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CHAPTER 1

Introduction

1. Scope of this volume

—--—, This manual describes the English language syntactic analyzer developed by the

PROTEUS Project at New York University, and the version of Restriction Language
which is used to write grammars for this analyzer. This manual describes the version of
the system implemented on DEC VAXen under bsd’ 4.2 UNIX (tm).

2. Roots e T

< This system is a direct descendant of the Linguistic String Parser, developed by the
Linguistic String Project at New York University (since 1973 in collaboration with the
Computer Science Department). In particular, we have tried to maintain as much
commonality as possible in the Restriction Language used for stating grammars. In
developing our new implementation, we have had three objectives:

. ® use LISP. The current Linguistic String Parser is implemented in FORTRAN. Itis

therefore quite efficient but is hard to interface to Al applications, which are usually
best developed in LISP. The PROTEUS system has been entirely implemented in
LISP.

L remain small and modular. The Linguistic String Parser gradually became so large
and complex that further modification was difficult. Through redesign and the
elimination of some features, we have sought to return to a simpler, more easily
modifiable system.

o accomodate different analysis algorithms. One aspect of our current research is the
study of alternative analysis strategies. We have therefore tried to develop a system
which could accomodate different analysis algorithms. In particular, we have
designed the grammar formalism to work with both top-down and bottom-up
analyzers.

3. Structure of this volume

This volume has three parts: a description of the commands for involving the
English analyzer and the Restriction Language compiler; a description of Restriction
Language: and a brief description of the translation rules used in compiling Restriction
Language.
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CHAPTER 2

Parser, Compiler, and Preprocessor

The principal program in our system is the English language syntactic analyzer,
which will usually be referred to simply as the Parser. The Parser takes three inputs: a
grammar of English, a word dictionary, and a set of English sentences. The grammar is
written by the user in PROTEUS Restriction Language. Before this grammar can be
used by the Parser, it must be translated into LISP. This transiation is performed by the
Restriction Language Compiler (henceforth called simply the Compiler).

The Compiler is controlled by a set of translation rules called the Restriction
Language Syntax, or RLS. The RLS is prepared in a form described in chapter 00 of this
volume. Before it can be used by the Compiler it too must be translated into LISP. This
translation is done by the RLS Preprocessor (the Preprocessor is not driven "y a file of
rules, so we do not have an infinite regress of metacompilers). The RLS Preprocessor
need be executed only when the definition of Restriction Language is modified or
extended. Consequently, the Preprocessor will not be invoked by most users of the
PROTEUS system.

1. Accessing the programs

In order to access these programs, the search path must be modified to include the
appropriate PROTEUS directories. This is normally done by a command in the “.login”
file. For ACFS at NYU, the command is

source “proteus/usersetup

2. Invoking the Parser

The Parser reads two input files: a grammar and a dictionary. The Parser is invoked
with the command

xparse -g grammar -d dictionary

If the arguments are omitted on the command line, they will be prompted for
interactively. If the dictionary is incorporated in the grammar file -- so that there is no
separate dictionary file -- the value none should be given for dictionary.

When the Parser begins executing, it produces the prompt sentence>. In response
one can either type a sentence to be parsed or a Parser command; these commands are
described in the section just below. A sentence is a series of words, separated by one or
more spaces, and ending in a period or question-mark. A sentence may extend over
several lines. Case is ignored on sentence input: all upper-cas 'etters are converted to
lower-case before the words are looked up in the dictionary.

As soon as a sentence is entered, it will be parsed. If parses are obtained, then
(under the default settings of the Parser’s switches), the parses and regularized parses
will be printed.
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2.1. Parser commands

Operation of the Parser in controlled by Parser commands. These commands consist
of an asterisk (*), a command name, and (for some commands) an argument to the
command. Some commands turn on and off switches which control future parsing
operations; other comnmands cause immediate actions. The commands are as follows:

2.1.1. *exit
*exit terminates a run of the parser.

2.1.2. *lisp

*lisp turns control over to the LISP interpreter. To resume parsing, invoke the function
parser-top-level.

2.1.3. *[no]trees

*trees causes each parse that is obtained from the analysis of subsequent sentences to be
printed in a parenthesized, indented form. *notrees suppresses the printing of parses.
Default is *trees.

2.1.4. *[nojempties

*empties causes subsequent parse trees to be printed with all nodes of the tree included;
*noempties causes subsequent trees to be printed with empty nodes (nodes not subsuming
any sentence words) omitted. Default is *empties.

2.1.5. *[nolattributes

*attributes causes subsequent parse trees to be printed with the attributes assigned to a
node (except for the translation attribute "Xn") listed after each node name;
*noattributes suppresses the printing of this information. The default is ®*noattributes.

2.1.6. *draw

The command *draw n, when entered after a sentence has been parsed. causes the nth
parse tree of the sentence to be drawn on the screen. Tie tree-drawing program provides
several commands for manipulating the tree. In particular, if the entire tree does not fit
on the screen, commands are provided to shift the portion visible on the screen. To list
the commands available in the tree-drawing program, type "help”. To return to the
parser, type “quit”.

2.1.7. *[nolfailtrace

The *failtrace command causes a trace message to be printed whenever a restriction fails
during the parsing of subsequent scntences. The message gives the name of the
restriction, the node at which the restriction was housed, and the words subsumed by that
node. *nofailtrace turns off this trace. The default it *nofailtrace.

3. Invoking the Compiler

The grammars used for analyzing natural language are written in PROTEUS
Restriction Language, which is described in Chapter 3. Before it can be used by the
Parser, such a grammar must be translated into Lisp. This transiation is performed by
the Compiler, which is invoked with the command
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xcompile -g Restriction-Language-file -o Lisp-file {-t RLS-file]
The Compiler reads the grammar on the Restriction-Language-file, translates it into Lisp,
and writes it on the Lisp-file. If these arguments are omitted in the command line, they
will be prompted for interactively. The RLS (the translation rules used in compiling) are
normally taken from file "rls.out” in the PROTEUS system directory, but this choice can
be overridden by specifying an explicit RLS-file.

Since the generated file is a Lisp program, it can be sent through the Lisp compiler
(liszt) to produce a2 machine language file. The increase in parsing speed which can be
obtained in this way varies with the complexity of the restrictions; typically, speed-up
factors of 1.5 to 2 can be expected.

