Also, CHOFLG = False. CFLAG = True. and ADDFLG = True. )
C *x -~
, CALL QDFORM (KK.B.R.GAMMA .XK.XG,N,P,.FALSE., .TRUE.. TRUE.) "
P C X o
Y C *s T o
: C ** Factor GAMMA = XG * XG where XG is upper triangular. o
* C L R J
K =P * P
;f DO 3 1I=1 K ?:
XG (1) = GAMMA (1)
n 3 CONT INUE »
' c *t .
. i
L CALL DPOFA (XG,P.P.I)
IF (I .EQ. 0) GO TO 5§ -
y WRITE (USER.4) e
4 FORMAT (/" ERROR : PSICOM - GAMMA is not positive definite!’) -
RETURN
C LR 'ﬂ
C ** Compute PSI by solving the set of linear equations :
C * T
. C ** GAMMA * PSI = B *K = W
C xx
5 CONTINUE
I = -P s
DO 7 J=1 N
C ** Copy Jth cotumn of W to Jth column of PSI. *
s I1 = I1 + P
: L =11 t
K DO 6 K=1.,P -
{ L =L + 1
! PSI (L) = W (L) "
6 CONTINUE -
. C ** Compute Jth column of PSI.
' CALL DPOSL (XG.P.P.PSI(11+1))
\ 7 CONTINUE
J RETURN AN
END

L
-..:
e
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Algorithm QDFORM 4

I EEERRERERREREEEER R R RERERREE

s QDFORM T 1
B EL L SN LTRERSAEEEEEREERE
s

** Given A, B and optionally C. this subroutine computes and

v o8 ZIR

** returns one of the following quadratic forms
%
" X T
% ** D = B *A*B ;
X . g
. LR T
o ** D = C + B *A*B )
W, L R .
i T :
s ** D = C - B *A*B
i *s

** where A is a NxN, (positive-definite) mat..x,

v, bl B is a NxP arbitrary matrix, ¢
:d *x and C is a PxP symmetric matrix. ;
. xx%
. ** It is assumed that P is less than or equal to N! ‘
xx
. SUBROUT INE QDFORM (A.B.C.D.X.Y.N.P ,CHOFLG.CFLAG.ADDFLG)
X

** Note that the arrays X and Y must be provided by the calling

v
34,4

aloReloloNeRoloNeEeNo oo oo RoRoRokololeloio ke Kol oo e leReko ke ke koo ko Noleioioisiz oo NoNo N

** routine as temporary storage for the calculation. Each
** must contain enough room for 1 double precision NxN matrix.
xx
! ** This routine has three flags which govern the calculation of a
d ** quadratic form.
. *x 1f CHOFLG is True, then the Cholesky factor of A is already
e *s available and has been passed in X. Consequently. the call
~ ** to LINPACK routine DPOFA is skipped. If CHOFLG is False.
g then the Cholesky factor of A is assumed to be unavailable.
[ * % .,
N
- * If CFLAG is True. then the matrix C is to be included in the
** initialization statement of the matrix multiply DO-Loop.
25 *x If CFLAG is False, then C is never referenced.
x X
E * Assuming CFLAG = True. then ADDFLG is consulted to determine !
< e if an addition or subtraction is to be performed in the k
b il matrix multiply DO-Loop. ADDFLG = True means
"o *x T .
** C + B * A * B is computed. ADDFLG = False means
N x x T s
i *r C - B * A * B is computed. If CFLAG = False. then
' ADDFLG is never referenced. K
. ** K
:3 DOUBLE PRECISION A(1)y ., B((1) . C (1) . D (1) K




p-?)
n
9%
)
2
. DOUBLE PRECISION X (1) . Y (1)
? INTEGER N . P &
LOGICAL CHOFLG . CFLAG ., ADDFLG G
C zx
INTEGER I .11, 12 ., 13 , 14 , ) ., K ., USER
C t 3 4 g
DATA USER /6/
C L B J
C ** Skip the Cholesky factorization of A if already available. z
A C L 3 4 ‘\-'
1 IF (CHOFLG) GO TO 3
. C * % r‘:
C ** T o
: C ** Factor A = X * X where X is upper triangular.
C *x "D
K = N * N R
DO 1 1I=1.K i
X (1) = A (1) .
1 CONT INUE -
C * |
CALL DPOFA (X.N.N.I)
IF (I .EQ. 0) GO TO 3 A
WRITE (USER.2) I
2 FORMAT (/" ERROR : QDFORM - Array is not positive definite!’) '
RETURN
(‘_ xx '
C ** Compute X * B and store in Y taking advantage of the fact -
C ** that X is upper triangular. .
C s \"}lt :
3 CONT INUE i :
DO 4 [=1,N '
DO 4 J=1.P o
13 = (J-1)*N + 1 k.
DO 4 K=I.N ‘s
I = (K-1)*N + 1 >
12 = (J-1)*N + K e
Y (13) =Y (13) + X (11) * B (12) .-
4 CONT INUE :ﬁ
C x X oo
C ** Branch if matrix C is referenced.
C x X .‘: h
IF (CFLAG) GO TO 7 Te
C x* %
C *x T -
C **  Compute Y * Y and store in D taking advantage of the <
; C **  symmetry of D. T
i (‘ * X U
DO 6 1=1,P é ‘
J=1.P -
= (I-1)*N .
= (J-1)*N -
= (J-1)*Pp + 1

