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Conjunctive Kernels 2

Introduction

Research during the last decade has led to increased generality in

item response theory. Important results include multidimensional item

response models (Embretson, 1984; Fischer, 1973; McKinley & Reckase, 1983),

locally dependent models (Kempf, 1977; Fischer & Formann, 1982), tests for

unidimensional and locally independent models (Holland, 1981; Kelderman,

1984; Molenaar, 1983; Rosenbaum, 1984; Yen, 1981), and attempts to distin-

guish local dependence from multidimensionality (Goldstein, 1980; Hambleton,

Swaminathan, Cook, Eignor, & Clifford 1978; Kelderman, 1984).

Applications of extended item response theory have also appeared,

notably in componential reasoning models (Sternberg, 1977; Whitely, 1980).

The componential approach involves breaking down each item reflecting a

global ability or trait into subtask items. The subtask items presumably

reflect component abilities/traits that are individually necessary for

having the global attribute. Statistical procedures are then used to fit

multidimensional item response models to subtask performance measures

(Embretson, 1984; Fischer & Formann, 1982; Whitely, 1980).

Componential cognitive models as well as other serial process models

(e.g., Anderson, 1981) imply a nonadditive combination rule for items that

reflect distinct, individually necessary ability components. In particular,

if binary items were used to reflect such components then the global trait

would be reflected only if all component items were passed, as indicated by

a product of item scores rather than a weighted sum. Parallel processes,

on the other hand, would imply that items should be combined additively.

Thus, serial process models are conjunctive in that all components are

necessary for the process to occur, as potentially reflected by

. ,: ' , e Y-- -•,.,,' ' ' L., :..- . - , . .,.. . .- .. ... .. . > ._ -_-:. .. . ... . . .,



Conjunctive Kernels 3

multiplicative composites of item scores. In contrast, parallel processes

are compensatory (Embretson, 1985) in that deficits in one component ability

could be overcome by strengths in another, as reflected by additive composites

of item scores. Moreover, additive item combination rules may be inappro-

priate for reflecting conjunctive/serial processes, whereas multiplicative

item combination rules may be inadequate for reflecting compensatory/parallel

processes.

Despite the above-cited recent advances in latent trait theory, no

latent trait models have yet appeared with the potential for reflecting

serial processing in standard paper and pencil tests. Standard test theory

models including the Rasch, logistic, binomial, and classical models (Lord

& Novick, 1968) lack this potential, because they imply sufficient statistics

for latent traits that are additive in the item scores. Other special-purpose

models have appeared for certain tests that are inherently conjunctive

(Embretson, 1984; Stegelmann, 1983; Fischer & Formann, 1982). However, no

general models currently exist for uncovering and reflecting conjunctive

processes underlying standard tests. This is especially noteworthy given

the prominence of serial process models in modern cognitive psychology.

Another existing gap in latent trait theory lies in the class of

available locally dependent models. Although methods are available for

detecting local dependence (Kelderman, 1984), weak variants of local inde-

pendence have been formulated (Holland, 1981), and specialized locally

dependent models have appeared (Embretson, 1984; Fischer & Formann, 1982:

Kempf, 1977), no general family of locally dependent latent trait models

has yet been introduced. (One general latent class model has been intro-

duced, however--see Harper, 1972.) Furthermore, the lack of locally de-

pendent models is directly connected with the lack of nonadditive models

for conjunctive cognitive structure, as will be shown below.

5
'.q '~ *J* .~*. ' • ".°-



Conjunctive Kernels 4

The main purpose of this article is to provide a variety of kernels

for item response models that reflect both conjunctive cognitive structure

and local dependence. (The conditional distributions appearing in observable

probability mixtures for these models are called kernels.) An auxiliary

purpose is to demonstrate the utility of related procedures for estimating

conjunctive item parameters and testing specific conjunctive/locally depen-

dent structures.

Before describing conjunctive item response theory, the substance of

conjunctivity and its connection to some related work will be illustrated.

Conjunctivity and configural scoring. For simplicity, suppose that a

global trait (e), say analogical reasoning ability, were tied to two indi-

vidually necessary component abilities, say vocabulary (V) and inductive

reasoning (I). Thus, items that were easy with respect to V yet moderately

difficult with respect to I might reflect I alone, whereas items with the

converse property might reflect V alone. If there were a few such pure

items in an analogical reasoning test with the remaining items reflecting

the global trait, then the test could be represented by Figure 1. As

Figure 1 suggests, an optimal estimate of 6 involving raw scores on x3

through xM might also involve x1X2 , because passing both x1 and x2 is

similar to passing each of the others, whereas passing either x1 or x2

alone is not.

Insert Figure 1 about here

More generally, a collection of M binary items may involve several

conjunctive components. In this case an optimal estimate for 0 might take

the form,

%% 'I*. .~* **% *'v **



Conjunctive Kernels 5

=t(I x ... xs a(I)
GMm1 m m 1...m (

where GM is the power set (GM={(ml,...,ms)c{1,...,MJ; s=1,...,M}--the M

subscript will be deleted from G and similar expressions in the sequel). We

point out that the existence of optimal estimates satisfying (1) with any of

the a m.m . 0 for s>2 would preclude the existence of any additive test
i s

model, including the logistic (Birnbaum, 1968), Rasch (Rasch, 1980), binomial

(Huynh, 1977), and classical models.

Prior studies of nonadditive item scoring .meteds seem to stem from

Horst's so-called configural scoring methods (Horst, 1954; Bussmeyer & p

Jones, 1983; Gaier & Lee, 1953; Jannarone & Roberts, 1984; McDonald, 1967).

Configural scoring simply reflects nonadditivity in prediction by regressing

criterion variables on raw items in a scale as well as on their cross-products.

For example if there were an external criterion, Y, available in the Figure

1 case, then the configural approach would fit

M M-1 M
E(YIx)= amxm + I I (2)

m=1 m m1 n=m+lmnxmxn'

using regression methods, and ideally identify only a12 and a3 through aM

as nonzero. Jannarone and Roberts (1984) used a configural variant to

reflect nonadditivity in the absence of external criteria. They performed

two-by-two analyses of variance to evaluate contributions of cross-products

among each pair of items, but with the sum of the remaining M-2 item scores

instead of an external variable as a criterion. Highly nonadditive item

pairs were reflected by augmenting unit-weight scores with scores based on

corresponding pairwise item cross-products, which are known as technical

items (Fischer & Formann, 1982).

....S . . ..



Conjunctive Kernels 6

Configural scoring methods for binary items have not become popular,

probably because they have not led to improved predictability under cross-

validation. This problem is not only well known in external prediction

(e.g. Wainwright, 1965) but also seems to hold in internal scale develop-

ment (Jannarone & Roberts, 1984).

The failure of binary-item configural scores to cross-validate may be

due to the lack of a justifying model for configural methods when items are

binary. In particular, the only model that seems to justify configural

scoring methods is a linear model with errors independent of observed

scores. However, just as such models and methods have been found to be

inappropriate for raw binary item scores, they seem to be inappropriate for

binary item cross-products as well. For example, Jannarone and Roberts

(personal communication) have found that their method leads to distorted

conclusions for pairs of items that are very easy or very difficult, in

line with similar problems that often occur when fitting linear models to

binary items.