4. Invoking the Preprocessor

The Preprocessor translates the RLS (Restriction Language Syntax) into the form
needed by the Compiler. It is invoked by the command

Xpreproc

The Preprocessor prompts interactively for the name of the source RLS file and the name
of the file to be generated.

e o oy gy
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CHAPTER 3

Preparing a grammar: BNF and Lists

1. The structure of the grammar

An English grammar consists of four components: BNF; lists; routines and
restrictions; and word dictionary. These components must appear in this order. The
BNF and lists are described in this chapter; the routines and restrictions are described in
the next chapter, and the form of the word dictionary is considered in chapter 5.

The grammar defines many different types of symbols, such as nonterminal
symbols, terminal symbols, routine names, attributes, etc. Any symbol name valid in
LISP may be used: in particular, any sequence of upper and lower case letters, digits,
hyphens, and underscores is allowed, provided the name contains at least one non-digit.
There is one exception: names beginning with "X" are reserved as register names.

2. BNF

The first component of the grammar, the BNF, specifies the context - free portion
of the grammar in an extension of Backus Normal Form. Most of the definitions adhere
strictly to BNF form, with double quotes (") used to enclose any constants in the
definition:

<QUACK> ::= <A> <B> |"OINK".

(like all statements, BNF statements must end in a period.) Each alternative is called an
option, and each item in an option is called an element. Constants, such as "OINK"
above, are also called literals. T'erminal symbols (grammatical categories) are indicated
by placing an * to the left of their name:

<NVAR> 1= <*N> | <*VING>.

Rl )

Any terminal symbol beginning with the letters NULL designates the empty string (this
allows for symbols like NULLN, NULLOBIJ, and NULLC to indicate empty sirings of
different linguistic import).

The BNF section has two functions: one, to specify the context-free grammar, the
other to declare certain names as nonterminal or terminal symbols, i.e., valid node
names. The subsequent sections of the grammar (lists, restrictions, word dictionary) will
not accept a symbol as a node name unless it has appeared somewhere in the BNF.

2.1. Parentheticals

The element/option structure of BNF may be nested using parentheses:
<RNWH> 1= ( "WHO" | "WHICH" ) <VERB> <OBJECT>.

Such parenthesized structures are expanded as part of the process of compiling a
grammar, so the definition above is precisely equivalent to




<RNWH> ::= "WHO" <VERB> <OBJECT> |
"WHICH" <VERB> <OBJECT>.

2.2. Translation rules
Each option is optionally followed by a colon (:) and a lisp expression. This

expression is the translation rule for this option, and is used in generating the regularized
parse tree. Further explanation of these translation rules appears in Chapter 00.

3. Lists

There are two kinds of lists: type lists and attribute lists. They may appear in this
section in any order.

3.1. Type lists

There are certain sets among the BNF symbols, such as the adjunct strings, which
are frequently referred to in the restrictions. Rather than enumerate these sets each
time, they may be given a name, and this name used in the restrictions in place of the set.
These sets are called rypes, and their declarations rnype fists. A type list declaration
consists of the word TYPE, followed by the name of the list, an "=", and then a series of
BNF symbols separated by commas. For example, a declaration for type RADISET
(Right ADJunct SET) might be

TYPE RADISET = RN, RW, RQ, RV, RA, RAl, RD.
sets may overlap--a symbol may belong to any number of types.

There are several type lists which have special significance to the syntactic
regularization mechanism and the conjunction mechanism. These are described in the
later chapters covering these mechanisms.

3.2. Attribute lists

Everv attribute referenced in the restrictions and word dictionary must be declared
in an attribute list. This list has the form

ATTRIBUTE : SINGULAR, PLURAL. COMPARATIVE.

.....
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CHAPTER 4

Preparing a Grammar: Restrictions

This chapter describes the Restriction Language which is used to specify the
procedural portion of the grammar: the restrictions and the grammar routines. This
chapter is not intended as an introduction to the Restriction Language: a separate
publication, An Introduction to Restriction Language, has been prepared for that purpose.
Readers may also wish to consult Sager and Grishman, "The Restriction Language for
Computer Grammars of Natural Language,” Comm. Assn. Computing Machinery 18, 390
(1975) for an overview of the earlier version of the language, as used in the NYU
Linguistic String Parser

A more formal definition of the language is also available to the reader: the RLS
(Restriction Language Syntax). As explained in chapter 6, the RLS is used to translate
Restriction Language into LISP. The RLS and the Restriction Language run-time library
(a set of LISP functions on file egruntime.l), taken together, provide a more precise but
more inscrutable exposition of Restriction Language than that given below.

1. Basic Concepts

The procedural portion of a grammar contains a set of restrictions. These
restrictions are invoked by the context-free parser to verify the correctness of a partial
sentence analysis. A restriction may either succeed. which indicates that the partial
analysis is acceptable (with respect to a particular gramatical constraint), or fail, which
indicates that the analysis is unacceptable and a different analysis should be tried.

{.1. Data structures

Restrictions are able to examine three Jifferent data structures: the parse tree,
attribute lists, and sentence words. The parse tree consists of non-terminal and terminal
nodes. Associated with each non-NULL terminal node is the word it has matched in the
sentence; this word can be accessed (starting from the terminal node) by the WORD
routine in Restriction Language.

Associated with every node in the tree is an attribute list. Each attnibute list
consists of a set of attribute names (as declared in the ATTRIBUTE list of the grammar)
and associated values. This i1s analogous to {(and is represented internally as) a LISP
property list. The “associated value” can be true, another attribute list (thus creating a
tree of attributes), or any other list structure. [he attribute list for a terminal node is
initially obtained from the word definmtion of the word matched by that node: the
attribute lists of other nodes are imnially empty.  Atutnibutes can be added to and removed
from a node by the ASSIGN ATTRIBUTE and ERASE ATTRIBUTE commands of
Restriction Language. The attribute list of a node can be accessed by the ATTRIBUTE
routine and by the HAS ATTRIBUTE predicate.

For historical reasons the variables of Restriction Language are called registers.
Register names are distinguished by the ininal leter X: Any symbol name beginning with
an X may be uced as a register name. A register can pont to any one of the three types
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of data structure: a node of the parse tree, a list element, or a sentence word. Registers
may be declared as the formal parameters and local variables of grammar routines. Such
variables are created when a routine is involved and destroyed on routine exit.
Undeclared registers are global in scope and retain their value until reassigned.

In describing the semantics of Restriction Language, we will often refer to the
notion of a current position: at each step in the execution of a restriction, we say that the
restriction is “looking at” some parse tree node, some list element, or some sentence
word. In the LISP implementation, this “current position” corresponds in some cases to
the value bound to the variable here, and in some cases to the values returned by
grammar routines and other functions.

