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RANDOM CIRCLES AND FIELDS ON CIRCLES*

by

E. CINLAR and J. G. WANG

1. INTRODUCTION

The overall aim is to describe the exact shapes of objects that were

meant to be circles, cylinders, and so on. The motivation came from the

need to model small deviations, from the intended surfaces, caused by random

effects. For instance, in high precision gas lubricated bearings, the

clearances are of the order of 10- 5 inches and small discrepancies of the order

of 10- 6 and 10- 7 must be taken into account for computing lubricant pressures

and load capacities. Aside from such practical considerations, we are

motivated by a desire to make precise the notion of a random circle, whose

realizations would be called simply circles by the proverbial man in the

street.

Analytically, we model the shapes as random fields whose parameter spaces

are the intended shapes. Thus, for instance, a random circle is a random

field on a true circle, which has enough stationarity and continuity to

deserve the term circle.

*Research supported by AFOSR Grant No. 82-0189 to Northwestern University.
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Preliminaries

Throughout, C will denote a circle of radius one, and m will be the

length measure on it, that is, m(A) is the length of A for each arc A Z C.

For p, q e C, we write (p,q) for the open arc going from p to q counterclockwise,

and we write m(p,q) for the corresponding arc length. Note that,

(p,p) = C\{p} and m(p,p) = 27. The notations [p,q], (p,q], [p,q], etc. are

self-explanatory arcs. We take a point of C and distinguish it by labeling

it 0. We associate the point p E C with the arc length m(O,p), thus

identifying C with [0, 27T), points 0 and 27 being the same. For p,q e C, we

define p+q as the point whose numerical value is m(O,p+q) = m(O,p) + m(O,q)

modulo 27. Finally, we write -p for the point satisfying (-p) + p = 0.

Any function f on C can be regarded as a function on 1 = (-D,o) by

identifying C with [0,271 and then extending f onto Rby periodicity, i.e.,

by setting f(27n + x) = f(x) for all 0 < x < 27 and all integers n. Continuity,

right-continuity, etc. for a function (and therefore a stochastic process) on

C is to be understood in the usual sense for the periodic extension of the

function onto J.

Finally, throughout, (0, F, P) will be the complete probability space

that all probabilistic terms refer to.

Random fields and circles

A random field on C is a real-valued stochastic process having C as its

parameter space. Each random field X on C can be thought as a stochastic

process on I that is periodic with period 27 (that is, X 2n+t = Xt identically

for all t and all integers n). With this identification, continuity, right-

,* * .. . .. .. . ... . .. .-. *.. ... ... .. . .. .... . ., .. .
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continuity, stochastic continuity, stationarity, and reversibility carry

over to random fields on C. We repeat some of these once more in the

following.

(1.1) DEFINITION. Let X = (Xp)pec be a random field on C. Then,

a) X is said to be stationary if the probability law of (X pC

is the same for all q e C;

b) X is said to be reversible if the probability law of (X_
-p pec

is the same as that of X;

c) X is said to have the Markov property for the arc (p,q] if the

collections (Xr)re[p,q] and (Xr)re[q,p] are conditionally independent given

X and X ; X is said to be Markov if it is Markov for every arc [p,q] C C.p q

(1.2) DEFINITION. A random circle is a positive, stationary, and stochastically

continuous random field on C.

Each realization of a random field on C is a curve on the surface of a

cylinder with base C. However, in the case of random circles at least, the

point of view we adopt is that shown in the figure below, namely, each realiza-

tion of a random circle is the boundary of a star-shaped set.

The stationarity refers to the invariance of the probability law under

the rotations of C, or equivalently, under shifts of the "origin" 0 on C.

The reversibility refers to the sameness of the probability law whether the

figure is viewed from the front or the back of the page. In the absence of

"past" and "future" on C, the Markov properly (l.lc) is the most appropriate,

%* " S**"*".*...*" "' ' ' 2 - - .* /-'-' * . . -.- .. . .-'-. ...- *.-. . -. .. " ,".".,........ -. .,- ".-. -.,



and it is the most common way that property is defined for random fields.

Namely, for each arc, the values in the interior and exterior of the arc are

conditionally independent given the values at the two boundary points.

For a stochastic process defined on i, CHAY (1972) used the phrase

"quasi-Markov on [O,T]" to mean that for each sub-interval [a,b] of [O,T],

the values of the process in the interior of [a,b] and the exterior [O,T]\Ea,b]

of [a,b] are conditionally independent given XaXb. It is easy to show that

the usual Markov property (of the past-future type) implies the quasi-Markov

property on all of R. Also, it is clear that every random field that is

Markovian on C can be extended to a process on I that is quasi-Markov on

[0,27r).

Figure. Point p is on the true circle C; X is the

corresponding radius of the random circle
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Examples and comments

Let W be a Wiener process on 3+, let a > 0 be a fixed number, and

define

(1.3) Yt = Wt+a - Wt' tSP+; X = Y , peC.t~a t +p p

The process Y on IR+ is continuous, stationary, Gaussian, and quasi-Markov

(the latter property was noted first by SLEPIAN (1961)). Of course, X is

Gaussian and Markovian on C. But, X is not continuous on C, having a jump

at 0 with probability one, and of course, not stationary on C.

Stationarity on C is easy to achieve. It amounts to picking the

distinguished point 0 at random on C. Let Y be an arbitrary random field on

C, let U be independent of Y and have the uniform distribution on C, and

set

(1.4) Xp Yp-U' peC

A quick computation with characteristic functions shows that, then, X is

stationary on C. In particular, if Y is positive and continuous, then X is

a continuous random circle. More particularly, let Y describe the largest

square contained in C and having 0 as a corner; then, X is a continuous

random circle according to Definition (1.2), even though every realization

of X is a perfect square. This is somewhat unpleasant but seems inescapable.

Our mental picture corresponds to (1.2) when the variance is small compared

with the mean radius.

4 : ,<, ,;,:/ <' '<.7 --" "" -i ;.' -< '', '< -" , .' - " " :- , ,- " " ¢" . <"-'S
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Let X be a Gaussian random field on C. In order for X to be stationary

on C, we must have

(1.5) CoV(X p,X ) = gom(p,q) = gam(q,p)

for some covariance function g. This implies, in particular, that every

stationary Gaussian random field on C is reversible. For non-Gaussian fields,

stationarity implies (1.5) but (1.5) does not imply reversibility (since

covariances no longer determine the probability law). For instance, take Y

in (1.4) to be increasing in the counterclockwise direction on (O,27) and

note that X is not reversible.