Rationale. So far it has been suggested that conjunctive processes

should naturally be reflected through the use of item cross-products in

latent trait estimates. Also, configural scoring methods seem to be the

only methods developed up until now with provisions for such cross-products

as a goal but with poor cross-validation as a result, evidently because

they are not appropriate for binary data. Thus, configural scoring seems

to be in the same state as the classical test model was before the develop-

ment of item response theory. It seems natural to ask then, whether a

viable set of binary item response models can be constructed that accommodate

item cross-products. Given such models it should be possible to construct

valid methods for identifying conjunctivity.

"' " --' " V._, , '' .' ,' . '.',. *, -, , ' - . " - '- . - ' ' '.,, ,,,''



Conjunctive Kernels 7

The models to be described in the sequel were developed with a justi-

fication for the inclusion of binary item cross-products as a goal. The

basis that was ultimately selected for justifying item cross-products was

their appearance in sufficient statistics for latent traits. For example,

just as the Rasch kernel is based on the sum of item scores as a sufficient

statistic, the conjunctive Rasch model to be described is based on a suf-

ficient statistic involving the sum of item scores as well as item cross-

product scores. Similarly, just as the logistic kernel is based on a

weighted-sum sufficient statistic, the conjunctive logistic extension to be

described is based on a weighted sum of item scores and cross-products.

Out of several bases for establishing satisfactory conjunctive models that

were pursued, sufficiency was by far the most successful, yielding models

that retain many advantages of their additive counterparts, as will be

shown.

The conjunctive models and methodsbe described have been designed to

extend their compensatory (additive) counterparts, while including their

strongest features. For example, the conjunctive Rasch extension, which

will be described in detail, leads to:

(a) a variety of possible conjunctive models and corresponding suf-

ficient statistics for e--for example, in order to accommodate

the Figure 1 case with M=4, one extended Rasch model could yield

the sufficient statistic, xix 2+x3+x4, indicating that x1 and x2

have no unique additive contributions to 0, whereas another

extended Rasch model could yield the sufficient statistic,

x1x2+X1+X2+X3+X4, allowing xI and x2 to have both additive and

multiplicative contributions;

(b) item parameters that can be estimated independently of person

parameters;

-% ' - t , " "' '"'-',"' "-" "" ".......... . .....k......,....... -. ......... ..............



Conjunctive Kernels 8

(c) consistent estimates of the item parameters;

(d) conditional maximum likelihood estimates of e given the item

parameters; and finally

(e) methods for testing different conjunctive models such as those

implied by the sufficient statistics in (a).

Also, the conjunctive logistic extension, which will be briefly described,

yields sufficient statistics of the form, 7-am msxm.. .xms, as well as

unique conditional maximum-likelihood ability parameter estimates. Thus,

the conjunctive models as well as accompanying methods to be described have

useful features along the lines of their additive counterparts.

From the viewpoint of efficient ability estimation, conjunctive methods

may be seen as alternatives to the current test construction practice of

deleting or replacing items that do not fit, say, an additive Rasch model.

Conjunctive methods have the potential for considerable precision improve-

ments, as can be seen from the technical item viewpoint (Fischer &

Formann, 1982). Suppose for example that a pool of verbal analogies items

behaved conjunctively, say with 10 items of the V type, 10 of the I type

and 10 of the VI type. In this case standard item selection practice might

lead to the retention of fewer than the 30 original items and as a result

fewer than 31 distinct possible test scores, because many of the items

would not fit a Rasch model. However, a conjunctive approach would not

only retain all of original items, but also include 100 additional technical

items obtained by multiplying each V item by each I item. Thus, it would

be possible for individuals to have many more distinct test scores, given a

conjuctive model, than 31, given a Rasch model. Consequently, conjuctively

scored tests have the potential for increased precision. (On the other

-I
. .- S



Conjunctive Kernels 9

hand, if the Rasch model held, attempts to include the 100 technical items

would not increase precision at all.)

Some of the results to follow will show that such conjunctive structure

may indeed be present in existing scales. These results will be given in

terms of empirical tests for additivity among all possible item triplets in

two selected measures. Other results will show the kind of precision

increase that could be expected if conjunctive structure were properly

reflected through a nonadditive sufficient statistic. These results will

be in the form of maximum possible validity coefficients for certain non-

additive versus additive models. Details will be given in the sequel.

In practice, it would be useful not only to include the aml.

instead of unit weights but also to identify the relative contributions of

the individual components for each item. For example, if the Figure 1 case

held for verbal analogies items, it seems likely that the relative contri-

butions of V and I would vary over items. However, describing procedures

for identifying such relative contributions are beyond this article's

scope. In addition, only one of the simplest conjunctive extensions to be

described, the conjunctive Rasch model, will be described in detail. Other

conjunctive extensions will only be briefly introduced.

A specialized Rasch model developed by Fischer and Formann (1982) for

describing Rorschach test data as well as Kempf's (1977) dynamic test model

seem to be special cases of the conjunctive models to follow.

Conjunctive Rasch Models

The conjunctive Rasch kernel. One familiar form for the usual Rasch

model (e.g. Andersen, 1980) is
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Pr{X-x) f...Pr{X=xleldG(0)

- IO M expi(e-p )x })d() 3

M=1i !+exp{(O-p M)ld()

where x =(x 1 ,..., XM ) is a realization of X =(X1,... ,XM), and G(e)) is the

latent trait distribution function. We will use the following equivalent

formulation, because it can be directly extended to reflect conjunctive

structure:

M
Prf x} = f. v(e)expf I x (8-0 )dG(e), (4)

where

=M -1
v(e) [Y-exp[YI u m(- J

and X={,Y:um=O ,1;m=1,... ,M}, the set of all 2Mpossible score patterns.

With either formulation it is easy to verify that local independence holds,

that is for any 6E(-co,oo),

M
Prf{=xJe} =n Pr[Xm=x m 6) (5)

m=1

Our conjunctive extension replaces the Rasch kernel in (4) with

Pr {Xx 1e1 v ~ (6)exp{Ix ..x (0-0 } (6)
m m5  m1 .m 5

where

v, (e) =[Y- expflu .Um (0  mm M (7)
R X Rn S
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and

R cG= {(m1,...,ms)C{1,... ,MI; s=1,...,M).

(We need to consider subsets of G because the kernel (6) is not identified

when =G as we will show below.) As a first example, a conjunctive kernel

corresponding to Figure 1 would have R={(1,2),3,...,M}. As a second example,

two models that Fischer and Formann (1982, equations (16) and (17)) describe

for Rorschach plate responses involves 10 pairs of subitems, (la,lb,...,lOa,

lob), such that each pair behaves conjunctively. The appropriate restricted

summation set for that model would be R={la,lb,(la,lb),2a,2b,(2a,2b),...,lOa,

lOb,(lOa,lOb)). Fischer and Formann motivate their model as an additive

Rasch model involving 20 physical items as well as 10 technical items.

(Restrictions of model (6) could be thought of in a similar way, once it is

noticed that all physical items may not necessarily appear, whereas many

other technical items may appear.)

