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RANDOM CIRCLES AND FIELDS ON CIRCLES*

by

E. GINLAR and J. G. WANG

1. INTRODUCTION

The overall aim is to describe the exact shapes of objects that were
meant to be circles, cylinders, and so on. The motivation came from the
need to model small deviations, from the intended surfaces, caused by random
effects. For instance, in high precision gas lubricated bearings, the
clearances are of the order of 10_5 inches and small discrepancies of the order
of 10-6 and 10.7 must be taken into account for computing lubricant pressures
and load capacities. Aside from such practical considerations, we are
motivated by a desire to make precise the notion of a random circle, whose )
realizations would be called simply circles by the proverbial man in the
street.

Analytically, we model the shapes as random fields whose parameter spaces
are the intended shapes. Thus, for instance, a random circle is a random
field on a true circle, which has enough stationarity and continuity to

deserve the term circle. 3

*Research supported by AFOSR Grant No. 82-0189 to Northwestern University.
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Preliminaries

Throughout, C will denote a circle of radius one, and m will be the

length measure on it, that is, m(A) is the length of A for each arc A CC.

For p, q € C, we write (p,q) for the open arc going from p to g counterclockwise,

and we write m(p,q) for the corresponding arc length. Note that,
(p,p) = CO\{p} and m(p,p) = 2. The notations [p,ql, (p.,ql, [(p,q)., etc. are
self-explanatory arcs. We take a point of C and distinguish it by labeling
it 0. We associate the point p € C with the arc length m(0,p), thus
identifying C with [0,27], points O and 21 being the same. For p,q € C, we
define p+q as the point whose numerical value is m(é,p+q) = m(0,p) + m(0,q)
modulo 27. Finally, we write -p for the point satisfying (-p) + p = O.

Any function f on C can be regarded as a function on R = (-%°,%) by

identifying C with [0,27] and then extending f onto R by periodicity, i.e.,

by setting f(2mn + x) = f(x) for all O < x < 27 and all integers n. Continuity,

right-continuity, etc. for a function (and therefore a stochastic process) on

C is to be understood in the usual sense for the periodic extension of the
function onto R.
Finally, throughout, (2, ¥, P) will be the complete probability space

that all probabilistic terms refer to.

Random fields and circles

A random field on C is a real-valued stochastic process having C as its

parameter space. Each random field X on C can be thought as a stochastic

process on R that is periodic with period 27T (that is, xzﬂn+t =

Xt identically

for all t and all integers n). With this identification, continuity, right-

R
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continuity, stochastic continuity, stationarity, and reversibility carry
over to random fields on C. We repeat some of these once more in the

following.

(1.1) DEFINITION. Let X = (Xp)pec be a random field on C. Then,

a) X is said to be stationary if the probability law of (X )
Smotioneyy P Y q+p’ pEC

is the same for all q € C;
b) X is said to be reversible if the probability law of (x_p)pec
is the same as that of X;

c) X is said to have the Markov property for the arc ([p,qg] if the

collections (X_ ) and (X_) are conditionally independent given

r'relp.ql r'relq,pl
Xp and xq; X is said to be Markov if it is Markov for every arc [p,q) cc.

(1.2) DEFINITION. A random circle is a positive, stationary, and stochastically

continuous random field on C.

Each realization of a random field on C is a curve on the surface of a
cylinder with base C. However, in the case of random circles at least, the
point of view we adopt is that shown in the figure below, namely, each realiza-
tion of a random circle is the boundary of a star-shaped set.

The stationarity refers to the invariance of the probability law under
the rotations of C, or equivalently, under shifts of the "origin" 0 on C.

The reversibility refers to the sameness of the probability law whether the
figure is viewed from the front or the back of the page. 1In the absence of

"past" and "future" on C, the Markov properly (l.lc) is the most appropriate,

P AT ST e e I SR - - c . e e -
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and it is the most common way that property is defined for random fields.
Namely, for each arc, the values in the interior and exterior of the arc are
conditionally independent given the values at the two boundary points.

For a stochastic process defined on R, CHAY (1972) used the phrase
"quasi-Markov on [0,T]" to mean that for each sub-interval [a,b] of [0O,T],
the values of the process in the interior of [a,b] and the exterior ([0,TI\[a,b]
of [a,b] are conditionally independent given Xa,xb. It is easy to show that
the usual Markov property (of the past-future type) implies the quasi-Markov
property on all of R. Also, it is clear that every random field that is
Markovian on C can be extended to a process on R that is quasi-Markov on

[0,2T]).

Figure. Point p is on the true circle C; Xp is the

corresponding radius of the random circle
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Examples and comments
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Let W be a Wiener process on 34, let a > O be a fixed number, and

define

(1.3) Yt = wt+a - Wt, t€R+; X =Y, peEC .
The process Y on R+ is continuous, stationary, Gaussian, and quasi-Markov
(the latter property was noted first by SLEPIAN (1961)). Of course, X is
Gaussian and Markovian on C. But, X is not continuous on C, having a jump
at O with probability one, and of course, not stationary on C.

Stationarity on C is easy to achieve. It amounts to picking the
distinguished point O at random on C. Let Y be an arbitrary random field on
C, let U be independent of Y and have the uniform distribution on C, and

set

(1.4) XP = Yp-U' pecC .

A quick computation with characteristic functions shows that, then, X is
stationary on C. 1In particular, if Y is positive and continuous, then X is
a continuous random circle. More particularly, let Y describe the largest
square contained in C and having O as a corner; then, X is a continuous
random circle according to Definition (1.2), even though every realization
of X is a perfect square. This is somewhat unpleasant but seems inescapable.
Our mental picture corresponds to (1.2) when the variance is small compared

with the mean radius.
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Let X be a Gaussian random field on C. 1In order for X to be stationary

on C, we must have

(1.5) c°v(xp,xq) = gom(p,q) = gom{(q,p)

for some covariance function g. This implies, in particular, that every
stationary Gaussian random field on C is reversible. For non-Gaussian fields,
stationarity implies (1.5) but (1.5) does not imply reversibility (since
covariances no longer determine the probability law). For instance, take Y
in (1.4) to be increasing in the counterclockwise direction on (0,2n) and
note that X is not reversible.

The form of stationary Gaussian random fields on C is well-known.
LEVY (1951) has shown that every such field X with mean zero can be expressed

as
o
(1.6) X = z c, (U cos np + V_ sin npl], pe€C,

where the Un and Vn are all independent Gaussian random variables with mean 0O
and variance 1, and the constants cn are square summable.
Interestingly enough, each term of the series (1.6) has the Markov

property (l.lc) for most arcs. Consider

(1.7) Xp = U cos np + V sin np, p€C,

where the integer n > 1 is fixed, and U and V are independent, Gaussian, with

mean 0 and variance 1. Clearly, X is continuous, stationary, Gaussian.