-
-
-
v
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D (13) = 0.0 4
DO § K=1.N :
] D (I3) =D (13) + Y (11+K) * Y (12+K)
- 5 CONT INUE
14 = (I-1)*P + ]
2, D (I4) = D (13)
& 6 CONT INUE
RETURN
C L 2 ] 1
) C ** Branch depending on the value of ADDFLG.
: C s
v 7 CONT INUE
. IF (ADDFLG) GO TO 10
L C s
C *e T
N C ** Compute C - Y * Y and store in D taking advantage of .
5 C ** the symmetry of D.
C L ¢ 4 '
» DO 9 1=1.P .
& DO 9 J=I.P
I = (I-1)*N
- 12 = (J-1)*N y
) I3 = (J-1)*P + 1
4 D (I13) = C (13) i
) DO 8 K=1.N '
i ' D (I3) =D (I3) - Y (I1+K) * Y (I2+K)
c 8 CONT INUE '
14 = (I-1)*P + J 3
9 CONT INUE .
RETURN
C x X
_.‘ C xx T y
Y C ** Compute C + Y * Y and store in D taking advantage of :
. C ** the symmetry of D.
.UJ C *x
10 CONTINUE
DO 12 I=1.P
% DO 12 J=1.P
N 11 = (1-1)*N
12 = (J-1)*N
13 = (J-1)*P + |
D (13) = C (13)
DO 11 K=1.N
D (I3) =D (I3) + Y (I1+K) * Y (12+K)
X 11 CONT INUE
A 14 = (I-1)*P + ]
D (I4) = D (13)
» 12 CONTINUE
. RETURN
END r
-~ \
3 i
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APPENDIX B

CONTRACTION MAPPING RESULTS

Many smaller results were used in proving the existence of a region where coupled discrete-
time Riccati equations constitute a contraction mapping. This appendix is a collection of all the
minor results needed for the derivation. In the beginning of this appendix are five lemmas. Each
subsequent lemma builds upon the results of previous lemmas. Next, Theorem 3.2. which was
stated in Subsection 3.4.2, is proved. Then. Facts 3.2 and 3.3 (also found in Sl;bsection 3.4.2) are
proved. The end of the appendix contains a summary page which serves as a quick reference to key

results. For ease of notation the 2-subscript on the Euclidean norm. 1 -k . will be omitted in all the

lemmas.

Lemma 1: Given R, = ell. €>0.i=12 then H(T(X)N = (F(r)11<(21B,R - 1X -1 |

where X and Y are any two positive-semidefinite symmetric matrices and I',(X ) i R,+ BIXB,.

Proof : It isstraightforward to calculate :

(r(xN-t—(rr)»! = (R, +B'xB) — (R, +BT’YB,)!

I+ R-1B7XB)1R-1 - R-1V(1+B/YBR V)]

a+R-1BTXB)V |RY — A+ R-IB'XBI)R-1(1+BIYBR™1)! l

Q+R-1BIXB) "V |R-YQ+BIYBR™Y) — (1+ R-1B7TXB)R ] l(l + BTYBR-1)1

= I+R-187xB) ! |R-1BTYBR™! - R-'BIXBR! ](I+B{YB,R“1 )-1

X+R-1BIXB)VR-1BT |vy — x|BR-V 0+BYBR-1)T . (B-1.1)

At this juncture, let R, = ell which implies that (R)"1 =¢ I. Then. from (B-1.1) it follows

1

that

R 14

AR TR
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:J‘
N .
. XN —(r(r N1 = 10+ eB7XB) 1 BT |y - xlzsciei (1+ BTYBe) 1
! = ()2 1(I + ¢BTXB,)1 BT [Y - XlBi(I+eiB,TYB,)'1I ;
" < (21U +6BIXB) 11 1B, P 1Y —X1-1( +¢BIYB) 1 . (B-1.2)
W
: - 1 . e
n Since. 1 (I + ¢B7XB,)"11 = AT eBTXE) and both I and B7XB, are positive-semidefinite
.‘-1
| <. matrices, then o(I + ¢B7XB;) 2 o(lI) + g(¢BI/XB,) 2 o(I) = 1. Hence. '
v 1
1II+¢B/XB) 11 = <1 )
= ( ) o+ BIXB) (B-1.3)
L A similar argument concludes that
[ 1
1(1+eB7YB)11 = <€ 1 .
- (I+eBi¥B) o+ ¢B[YE)) (B-1.4)
- Finally. sincelY — X1 = § X — Y1, we have from (B-1.2) that
“ o)1 € (€21B R 1 x — )
XN =N € (218, 1X -1 . (B-1.5)
0

2y, K
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Lemma 2: Given R, = ell. €,>0,i=1.2 then

e.
1¥(X)=¥,(¥Y)1 € ¢IB,1- 1+7'IBiI2-IX +Y1| 11X =71 (B-2.1)

where X and Y are any two positive-semidefinite symmetric matrices and
vi(X) ﬁ (T(XN~1BTX . Furthermore. if X and Y are confined to a closed ball of radius §; then

the following bound is obtained :
Proof : For this and subsequent proofs we will utilize the matrix identity :

WX -y 2z = %-[(W—Y)(x +Z)+ (W+Y)(X —=2) (B-2.3)

where W. X . Y . and Z are arbitrary but compatibly dimensioned matrices. Now. notice that

Hrix -t = 1 < 1 < 1 _e
(r4x) o(R, + B'XB)) o(R,) + o(BIXB)) a(R)) €

Use (B-2.3) and the triangle inequality to compute

(B-2.4)

TV (X)—w(r)I

= %u [(r,(x»-l — B x +y) + (TN 1+ ()] B, (X =)

1B 1
< —i' =y tiax sy @D+ trax —va .

An additional application of the triangle inequality coupled with the result of Lemma 1 and (B-

2.4) yields :

TW(X)—W¥(Y)H

1B 1
< 5= l(el)ZuB,u2-nx+y PAX —F 0+ 2€0X —Y |
€, 2 B .
= elB I ]+T||Bll| X +Yy i X =Y.

Hence. (B-2.1) is verified. Finallv. if X and } are contained in a ball of radius §, . then I X 1 £ §,

and i} # €8 . Thus.

'.‘ .‘

m

-
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> o ® -

e,
V(X)) - ¥(Y)Il € ¢1B,1- 1+éJ&ﬂ1X+YI 1X —Y |

e.
< 13,1 1+éJ&ﬂ-hXLHYI]1X—YI

1X =Y

$€i|8i|. 1+—62LIB,|2[8|+8||

= ¢lB,1- 1+eﬁﬂ&ﬂ|1X—YL

Ry
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Lemma 3: Given R, = ell. €,>0, i=1,2 and any two positive-semidefinite symmetric matrices X
i

h 4
N and X, . then whenever € < 1 holds simultaneously for i=1,2 , it follows that ~
| 18,2 1x;1 g
' -1
~ I lsi(xl. xz)l ) < 1
~ [1—e,ezle,ﬂ-lazﬂ-lx,nle %
) 1 o
= B-3.1
1 — A](X]) Xz(X;g) ( ) e
. where

81— W (X))B,¥AX,)B, .

