
7 AD-A7i 826 GRAPHICAL INTERFACES FOR SIULTION(U)
CALIFORNIA UNIV 1/1

SAN DIEGO LA JOLLA INST FOR COGNITIVE SCIENCE
HOLLN ET AL MAY 86 IC5-8683 N@8814-85-C-0133

pUNCLASSIFIED F/G 9/2 N

EilliilllllliE
EhlllllllllllE
BEhEhhhh

1" 1 136 .

* lB

fl~.2 1 II'*

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS- 1963-A

GRAPHICAL INTERFACES FOR SIMULATION

J. D. Hollan, E. L. Hutchins, T. P. McCandless,
M. Rosenstein, and L. Weitzman

May 1986

ICS Report 8603

COGNITIVE
SCIENCE

SP 1 7 1986.,

L a c ~ j Tno docum~n has been 0 ~'qe
C=1o Publio el~~ and sale; its

INSTITUTE FOR COGNITIVE SCIENCE
UNIVERSITY OF CALIFORNIA, SAN DIEGO LA JOLLA, CALIFORNIA 92093

Be 27~

GRAPHICAL INTERFACES FOR SIMULATION

J. D. Hollan, E. L. Hutchins, T. P. McCandless,
M. Rosenstein, and L. Weitzman

May 1986

ICS Report 8603

NPRDC-UCSD Intelligent Systems Group
Institute for Cognitive Science

University of California, San Diego
La Jolla, California 92093

To be published in W. B. Rouse (Ed.), Advances in man-machine systems (Vol. 3
Greenwich, CT: Jai Press.

This research was sponsored by the Personnel and Training Research Programs, Psychological Sciences Division, Office ofNaval

Research, under Contract No. N00014-85-C-0133, Contract Authority Identification Number, NR 667-541. The views and conclu-

sions contained in this document are those of th4 authors and should not be interpreted as necessarily representing the official poli-

cies, either expressed or implied, of the sponsoring agencies. Approved for public release; distribution unlimited. Reproduction in

whole or in pait is permitted for any purpose of the United States Government. Requests for reprints should be sent to James D.

Hollan, NPRDC-UCSD Intelligent Systems Group; Institute for Cognitive Science, C-015; University of California, San Diego; La

Jolla, CA 92093.
Copyright © 1986 by James D. Hollan, Edwin L. Hutchins, Timothy P. McCandless, Mark Rosenstein, Louis Weitzman

r.V

L)I

Unclassified

SECURITY CLASSIFICATION OF TIS PAGE
REPORT DOCUMENTATION PAGE

Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION IAVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release;
distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

ICS 8603

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Institute for Cognitive Scienc- (If applicable) Personnel & Training Research Programs
University of California, San liego Office of Naval Research (Code 1142PT)

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

C-015 800 North Quincy Street
La Jolla, CA 92093 Arlington, VA 22217-5000

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATIONI (If applicable) N00014-85-C-013 I

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT I TASK IWORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

61153N RR04206 RR04206-OA NR 667-541
11. TITLE (Include Security Classification)

Graphical Interfaces for Simulation

12. PERSONAL AUTHOR(S)
James D. Hollan, Edwin L. Hutchins, Timothy P. McCandless, Mark Rosenstein, Louis Weitzman

13a. TYPE OF REPORT 1i3b. TIME COVERED 114. DATE OF REPORT (Year, Month, Day) jiS. PAGE COUNT
Technical FROM -TOApr 86 May 1986 S

16. SUPPLEMENTARY NOTATION To be published in W. B. Rouse (Ed.), Advances in man-machine

systems (Vol. 3). Greenwich, CT: Jai Press.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

- FIELD I GROUP I SUB-GROUP Graphical interfaces; simulation-based training; intelligen

05 08 computer-assisted instruction (ICAI); softeware tools;
I grnphirg oditnr" know1pdgg renresentatiOn

19. ABSTRACT (Continue on reverse if necessaly and identify by block number)

.1*,

The dynamic graphical display of the state of complex systems has immense potential value for mediating the
development of richer understandings of process as well as for providing more effective mechanisms of interac-
tion. For the past few years we have been involved in the development of a set of software tools to assist in the
construction of interfaces to simulations and real-time systems. These tools have been used extensively in the
development of an interactive inspectable simulation-based instructional system, Steamer.(Hollan, Hutchins,
Weitzman, 1984). Underlying our efforts are three interrelated research activities: formulating a theory of inter-
face design, understanding the effectiveness of interactive graphical representational systems, and implementing
systems based on these developing theoretical notions. The dialectic between these activities has been very
valuable for us as cognitive scientists and as system builders. In this chapter, we survey some of the presupposi-
tions of our approach to interface design, describe the tools we have built to assist in the construction of graphi-
cal interfaces, and discuss the conclusions we have drawn from our experiences in graphical interface design.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

flUNCLASSIFIED/UNLIMITED 0 SAME AS RPT. - DTIC USERS Unclassified
22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 22c. OFFICE SYMBOL

Dr. Michael G. Shafto (202) 696-4596 ONR 1142PT

DO FORM 1473,84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete. Unclassified

K,"%.

Contents

INTRODUCTION... I
UNDERLYING PRESUPPOSITIONS ... 4
TOOLS FOR CONSTRUCTING GRAPHICAL INTERFACES........................... 7

Simulation Environment .. 7
Model Control .. 8
Graphics Editor .. 9

*Icon Editor.. 12
Knowledge-Base Editors .. 15

Knowledge Editor and Grapher .. 15
Lesson Editor ... 19
Behavior Editor .. 21

4Designer...
22

CONCLUSIONS .. 25
ACKNOWLEDGMENTS.. 26
REFERENCES .. 27

AccesWl,^f For
T ''

401

By-

A7&i1V I 11 Codes

Dist eco

-I -- R

Graphical Interfaces for Simulation

JAMES D. HOLLAN, EDWIN L. HUTCHINS, TIMOTHY P. McCANDLESS,
MARK ROSENSTEIN, and LOUIS WEITZMAN

INTRODUCTION

In order to illustrate the type of graphical interface with which we are concerned, we begin by briefly
describing Steamer, a system which employs an interactive graphical interface to a steam propulsion
plant simulation. Steamer is a research project involved with evaluating the potential training applica-
tions of techniques from the new disciplines of artificial intelligence and cognitive science. While the

vi. project addresses a host of research issues ranging from how people understand complex dynamic sys-
-~ ~ tems to how Al software and hardware advances might be applied to training, it is focused around the

construction of a computer-based system to assist in propulsion engineering instruction. The goal of the
project is not only to build a training system with tutorial and explanation facilities but also to construct
a set of software tools to assist in the implementation of simulation-based training systems and graphi-

* cal interfaces.
Steamer currently consists of a graphical interface to a mathematical model of a steam propulsion

plant. The interface allows a user to select from a library of propulsion plant views and interact with a
selected view to change the state of the underlying simulation model. The evolution of plant states can
be observed by graphical changes in the view on a color display. Views depict aspects of the propul-
sion system at various levels of detail. They vary from collections of gauges and indicators typically
found in a real plant to schematic diagram specifically designed to depict models similar to those
experts seem to employ in reasoning about the operation of the propulsion plant. The potential for

JR increased instructional effectiveness derives from representations with the ability to show global views
of systems that are physically dispersed in the actual plant and thus difficult to see as a total system, to
show simplified versions of systems designed to be easier to understand or to provide better models for
reasoning about the plant, to look "inside" systems or components and see flows or other internal
characteristics, and to make available indicators that depict aspects of the operation of a system not nor-
mally available but that are useful in developing an understanding of a system.

Figures I through 4 are black and white renditions of views a user of Steamer would see on a color
graphics screen. State information is depicted by color, by animation, and by analog, digital, and tex-
tual changes. For example, operational status of a pump or valve is indicated by color (red for off;
green for on); flow rates in pipes are dynamically shown by use of animation techniques; dials and
graphs reflect plant parameters. The iconic representation serves both to provide state information and
as a mechanism for changing state of an underlying simulation. By pointing to a component with a
mouse-controlled cursor, a user can change its state by clicking on it. For example, clicking on a pump
will toggle its state. Similarly one can vary the level of a tank, change the value of a dial, or position a
throttle. Of course, the nature of the underlying simulation and the goals of the interface designer
determine which variables and thus which components can be manipulated by a user. The important

2 HOLAN. MJTCHNS, McCANDLESS, ROSENSTEIN, & WEfMAAN

point here is that the interface functions as a two-way communication device: depicting and allowing
changes of state.

A high-level view of the Main Engine Lube Oil System is depicted in Figure 1. One can watch the
state of the lube oil system and its responses to changes made to the propulsion system. The flows in
the system are dynamically depicted by animation within pipes; the connectivity of the system is
shown. The states of the lube oil service pumps (LOSPIA-C) are indicated by color changes. In Fig-
ure 1 the attached pump LOSPIC is operating, LOSPIB is off, and LOSPIA is operating at low speed
(colors in the figure are represented by differing gray shades). A series of pressure sensors is shown at
the lower right of the view, along with digital and analog representations of lube oil pressure. These
sensors monitor pressure at the bearing most distant from the pumps and will automatically control the
state of the service pumps if pressure drops below specified levels. The valve at the top left is the lube
oil unloader valve and the column above it indicates how far it is open. As pressure in the system rises
above a set threshold, the unloader valve opens and unloads lube oil back into the sump, preventing

MAIN ENGINE LUBE OIL

LD ULOADER

€ ' II I ,, DISCH I.

LSW INLE

.W OULE.T

11 O SP iB . LO SPIA

'it Lol t

rI"V.

V.

5.