.
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It has the Markov property for every arc [p,g] such that Xp and Xq determine
U and V, which is whenever sin n(p-q) # 0. Otherwise, if np-nq is a multiple

of 7, the Markov property .or [p,q] fails. For instance, if n =1 and p = 7/4

and q = 57/4, then cos np = sin np and cos nq = sin nq, and xp and xq determine

only the sum U + V, and it is easy to see that the Markov property fails.
So, this X is not Markovian on C.

We shall show that the process X given by (1.6) with c, = 1/V/2a

«e a e 8

stationary, Gaussian ones, up to multiplication by and addition of constants.

Integrators over C

This is to introduce the notation and terminology we shall employ with
stochastic integrals with respect to, essentially, processes with stationary
: and independent increments.
g Throughout, W will denote the white noise and M an arbitrary integrator
with stationary and independent increments. For every bounded Borel function

f on C, we write

(1.8) Mf = [ £(p) M(dp)

C
for the stochastic integral of f with respect to M: this is the integral of
f dz over (0,27), where dzp = M(dp) and Z is a process with stationary and

independent increments. In the important special case where M = W, the

s as & 2 B

corresponding 2 is the Wiener process, which we denote by (wp).

s 8 3 M8
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cn = 1//a” + n2 for some a is the unique Markovian field among all continuous,
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(1.9) REMARK. Independence of increments for M is equivalent to saying

that Mf ,...,an are independent whenever the f, have disjoint supports.

1 k

Stationarity for M is equivalent to saying that, for each f,

[ £(p) M(@p), [ £(p) M(q + dp)
C c
have the same distribution for all geC. We express this by the phrase
"the probability law of M(qg ++) 1is free of gq."
The structure of such M is well-known: for every bounded Borel function

fOnCr

(1.10) ME = o mf + 8 WE + | [N(dp,dz) - m(dp)n(dz)I
CxR

z f 2
(-l,l)( )] f£(p) 2z,
where ¢ and (3 are constants, m is the arc length measure and W is the white
noise as mentioned before, and N is a Poisson random measure on CxR with mean
measure m x n, the measure n being a Levy measure on R (that is, n-integral of

z —> 22 A1 is finite).

Organization

In the next section, we show that the random field

~am
(1.11) x_ = [ e3P yag, pec,
P ¢
is stationary, right-continuous, stochastically continuous, and Markovian.
In the special case M = W, it is further Gaussian, continuous, and reversible.
Conversely, every continuous stationary Gaussian Markov random field on C

has the form ¢ + bX for some constants ¢ and b.

Sl Al A B P S DAY S S AR A i 4



LARR AN S b N i M A sl e LA N e e USSR Al i iad Mdans s Ak At A

If M is positive (which makes M into a positive compound Poisson
random measure, basically), then X is positive and is a Markovian random
circle. 1In the case M = W, X is not a random circle because it does take
negative values; however, for small enough b and large enough c, ¢ + bX
should be a good approximate model for a random circle with mean radius c.

In general, a whole class of Markovian random circles Y can be defined
by letting Y = f(X) for continuous, strictly increasing, strictly positive f,

In section 3 we concentrate on the special case of X defined by (1.11)
with M = W, the white noise. The process X satisfies the same stochastic
differential equation as does an Ornstein-Uhlenbeck process, but with an
unusual boundary condition, namely, that the initial and final values must
be the same. Therefore, the traditional definitions of a solution (with
the initial value independent of the Wiener process) do not apply. We do
obtain differential equations whose solutions in the traditional sense

yield X. Mcre interestingly, we give a decomposition

vriere Y 1¢ a Gaussian process independent of x0 and is Markovian in the
ordinary sense (past-future type). Finally, in the same section we give
the [ ourlier representation for X.

Section 4 is devoted to extending X onto cylinders. 1In fact, this is
not difficult. 1In the special case of Gaussian continuous fields on the

cylinder C » R we obtain an Ornstein-Uhlenbeck process (Xt) where each Xt

is a random field p —> Xt(p) of the type (1.11).

R T e e e e NN e e e e aTe e, e e el o .
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The main difficulty in working on C is the absence of past and future.
We have been able to avoid the issue by limiting ourselves to integrands
that are deterministic. A general theory of stochastic integration on circles
is yet to be developed. What we have here has the same relation to that

future theory as does the Wiener integrals to Ito integrals.
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2. STATIONARY MARKOV RANDOM FIELDS ON C

Throughout this section, M will denote an integrator on C with
) stationary and independent increments. The particular case where M = W,
the white noise, is of special interest. Recall that m is the length

B measure on C. Define d

(2.1) x_= [ e3P D yiaq), pec, :
P C

where a > 0 is a constant. The case a = 0 is too trivial to be of interest
but is useful in rounding out the theory. The following is the main result

of this section. .

(2.2) THEOREM

a) The random field X is stationary, right-continuous, stochastically
continuous, and Markovian on C.

b) In the special case where M = W, X is continuous, Gaussian,
and reversible in addition to being stationary and Markovian.

c) Conversely, every continuous, stationary, Gaussian, and Markovian
random field Y on C has the form Y = b + ¢cX, where b and ¢ are constants and

X is as in (2.1) with M = W.

If it were positive, X would be a Markovian random circle. This can be

achieved by taking M positive, that is, by letting M have the form

P

T \‘. *a '.-“ Y >u' ‘h
AR RO TR
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(2.3) Mf =q « mf + [ N(dp,dz) f(p)z
CxiR+

with o > O and the Poisson random measure N on R _having the mean measure

m x n such that the n-integral of z/1 1 is finite. We state this next.

(2.4) COROLLARY. Suppose M is positive. Then, X is a right-continuous

Markovian random circle.