The form of stationary Gaussian random fields on C is well-known.

LEVY (1951) has shown that every such field X with mean zero can be expressed

as

(1.6) X p I c [UnCos np + V sin np], peC,
n=O n

where the U and V are all independent Gaussian random variables with mean 0n n

and variance 1, and the constants c are square summable.n

Interestingly enough, each term of the series (1.6) has the Markov

property (1.lc) for most arcs. Consider

(1.7) X = U cos np + V sin np, piC.,p

where the integer n > 1 is fixed, and U and V are independent, Gaussian, with

mean 0 and variance 1. Clearly, X is continuous, stationary, Gaussian.

"4
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It has the Markov property for every arc [p,q) such that X and X determinep q

U and V, which is whenever sin n(p-q) # 0. Otherwise, if np-nq is a multiple

of 7, the Markov property aor [p,q] fails. For instance, if n = 1 and p = /4

and q = 5T/4, then cos np = sin np and cos nq = sin nq, and X and X determineP q

only the sum U + V, and it is easy to see that the Markov property fails.

So, this X is not Markovian on C.

We shall show that the process X given by (1.6) with c = l/f2ao

Sc = 1/a 2 + n2 for some a is the unique Markovian field among all continuous,n

stationary, Gaussian ones, up to multiplication by and addition of constants.

Integrators over C

This is to introduce the notation and terminology we shall employ with

stochastic integrals with respect to, essentially, processes with stationary

and independent increments.

Throughout, W will denote the white noise and M an arbitrary integrator

with stationary and independent increments. For every bounded Borel function

f on C, we write

(1.8) Mf = f f(p) M(dp)
C

for the stochastic integral of f with respect to M: this is the integral of

f dZ over (0,271], where dZ = M(dp) and Z is a process with stationary andP

independent increments. In the important special case where M = W, the

corresponding Z is the Wiener process, which we denote by (W).
P
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(1.9) REMARK. Independence of increments for M is equivalent to saying

that MfI .... .,Mf are independent whenever the fk have disjoint supports.n

Stationarity for M is equivalent to saying that, for each f,

f f(p) M(dp), f f(p) M(q + dp)
C C

have the same distribution for all qeC. We express this by the phrase

"the probability law of M(q +.) is free of q."

The structure of such M is well-known: for every bounded Borel function

f on C,

(1.10) Mf = a mf + Wf + f [N(dp,dz) - m(dp)n(dz)I (_,)(z)] f(p) Z,

where a and are constants, m is the arc length measure and W is the white

noise as mentioned before, and N is a Poisson random measure on CxP with mean

measure m x n, the measure n being a Levy measure on N (that is, n-integral of

z --- > z2 A 1 is finite).

Organization

In the next section, we show that the random field

(1.1I) X = f e-am(p 'q ) M(dq), peC,
P C

is stationary, right-continuous, stochastically continuous, and Markovian.

In the special case M = W, it is further Gaussian, continuous, and reversible.

Conversely, every continuous stationary Gaussian Markov random field on C

has the form c + bX for some constants c and b.

'4 '~~~*-. -~..
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If M is positive (which makes M into a positive compound Poisson

random measure, basically), then X is positive and is a Markovian random

circle. In the case M = W, X is not a random circle because it does take

negative values; however, for small enough b and large enough c, c + bX

should be a good approximate model for a random circle with mean radius c.

In general, a whole class of Markovian random circles Y can be defined

by letting Y = f(X) for continuous, strictly increasing, strictly positive f.

In section 3 we concentrate on the special case of X defined by (1.11)

with M = W, the white noise. The process X satisfies the same stochastic

differential equation as does an Ornstein-Uhlenbeck process, but with an

unusual boundary condition, namely, that the initial and final values must

be the same. Therefore, the traditional definitions of a solution (with

the initial value independent of the Wiener process) do not apply. We do

obtain differential equations whose solutions in the traditional sense

yield X. Mcre interestingly, we give a decomposition

P = f(p) X0 + Y , < p < 2,

wnere Y i_ a Gaussian process independent of X0 and is Markovian in the

cirdinary sense (past-future type). Finally, in the same section we give

dhe :ourier representation for X.

Section 4 is devoted to extending X onto cylinders. In fact, this is

not difficult. in the special case of Gaussian continuous fields on the

cylindcr C R we obtain an Ornstein-Uhlenbeck process (X ) where each Xt

is a random field p Xt (p) of the type (1.11).

. - ,.'. . .. . . .-. . . . . _ . .- ..
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The main difficulty in working on C is the absence of past and future.

We have been able to avoid the issue by limiting ourselves to integrands

that are deterministic. A general theory of stochastic integration on circles

is yet to be developed. What we have here has the same relation to that

future theory as does the Wiener integrals to Ito integrals.

b

. . . . . . . . . . . . . ..~ *ft~** * k~t~i
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2. STATIONARY MARKOV RANDOM FIELDS ON C

Throughout this section, M will denote an integrator on C with

stationary and independent increments. The particular case where M = W,

the white noise, is of special interest. Recall that m is the length

measure on C. Define

(2.1) X = f e am (p 'q) M(dq), peC,
p C

where a > 0 is a constant. The case a = 0 is too trivial to be of interest

but is useful in rounding out the theory. The following is the main result

of this section.

(2.2) THEOREM

a) The random field x is stationary, right-continuous, stochastically

continuous, and Markovian on C.

b) In the special case where M = W, X is continuous, Gaussian,

and reversible in addition to being stationary and Markovian.

c) Conversely, every continuous, stationary, Gaussian, and Markovian

random field Y on C has the form Y = b + cX, where b and c are constants and

X is as in (2.1) with M = W.

If it were positive, X would be a Markovian random circle. This can be

achieved by taking M positive, that is, by letting M have the form

.V
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(2.3) Mf = a • mf + f N(dp,dz) f(p)z
Cx3R+

with a > 0 and the Poisson random measure N on +having the mean measure

m x n such that the n-integral of z A 1 is finite. We state this next.

(2.4) COROLLARY. Suppose M is positive. Then, X is a right-continuous

Markovian random circle.

The discontinuities of X coincide with the atoms of M: for any WeR,

-2Ta)
p-> X (w) has a jump of size -(l - e )z at q if and only if the measurep

N(w,') has an atom at the point (q,z). By taking the measure n vanishing

outside an interval I c 3, one can limit the jumps of X to sizes -(i- e- 2a)z

with zeI. Thus, although a discontinuous circle is repugnant, discontinuities

of magnitude 10-6 are not likely to cause comment in practice.