We point out that conjunctive Rasch kernels violate local independence

in general, even though the technical and physical items may be factored in

the numerator of (6) into

expx .. -x m(- .. ms)} = exp{X, * X m)I.
Rexp-Xml Xms R ms1 in1.m s

The local dependence is determined in the denominator of (6) through the

functional dependence among the physical and technical items. For example,

if M=2 and R={1,2,(1,2)} then
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1 1

) 1 I exp{u 1(e-P1)+u2(O-A2)+u1u2(e-P1 2)}
R u1=0 u2=0

= 1 + exp{e-p1) + exp{O-0 2} + exp{(e-p1 )

+ (O-P2) + (0-012))

1V1 Mv 2 ()v12(e), (8)

for any v1 and v12. As a result,

exp{(- )x2
P r ( X x X 1 0 e x p ( - 2 }

R 2=21X1=O;e } = +exp{e-p 2}

but

PrR{X 2 x2 1 =;e} - exp{(2e-P2- 12)x2) PrR{X 2=x2 1 0 ;O}. (9)

Given the conjunctive Rasch kernel (6), we have

Pr {X=x l} = exp{-xm Xm Im .ms v (O)exp{Ot ()}dG(O)

= Pr {X=x,T=t (x)J, (10)
R

where

t(X)=7x .. x. (11)
RR i s

By the factorization theorem tR is a sufficient statistic for 6. In addition,

R can be chosen so that either tR is additive, satisfying the Rasch model,

or multiplicative, yielding a class of conjunctive/locally dependent models

indexed by R. Finally, it is easy to verify that kernels satisfying (6)
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are well-defined probability functions for all RcG and real Bml.m (For

any x the numerator is positive and the denominator is simply the sum of

all possible numerators.)

(A potentially puzzling point should be clarified here. In most

treatments of item response models, local independence is treated as an

axiom, leading to kernels that are expressible as individual item proba-

bility products. In contrast, kernel (6) has been derived not from local

independence but from the requirement that item cross-products appear in

the sufficient statistic for 6. It only happens that the numerator of (6)

can be analyzed into a product involving one factor for each physical and

technical item. Fortunately, only the numerator of (6) can be

factored into such a product, not the entire expression. Thus, (6) implies

local dependence, in line with the cognitive dependence that should be

associated with conjunctive processes as in Figure 1.)

The forms that item response functions take for conjunctive models are

relatively complicated. Unlike the additive locally independent case (5),

which leads to the simple and well-known item response functions,

Pr{Xm=11} = I/(l+exp{-m} , m=1,.., M,

the conjuctive/locally dependent item response functions satisfying (6) cannot

in general be simplified beyond the basic form,

Pr{Xm=l1} = vR(e) 1 exp{ Ix m..x (e-P . ml,....,M.
x EX R ms  s
ml

However, for some simple conjunctive kernels such as in the above first

(Figure 1) example, item response functions are correspondingly simpler.

For that example, it can be shown that if m=3,4,...,M, then

_% ;64
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Pr{Xm=116} = 1/(l+exp{O-pm),

in line with the additive case, but if m=1 or 2 then

PrX =i =exp-m(+exp{2-3m-P12})
m =+exp{[_3.m} + expJe-Pm}(l+exp{28-B3_m-P12})

Estimation. This section follows developments by Andersen (Andersen,

1982) and Kelderman (Kelderman, 1984) for the Rasch model. (R subscripts

are omitted in the sequel.) We have,

Pr{T=t} = C(t)f_, v(6)exp{et}dG(e),

where

C(t) = Xexp{-Ix ...msml. m I
T R m1  s m1 -

and

T={x:x ... x =t}.
SR ml

" Thus from (9),

Pr{X=xIT=t} = C exp{- Xm s ml .m... x X X, (12)
~ £ ) R mI "" ~* *

-0 elsewhere.

Equation (12) leads to consistent item parameter estimates and hypo-

thesis tests, following known procedures for both additive Rasch model

estimation (Rasch, 1980) and multinomial hypothesis testing (Landis & Koch,

197J). As an estimation example, if the model in Figure 1 held with M=4,

then t=x 1x2+x3+x4 would be a sufficient statistic for e and the following

equation would hold:
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1og[Pr =(,OOO)IT=O}] 1 0 0 0 0 0

log[Pr (X (1,0,0,0)IT=O}] 1 0 0 0 0 0

log[Pr [X = (O1,0,0,)IT=0}] 1 0 0 0 0 0

log[Pr [X = (1,0,1,0)T=1}I 0 1 0 0 1 0

log[Pr {X = (1,1,0,0)1T=1)] 0 1 0 1 0 0
x(O)

log[Pr [X = (0,1,1,0)IT=1}] 0 1 0 0 1 0
X(1)

log[Pr {X = (0,0,1,0)IT=1}] 0 1 0 0 1 0
x(2)

log[Pr {X = (0,1,0,1)IT=1}] 0 1 0 0 0 1 (13)

log[Pr {X = (0,0,O1)IT=11] 0 1 0 0 0 1 12

log[Pr {X = (1,0,1)IT=1}] 0 1 0 0 0 1 P3

log[Pr {X = (1,1,1,0)IT=2}] 0 0 1 1 1 0 -04

log[Pr {X = (1,1,0,1)IT=2}] 0 0 1 1 0 1

log[Pr (X = (1,0,1,1)IT=2}] 0 0 1 0 1 1

log[Pr {X = (0,0,1,1)[T=211 0 0 1 0 1 1

log[Pr {X = (0,1,1,1)1T=2}] 0 0 1 0 1 1

where x(j) = -log[C(j)] (j=0,1,2). (For this example there are four possible

values of the sufficient statistic: t=0,1,2, and 3; t=3 is not included in

(13) because only one possible pattern, (1,1,1,1), could yield t=3, hence

Pr{X-,IT=3) would be completely determined. Also, the design matrix in

(13) is not of full rank, although this could easily be remedied through

reparameterization.) Thus, consistent estimates for the item parameters

can be easily obtained after replacing the left-hand side of (13) with logs

of corresponding relative frequencies (although required sample sizes could

be very large for some items). For some restricted kernels, more elegant

estimation procedures seem possible, such as conditional maximum likelihood

approaches following those of Andersen (Andersen, 1982, p. 245 ff.) for the

additive Rasch kernel.

el. . . 4. '. -4 4- ....
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As (13) suggests, four-fold item contingencies can always be explained

completely with enough conjunctive item parameters. Furthermore, it is

easy to show that any M-fold item contingencies can be explained perfectly

by some conjunctive Rasch model. In this sense conjunctive Rasch models

are as general as would ever be necessary.

Equations of the form (13) can be easily used to show that Rasch

conjunctive models with R=G are unidentifiable. For example, 7 additive

and technical item parameters would be involved when M=3 and R=G, although

only 6 conditional probabilities could be obtained that are not necessarily

0 or 1. Thus, the 6 x 7 design matrix in the version of (13) with R=G

would have rank of at most 6 and consequently the 7 parameters could never

be identified. Restricted conjunctive Rasch models may also be unidentifiable,

especially when subsets of the total number of items must be used to estimate

parameters, for example when some of the 2M possible cells in an M-item

frequency table are empty. In such instances graph-theoretic methods due

to Fischer (1981) could be used to establish identifiability conditions and

conjunctive models could be chosen accordingly.