The discontinuities of X coincide with the atoms of M: for any w€fl,

27
p—> Xp(w) has a jump of size -(1 - e 2 a)z at g if and only if the measure
N(w,*) has an atom at the point (g,z). By taking the measure n vanishing
. . L . . =27
outside an interval I C R, one can limit the jumps of X to sizes ~(l-e a)z

with 2z€I. Thus, although a discontinuous circle is repugnant, discontinuities
. ~6 . . .
of magnitude 10 are not likely to cause comment in practice.
However, if continuity is needed, it can be achieved as follows. Let

f: R— R+ be a continuous strictly increasing function and define

2.5 Yy = £f(x), c .
(2.5) p (p) p€

(2.6) COROLLARY. The random field Y is a right-continuous Markovian random

circle. 1In particular, if M = W, then Y is also continuous and reversible.
Even in the continuous case, by choosing f appropriately, one can limit

the values of Y to any preselected positive open interval desired, and further,

one can make the distribution of Yp (necessarily free of p because of

o
.;i
)
K »

1]
K%
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e
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stationarity) any continuous strictly increasing distribution function one
desires: Choose f = hog where g: R —> (0,1) is the (cumulative) Gaussian
distribution function with mean 0 and variance that of xp, and where h is

the functional inverse of the distribution function desired for Yp.

(2.7) CONJECTURE. Every continuous Markovian random circle Y has the form

(2.5) where X is defined by (2.1) with M = W.

If true, this would be the eguivalent, for Markov random fields on the
circle, of FELLER's characterization of continuous Markov processes on R+.
We are unable to prove this, but we suspect strongly that the conjecture
is very near the truth.

The remainder of this section is devoted to proofs, basically.

Stationarity

This is easy to show for X. The following does it for a larger class.

(2.8) LEMMA. Let g be a bounded Borel function on [0,2n] and define

(2.9) Z, = [ gem(p,q) M(dq), pec .
c

Then, the random field Z is stationary on C.

PROOF. Fix s€C, and note that

N LIPS .« -

» v g -

v v v r.r

h
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N
[}

(2.10) j gom(s+p,q) M(dq)

s+p c

f gom(s + p, s + gq) M(s + dg) = f gom(p,q) M(s + dq),

C C

that is, the random field Zs+. is obtained from M(s + ¢ by the same rule as
Z is from M. By the stationarity of M, M(s + «) has the same law as M. So,

Zs+. has the same law as 2.

The random field X has the form (2.9) with g(x) = e ®*. Another special

case is where g(x) = x and M = W, in which case

2.1 = - = ,
(2.11) Z, = Zo + 2 - pWy z, | s aw_
where (wt) is a Wiener process, in other words, 2 is a tied down Brownian

motion with an initial value 2, that depends on the whole of W. This process

0
was introduced by LEVY (1980, vol. 5, pp. 157 ff) who exploited its stationarity

to handle the Wiener process by Fourier transforms,

Continuity

This is easier to discuss by first writing the integral (2.1) in the
more traditional form. Identifying C with (0,27), separating the integral
over C into integrals over (0,p] and (p,2T] = (0,27)\(0,p], and recalling

that m(p,q) is the length of the open arc (p,q) going from p to g counter-

clockwise, we obtain, for p€(0,27T),
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22T P yag) + [ 2P yiag)

(2.12) X
P (o,pl (p,2m]

eap(e-2Tra f + f - f ) e—aq M(dq)
(0, p] (0,2T] (O,p]

P x - %P (1 - e—2na) f e 4 M(dq),
0
(0,p)

where, as in (2.1),

(2.13) x = [ % mag
(0,2m)

The last integral in (2.12) is that of a continuous function with
respect to a left-limited right-continuous process over (O,pl. It is now
obvious that X is left-limited and right-continuous over (0,27). Taking
limits as p + O, we see that X is right-continuous at p = 0, and letting
p * 27, we see that X has a left-limit at p = 0 = 2T, So, X is left-limited
and right-continuous on C.

It follows from (2.12) again that, for every outcome wel,the function
p — xp(w) has a jump of magnitude -(1 - e-2“a)z at point q if and only
if the measure N(w,*) has an atom (q,z).

Thus, p — xp(w) is continuous if and only if N(w,°*) has no atoms.
So, p — xp(w) is continuous for almost every W if and only if the Lévy
measure n vanishes, in which case the representation (1.10) for M becomes
M = bm + cW for some constants b and c¢. 1In particular, if M =W, X is

continuous.
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Finally, since the mean measure of N is m x n and m is diffuse, for
each peC, the probability is zero that N has an atom on the ray {p} x R.
Thus, for every fixed p€C, X is continuous at p almost surely. 1In other

words, X is stochastically continuous.

Markov property

For each arc (p,q]C C, let qu denote the g-algebra generated by
the increments M(aA), A C [p,g]l, and let

(2.14) z = fe'a‘“(p’s’) M(ds)

Pq (p,ql
Independence of the increments of M implies that qu and qu are independent.
If a =0 in (2.1), then Xp = xo for all p, and X is Markovian on C
trivially. For the remainder of the proof we take a + 0.
For p = q, the Markov property for [p,q] is trivially true. From here
on, we fix p,qg€C, p ¥ q.

Writing the integral (2.1) as the sum of two integrals, one over (p,q]

and the other over (g,pl], we obtain

(2.15) X =z  +e 2P, x =eamap) , L,
P Pq ap g P4

Since a * 0, qu and qu are determined uniquely by xp and Xq through these

equations. Hence, the g-algebra generated by Xp and X is the same as that

generated by 2 and 2
Pq ap

Lo ‘:_‘, N i\L
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Therefore, since rpq and qu are independent, for every bounded

rpq - measurable random variable F,

[; ' = = F|2Z
E[F|X,, X, F_ )= E[F|Z } = BIF[Z, ]

’ Z ’ F
Pq ap ap
and

E[F

x ,x 1 =EF|2_, 2 1=EFZ 1,
P g Pq agp Pq
which shows that
(2.16) E[F|X , X, F = E[F|X , X_]
[ l P g QP] ! P 4
In other words, F__ and F__ are conditionally independent given X_and X .
pa gqp P q

For r € (p,q), again separating the integral (2.1) for xr into integrals

over (p,q] and (q,p] and solving (2.15) for qu, we obtain

(2.17) xr = f e-am(r,s) M(ds) + efam(r,q] z
(p.q) P
- I e-am(r.s) M(ds) + 1 (e—am(r.q) % -am(x,p) X).
(p,ql 1-e72M a P
It is evident from this that
2.18 O(X : r € 1YC O(X, X ,F
( ) ( r [p.q]) ( P' q pq)

and, by symmetry,

> ¥y n "

F R IR

N Y e EY
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2.19 C(X : r € [p,g)C O(X , X, F_).

(2.19) ;T € lpag o' *q Fop

l : '
In view of (2.16), namely, because the g-algebras on the right sides of
(2.18) and (2.19) are conditionally independent given Xp and Xq, we see

that the desired Markov property holds for the arc [p,q].