However, if continuity is needed, it can be achieved as follows. Let

f: P-- I+ be a continuous strictly increasing function and define

(2.5) Yp = f(Xp), peC

(2.6) COROLLARY. The random field Y is a right-continuous Markovian random

circle. In particular, if M = W, then Y is also continuous and reversible.

Even in the continuous case, by choosing f appropriately, one can limit

the values of Y to any preselected positive open interval desired, and further,

one can make the distribution of Y (necessarily free of p because of

p=
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stationarity) any continuous strictly increasing distribution function one

desires: Choose f = hQg where g: p > (0,1) is the (cumulative) Gaussian

distribution function with mean 0 and variance that of X , and where h is
P

the functional inverse of the distribution function desired for Y
p

(2.7) CONJECTURE. Every continuous Markovian random circle Y has the form

(2.5) where X is defined by (2.1) with M = W.

If true, this would be the equivalent, for Markcv random fields on the

circle, of FELLER's characterization of continuous Markov processes on PR.

We are unable to prove this, but we suspect strongly that the conjecture

is very near the truth.

The remainder of this section is devoted to proofs, basically.

Stationarity

This is easy to show for X. The following does it for a larger class.

(2.8) LEMMA. Let g be a bounded Borel function on [0,2r] and define

(2.9) Z = f gm(p,q) M(dq), peC
C

Then, the random field Z is stationary on C.

PROOF. Fix seC, and note that

* *.*.. *.'d~~. ."

.% % * C *~ ~ ~ C- C) C" C -
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(2.10) Z f gnm(s+p,q) M(dq)
s+p f

= f gom(s + p, s + q) M(s + dq) = f gom(p,q) M(s + dq),
C C

that is, the random field Z + is obtained from M(s +") by the same rule as

Z is from M. By the stationarity of M, M(s + .) has the same law as M. So,

Z has the same law as Z.s+.

-ax
The random field X has the form (2.9) with g(x) e Another special

case is where g(x) = x and M = W, in which case

27T

. (2.11) Zp =Z 0 + 2m W-pW 2 , Z0 =f s dW ,
0

where (W ) is a Wiener process, in other words, Z is a tied down Brownian
t

motion with an initial value Z that depends on the whole of W. This process

was introduced by LEVY (1980, vol. 5, pp. 157 ff) who exploited its stationarity

to handle the Wiener process by Fourier transforms.

Continuity

This is easier to discuss by first writing the integral (2.1) in the

more traditional form. Identifying C with (0,27], separating the integral

over C into integrals over (O,p] and (p,27 1 = (0,271\(O,p], and recalling

that m(p,q) is the length of the open arc (p,q) going from p to q counter-

clockwise, we obtain, for pQ(0,27),

:..a- '. * , -a a v. . . -*-..*;. ;' . .*.: .. . .... ,., , . -, ".v,,-, .. -, .. : ,- --
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(2.12) X = f e-a(2-p+q) M(dq) + f e-a(q-p) M(dq)
P (0,p] (p, 27T]

= eap (e 27a f + - f ) e-a q M(dq)
(O,p] (0, 27] (0,p]

= eap x0 - eap (1 - e 271a) I ea M(dq),
(0,p] r

where, as in (2.1),

(2.13) X0 = I e-aq M(dq)
(0,21)

The last integral in (2.12) is that of a continuous function with

respect to a left-limited right-continuous process over (O,p]. It is now

obvious that X is left-limited and right-continuous over (0,27). Taking

limits as p 4 0, we see that X is right-continuous at p = 0, and letting

p t 271, we see that X has a left-limit at p = 0 = 27. So, X is left-limited

and right-continuous on C.

It follows from (2.12) again that, for every outcome L.SQ,the function

p -4 X (w) has a jump of magnitude -(l - e )z at point q if and onlyp

if the measure N(W,° ) has an atom (q,z).

Thus, p -* X (M) is continuous if and only if N(W,") has no atoms.
P

So, p > X (W) is continuous for almost every W if and only if the Levyp

measure n vanishes, in which case the representation (1.10) for M becomes

M - bm + cW for some constants b and c. In particular, if M = W, X is

continuous.

* p U U. U ~ * . . . . . . . . . . .--- l* *-!

~~V h'. . ..-. *. * ** ~ U.. .. ... *%q.'~t 4-

- . .*. . . ,
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Finally, since the mean measure of N is m x n and m is diffuse, for

each peC, the probability is zero that N has an atom on the ray {p} x P.

Thus, for every fixed peC, X is continuous at p almost surely. In other

words, X is stochastically continuous.

Markov property

For each arc (p,q] C C, let F denote the a-algebra generated by
pq

the increments M(A), A C [p,q), and let

(2.14) Z = M(ds)

pq f emPs
(p,q]

Independence of the increments of M implies that F and F are independent.pq qP

If a = 0 in (2.1), then X = X0 for all p, and X is Markovian on C

trivially. For the remainder of the proof we take a + 0.

For p = q, the Markov property for [p,q] is trivially true. From here

on, we fix p,qeC, p t q.

Writing the integral (2.1) as the sum of two integrals, one over (p,q]

and the other over (q,p], we obtain

(2.15) X = Z + e - a m (pq) Z X = e - a m (q ' p ) Z + Z .*p pg qP' q Pq qp

Since a f 0, Zpq and Zqp are determined uniquely by X and X through thesepqpp q

equations. Hence, the a-algebra generated by X and X is the same as that
p ba

generated by Z and Z
pg qp
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Therefore, since F and F are independent, for every boundedPq qP

r - measurable random variable F,
pq

E[FIX p, x q F = E[FIZpq' z , E[FIZJ

and

E[I p Xq E[FIZpq, qP E[FIZ p q ,

which shows that

(2.16) E[F!Xp , Xq , Fqp = E[FIXp, Xq]

In other words, F and F are conditionally independent given X and X qPq qP p q

For r e (p,q), again separating the integral (2.1) for X into integralsr

over (p,q] and (q,p] and solving (2.15) for Z qp, we obtain

(2.17) x = f e- am (r's) M(ds) + e am(rq] z
r (p q]

e- a m (r 's ) M(ds) + 12a (e-am(rq) -am(r,p) p

?ds+(eXq - e • )

(p,q] 1-e

It is evident from this that

(2.18) O(X r e [p,q])C (X , X , I )
r p q pq

and, by symmetry,
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(2.19) O(Xr: r 0 [p,q]) C (X p, X q, F ).