,-M-'N- -,L.,.O .J...'.'.' .. ,,-.'.."...-%%' t

GRAPHICAL INTERFACES 3

THROTTLEBOARD

1 0 0 1 1 0 0 1 4 0

DRUM PRESS

S/H OUTLET MN COND VACUUM

122 RPM

AHEAD ASTERN
-10 -100

MN LO PRESS - ASTERN PRESS

-50 -- 60

* 1W 1W -40 -- 40

-30 -30

-.9' 140 -,,20 -- 20
PSM3-- u

10- -10

HP1STSTAGE 0- -o EXH. TRUNK TEMP

FIGURE 2. Throule Board 'This view shows the following major system parametrs: superheater outlet pressure, main steam
drum pressure, main condensate vacuum, astem pressure, exhaust tunk temperature, high pressure first stage turbine pressure,

main lube oil pressure, and allows for control and monitoring of the ahead and astern throttles.

overpressurization. There are two controller boxes and a switch next to lube oil service pumps IA and
IB. By touching the switch the system can be put in manual mode, and the controller boxes for the
pumps can be touched and operated to change pump speed to high (H), low (L), or stop (S). As the
controller is operated, the associated pump will change state and the ramifications of that change will
be continuously reflected in other portions of the view.

Figure 2 shows a Throttle Board view that allows the user to control the Ahead and Astern throttle
d and monitor a number of important system parameters. Figures 3 and 4 depict portions of the Feed

.N System. Figure 3 shows the states of the two boilers (IA and 1B), the level of the deaerating feed tank
(DFT, a water storage tank), the states of the six pumps involved in the system, and the large number
of valves used to control and direct the feed water to the boilers, as well as key system parameters.

The same type of graphical interface can be provided for a real-time simulation. For example, Fig-
ure 5 contains a view we designed to monitor the dynamic state of one of the computers on our local
area network. It shows the number of users running various programs and continuously graphs inter-
rupts, system calls, cpu idle time, characters in and out, users on the system, and processes waiting to
be run.

U4,

4 HOLLAN., HUTCuNS, McCANDLESS, ROSENSTEIN., & wErMAN

MAIN FEED SYSTEM
IB BOILER IA BOILER DFT

... . ..

12 125 12C

FIGURE 3. Mai Feed System. Shows dhe topology and major components of the feedwater ays:em.

.:" .. .These examples are intended to illustrate the type of interactive graphical interfaces with which we
. are concerned. The key notion is that the interface serves as a communication device to allow a user to

.-P see and manipulate the state of an underlying simulation or real-time system. In the Steamer applica-
tion we have been concerned with using this form of interface in training. It should be clear that it is
just as applicable for monitoring or controlling a system. Our primary concerns here are to discuss why

. , . we think this form of interactive graphical interface is powerful and describe a set of tools we have
,.' implemented to facilitate interface implementation.

_. UNDERLYING PRESUPPOSITIONS

-. A common way of describing the class of interfaces discussed abo~ve is as direct manipulation inter-
,. .. faces (Shneiderman, 1982). In our view, most of the treatments of direct manipulation interfaces focus
,?./ at the wrong level of analysis. The naive notion seems to be that the key properties are bit-mapped
" ,'2, € displays and pointing devices. One of our presuppositions is that interfaces are representational systems

designed for communication, and just as in the analysis of any other representational system, it is
A '.16

.. . . . " . . ' ' " " " -," ., " " ' , " -' ' " ". ', ' '. ' .' -- . '. .- . '.- ' - .i, - . " .-" ,- ",. "-2.0"

, ._ .',.. - ._.., , _., . -...-... ,.. ..-,,,....,.-. .._,,-.,. .LA.RM.

GRAPHICAL uTFA Es 5

MAKE-UP & EXCESS FEED
FROM ENGINE ROOM FROM AUX CONDENSERS

PORT EMERG i
FEED TANK ZIn30GMu

lI FROM HP DRAIN SY

TO Ux
MN COND I BFWD PUMP DFT

VACUUM DRAG
1150

0GMj1105

85

EXCES FOVLVCOOLER

IA FWD PUMP

FROM FRESH
U'? WATER DRAIN TO BOOSTER PUMPS

STBD EMERG SYSTEM

FIGURE 4. Make.up and Excess Feed. This is another portion of the feed system designed to show control relationships between
tank levels and states of associated valves and pumps.

essential to understand the cognitive task that the system is attempting to support. It is an egregious
error to suppose that one can discuss interface design outside of the cognitive contexts of the task
domain in which an interface is embedded. The directness associated with an interface comes from
how directly the interface supports the user's cognitive task. Graphical displays and pointing devices
are media of support but do not in themselves guarantee any directness. Directness results when the
interface language closely matches the way in which a user thinks of a task. Directness is thus not a
property of interfaces but involves the relationship between the task a user has in mind and the way in
which the task can be accomplished via the interface.

An interface provides a language for the user to communicate with a system and for the system to
*. communicate with a user. A key notion for us is the relationship between the meaning of an expression

in the interface language and what the user wants to say. We have termed this relationship Semantic
Distance (Hutchins, Hollan, & Norman, 1986). The extent that an interface language allows one to say
what one wants to say without circumlocutions is the measure of its semantic directness. Another
aspect of directness is the relationship between the meanings of expressions in the interface language
and their physical forms. We call this Articulatory Distance (Hutchins, Hollan, & Norman, 1986).
Nonarbitrary relationships between meaning and the way it is physically expressed provide this form of
directness. A nonarbitrary graphical relationship between icons and what they depict is an example of
articulatory directness. Similarly, on the input side of an interface language, interfaces that allow one
to make statements about position by pointing provide examples of articulatory directness.

3%a .*

"')-. .

6 HOLLAN, HUrCHNS, McCANDLESs, ROSENSTEIN, & WErrzmAN

UNIX"-DISPLAY 5 04f
400

300
200
100

Soo System Calls

40
200 _

100_________ _

Programs in Use Percent Idle Time

lisp 100

ema= V 40

mal _ __ __ _
_rof _ 0TTY Characters Out "rTY Characters In

_ _ _ _ 500 so
telne_ 400 40

25300 " 30200 . 20100 * " . 10

Disk Seeks 0 Users Run Queue

40 9U *..:.:....30

upi.:20
uP 10 3____

0 so 0 2 4 Tie6 8 10
Seeks Per Second

FIGURE 5. Unix Display. A view designed primarily to illustrate the connection of a graphical view to a real-time system. It
provides a summary of the sate of an operating system running on one of the computers on our local area network.

Thus, one of the important underlying presuppositions of our approach is to view an interface as a
representational language and to place primary importance on the cognitive task that a user is attempt-
ing to accomplish. Another fundamental presupposition of our approach is the view that graphical
forms of representation provide powerful ways of bringing abstract things into the realm of the percep-
tually knowable. We think there are important cognitive properties that make graphical representations

* effective. These properties derive from the types of processing activities people are especially good at:
detecting patterns, constructing mental models or simulations of the world which support causal reason-
ing, and manipulating the world by actions on it or on representations of it.

Rumelhat, Smolensky, McClelland, and Hinton (1986) have argued that one of the effective
problem-solving strategies people employ involves the creation of artifacts, physical representations that
can be manipulated to get answers to questions. They suggest that the underlying strategy is to make
"problems conform to problems we are good at solving" and argue that:

We are especially good at pattern matching. We seem to be able to quickly "settle" on an
interpretation of an input pattern. This is an ability central to perceiving, remembering, and
comprehending. Our ability to pattern match is probably not something which sets humans
apart from other animals, but is probably the essential component to most cognitive
behavior.

We are good at modeling our world. That is, we are good at anticipating the new state of
affairs resulting from our actions or from an event that we might observe. This ability to

N. %

'S%

GRAPHICAL IIrtzErPACES 7

build up expectations by 'internaliing" our experiences is probably crucial to the survival
of all organisms in which learning plays a key role.

We are good at manipulating our environment. This is another version of man-the-tool-
user, and we believe that this is perhaps the crucial skill which allows us to think logically,
do mathematics and science, and in general to build culture. Especially important here is
our ability to manipulate the environment so that it comes to represent something. This is

A what sets human intellectual accomplishments apart from other animals. (Rumelhart et al.,
1986, pp. 44-45)

8 If these are indeed the types of activities that people are especially good at, there are clear implica-
V. tions for why graphical interfaces may have important cognitive properties. They provide a physical

representational system that permits us to make abstractions perceptually available and thus allow the
use of our powerful pattern-matching abilities. They make possible the depiction of models of the
world that are similar to the mental models or simulations people seem to use to reason about the
world. These models can depict physical state information, causal connections, and are runnable, per-
mitting a user to see the effects that result from changes of state. Finally, graphical interfaces provide
the potential of directly manipulable representations of systems. These factors comprise another set of
presuppositions underlying our approach to graphical interface design and also provide motivation for
our interest in simulation-based systems.

TOOLS FOR CONSTRUCTING GRAPHICAL INTERFACES

There is a need for software tools to assist in the creation of graphical interfaces. Here we describe
a set of tools we have been evolving to facilitate interface design. First we describe a general simula-
tion environment, which consists of a Model Conti oiler and a Graphics Editor. This is the core of the
system we are developing. It permits one to build interactive graphical interfaces to simulation models
or real-time systems. The Graphics Editor makes available a set of icons, facilities for modifying
characteristics of icons (e.g., size, shape, color, and placement), and the ability to associate icons with
model variables so that the icons reflect the values of the variables and so that one can interact with the
icons to change the values of their associated variables. The Model Controller allows one to run simu-
lation models, observe the model's state via graphical views constructed with the Graphics Editor, and
interact with the views to change the state of a simulation model.