EI(X 1. Xz) (B-3.2a)

ExX1. X5) A 1—w,(X,)B ¥(X)B,. and (B-3.2b) )

MX) L 1B, ax. (B-3.3)

Furthermore, if X, is confined to a closed ball of radius §,. i=1.2, then whenever

€ < 1 the following bound is obtained : e
V25,18, P

-1 v

| [s,(x,.xz)l 1<2. (B-3.4) -

Proof :

For this proof. we use (B-2.4) of Lemma 2 and the definition of ¥,(X ) 1o conclude that

V(X)) € !B, I-1X1.
Define

(B-3.5)

Q,(X,.X2) 2 w(X)B,¥:(X,)B,. and (B-3.6a)

. Q,(X 1. X2) & wa(X.)B,¥,(X,)B,. (B-3.6b)

v
s

-1 -1
Then. i |s,(x..x3)| b= [1— nl(xl.xg)] I. Note that if 10(X,. X,)1 < 1. then

-, -

aNS

oI - Q,(X,. X,)) 2 o) -3(Q,(X,. X2)). Suppose that I Q(X ;. X,)I < 1.Hence.

I [s,(x,.xz) i

CY

| [1- Q,(X,. X,) ]’1 I

{

1
a(1—-Q(X,. X))

....................

............
--------------------
.............
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¥ ) 1
=< =
ag(l) —o( Q(X,.X,))
! = L . (B-3.7)
T = TOX,, X1 .
$ Next, for both i=1 and i=2 :
F\ I.Qi(Xl.Xz)l $ l81|'32||‘p1(xl)|lW2(X2)l
Y
< 'Bll'lel IellBll'lxll I [ezl82"|X2l
: = € &IB,121B,12 . 1X,1-1X,1. (B-3.8)
—1 !
S Define € g [IB~,I2 -1 X1 l . i=1,2. So, whenever € < € holds simultaneously foralli € { 1,2
- v
] ‘,'
4 } . then it follows that | Q,(X,. X,)1 < 1. Consequently. for all € € [0,E) . i=1.2
K
-1
. |[5i(x,.xz)| 1< 1 .
5 1 = 10(X . X)) :
- < 1 . :
1 — 618, B 1B,P 1X,1-1X,1} , .
i In view of (B-3.3),
1 1
vy = . (B-3.9) X
o 1= M(X ) A(X2) 1 — & 1B, R AB, R 1X, 11X, :
) Therefore. (B-3.1) is proved. Finally, take € = — 1 Then. M(X ) AAX,) € % . Thus,
. V25,18, P
>, NEX LX) s 1 =
o 1-1
A 3 -~
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Lemma 4: Given R; = ell. €>0,i=12 and any four positive-semidefinite symmetric matrices

1

X,.X,.Y,.and Y,.such that 1 X;1 € § and 1Y} £ §,, then if0<ei<€;i—!—-—holds

518, P

simultaneously for all i € { 1,2}, it follows that :

I [':'i(xl.m’z)]'1 - |5,(Y,.Y2)|'l I

S V1V2(1+V1) lxl—Yll + V1V2(1+V2)

81 (1- vy Vz)z 82 (1 -V V2)2

(B-4.1)
IXZ—Y-_,I

wherev,iei&lBilz <1.

Proof : Using notation of Lemma 3. (B-3.6a-b) :

E,(Xl.Xz) = l—ﬂi(Xl,Xz) .

Then via a development that is similar to Lemma 1, (B-1.1), we obtain

Is,(xl.xz)l'1 - [s,(yl.yz)]'1 = |si(x,.x2)|'1 Ini(x,.xz) — QYT ] IE,(Y,.YZ)I-I .

Now, for i=1

Q](XI.XQ) - QI(YI.Y‘_’)

[

‘I’l(xl)Bz\Fz(Xz)Bl - q’l(Y])Bz‘l’z(Yz)Bl

(\If,(X,) - WI(YI)) Bz (‘I,Z(XZ) + q’z(Yz)) B] +
(W](x 1) + ‘I’)(Y])) Bz (‘l’z(Xz) - Wz(Yz)) B‘

1
2

Likewise,

(‘l’z(Xz) - Wz(Yz)) Bl (‘Pl(Xl) + ‘yl(y’l)) B: +

vy = 3
DXy Xz) = RAY . ¥) (W5(X,) + ¥o(Y5) B, (¥,(X,)— ¥,(Y)) B,

2

Remark : ¥,(-) is always a function of the first variable and ¥.(:) is always a function of the second

variable.

Making use of the triangle inequality, it is determined that

1 Ii‘l’,(X,)—‘Ifl()'l)llll ‘I’:(x:)+‘l’:(}:)|‘ +
“ ‘l’l(Xl) + ‘1’1()‘1) " ° “ ‘l’:(x:) - W:()’:)“

“Ql(4¥1.-¥3) - Q:().l.)-z)" $ "Bl""B:"

2

r 2 W

o
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Furthermore,
LX) + (YD1 < eilBillIXi|+lYilj € 2¢351B;1. (B4.2)
Also.
1U(X,) - YY) € 18,1 1+.;".|Bi|2-|x,+yi| X, -1
< 1B, ll+ei8ilBiI2 ]-lX,—Yil
= eilBil-ll+vi AXi=-Y;0. (B-4.3)

Therefore. putting all these facts together yields the following bound :

82(1+v1)lxl-—}’,l +

. - . £ . .
10(X,.X,) QY,.Y)l € élelellz llez 5, (1 +w)1X,—Y,1

ev,(1+v)1B, P 1X,-7,1 +

= . (B-4.4)
62”1(1 +V2)|82|2'|XZ_Y2'

