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Abstract

Research under this grant focussed on several aspects of

gravity wave excitation, propagation, and dissipation that are
expected to be important in the atmosphere. Initial studies
addressed the excitation of propagating waves by unstable
shear layers and found that the nonlinear interaction of
evanescent unstable modes is an efficient source of such
motions. Other numerical studies examined the consequences of
gravity wave propagation and saturation in the middle
atmosphere. Important findings include an amplitude limit
imposed by wave field instabilities, the self-acceleration of

large-amplitude motions which may greatly expand the phase
speed distribution of mesospheric wave motions, and the
relative insignificance of nonlinearity in limiting wave
amplitudes and preventing wave field instability.
Observational studiP revealed wave field dynamics to be
largely consistent with linear instability theory, with
turbulence produced at that s.ite in the wave field where the
motion is most unstable. Wave amplitudes were seen to be near
saturation values and easily described by a simple saturation
model of the evolving gravity wave spectrum throughout the
atmosphere. Additional theoretical studies addressed the
turbulent transport of heat and constituents and the induced
mean vertical motions due to vertically propagating gravity
waves, contributing to our understanding of apparent
differences between observations and modeling results.
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1. INTRODUCTION

Research supported under Grant AFOSR 82-0125 has

contributed substantially in an area of emerging importance in

atmospheric dynamics over the past four years. This area is

the study of atmospheric gravity waves, including their

excitation, propagation, dissipation, transports of momentum

and energy, generation of turbulence, and diffusion of heat

and constituents. Also of importance are the very significant

effects of such motions on the large-scale circulation and the

thermal and constituent structures of the lower and middle

atmosphere. While this field has benefitted from contributions

by many authors dating back to the pioneering works by Hines

(1960, 1963, 1972), Hodges (1967, 1969), and Bretherton (1966,

1969a, b), the purpose of this report is to document the

contributions of this research effort. We will, therefore,

only refer to other contributions where they indicate the

relevance of the present results.

The evolving objectives of this research effort over the

term of AFOSR support are described in Section 2. These began

as a fairly narrow interest in the excitation of atmospheric

gravity waves by unstable shear layers, but rapidly expanded

to encompass many aspects of gravity wave propagation,

dissipation, and atmospheric effects. Of particular value was

the application of a theoretical understanding of gravity wave
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processes to the interpretation of observational data. These

findings, together with the results of analytic and numerical

studies performed under this grant, are reviewed in Section 3.

Research under this grant led to a substantial number of

publications and presentations. A cumulative listing of these

is provided in Section 4. Finally, Section 5 lists other

peisonnel participating in this research effort. References

are provided in Section 6.

2. RESEARCH oBJECTIVES

The initial objective of research under t.is AFOSR grant

was to understand the mechanisms that could permit the rapid

excitation of atmospheric gravity waves by unstable shear

layers. This excitation is thought to be one of the major

sources of gravity wave motions in the atmosphere and, as

such, must be better understood if we are to anticipate the

*" consequences of such motions on the large-scale circulation

and structure of the atmosphere. Because previous linear

studies had found the excitation of propagating wave motions

to be constrained by very small growth rates, we elected to

examine the effects of nonlinearity on this process,

specifically the excitation of large-amplitude wave motions

via the nonlineer interaction of rapidly growing Kelvin-

Helmholtz instab)ities.

2
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A second objective of our study was to understand,

through numerical modeling, some of the consequences of

gravity wave saturation in the middle atmosphere. These

included the effects of local convective adjustment of the

wave field, the amplitude limits imposed by convective

adjustment for single waves and superpositions of waves, the

self-acceleration of gravity wave motions due to induced mean

flow changes, the excitation of other motions as a consequence

of local adjustment, and the relative importance of nonlinear

wave-wave interactions and convective adjustment in limiting

wave amplitudes. The goal here was to anticipate what wave

processes ought to be most significant in determining the

gravity wave spectra and characteristics seen in atmospheric

observations. A related objective addressed the effects of a

localized turbulent diffusion on the dissipation of wave

motions and on the transport of heat and constituents.