We also will describe a number of related tools we are developing to support the construction of
interfaces. Chief among them is an Icon Editor, which makes possible the construction of new icons
without requiring a user to operate at the level of code writing. In addition we discuss a series of
Knowledge-Base Editors for the specification of domain knowledge. We have implemented a Behavior
Editor to explore the incorporation of simulation knowledge into icons and are in the process of
developing a Lesson Editor to explore the incorporation of domain knowledge into graphical views so
that they can explain themselves, pose problems to students, and monitor their answers. Designer, an
interactive visual design consultant for users of the Graphics Editor, makes available graphical design
knowledge during the process of constructing and critiquing graphical views. Underlying a number of
these knowledge-base editors is a frame-based representational language. We will also briefly describe
it and a graphical interface to it.

Simulation Environment

The Simulation Environment we have designed consists of a set of activities to allow users to build,
observe, and manipulate views of a simulation model or real-time process. In our work we have used
this facility to build interfaces to mathematical simulations such as the steam propulsion simulation

8 HOL-AN, HtwCHNS. McCANDLESS. ROSENSTEN, A WEf['ZMAN

used in Steamer, real-time systems, and Parallel Distributed Processing (PDP) models learning to recog-
nize patterns in the operation of underlying systems. A system consists of a process and a set of user
defined views connected to that process.

One interacts with a simulation system via its associated views. A view is a graphical collection of
icons representing a portion of a simulation. We have designed a Model Controller to allow users to
manipulate views, observe the effects of the manipulations, and control the underlying simulation
model. Using this controller, a user selects two views. One is typically a view used to control global
aspects of a system, while the other is used to manipulate and observe subsystems. In Steamer, for
example, the global view contains the throttles for the ship and important status information and the
other view can be alternated between any of the approximately one hundred views available.

Each simulation environment activity, such as editing or running a simulation model, is supported by
a screen configuration which provides a set of functions and menus to help a user accomplish the tasks
associated with the activity. Integrated into the current simulation environment are the Model Control
and Graphics Editor activities as well as a related set of activities discussed below.

4, Model Control

The Model Control activity provides facilities for changing systems, models, and views. It also
allows modification of the behavior of a model, such as the rate it runs in the case of a simulation, or
the rate an interface is sampled in the case of a real-time system. Figure 6 shows a typical configura-
tion for the Model Controller. The status line near the bottom of the screen maintains current state

.,

S...i

Ie3n Pat* sae WAVIwitb
stop rWl Find he k.mct Cmdigwe Activity
tmt Ist'm P.

model

' Stesmw Control Vlew

SIM OUTLET Oft" MESS MN CONO VACUUM

.m 0:0:25

Pro-. E1
HI LO PPZ55 MatI1 P IT? STAGE

14 KTS 122 RPM I Bollr

i'Up V_ Vt.,

, nysterr ai.. Wylm. Modl: llo- kt.M t.t0PrtJ SV-b brterrr Al V Ul. IhtUqMt iwd

ot 'l intt ' on t .

FIGURE 6. Model Controller. The screen configuration of the black and white display during operation of a simulation. It pro-
vides functions for controlling the running of a simulation, switching between graphical views, and selecting other activities. Typi-
cally used while viewing and interacting with a view on the color screen.

A" 1. .

aRAPIcAL INTEFACES 9

information. In this case the Steamer system has been selected and its associated model is running with
the Make Up and Excess Feed view displayed on the color screen. The right half of the middle section
of the screen shows a Steamer control view. At the bottom of that view is the ahead throttle, and
immediately above that are important data, such as the ship's speed, engine rpm, and the fact that the
ship is currently operating with one boiler. Above this information are other indicators of the global
state of the propulsion system. Across the top of the screen are menus of operations available for con-
trolling the model and views. The right most menu choice allows changing activities.

The status line allows a standard interface to a set of general control functions. The way to view the
status line is as a display of attribute value pairs that describe the system at a given time. The attri-
butes explicitly displayed are the current system, model, subsystem, and view. An asterisk is used

-~ to indicate a value that has been modified. Whether a model is running or not is shown in square
brackets.

Graphics Editor

The Graphics Editor originated from our work on Steamer (Hollan, Hutchins, & Weitzman, 1984)
and the requirement to implement a large number of dynamic views of a propulsion system. We
needed a tool which would allow instructors, who were knowledgeable about a domain but computer
naive, to create graphical interfaces. The resulting Graphics Editor has been used to create more than a
hundred views for Steamer and has been designed to allow its easy extension into other domains. The
editor provides a user with a set of icons that can be arrayed on a graphics screen to create a view of
an underlying simulation or real-time system. It provides functions commonly available in computer-
aided design systems. One can save and restore views from files, mark the elements of a view (indivi-
dually, by type, within an area, etc.). and edit those marked elements (moving, copying, deleting,
changing color, size, etc.). A grid facility is provided to assist in accurately positioning icons within a
view.

The multipaned menu interface to the editor activity is shown in Figure 7. The status line in the
lower portion of the screen provides control facilities similar to those in the Model Control activity. In
constructing a view, a user chooses icons from the menu of icons and positions them on the color
screen. Figure 8 depicts a subset of the available icons. Typically a process of incremental refinement
of the view takes place in which icons are moved around, reshaped, colored, and given labels and
appropriate units.

An important characteristic of the Graphics Editor is the way in which it supports the association of
icons to underlying variables in a mathematical model or real-time system. We call this process tap-

'V ping. There are two types of taps. A probe tap associates a variable with an icon so that the icon
reflects the current state of that variable. A set tap also associates a variable with an icon but in a way
that allows one to change the value of the variable by interacting with the icon. Figure 9 illustrates the

~' ~ tapping mechanism and a simple math model. On the left are the variables in a simple math model and
on the right are the icons to which they have been tapped. The toggle switch turns this model on and
off. Each tick of the clock indicates that one unit of time has passed in the simulation. While the
model is running, the valve sets its variable. This means that when one interacts with the column
above the valve, it sets the value of its variable, %-VALVE-OPEN, to reflect the valve's degree of
openness. The pipe, on the other hand, probes its value, PIPE-SPEED. This means that on each tick of
the clock, the pipe reflects the value of PIPE-SPEED by changes in flow rate. When one interacts to
change the state of the valve, the effect propagates via the math model and affects pipe flow. Also
included in the simulation are the clock and toggle switch themselves. The clock probes its value,
CLOCK-STATE, while the toggle switch sets its value, MODEL-RUNNING.

To set up the tappings of the pipe, a user of the graphics editor would mark the pipe icon, then click
on Tap. This generates a pop-up menu (shown in Figure 10) for specifying the tapping parameters.
Here the tap probe has been associated with the variable PIPE-SPEED. This will cause the pipe to
probe that variable when run. Similarly, values of other tapping parameters are provided. The variable

10 HOLLAN, Htu]CHNS, McCANDLESS, ROSENSTEIN, & WEITZMAN

Cot. AtU tm Pimw Taps b1twsct
slect K3 Lit Draw h*1mha ACtMty
Bow 15Pbe Rw, d py Canto"

H~dght DtO 101" TAp Draw

Prob COW
Muk Dfiji Edit Labd an
M List 1p11000

Tapped Draw m
untapped o 0

Type Desa tefllct boie te w T
Find .n 't

J144 Edt Marked /cou wd

Mcs Gaphu CA-1ulgs pw MP ti
Ihctono Mdi Fi Gsph no"y PUMP Knife switc

Trongi Air Eja t Tooa Switch
Trupozoid 910
I0mod Cotuwl V Uvalnm stop Vat.

Tsnk Dpio Stvakac AngPstp Vash,
W0t1s 1u0 Trap Omcit Yvs

tagtal Bae Orirca "Bf Vak.
Fa Ua Safety Vat

sn on"g 3 Way Valve
Pflypan Owed Caik 1huska 4 way VaW

Iss Fuam Lnk
let Fum

La tm no PIPD Gbhm* ott.,

'toum

yatat,: siam" Systs. IModei: 8tewmm Mud.l (stoppadi S Syitatn: AS View: Mm.n E:npw Lad.. 0i

FIGURE 7. Graphics Editor. Screen configuration of the black and white display for editing a graphical view.

%-VALVE-OPEN would be entered as the tap set for the column associated with the valve so that it
would be set in the model when a urer interacted with it. Notice the tap mapping line for the toggle
switch in Figure 11. The mapping mechanism allows the designer to map the icon's value from one
scale to another. Selecting logical would map the "on" state to true and the "off" state to nil. Another
choice is binary, which maps the "on" state to 1 and the "offr state to 0. All icons that depict a state or
change a state of a math model variable are tapped in this manner.

An associated facility to aid the tapping process is the model augment. There are occasions when a
math model insufficiently represents aspects of a simulation that a designer might wish to display. An
augment allows one to enhance the simulation model where it is inadequate, to conveniently write more
complex tapping code, and to provide stand-alone simulations for views. For example, the Steamer
math model does not represent flow in pipes. Since we think that flow is important in understanding
causality in a steam system, we often add a model augment to a view so the iconic representations of
pipes depict flow rates. A model augment also allows the builder to derive values from existing vari-

* .ables. In the simple model augment shown in Figure 9 for the pipe ind valve system, we wanted to
" relate pipe flow to the state of the valve: the more open the valve, the more flow. The model sets the

pipe speed to be the openness of the valve divided by 100.
In designing and implementing the editor we have capitalized on the flexible object-oriented Flavors

System of Zetalisp. What is created as a result of the view construction process is a Lisp program that
contains a number of dynamic entities capable of responding to messages and of providing graphical
support to an interactive instructional system. For example, consider a dial. Many of the properties of
the dial actually come from simpler objects which can be used in a variety of icons. Figure 12 shows
some of the component pieces of a dial: RECTANGULAR, CONTINUOUS, and TAP mixins. For any
icon that displays continuous values, we mix in the object called CONTINUOUS. This object provides

N ."