In view of (2.16), namely, because the a-algebras on the right sides of

(2.18) and (2.19) are conditionally independent given X and X , we seep q

that the desired Markov property holds for the arc [p,q].

Completion of the proof of Theorem (2.2)

The preceding sub-sections have shown the truth of (a).

In the special case where M = W, we have shown that X is continuous

on C. Obviously, in addition, X is Gaussian, and reversibility is immediate

because every stationary Gaussian field on C is reversible. So, statement

(b) holds.

To show (c), let Y be continuous, Gaussian, stationary, and Markovian

on C. Subtracting a constant and dividing by another, we may assume that Y

has mean 0 and variance 1. We need to show that the probability law of Y

is that of bX for some constant b, which comes to showing that (since both X

and Y are Gaussian),

(2.20) EY Y b qEX X p q

In preparation for this we compute the covariance of X and X fromp
(2.1) with M = W and a 0. We get, for p q,

(2.21) EX pX q E f ae~)-mqs W(dr) W(ds)
p ffe-am (pr) e-am (q, s)

C C

f e-am(p'r)-am(q'r) m(dr)

C

ob % % %

.~~~~ -.,
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1 -2 a) (e-am(p,q) + e-am(q,p)
- 2a

and

(2.22) E(X 2 (1 - e 4 a)
p 2a

If a = 0, we have X = W for all p, and hence EX X = 27. Thus, we needp W2ITp

to show that, for some a > 0,

(2.23) = Y + -Za -l (e-am(p,q) -am(q,p)(2 2 ) Y Y(eI + e a q p)
pq

or equivalently, that the covariance function B, defined so that EY Y =pq

B(m(p,q)), has the form

-beat at -27Ta -

(2.24) B(t) + (1 - b)e , b = (1 +e

The remainder of the proof follows from a lemma of CHAY (1972). Suppose

that Z is a stationary Gaussian process with mean 0 and variance 1 (stationarity

over 1). Suppose that its covariance function is continuous. Suppose Z is

quasi-Markov on (O,T). Then, the covariance function f of Z satisfies

f"(t) - c * f(t) for t < T. Depending on whether c = 0, c < 0, or c > 0,

there are three possibilities for f(t):

-at(2.25) 1 - at, cos at, Ae + (i - A)e+ ,
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where a > 0 in the first two cases and a > 0 in the last case (and there

are other conditions on a,A,T).

In the first case, the corresponding process has the form Wt+a - Wt

for a = 1/a. This process is not continuous on C, hence 1 - at cannot be

associated to Y.

In the second case, cos at, the corresponding process has the form

U cos at + V sin at. To be continuous on C, a > 0 must be an integer.

But, then, this becomes the random field (1.7), which we have already shown

to fail the Markov property. So, the covariance function of Y cannot have

the form cos at.

The last possible form is in fact the form (2.24), because the condition

of continuity for the field forces the values at t = 0 and t = 2 7 to be the

same, which condition becomes

(2.26) 1 =A e 2 (- A) e ,

which gives A = b and a = a as in (2.24).

This completes the proof of Theorem (2.2).

Other remarks

Corollary (2.4) is immediate from Theorem (2.2a) and Definition (1.2) of

random circle. The remarks on discontinuities of X following Corollary

(2.4) were proved in the sub-section above entitled "continuity." Corollary

(2.6) is immediate from Theorem (2.2) and the following facts. First, if Z

is stationary, then so is f(Z) for any field Z and measurable f. Second,
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similarly, if Z is reversible, so is f(Z). If Z is continuous and f is

continuous, so is f(Z). If Z is Markovian and f is one-to-one, then f(Z)

is Markovian, by the simple fact that, then, knowing f(Z p) is the same

as knowing Z and vice-versa. When f is continuous and strictly increasing,p

f is obviously one-to-one from P onto some open interval.

Relationship to Ornstein-Uhlenbeck process

It is well-known that, when R+ is the parameter space, the only

stationary, continuous, Gaussian Markov processes are Ornstein-Uhlenbeck

processes. Since the random field X has the analogous properties on C when

M = W, it is expected that X be the analog of the Ornstein-Uhlenbeck process

on the circle C.

Indeed, the representation (2.12) shows this clearly. For greater

clarity, we re-write (2.12) as a stochastic differential equation and with

SM=W:

(2.27) dX = a X dp - b dW , 0 < p < 2r!

-2 ra
where b 1 - e (Of course, b can be taken to be arbitrary; then,

corresponding solution will be a multiple of X.) This is exactly the

stochastic differential equation satisfied by Ornstein-Uhlenbeck processes.

But, X is not an Ornstein-Uhlenbeck process, because the initial random

variable X0 depends on M = W through (2.13). Instead, X is the unique solu-

tion of (2.27) satisfying the two-sided boundary condition
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(2.28) X0 = X 27

In the theory of stochastic differential equations, it has been

customary (see IKEDA and WATANABE (1981) for instance) tc make the

convention that the initial value is independent of the driving process

W or M, or whatever. On the circle, the initial value is also the final

value, and such conventions will have to be altered.

Characteristic functional of X

We end this section with a formula: for any finite measure A on C,

(2.29) E exp i I (dp) X = exp f m(dq) g(f X(dp) e- )

C C C

where g is the exponent function corresponding to M, that is, if M is

represented by (1.10),

(2.30) g(e) =i - 12 e 2 + f n(dz) e- 1 - iez I(_l) (z)
2m

TakingX 6 P+ +... + 6 , where p., ... pn e C are fixed andTaig =)U60 n P 0

X1 ... IXn e R are constants and where 6p is the Dirac measure putting

its unit mass at the point p, the left-side of (2.29) becomes the

characteristic function of the random vector (X , ... , X ). In particular,

taking A A 0 6 with p fixed, we get
o p

(2.31) E exp(i X0 X) = exp f m(dq) g(X0 e-am(pq))
C

27
= exp f m(dq) g(A0 e-aq)

0
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Two special cases of M deserve special mention: if M = W, the white noise,

we have g(e) =-ie 2; and if M is positive like in (2.3), we have

(2.32) g(e) = iae + f 00n(dz) (eiez - 1)
0

To show (2.29), first, we observe that

f >?(dp) xp = f M(dq) f )idp) ;am(p~q) f M(dq) f(q) = M

with an obvious definition for f. Thus, it is sufficient to prove that

(2.33) E e if= e Mg

for every bounded Borel function f on C. Various continuity arguments

reduce this to showing that (2.33) holds for f having the form

f =e 111 + .+ e n1 Awhere Al .. I A nare disjoint arcs. But, then,

ii f n ' * *

E e i 11=T E(exp '0 k M(Ak))
k=l

n
E f exP (m(Ak) g(ek)) =exp f m (dq) g (f (q))

k=1

as required.
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3. STANDARD GAUSSIAN FIELD

This section is devoted to the random field X defined by (2.1) in the

special case where M = W, that is,

(3.1) X f e - amCp ' q) W(dq), p e C
P C

We exclude the trivial case a = 0 and assume that a > 0. The random field X is

stationary, reversible, continuous, Markovian, and Gaussian with mean 0 and

covariance (see (2.21))

1_ -2Ta) a(p,q) -am (q,p)

(3.2) B(p,q) = E X Xq =(I -e )(e - a m  + e )

The Markov property states that, given X0 and Xp, the processes

(X : r e [0,p]) and (Xr e [p,27]) are conditionally independent given X . Thus,

given X0, the conditional law of X is the law of an ordinary (past-future type)

Markov process. Our first aim is to identify that ordinary Markov process.