Note : The derivation of this upper bound for 1 Q,(X;. X,) — Q(Y,.Y,) 1 does not impose any

restrictions on the magnitude of €, or €! However, in order to bound

-1 -1 o
” =(X,. Xz)' - |E(Y,. Yz)l ” , we must now invoke the definition of

3".: _S.—I_IT . Hence, for all 0 < € < €, the hypothesis of Lemma 3 is satisfied and we
1B.
1 }

conclude that

1
1 — M) A(X3)
1
1 ~ 6&I1B, R 1B, 1X,1-1X,1

N

I [ xa" I

1

1 - elsllBllzl'[ezslezlzl

e

A |

e
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¥
3
=__1
1 - yll’z : (8’4-5) .
Clearly. 3
, , R}
Il Ej(xl.X2)] - lE’i(Y,.Yz)I- II v
1 1 3
—y - —y = .b
< e A poera]” 1 aamoxo - ey ~
< 10X, X)) — Uy, ¥ )1 =
] -
(1 - Vlyz)z
v, (1+v)1B, P 1+ v
g L2 ! 2‘ AX,; =Y, + @n(1+v)1B, P X, =Y,
(l_vl"z) (l-ylvz)z
-
vy v, (1 +v,y) vy, (1 +

= 212 T ax,-r,1 + ;z_yz)-|x2—y2|, o

81(1"”1 V2)2 82(1‘”1 Vz)z

': [ .1‘. "

(=5

s e

o~
|
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Lemma 5: Given R, = -él,-l, €,>0. i=1,2 and any two positive-semidefinite symmetric matrices X,

and X,, with 1 X, 1< 3§, . then whenever 0 < ¢ <%',é ! bolds for all i € { 1.2}, it

= 518,R
follows that :
1+
1B F X xus £y
1=n» (B-5.1)
e Vs (1 + Vl) )

<
1BLF (X, XIS 22 57

wherefilA landvi:eiGilBilz <1.

Proof : By definition : .

-1
B,F (X, X, = B, [s.(xl,xz)l v,(X,) ll—Bz‘lfz(Xz) ]A . and

-1
B_ze(Xsz) Bz lsz(xl.XZ)l Wz(Xz) II—BI‘I’l(xl) lA °

Thus,

-1
'BlFl(Xl'XZ)I $ g'Bl" [E,(XI.XZ)] "Wl(xl)""l"Bz‘pz(Xz)l

1
1B,FH(X,. X)1 € £1B,1-1 l;-'z(x,.xz)] L Aw,(X,) 01T — B, ¥, (X )]

wherefilA l.

Since.l\yi(X)l S €,|B‘||X| s eisilBiI.

'BIFI(XI'XZ)I s 56181|BI|2| lEl(xl.Xz)]_ll|I—Bz‘l’2(xz)|

-1
= gul sl(x,.xz)] 11— B,Wx(X,)1
Ev
< > . - B i
< ooy M BaYX)
1 4 (1+V‘))

< _ﬂ"__<[1+|32|-w2(x,)| < g_,__

I—VIVZ b l—VlV2

Y
-

L5y

&
(g

S AR yf‘

TR

".-

‘,"'- \.A:\' 1

D & e,

> vy v e e - -
s, bg Ay .
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Similarly,

1 B,F (X4, X,) 1

-1
< §€282|82|2'| EZ(X,.XZ)I lll—Blwl(XI)l

-1
= ng' Ez(xl.xz)] |'|I—B|‘PI(X1)I

Ev,

€ 22 _ g1-
h 1—v,v, 11— B,¥%,(X,)1
Ev
S 1o (1R8I R < £r204v)
1=nv, 1-v,v,
{o.’:' o - '--' .l‘ .q.'- -‘.l. " a "\"-“'\'.&".q“'.- ‘“0". 0" o ..‘ . ."-.ﬁ .

1
-

) |
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Next, the proof of Theorem 3.2 is given. The significance of this result is that it defines

Lipschitz constants for the feedback expressions. The proof is streamlined by utilizing the results

of the previous lemmas.

Theorem 3.2 : Lipschitz Constants for the Feedbacks

Given (X .Y ).(Z,W) € A . then

1B, (F(Z.W)=F,(X.Y))h € aptX =Zh + aplY =Wk

le(Fz(Z.W)—Fz(X.Y))lz s azllx-z '2 + azzly—W'z

S
&N
2

_ KK é€n Ky Ev KK Ev; ik K,
where a;, = .

V2
5, L 3, 3,

Proof : Consider the first inequality dropping all 2-subscripts. By definition :

IB](F[(Z.W)‘F](XY))I

= “ B,

a |l

[s,(z . w)]"lwl(z )(1— Bzwz(w)l - (E-.\(X.Y)l-l\ln(x)ll—Bz\lfz(Y)l

irneml |;-',(z.W)]'lw,(Z)[x—Bzwz(W) - lEl(X,AY)'-l‘Ifl(X)lI—Bz\llz(Y)l 1

The last term needs further investigation. Using the matrix identity (B-2.3). we can write :

1 [E,(Z.W)l_l\lll(l)(l-Bz\Ifz(W)] - [s,(x,Y)l'lwl(x)[x—azwz(n] 1

1 [ls,(z.w)l'lw,(Z) - [El(x.y)]'lw,(x) -I2I—BZ(W2(Y)+\P3(W))I 1

N

2

|l I[E,<Z.W)]'1w,(z) + [s.(x.y)]“w,(X)

- IB;(\IIZ(Y) - \I’Z(W))I Il
.

5 .
Note that from (B-3.5) and the fact that Y’ . W € Bg, by hypothesis

IT= B V.Yl S 1+ 3

and similarly

11— B,V (W)l < 1+

2 .