Every Restriction Language operation also returns an indication of success or
failure. This information is used by the logical operators (AND, OR, etc.) to control the
flow of execution as well as determine the success/failure of the logical operation.
Ultimately this process determines the success or failure of the entire restriction. In the
LISP implementation, failure is indicated by returning a value of nil; it is therefore not
possible to have a routine which succeeds and returns nil.

1.2. Classes of Symbols

The symbols in the grammar are classified into various classes. The BNF
component has non-terminal and terminal symbols. The BNF component also has literals
(represented by strings enclosed in double quotes ("...")). Non-termina! and terminal
symbols and literals are all possible node names. The lists component introduces
atiributes and type list names. The restriction component introduces several additional
types of symbols, including register names.

In describing below the Restriction Language, we have included BNF descriptions
of some portions of the language. This BNF shall use the following terminal symbols:

< *terminal> a terminal symbol from the BNF component

< *non-terminal> a non-terminal symbol from the BNF component
<<node> a node name: a non-terminal. terminal. or literal

< "attribute > an attribute

<‘tvpe> a type list name

< “*register> a register name

1.3. Metagrammatical notation

In describing the Restriction Language, we have supplemented our narrative with
BNF specifications of some of the constricts. A complete BNF specification of the
language is contained within the RLS. The BNF used is the same as that used in the
context-free component of the English grammar. with two additions: the notation

(x)*
means “zero or more instances of x”, and the notation

(x|
means ‘zero or one instances of x'. Recaders comparing the BNF given n this chapter
with the RLS will observe a few changes i1n definitions and symbol names, intended to

make the BNF easier to read (some RLS definitions are constructed to simplify the
semantics or speed the parsing).

One special note: the articles A, AN, and 'HE may be used freely in Restriction
Language to improve readability. Thev arc 1gnored by the compiler and hence do not

2y 1.t s m



appear in the language description given below.

2. Types of Statements

The language has three types of statement: restrictions, grammar routines, and
substatements. These statements differ in the way they are invoked: restrictions are
invoked directly by the parser. The routines and substatements both serve as internal
procedures for the restrictions; the substatements are simple parameterless procedures
which can succeed or fail but do not return values, while routines provide parameters and
local variables and return values. (Routines and substatements were included in the
language to meet different needs: substatements were provided to divide and organize the
tests performed by complex restrictions, while routines were intended primarily for the
procedures which locate parse tree nodes corresponding to basic grammatical relations.)

The bodies of restrictions and substatements have the same structure; they differ
only in their headers, corresponding to their different means of invocation. Routine
bodies, which are described in a se: rate section later in this chapter, are similar to the
subject portion of declarative restriction statements.

3. Housing
Restrictions have the form
<*name> "=" <housing> ":" <body>

"o

where name, the name assigned to the restriction, is any valid symbol name. This name
is not significant internally within the grammar, but is used to refer to the restriction in
traces and other output.

The housing specifies when a restriction is to be executed. It has the syntax

<housing> = <indef> [ <after> |

<indef> = "IN <def-or-type> ("," <def-or-type>)*
<def-or-type> ::= < *non-terminal> | < *type>

< after> = “AFTER"

("OPTION" <opt-spec> |
"ELEMENT" < *integer> <of-option> |
"EVERY" "ELEMENT" <of-option> |
<node> <of-option> )
<of-option> := "OF" "OPTION" <opt-spec> | <*null>
<opt-spec> = < *integer> | <node>

The housing has two parts: the first (indef) specifies the definitions to which the
restriction applies; the second (after) specifies the point in the elaboration of the
definition when the restriction should be executed.

indef is a list which can contain both definition names and type list names. A
definition name (non-terminal) indicates that the restriction is to be housed in the
specified definition. A type list name (type) indicates that the restriction is to be housed
in each definition belonging to the type list.

The after construct specifies to which options of the definition(s) the restriction
applies, and at what point in the construction of a parse subtree corresponding to the
definition the restriction is to be executed. These subtrees are built incrementally; if a
definition D has several elements, daughter nodes will be added below D one by one as
the elements are matched. We can specify, through the housing, that a restriction is to be
executed after one element, two elements, or all the elements of D have been completed.

e L g e T e e e A I
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The after construct may take four forms. The first form is

AFTER OPTION <opt-spec>

which specifies that the restriction is to be executed after all elements of the specified
option have beecn completed (in other words, it is housed on the last element of that
option). The option may be specified either by the name of the first clement of the
option, or by the number of the option. For example, if we have the definition

<letter> 1= <greeting> <body> | <insult> <complaint>
the following two housings are equivalent:

IN letter AFTER OPTION insult:
IN letter AFTER OPTION 2:

The second form,
AFTER ELEMENT < *integer> [ OF OPTION <opt-spec> |

specifies both the option to which the restriction applies and the point in the completion
of that option that the restriction is to be executed. For example, with the above
definition of letter, the housing

AFTER ELEMENT 1 OF OPTION insult:

would execute the restriction after element insult had been matched, but before element
complaint had been matched. If the OF OPTION phrase is omitted, the restriction is
applied to all options of the definition.

The third form,
AFTER <node> [ OF OPTION <opt-spec> |

provides the same capabilities as the second, but allows the element to be specified by
name rather than by number. Again, if the OF OPTION phrase is omitted, the restriction
is applied to all the options.

The final form,
AFTER EVERY ELEMENT [ OF OPTION <opt-spec> |

allows the restriction to be executed repeatedly, once after each element of the definition
has been completed. The afrer construct is optional. If it is omitted, the restriction will
be housed on the last element of every option of the specified definitions.

4. Logical connectives

The body of a restriction or substatement is a compound statement, which is built up
out of simple sentences using a variety of connectives according to the following syntax:

<compound> ::=  "IN" <subject> "," <compound> |
"BOTH" <compound> "AND" <compound> |
“EITHER" <compound> “OR" <compound> |
"IF" <compound> "THEN" <compound>
[ “"ELSE” <compound> ]|
"NOT" <compound> |
. <simple>.
The IN phrase resets the present position at which the following sentence or sentences
will be evaluated. For example,
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IN ASSERTION,
BOTH CORE OF SUBJECT IS PLURAL
AND CORE OF VERB IS PLURAL

causes the two sentences, CORE OF SUBJECT IS PLURAL and CORE OF VERB IS
PLURAL to be evaluated while looking at the node ASSERTION. The allowed form for
subject are described in a later section.