GWW~fCAL DUTERACES 1

ICON SAMPLER

circle Square diamond trangle octagon lozenge

diiata a orce bar dial column signal

ctr tugal romar air ejector to oaytank~
pump pump sI ~ sic

10- __ graph_______ multt-plotgrp

vav s:o r i100~e~~ tc a~

6-. 40 80

FIGURE 8.knSanoper. A subset of the graphical icons available for use with the graphics editor.

place to hold the icon's value and the minimum and maximum values the icon can display. The
CONTINUOUS mixin also provides commands, omesgsany instance of a dial icon can be sent.
CONSTRAIN-VALUE isan example message. It provides a way of constraining a number to be

btena mnumand maximum value. Figure 13 shows the complex structure of a dial, including
itsinsanc vaiabes nd hemessages that it can handle. Of course, a user of the Graphics Editor does
not eedto hinkin erm ofthese implementation details but need only be concerned with critiquing
visal harcteistcs f te daland tapping it into the appropriate variable.

By having knowledge stored locally in icons, the Editor and Model Controller do not need to know
about how the dial does its work. Since the editor does nor need to know, neither does the view
builder. Icons such as dials or pipes understand other basic messages like SHOW which, when
received, cause the receiving icon to show the value provided in the message. If we send a dial the
message to show the value 7, it reflects that value by positioning its needle. On the other hand, if we
send a pipe the same message, it shows this value as flow. In neither case did we explicitly need to
know how the icon worked, only that they understood the message sent. These messages make possible
a very powerful generic interface ability which has been exceedingly useful in the development of the
simulation environment.

.

12 HOL.AN, Hrr HNS. McCANDLESS, ROSENSTEIN, A WEnZMAN

Tapping Mechanism

MATH MODEL GRAPHICAL ICONS

Model-Running- ON u- -- Z
Probe

Clock-State=

Clock

Probe Pp

Pipe-Speed= 0.72
Valve

Probe and Set
%-Vaive-Open- 72.0 -

;;;Model Augment for TAPPING MECHANISM Diagram
(defun tapping-mechanism-model-augment 0
(when model-running
(if (< percent-valve-open 4)

(setq percent-valve-open 0))
(setq pipe-speed (// percent-valve-open 100.0))
(if (- clock-state 0)

(setq dock-state I)
(setq clock-state 0))

(setq valve-state (if (. 0 pipe-speed) :off :on))))

4 FIGURE 9. Tapping Mechaniim. A depiction of the mlationships between vaiables in a simple mathematical model and a set of
icons. Set saps allow the value of a variable to be changed by interacting with an icon. Probe taps cause icons to reflect the value
of associated variables. At the bottom of the figure is a simple model augment used with this view.

S Icon Editor

While the Graphics Editor allows one to construct views from an existing set of icons, the Icon Edi-
tor allows users to construct new icons which can dynamically display and modify the state of a simu-
lation. A user of the Icon Editor specifies both the icon's appearance and behavior. This specification
determines the graphical states for the icon. For example, we have seen the appearance of a dial icon
in a number of views. The behavior of the dial icon, like a real gauge, comes from the ability to posi-
tion its needle. For the icons of the Graphics Editor these specifications were made by directly writing
Lisp code. Experience with the Graphics Editor has demonstrated that incremental specification and
refinement of the appearance of a view is most easily effected through the graphical manipulation of its
components, the icons. The Icon Editor mimics this facility by allowing the specification of an icon's

ORAPIICAL ITERFACES 13

ax Vaue 1.0 Greats Atbtut avor Tap bitat
1elect Kill List a"w Wla20 AGi-My

Vin Vake -1.0 Ila". Probe ado Hardapy Confl u

Tap Mapping: UNMAPPED Vw ,MVe

Tap Probe. PPE-SPEED filidt 0114 .1. Draw

Tap Set ler uda Copy W

TNpe Draw L

Untamped oteo,-
Tnom Doorlb raffect Ibw view T 19u"s
F'v~d Immt

Wa4 Edt t Frams leow Gvid

Fnleae VA PltGO oay Kieswitc

Winnw Flato Va slwitc

T W,&u Alp Ejector Toggle switch
Traeezoid OW1

ed weaonnTo* Oup sng " Anglhlp Vus
appearanc Trap gcic oft

beha ao Orfl r of at Varm

dys orus i te pparnc o ion ad st f rahialbeavos fr iosTh s et vcowsi

iin a. T lw oito t vese
sow 3 Way wahm

poM S Ckcul slee 4 Way Vakv

Tedt run
8en Ppe Othrr

copnns tesm rahcltchiusaaial the Gahc dtr uh smrigadmv

ingm, are~a~lso availbe nt Model: tcmmne Mitor. TgaIppedh tp of F r 5 ws flamicn.

., I UCSO

FIGURE 10. Tapping icon i e toap menu item pops up a window in which probe and set variables can be speci-
ied as well as fonstraints ad mappings of their val yEss.

appearance through graphical manipulation of the components of the icon and specification of its
behavior through a critiquing process. 'This permits the development of a hierarchy of graphical primi-

Wives for use in the Grand a set of graphical behaviors for icons. Thus, the Icon Edi-
tor is a tool for the construction of icons without explicit programming.
A number of the Steamer icons can be thought of as combinations of existng icons. The digital bar

icon in Figure 14 consists of a bar icon, a banner icon and f rectangle icon. To allow positioning these
components, the same graphical techniques available in the Graphics Editor, such as marking and mov-
ing, are also available in the Icon Editor. The top of Figure 15 shows a flame icon. In a number of
views, flickering of this icon is used to depict the flicker of an actual flame. To construct the icon with
the Icon Editor, four lines were incrementally added. T e Icon Editor thus makes possible the incre-
mental design of new icons from basic components.

When a user builds a view in the Graphics Editor, the system is writing code. This level of activity

is entirely invisible to the user. When constructing a view, the user has no feeling of coding, of
describing the procedure the computer will follow to reconstruct and run the view. Similarly, with the
Icon Editor we don't want a person constructing an icon to feel that they are writing code. Thus, the
Icon Editor must make available an appropriate toolkit of behaviors with semantically direct representa-

. tion for each behavior.
/ It is unlikely that there is one general scheme to allow builders of icons access to primitive graphical
, behaviors. In the digital bar case, the component icons do all the work. 'Me builder specifies the

behavior of the digital bar by constraining its tap to be the taps for the bar and banner. In addition, the
designer of the digital bar icon must decide which attributes to make available to the user of the icon.
In the Icon Editor a pane of attributes for each component is displayed. The user can constrain two
attributes to be identical, in a manner similar to the way taps were constrained, or place an attribute in

U 14 HOLLAN. M rCH S. McCANDLESS, ROSENSTEIN. &

Graat hic s TaEd ittorr

smit Kil UU Draw Itlefire Acizty
levy y CmqL-w,

State Coors ALL HIGH-LOW-OFF ONOFF SECU.ED-WARMU-OPERATw -

Tap Mapping BINARY LOGICAL SECURED-WARI&P-OPEATrJG UNMAPPED Y 1
Tap Probe. MOOEL-RUING Goiw

' ap Set. MOOEL-RW4NG ! :pook-
T Type Des fleE R~ 11"r View T ino

Fbtb be
Afr di Mjecta Tag b.i d ,

arioc11 r..V&*Ug pLIX 11r 9w. h
R 1 Nf Plo raph puom Krife Switch

Trierv Air Elacto TO111 Ghe
Tropma. 01
0Cmk v 11hw stp Valve

lgt Tewi Dli Sa & An0.etop Yala,
Octee., bp0 Trap ateom vii,

019l4al Bar OffiCe Rdef Vlve
Fare Ba set YVam

Bar beg Pietw vaivo
soft 2 WSJ Vii,.

PUAWn aow 9 akreker 4 Way Vae
Fhw Fusbl Lh*

Ya.,',- *6 ym, e..*" Model: *1moi US (.toappudi SW Sye;!m: A Vi.0: Tpping n,

ae rked teens.

FIGURE 11. Mapping a Tap. The tapping mechanism allows the mapping of sate colors and variable types. Hem a mapping
ha been made between a logical variable and the on-off sate.

the color or miscellaneous menus for use in the Graphics Editor. For the digital bar, the bar's color and
the banner's text color would be placed in the color menu. Since bar, rectangle, and banner have
labels, the icon builder would not put any of the label attributes of the components in the menu. This
prevents the user of the icon from accidentally placing labels in incorrect positions. The Icon Editor
also provides color and miscellaneous buttons, to allow the builder to check the appearance of the
menus as they are built.

/The flame icon provides a more interesting case, one in which behavior is synthesized at the level of
the new icon. The flickering action of flames is implemented using animation. Rotating the colors of
the four lines which comprise a flame creates the flickering effect. A better effect is produced by
maintaining a fixed color for one of the lines. At the bottom of Figure 15 are the three possible anima-
tion states. When rotation repeats in real time, the flame appears to be flickering. Underlying the ani-
mation is a complex negotiation between the icon and the graphics device, but the builder needs only to
specify the three rotation colors.

a.. Figure 16 shows an experimental configuration for the Icon Editor in which a flame is being
designed. Near the bottom of the figure is the status line showing the current icon (flame). Across the
middle of the screen is a pop-up menu an icon user would see in the Graphics Editor for specifying
color. The topmost pane allows a icon builder to examine other Graphics Editor menus created from
the construction of an icon.