For tests of even moderate length, the number of possible conjunctive

item parameters can be prohibitively large, due to the small cell sizes

expected in corresponding 2 frequency tables. The problem can be allevi-

ated by imposing theoretical restrictions on the structure, as in the above

Rorschach example. Also, very simple conjunctive structures may be assumed,

such as the involvement of pair-wise item cross-products only, and simple

methods may be used to uncover them, such as looking only at three-way item

contingencies to evaluate a given cross-product parameter. This latter

approach will be illustrated in the following sections. Even so, the

simple estimation and hypothesis testing procedures described here would

* have major defects for the global treatment of large test structures.

"a. , '', ::, . ''..' . , " - , .. ' ,"- " " """-. v -, \'' " '
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Turning next to ability estimation, we will simply point out that

unique maximum likelihood estimates of 0 exist, given the item parameters,

under any conjunctive version of (6) and (7). The existence of such

estimates for all t except t=O and tt(1,1,...,1) follows because the kernel

(6) is a distribution from the one-parameter exponential family (see Andersen,

1980, Section 3.3). Given such unique estimates as well as the existence of

unique item parameter estimates already illustrated, feasible ability esti-

mation procedures are assured. (The argument parallels that of Birnbaum,

1968, p. 458).

Hypothesis testing. We will illustrate one of several possible

approaches for which the latent trait distribution need not be specified.

For any RcG we have,

Pr{X=} = Pr{X=?IT=t(x)}Pr{T=t(x)}

exp{-Ix ...x P I Pr{X--u}R m1 m 5M i m rsXT

I expf-lu ...ums~m. m (14)
ueT R M" ""*ms m1* 'm

Turning again to the Figure 1 example, when M3 and t=1 (14) yields

- P3
PrfX=(0,0,1)}- e [Pr{X=(0,0,1)}+Pr{X=(1,0,1)} + (15a)e-P3+e-P12  ~

3e e Pr{X=(0,1,1)}+Pr{X=(1,1,0)}] = 0,

- 03
Pr{X=(1,0,1)} -e [Pr{X=(0,0,1)}+Pr{X=(1,0,1)} + (15b)3e3+-12~ -

e Pr{X=(0,1,1)}+Pr{X=(1,1,0)}] = 0,

-P3
Pr{X=(0,1,1)1- e [Pr{X=(0,0,1)}+Pr{X=(1,0,1)} + (15c)

3e- P3+e-P12 ~
Pr{X=(0,1,1)}+Pr{X=(1,1,0)}] = 0,

°'2"-" *" " *"-2 2 2 : "' - - "S'. ** '' -''; ' .'- - " ' - ' \ *'*'*'. -',"-.- '. , -. .. '" . :-: -
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and

e-12
Pr{X-(1,1,O)}-- 3 -02 IPr{X=(O,O,1))+Pr{X=(1,O,1)} + (15d)

3e +e Pr{A=(O,1,1)}+Pr[X=(1,1,O)}] =0,

When t0- (14) yields

Prj (0,,0) = [PrfX=(O,O,O)}+Pr{X=O,1,0)}+Pr{X=(1,0,0)](1e

= Pr[X=(0,1,O)1 (15f)

=Pr{)@(1,0,0)}. (15g)

*Now since consistent estimates of p12 and P3 exist, standard methods can be

*used to test equations (15) by simultaneously evaluating any exhaustive,

* linearly independent set of resulting functions. (e.g., Koch & Landis, 1977).

For example, (15) may be tested by evaluating

H0: f (2) =0,
5x1 7x1

where f I(Q) through f3(p) are the left-hand sides of (15a) through (15c),

respectively, f 4 ()=Pr{X=(0,0,0)[-Pr{X=(0 ,1,0)}, f 5 ()=Pr~r=(0,1,0)}

-Pr(X=-(1,0,0)), and 2 T [Pr[X=(0,0,1)}, Pr{r=(1,0,1)}, Pr[X=(0,1,1)},

*Pr{X=(1,1,0)}, Pr{X-(0,Q,0)}, Pr[AX(0,1,0)}, Pr{A=(1,0,0)}], where T denotes

dtransposition. (In tefj(2) 012 and P3 are replaced with appropriate functions

of p based on an expression like (13).) The test statistic is f(A) SfjI(A),

where A is the vector of relative frequencies corresponding to 2, and

_ 1 Ff. [A -D2 [3f'N^ [33-P 22 L W
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where (D.)ii=i , (D)..=O (i~j;j=1,...,7), and N is the total observed

_P. -2 21 2
frequency associated with the relative frequencies in . (NP is the same

as overall sample size unless some individuals have some missing item

responses.) The sampling distribution for the test statistic is asymptotically

chi square with 5 degrees of freedom (as sample size increases--sample size

should be sufficiently large that f is approximately 5-variate normal).

Other conjunctive and additive Rasch models may be tested similarly.

Potential conjunctive model utility. We will briefly illustrate the

potential for improved ability estimation, the potential for uncovering

conjunctive structure, and some preliminary evidence that test data are

nonadditive.

Several indices of estimator precision could be used to compare con-

junctive with compensatory model performance. These include analytic as

well as Monte Carlo measures of ability-estimator squared error, efficiency,

bias, and how precisely the estimators rank-order individuals with respect

to latent traits. We have chosen an analytic measure of rank-ordering

precision, namely the product-moment correlations of latent traits with

Bayes estimates (based on squared-error-loss), equivalent to the validity

(Lord & Novick, 1968) of Bayes estimators. (The Bayes estimates to be

evaluated are based on prespecified, discrete latent trait distributions

defined on a small set of points.) We chose this measure because Bayes

estimate-latent trait correlations are the best possible validity coeffi-

cients for any model (Rao, 1965, p. 265), hence useful global indices of

optimal test efficiency. In addition, these correlations may be nearly

achievable in practice, given the large test sizes available in educational

..- *,.
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testing applications. Finally, Bayes estimates and their validities can be

easily machine-computed and evaluated (given a discrete prior on a small

point set) without using Monte Carlo methods.

Returning once again to the Figure 1 case, we will compare Bayes

validities from three kernels, each based on M=Mv+Mi+Mvl items. The compen-

satory comparison kernel has a sufficient statistic of the form,

Mv+MI+MvI (16)

Y xm

and equivalent items with zero-valued parameters. The two conjunctive

kernels to be compared both involve three equivalent item sets--M v items of

the V type, MI items of the I type and MVl of the global type--along with

zero-valued item parameters. The first conjunctive kernel has the suffi-

cient statistic,

Mv Mv+M I  Mv+MI+MvI

1 1 XmXn + I x (17)
m=1 n=Mv+l mM v+M I (7

and the second conjunctive kernel has the sufficient statistic,

MV M V +M IM V+M I+MVI
1 I Xmxn + I xm" (18)
ml n=Mv+1 ml1

Kernel (18) extends (17) to include items that are both compensatory and

conjunctive. Equation (18) is considerably less restrictive than (17) and

more in line with the configural model (2).

Insert Table 1 about here



Conjunctive Kernels 21

Table 1 gives validity comparisons for kernels (16), (17), and (18),

six different latent trait distributions, and three scale size configura-

tions: Mv=MI=MvI=5, 10, and 15. The results range from much higher con-

junctive model validity than additive model validity for low-variance

latent trait distributions to slightly higher additive model validity for

the highest-variance distribution.