Therefore,
I [:-.'1(2.W)l-l‘I',(Z)lI-Bz\Fz(W)] - [E.(X.Y)]_I\F,(X)[l—Bz\lfz(}’)l 1

< +m - |l [s,(z.W)]'lv,(z) - [El(x.}')l"lw,(x) Il +

18,1
)

-l [s,(z.W)]'lw,(z) + [s,(x.}')]'lwl(x) I o 1w,0r) = w,(woi

(1+5) - || [s,(z.W)]‘lw,(z)- [E,(x.Y)]‘lw,(x) Il +
< B,
201 -7 73)

(B-T.3.2.1)
: lw,(zn + w,(xnl-w,m — (W)

where (B-4.5) has been used. Summarizing the results thus far :

lBl(Fl(Z.W)_Fl(X.Y‘))I

S eC1+omi8,0 - || [s,(z.w)]'lw,(z) - (E,(X.Y),—I\FI(X) I o+

EVB,1-18,]

s$18,1°18.1 [wl(zn + wl(xn].wz(y) — v (W)
2(1 -7 93)

S eC1+mppiB - || [s,(z.W)]']w,(Z)— [E,(X.Y)]‘lw,(X) I o+

E7 18,1

— |W2(Y) - ‘I’z(W)l .
l-Vlllz

Now. an additional use of the matrix identity (B-2.3) on the first term of equation (B-T.3.2.1)

yields :

1 [sl(z.W)]'lw,(Z) -~ [s,(x.Y)]"le(x) 1

=2l [s.(z.W)]'1 - [sl(x.Y)l'll« Iwz) + \P,(X)] +
's,(z.w)]" + [s,(x.Y)]'1 -l\lfl(Z) - \I’l(X)} H
< 88,1 || ls,(z.W)l“1 - ‘s.(x.y')l—l I+ —1  rwez) - w01
1—-vivs

.......
......................
..........................

.........................
..................................................

------------
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Hence.

1B, (F(Z.W)=F\(X.Y))I ,

rAn

senGi+m- |l [s,(z.W)]'1 - |'=',(x.1')]'l [l +

s

'
(1+5)1B,1 V18,1 '
£——%-I\Ir,(l) - ¥, (X)) + g;_._“f___ AVAY) — W (W)
3 1-9 7 1-97; "
v W
7% 2 1+ 1+ 7 N,
& € En(1+m) e SIX-Z1+ Ziy -wal| + ;
: (1-7m2 | 5 3, ;
N (1+%) 5(1+9) 7 nB(1+75, -
r ¢ +o) ml Yax-zi1+ gJ_-z_. 2 gy —wi o
s 1= 3, 1-vv; 5, p
L) — —_— -_— —_— t
H(1+9)(1+53) v s
u - i D D) A%y lax -z 4
5,(1 — 7753) 1 -y,
- nn(1+m) [7(1+5 >
NP D ARy —w X
o 5,01 — 7 53) 1 -0 -
- n1+m))(1+5; nn(lt+i)(1+ 5
i - &h DUTH P (x oz 4 EOBUAWDUER n
3,01 - 77 801 ~ 5532 -
R} % RZI3LS =
y =§112'X_ZI+ 61212ly_w| K
» -51 32 :
n B aplX=Z1+ aply -wi. ¥
- A completely analogous argument can be developed for the second inequality which results in the ,::
-j'l appropriate definitions for o;; and o, . ::
a N
-:" q:
b hY
. R
5 )
-
-
o :
~ .
\
» s
" '
i o
~

A
)
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Now. the proofs of Facts 3.2 and 3.3 are stated.

Fact 32 : Given any X.Y € By and R; i el I. >0, then whenever ¢ < ._1_2 bolds for
i 5;1B;

alli € {12}, 10(X) — d(Y)), < ;ZIX—lewherevi:e,SilBil22<l :
(l—yi)

Proof : Under the given assumptions. it can be shown that :

1 |x+eix 1;-,13.’]'1 Ix —YI ’1+e,BiB{ Y]-l I,

V)

W fsexsa" 1. i+ sare]’ lloax-ry. ®F320
Sincev; < 1 foralli€{12},

1
o(l+¢ X BBT)

I peex s Il

< 1 .
1—-o(e, X BBY)

< 1
1-5(¢ § BBT)

< 1 (B-F.3.2.2)

l—v-,

where G( - ) =1}, is the largest singular value of ( - ). Similarly.

1 [I+eiB,B{ Yl_l I, < 1—11» . (B-F.3.2.3)

Hence, in view of (B-F.3.2.2)-(B-F.3.2.3). (B-F.3.2.1) becomes

1O(X) (¥, € — 1 _ax-vu.
(1—-11,)2

s 1

Y

&S

e |

» 1)
. s”

hAEREENG

AR |

i RSP

r .
.
"‘ .

A
.

] =

’
4

.~ - v e -

s

M)

e

,'. s .'. | )

.
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Fact 33: Given any (X.Y)GA:Bx‘XB;, and Rig-elfl. €,>0, then whenever

R 33X -

0<¢<%(F)4 _‘7 bolds for all i € {1.2}, it follows that

i 1B, I '
) -
N 1+, _ ‘
= PX.Y) =1A,(X.)L S 62 Lim, /21
' 1 - Vv, T
o __
¢ 1+7
ok PAX.Y) = 1A,(X.Y)L < ¢ Ltk /21
1 — vy, =
“ = A 2 A '
! where 7, _ €, 5,1 B, If and§ _1A L.
:“:f Proof : By definition,
N IAI(X.Y)I2=IA—BZF2(X.Y)|2 <|A|2+|32F2(X.Y)|2
- TAXX.Y)k = 1A =B\ F(X.Y)L S 1AL + 1B F(X.Y)), .
- Lemma 5 of the Appendix states that

-
-
's

.
-
e

A+ v, (1 +7)
IB,FI(X.Y)IQ Sg"l*._i)- and |BzF2(X.Y)I2$§ 2 !

i‘ 1 - v 1 — ¥, .
whereﬁiIA I, . Hence,

e 71+ 7)) :
- AKX, V)L, € ¢4+ .22 "7V :
l—ylyz
. v (1 + 7)) ( B+ o+
=§ 1+ vy 1+V1 = g l_le2 +V2 ViV,
1 =i 1 - v
1455
172
-p —_
1+
- Deﬁningi(',i _zl_,_ .thenlA(X.Y)), € k1 €. Similarly,
- Ny
1+ 5,
a TAAX. Yl € £ 1[4 &
L =wnv | = .
e Since0 < v, < 1.then inf {K} =1andoccursat 7, =5 =0. Thus. k1. %, 2 1. R
i Py V2 »
o ‘
‘o
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Some Important Facts Which Summarize the Lemmas

Inallcases,i € {1.2}.

1) ” |I'i(X)l_1 “ € ¢ forall X andalle > 0.

2 || ll‘,(X)|_1 - ‘r-,(m]’l Il < 28,2 0x -yI (LEMMA1)

forall X andY and alle > 0.