We had mentioned, in the last paragraphs of Section 2, that X is like

an Ornstein-Uhlenbeck process, but it is not one because the stochastic dif-

ferential equation to be solved is driven by a Wiener process W that depends on

the initial value X0 . Our second aim is to obtain the equations for X whose

driving term is independent of XO.

Finally, we shall obtain the Fourier representation for X, which turns out

to be almost as slow as that of the Wiener process.

-'-'" " .'' ' ' ." ' ' '. " '-'o'. -'.' . J-.. 2 .'. -<. '. -. -. . , .. . . o . .
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Before listing the results, we introduce

(3.3) b = 1 - e 2 Ta; m =q' a m(p,q), p,q e C

in order to lighten the notation somewhat. We shall be using hyperbolic

functions extensively.

*" (3.4) THEOREM. Let [p,q] be a fixed closed arc on C with 0 < p < q < 2r.

There exists a Wiener process W on [p,q) independent of X and X such thatp q

sinh m sinh m sinh m
(3.5) X = X + X + bs h W(ds)

r sinh mp p sinh m q sinh m
pa pq (p,rl sq

for all r e (p,qJ.

(3.6) COROLLARY. Let Y be the last term on the right side of (3.5).r

Considered as a process on the time interval [p,q], Y is a Markov process

(in the ordinary sense), is independent of X and X and has Y Y 0.
p qp q

Moreover, it satisfies the stochastic differential equation

(3.7) dYr = -a(ctnh mn ) Y dr + bW(dr), p < r < q

(3.8) COROLLARY. Given Xp and X , the conditional law of (X ) re[p,q is the

law of an ordinary Markov process on (p,q]. The process satisfies the

stochastic differential equation

aj

.o*.**,*.-;'-" ', "--- ,".: . < " .--o ". - .j- ::-2 .<'. ..-.- -- .. b . .. ',-i-&.'. .....-.. ..----.
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(3.9) dX = (aX csch m - aX ctnh m )dr + bW(dr), p < r < qr q rq r rq

where W is a Wiener process independent of the pair (X p,X ).

(3.10) PROPOSITION. There exists a Wiener process W independent of X0 such

that

coshrra pa)sinh m
(3.11) X = cosh X0 + b f sinh mW d527 peCp cosh 7ta 0f sn

[0,p] s,2r)

Thus, given X0, the conditional law of X is the law of an ordinary Markov

process on the time interval [0,27).

(3.12) REMARK. Still other facts about X can be obtained from Corollaries

(3.6) and (3.8) by replacing p and q there with 0 and 2r respectively.

(3.13) THEOREM. The random field X has the series representation

o

(3.14) X = b U0 1 b 1 1 [Un cos np + V sin np]
P' a-- 0 T n=l J 2 2

where U0 ,U11...,VV 2 ,... are independent Gaussian random variables with

mean 0 and variance 1. In fact U0 = W. 2r /ii7, and for n + 0,

(3.15) Un 1 27 [a cos nq + n sin nq] W(dq)n 4a2+7n2) 0

271

V n= f 2 [a sin nq - n cos nq] W(dq)
n /(a+n) 0
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The remainder of this section is devoted to proofs. Corollaries (3.6)

and (3.8) are easy consequences of Theorem (3.4). Proposition (3.10) is

obtained from Theorem (3.4) and Corollary (3.8) by replacing p with 0 and

q with 2r. Thus, the only things to be proved are (3.4), the Markov representa-

tion theorem, and (3.13), the Fourier series representation.

Proof of Theorem (3.4)

For r e [p,q], define

sinh m sinh m(3.17) Y =X -- rg X pr X
r r sinh m p sinh m q

Pq Pq

(3.18) W = Y + a Y ctnh m du.
r b r b fpr u uq

It is clear that Y is a continuous Gaussian process on [p,q] with mean

0 and Y = Y = 0. So, W is again a continuous Gaussian process with mean 0,P q

and W = 0. In differential form, (3.18) givesp

coshm
d(. Y) 1 (dY +- rga dr)

sinhm r sinh m r sinh m Yr
rq rq rq

b dW
sinh m r

rq

Hence, since Y = 0,
p

b
Yr =sinh mrq sinh m dWs

(p,r] sq

Putting this into (3.17) and rearranging the terms yield (3.5).

, o !
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To complete the proof, we need to show that W is a Wiener process and

is independent of X and X . Since all the processes are Gaussian, theseP q

matters are reduced to computing various covariances.

First we express (3.2) in different notation:

b -ira
(3.19) E X X = - e cosh (7a - m ) , r,s e C

r s a rs

Using this with (3.17) and some elementary identities yields

(3.20) E Y X = E Y X = 0 , r e [p,q]rp r q

(3.21) E Y Y = sinh m sinh m , p < r < s < q
r s a sinh m pr sq - -pg

Since X and Y are Gaussian, (3.20) implies the independence of the process

Y from the pair (X p,X q), and in view of (3.18), the process W is independent

of X and X
p q

Since W = 0 and since W is a continuous Gaussian process with mean 0,p

in order to show that W is a Wiener process, it is sufficient to show that

(3.22) E W W s= r - p , p < r < s < qrs

This computation requires some delicacy, for which reason we provide a few

details.