The remaining objectives of this research effort dealt

with atmospheric observations and their interpretation. A

primary focus was to understand the very different echoes

observed by the Poker Flat MST radar in the mesosphere during

summer and winter. The radar velocity and associated

temperature data suggested that there may be very different

mechanisms at work in the two cases. A related goal was to

identify the instabilities responsible for wave fi-d

3



saturation and the turbulence and wave amplitude limits they

produce. Also of interest were the character of the wave

spectrum, an identification of the motions primarily

responsible for energy and momentum transports, the

consequences of local turbulence production and diffusion, and

* the relative contributions of two-dimensional (2-D) turbulence

and gravity waves to the motion spectrum in the middle

atmosphere.

3. SUMMARY OF RESEARCH ACHIEVEMENTS

Our initial research objective was met by performing a

series of numerical simulations to examine the excitation of

radiating gravity waves both via the linear instability of a

dynamically unstable shear flow and through the interaction of

two rapidly growing Kelvin-Helmholtz (KH) instabilities. The

former simulations revealed that radiating waves grow in a

manner consistent with linear stability analysis until the

motions reach ampliLudes sufficient to cause significant

modifications of the mean flow. Thereafter the wave motions

evolve in a manner that is dependent on the wave structure,

with motions that are propagating above and below the source

shear continuing to produce significant mean flow changes at

large disca.,ces from the shear and motions that are evanescent

above or )--low decaying rapidly due to a continuing erosion of

4
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the shear strength. In the presence of nonlinearly interacting

KH instabilities, wave motions very simiia- L: the linearly

unstable radiating waves were found to be excited very

efficiently, to achieve large amplitudes, and to be very

transient events due to the nature of the excitation. Because

the shear geometry in this study allowed for the presence of

radiating unstable modes, however, it was not possible to

determine whether the excitation was a resonant interaction or

simply a consequence of strong nonlinearity among the KH

modes. This work was described in detail by Fritts (1982a).

A subsequent study (Fritts, 1984a) addressed this issue

and determined that the latter was the case, with the

structure of the radiating modes determined not by linear

instability conditions, but by the nonlinearity itself. Also

addressed here was the most efficient mechanism for such

excitation. That found to be most important was the

interaction of two KH modes at similar horizontal wavenumbers

to excite a radiating wave at a much smaller wavenumber

(larger scale). A second mechanism (vortex pairing) proposed

by other authors and observed in unstratified laboratory

facilities was found not to be effective in the stratified

atmosphere.

The second thrust of our numerical studies wa: toward

understanding gravity wave-mean flow interactions P;ising in

5
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response to wave transience and disslpaticn (including

saturatin . A first study addressed tne evolution Df a

gravity wave packet in a shear flow and the conditions leading

to wave instability and breakdown (Fritts, 1982b). It was

found that such motions can be strongly influenced by a time-

dependent mean flow, either accelerating or retarding the

occurrence of instability, and that when such instability

occurs for high-frequency motions the likely consequence is

the convective instability of the wave field.

Subsequently, a series of papers (Dunkerton and Fritts,

1984; Fritts and Dunkerton, 1984; Fritts, 1985) examined more

specific aspects of the saturation of gravity waves in the

middle atmosphere. These studies utilized a convective

adjustment scheme to achieve a relaxation of the unstable

portions of an evolving wave field to simulate the effects of

local turbulence generation. The significant findings here

included 1) an amplitude limit largely consistent with that

expected from linear saturation theory for monochromatic wave

motions, 2) a substa..tial acceleration of the wave phase

speed, denoted self-acceleration, due to its residence in a

region experiencing significant mean flow accelerations due to

wave transience, 3) a saturated amplitude less than the

morochromatic limit for a superposition of wave motions, 4)

the excitation of additional wave motions at smaller scales

6
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arising as a consequence of the local adjustment of the wave