In evaluating the potential for uncovering conjunctive structure, we

will provide perormance data from hypothesis tests that are similar to the

test illustrated in the previous section. The tests evaluate two prespecified

structures among a pair of items, labelled items 1 and 2 below: additive

pair-wise structure satisfying (16) and purely conjunctive pair-wise structure

satisfying (17). Although only the structure between items 1 and 2 will be of

interest, a third item, labelled item 3 below, will be included in order to

resolve the two structures empirically.

The test for pair-wise additivity evaluates kernels of the form,

3
PrX-xle} = v(e)exp{ 1 x m(6-pm), (19)

m=l

whereas the test for pure pair-wise conjunctivity evaluates kernels of the

form,

Pr{XA=IO} = vR(O)exp{x1x2(-P12)+x3(6-P3)}. (20)

To the extent that these two tests reject kernels when appropriate, it

should be possible to partition pairs of scale items into the V, I, and VI

types suggested by Figure 1. However, additive and conjunctive kernels for

pairs of items satisfying (18) cannot be directly tested using item triplets,

because (18) requires more estimated parameters than three-way item contingen-

cies can yield. Even so, if both kernels (19) and (20) were rejected an

additive and conjunctive kernel satisfying (18) would be implied.
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Each entry in Table 2 gives correct rejection proportions among 100

.05-level tests. The first two columns correspond to tests for the addi-

tivity associated with (19), given either conjunctivity and additivity as

in (18) or pure conjunctivity as in (20). The last two columns correspond

to tests for the conjunctive kernel (20), given either pure additivity as

in (19) or conjunctivity and additivity as in (18). Rows correspond to

different latent trait distributions as in Table 1, and each entry in

parentheses gives correct rejection proportions among 100 tests based on

1,000, 5,000, and 10,000 simulated observations, from left to right.

Insert Table 2 about here

Table 2 shows that even 10,000 observations are not enough to yield high

correct rejection rates when latent trait distributions have low variances,

especially for the additivity test. However, correct rejection rates are

very high when latent trait distributions have high variances. This makes

sense because individuals having extreme latent trait values will tend to

show much different test patterns for the three models than individuals

with less extreme values. Overall Type I error rates for the tests of (19)

and (20) were obtained by noting whether or not the data for columns one

and two of Table 2 led to rejections of models (19) and (20), respectively.

These Type I error rates were .047 and .054, respectively.

As the results in Table 2 clearly show, the tests for resolving items

into additive and conjunctive subsets could lead to a substantial proportion

of incorrect item classifications. Moreover, the incorrect classification

rates would be even higher if more complicated conjunctive structures

existed involving more than two component processes. These proLlems

-L4~ .
. . .- .I
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may be lessened if enough correct classifications can be obtained in practice

to suggest a theoretical basis for grouping items, given their cognitive

content. For example, if the most significant items included in an empiri-

cally determined analogical reasoning component clearly contained a pure

vocabulary element, correct decisions could be made about other items that

were less significant based on their vocabulary content. Whether such

theoretical cues will in fact aid in correctly resolving items remains to

be seen. (Of course, matters would be simpler from a methodological view-

point if cognitive theory suggested certain structures at the outset and

the above methods were used only to check them--practitioners, on the other

hand, might welcome these methods as exploratory aids in uncovering conjunctive

structures.)

Although detailed empirical results are beyond this article's scope,

two preliminary results seem promising. We have performed additivity tests

for all item triplets based on 1,000 scores from a 50-item verbal analogies

test (from the Spring, 1970 normative sample of the Level 3, Form A, Verbal

School and College Ability subtest, provided by Educational Testing Service)

as well as a 42-item personality scale (the Responsibility Scale from the

CPI (Megargee, 1972)--respondents were high school males). Among the

respective 19,600 and 11,480 triplet tests performed at the .01 level,

4,378 or 37% of the verbal analogies results were significant and 2,092 or

18% of the personality results were significant. Since Rasch nonadditivity

far exceeded chance levels in these data, it seems that fitting conjunctive

models could improve trait estimation efficiency. Moreover, for scales such

as these, where there is reason to expect some conjunctive structure,

fitting simple conjunctive models may be a useful alternative to the current

practice of deleting items that do not fit a given additive model.
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Other Conjunctive Kernels

In this section, conjunctive extensions will be first be given for

three other compensatory item response models: the binomial model,

1 M xm  1-x mPr{X=x}= fo [ n n (1-7) ]dH(t),
m=1

the logistic model,

0X M exp{xmm(0-0m))
PrX=x f, mIn 1+exp{x am (e-mdS(),

m=1 m m m

and the general item response model,

M x 1-x
Pr{X=} = H [T (0)] m[l-m (6)] m dU(e),

m=l m m

where the monotone increasing item response functions, Tm (), satisfy O< m(0)<l.

The conjunctive extensions are respectively,

x ...xm

PrfX]x} = 1 y( 5)n dH(n), (21)
R

Pr{X)x} f " 6(6)exp .a xm  .xm (6-0mm )}dS(6), (22)

and

xm .. m

PrfX=x} f 0. &(0)[HT (0)6 . .m ]dU(6), (23)~ ~0 R S

where y, 6 and & are normalizing functions and H, S, and U are distribution

functions, analogous to v and G respectively, for the conjuctive Rasch model.

% %q
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Among these conjunctive kernels the binomial with R=G is the least

interesting, because the values of its sufficient statistic are in one-

to-one correspondence with the usual number-correct binomial statistic,

hence it has no potential for improved precision over the usual binomial

model. However, restricted versions are more useful as for example in (17)

and (18), which are actually restricted conjuctive binomial kernels.

For the conjunctive logistic kernel, similar arguments to those given

earlier for the Rasch conjunctive model identify

ml...msXml (24)

as a sufficient statistic for 0 (given the am m Functionally, the

am-...m can provide for differential weights in item cross-product terms

as well as raw item terms. However, the logistic extension has the same

liabilities relative to the Rasch extension as does the logistic model

relative to the Rasch model. For example, the distribution of X given t

is not independent of 0 for the logistic conjunctive kernel.

Finally, it may be shown that the above four discrete conjunctive

kernels follow the same generality hierarchy as their compensatory counter-

parts. That is, for the following ordering of conjunctive kernels--(1)

binomial, (2) Rasch, (3) logistic and (4) general--each among models (1)

through (3) is a special case of its successors.

Conjunctive extensions of kernels for the classical test theory model

may also be constructed, as will be shown next. Using the preceding notation,

the classical model requires that X have conditional expectation E{XI}e=O2eM,

where a2 is the classical model item error variance and 1 is an M-vectore

of ones.

" " {-- | I 
•

•.. .
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Now it is well known that the classical model requirements are satisfied

when X is continuous and its N-variate kernel density has the normal form,

f{xle} = (e, a2)exp [-1 (x-le) T(x (25)
e 2 -- M x I (5

where V -1 , 1 is the (MxM) identity matrix, and

C(ea2 = [0T1 .... f O exp{- 1U-lM0)TV- ) . -1

Also, it can be shown that if (25) holds then xi+...+xM is sufficient

for e. We introduce the following general conjunctive extension of the

Tnormal kernel (25). For w =(xl,... ,xM,xlx2,...,x 1x2. . .xM), let

g{sie} = 2e)eXp{-!(w12M)Tv (w-1 me)),

where V =1 w 2 and
-2 e

, 1 exp{ 1-12,O)v (t-12MO))du ... du,-

where tT=(ul,...,uM,uu 2,... ,uu2...uM). It may be shown that if

(26) holds g(xO) is a bona fide probability density; x1+... +XM+Xlx 2 +...