It turns out to be useful to introduce the notations

(3.23) F = f sinh m ctnh m dv
*u [p,u] pv vq

• .4
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(3.24) aG f a acosh m v dv=s inh m -sinh m

It follows from (3.18) that, for r < s,

2 r
b r qs ys+ ajf du Y Y sctnh m

p

+ a(f du +f du) Y uY rctnh m u
p r

+ a fdu (f av +f dv) Y uY vctnh m u ctnh m

p p U

from which, taking expectations with the aid of (3.21) and using the nota-

tions of (3.23) and (3.24), we obtain

(3.25) a sinh mn E W W
pq r s

r

= sinh m p sinh m s + a sinh m s f dF

r s
+ asinh m r f dF u+ asinh m fr dG

r prr

+ a 2 f dG fdF + a 2 f dF f dG

p P p u

= sinh m pr(sinh m s + a(G - F)]

+ a(sinhimnsq + sinh m rq + aG r + aG s] F r -2a 
2 fG dFu.
p
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Note that, directly from (3.23) and (3.24),

2r r
2a 2f G udF u=2aF rsinh m q- 2a f sinh m PUcoshimnu du

P P

r

= 2aF rsinh m p - a f (sinh m p + sinh(in -U m )Idu

=-2aF rsinhimnp - a (r -p) sinhrmnp

-cosh (m -m + 1cos pm
2 pr rq 2 p

Putting this into (3.25) and simplifying, we obtain (3.22), thus completing

the proof of Theorem (3.4).

Proof of Theorem (3.13)

Considering X as complex valued, Fourier series for X is

(3.26) X = IA ne , p C,
p n=o

where

(3.27) A=1 2Te- np X dp.
0 P

-2rra
*It will be convenient to introduce, in addition to b - I e

(3.28) co 1 n c , n +O0
a,7TT- 47r (a +n 2
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Now,

An f 21T dp -e-inp f W(dq) e-am(p,q)

*1 b ~q e-inq
27 C a ~d)-in-

22 b W(dq) (a + in) (cos nq - i sin nq)
2TT (a +n ) C

Putting U = W 27/Vr27 and defining U nand V nfor n 0, for n positive and

negative, by (3.15) and (3.16), we see that

AO bcU ; A -bc (U - iv) n 0.0 00 n 2 n n n

Putting these into (3.26) yields

(3.29) X = bc U +- c (U - iV )(cos np + i sin np)
p 0 0 2 njon0 n

= bc U +h 2 r [U + U - iV - iV ) cos np0 0 2 nl CnL n -n n -n

+ (iU - iU + V - V ) sin np]n -n n -n

=bcb
= c0 0 2 I c n(2U cos np +2V nsin np)

n=l

since U -n= U nand V =-V nfor all n > 1. This is exactly (3.14), and

the only thing remaining is to show the claims about the nature of U nand Vn
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It is obvious that they are Gaussian and have mean 0. The remaining

assertions about their variances and independence from each other are proved

by showing that

E U2 = E V2 = 1 E UU = E VV = 0, n m,
n n n m n m

and that

EU V m 0 , n>0 , m>0n mn

This requires only elementary calculus once we note that

2r
E f f(p) W(dp) f g(q) W(dq) = f f(p) g(p) dp
C C 0

(3.30) REMARK. Dne could use the fact that X is stationary and periodic

and EX X = B(p -q) where
pq

2  C
B(t) -2 + b Cn cos nt , t e ,

21Ta n=l

and then use the spectral decomposition of stationary Gaussian processes to

arrive at (3.14). The proof above i.; longer, but it identifies the coef-

ficients U and V
n n

4
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4. FIELDS ON CYLINDERS

Extending the results of the preceding sections to random fields

defined on cylinders presents no new difficulties. We limit ourselves,

therefore, to introducing the random field of interest and to stating

several interesting properties.

Let C be the circle of radius one as before and consider the cylinder

CxPR. For p and q on C, we write m(p,q) for the length of the arc (p,q)

going from p to q counterclockwise, just as before. In addition, we write

m(s,t) for the length of the interval (s,t) C 1P, although not permissible by

the strict rules for notation making.

Let M be an integrator on C x M with stationary and independent

increments: for every bounded Borel function f with compact support in C x R,

(4.1) Mf = 0 f m(dp) dt f(p,t) + 8 f W(dp,dt) f(p,t)
Cx A CXRI

+ f [N(dp,dt,dz) - m(dp)dtn(dz)I (-)(z)] f(pt)z
CxpR-i

where a and are constants, N is a Poisson random measure on Cx× . with mean

measure element m(dp) dt n(dz), where n is a Levy measure, and W is the white

noise on CxR. The last may be thought as the integrator corresponding to

Brownian sheet, that is,

(4.2) W = f W(dq,ds) , 0 < p < 27, 0 < t < ,
(O,p] x (0,t]
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is a Brownian sheet on [0,271 x IR+, which is a Gaussian process with mean

0 and

(4.3) E W W = (p A q)(t A U)p,t q,u

Integration with respect to W was considered by WONG and ZAKAI (1974),

CAIROLI and WALSH (1975), and others. The last integral in (4.1) is in fact

simpler and should be understood in analogy with the simple time case. The

integral over Cx JRx(R\(-I,I)) = E is that of f(p,t)z with respect to a

random measure, and hence, is an ordinary integral. The integral on the

complement of E is a stochastic integral; it is the limit in probability

(indeed almost sure limit) of

fE [N(dp,dt,dz) - m(dp) dt n(dz)] f(p,t)z

as C + 0, where E, = C x IRX((-,l)\(-,C))

The random field of interest is

(4.4) X(p,t) = -am(p'q )-bm(s't) M(dq,ds), p e C, t e IR,
CX(-, t]

where a > 0 and b > 0 are fixed constants. We view it as a random field on

the cylinder C x JR. Alternately, we may regard it as the evolution in time

of a random field on the circle C.
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The message of the following theorem is that the sections of X are all

stationary and Markov. Recall that a time-homogeneous Markov process, with

time-set IR+ and taking values in a Lusin space, is called a Hunt process if

it is right-continuous, left-limited, strong Markov, and quasi-left-continuous,

the last two properties being with respect to a filtration that is right-

continuous and augmented properly. See BLUMENTHAL and GETOOR (1968) for the

definitions. We shall use the term here for processes with time-set JR, with-

out specifying the filtration, and somewhat fraudulently: Extension of the

concepts onto IR is no problem; we may take as filtration the (F t) t R , where

Ft= roVIN, O being the o-algebra generated by {Mf: f continuous witht t t

compact support contained in C x(--w,t]} and IN being all the null-sets of the

completion of f; the fraud is that we have only one probability measure P,00

instead of a whole collection, one for each starting state, of which we have

* none.