Completion of the proof of Theorem (2.2)

The preceding sub-sections have shown the truth of (a).
In the special case where M = W, we have shown that X is continuous
on C. Obviously, in addition, X is Gaussian, and reversibility is immediate
because every stationary Gaussian field on C is reversible. So, statement
(b) holds. ¥
To show (c), let Y be continuous, Gaussian, stationary, and Markovian
on C. Subtracting a constant and dividing by another, we may assume that Y i
has mean O and variance 1. We need to show that the probability law of Y
is that of bX for some constant b, which comes to showing that (since both X

and Y are Gaussian),
(2.20) EY Y = b° EX X ¥
) p4q pg’ PTT:

In preparation for this we compute the covariance of xp and xq from

(2.1) with M = W and a ¥ 0. We get, for p ¥ q,

(2.21) EX X = E [ [ e @™PrE) maM(AiS) yigry w(as) '
pa "L

- I e-am(p,r)—am(q.r) m(dr)

<", ) et

K . sy ’ RN S A ARS SRR LS

RO \"l,‘;._,\.;.-. RNy

W



-19-

1 =27 - ’ - ’
-1 1 - e a) (e am(p,q) + e am(q p)) ,

a

and
2 1 -4Ta
(2.22) E(XP) =3 (1 - e ) .
If a = 0, we have X_ = W__ for all p, and hence EX X = 27. Thus, we need
P 2m P d

to show that, for some a > O,

e—ZWa -1 , -am(p,q) -am(qg,p)

(2.23) EY Y = (1 + ) (e + e ) .
P g

or equivalently, that the covariance function B, defined so that EYqu =

B(m(p,q)), has the form

- =27 -
(2.24) B(t) =be 4+ (1 -pe?t, b=+ 1,

The remainder of the proof follows from a lemma of CHAY (1972). Suppose
that Z is a stationary Gaussian érocess with mean 0 and variance 1 (stationarity
over R). Suppose that its covariance function is continuous. Suppose Z is
quasi-Markov on [O,T]. Then, the covariance function f of Z satisfies
f'(t) = c * £(t) for t < T. Depending on whether ¢ = 0, ¢ <0, orc > O,
there are three possibilities for £(t):

-0 oL
(2.25) 1 -at, cosoOt, Ae a4 (1-aye't
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where o > 0 in the first two cases and o 2 0 in the last case (and there
are other conditions on o,A,T).

In the first case, the corresponding process has the form Wt+a - Wt
for a = 1/a. This process is not continuous on C, hence 1 - gt cannot be
associated to Y.

In the second case, cos at, the corresponding process has the form
U cos ot + V sin gt. To be continuous on C, a > O must be an integer.

y But, then, this becomes the random field (1.7), which we have already shown
y to fail the Markov property. So, the covariance function of Y cannot have

the form cos Qt.

The last possible form is in fact the form (2.24), because the condition

of continuity for the field forces the values at t = 0 and t 21 to be the

same, which condition becomes

~2TQ 270

(2.26) 1l = + (1 ~-1a)e ’

[
£

which gives A = b and & = a as in (2.24).

This completes the proof of Theorem (2.2).

Other remarks

Corollary (2.4) is immediate from Theorem (2.2a) and Definition (1.2) of
random circle. The remarks on discontinuities of X following Corollary

(2.4) were proved in the sub-section above entitled "continuity." Corollary

Roeh S aosagn

(2.6) is immediate from Theorem (2.2) and the following facts. First, if Z

is stationary, then so is f(2) for any field Z and measurable f. Second,
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similarly, if Z is reversible, so is f(2). If Z is continuous and f is
continuous, so is f(2). If Z is Markovian and f is one-to-one, then f(2)

) is Markovian, by the simple fact that, then, knowing f(Zp) is the same
as knowing Zp and vice-versa. When f is continuous and strictly increasing,

f is obviously one-to-one from R onto some open interval.

Relationship to Ornstein-Uhlenbeck process

It is well-known that, when R+ is the parameter space, the only

CCP RN

stationary, continuous, Gaussian Markov processes are Ornstein-Uhlenbeck
processes. Since the random field X has the analogous properties on C when
M = W, it is expected that X be the analog of the Ornstein-Uhlenbeck process
on the circle C.

A Indeed, the representation (2.12) shows this clearly. For greater

clarity, we re-write (2.12) as a stochastic differential equation and with

M= W:
; 2.27 dx_ =aX_dp - b dW_, 0<p<oa2m,
' ( ) D D P P P
where b = 1 - e_2ﬂa. (Of course, b can be taken to be arbitrary; then,

. corresponding solution will be a multiple of X.) This is exactly the

€ stochastic differential equation satisfied by Ornstein-Uhlenbeck processes.

. But, X is not an Ornstein-Uhlenbeck process, because the initial random
variable xO depends on M = W through (2.13). 1Instead, X is the unique solu-

tion of (2.27) satisfying the two-sided boundary condition

a's ¢ 4 &

Moty e e N T e T e TR T NN e T a e Y LTE S Ve e e e et e e et e e e e
R IV NG AN IO N M A 3¢ R S T e T e ) R N R S St SR
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(2.28) X =X

In the theory of stochastic differential equations, it has been
customary (see IKEDA and WATANABE (1981) for instance) tc make the
convention that the initial value is independent of the driving process
W or M, or whatever. On the circle, the initial value is also the final

value, and such conventions will have to be altered.

Characteristic functional of X

We end this section with a formula: for any finite measure » on C,

(2.29) E exp i I Adp) Xp = exp f m(dq) g(f A(dp) e-am(p,q))
C

C C

where g is the exponent function corresponding to M, that is, if M is

represented by (1.10),

iBz

(2.30) g(8 = inf - 1p26% [ naz) te”*-1-i6z1 (z)]
2 (-111)
R
. _ .
Taking )\ Ao épo + ... 0+ An Gpn, where Por ---r P € C are fixed and
AO' . An € R are constants and where 5p is the Dirac measure putting

its unit mass at the point p, the left-side of (2.29) becomes the

characteristic function of the random vector (xp ) oeees xp ). 1In particular,
0 n
taking ) = Ao Gp with p fixed, we get

(2.31) E exp(i )\0 X ) = exp I m(dq) g()\ e"&l“(PrQ))
P c 0
27 -a
= exp [ m(dq) g, e?Y
o]