) I¥(X)1 < gIB, 11X forall X and alle; > 0.

€
DI¥X) — V() < 1B |1+ -2-lBi!2-IX +Y1|- 11X =Y (LEMMA2)

forall X .1 andall€ > O. Moreover,if X .Y € B, then

W (X) — ¥(YH < ¢IBJ- I1+e,8ilBiI2 ]~nx - Y1

B eBl-(14v) 11X —¥I1.

-1 1 1
s (X, X)) < <
) ll [ l( ! X-) II = 1-— M(X 1)A2(XJ h 1- Vy V>
whenever €, < 1 where X, € By, .
518,12
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APPENDIX C

XA

L-A-S CONTRACTION MAPPING PROGRAM RUN

This appendix contains an L-A-S program to check for a contraction mapping and a sample

W~ .
" run of the program. A summary and discussion of the data generated here may be found in
» subsection 3.4.3.

O > rpf.contra

> pro
1 ; Linear Quadratic Nash Game
2 (rdf)=a.bl.b2.c1.c2
3 a.bl.b2.c1.c2(out.e)=
.. 4 a.bl.b2.c1.c2(game)=
o 5 (rdf)=s1.r1,s2.r2
6 rl.r2.;sl.s2(out)=
7 c1(1).s1(*).c1(*)=q1
8 c2(1).52(*),c2(*)=q2
9 ql.rl.q2.r2(lq)=
10 (rdf)=21.z2
11 gq1.g2(mcp)=k1.k2

| 12

13 i(dsc)=0ne

- 14 "Enter the total number of stages in this game.”
- 15 (inp)=ii
16 : Main Loop
17 (stop)=
| 18 a:k1.k2(out.e)=

19 k1.k2(Igng)=k1n.k2n
20 k1n.k2n(out.e)=
21 : Contraction Mapping Constant
22 Kk1l.z1(-)=zz1
23 k2.22(-)=z22
- 24 k1nk1(-)=111
' 25 k2n.k2(-)=112
26 zz1(nrm2)=xz1
27 222(nrm2)=x22
28 ul(nrm2j=xt1

o 29 1t2{nrm2)=xt2
30 xt1.xt2(+)=xt
ot 31 xz1.x22(+)=xz
. 32 xz(inv)=xzi
33 xt.xzi(*)=alf
o 34 xzl.xz2.alf(oute)=
i 35 k1.k2(mep)=21.22
36 kink2n(mep)=k1.k2
] 37 ii.one(-)=ii
- 38 ilif)=a
]

-

T e T T e
QS QG P57, O s




>con

>: Linear Quadratic Nash Game

>(rdf)=a,bl,b2.cl.c2

Enter name of the Data File (DF) for matrix a

Opening file named : contr1.DF
Reading array named : a

Reading array named : bl
Reading array named : b2
Reading array named : cl
Reading array named : ¢2

>a.bl.b2.c1.c2(out.e)=

a
4.75537e-01
4.58790e-02

-1.13295e-04

bl
9.87000e+02
1.23000e+00
-1.01000e-03

b2
1.37000e+00
-1.00000e-03
1.00000e-05

cl
1.00000e+00
0.00000e+00
0.00000e+00

c2
1.00000e+00
0.00000e+00
0.00000e+00

4.58790e-02
3.44463e-01
-7.17458e-05

0.00000e+00
1.00000e-+00
0.00000e+00

0.00000e+00
1.00000e+00
0.00000e+00

>a.bl.b2.cl.c2(game)=

>(rdf)=s1.r1.s2.r2

Enter name of the Data File (DF) for matrix sl

-1.13295¢-04
-7.17458e-05
2.50000e-01

0.00000e+00
0.00000e+00
1.00000e+00

0.00000e+00
0.00000e+00
1.00000e+00

Opening file named : contr2.DF
Reading array named : sl
Reading array named : r1
Reading array named : s2
Reading array named : r2

>rl.r2.s1.s2(out)=

116

>contrl

>contr2
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y .
N rl B
11.000 i
! r2
11.000
. |
= s1 '
te 1.000 0. O.
0. 1.000 0.
g 0. O 1.000
N
s2
o 1.000 0. O.
= 0. 1.000 O.
0. 0. 1.000
~, .
-.‘ >c1(t).s1(*).c1(*)=q1 .
v #1.51(%),c1(*)=q1 '
#2.c1(*)=q1 '
.:‘
- >c2(1).52(*).c2(*)=q2
#1,52(%).c2(*)=q2
- #2.c2(*)=q2
>ql.rl.q2.r2(1q)= b
i > (rdf)=z1.22
i Enter name of the Data File (DF) for matrix z1 >contr3
- Opening file named : contr3.DF
e Reading array named : z1

Reading array named : 22
>q1.q2(mcp)=k1.k2
>

> 1(dsc)=one

>"Enter the total number of stages in this game."

Enter the total number of stages in this game.
> (inp)=ii

*** Matrix ii ***
Enter the dimensions of this matrix. >1.1

Enter the scalar :ii >15
>: Main Loop

> (stop)=




>nli
>con

k1
1.00000e+00

" 0.00000e+00

.'.';'vi\‘:'t."-‘ ‘.

".—n‘~!

0.00000e+00

k2
1.00000e+00
0.00000e+00
0.00000e+00

kin
1.00205e+00
1.55971e-02
-3.14454e-05

k2n
1.00205e+00
1.55969e-02
-3.14449e-05

xzl

1.00000e+00

xz2

1.00000e+00

alf
1.20666e-01

kl
1.00205e+00
1.55971e-02
-3.14454e-05

k2
1.00205e+00
1.55969e-02
-3.14449e-05

kln
1.00230e+00
1.74427e-02
-3.40677e-05

K2n
1.00229e+00
1.74424e-02

-3.40671e-05

-

Coa “a Y
) SV W )