We are in the process of implementing additional behaviors for the Icon Editor. These include
allowing an icon to move along a trajectory and to vary the hue of its color to reflect the value of a
tapped variable. The initial goal for the Icon Editor is to be able to reimplement the Steamer icons
using the Icon Editor. We are using this reimplimentation to assist us in identifying a set of primitive
components sufficiently rich to permit specification of the diverse set of behaviors exemplified in the

.--

44%

Ar A a

GRAPHI1CAL ffrERPACES 15

Internal Icon Structure - Dial

MIXINS

Dial Rectangular Continuous Tap

Radius XI, Y1 Value Set-Form

Arc-Start X2, Y2 Min-Value Probe-Form

Arc-End Max-Value

Draw Claim Constrain-Value Set

Show Highlight Probe

Erase

Radius, Arc-Start, Arc-End, Xl. Y1, X2, Y2, Value, Min-Value, Max-Value, Set-Form, Probe-Form

Draw, Show, Claim, Highlight, Erase, Constrain-Value, Set, Probe

NEW FLAVOR

FIGURE 12. Componars of a Dial Icon. Some of the mizins which make up a dial icon. Each nixin contributes instance vari-
ables (top half of boxes) and messages (bottom half of boxes).

Steamer icons and as a method for exploring interface techniques for making the primitive behaviors
available to a user.

Knowledge-Base Editors

We are in the process of designing and implementing a set of editors to assist an instructional
designer or other simulation interface builder in specifying knowledge about a system. A data base of
knowledge is required to integrate information about both the domain and the purposes of particular
interfaces. This knowledge can be employed to allow simulation views to be able to describe them-
selves, run scenarios of simulation activities, pose questions to be answered by interacting with a view
or collection of views, and to perform other forms of instructional activities. To facilitate the specifica-
tion of the data base of knowledge we have designed four additional editors: a Knowledge Editor with
a graphical interface, a Lesson Editor, a Behavior Editor, and a Graphical Design Editor.

Knorwledge Editor and Grapher

We are using a frame-based knowledge representation facility originally designed by Bruce Roberts
of BBN, Cambridge, Massachusetts. It essentially builds a class structure on top of Flavors to provide
frame-based representational facilities. The underlying language is called MSG, for its flavor enhancing

I , , , - . . . , . . ,. , , ,, , " ,. .

16 HoLLAN. mxrtC1~s. mccANDLs. RtosENSTmI, a wETmAN

DIAL
all Instance variables (43) all handlers (70)
ORC-END (DIAL) :Ardir.;7i prim~ary daemion !COrl:DrSPLRY-ImrxiK
ARC-START (DIAL) :RSPETi-RRTIO primary daemion ICONl:SOUARE-RSET-RRTIO-flIXI.t
DIARAMR! CSRSZC-ICUrl) E9ORC-q prtunary daemion IC~t:R5CTAMCULRR-flIXth
OX (RECTRt'CULR-fIIJI :20Ufl;Ifl-RECTAtICLE primary daemoan ICOM:RECTAt1GULR-MIK'k
DY (RECTArIGULR-IXIM) :CHRM:iE-FLRVOR primry daemion ICOli: SSI C-ICON
FACE-COLOR (GAGE-MxX IM) :CLAIMl notype or ICOM-:RECT RtGULRR-IIIXIII
FRRCTIOIIRL-CHRIIGE-TC-SHOU (CONIMIUCUS-fIXIM) CLRIn- RE=TANGLE pr imary daemoan ICOI: RECTAMGMR-nIXZIM
FRAMIE (PICTURE-IIIXIN) :COrIPUTE-tIRPPIIG p~rimary daemon !COM:TRP-IIIXIri
IMVJERSE-flRTRIX (RE:TRNC.ILAR-IXIMI :COr.FUTE-PROEE primary daemon ICOII:TAP-l1IXIii
LR8EIL-C0LOR (GAGE-lIIXIN) :COIIPUTE-SET prim~ary daemon ICOM:TRP-MIXI1
LRSEL-COLOR CRECTRICULlR-MIXI) jCOrnPUTE-TRP prlimary daemon ICON: TRP-flZ XIII
LASEL-FO14T (RECTANGILRR-MIXIM) :COfl57ARIM-VRLUE primary. dacewn ICOM:COtITINIUOUS-!IXIII
LABEL-ORIENTRTION (RECTRNGULRR-IIXIM) :11ISP'LAY-PICTURE primary daemon ICON: PICTURE-lIXIl
LABEL-POSIT~IM (GAGE-flIXIi) :DRFIU combined daemon !CON:DIAL
LASEL-POSITZO1 (RECTRttCULFIR-MzXI3 :flRA--LtRSEL primar-y dacr'wn IC3M:RETRMCULRR-rIM
i.ABEL-STRIIG (RECTRNGULRr%-MIXIM) SDRfiL-iE!:_LE priar-y daemion ICOfl:OIAL

*.LOCATIONS (DISPLAY-l IXIN) :DRRq'.-T1C-LRSELS primary daemon ICOM:DIAL
MATRIX CREF"RlGULRR-MIXIM) :DRR :-ICS primary~ daem~on ICON:DIFIL
VMX-VRLUE (CarrInUOUS-nzxzn) :DR.R;--UMITS primary dacnin ICOM:DIAL
I:N-VRLUE (CO1ITIMUOUS-MIXIrI) sDRR5 -VALUE primary daemon ICOl:flIRL

* tEEDLE-COLOR (OIRL) :SDIT-F-OSITIOfl primary daemon ICCSCTACUL~-!1Xr1
Cu LINE-COLOR (;CTAGULAR-MIXIM) :j. crbnddatncn ICON:D:L
R,;;IUS (DIAL) :ERRSZ-LFIEEL prim~ary daemon IC3M:RECTRNGLILRP-IXIN
RANGE~ (CONTINUOUS-MIXIM) EXTEMCE-ONI1011-RECT ANGLE pim uary daemon ICON: RECT ANGU!..A-tI)
RE=LirE-QRL'uE (DIAL) :GET -FL-IMSTRhCE-VF:IR9ES primrty daemon ICO::~zCICOt
TRP-NP (T.P-MIXI) t GET -=lPO1EMT -FRUORS pria.ry damoin IC3M:8FS"C-ICOII
TAP-ItAPPING (TAP-JIIXIM) :HIO.LIGH4T conbinee daemon ICOI:DIAL
TAP-PROSE (TRP-MJXIni) :HIC4LiXT -MOI1ErITALY primary daemicn ICON: OISPLRY-lI XIII
TAP-READIMG (TRP-IIIXIM) :HIGF.-GHT-POIIITS primary daemoan ICON: RECTAMGLP.FR-NIXIII
TAP-SET (TtP-I*zXT) :IIIit czmbincd datman. ICOI:flIRL
TIC-LRUELS-COLOR (GRGE-MIXIN) :t!E;-ROSE primary damomn ICOM:TRP-MIXIM
TIC-LFIEELS-F0nT (GRGE-IIIXZN) :rN'jz..z-SHOW pr-iary daemon ICOM:C3NTIMUOU-r"4N_
r:CS (GP.CE-LCXIN) :LP3 '-?OSZTIOm-AUX prim ary daemoan ICOM:RSCTRCMLAR IXInI
LIMITS-COLOR (GSGEMIXIM) :LATC.X primary dacmcn IC3M:RECTMGL~IR-NIXIN1
UNrITS-FOniT (GAGE-MIXnI) :LEZ=!-LRS:EL-PCS!TICMS prlnoi-y dat~n I lN0L1n- lX
UMITS-STRINC (GA.CE-flIXIN) :L6C,:T1OI primary daemion !CO?1:D!SP,_AY-MIXI1
UPLUE (CONT1MUOUS-l IXIN) rFZ-X~-'IS7 primary daemion INO:9A3_r-ICO
VC (RECTP11GJLRR-I IM)prmrdaonIOS21-ol
HL (RECTRMGULR-NzIIM) 01OVI-"NRIV -rint- d-ion ICO:ASI-C~TiN*Lr!.)

Xrc RECTMCULIR-MXIM):MOCVE-:7rTU primay da ion IC: l:RECTKGNL-XINYS (RiCTR1GuLqR-nMzXzr) IIROR=2Z pi nary deion ICO: REZTJIGURRflXY9 CP.ECTIGULqR-MI1X1I) :?Rom=? priary date-n ICOlTRP-I1XNM
YT (RC:MUFI-.XMREAXKfC prim~ary daemon ICOM:TF.F-1IXIM

:PRO~f puimary damon ICOtI:TRP-N1IXZII
:?RoEE? prlimar-y da-cmon rcon-TF-MIXIN
:R"I~CNG prinary daem'on ICOII:TAP-MrXIN
:R CnUT E-DERIVED -PANE T ER S czrmbimcd demon ICOM:DIAL

o;cr-bincd dtocann ICOI :DIRL
:R~n~.-O primary daemoan ICON1:!SC-ICII

:SET pIiary daeruan ICOM:TRP- I:XII
*2ET-CUIOIG-RECTrtGLF primar-y dammon ICONl:RECT Ir1GULAF-IIX:M
:;ET-LCTIOni primary dcaruan ICOrt:OISPLRY-IIIXI,;

-ST-TrF-nR1PPIMG c--ribined deanan ICOII:DIAL
:SET-TRP-PROBE combined daemuon ICOII:DIAL
:STfl-5tT ccnbined daemon ICOMt:DIAL
:S T? primary daemoan ICOM:TRP-lXXIM
:S 5&UP combined daemoan rcom:OIRL

* .~. :SrTUP-COLOR primar-y daemon ICOMI:SETUP-flXIII
z!ETUP-COLOR-VALUES primar-y daemon TCON:DIRL
:SETUP-LA2=L combined daemon ICOfI:VIRL
:5ETUP-nIKsELLfIEO'S prinar-/ damon ICOM: SZTUP-MIXI11N
S SET UP-MI SCELLAMEOUS -VALUES primary daemon IC2ti:DIAL
*SE[UP-1IOVE conbined daemoan ICO(I:3IRL
SETUP-PICTURE primary daemoan ICON:PICTURE-nIXII
:S'-TUP-POSITIOtI combined daemon ICOII:DIRIL
:SE7UF-ROTflTIOnI combined damon ICON:DLRL

A :SETUP-TRP combined damon ICOM:BIRL
:SHOU combined daemion ICOII:DIRL

* :SHOU-MEW-URLUE? primary demon ICON: CONTIIIUOUS-IIIXIN
:TRPFENO pr i nary damon ICOl: tNP-IIIXIZI
:THI C-TO-SRUE combined append icom:DrRL
:TO-SHOU primary daemuon ICOII:OIAL
:ZOOM combined dacet-a ICOI:flISL

FIGURE 13. Dial Icon Detail,. A listing of the 43 instance variables and 70 messages actually contributed to a dial icon by the
.1* full set of its mixina.