P O N T I T} - - e T et a A e m T e e et s  m e Tae b T A P et . e T e T
S R 2R G R G, G S P A SR R AR TRt ”3~~n:.-¢‘¢\ﬁf¢"qe”\¢:¥ e
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Two special cases of M deserve special mention: if M = W, the white noise,

we have g(§) = -§62; and if M is positive like in (2.3), we have
* ipz

(2.32) g(8) = iag + [ ntdz) (%% - 1)
0

To show (2.29), first, we observe that
] > ap X, = [ Miaw [ rapy 8™ P D o [ miaq) fiq) = Mf
with an obvious definition for f. Thus, it is sufficient to prove that

(2.33) E eiMf - em(gOf)

for every bounded Borel function f on C. Various continuity arguments

reduce this to showing that (2.33) holds for f having the form

= e e . . i
£ 1 1Al + ..+ N 1An where Al, .oy An are disjoint arcs. But, then,
ME T
Ee = T E(exp i8 M(A))
k=1
n
= 1 exp(m(Ak) g(ek)) = exp f m(dg) g(f(q))
k=1

as required.
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3. STANDARD GAUSSIAN FIELD

This section is devoted to the random field X defined by (2.1) in the

special case where M = W, that is,

(3.1) x_ = | e3P D wiaqy, pec.
Pz

We exclude the trivial case a = 0 and assume that a > 0. The random field X is

staticnary, reversible, continuous, Markovian, and Gaussian with mean 0 and

covariance (see (2.21))

1 _ e-2ﬂa)(e-am(p.q)

(3.2) B(p,q) = E X_ X ==—(1 -am(q,p))

+ e

The Markov property states that, given XO and Xp' the processes
(Xr: r € [O,p])and(Xr € [p,2m]) are conditionally independent given Xp. Thus,
given XO, the conditional law of X is the law of an ordinary (past-future type)
Markov process. Our first aim is to identify that ordinary Markov process.

We had mentioned, in the last paragraphs of Section 2, that X is like
an Ornstein-Uhlenbeck process, but it is not one because the stochastic dif-~
ferential equation to be solved is driven by a Wiener process W that depends on
the initial value xo. Our second aim is to obtain the equations for X whose
driving term is independent of XO.

Finally, we shall obtain the Fourier representation for X, which turns out

to be almost as slow as that of the Wiener process.




NN EYEE

OO

Before listing the results, we introduce

(3.3) b=1-e Mg T a m(p,q), p.9 €C,

in order to lighten the notation somewhat. We shall be using hyperbolic

functions extensively.

(3.4) THEOREM. Let [p,g] be a fixed closed arc on C with 0 < p < g < 2r,

There exists a Wiener process W on {p,a] independent of Xp and Xq such that

sinh mrq sinh @Pr sinh m__
(3.3 Xr = sinh m Xp * sinh m xq +b j sinh m w(ds)
ra Pq [p,r] sq

for all r € (p.q]l.

(3.6) COROLLARY. Let Y be the last term on the right side of (3.5).
Considered as a process on the time interval [p,g)l, Y is a Markov process
{(in the ordinary sense), is independent of Xp and xq, and has Yp =Y =0.

q
Moreover, it satisfies the stochastic differential equation

(3.7) dYr = -a(ctnh mrq) Y. dr + bW(dr), p<r<gq.

(3.8) COROLLARY. Given X and X , the conditional law of (X ) is the
j o q r' rélp,q]

law of an ordinary Markov process on [p,q]l. The process satisfies the

stochastic differential equation

i A a
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(3.9) dxr = (axq csch mrq - axr ctnh mrq)dr + bw(dr), P<r<aq,
where W is a Wiener process independent of the pair (xp,xq).

(3.10) PROPOSITION. There exists a Wiener process W independent of xo such

that

sinh m om A
, 2T
+b - w{ds), peEC.

{0,p] s,27

cosh (na - pa)
cosh ma o

(3.11) X =
p

Thus, given Xo, the conditional law of X is the law of an ordinary Markov

process on the time interval [0,2T7].

(3.12) REMARK. Still other facts about X can be obtained from Corollaries

(3.6) and (3.8) by replacing p and q there with 0 and 27 respectively.

(3.13) THEOREM. The random field X has the series representation

b b 1
U, + 2
a/zn vYT n=l 2 2

a +n

(3.14) xp = [Un cos np + Vn sin np]} ,

where UO’Ul""’vl'VZ"" are independent Gaussian random variables with

mean 0 and variance 1. In fact U0 = wzn//2n, and for n # 0,

2n
(3.15) U = L f [a cos ng + n sin ng] W(dg) ,

n
/ﬂ(a2+n2)o

1 2m
V = —— f [a sin ng@ ~ n cos ng] W(dq)

/%(a:+n )o

-'-.. .~‘ K .-'- —-'..>'. T, .'.-". ..'.-‘. .-'_.' -'.'_‘ c .- et - P T ORI T - AP T Y et et At Q"
B A A T e N A G & I S L IRt S DR A A S T L S M S AL ORI LR LSS



The remainder of this section is devoted to proofs. Corollaries (3.6)
and (3.8) are easy consequences of Theorem (3.4). Proposition (3.10) is
obtained from Theorem (3.4) and Corollary (3.8) by replacing p with O and
q with 27m. Thus, the only things to be proved are (3.4), the Markov representa-

tion theorem, and (3.13), the Fourier series representation.

Proof of Theorem (3.4)

For r € [p,q), define

sinh m

X, - sinh m
Pq

a
+~—
Yo+t § f Y ctnh muq du .

[p,r)

that ¥ is a continuous Gaussian process on [p,q] with mean

L)

Yq = 0. So, W is again a continuous Gaussian process with mean O,

0. In differential form, (3.18) gives

3 cosh m

A= —_— (@Y + —2 5y dr)
sinh m r sinh m r
rqg rq

Hence, since Yp = 0,

Putting this into (3.17) and rearranging the terms yield (3.5).

2 “)l‘ g "nh..}-’ .-f:"-' ‘n.;.f:"n:.; N "..J'-- \’~‘1¥--‘ 3N .‘I'-(:‘ N -.-* .'1'-‘-':'-':.1"‘1‘-. ‘ .-
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To complete the proof, we need to show that W is a Wiener process and

is independent of Xp and Xq. Since all the processes are Gaussian, these

matters are reduced to computing various covariances.
First we express (3.2) in different notation:

-Ta
e cosh (Ta - mrs) ' r,s € C .

oo

(3.19) E XrX =

Using this with (3.17) and some elementary identities yields

(3.20) E erp = E erq =0, r € [p,ql ,
b2
. = —————— si i < .
(3.21) E YrYs 3 sinh m sinh mpr sinh msq ’ p<{r<s<gq

Pq

Since X and Y are Gaussian, (3.20) implies the independence of the process

Y from the pair (Xp,Xq), and in view of (3.18), the process W is independent

of X and X .
P q

~ ~

Since wP = 0 and since W is a continuous Gaussian process with mean O,

in order to show that W is a Wiener process, it is sufficient to show that

>
>
0
A
]
A
n
A
o

(3.22) EWW =1 -p, <

This computation requires some delicacy, for which reason we provide a few

details.