The other connectives provide the basic Boolean operations: conjunction,
disjunction, implication, and negation. In all cases the language evaluates only as many
consitutent sentences as are needed to determine the success or failure of the compc :nd
sentence. Specifically, in the case of BOTH A AND 8. if A fails, B is not executed. In
the case of EITHER A OR B, if A succeeds, B is not executed.

The rule for the Boolean operators is that each operand is evaluated with the same
initial position - the current position when the Boolean operator is invoked. This means,
for example, that if

BOTH SA AND $SB

is executed while positioned at parse node V, both SA and $SB will be executed with
initial position = parse node V.

5. Elementary sentence types

The sentences in Restriction Language are of two types: declarative sentences and
assignment operations. Declarative sentences have a subject-predicate structure
(declarative sentences state conditions; the sentence succeeds if the condition is true).
Assignment operations can assign a value either to a register or to a node attribute.

6. Declarative seatences: subject forms

The primary sentence form in Restriction Language is a declarative sentence with a
subject-predicate structure. Roughly speaking, the subject locates a parse tree node. a
list, or a sentence word and the predicate asscrts some property of the located item,
although this division is not strictly observed. [he sentence will fail if either the item
cannot be located (subject failure) or the property does not hold (predicate failure).

Locating an item of interest may require a series of actions. [f subj-a and subj-b are
subject forms, then

subj-a OF subj-b
means to apply the locating action of subj-b followed by that of subj-a. For example,
CORE OF COELEMENT SUBJECT
applies the actions of COELEMENT SUBJECT followed by those of CORE. The OF
construct is only allowed after some subject forms, as indicated in the detailed syntax
given below.

A register name may appear after some subject forms, to indicate that the item
located by the subject is to be stored in the specified register. Thus

CORE X1

means locate the CORE and store it in register X1. In a "subj-a OF subj-b” construction,
a register may follow each subject form:

CORE X1 OF COELEMENT SUBJECT X2

means to locate COELEMENT SUBJECT. store that node in X2. locate CORE. and
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store that node in X1.

6.1. Subjects which invoke routines
The primary subject form is a reference to a routine. It has the form
<‘*routine-name> <args> [<*register>] ["OF" <subject>]
where

<args>::= <node>|
“(" <node> (“,” <node>)* ")"|
<*null>
This form invokes routine routine-name with argument(s) args. (These are in addition to
the implicit argument, namely the "current position” when the routine is invoked.) The
routine may be either one predefined by the system or one defined in the grammar. Four
routines are predefined in the current system. Three of these take no explicit arguments:

NAME
(if looking at a node of the parse tree) returns the name of that node

WORD
(if looking at a terminal node of the parse tree) the word matching that node

LAST-ELEMENT
(if looking at a non-terminal node of the parse tree) the last immediate descendant of
that node

The fourth routine has one explicit argument: A

ATTRIBUTE(a)

(if looking at a node of the parse tree or at an attribute list) if the node or list
includes an attribute a, succeed and return “looking at” the value associated with that
attribute.

A node name appearing by itself:
<node>[< *register>|["OF" <subject>|

causes the grammar routine STARTAT to be invoked with that node name as argument.
The normal definition of STARTAT has the following effect: if the current node has the
name specified, the routine remains there; otherwise the level immediately below the
current node is searched, left to right, for a node of that name.

6.2. FIRST-ELEMENT
The FIRST-ELEMENT subject has the form
FIRST-ELEMENT [WHICH <predicate> | [OF <subject>|]

Starting at a node of the parse tree, it scarches the level below that node from left to
right for a node satisfying predicate (the allowable predicate forms are described betow).
If not initially at a node, or if no immediate descendant satisfies predicate. the subject
fails. Examples of this construct are
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FIRST-ELEMENT WHICH IS NOT EMPTY
FIRST-ELEMENT WHICH HAS ATTRIBUTE LOVEABLE

Omitting the predicate is equivalent to having a predicate of true -- the subject goes to the
leftmost immediate descendant of the current node.

FIRST-ELEMENT s intended for use primarily in grammar routines, as the basic
construct for searching downward in the parse tree.

6.3. Other subject forms

Two other simple subject forms are allowed A register name by itself causes the
restriction to "look at” the contents of the register. The subject form "PRESENT-NODE’
causes the restriction to stay wherever it is (at the node housing the restriction, if there
were no preceding "IN <subject>" phrases).

7. Declarative sentences: predicate forms

The predicate is the second part of the subject-predicate declarative sentence form.
The predicate assorts some property of the item located by the subject; if the property is
true, the predicate succeeds. In addition to the predicates to be described below, there is
a dummy predicate "EXISTS";

<subject> EXISTS
will succeed precisely if <subject> succeeds.

An (affirmative) subject-predicate construct will succeed if the subject succeeds and
the predicate succeeds. For each affirmative predicate there is a corresponding negative
predicate, formed by inserting "NOT" according to the usual rules tor English:

IS - ISNOT
HAS - DOES NOT HAVE
EQUALS - DOES NOT EQUAL

A sentence with a negative predicate will succeed if the corresponding affirmative
sentence would fail (either because the subject fails or the predicate fails)'. There is no
negative form for the EXISTS predicate.

7.1. Node name tests
The predicate
IS NAMED <node>

succeeds if the current position is a parse tree node with the name specified. This
predicate may be stated more tersely as

IS <node>
The name may also be given by a register:
IS NAMED < “*register>

succceds if regisrer contains a symbol equal to the name of the current node (the word
"NAMED" may not be omitted in this case, when the predicate references a register).
The test

- This is different from the interpretation of negative sentences 1n the original LSP Restriction
Language.
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IS OF TYPE < °type>
succeeds if the name of the current node is on the type list *type.

7.2. Attribute tests

To each node in the parse tree we can assign a set of attributes. Terminal nodes
receive attributes from the dictionary entries for the words they match. In addition, any
node can be assigned a node attribute by the ASSIGN NODE ATTRIBUTE command,
which is described below. Each node attribute has a value; this value can either be true
or a set of attributes and values.

The predicate

HAS ATTRIBUTE < *attribute>
is used to test for the presence of a particular attribute on a node or on an attribute list.
This predicate may be stated more tersely as
IS <*attribute>
The attribute name may also be given by a register:
HAS ATTRIBUTE < *register>
succeeds if the current position (node or attribute list) has an attribute equal to the

symbol in register (again, the terser form “IS" cannot be used when the predicate
regerences a register).