+xIx2...xM is sufficient for 0; the items are locally dependent (note that

C cannot be analyzed into physical and technical item factors due to func-

tional dependencies among the wm, just as v cannot be so factored for the

Rasch case--the two kernels are thus very closely related); and although

(26) may not be adequately identified as it stands (as with the unrestricted

conjunctive Rasch kernel) it may be restricted as in the previously described
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discrete cases to yield sufficient statistics of the form (11)--in particular
if any subvector of w and corresponding submatrix of VW replaces w and Vw

respectively in (26), then terms in the sufficient statistic for e will

correspond to the elements retained in the subvector. Also, (26) may be

extended to include weighted-sum sufficient statistics of the form (24) by

replacing Vw with a nondiagonal positive definite matrix. Finally, estima-

tion and hypothesis testing seem feasible given the similarity of (26) to

the multivariate normal kernel and the fact that (26) belongs in the multi-

parameter exponential family.

h.

° ° . , o ° , ° - , ° , % -o , . , - o - . o ° . . . . . . . . . .. . . . . .. . ..
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Conclusion

Future directions. Conjunctive model aspects requiring more work

include resolving identifiability and capitalizing-on-chance problems,

developing efficient estimation procedures such as conditional maximum

likelihood for the Rasch extensions, formulating extensions with guessing

provisions for multiple choice tests, and determining whether these models

are useful in practice. Conjunctive models might also be used to resolve

certain issues regarding dimensionality, item response function form, and

local dependence. For example, all five kernels presented seem to imply

that a model may be both unidimensional and locally dependent, in contrast

to some seemingly sensible assertions (Andrich, 1984). Finally, a closer

look at the conjunctive kernels that have only been briefly mentioned here

could be useful. For example, it seems likely that the conjunctive extensions

of the normal ogive and Thurstonian choice models could be based on variants

of kernel (26), or its continuous logistic analog (Yellot, 1977). Such

extensions could provide some needed flexibility in the available models

for choice data. Thus, with the continuous as well as discrete kernels

presented, many questions remain unanswered.

Summary. First, an item response theory has been introduced that

includes multiplicative sufficient statistics based on locally dependent

models, which have a conjunctive cognitive structure interpretation.

Second, it has been shown that consistent estimation and ad hoc hypothesis

testing procedures exist for conjunctive models and that more efficient

methods seem possible. Third, these ad hoc procedures have been used to

show that conjunctive models may have promise for constructing more efficient

tests and uncovering conjunctive structure in large samples. Finally, it

is clear that major work remains before concluding whether or not conjunctive

models are useful in practice.
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Table 1

Validities of Bayes Estimators for 2
Additive and Conjunctive Rasch Models (x1O)

Kernels
Latent Trait a b Conjunctive and
Distributions Additive(16) Conjunctive(17) additive (18)

Quasinormal

( .75) (59 ,72 ,79)c (83,93,95) (85,95,97)
(1.5 ) (82,89,93) (91,95,96) (93,96,97)
(3.0 ) (93,97,98) (94,96,97) (96,97,97)

Uniform

( .75) (72,83,88) (91,96,96) (92,97,98)
(1.5 ) (90,95,96) (94,96,97) (96,97,97)
(3.0 ) (96,98,99) (95,97,97) (96,97,98)

a Latent trait distributions are discrete with positive probability on
5 points: -e, -e/2, 0, 0/2 and e. Numbers in parentheses below this
heading are values of 0. Quasinormal distributions assign probabilities
of .07, .24, .38, .24, and .07 respectively to the 5 points, whereas
uniform distributions assign .2 to each point.

b The numbers to the right of kernel labels are the text equations that
describe the kernels fully.

c Each triplet gives Bayes estimate-latent trait correlations based, from
left to right, on 5, 10, and 15 items of each type (Mv,MI, and MVI in
equations 16, 17, and 18).
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Table 2

Correct Rejection Percentages for Additive and
Conjunctive Tests (among 100 .05 level tests for each entry).

Latent Test for Additive Test for Additive Test for Conjunc- Test for Conjunc-
Trait Model(16) When Model(16) When tive Model(17) tive Model(17)
Distributionsa the True Model is the True Model is When the True When the True

(17) (18) Model is (16) Model is (18)

Quasinormal

( .75) (4, 9, 9)b (8,22, 44) ( 25, 70, 93) ( 17, 84, 99)

(1.5 ) (13, 35, 66) (20,83,100) ( 92,100,100) ( 98,100,100)
(3.0 ) (47,100,100) (30,98,100) (100,100,100) (100,100,100)

Uniform

( .75) C 5, 11, 23) (11,46, 76) (30,100,100) (70,100,100)
(1.5 ) (33, 98, 99) (49,98,100) (100,100,100) (100,100,100)
(3.0 ) (91,100,100) (59,99,100) (100,100,100) (100,100,100)

a Latent trait distributions are discrete with positive probability on
5 points: -e, -8/2, 0, e/2 and e. Numbers in parentheses below this
heading are values of 8. Quasinormal distributions assign probabilities
of .07, .24, .38, .24, and .07 respectively to the 5 points, whereas
uniform distributions assign .2 to each point.

b Each triplet gives correct rejection percentages for .05 level chi-square
tests from simulations based, from left to right, on 1000, 5000, and 10,000
observations.

-a

.4

.4
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Figure 1

A Simple Conjunctive Model

01



- '". - ._ . . - .. -. - - - - - - . -~" . . 71 - .- --7 -TV : Y

ONR Distribution List 1986/06/30

University of South Carolina/Jannarone

Personnel Analysis Division, Dr. Bruce Bloxom
AF/MPXA Administrative Sciences

5C360, The Pentagon Code 54B1
Washington, DC 20330 Navy Postgraduate School

Monterey, CA 93943-5100
Air Force Human Resources Lab
AFHRL/MPD Dr. R. Darrell Bock
Brooks AFB, TX 78235 University of Chicago

NORC
Dr. Earl A. Alluisi 6030 South Ellis
HQ, AFHRL (AFSC) Chicago, IL 60637
Brooks AFB, TX 78235

Cdt. Arnold Bohrer
Dr. Erling B. Andersen Sectie Psychologisch Onderzoek
Department of Statistics Rekruterings-En Selectiecentrum
Studiestraede 6 Kwartier Koningen Astrid
1455 Copenhagen Bruijnstraat
DENMARK 1120 Brussels, BELGIUM

Dr. Phipps Arabie Dr. Robert Breaux
University of Illinois Code N-095R
Department of Psychology Naval Training Systems Center
603 E. Daniel St. Orlando, FL 32813
Champaign, IL 61820

Dr. Robert Brennan
Technical Director, ARI American College Testing
5001 Eisenhower Avenue Programs
Alexandria, VA 22333 P. . Box 168

Iowa City, IA 52243
Dr. Eva L. Baker
UCLA Center for the Study Dr. Patricia A. Butler

of Evaluation OERI
145 Moore Hall 555 New Jersey Ave., NW
University of California Washington, DC 20208
Los Angeles, CA 90024

Mr. James W. Carey
Dr. Isaac Bejar Commandant (G-PTE)
Educational Testing Service U.S. Coast Guard
Princeton, NJ 08450 2100 Second Street, S.W.