(4.5) THEOREM. a) For each t ep, p - X(p,t) is a stationary, right-continuous

stochastically continuous, Markovian random field on C; the law of p - X(p,t)

is free of t.

b) For each p e C, t - X(p,t) is a stationary Hunt process.

c) For any integer n > 1 and points pl'.''Pn on C, the process

t - (X(plt),....X(pnt)) is a stationary Hunt process with state space in.

d) Let X(o,t) denote the mapping p > X(p,t). Then, the process

t !P X(.,t) is a stationary Hunt process taking values in the space Eof all

right-continuous, and left-limited functions from C into P, topologized by

uniform convergence on C.
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(4.6) COROLLARY. Suppose that M = W, the white noise on Cx JR. Then, in

addition to the properties above, X is a continuous stationary Gaussian random

field on C x with mean 0 and

(4.7) E X(p,t) X(q,u) = B(p,q) e p,q e C, t,u e i.

where B is as given by (3.2). Moreover,

a) for each p e C, t > X(p,t) is an Ornstein-Uhlenbeck process;

b) for any integer n > 1 and points pl, .... pn e C, the process

n
t -- (X(P 1 t) .... X(Pnt)) is an P - valued Ornstein-Uhlenbeck process,

which is a weak solution of

n
(4.8) dX i(t) = -bX i(t) dt + I c..WJ(dt)

j=l 13

where X i(t) = X(pi t), and W ,...,W n are independent Wiener processes, and

the matrix c satisfies cc = B, that is,

n

(4.9) Cik = B(Pi,p.) , 1 < i,j < n
k=l 1J

c) the process t-- X(.,t) is an Ornstein-Uhlenbeck process taking

values in the space C of all continuous functions from C to R, topologized

by uniform convergence on C.

. ]Rn

(4.10) REMARK. An Ornstein-Uhlenbeck process with values in Por P is a

process that satisfies an equation like (4.8), see IKEDA and WATANABE (1981)

for instance. In the case of processes taking values in infinite dimensional
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spaces like C in (4.6c), see ITO (1982) and MEYER (1982) for definitions.

Our case is much clearer, because of the explicit formula (4.4).

(4.11) THEOREM. The random field X enjoys the following Markov property.

Let A CC be an arc, let B C Pbe an interval, and consider the rectangle

A x B on the surface of the cylinder C x P. Then, {X(p,t): p e A and t e B}

and {X(p,t): p0 A or t 0 B} are conditionally independent given {X(p,t):

(p,t)6 A xB)}, (AxB) being the boundary of AxB.

(4.12) REMARK. The arc A can be taken to be C, in which case Ax B is a

cylinder, and the Markov property above coincides with the statement (4.5d).

The degenerate arc A = {p} is allowed. Similarly, B does not have to be

an interval.

(4.13) REMARK. By limiting the parameter t to an interval D C R, we may

regard X as a field on the cylinder Cx D. For this purpose, D = 3+ [

and D = (0,d], d > 0, are of special interest. All the results listed above

continue to hold for such an X. In considering such cylinders Cx D, it may

appear more natural to define X via integrators on Cx D. Assuming D [0,d)

or D = [0,c'), this can be done by setting

(4.14) X(p,t) = e - b t X(p,0) + f e - a m (p ' q ) - b m ( s ' t ) M(dq,ds),
CX(O,t]

whero

(4.15) X(p,0) fj' e-am(p 'q) M0 (dq)
C

*1" ~ ~~ ~ &:.r-i
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M0 being an integrator on C independent of the integrator M on Cx D. Of

course,

0
(4.16) M 0(dq) =f ebs M(dq,ds)

-dd

The formula (4.14) can be used to define an "Ornstein-Uhlenbeck"

process t-> X(.,t) on P + and taking values in E of (4.5d) with initial

state X (.,0) arbitrary and independent of M on CXI+. In an obvious sense,

the probability law of X(.,t) approaches, as t ) -, to that of the right-

side of (4.15) with M0 having the same law as the right-side of (4.16).

Many of the results above rest on, or motivated by, the following

observation. Its truth is immediate from Remark (1.9) and a similar state-

ment for integrators on J.

(4.17) LEMMA. Define M(gxh) by (4.1) with f(p,t) = g(p) h(t), where g is

a bounded Borel function on C and h is bounded Borel function with compact

support in 3R. Then,

a) for fixed g, h --> M(gx h) is an integrator on P with stationary

and independent increments;

b) for fixed h, g -> M(gx h) is an integrator on C with stationary

and independent increments.

In a similar vein, and more interesting, is the following "stochastic

kernel." For h bounded, Borel, with compact support in P., define

4]
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-am (p, q)

(4.18) K(p,h) = p e q• h(t) M(dq,dt)
Cx F

Recall that E stands for the space of all right-continuous left-limited

functions from C into IR (see (4.5d)). The following is immediate from the

preceding lemma.

(4.19) PROPOSITION. For each fixed h, p -> K(p,h) is a random element of

E. For each fixed p, h > K(p,h) is an integrator on R with stationary

and independent increments.

Proof of Theorem (4.5)

Stationarity of the increments of M means that the probability law of

M(p + dq, t + du) is free of (p,t). This implies that the law of X is free

of the choice of origin and of rotations of the coordinate system. This

shows the stationarity in all the statements of (4.5).

For fixed t IR, let h(s) = eb(t-s) for s < t and h(s) = 0 for s > t.

Then, by Lemma (4.17b), g -> M(g xh) is an integrator on C with stationary

and independent increments, and p - X(p,t) is defined from it according to

the formula (2.1). Thus, (4.5a) is a re-statement of Theorem (2.2a).

For fixed p e C, let g(q) = eam(p ' q ) By Lemma (4.17a), h M--M (h) =

M(gx h) is an integrator on P with stationary and independent increments, and

we have

(4.20) X(pt) f ebm(slt) M (ds)
(-%, t)
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That t > X(p,t) is left-limited and right continuous is immediate from

this. We have

(4.21) X(p,t+u) = ebu X(p,t) + fU e-bm(su) Mp(t+ds)

0

Since M p(t+-) is independent of the past F t and has the same law as M (-),

(4.21) implies that t--> X(p,t) is a time-homogeneous Markov process.

Strong Markov property is similar; one can replace t by a stopping time T

in (4.21) and use the known "strong Markov property" for M . Finally, quasi-0

left continuity comes from the facts that every jump of t -> X(p,t) coincides

with an atom (t,z) of the Poisson random measure involved with M and there-
0

fore, the jump times are exhausted by a sequence of stopping times each one

of which is totally unpredictable. This completes the proof of (4.5b).