Word definitions are organized hierarchically, with the values of some of the
attributes being themselves attribute lists. If we wanted to test whether a node we have
located is a TV with attribute OBJLIST and sub-attribute NSTGO (i.e, N: (OBJLIST:
(NSTGO))) we would have to write several sentences using the predicates just described;
for example,

BOTH PRESENT-NODE ISTV
AND ATTRIBUTE OBJLIST OF PRESENT-NODE
HAS ATTRIBUTE NSTGO

Restriction Language allows us to combine the two attribute tests in a single predicate,
using the operator ":" (meaning "with attribute"):

BOTH PRESENT-NODE IS TV
AND PRESENT-NODE HAS ATTRIBUTE OBJLIST:NSTGO

The general form of this predicate is
HAS ATTRIBUTE < *attribute> (":" (<symbol> | <*register>))"
ot
IS <*attribute> (" (<symbol> ! < *register>))*
Taking this one step further, we may combine the tests for node name and attributes:
PRESENT-NODE [S TV:OBILIST:NSTGO
corresponding to the general predicate form

IS <node> (":" (<symbol> | <*register>))*

7.3. Other node tests

Two other predicates are provided for testing parse tree nodes.
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IS TERMINAL
succeeds if the node is a terminal node of the tree;
IS EMPTY

succeeds if the node subsumes no sentence words (i.e., if all the terminal nodes below
this node are NULL nodes). N

B =TS

7.4. Equality test

Several subject forms (such as the routines NAME and WORD) evaiuate to LISP i
symbols. To test these symbols, Restriction Language provides the predicate. K

EQUALS (<symbol> | <*register>)

which succeeds if the value of the subject is equal to the symbol or the contents of the
register. o

8. Assignment statements

In addition to the declarative statement forms described in the last two sections,
Restriction language provides commands for assigning values to registers and assigning
attributes to nodes.

8.1. Register assignment

» v_»_ >

The statement form

<‘*register> "=" <subject> 4
]
assigns 1o register the value of subject. This value may be a node, an attribute list, or a
symbol. For example,
§
X-SUBJ=CORE OF SUBIJECT h
X-OLIST= ATTRIBUTE OBIJLIST OF PRESENT-NODE
8.2. Node attribute assignment
I'he statement form
ASSIGN ATTRIBUTE < *attribute> [WITH VALUE (<symbol> | < *register>)] ‘
assigns to the node at which the restriction is housed the specified attribute and value. If .
the VALUE phrase is omitted, the attribute will be given the value true. The statement
form
ERASE ATTRIBUTE < *attribute> .
erases (deletes) the specified attribute from the node at which the restriction is housed. i’
9. Substatements
Substatements have the form
< *substatement-name> " " <body> .
The substatemen: name must begin with a "$", and otherwise conform to the rules for K
symbol names. The body of the substatement, just like the body of a restriction, may be N
any compound statement.
Substatements act as parameterless procedures, which are evaluated only to
determine whether they succeed or fail. They are referenced by writing the name of the
substatement; this may appear at any point where a compound statement may appear. .
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For example,

CHECK-PETS = IN PETS: BOTH SCATS AND SDOGS.
SCATS = ELEMENT CATS IS NOT EMPTY.
$DOGS = ELEMENT DOGS IS NOT EMPTY.

is equivalent to

CHECK-PETS = IN PETS:
BOTH ELEMENT CATS IS NOT EMPTY
AND ELEMENT DOGS IS NOT EMPTY.

A substatement is considered to "belong to” the immediately preceeding restriction
or routine. It can be referenced only by that restriction/routine or by other substatements
which belong to that restriction/routine. The same name can be used to label different
substatements within different restrictions or routines.

10. Routines
Routines have the form
ROUTINE <*name> "=" (" <formals> ")"] <compound-subj> ".”

where name is the name of the routine (any valid symbol name), and formals -- the list
of formal parameters -- is a list of one or more register names separated by commas.

The semantics of routine parameters is modeled after LISP. Name scoping for
registers is dynamic (undeclared registers are globally accessible). Parameters are passed
by value. The number of arguments in a call must exactly match the number of formal
parameters.

Routine names are global: a routine may be referenced in any other routine or
restriction. Nested and recursive calls are allowed.

In constrast to substatements, routines are evaluated for their value (in addition to
their success or failure). The body of a routine may be any valid subject form, as
described above. In addition, certain compound subjects are allowed in routines. They
have the syntax:

< compound-sub)> =
IF <compound> THEN <compound-subj> ELSE <compound-subj>
EITHER <compound-subj> OR <compound-subj> |
<subject>.

The IF ... THEN ... ELSE ... construct has the following semantics: the statement
following the IF is evaluated; if it succeeds, the compound subject following the THEN
is evaluated and returned as the value of the entire expression; otherwise the compound
subject following the ELSE is evaluated and returned as the value of the cxpression. [he
routine STARTAT contains an example of such a construct:

ROUTINE STARTAT (X) -
IF PRESENT-NODE IS NAMED X
THEN PRESENT-NODE
ELSE FIRST-ELEMENT WHICH IS NAMED X.

The EITHER ... OR ... compound subject has the following semantics: the first
compound-subj is evaluated; if it succeeds, its value is returned as the value of the entire
expression. Otherwise, the second compound-subj is evaluated and returned as the value
of the entire expression.




- -

' i A D)

- b

CHAPTER §

Preparing a Word Dictionary

The word dictionary must contain the definitions for all words (and punctuation) in
the text to be parsed. Each word definition specifies a set of categories and attributes for
a word. Conventionally, the words are organized in alphabetical order; the Parser,
however, does not require any particular ordering of entries.

The dictionary may be provided in two ways: either as a part of the grammar file,
or as a scparate file. The format of the dictionary entries in the two cases is quite
different. For dictionaries prepared as part of the grammar file, the format is a minimal
subset of the format accepted by the Linguistic String Parser. This simple format is
suitable for small teaching grammars. When prepared as a separate file, the dictionary
entries take the form of cals on LISP macros. Those macros automatically generate
definitions of inflected forms of verbs and nouns. In addition, this form of dictionary
entry does not have to be processed by the Compiler. These features make the separate
dictionary file more suitable for larger applications. The dictionary-with-grammar format
is described in the next section; The separate-dictionary format in the section following.

The word dictionary entries shown here are examples of form only, and are
frequently incomplete or linguistically incorrect.