Washington, DC 20593
Dr. Menucha Birenbaum
School of Education Dr. James Carlson
Tel Aviv University American College Testing
Tel Aviv, Ramt Aviv 69978 Program
ISRAEL P.O. Box 168

Iowa City, IA 52243
Dr. Arthur S. Blaiwes
Code N711 Dr. John B. Carroll
Naval Training Systems Center 409 Elliott Rd.
Orlando, FL 32813 Chapel Hill, NC 27514

- - * PJ A P J~ A ~..,.



1986/06/30

University of South Carolina/Jannarone

Dr. Robert Carroll Dr. Stephen Dunbar

OP 01B? Lindquist Center

Washington, DC 20370 for Measurement
University of Iowa

Dr. Norman Cliff Iowa City, IA 52242

Department of Psychology
Univ. of So. California Dr. James A. Earles

University Park Air Force Human Resources Lab

Los Angeles, CA 90007 Brooks AFB, TX 78235

Director, Dr. Kent Eaton

Manpower Support and Army Research Institute

Readiness Program 5001 Eisenhower Avenue

Center for Naval Analysis Alexandria, VA 22333

2000 North Beauregard Street
Alexandria, VA 22311 Dr. John M. Eddins

University of Illinois

Dr. Stanley Collyer 252 Engineering Research

Office of Naval Technology Laboratory

Code 222 103 South Mathews Street

800 N. Qincy Street Urbana, IL 61801

Arlington, VA 22217-5000
Dr. Susan Embretson

Dr. Hans Crombag University of Kansas

University of Leyden Psychology Department

Education Research Center 426 Fraser

Boerhaavelaan 2 Lawrence, KS 66045

2334 EN Leyden
The NETHERLANDS ERIC Facility-Acquisitions

4833 Rugby Avenue
CTB/McGraw-Hill Library Bethesda, MD 20014
2500 Garden Road

Monterey, CA 93940 Dr. Benjamin A. Fairbank
Performance Metrics, Inc.

Dr. Dattprasad Divgi 5825 Callaghan

Center for Naval Analysis Suite 25

4401 Ford Avenue San Antonio, TX 78228

P.O. Box 16268
Alexandria, VA 22302-0268 Dr. Leonard Feldt

Lindquist Center

Dr. Hei-Ki Dong for Measurement

Ball Foundation University of Iowa

800 Roosevelt Road Iowa City, IA 52242

Building C, Suite 206
Glen Ellyn, IL 60137 Dr. Richard L. Ferguson

American College Testing

Defense Technical Program

Information Center P.O. Box 168

Cameron Station, Bldg 5 Iowa City, IA 52240

Alexandria, VA 22314
Attn: TC
(12 Copies)



1986/06/30

University of South Carolina/Jannarone

Dr. Gerhard Fischer Ms. Rebecca Hetter
Liebiggasse 5/3 Navy Personnel R&D Center
A 1010 Vienna Code 62
AUSTRIA San Diego, CA 92152-6800

Prof. Donald Fitzgerald Dr. Paul W. Holland
University of New England Educational Testing Service
Department of Psychology Rosedale Road
Armidale, New South Wales 2351 Princeton, NJ 08541
AUSTRALIA

Prof. Lutz F. Hornke

Mr. Paul Foley Institut fur Psychologie
Navy Personnel R&D Center RWTH Aachen
San Diego, CA 92152-6800 Jaegerstrasse 17/19

D-5100 Aachen
Dr. Carl H. Frederiksen WEST GERMANY
McGill University
3700 McTavish Street Dr. Paul Horst
Montreal, Quebec H3A 1Y2 677 G Street, #184
CANADA Chula Vista, CA 90010

Dr. Robert D. Gibbons Mr. Dick Hoshaw
University of Illinois-Chicago OP-135
P.O. Box 6998 Arlington Annex
Chicago, IL 69680 Room 2834

Washington, DC 20350
Dr. Janice Gifford
University of Massachusetts Dr. Lloyd Humphreys
School of Education University of Illinois
Amherst, MA 01003 Department of Psychology

603 East Daniel Street
Dr. Robert Glaser Champaign, IL 61820
Learning Research

& Development Center Dr. Steven Hunka
University of Pittsburgh Department of Education
3939 O'Hara Street University of Alberta
Pittsburgh, PA 15260 Edmonton, Alberta

CANADA
Dr. Bert Green
Johns Hopkins University Dr. Huynh Huynh
Department of Psychology College of Education
Charles & 34th Street Univ. of South Carolina
Baltimore, MD 21218 Columbia, SC 29208

Dr. Ronald K. Hambleton Dr. Robert Jannarone
Prof. of Education & Psychology Department of Psychology
University of Massachusetts University of South Carolina

at Amherst Columbia, SC 29208
Hills House
Amherst, MA 01003 Dr. Douglas A. Jones

P.O. Box 6640
Lawrenceville
NJ 08648



1986/06/30

University of South Carolina/Jannarone

Dr. G. Gage Kingsbury Dr. William L. Maloy
Portland Public Schools Chief of Naval Education
Research and Evaluation Department and Training
501 North Dixon Street Naval Air Station
P. 0. Box 3107 Pensacola, FL 32508

Portland, OR 97209-3107
Dr. Gary Marco

Dr. William Koch Stop 31-E
University of Texas-Austin -Educational Testing Service
Measurement and Evaluation Princeton, NJ 08451

Center
Austin, TX 78703 Dr. Clessen Martin

Army Research Institute
Dr. Leonard Kroeker 5001 Eisenhower Blvd.
Navy Personnel R&D Center Alexandria, VA 22333
San Diego, CA 92152-6800

Dr. James McBride
Dr. Michael Levine Psychological Corporation
Educational Psychology c/o Harcourt, Brace,
210 Education Bldg. Javanovich Inc.
University of Illinois 1250 West 6th Street
Champaign, IL 61801 San Diego, CA 92101

Dr. Charles Lewis Dr. Clarence McCormick
Faculteit Sociale Wetenschappen HQ, MEPCOM
Rijksuniversiteit Groningen MEPCT-P
Oude Boteringestraat 23 2500 Green Bay Road
9712GC Groningen North Chicago, IL 60064
The NETHERLANDS

Mr. Robert McKinley
Dr. Robert Linn University of Toledo
College of Education Department of Educational Psychology
University of Illinois Toledo, OH 43606
Urbana, IL 61801

Dr. Barbara Means
Dr. Robert Lockman Human Resources
Center for Naval Analysis Research Organization
4401 Ford Avenue 1100 South Washington
P.O. Box 16268 Alexandria, VA 22314
Alexandria, VA 22302-0268

Dr. Robert Mislevy
Dr. Frederic M. Lord Educational Testing Service
Educational Testing Service Princeton, NJ 08541
Princeton, NJ 08541