It turns out to be useful to introduce the notations

(3.23) F, = [ sinhm ,ctahm av,
[p,u] P 4




. e - -
PR

T

-29-

(3.24) aG = f a cosh m dv = sinh m - sinh m .
Y Ipul vd Pq

It follows from (3.18) that, for r < s,
2 r
AN =YY +af duyYy_ ctnhm
rs r's P u's uq

r s
+
a(i du + { du) YuYr ctnh muq

r u s
+ a2 f du (f dv + f dv) YY ctnhm ctnhm
P P u u'v ugq vq

from which, taking expectations with the aid of (3.21) and using the nota-

tions of (3.23) and (3.24), we obtain

(3.25) a sinhm EWW
prq Y S

r
= sinhm _sinhm__ + a sinh m f dr
pr sq sq P u

r s
+ a sinh m f dF + a sinh m f aG
rq u pr

u
P r
2 r u 2 r S
+
a® [ a [ @ +a" [ a [ g
P P P u
= sinh mpr (sinh Mg + a(Gs - Fr)]
2 r
+ alsinhm__ + sinhm__ + aG_ +aG_] F_~- 2a° [ G dF .
sq rq r s o P u u

ot e e N T Ty
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Note that, directly from (3.23) and (3.24),

r r
- . _ . h
2a° [ 6 dF = 2aF, sinh L 2a [ sinh L cosh m du
o P
r
= 2aF sinhm_ - a sinhm + sinh(m__ - m, )]du
r Pq £ [ pu
= 2aF sinhm__ - a + (r - p) sinh m
r Pq Pq
1 1
-3 cosh(mpr - mrq) + 2 cosh mpq .

Putting this into (3.25) and simplifying, we obtain (3.22), thus completing

the proof of Theorem (3.4).

Proof of Theorem (3.13)

Considering X as complex valued, Fourier series for X is

o .
= inp

(3.26) X, = ] Ae - ., FpE€C,

n=-
where

1 2" -inp
(3.27) A =5 g e X, ap .

. . . . Ca s ~2Ta
It will be convenient to introduce, in addition tob=1-e '
(3.28) == e =—=——, nto.
3/7? /W(a‘+n2)

e T

L T S U JR I I R U >
R A (“{.:( ..’-\,' N I Ly .-J’ X -"—‘.‘.’
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Now,
! Izﬂ dp - -inp f -am(p,q)
An = o p * e W(dg) e
0] o
_ 1 b -ing
Toom £ wldq) T e

f W(dq) {(a + in) (cos nq - i sin ng) .
2n{(a +n ) C

Putting U0 = WZ“/VZW and defining Un and Vn for n ¥ 0, for n positive and

negative, by (3.15) and (3.16), we see that

™
[}
o
0
<
he -]

[}
N
o
(9]

(U, - iv) , nto.

Putting these into (3.26) yields

b . ..
(3.29) xp chU0 + 3 nio cn(Un 1Vn)(cos np + i sin np)

[+ ]

bc U  + b

Z c [(U + U _ =-1iV_ - iV ) cos np
ey boon -n n -n

+ (1Un - lU_n + Vn - V—n) sin npl

[+ <]

nzl cn(2Un cos np + 2vn sin np)

bCOU0 +

(X184

since U = U and V
-n n -

-V for all n > 1. This is exactly (3.14), and
n z

the only thing remaining is to show the claims about the nature of Un and Vn.

-

3
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It is obvious that they are Gaussian and have mean 0. The remaining
assertions about their variances and independence from each other are proved

by showing that
2 2
EU.=EVi=1, EUU =EVV =0, ntm,
n n n
and that
EU V =0, n>0,m>0.

This requires only elementary calculus once we note that

2n

E [ £(p) W(dp) [ glq) w(dag) = [ £(p) g(p) dp .
C C o}

(3.30) REMARK. DOJne could use the fact that X is stationary and periodic

and EX X = B(p - g) where
P q P q

and then use the spectral decomposition of stationary Gaussian processes to
arrive at (3.14). The proof above is longer, but it identifies the coef-

ficients U and V_.
n n
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4. FIELDS ON CYLINDERS

Extending the results of the preceding sections to random fields

defined on cylinders presents no new difficulties. We limit ourselves,

therefore, to introducing the random field of interest and to stating

several

interesting properties.

Let C be the circle of radius one as before and consider the cylinder

CxR. For p and g on C, we write m(p,q) for the length of the arc (p,q)

going from p to g counterclockwise, just as before. 1In addition, we write

m(s,t) for the length of the interval (s,t) C R, although not permissible by

the strict rules for notation making.

Let M be an integrator on C x Rwith stationary and independent

increments: for every bounded Borel function f with compact support in C x R,

(4.1)

where o and g are constants, N is a Poisson random measure on CXEXR with mean

measure element m(dp) 4t n(dz), where n is a Lévy measure, and W is the white

noise o

ME =o [ m(ap) at f(p,t) + B [ W(dp.dt) £(p,t)

CxR CxR

+ [ [N(dp,dt,dz) - m(dp)dtn(dz)I

CxFXR

(-1,1)(2)] f(p,tiz ,

n CxR. The last may be thought as the integrator corresponding to

Brownian sheet, that is,

(4.2)

MRS

W, = J W(dg,ds) , O<p<2m 0<t<wm,

P/t (0,pIx(0,t)

- 4, . .. . PR T T I R P IR SO
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is a Brownian sheet on [0,27} X R,, which is a Gaussian process with mean
0 and

(4.3) E = (p A q)(t A u)

wp:t wq'u
Integration with respect to W was considered by WONG and ZAKAI (1974),
CAIROLI and WALSH (1975), and others. The last integral in (4.1) is in fact
simpler and should be understood in analogy with the simple time case. The
integral over Cx RXx(R\(-1,1)) = E is that of f(p,t)z with respect to a
random measure, and hence, is an ordinary integral. The integral on the
complement of E is a stochastic integral; it is the limit in probability

(indeed almost sure limit) of

IE [N(dp,dt,dz) - m(dp) dt n{dz)) f(p,t)z ,
€

as € + 0, where Ee = CX RX((-1,1)\(~£,£))
The random field of interest is

(4.4) X(p,t) = / e"am(p,q) -bm(s,t)