field, 3) and the observation that ncnlinearity amcng the

saturating wave motions is not suffIcient to prevent the

occurrence of convectively unstable regions within the wave

field. The last point is particularly important as it suggests

that gravity wave saturation is largely a linear process and

does not require nonlinearity within the wave field. Point 2)

implies that the spectrum of gravity wave phase speeds in the

mesosphere may be very different from that in the lower

atmosphere, and points 1) and 3) are consistent with recent

observations of vertical wavenumber spectra of atmospheric

motions. Thus, our modeling studies have given us some

important insights into the mechanisms responsible for the

observed motion spectra in the middle atmosphere.

In a closely related analytic study, Fritts and Dunkerton

(1985) examined the consequences of a localized turbulent

diffusion on the transports of heat and constituents and

concluded that such an effect could provide for significant

wave dissipation while dramatically reducing the effective

eddy diffusion acting on the mean thermal and constituent

gradients. It is believed that this may account for the very

different observed (Hocking, 1985) and required (Strobel et

al., 1986) values of eddy diffusion in the mesosphere. A

second analytic study completed recently (C'-y et al., 1986)

**1"
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has addressed the Stckes drift due t: vertically rcpacating

gravity waves and hias sho:n cnat such an effect can account

for the large and reversed vertical mean motions observed by

the Poker Flat radar relative to that needed to balance the

meridional circulation.

More recent studies under this AFOSR grant have focussed

on the interpretation of middle atmosphere motions observed

with the Poker Flat radar (ie., Balsley et al., 1983). Our

initial focus was on the large asymmetry between the summer

and winter echoes. We now believe that this difference is due

to the very large change in the thermal structure of the

mesopause region with season, causing winter echoes to be

characteristic of gravity waves saturating largely via

convective instability, consistent with the temperature data

of Theon et al. (1967). Summer echoes, on the other hand, are

concentrated near the mesopause. Large-amplitude wave motions

are less likely to be unstable below this level, but are

driven to saturation amplitudes by the rapid increase in

stratification at this height, accounting for the localized

echoes and the strong increase in reflectivity relative to the

winter condition.

Also examined in detail was data collected during the

STATE experiment (Fritts et al., 1986). This study used both

radar and rocket velocity and temperature data to define the

8



temporal and spatial variability of the m-tion field anJ

address the mechanisms responsible fcr turbulence produ:::_-

within the wave field. It was fcun-i that the mction fielf was

dominated by a large-scale wave motion of long period (- 7 hr)

that strongly controlled the intensity and location of

turbulence. This provided strong evidence that the motion

field was unstable, with a wave amplitude near that required

for dynamical instability (more likely than convective

instability for low-frequency motions) and with turbulence

occurring at that location in the wave field where linear

theory predicted instability. Also significant here was the

observation that small-scale motions similar to those found in

the numerical study by Fritts (1985) were present in those

portions of the large-scale wave field expected to be most

unstable and thus most likely sources for other motions.

Finally, three studies addressing the wavenumber and

frequency spectra of gravity wave motions have recently been

completed. The first by Smith et al. (1985) found the vertical

and oblique wavenumber spectra to be consistent with a gravity

wave model due to VanZandt (1985), suggesting that gravity

waves are a much more significant component of the atmospheric

motion spectrum than is 2-D turbulence. A second study

(Smith et al., 1986) showed that observe vertical wavenumber

spectra can be described by a univer-al saturation spectrum

9



with a saturation power consistent with linear instability

theory and the wave superposition effects noted by Fritts

(1985). This is potentially very significant as it represents

a considerable generalization of the previous monochromatic

linear saturation theory. The final spectral study by Fritts

and VanZandt (1986) addressed the effects of Doppler shifting

of gravity wave motions and showed that such effects can

account for some of the departures of observed frequency

spectra from those predicted in the absence of Doppler

shifting effects.