N %

GRAMUCAL INTRInACES 17

5.0

50 Digital Bar

Rectangle Banner Bar

FIGURE 14. Components of a Digital Bar.

FIGURE 15. Flame Icon. The top potion of the figure shows the complete icon. At the bottom is an animation sequence.

capability. Here we present an overview of its representational capabilities and our implementation of a
graphical interface to it. The MSG language provides the facility to define classes of objects. Each
class defines local attributes that distinguish it from the other classes. It is the instances of these
classes that we use to represent the objects in a world being modeled. In the hierarchy of the class
structure, a class may have any number of abstractions or superior classes. A given class will inherit

% %
| ', € ',''z"' ''''%.2 . 2'''.€.',"""'.2""p.;""" . - . . . o * .". ., . ". "J-"- " . - " .,.": ..

18 HOLLAN, HUTCHNS. McCANDLESS, ROSENSTEIN, & WTZMAN

Maine Or-* albvcw Flw do M. Activity

rInnance Vaiala Co..man Ico conuri Harisco Can~m um
Color Menu

Fio color lidl"t Daiwa Move Tap oa
First Aniltion ,Colo, C i li c

3b n.Colr .onr Color. Probe Color
"qs1tal' IAnl inio color Iblock 10o Default Edt Labl of

rmI'o Aitttn Colw1 iblock AN List Shap Pick"lrl

Li :otl itn Color (14ariati.ton 0' loe'-color) Tapped oraw itacmanfmmm Points
Lins2:Otllm Color (.l .,.lorinti 2) 'fl..,.-colorl)
L , nirli~tli Color (V<.,,natim.,4 4loieoo- UntaIpped ntate Cbgim

Tye Dscribe Reflect tum VIE T $*a,
Iscllon ~ I im41 ts-ll Firnd ispect

.1Rla Vrliablr ima,k Edoi Marked leans G,

'14 QV, Cin 'itIugma Pusp Bar Switch
SwI bitch,elam Color RED GREEN YELLOW BLUE CYAN MAGENTA BLACK DARK-GRAY UG-T-GRAY WHITE 70glift

-abel Color FED GREEN YELLOW BLLE CYAN MAGENTA BLACK DARK-GRAY UGHT-GRAY WHITE

Olmop Valve
,V it 17,3 KA, M h t171fhc Valvel

%a . 1 - I ollldef Valve
Forcer Beir gaity Valve

Lira bar 8ot Ais;;dmor Valve
GbWN Sedg 3 Way Volve

Pogpl IpI Qaoi Braka 4 Way Valve

Fauna Fumble Lb*Tod ~ Fum
amM P111 ehai Oth ,

lico,: Flerl" Behavior:
T
Pr;W Ccu Amewil., Mapn.: Doiwte Spe d

LrS0

*.a FIGURE 16. Icon Editor. Screen configurtion of the Icon Editor.

."all of the attributes of its abstractions. By defining additional attributes at the local level, a class can be
made more specific. The inheritance mechanism allows the inheritance of roles and slots. A role is the
semantic organization of a set of attributes, while a slot provides an actual placeholder for an attribute.
In addition, the system provides a co-reference facility, the ability to reference the same attribute of a
class using multiple descriptions.

When a new class is defined, an instance of a meta-class is created that will hold all pertinent infor-
mation about the class. This includes how to create a new class instance, where to store these
instances, and how to manipulate them. When a new class is defined, a new flavor is also defined.
The name of this new flavor is the same as the name of the class being created. When instances of a
class are created, an instance of the associated flavor is made. The instance variables of a class provide
the typical role and slot descriptors of a frame-based representational language. A role consists of a
role name and a list of slots which make up the role. A slot provides a name and the potential of
specifying restrictions and default values. In addition, the language provides for subroles to further
refine roles. Figure 17 shows an example of the MSG representation of a two port fluid device.

To access the value of a slot of an instance, a path to that slot's value is constructed. For example,
the class of fuel-oil-service-pump has an instance called fosp-alpha and a slot called inlet-valve. To
return the fosp-alpha's inlet-valve you would construct the path: (the fosp-alpha inlet-valve). This
would return the object that is fosp-alpha's inlet-valve. If this value happens to be another object, one
can access a slot of the new object by adding onto the path. If the inlet-valve has a slot called inlet
you could expand the path to (the fosp-alpha inlet-valve inlet), which would return the inlet of the
fosp-alpha's inlet-valve.

An important feature of the MSG language is co-reference, the ability to reference the same class
element by different descriptors. Paths and synonyms play an important role in providing this facility.
When a synonym is defined, a co-reference is built and used instead of the actual object. The

%- "I,%

- % , ,3 a" . ". "* ', " ° '..A.' ' - '- ' ' . . " ' A *.J-t'.' . . " " ' ' . "

-. ~~~~ ~I IIImr 011w511t 11101 ,m trr r.,.,

GRAPHICAL INTRFACES 19

b~it". 14. he I4T, Class: 2-PORT-fl.UID-EVICE

t~ Et-tiota (FLUZD-DEICE 2-PORT-DEVICE)
KI-Q34C *W tol tou..., ot.'tot'. sd so Rst'sctlens: (PLUID-PRTW VALVE FLUID-EZIMK-I11-OUTLFT FLUID-BOURCE-IITH-IML

A1.~OJ ~ 15 *50 l -2-FORT-DEVICE PtOI-THROUCI4-MAMIFOLD N'ICIE-JITH-BYPRSS SUClIO-DEVICE)

-s4ntanlces

ANI

a NI
.900 -oe:sHI

St..-ole.PRT

OVs I,,t iklw 4sl, AMY ch.,e toe Clo this dit o. tvs

4 ~)1q.'ATED-W0I

G L 1. . to I

4," tiI-TMIOLYIEA -
T IAt.a

deecnpu r of th ass

of asnnmialitosyoy par.Ecmebroapir. defYTies ptht asltwhchi S.

deition ot ecas

KE-GRAPHER is a tool to create, maintain, and inspect MSG objects using a graphic representation
of the knowledge class hierarchy. It incorporates a graphing facility to display die class hierarchy with
the nodes of the graph becoming mouse sensitive. Examples are shown in Figures 17 and 18. The

'5 window is divided into four pants: the title, the main graphing area which presents the class hierarchy, a
margin choice area to select top level commands, and a keyboard input pane to change the objects to be
graphed. The starting nodes of graphs are called roots. After a user types in an expression that will
evaluate to the name of a class or a list of classes, the window will reset the roots and regraph the win-
dow. If the item evaluated is not the name of a class but the name of a flavor, then that flavor and
those that depend on it will be graphed. One can pan around the graph, zoom its size larger or smaller
by changing font sizes, hardcopy the graph, and save or load a class file from disk. Each node of the
graph is mouse sensitive and via various button clicks one can describe, create, move, or edit a class.
Similar facilities are provided for manipulating instances and flavors.

Lesson Editor

'5 The Lesson Editor activity provides interface ,iilders the ability to add instructional sequences to a
simulation. In the current version of the Simulation Environment, the Lesson Editor Screen appears as
in Figure 19. It maintains the full range of Model Control facilities while supplying additional

a

20 HOLLAN, HUTCHINS. McCANDLESS. ROSENSTEIN. A WErr7LMA%.

-or ;11 ode- t4".~ , ' PYF~nTGPTFoftrC8,CPTF0'' I.11i09 5f1! -n

gmet is &AR*IE-5.*of8 1. j-M
KE -QP1K5 t.. to ito cr..., mtin. AIPW.L
*& -V.hte rep...- ~u~
the E. t. __

E 4z.1 emw.,.- L 4.

fr o m d a e w p- - : R e ni w ,erm m v

t. th Akn

thss U. 'I Desc'-beis i.avwr

1._ -I / LK Vic V':$I'e

in . -9. t - Di Ed reteI

\I4 td mws1

OpAii -EF'

FIUE18. Graphical Iiirface for MSG and Fia orx System,. A graph of the dependencies between classes. Individual nodes

in the graph are nise sensitive. Clicking on an item gives it menu of actions that can be performed on it.

functions for creating and editing lesson sequences. These sequences are made up of sets of actions
each of which are tied to some behavior within the running of a simulation. Each action can either
display text or affect the state of the simulation in some way.