The proofs of (4.5c,d) are entirely similar: To show (4.5d), replace

M in the preceding paragraph with h -> K(.,h), the latter being defined by0

(4.18) and having the properties mentioned in Proposition (4.19).

Proof of Corollary (4.6)

When M = W, the white noise on Cx , it is obvious that X becomes

Gaussian, stationary, reversible, continuous. It is easy to compute the co-

variance function and show that (4.7) is indeed true.

The remaining statements are all similar. We prove (b) only. First,

putting M W and taking differentials in (4.20) we have

(4.22) dX(p,t) = -bX(pt)dt + W (dt)p

9
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where

(4.23) W P (h) f e - am(p ' q) h(t) W(dq,dt)
ph X IR

Let pi,...,pn e C be fixed. For h h...,hn bounded, Borel, with bounded

support, we have

EW i (h.) Wp (hj) =

- f exp[-am(pi,q) - am~pj,q)) hi(t) hj(t) m(dq)dt

= B(piP.) f h.(t) hj(t) dt

n n
= E( I Cik W (hi)) ( [ C jk W(h

k=l k=l

with(c ij) and Wj ) as described in (4.6b). Thus, the probability law of the

n k
n-dimensional process (W ,...,W ) is that of ( c W Putting

p1  Pnk=l i=l .... n

this fact together with (4.22) we obtain (4.8) and the proof of (4.6b) is

complete.

Proof of the Markov property (4.11)

It is sufficient and convenient to give the proof for A = [O,p] + C

andB= [O,d]C3R,d > 0. We let

(4.24) L = C x (--,O], G = [O,p] x [O,d] ,

H = (p,0] x (0,d] , K - C x [d,o)

'A . .
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For any collection {Z(t) : t e Cx JR} and any set SCCx JR, we write Z for the

o-algebra generated by {Z(t): t e S}. Similarly, we write Ms for the a-algebra

generated by {Mf: f = i,UCS} . Finally, if L, 1, IKare sub-a-algebras of F,

we write (read l splits fL and I)

L I i C[3

to mean "L and <are conditionally independent given B." In the special case

when L and Kare independent, we write

L 3.

The following two elementary facts will be used a number of times:

(4.25) LVB] 33 < 3Lv IB ] Uv B [ K L v B J v 3B [Y v 33

(4.26) L ] K ( 1, L L Hv IvK --> L I II [ Y v L

We start by letting

(4.27) Y(p,t) = f e -am(p 'q) -bm(s 't) M(dq,ds)

CX (O,t]

Applying the arguments of the proof of Theorem (2.2), Markov property, to the

process p-> Y(p,.), which has exactly the same form as the process

p - X of (2.2), we see that
P

,, - , -9: , . ' .. " : . - " - , -. -. . -.-. . -.
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(4.28) Y ] YGOH [ YH

Since G D G ()K , (4.25) and (4.28) yield

(4.29) YG = YG V Y GCK I Y GtH V YGf)K [ YH V YGC K

By the independence of the increments of M over disjoint sets, we have

MK ][ YG V YH '

which yields, when used with (4.26) and (4.29),

(4.30) YG I Y GOH v YGr)K ( Y V Y G(K V MK =YH V YK

Note that the values of Y on GU H U K are determined by M on that

set, whereas the values of X on L are determined by M on L. So,

XL ][ YG V YH V YK I

which together with (4.30) and (4.26) implies that

(4.31) YG I Y G(H V Y GK [ YH V YK V XL

Since XL = XL V XGr)L, we may put XGr)L into every term in (4.31) by using

(4.25), which gives

" " " ' " ' "'""' " " "" ""
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(4.32) YG V XG 0L ] G 0H V YGrK v XGrL [ YH V YK V XL

-bt
It follows from (4.27) defining Y and (4.14) for X that X(p,t) e X(p,0)

+ Y(p,t). Thus, X on G OL together with Y on G determine X on G, that is,

(4.33) YG V XGflL = XG *

Putting (4.33) into (4.32), noting that XG = XG XG OK, and applying (4.25)

once again, we obtain

(4.34) XG I YG OH v Y GK v XGAL V XGOK [YH v YK V XL v XGr(K

Finally, noting that

YGr)H v YGfK v XGCL V XGrK = Gf')L V XGflK V XGO K - ;G

and that

YH v YK v XL v XG[ 0 X f LV XH v X K

we see that (4.34) is in fact

XG I X;G ( XLUHUK

which is the desired statement of the Markov property.



-45-

REFERENCES

1. R. M. BLUMENTHAL and R. K. GETOOR (1968). Markov Processes and Potential
Theory. Academic Press, New York.

2. R. CAIROLI and J. B. WALSH (1975). Stochastic integrals in the plane.
Acta Math. 134, 111-183.

3. S. C. CHAY (1972). On quasi-Markov random fields. J. Mult. Anal. 2, 14-76.

4. N. IKEDA and S. WATANABE (1981). Stochastic Differential Equations and
Diffusion Processes. North-Holland, Amsterdam.

5. K. ITO (1982). Infinite dimensional Ornstein-Uhlenbeck processes. In
Stochastic Analysis, Proc. of the Taniguchi International Symposium,
pp. 197-224. Katata,....

6. P. LEVY (1951). Wiener's random function and other Laplacian random
functions. In Proc. Second Berkeley Symposium on Math. Statistics and
Probability, pp. 171-187. University of California Press, Berkeley.

7. (1980). Oeuvres, vol. V. Gauthier-Villars, Paris.

8. P. A. MEYER (1982). Notes sur les processus d'Ornstein-Uhlenbeck.
Seminaire de Probabilit6s XVI, pp. 95-132. Lecture Notes in Math.
vol. 920. Springer-Verlag, Berlin.

9. D. SLEPIAN (1961). First passage time for a particular Gaussian process.
Ann. Math. Statist. 32, 610-612.

10. E. WONG and M. ZAKAI (1974). Martingales and stochastic integrals for
processes with a multidimensional parameter. Z. Wahrscheinlichkeitstheorie
verw. Gebiete 29, 109-122.

Erhan (INLAR J. G. WANG
Department of Civil Engineering Department of Mathematics
Princeton University Fudan University
Princeton, New Jersey 08544 Shanghai, CHINA

- ~% .. *. .%I



4

~4w ~ 4

~

VII

V ~*I*
~ -'

~

- -
;i.

i* ....
.~*

4

* - *.. *'-.

*I. ~

-.-- -I

-. :-~ ~

*-

V **'~ A' **~: ~
* *-. .~. .-*~**I~ ~ *~ S.. ~ ***.*..