Because of our involvement in both theoretical and

observational studies of middle atmosphere gravity waves, we

have also been in a position to assess and review developments

in the field. This has led to three review papers dealing with

research status and direction in this field which hopefully

have had a positive impact (Fritts, 1984b; Fritts et al.,

1984; Fritts and Rastogi, 1985).

4. PUBLICATIONS AND PRESENTATIONS

During this four-year research effort, AFOSR has

contributed full or partial support for 25 presentations at

national and international scientific meetings, including

seven invited papers, and 28 publications that have appeared,

are in press, or have been submitted to scientific journals or

conference proceedings. The presentations include:

10
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"Evidence for seasonally-dependent generation mechanisms," B.
B. Balsley, W. L. Ecklund, and D. C. Fritts, URSI Int'!.
Symp. on Radio Probing of the High-Latitude Iontsphere
and Atmosphere, Fairbanks, Alaska, August, 1982.

"Evidence of tidal breakdown at the summer mesopause," D. C.
Fritts, B. B. Balsley, and W. L. Ecklund, URSI Int'l.
Symp. on Radio Probing of the High-Latitude Ionosphere
and Atmosphere, Fairbanks, Alaska, August, 1982.

"VHF echoes from the arctic mesosphere and lower thermosphere,

part 1: Observations," B. B. Balsley, W. L. Ecklund, and
D. C. Fritts, U.S.-Japan Seminar on Middle Atmosphere
Dynamics, Honolulu, Hawaii, November, 1982.

"VHF echoes from the arctic mesosphere and lower thermosphere,
part 2: Interpretations," D. C. Fritts, B. B. Balsley,
and W. L. Ecklund, U.S.-Japan Seminar on Middle
Atmosphere Dynamics, Honolulu, Hawaii, November, 1982.

"Gravity wave saturation in the middle atmosphere: A review of
theory and observations," D. C. Fritts, 4th AMS Conf. on
Dynamics of the Middle Atmosphere, Boston, MA, March,
1983.

"Radiation of gravity waves by interacting Kelvin-Helmholtz
instabilities," D. C. Fritts, 4th AMS Conf. on Atmos. and
Oceanic Waves and Stability and 6th AMS Symp. on- Turb.
and Diffusion, Boston, MA, March, 1983.

"Estimation of gravity wave motions, momentum fluxes, and
induced mean flow accelerations in the winter mesosphere
over Poker Flat, Alaska," S. A. Smith and D. C. Fritts,
21st Conf. on Radar Meteor., Edmonton, Alberta, August,
1983.

"Momentum flux measurements: Techniques and needs," D. C.
Fritts, 2nd Workshop on Technical Aspects of MST Radar,
Urbana, IL, May, 1984.

"Estimation of vertical diffusion from observations of
atmospheric turbulence layers," D. C. Fritts, 2nd
Workshop on Technical Aspects of MST Radar, Urbana, IL,
May, 1984.

"Local effects of gravity wave propagation and saturation," D.
C. Fritts, Int'l. MAP Sym-., Kyoto, Japan, November,
1984.
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"Vertical Stokes drifts produced by vertically propagating
internal gravity waves in a com-ress'ble atmosohere," L.
Coy, D. C. Fritts, and J. 'eins-cch, Int'l. NAP Symg.,
Kyoto, Japan, November, 1984.

"Gravity wave saturation and local diffusion," D. C. Fritts,
MAP Workshop on Gravity Waves and Turbulence (GRATMAP),
Kyoto, Japan, December, 1984.

"Wavefield analysis for the STATE experiment," D. C. Fritts,
S. A. Smith, B. B. Balsley, and C. R. Philbrick, MAP

Workshop on Gravity Waves and Turbulence (GRATMAP),
Kyoto, Japan, December, 1984.

"Gravity wave spectra observed by Doppler radar: Comparison of
a model with mesospheric observations," T. E. VanZandt,
S. A. Smith, and D. C. Fritts, MAP Workshop on Gravity
Waves and Turbulence (GRATMAP), Kyoto, Japan, December,
1984.