Headquarters, Marine Corps
Dr. James Lumsden Code MPI-20
Department of Psychology Washington, DC 20380
University of Western Australia
Nedlands W.A. 6009 Dr. W. Alan Nicewander
AUSTRALIA University of Oklahoma

Department of Psychology
Oklahoma City, OK 73069

N V. 41.7* ~ p



1986/06/30

University of South Carolina/Jannarone

Dr. William E. Nordbrock Dr. James Paulson
FMC-ADCO Box 25 Department of Psychology
APO, NY 09710 Portland State University

P.O. Box 751
Dr. Melvin R. Novick Portland, OR 97207
356 Lindquist Center

for Measurement Dr. Roger Pennell
University of Iowa Air Force Human Resources
Iowa City, IA 52242 Laboratory

Lowry AFB, CO 80230
Director Manpower and Personnel

Laboratory, Dr. Mark D. Reckase
NPRDC (Code 06) ACT

San Diego, CA 92152-6800 P. 0. Box 168
Iowa City, IA 52243

Library, NPRDC

Code P201L Dr. Malcolm Ree
San Diego, CA 92152-6800 AFHRL/MP

Brooks AFB, TX 78235
Commanding Officer,

Naval Research Laboratory Dr. Carl Ross
Code 2627 CNET-PDCD
Washington, DC 20390 Building 90

Great Lakes NTC, IL 60088
Dr. James Olson
WICAT, Inc. Dr. J. Ryan
1875 South State Street Department of Education
Orem, UT 84057 University of South Carolina

Columbia, SC 29208

Office of Naval Research,
Code 1142PT Dr. Fumiko Samejima

800 N. Quincy Street Department of Psychology
Arlington, VA 22217-5000 University of Tennessee
(6 Copies) Knoxville, TN 37916

Special Assistant for Marine Mr. Drew Sands
Corps Matters, NPRDC Code 62
ONR Code OOMC San Diego, CA 92152-6800

800 N. Quincy St.
Arlington, VA 22217-5000 Dr. Robert Sasmor

HQDA DAMA-ARL
Dr. Judith Orasanu Pentagon, Room 3E516
Army Research Institute Washngton, DC 20310-0631
5001 Eisenhower Avenue USA
Alexandria, VA 22333

Dr. Mary Schratz
Wayne M. Patience Navy Personnel R&D Center
American Council on Education San Diego, CA 92152-6800
GED Testing Service, Suite 20
One Dupont Circle, NW Dr. W. Steve Sellman
Washington, DC 20036 OASD(MRA&L)

2B269 The Pentagon
Washington, DC 20301



1986/06/30

University of South Carolina/Jannarone

Dr. Kazuo Shigemasu Mr. Brad Sympson
7-9-24 Kugenuma-Kaigan Navy Personnel R&D Center
Fujusawa 251 San Diego, CA 92152-6800
JAPAN

Dr. Kikumi Tatsuoka
Dr. William Sims CERL
Center for Naval Analysis 252 Engineering Research
4401 Ford Avenue Laboratory
P.O. Box 16268 Urbana, IL 61801
Alexandria, VA 22302-0268

Dr. Maurice Tatsuoka
Dr. H. Wallace Sinaiko 220 Education Bldg
Manpower Research 1310 S. Sixth St.

and Advisory Services Champaign, IL 61820
Smithsonian Institution
801 North Pitt Street Dr. David Thissen
Alexandria, VA 22314 Department of Psychology

University of Kansas
Dr. Richard Sorensen Lawrence, KS 66044
Navy Personnel R&D Center
San Diego, CA 92152-6800 Mr. Gary Thomasson

University of Illinois
Dr. Paul Speckman Educational Psychology
University of Missouri Champaign, IL 61820
Department of Statistics
Columbia, MO 65201 Dr. Robert Tsutakawa

University of Missouri
Dr. Martha Stocking Department of Statistics
Educational Testing Service 222 Math. Sciences Bldg.
Princeton, NJ 08541 Columbia, MO 65211

Dr. Peter Stoloff Dr. Ledyard Tucker
Center for Naval Analysis University of Illinois
200 North Beauregard Street Department of Psychology
Alexandria, VA 22311 603 E. Daniel Street

Champaign, IL 61820
Dr. William Stout

4 University of Illinois Dr. Vern W. Urry
Department of Mathematics Personnel R&D Center
Urbana, IL 61801 Office of Personnel Management

1900 E. Street, NW
Maj. Bill Strickland Washington, DC 20415
AF/MPXOA
4E168 Pentagon Dr. David Vale
Washington, DC 20330 Assessment Systems Corp.

2233 University Avenue
Dr. Hariharan Swaminathan Suite 310
LabauatouViod Repehcmbtric and St. Paul, MN 55114
School of Education Dr. Frank Vicino
University of Massachusetts Navy Personnel R&D Center
Amherst, MA 01003 San Diego, CA 92152-6800

% . o m . • . . . . . . . . .. - . . . . . . .



1986/06/30

University of South Carolina/Jannarone

Dr. Howard Wainer Dr. Bruce Williams
Division of Psychological Studies Department of Educational
Educational Testing Service Psychology
Princeton, NJ 08541 University of Illinois

Urbana, IL 61801
Dr. Ming-Mei Wang
Lindquist Center Dr. Hilda Wing

for Measurement Army Research Institute
University of Iowa 5001 Eisenhower Ave.
Iowa City, IA 52242 Alexandria, VA 22333

Dr. Thomas A. Warm Dr. Martin F. Wiskoff
Coast Guard Institute Navy Personnel R & D Center
P. 0. Substation 18 San Diego, CA 92152-6800
Oklahoma City, OK 73169

Mr. John H. Wolfe
Dr. Brian Waters Navy Personnel R&D Center
Program Manager San Diego, CA 92152-6800
Manpower Analysis Program
HumRRO Dr. George Wong
1100 S. Washington St. Biostatistics Laboratory
Alexandria, VA 22314 Memorial Sloan-Kettering

Cancer Center
Dr. David J. Weiss 1275 York Avenue
N660 Elliott Hall New York, NY 10021
University of Minnesota
75 E. River Road Dr. Wendy Yen
Minneapolis, MN 55455 CTB/McGraw Hill

Del Monte Research Park
Dr. Ronald A. Weitzman Monterey, CA 93940
NPS, Code 54Wz
Monterey, CA 92152-6800

Major John Welsh
AFHRL/MOAN
Brooks AFB, TX 78223

Dr. Rand R. Wilcox
University of Southern

California
Department of Psychology
Los Angeles, CA 90007

German Military Representative
ATTN: Wolfgang Wildegrube

Streitkraefteamt
D-5300 Bonn 2

4000 Brandywine Street, NW
Washington, DC 20016

P



A-

SfJ~

i~ .. '.
'A' .-. J..

~

.. $e.

'.- .

.-. ,. ~.

V. ~$

-, . .. .

-. *. ~ *g * .
. .

- .

%Y%-**.*: ... b.~' *~.***.* * ~*~*

... 

**:~~J~***-~* 

'~*, 4 ~
P~?*

.... - .. *.* * . -. * * .~ * ~ , -
- '. --.-- * *a*. .......

*.~ .*% * *%.. .'. *..*. 
- -

aS ' ''''