The Lesson Display Window shows a partial script of feedback lesson segments. This script could
be used to show a feedback relationship in the Make Up and Excess Feed System. The first segment
indicates an action to set the variable DFT (the level of a tank) to 825.0. The next segment is a condi-
tion which waits until the DFT is below 850. When that level is achieved, a set of icons is highlighted
and text beginning with "When the DFT..." will be presented to the student. The highlighted icons con-
sist of the components in a feedback loop which attempts to maintain the DFT between 895 and 1105.
These script segments are added to the lesson by choosing a command in the Segments pane. The
commands allow the user to present text to the student, highlight a set of icons of current importance,
pause the presentation until a salient event occurs, set an icon to a value, and execute an arbitrary func-
tion. Much of this specification is done graphically. For example, setting the level of the DFT in this
script was accomplished by pointing to the appropriate level in the iconic depiction (the DFT tank in
Figure 4). Each segment can be edited, deleted, undeleted, or moved within a lesson. Lessons can be
saved, read in from files, and performed to see the exact sequence that will be presented to the student.

We currently are in the process of expanding the Lesson Editor so that a user can employ knowledge
which has been provided about simulation objects and views to construct instructional descriptions of
components and behaviors within the simulation. We are also designing instructional systems which
will gather information about a student's knowledge of a domain by monitoring interactions with the
simulation. This system will pose questions to students, which are to be answered by interacting with
graphical views.

• - v-- °r-t - .v-- . , -r-' -, _ r , r .- r: _ _ . I. .v,,-.'r .' ' - . b € - , -r - ', Z. ,. , W'

GRAPHICAL INMRFACES 21

M fm sawant I

h= Co'dtion Ftind s fluffy
sem-.1Us Co =&

Condil o 1 (0< OFT 650.O}))

TiNt] h D11n ?.e I ... "

LL, fay wbidow

yst M: M nk 5yt. MOdei: 8tm MOsM [stoJpp.j Sub SysteM: Al V,*.: Mke Lip A L . Food
508,!,. the d*sIrd Eiv.

UC5D

FIGURE 19. LAsson Editor. Screen configuration for control of lesson editing activity. The result of interacting with a graphical
view to specify a portion of a lesson sequence is also shown.

Behavior Editor

One obstacle to a domain expert's ability to use the Graphics Editor to construct an interface for a
domain is the requirement of an existing mathematical model of the domain. Even if a model is avail-
able it is unlikely that a domain expert, without significant additional effort, will have sufficient under-
standing of the simulation model to be able to tap icons into it. The Behavior Editor is an initial
exploration of a tool that would eliminate the need for an underlying simulation model. The icons in

- the Graphics Editur know how to "appear" in order to represent the status of variables to which they are
___ tapped, but the behavior of the system is defined by a simulation model. The Behavior Editor is com-

posed of icons that know aspects of both the behavior and the appearance of the objects they represent.
The behavior of the system emerges from the interactions of the icons with each other. The ability to
incorporate the behaviors required in a simulation is facilitated by the object-oriented implementation of
icons.

To make intelligent icons capable of generating a simulation, it is necessary to add components with
domain and simulation knowledge. We have built a number of icons that "know" the rudiments of
fluid dynamics and understand about connections to other icons. These include, for example, tanks and

.. 7 " pipes that know about pressure and flow, so they can be used in fluid systems. Figure 20 depicts a
very simple system constructed in exactly the same manner as with the Graphics Editor, but involving
behaviorally "smart" icons that can be connected together. These icons have mechanisms for recogniz-
ing when connections should be made and thus the topology of the view is automatically generated.

An excellent example of the flexibility engendered by icons with connectivity knowledge is the
Super Sensor. This icon is a dial that asks icons it connects to what variables can be monitored and
which variable to measure by default. In Figure 20 notice that a Super Sensor is connected to the left

",,5 . 5 - - .- - - - -- .- -..
- - - - - - - - - - - - - - - -. ~ * ~ ~ 'A~~A~ -

- ~ - , , - - - , . - - , .. -~ , rw - iv -% __ I -I~ -; , V Mtr V- -4

22 HOLL N, HrrCie4S, McCANDLESS, ROSENSTE1N & WErITM N

.1'

4.4

'

,,!...........

FIGURE 20. Behavior Editor View. Three points in time in the operation of a simple tank and pipe view constructed with the
.r Behavior Editor. A Super-Sensor dial has been connected to one tank and automatically reads the level of the tank.

tank to monitor its level. Sensors know how to monitor appropriate aspects of the objects to which
they are connected. Users can manipulate these aspects by clicking on the Miscellaneous menu item on
the Behavior Editor screen (Figure 21). The sensor has defaulted to measure value, which is
highlighted. The sensor can be changed to measure fluid exchanged by clicking on that menu item.
When users interact with the tanks, setting their levels, we are actually setting the initial conditions of
the simulation. On the Behavior Editor screen (Figure 21), they can then click on run, and the simula-
tion will run until equilibrium. It is important to notice a fundamental difference between the Behavior
Editor and the Graphics Editor. In the Graphics Editor, the designer would need a mathematical model
of the tanks and pipes and then it would be necessary to find the appropriate variables to tap the icons
into. Here, the icons themselves perform the required computations for the simulation.

Designer

Designer evolved out of our development experiences with Steamer. We found that instructors using
the Graphics Editor sometimes created views that violated simple graphic design rules. They also had
difficulty maintaining stylistic conventions across sets of views. Designer is a general tool for assisting
with the design process. It functions as an interactive visual design consultant for users of the Graphics
Editor and is intended to aid developers by providing graphic expertise during the construction and

4..
- - -. " -. - -. -. -" . % . %

GRAPHCALINTERFACE~S 23

.I-.

Suoor Sens$or I coracted to 'Left' Tank Grets TIk Flovor Tape Inters"
sct Kil LkI Draw b fia Aetfvty
Saw Probe Ihwdsrdoopy Conlgsa

N'" Delte Molt Tap Or.
clea Udlats CqPY timm% " "Pobe Color

Mark Default Edt Label &M
AN Ist It" lctw

Tapped Draw
Untapp d Rotate DNgonal
Tyo Dcibe Retllet ter lw T lm

plec
,PgR-SF'"tS Irp . vt.velanBO., Rtt.'t..

HSI4L_ t-IyPA U.'.L ROL IMN OAR Oact-MaM O TA..-BAA ItahMAL GANM BAN4WP

BRBLE-TO-MONITOR: VALUE fL.UHO-EXCtANGCD

tw-Tr w AL Jt,o Toggle 8-..,

oi-.:6 Mai.5 St-Oo v Callow, Dpoe V...
1exagan CoAs Owne scralast A1*UsOP VAwv

7O 20t5, Tafk weil.,. Tr4; Ce... Vls.e
.'. I O.',W . 14-f V.,.

lgx.tl a ., Gatey Val.4
U"s P-.ft a r 5.,g u.tin Va...

Poyo Dar ,6 3 way Va..
* irol Ckewt Dre4ea 4 Way valve

Eu NM... . t ,nk .. ,

5y~te,': BohtvrJw MOalI hInu~ll etoalRad] Sub System: fAD ~ea.. Iwo IaW.. S A a a'

J)~S se am] o aS pD4,aatEsr or A4rk4td Iconi

• . FIGURE 21. Behavior Edutor. Screen configuration of the Behavior Editor during the process of connecting a super sensor to a
tank.

.:. .. critiquing of graphical views. This expertise includes graphic design principles as well as standards of
* . presentation. The underlying motivation is to improve the quality of the views by making them more

"-""'"consistent and visually more effective, In addition to merely describing design alternatives, the system
" :" allows exploration of the design space by explaining the advantages and disadvantages of alternative
-J design solutions. Through interactive dialogue and constructive examples, the system tutors users of the

..- :..Graphics Editor in principles of graphic design.
Designer consists of three interrelated processes, an Analyzer, a Critiquer, and a Synthesizer, coupled

'.'-'."to a domain dependent knowledge base. This knowledge base consists of design elements and relation-
;'"" ships, techniques for their identification, and sets of constraints used in distinguishing good design from
""" ""bad. The Analyzer first parses the design based on the elements and relationships of the given domain.
,,-.The Critiquer uses this information to indicate where the current design fails to conform with the princi-

"-* pies of good design or predetermined guidelines. Finally, based on searches of the design space, the
,. ,-.Synthesizer suggests alternative modifications to the current state of the design. The separation of these
t.,. three processes from the knowledge base provides independence and modularity to the system.
' i Domain-based design constraints are the basis of the critiquing process. Constraints within Designer

II).,t-consist of both basic graphic design principles important in the construction of two-dimensional views
.'.. "-"and sets of view standards that are adopted for particular domains. The combination of principles and

standards create a context or Style in which the design critique and subsequent modifications take place.
" "-"By modifying the style within which a critique is made, one can ultimately affect the form of the final
-" "design. It thus becomes possible to request multiple critiques, each based on a different style. This is
, e an especially powerful paradigm for designs that may need to be presented in different media, each
li with different constraints that need to be considered. For example, a style appropriate for a high-

- --, resolution color display may be inappropriate for a black and white hardcopy presentation.
- PS V.Oh

Vic -/."
$yt, ee~ ool nlra .tpwj SbSseri NVe:Io asAdA.n

24 HOLLAN, HL=HINS, MrCANDLESS. ROSENSTEIN, & WEITZMAN

An initial implementation of Designer has been completed. A functioning Analyzer and Critiquer
used on existing Steamer views have provided useful feedback. It is very encouraging that even in
views that we had thought were carefully crafted, the system has been able to note inconsistencies and
suggest improvements. Progress has been made in identifying the basic elements, relationships, and
principles of two-dimensional graphic design and incorporating them into Designer's processes. The
Analyzer first evaluates design elements in terms of their size, shape, color, and location and then iden-
tifies relationships between them from information provided in the knowledge base. These relationships
include similarity, proximity, grouping, and repetition. As new relationships are identified, they can
easily augment the analysis process. Various techniques exist to interactively inspect the elements and
relationships identified within the design.