"Locally enhanced gravity wave saturation as revealed by the
STATE experiment," S. A. Smith, D. C. Fritts, C. R.
Philbrick, and B. B. Balsley, AGU Meeting, San Francisco,
CA, December, 1984.

"Critical level dynamics in the atmosphere and ocean," D. C.
Fritts, 5th AMS Conf. on Atmos. and Oceanic Waves and
Stability, New Orleans, LA, March, 1985.

"Power spectra of mesospheric wind velocity versus wavenumber:
Comparison of a gravity wave model with mesospheric
observations at Poker Flat, Alaska," T. E. VanZandt, S.
A. Smith, and D. C. Fritts, 5th AMS Conf. on Atmos. and
Oceanic Waves and Stability, New Orleans, LA, March,
1985.

"A numerical study of gravity wave saturation including quasi-
linear and nonlinear effects," D. C. Fritts, 5th AMS
Conf. on the Meteor. of the Strat. and Mesosphere,

" Boulder, CO, April, 1985.

"Gravity waves in the middle atmosphere: Recent progress and
needed studies," D. C. Fritts, 3rd Workshop on Scientific
and Technical Aspects of MST Radar, Aguadilla, PR,
October, 1985.

"Simultaneous rocket and radar observations of an internal
gravity wave breaking in the mesosphere," S. A. Smith, D.
C. Fritts, B. B. Balsley, and C. R. Philbrick, 3rd
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Workshop on Scientific and Technical Aspects cf r[ST
Radar, Aguadilla, PR, Octcber, 1985.

"A simple model of the effects of Doppler shifting cn internal
gravity waves," T. E. VanZandt and D. C. Fritts, 3rd
Workshop on Scientific and Technical Aspects of NST
Radar, Aguadilla, PR, October, 1985.

"Mesospheric wavenumber spectra from Poker Flat MST radar
measurements compared with a gravity wave model," S. A.
Smith, D. C. Fritts, and T. E. VanZandt, 3rd Workshop on
Scientific and Technical Aspects of MST Radar, Aguadilla,
PR, October, 1985.

"Evidence of a saturated gravity wave spectrum throughout the
atmosphere," D. C. Fritts, S. A. Smith , and T. E.
VanZandt, 3rd Workshop on Scientific and Technical
Aspects of MST Radar Aguadilla, PR, October, 1985.

"Gravity wave effects in the middle atmosphere," D. C. Fritts,
Workshop on Upper and Middle Atmosphere Density Modeling
Requirements for Spacecraft Design and Operations,
Huntsville, AL, November, 1985.

"Observations of gravity wave saturation by MST radars," D. C.
Fritts, RASC Workshop on the Development of MST Radar
Techniques during MAP and in the Future, Kyoto, Japan,
March, 1986.

A cumulative list of publications supported by this AFOSR

grant follows:

"The Transient Critical-Level Interaction in a Boussinesq
Fluid," D. C. Fritts, J. Geophys. Res., 87, 7997 (1982)

"Shear Excitation of Atmospheric Gravity Waves," D. C. Fritts,
J. Atmos. Sci., 39, 1936 (1982)

"Mesospheric Radar Echoes At Poker Flat, Alaska: Evidence for
Seasonally-Dependent Generation Mechanisms," B. B.
Balsley, W. L. Ecklund, and D. C. Fritts, Radio Sci., 18,
1053 (1983)

"VHF Echoes from the H4gh-Latitude Mesosphere and Lower
Thermosphere: Observations and Interpretations," B. B.
Balsley, W. L. Ecklund, and D. C. Fritts, J. Atmos. Sci.,
40, 2451 (1983)
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"Estimation of Gravity W.'ave r"ticns, Momentum Fluxes, and
Induced Mean Flow Accelerations 'n the T inter Nlescsphere
over Poker Flat, Alaska," S. A. Sm.th and C. C. Fritrs,
Proc. 21st Conf. on Radar Ulete:r., Edmcnton, Alberta, 104
11983)