1. Dictionary with Grammar

If the dictionary is incorporated in the grammar file, it must follow the BNF and
ATTRIBUTE list; conventionally, the dictionary goes at the end of the grammar file.

A word definition has the structure of a trce. At the root of the tree 1s the word
itself. Each immediate descendent of the root 1s a category (a terminal symbol of the
grammar). The subtree below each category gives the attributes of a category, the
attributes of the attributes, etc.

The simplest form of a word definition consists of a word followed by a list of
categories, separated by commas:

FISHN, V, TV.

The attributes of a category are written after that category, scparated by commas,
enclosed in parentheses, and preceded by a colon:

BOOK N:(SINGULAR,NONHUMAN).

~ An attribute may be assigned attributes of its own in a similar fashion:

ENJOYS TV:(SINGULAR.OBJLIST:(NSTGO,VINGO)).

An attribute must be a terminal or nonterminal symbol of the BNF grammar, a symbol
on the attribute list, or a quoted character string.

Blanks may be used freely, except within symbol names, to enhance readability. A
definition may extend over more than one line and must be terminated by a period.

Certain words, which are referenced in the grammar only as literals, are not
assigned any categories. They must nontheless appear in the word dictionary:

17
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Some words must be enclosed in double quotes, namely, those words containing a
special character not allowed in LISP symbols, and the articles A, AN, and THE, which
are otherwise considered noise words and ignored by the Restriction Language compiler.
For example,

"THE" T:(DEFINITE).

2. Separate Dictionary File

If the dictionary is prepared as a separate file, it takes the form of a set of calls on
LISP macros. This file is used directly by the Parser; it is nor preprocessed by the
Compiler.

The basic macro for defining words is word. It takes two arguments:
{word word category-arttribute-list)

word is the word itself. category-artribuze-list is a list of the categories assigned to the
word enclosed in parentheses, with each category optionally followed by an attribute list:

(category [attribute-list] category [attribute-list]...)

Each attribute-list is in turn a parenthesized list of attributes, with each attribute
optionally followed by its value (another attribute list):

{attribute [value] attribute [value]...)
If value is omitted, the value associated with the attribute is true.
For example, the entry shown in the previous section for “enjoys”,
enjoys TV: (SINGULAR, OBIJLIST: (NSTGO, VINGO)).
would have the following form if it appeared on a separate dictionary file:
(word enjoys (TV (SINGULAR OBJLIST (NSTGO VINGO))))

2.1. noun and verb macros

In addition to the basic word macro, two macros are provided for automatically
generating the inflected forms of nouns and verbs. These two macros take kevword
arguments; in other words, the macro call is of the form

(macro-name keyword argument keyword argument...)

The keywords are distinguished by ending in a colon (":"). Most of the arguments are
optional; if the keyword and associated argument are omitted, a default value will be
used (as described below for each argument).

The noun macro takes four arguments:

root: (required) the singular form of the noun

plural: (optional) the plural form of the noun. If omitted. uscs singular form of
noun + "s”.

Xn: (optional) the value of the Xn (translation) attribute of the word, which

is used in composing the regularized parse tree. If omitted, uses singular
form of noun.
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attributes: (optional) a list of the attributes and associated values (in a form similar
to attribute-list above) to be assigned to both the singular and plural
forms of the word (in addition to the Xn arttribute, and the SINGULAR
and PLURAL arttributes). If omitted, no additional attributes are
assigned.

- oa oaia

To iljustrate the noun macro, consider the exampie
(noun root: cat attributes: {(ncount))
This would have the same effect as
(word cat (SINGULAR NCOUNT Xn {cat singular))
(word cats (PLURAL NCOUNT Xn {cat plural))

The verb macro takes eight arguments:

root: (required) the infinitive and third-person plural form of the verb

Ipsing: (optional) the third-person singular (present tense) form of the verb. If
omitted, uses root = "s”.

past: (optional) the past tense form of the verb. If omitted, uses root - “ed”
(or root = "d” if root ends in "e”).

pastpart: {optional) the past participle of the verb. [f omitted, uses past tense
form.

prespart: {optional) The present participle of the verb. If omitred, uses root - final
“e", if present ~ “ing”.

objlist: (required) the list of acceptable objects for the verb

Xn: (optional) the value of the Xn (translation) attribute of the verb

{combined with “present” or “past” for tensed verb forms). This
attribute is used in composing the regularized parse tree. [f omitted, uses
root form of verb.

ttributes: (optional) a list of the attributes und values {in a form similar to
auribute-livt above) to be assigned to adl torms of the verb (1in addition to
the OBJLIST and Xn attributes). If omitted. no addinonal attributes are
assigned.

To illustrate the effect of the verb macro, consider the example
{verb root: bake objlist: (NULLOBJ NSTGO)

This has the same effect as

VA
»

A
o (word bake  (V (Xn bake OBILIST (NULLOBI NSTGO))
R}'\ TV (PLURAL Xn (present bake)
»

OBJLIST (NULLOBJ NSTGO)))
(word bakes (TV (SINGULAR Xn (present bake)
: - OBJLIST (NULLOBJ NSTGO))))
",' ;: {word baked (TV (Xn (past bake) OBJLIST (NULLOBI NSTGO))
"'5:. VEN (Xn bake OBILIST (NULLOBJ NSTGO)
e POBJSLIST (NULLOBINY
{(word baking (VING (Xn (prog bake) OBJLIST (NULLOBJ NSTGO))))
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2.2. Multipie definitions

A dictionary can contain two (or more) definitions for the same word. In such a
case, the category lists of the several definitions are concatenated to form the category
list used by the parser. For example, if the dictionary contained the entries

{noun root: answer)
(verb root: answer objlist: (NULLOBJ NSTGO))

the word "answer” would be assigned the categories N, V, and TV, and the word
"answers” would be assigned the categories N and TV.
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CHAPTER 6

Translation Rules

The context-free (BNF) component of the grammar can be extended to a transiation
grammar by associating a transiarion rule with each production {(each BNF option). We
associate a translation (a LISP list structure) with each node in the parse tree of a
sentence we have analyzed. The translations of the terminal nodes are obtained from the
corresponding dictionary entries. The translations of the non-terminal nodes are then
computed bottom-up in a compositional fashion. Associated with the production which
r expanded a non-terminal node is a translation rule which computes the translation of this
node as a function of the translations of the nodes immediately below in the tree. The