CX ("°°l t]

M(dq,ds), PEC, tER,

where a > 0 and b > 0 are fixed constants. We view it as a random field on
the cylinder CX R. Alternately, we may regard it as the evolution in time

of a random field on the circle C.

e
",

U, Nt
S B G SR S R R R
PRV AT, PEPL P AEBE I N N I
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The message of the following theorem is that the sections of X are all
stationary and Markov. Recall that a time-homogeneous Markov process, with
time-set :R+ and taking values in a Lusin space, is called a Hunt process if
it is right-continuous, left-limited, strong Markov, and quasi-left-continuous,
the last two properties being with respect to a filtration that is right-
continuous and augmented properly. See BLUMENTHAL and GETOOR (1968) for the
definitions. We shall use the term here for processes with time-set R, with-
out specifying the filtration, and somewhat fraudulently: Extension of the

concepts onto R is no problem; we may take as filtration the (rt)tel?' where

»
L N )

I‘t = F: VN, I-‘z being the g-algebra generated by {Mf: f continuous with
compact support contained in C x(-w,t]} and N being all the null-sets of the
completion of IZ; the fraud is that we have only one probability measure P,

instead of a whole collection, one for each starting state, of which we have

none.

eavte'n A B B

(4.5) THEOREM. a) For each t € R, p —> X(p,t) is a stationary, right-continuous

stochastically continuous, Markovian random field on C; the law of p —> X(p,t)

is free of t.

b) For each p € C, t —> X(p,t) is a stationary Hunt process.

. A0

c) For any integer n > 1 and points pl,...,pn on C, the process

; t — (X(pl,t) ,...,x(pn,t)) is a stationary Hunt process with state space R".
d) Let X(+,t) denote the mapping p —> X(p,t). Then, the process

t —> X(-,t) is a stationary Hunt process taking values in the space E of all

right-continuous, and left-limited functions from C into R, topologized by

uniform convergence on C.
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(4.6) COROLLARY. Suppose that M = W, the white noise on Cx R. Then, in
addition to the properties above, X is a continuous stationary Gaussian random
field on C xR with mean 0 and

1 -blu-t
4.7 E X(p,t) X(q,u) =5 B(p,q) e o [, P.gEC, t,u€ R.

where B is as given by (3.2). Moreover,

a) for each p € C, t — X{(p,t) is an Ornstein-Uhlenbeck process;

b) for any integer n > 1 and points PyreessPy € C, the process
t — (X(pl’t),...,x(pn,t)) is an Rn - valued Ornstein-Uhlenbeck process,
which is a weak solution of

. . n .
(4.8) ax’(t) = -bx*(t) dr + ] ¢ wl@@n ,
j=1

where Xi(t) = x(pi,t), and wl,...,wn are independent Wiener processes, and
the matrix c satisfies cc” = B, that is,

(4.9) c

fle~>3

oL ik cjk = B(pi,pj) ’ l1<i,j <n;

c) the process t—> X(+,t) is an Ornstein-Uhlenbeck process taking
values in the space € of all continuous functions from C to R, topologized

by uniform convergence on C.

(4.10) REMARK. An Ornstein-Uhlenbeck process with values in Ror R is a
process that satisfies an equation like (4.8), see IKEDA and WATANABE (1981)

for instance. In the case of processes taking values in infinite dimensional
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spaces like € in (4.6c), see ITO (1982) and MEYER (1982) for definitions.

Our case is much clearer, because of the explicit formula (4.4).

(4.11) THEOREM. The random field X enjoys the following Markov property.
Let A CC be an arc, let B C Rbe an interval, and consider the rectangle
Ax B on the surface of the cylinder Cx R. Then, {X(p,t): p € A and t € B}
and {X{(p,t): p € A or t ¢ B} are conditionally independent given {X(p,t):

(p,t)€ 3:a xB)}, 3(A xB) being the boundary of Ax B.

(4.12) REMARK. The arc A can be taken to be C, in which case AxB is a
cylinder, and the Markov property above coincides with the statement (4.5d).
The degenerate arc A = {p} is allowed. Similarly, B does not have to be

an interval.

{(4.13) REMARK. By limiting the parameter t to an interval D C R, we may
regard X as a field on the cylinder Cx D. For this purpose, D = Fq_= (0,0}
and D = [0,d], 4 > 0, are of special interest. All the results listed above
continue to hold for such an X. In considering such cylinders Cx D, it may
appear more natural to define X via integrators on CxD. Assuming D = [0,d)
or D = [0,»), this can be done by setting

e-am(p,q)-bm(s,t)

(4.14)  X(p,t) = e Pt x(p,0) + M(dq,ds),

Cx(0,t]

where

(4.15) X(p,0) = [ e ™MPr Dy (aq) ,
¢
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MO being an integrator on C independent of the integrator M on Cx D. Of

course,
¢ bs

(4.16) M, (dq) =f e M(dq,ds)
- 00

The formula (4.14) can be used to define an "Ornstein-Uhlenbeck"
process t —> X(+,t) on Ih_and taking values in E of (4.5d) with initial
state X (+,0) arbitrary and independent of M on Cx R+. In an obvious sense,
the probability law of X(s,t) approaches, as t — «, to that of the right-

side of (4.15) with M_ having the same law as the right-side of (4.16).

0
Many of the results above rest on, or motivated by, the following
observation. 1Its truth is immediate from Remark (1.9) and a similar state-

ment for integrators on R.

(4.17) LEMMA. Define M(gxh) by (4.1) with f(p,t) = g(p) h(t), where g is
a bounded Borel function on C and h is bounded Borel function with compact
support in R. Then,

a) for fixed g, h —> M(gx h) is an integrator on R with stationary
and independent increments;

b) for fixed h, g —> M(gxh) is an integrator on C with stationary

and independent increments.

In a similar vein, and more interesting, is the following "stochastic

kernel."” For h bounded, Borel, with compact support in R, define
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(4.18) K(p,h) = [ e 3™PD  y 4y m(aq,at)
Cx R

Recall that E stands for the space of all right-continuous left~limited
functions from C into R (see (4.5d)). The following is immediate from the

preceding lemma.

(4.19) PROPOSITION. For each fixed h, p — K(p,h) is a random element of
E. For each fixed p, h —> K(p,h) is an integrator on R with stationary

and independent increments.