"VHF Echoes from the Arctic Mesosphere and Lower Thermosphere,
Part 1: Observations," B. B. Balsley, W. L. Ecklund, and
D. C. Fritts, Dynamics of the Middle Atmosphere, J. R.
Holton and T. Matsuno, Eds., 77 (1984)

"VHF Echoes from the Arctic Mesosphere and Lower Thermosphere,
Part 2: Interpretations," D. C. Fritts, B. B. Balsley,
and W. L. Ecklund, Dynamics of the Middle Atmosphere, J.
R. Holton and T. Matsuno, Eds., 97 (1984)

"Shear Excitation of Atmospheric Gravity Waves, Part 2:
Nonlinear Radiation from a Free Shear Layer," D. C.
Fritts, J. Atmos. Sci., 41, 524 (1984)

"Transient Gravity Wave Critical Layer Interaction, Part 1:
Convective Adjustment and the Mean Zonal Acceleration,"
T. J. Dunkerton and D. C. Fritts, J. Atmos. Sci., 41, 992
(1984)

"Research Status and Recommendations from the Alaska Workshop
on Gravity Waves and Turbulence in the Middle
Atmosphere," D. C. Fritts, M. A. Geller, B. B. Balsley,
M. L. Chanin, I. Hirota, J. R. Holton, S. Kato, R. S.
Lindzen, M. R. Schoeberl, R. A. Vincent, and R. F.
Woodman, AMS Bulletin, 65, 149 (1984)

"Gravity Wave Saturation in the Middle Atmosphere: A Review of
Theory and Observations," D. C. Fritts, Rev. Geophys.
Space Phys., 22, 275 (1984)

"A Quasi-Linear Study of Gravity Wave Saturation and Self-
Acceleration," D. C. Fritts and T. J. Dunkerton, J.
Atmos. Sci., 41, 3272 (1984)

"Comparison of Simultaneous Poker Flat MST and Meteorological
Rocketsonde Wind Profiles," S. A. Smith and D. C. Fritts,
Geophys. Res. Lett., 9, 538 (1984)

"Momentum Flux Measurements: Techniques and Needs," D. C.
Fritts, Handbook for MAP, 14, 216 (1984)

"Estimation of Vertical Diffusion from Observations of
Atmospheric Turbulence Layers," D. C. Fritts, Handbook
for MAP, 14, 212 (1984)
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"Fluxes of Heat and Constituents due to Convectively Unstable
Gravity Waves," D. C. Fritts and T. J. Dunkerton, J.
Atmos. Sci., 42, 549 (1985)

"A Numerical Study of Gravity Wave Saturation: Nonlinear and
Multiple-Wave Effects," D. C. Fritts, J. Atmos. Sci., 42,
2043 (1985)

"Convective and Dynamical Instabilities due to Gravity Wave
Motions in the Lower and Middle Atmosphere: Theory and
observations," D. C. Fritts and P. K. Rastogi, Radio
Sci., 20, 1247 (1985)

"Comparison of Mesospheric Wind Spectra with a Gravity Wave
Model," S. A. Smith, D. C. Fritts, and T. E. VanZandt,
Radio Sci., 20, 1331 (1985)

"Local Effects of Gravity Wave Propagation and Saturation," D.
C. Fritts, Handbook for MAP, in press.

"Gravity Waves in the Middle Atmosphere: Recent Progress and
Needed Studies," D. C. Fritts, Handbook for MAP, in
press.

"Simultaneous Rocket and MST Radar Observation of an Internal
Gravity Wave Breaking in the Mesosphere," S. A. Smith, D.
C. Fritts, B. B. Balsley, and C. R. Philbrick, Handbook
for MAP, in press.

"Mesospheric Wavenumber Spectra from Poker Flat MST Radar
Measurements Compared with a Gravity Wave Model," S. A.
Smith, D. C. Fritts, and T. E. VanZandt, Handbook for
MAP, in press.
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