’ translation of the root node of the tree is the translation of the entire sentence.
o
These translation rules are used in the PROTELUS system to produce a regularized
syntactic structure -- prinicipally, to map all types of clauses into an operator-operand
M form. The rules could also be used to produce something closer to a logical form, in the
N manner of Montague and Gazdar. What follows is a rather terse summary of the form of
N the translation rules. A more discursive description of the form of these rules, and how
N they are used, may be found in Svnractic Regularization in PROTEUS by Jean Mark
Gawron (PROTEUS Project Memo #3).
3 1. Where they go
s Each option in the BNF component may be followed by u translation rule: the
. general form of a BNF rule is
’ <svmbol> = option : {transiation-rule} option : {translation-rule}
- [f the translation rule is omitted (along with the colon and braces). a derauit rule of
- 'NULLSEM" is used, which vields a trans{ation value of nif
s
5
< 2. Translations of terminal nodes
The translation of a terminal node is taken from the Xn attribute of that node. As
noted above in the description of the word dictionary, both the noun and verb macros
:: include an Xn: argument to specify the translation of the word.
-
: 3. Elements and structures of transiation rules
> Translation rules are assembled using a small sct of elements and combining rutes.
] 3.1. Elements
< . .
& The basic elements of the translation rules are of two types: constants and
"’_ references to transiations of nodes on the level immediately below. A node on the level
¢ immediately below can be referred to by its name or by its position (counting the leftmost
) immediate descendant as 1). Thus the following two rules both specify that the
translation of node A is equal to the translation of node C immediately below:
.' |
L) ‘,1




e s A,

tv
9

i

<A>
<A>

<B> <C> <D> :{C}.
<B> <C> <D> {2}.

]

A reference by position is particularly useful when parenthesized expressions are used in
the BNF. The rule

<A> 1= <B> (<HE> | <HO>) <D> :{2}.
will be expanded into a rule with two options:
<A> 1= <B> <HE> <D> : {2} | <B> <HO> <D> : {2}.
Reference by position is also needed when a BNF rule contains two elements with the

same name. In such cases a reference by name gets the translation of the first (leftmost)
element. Thus the following two rules are equivalent:

<A> 1= <B> <C> <D> <C> :{C}.
<A> 1= <B> <C> <D> <C> {2}.

Any LISP atom which is not a symbol of the grammar is interpreted as a constant.
For example,

<A> 1= <B> <C> <D> :{quack}.

specifies that the translation of A is the symbol quack, regardless of the translation of the
immediate constituents of A. (A caution: the compiler does not check that a grammar
symbol specified in a translation rule is an element of BNF rule with which it is
associated; thus the following

<A> 1= <B> <C> <D> :{E}.

would compile, assuming E was a grammar symbol, but would fail (return nil as the
translation) during parsing.)

3.2. List structures

These translation rule elements can be combined into list structures using standard
parenthetical notation. For example. "(quack mooe)” creates a list with two clements,
‘quack” and "moo”. Each component of a parenthesized hist can be erther another list or
one of the clements described above (4 constant or a reference to an immediate
constituent). If a component is preceded by an exclamation mark (!) then it will be
spliced into the list. For example, if the translation of node D 1s "(ho hum)”, then the
rule

<A> 1+ <B> <C> <D> : {(quack D)}.

with yield a translation for A of "(quack (ho hum))”, while
<A> 1= <B> <C> <D> : {(quack ! D)}.

with yield a translation for A of "(quack ho hum)”.

If the name of an element in the translation rule is followed by an asterisk (%), the
value computed will be the concatenation of the translations of all the elements of the rule
with that name. For example, the rule

<A> = <B> <C> <D> <C=> {(C *y}.
will assign as the translation of A the concatenation of the translation of the two nodes
nam<c C.

In addition to the implicit manipulation of list structurc using the parenthetical
notation, some LISP functions may be invoked directly to create and decompose list
structures. These functions are
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car cdr cadr cddr caddr append cons appendl gensym

(the list of these functions is stored as the value of the global variable allowed-lisp-
functions which is defined in file compiler/sem-compile). These functions are invoked
using standard LISP notation. Such a function call may stand by itself as a translation
rule, or may be used as a component of a list created using the parenthetical notation.
Each argument to the function can be any element or structure acceptable as a translation
rule. For example, if the translation of B is "(ho ho)” and the translation of C is "(quack
quack)”, the rule

<A> 1= <B> <C> : {((car B) (car ))}.

will compute for A a translation of “(ho quack)”.

RS

4. Simplification

The procedure for evaluating translation rules includes a simplifier which can
perform lambda conversions. The simplifier looks for list structures of the form

((lambda (var) expr) arg)

and performs the lambda conversion, binding variable var to arg, evaluating expression

expr, and then replacing the entire structure by the value of the expression. The
. simplifier also eliminates "extra” parentheses: if the first element of a list is itself a list
and is not a lambda expression, the parentheses of the inner list are removed. For
example, “((a b) c d)" would be simplified to “(a b c d)".

There are a number of restrictions on the operation of the simplifier. It is not
- applied at every level of the tree; rather, it is only applied a nodes whose names appear
on the list SIMPLIST which should be defined as a TYPE list in the grammar. The
lambda converter uses a one-pass algorithm, so there are restrictions on the positions of
lambda expressions which wiil be converted. The details of the simplifier are described
in the PROTEUS Project Memo Syntactic Regularization in PROTEUS.




CHAPTER 7

Conjunctions

The analysis of coordinate conjunction is a difficult problem, and it has a significant
impact on any language processing system which aims to treat conjunction with some
degree of generality. We describe in this chapter the mechanisms provided in the
PROTEUS Parser for coordinate conjunction. These mechanisms are quite simple and
quite general, but we do not pretend that they cover the phenomena with the breadth of,
say, the Linguistic String Parser.

For the purpose of the presentation here, we divide the task of handling coordinate
conjunction into five parts:

(1) creating basic constituent structures for conjunction

(2) constraining these structures to avoid redundant and ungrammatical analyses
(3) expanding (regularizing) conjoined structures

(4) adapting the restrictions to process conjoined structures

(5) adapting the syntactic regularization rules to process conjoined structures

LISP procedures in the PROTEUS parser are provided to create the constituent structure
(task 1) and expand “reduced” structures (task 3). The constraints on conjunction (task
2) must be stated as restrictions in the grammar. Adapting the regularization rules (task
5) is achieved largely through the use of the conjunction expansion procedure. This
procedure is also of benefit in adapting the restrictions (task 4), although it provides only
a very limited solution in this area.