Proof of Theorem (4.5)

Stationarity of the increments of M means that the probability law of
M(p + dg, t + du) is free of (p,t}. This implies that the law of X is free
of the choice of origin and of rotations of the coordinate system. This
shows the stationarity in all the statements of (4.5).

For fixed t € R, let h(s) = e-b(t-s)

for s < t and h(s) = 0 for s > t.
Then, by Lemma (4.17b), g —> M(g Xxh) is an integrator on C with stationary
and independent increments, and p —> X(p,t) is defined from it according to
the formula (2.1). Thus, (4.5a) is a re-statement of Theorem (2.2a).

For fixed p € C, let glg) = e 2M(Prd)

By Lemma (4.17a), h —>Mp(h) = !
M(g x h) is an integrator on R with stationary and independent increments, and
we have

(4.20) X(p,t) = [ e Pmist)

M_(ds)
(=oc,t) P

''''''''''''''''''
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That t — X(p,t) is left-limited and right continuous is immediate from

this. We have

u
(4.21)  X(p,tsu) = e x(p,e) + [ o PR(S/W) M (tds) .

o

Since Mp(t+-) is independent of the past F_ and has the same law as Mp(-),

t
{4.21) implies that t — X(p,t) is a time-homogeneous Markov process.
Strong Markov property is similar; one can replace t by a stopping time T
in (4.21) and use the known "strong Markov property" for MO. Finally, quasi-
left continuity comes from the facts that every jump of t —> X(p,t) coincides
with an atom (t,z) of thg Poisson random measure involved with Mo and there-
fore, the jump times are exhausted by a sequence of stopping times each one
of which is totally unpredictable. This completes the proof of (4.5b).

The proofs of (4.5c,d) are entirely similar: To show (4.5d), replace

Mo in the preceding paragraph with h —> K(.,h), the latter being defined by

(4.18) and having the properties mentioned in Proposition (4.19).

Proof of Corollary (4.6)

When M = W, the white noise on Cx R, it is obvious that X becomes
Gaussian, stationary, reversible, continuous. It is easy to compute the co-
variance function and show that (4.7) is indeed true.

The remaining statements are all similar. We prove (b) only. First,

putting M = W and taking differentials in (4.20) we have

(4.22) dx(p,t) = -bX(p,t)dt + Wp(dt)

G W L SRR YL R S P S L R A e T Tl LI T A I PSSR IY UL R AP A T T L R U R I L I L \ -
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(4.23) Wy = f e 3mP:2) y ¢y w(aq,at)

Let pl""'Pn € C be fixed. For hl,...,hn bounded, Borel, with bounded

support, we have

EW (hi) W {(h.) =
P pj 3

| expl-am(p.,q) - am(p.,q)] h, (t) h_(t) m(dg)dt
CX R . J . J

B(pi.pj> thi(t) hj(t) dt

E x
E( c.. W (h,)) (
k=1 ik i "

ne— 3

W (h,

with(cij) and WJ) as described in (4.6b). Thus, the probability law of the

k

n
n-dimensional process (W_,...,W ) is that of ( Z c., W) Putting
Py Py x=1 ¥

this fact together with (4.22) we obtain (4.8) and the proof of (4.6b) is

i=l,...,n

complete.

Proof of the Markov property (4.11)

It is sufficient and convenient to give the proof for A = [0,p] + C

and B = [0,dJCR, d > 0. We let

(4.24) L =Cx(-»0], G-= [0,p}x][0,4] ,
H = [P:o] x [0,4) , K=Cx [d,w) .
\ l .l'f' ". - ) A '. . -'r . " -“- -( -¢- » .. -ﬂ. =, ...’ . “..'-‘ . ... ‘\ .- .. - = -...." e -‘...-. R -‘_ -’:-.. IR “.-:.. S ~...-‘...
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For any collection {Z(t): t € Cx R} and any set SCCx R, we write Zs for the

og-algebra generated by {2(t): t € S}. Similarly, we write M_ for the g-algebra

S
generated by {Mf: f = lU,UCS}. Finally, if I, H, K are sub-g-algebras of F,

we write (read H splits I and K)

L]l B[ KX

to mean "L and K are conditionally independent given H."” In the special case

when I and K are independent, we write
LIl K.
The following two elementary facts will be used a number of times:
(4.25) GvRB] H[ K = Lv B] Hv B[ K = L vB] Hv B[ Kv B
(4.26) L] H[ K, L][GvHVK = L] H[XvUL.
We start by letting
(4.27) Y(p,t) = [ e am (P ) -bm(s,®) a0 as) .

Cx (0,t)

Applying the arguments of the proof of Theorem (2.2), Markov property, to the
process p —> Y(p,+), which has exactly the same form as the process

p —> XP of (2.2), we see that




s el & &

-43-

(4.28) YG 1Y [y, .

GNOH H

Since G DG MK , (4.25) and (4.28) yield

(4.29) Y =Y VY 1Yy

G G GNK Ly

ent ¥ Yenk ' ¥ Y Yok -

By the independence of the increments of M over disjoint sets, we have

MK][YGVYHI

which yields, when used with (4.26) and (4.29),

(4.30) Y. 1]

v = v
G YG(\H v YG(\K { YH A 4 M Y Y

GNK K H K’

Note that the values of Y on GlJ HUl) K are determined by M on that

set, whereas the values of X on L are determined by M on L. So,

xL 11 YG \% YH \' YK ’

which together with (4.30) and (4.26) implies that

(4.31) YG ] YG('\H \Y YGnK [ YH v YK v xL .

into every term in (4.31) by using

, we may put XG(\L _

Since X = X
-t Y ¥%AL

(4.25), which gives

RIT IPIT AL AP AT SRR
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(4.32) Y v ]

G XG{\L Y v X {y VYKVX

Yorm ¥ Yenk Y %6nL ! Y L

b

It follows from (4.27) defining Y and (4.14) for X that X(p,t) = e t X(p,0)

+ Y(p,t). Thus, X on G/\L together with Y on G determine X on G, that is,

(4.33) YG v XG{\L = XG .

Putting (4.33) into (4.32), noting that X_ = X , and applying (4.25)

G GV XG(\K

once again, we obtain

, (4.34) Xx.1 v v

¢ ! Yenm Yy vV ¥ VXV

Yok ¥ Xenr ¥ Xenk LY %snk -

Finally, noting that

Yok ¥ %61 VY ¥enk T =X

v %L Y %enk Y Xenk T e

Y6 u
. and that ;
. YHVYKVXLVXGHK=XLVXHVXK
we see that (4.34) is in fact
xG ] xaG [ xLUHUK ! a

' which is the desired statement of the Markov property. .
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