0.00000e+00
1.00000e+00
0.00000e+00

0.00000e+00
1.00000e+00
0.00000e+00

1.55971e-02
1.11861e+00
-4.25852e-05

1.55969e-02
1.11862e+00
-4.25854e-05

1.55971e-02
1.11861e+00
-4.25852e-05

1.55969e-02
1.11862e+00
-4.25854e-05

1.74427e-02
1.13265e+00
-5.02427e-05

1.74424e-02
1.13265e+00
-5.02429e-05

0.00000e+00
0.00000e+00
1.00000e+00

0.00000e+00
0.00000e+00
1.00000e+00

-3.14454e-05
-4.25852e-05
1.06250e+00

-3.14449¢-05
-4.25854e-05
1.06250e+00

-3.14454e-05
-4.25852e-05
1.06250e+00

-3.14449e-05
-4.25854e-05
1.06250e+00

-3.40677e-05
-5.02427e-05
1.06641e+00

-3.40671e-05
-5.02429e-05
1.06641e+00
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xzl
1.20666e-01

xz2
1.20666e-01

alf
1.18329e-01

k1
1.00230e+00
1.74427e-02
-3.40677e-05

k2
1.00229e+00
1.74424¢-02
-3.40671e-05

kln
1.00232e+00
1.76606e-02
-3.43086e-05

k2n
1.00232e+00
1.76603e-02
-3.43080e-05

xzl
1.42782e-02

xz2
1.42782e-02

alf
1.18053e-01

k1
1.00232e+00
1.76606e-02
-3.43086e-05

k2
1.00232e+00
1.76603e-02
-3.43080e-05

kin
1.00233e+00
1.76863e-02
-3.43328e-05

1.74427e-02
1.13265e+00
-5.02427e-05

1.74424e-02
1.13265e+00
-5.02429e-05

1.76606e-02
1.13431e+00
-5.13070e-05

1.76603e-02
1.13431e+00
-5.13073e-05

1.76606e-02
1.13431e+00
-5.13070e-05

1.76603e-02
1.13431e+00
-5.13073e-05

1.76863e-02
1.13450e+00
-5.14426e-05

-3.40677e-05
-5.02427e-05
1.06641e+00

-3.40671e-05
-5.02429¢-05
1.06641e+00

-3.43086e-05
-5.13070e-05
1.06665e+00

-3.43080e-05
-5.13073e-05
1.06665e+00

-3.43086e-05
-5.13070e-05
1.06665e+00

-3.43080e-05
-5.13073e-05
1.06665e+00

-3.43328e-05
-5.14426e-05
1.06667e+00

119

*

s VE YA

AN




k2n
1.00233e+00
1.76860e-02
-3.43321e-05

xz1
1.68558e-03

xz2
1.68558e-03

alf
1.18020e-01

k1
1.00233e+00
1.76863e-02
-3.43328e-05

k2
1.00233e+00
1.76860e-02
-3.43321e-05

kiln
1.00233e+00
1.76893e-02
-3.43353e-05

k2n
1.00233e+00
1.76890e-02
-3.43347e-05

xzl
1.98932¢-04

xz2
1.98933e-04

alf
1.18016e-01

k1
1.00233e+00
1.76893e-02
-3.43353e-05

k2
1.00233e+00
1.76890e-02
-3.43347e-05

1.76860e-02
1.13450e+00
-5.14429¢-05

1.76863e-02
1.13450e+00
-5.14426e-05

1.76860e-02
1.13450e+00
-5.14429e-05

1.76893e-02
1.13453e+00
-5.14592e-05

1.76890e-02
1.13453e+00
-5.14595e-05

1.76893e-02
1.13453e+00
-5.14592e-05

1.76890e-02
1.13453e+00
-5.14595e-05

-3.43321e-05
-5.14429e-05
1.06667e+00

-3.43328e-05
-5.14426e-05
1.06667e+00

-3.43321e-05
-5.14429e-05
1.06667e+00

-3.43353e-05
-5.14592e-05
1.06667e+00

-3.43347e-05
-5.14595¢-05
1.06667e+00

-3.43353e-05
-5.14592e-05
1.06667e+00

-3.43347e-05
-5.14595e-05
1.06667e+00
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kiln
1.00233e+00
1.76897e-02
-3.43356e-05

k2n
1.00233e+00
1.76894e-02
-3.43350e-05

xzl
2.34772e-05

xz2
2.34773e-05

alf
1.18016e-01

k1
1.00233e+00
1.76897e-02
-3.43356e-05

k2
1.00233e+00
1.76894e-02
-3.43350e-05

kin
1.00233e+00
1.76897e-02
-3.43357e-05

k2n
1.00233e+00
1.76894e-02
-3.43350e-05

xz1
2.77068e-06

x22
2.77069e-06

alf
1.18016e-01

k1
1.00233e+00
1.76897e-02
-3.43357e-05

1.76897e-02
1.13453e+00
~-5.14613e-05

1.76894e-02
1.13453e+00
-5.14615e-05

1.76897e-02
1.13453e+00
-5.14613e-05

1.76894e-02
1.13453e+00
-5.14615e-05

1.76897e-02
1.13453e+00
-5.14615e-05

1.76894e-02
1.13453e+00
-5.14618e-05

1.76897e-02
1.13453e+00
-5.14615e-05

-3.43356e-05
-5.14613e-05
1.06667e+00

-3.43350e-05
-5.14615e-05
1.06667e+00

-3.43356e-05
-5.14613e-05
1.06667e+00

-3.43350e-05
-5.14615e-05
1.06667e+00

-3.43357e-05
-5.14615e-05
1.06667e+00

-3.43350e-05
-5.14618e-05
1.06667e+00

-3.43357e-05
-5.14615e-05
1.06667e+00
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k2
1.00233e+00
1.76894e-02
-3.43350e-05