1. The structures

The basic structure provided for conjunction is a symmetric one, with a node of type
X dominating a two nodes of type X, separated by a conjunction and optionally preceded
by a scope marker ("both”, “either”, etc.). In terms of BNF,

<X>:= <scope-marker> <X> <conjunction> <X>

scope-marker X conjunction X

in tree structure

This structure could be used to analyze, for example, “Mary likes milk and Sam likes
cookies”:




ASSERTION

NN

scope-markerASSERTION conjunction ASSERTION
! ‘ i

NULL Mary likes milk  and  Sam likes cookies

To avoid redundant analyses (for example, that the conjoining in “Sam likes cookies and
cake" could be analyzed as N and N, LNR and LNR, NSTG and NSTG, NSTGO and
NSTGO, or OBJECT and OBJECT), we restrict conjoinings (the X’s above) to members
of the STRING and LXR lists.

By itself, this structure is not sufficient to account for sentences such as "John baked
and Mary ate a cake.” We can describe this sentence as being of the form ASSERTION
and ASSERTION, with the OBJECT omitted from the first ASSERTION. Similarly, we
could describe the sentence "John baked a cake and drank some milk." as being two
conjoined ASSERTIONSs, with the SUBJECT omitted from the second ASSERTION.
More generally, in a structure of the form X, and X,, we must allow some of the trailing

elements of Xl and some of the initial elements of X, to be omitted.

We will represent omission in our parse trees not by actually omitting the element,
but rather by giving a node the value NULLC-L (for omission to the left of a
conjunction) or NULLC-R (for omission to the right of a conjunction)., Thus "John
baked and Mary ate a cake.” would be analyzed as

ASSERTION

TR

scope-marker ASSERTION conuacton ASSERTION

VAN PN

NULL SUBJECT VERB OBIECT and SUBIECT VERB OBJECT

John baked NULLC-L Mary

and "John baked a cake and drank some milk.” would be analyzed as
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ASSERTION

scope-marker ASSERTION conjunction ASSERTION
| / | \ / \
! NULL SUBJECT VERB OBJECT and SUBJECT VERB OBIECT
t !

John baked a cake NULLC-R drank some milk

For several purposes -- applying restrictions, computing semantics -- we may want
to create a more regular structure, without omitted elements. We can create such a
structure through a process of conjunction expansion, which replaces NULLCs by the
value of the corresponding element in the other conjunct. This process would, for
example, change the tree just above to

ASSERTION
scope-marker ASSERTION conjunction ASSERTION
NULL SUBJECT VERB OBJECT and SUBJECT VERB OBIJECT
Ichn Daned RINNENY Iohn NIERIN some miea

2. Creating conjoined structures

AL Dl

We have chosen to incorporate all the possible conjoined structures into the
context-free component, rather than creating them dynamically during parsing (as is done
in some ATNs and the Linguistic String Parser). This may be somewhat slower,
particularly for sentences without conjunctions, but it keeps the parsing procedure simple.

. The parser provides a mechanism for automatically introducing the productions for
, conjoined structures. The Restriction Language statement

METARULE - metaconj.
adds to the definition of every symbol X on the STRING and LXR type lists the option
) <SCOPE-WORD> <X> <CONJ-WORD> <X>
‘ These options are added when the grammar is loaded, at the point where the
' METARULE statement is encountered., The METARULE statcment should appear

after ail the non-conjunction-specific restrictions; in this way the housing for these
restrictions does not have to be adjusted for conjunction.
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The user must provide explicit definitions in the grammar for SCOPE-WORD and L4

CONJ-WORD. In addition, to allow for omissions, NULLC-L and NULLC-R options 3

must be explicitly included (for example, one would add :

<SUBJECT> ::= ... | <*NULLC-R> e,

<OBJECT> := ...|<°*NULLC-L>

to handle the two examples given above). u

3. Constraining conjoined structures .l:

The context-free rules by themselves will produce a blizzard of parses, and so must y

be constrained. In particular, NULLCs must be constrained to occur only in conjoined o

structures, and .only in the correct patterns (e.g., to exclude a single NULL-C in the “

middle of a string). These constraints must be enforced by restrictions in the grammer.

4. Expanding the conjoined structures

-

We noted above that, in order to simplify the restrictions and syntactic ¢
regularization rules which must apply to conjoined structures, we want first to "expand” ,
these structures, filling in omitted elements with the corresponding element from the '
other conjunct. The parser provides a built-in routine COPY-CONJ which performs this -
regularization. This routine is to be executed at the root node of a conjoined structure (a "
node <X> dominating <SCOPE-WORD> <X> <CONJ-WORD> <X>). It takes .
no arguments, and so may be invoked o3

CONJ-COPY EXISTS.

This routine is unusual in that it is the only operation in Restriction Language which -
directly modifies the parse tree.

CONJ-COPY relies on two lists: NULLC-LNODES, a list of all symbols in the
grammar whose value can be NULLC-L, and NULLC-RNODES, a list of all symbols in
the grammar whose value can be NULLC-R. These lists must be given explicitly in the
grammar (by statements TYPE NULLC-LNODES - ... and TYPE NULLC-
RNODES - ...).

AN

5. Applying restrictions

Restrictions which are executed after CONJ-COPY has been applied will "see” the
expanded parse tree, with omitted nodes filled in. However, no mechanism is currently
provided for automatically postponing restrictions until CONJ-COPY has applied, or for
automatically applying restrictions to each conjunct of a conjoined structure. Thus,
accommodating restrictions for conjunction is at present largely the responsibility of the
grammar writer.

PARARAAS .

v e e e e,

6. Applying syntactic regularization rules

Associated with each production added by the "metaconj” metarule is a syntactic
regularization rule:

<X>:  ...|<SCOPE-WORD><X><CONJ-WORD><X>:(324)

Suppose the CONJ-WORD is "and”, and that its regularized form is also "and”. This
rule would then translate a structure of the form X/ and X2 into “(and X1’ X2'), where
X1’ and X2’ are the translations of X! and X2.

If the conjoined structure contains an omission, we don’'t want to compute the
regularized form until the omitted elements have been filled in by CONJ-COPY. Tlo do

.
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this, the grammar must assign the attribute CONJOMIT to nodes which dominate a
conjunction omission that has not yet been filled in. If the regularized syntactic structure
would normally be computed at 2 node N, but this node has the CONJOMIT attribute,
computation of the regularized structure will be postponed (it will get computed as part
of some larger structure higher up in the parse tree).
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