kin
1.00233e+00
1.76897e-02
-3.43357e-05

k2n
1.00233e+00
1.76895e-02
-3.43351e-05

xzl
3.26983e-07

xz2
3.26986e-07

alf
1.18016e-01

k1
1.00233e+00
1.76897e-02
-3.43357e-05

k2
1.00233e+00
1.76895e-02
-3.43351e-05

k1ln
1.00233e+00
1.76897e-02
-3.43357e-05

k2n
1.00233e+00
1.76895e-02
-3.43351e-05

xz1
3.85891e-08

x22
3.85894e-08

alf
1.18016e-01

1.76894e-02
1.13453e+00
~5.14618e-05

1.76897e-02
1.13453e+00
~5.14615e-05

1.76895e-02
1.13453e+00
-5.14618e-05

1.76897e-02
11.13453e+00
-5.14615e-05

1.76895e-02
1.13453e+00
-5.14618e-05

1.76897e-02
1.13453e+00
-5.14615e-05

1.76895e-02
1.13453e+00
-5.14618e-05

-3.43350e-05
-5.14618e-05
1.06667e+00

-3.43357e-05
-5.14615e-05
1.06667e+00

-3.43351e-05
-5.14618e-05
1.06667e+00

-3.43357e-05
-5.14615e-05
1.06667e+00

-3.43351e-05
-5.14618e-05
1.06667e+00

-3.43357e-05
-5.14615e-05
1.06667e+00

-3.43351e-05
-5.14618e-05
1.06667e+00

122

|

LA

g 9l

A

Wy

=




- R

vee

-w W
“ l.) K]

k1
1.00233e+00
1.76897e-02
-3.43357e-05

k2
1.00233e+00
1.76895e-02
-3.43351e-05

kln
1.00233e+00
1.76897e-02
-3.43357e-05

k2n
1.00233e+00
1.76895e-02
-3.43351e-05

xz1
4.55412e-09

xz2
4.55416e-09

alf
1.18016e-01

k1
1.00233e+00
1.76897e-02
-3.43357e-05

k2
1.00233e+00
1.76895e-02
-3.43351e-05

k1ln
1.00233e+00
1.76897e-02
-3.43357e-05

k2n
1.00233e+00
1.76895e-02
-3.43351e-05

xz1
5.37457e-10

xz2

1.76897e-02
1.13453e+00
-5.14615e-05

1.76895e-02
1.13453e+00
-5.14618e-05

1.76897e-02
1.13453e+00
-5.14615e-05

1.76895e-02
1.13453e+00
-5.14618e-05

1.76897e-02
1.13453e+00
-5.14615e-05

1.76895e-02
1.13453e+00
-3.14618e-05

1.76897e-02
1.13453e+00
-5.14615e-05

1.76895e-02
1.13453e+00
-5.14618e-05

-3.43357e-05
-5.14615¢-05
1.06667e+00

-3.43351e-05
-5.14618e-05
1.06667e+00

-3.43357e-05
-5.14615e-05
1.06667e+00

-3.43351e-05
-5.14618e-05
1.06667e+00

-3.43357e-05
-5.14615e-05
1.0666 7e+00

-3.43351e-05
-5.14618e-05
1.06667e+00

-3.43357e-05
-5.14615e-05
1.0666 7e+00

-3.43351e-05
-5.14618e-05
1.0666 7e+00
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5.37463e-10

alf
1.18016e-01

k1

1.00233e+00 1.76897e-02

1.76897e-02
-3.43357e-05

k2
1.00233e+00
1.76895e-02
-3.43351e-05

kin
1.00233e+00
1.76897e-02
-3.43357e-05

k2n
1.00233e+00
1.76895e-02
-3.43351e-05

xzl
6.34284e-11

xz2
6.34291e-11

alf
1.18016e-01

k1
1.00233e+00
1.76897e-02
-3.43357e-05

k2
1.00233e+00
1.76895e-02
-3.43351e-05

kln
1.00233e+00
1.76897e-02
-3.43357e-05

k2n
1.00233e+00
1.76895e-02
-3.43351e-05

1.13453e+00
-5.14615e-05

1.76895e-02
1.13453e+00
-5.14618e-05

1.76897e-02
1.13453e+00
-5.14615e-05

1.76895e-02
1.13453e+00
-5.14618e-05

1.76897e-02
1.13453e+00
-5.14615e-05

1.76895e-02
1.13453e+00
-5.14618e-05

1.76897e-02
1.13453e+00
-5.14615e-05

1.76895e-02
1.13453e+00
-5.14618e-05

-3.43357e-05
-5.14615e-05
1.06667e+00

-3.43351e-05
-5.14618e-05
1.06667e+00

-3.43357e-05
-5.14615e-05
1.06667e+00

-3.43351e-05
-5.14618e-05
1.06667e+00

-3.43357e-05
-5.14615e-05
1.06667e+00

-3.43351e-05
-5.14618e-05
1.06667e+00

-3.43357e-05
-5.14615e-05
1.0666 Te+00

-3.43351e-05
-5.14618e-05
1.06667e+00
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xz1
7.48554¢e-12

xz2
7.48565¢e-12

alf
1.18014e-01

k1
1.00233e+00
1.76897e-02
-3.43357e-05

k2
1.00233e+00
1.76895e-02
-3.43351e-05

kln
1.00233e+00
1.76897e-02
-3.43357e-05

k2n
1.00233e+00
1.76895e-02
-3.43351e-05

xzl
8.83404e-13

xz2
8.83404e-13

alf
1.18020e-01

k1
1.00233e+00
1.76897e-02
-3.43357e-05

k2
1.00233e+00
1.76895e-02
-3.43351e-05

kin
1.00233e+00
1.76897e-02
-3.43357e-05

1.76897e-02
1.13453e+00
-5.14615e-05

1.76895e-02
1.13453e+00
-5.14618e-05

1.76897e-02
1.13453e+00
-3.14615e-05

1.76895e-02
1.13453e+00
-5.14618e-05

1.76897e-02
1.13453e+00
-5.14615e-05

1.76895e-02
1.13453e+00
-5.14618e-05

1.76897e-02
1.13453e+00
-5.14615e-05

-3.43357e-05
-5.14615e-05
1.06667e+00

-3.43351e-05
-5.14618e-05
1.06667e+00

-3.43357e-05
-5.14615e-05
1.0666 7e+00

-3.43351e-05
-5.14618e-05
1.06667e+00

-3.43357e-05
-5.14615e-05
1.06667e+00

-3.43351e-05
-5.14618e-05
1.0666 7e+00

-3.43357e-05
-5.14615e-05
1.0666 7e+00
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k2n
1.00233e+00 1.76895e-02 -3.43351e-05
1.76895e-02 1.13453e+00 -5.14618e-05
-3.43351e-05 -5.14618e-05 1.06667e+00

xzl
1.04246¢-13

xz2
1.04273e-13

alf
1.18080e-01
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