The Critiquer locates examples and violations of the design constraints provided in the current style
and creates a critique. These comments include descriptions and justifications based on the graphic
constraints from which they were derived. Since the Critiquer works within the context of a current
style, there are facilities to help define graphic constraints and maintain styles. A preliminary graphic
constraint language allows the creation of new constraints, while a style editor has been developed to
create, maintain, and switch between styles.

Figure 22 shows Designer's top-level user interface. The multipaned interface provides access to
existing Graphics Editor functions and new Designer functions through scrolling command panes (upper
right collection of panes). Access to the domain knowledge is provided in a mouse sensitive graphing
pane (upper left pane). Comments of constraint violations are displayed in a scrolling pane (lower left
pane), while descriptions of the violations can be displayed in the lisp interaction pane (lower left
pane). In Designer, the status line, consistent throughout the simulation environment, includes the
current style in which the analyses take place.

i. *. wrsr~t
'

Elsn * WELEEtI DCL-6iiZ5365511>

Debts Mowe Tap Draw

EMee U (olo Copy Melvin 35w2
Am Prb Color

Elmeent~~No' Edi .ELEef MI IL4IB4 655

Cirdo ar cardRUWt PUMP Bar 9~~

et.tSt AV Ts l Mney Ch
,.Triangle Ahr Elumtm Toel gwitch

,. TXX..u -

'VIORTIM o SIHIF~flfT-IF~.£ .ESI;£ fr T~e" VIOLATION of SIGNIFICANT-DIFFEAEC-SIZE for TYPE
: " 'onstraint

.
N<SIGrMIFICRMT-DIFFERENCE SIGNIFICAHT-DFFERE3C-si

V IO L A T I ON
of SIGNIFCANT-DIFFEREW E-SIZE for SHAPE

Nationals "Tonfusion exists betweer 2 elemets whe the
is onli, a slight ITons v

pe ¢€ceptual difference in thei~r size." tne III o ic teSt' sim a el

Elemnt a a<ELEMNTS DIAL-40611625 36555316> x
Element - <ELE.MEHTS DIAL-qi 36b$4
Eleent a <ELEMEMTS DL-406SO+6 36S55536>

Simylte¢ : StaerM Bystain SW Systemf: Al View: Test V 1* Style: STEFAMIER

~FIGURE 2Z Designer. Scmen configuration of Designer.

GRAPWcAL 1N7RFAcEs 25

CONCLUSIONS

Interface design is currently very much more of an art than a science. There is a tremendous need
for better theories of interface design and for more powerful tools to assist in their design and imple-
mentation. Currently there is virtually no theory of interface design. We do not even understand what
contributes to the effectiveness of the most successful interfaces. We are in a state similar to when
bridges were built by copying existing bridges without knowing in advance what would result from
even the most minor variation. We need a more principled base for the design of interfaces, one that
characterizes the dimensions of the space of interfaces. Such a theoretical characterization is the only
way to be able to understand and intelligently make the myriad of tradeoff decisions inherent in inter-
face design. Hopefully it is clear from this chapter that we think a theory needs to be erected from an
understanding of interfaces as representational languages and based on an appreciation of the cognitive
tasks that people are employing such representational systems to solve.

One of the factors that influences the development of a theory of interface design is that computer-
based interfaces enable new forms of representational languages that are different in fundamental ways
from more traditional representational systems. While most representational languages are static, these
interfaces make possible dynamic languages. For example, when we use natural languages or
mathematical notation to represent our knowledge about the world, the representational system itself is
fundamentally static. The "action" comes from our interpretation of it. Compare this with a interactive
graphical interface to a simulation. The representational system itself now can "behave," both in terms
of reflecting state and in allowing us to directly manipulate it. We still are involved in a process of
interpretation but it now concerns behaving entities. The interface becomes a kind of dynamic world in
which we can think of and interact with objects as if they were the things themselves. Elsewhere we
discuss this very different metaphor for interface design (Hutchins, Hollan, & Norman, 1986). The
point here is that this is a novel form of representational system and one which we know very little
about.

One of the appeals of these new forms of representational systems are the parallels that exist between
them and the forms of representation we employ in perception. When one interacts with the world, the
world changes and those differences are reflected in our perception. Interactive interfaces provide a
similar form of behavior: we pick up, move, or otherwise modify some object, and the associated object
in the simulation world changes. As we discussed earlier, this form of representation allows us to
employ a number of very effective strategies and to do what we are particularly good at doing: detect-

* ing patterns, constructing mental models or simulations of the world that support causal reasoning, and
manipulating the world by actions on it or on representations of it. The ability to bring an increasing
portion of a dynamic world into the realm of the perceptually kniowable is surely one of the major
appeals of these new forms of interfaces. It is clear from our experiences developing Steamer that there
is much power from interfaces that provide a form of conceptual fidelity. By this we mean interfaces
that have characteristics similar to those normally attributed to people's mental models. These include
the depiction of state, topology, hierarchical embedding, and the ability to run the models to make pred-
ictions about the consequences of changes.

Another conclusion we have reached about graphical interfaces derives from their ability to serve as
filters of information. In most of the applications we have built there is an underlying simulation or
real-time system. The collection of graphical views that comprise an interface to an underlying system
can be conceived of as being a set of filters of information. The designer of a view filters information
by selecting what and how to display it. Of particular interest to us has been the ways filtering can be
employed to support the development of particular mental models. For example, a message-passing
abstraction of a system can be given a graphical instantiation and thus serve to highlight characteristics
not normally available and provide an effective way of thinking about the system. Often in Steamer we
have found it advantageous to filter quantitative information and present it qualitatively. One of the
very real problems in understanding dynamic systems like propulsion plants is their complexity. A
major step in the understanding of process is the isolation of meaningful units to think about and attend
to. Much of instruction and the development of expertise is dependent on isolating such units and

26 Hou-. . mH1s. mccAmiEss, itOSENSTmIN & wmrzmM.

developing a language that permits talking and reasoning about them. If one looks at the language an
expert uses in explaining or predicting a system's behavior, one often sees a restatement of quantitative
events in qualitative terms. The filtering of quantitative information into qualitative terms may be an
extremely effective means of supporting these types of qualitative explanations and of providing infor-
mation in forms that encourage development of the mental models needed in reasoning about physical
systems.

In order to build effective interfaces, better tools are required. A major portion of this chapter has
been devoted to descriptions of a set of tools we have built to aid in the implementation of interactive
graphical interfaces. The goals of our efforts have been to simplify the implementation of interfaces
and to make it possible for interface designers to operate at a higher level of abstraction than that nor-
mally provided. The object-based graphics editor allows a designer to operate at the level of graphical
objects which have been specifically designed for particular domains. It also provides the ability to
easily associate these iconic depictions with an underlying simulation or real-time system. The model
controller complements the graphics editor by providing an integrated set of facilities for controlling the
running of simulation models and interacting with views constructed with the editor. The icon editor
increases the generality of this simulation environment by allowing users to construct icons with
behaviors that are particularly tailored to the demands of new domains. It thus provides a mechanism
for extending the vocabulary of a graphical representational language. We have coupled these tools
with a series of knowledge-base editors to allow the incorporation of a wide variety of knowledge. The
behavior editor permits the specification of simulation knowledge within graphical icons themselves.

N The lesson editor makes it possible to build instructional interactions and to make views capable of
explaining themselves and their constituents. Designer brings graphical design knowledge to users of
the graphics editor. To further augment and support the development of this growing set of tools, a
general frame-based representational language and graphical interface to it are also available to the
interface designer.

All of these software tools have been implemented using the object-based programming techniques of
Flavors. There are a number of reasons that an object-oriented paradigm is particularly advantageous
for supporting the development of graphical interfaces to simulations and real-time systems. One pri-
mary reason is the natural mapping possible between the objects that a simulation models and their

JI. graphical representation in an interface. Conceptually this makes possible a natural way of dividing up
the simulation world as seen via a graphical interface. Also of principle importance are the relation-
ships that can be made between object-based representations and mental models. The fact that objects
store state information, are made of simpler parts, and communicate with and share information with
other objects are obvious parallels between the two. These relationships facilitate building interfaces
that have some of the characteristics normally attributed to peoples' mental models. In addition, they
provide a number of programming features which have proven to be of considerable value. These
include nice modularity, the ability to inherit instance variables and messages and thus to easily share
common structure and functionality, and ready extensibility by the addition of new messages.

ACKNOWLEDGMENTS

This work is being conducted as part of the research activities of the NPRDC-UCSD, Intelligent Sys-
* .~'tems Group in the Institute for Cognitive Science at the University of California, San Diego. It has

been supported by the Navy Personnel Research and Development Center as part of an Office of Naval
Technology's Program on Future Technologies for Training. Support has also been provided by con-
tract N00014-85-C-0133, NR 667-541 with the Personnel and Training Research Programs of the Office
of Naval Research.

We would like to express our appreciation to David Owen for commenting on a draft of this chapter
and to Kathy Farrelly and Barbara Morris for editorial assistance. The opinions expressed in this paper
are those of the authors and do not necessarily reflect the views of any government agency.

a.7

oawwcLI NrACES 27

REFERENCES

Hollan, J. D., Hutchins, E. L., & Weitzman, L. (1984). Steamer: An interactive inspectable
simulation-based training system. Al Magazine, 5 (2), 15-27.

Hutchins, E. L, Hollan, J. D., & Norman, D. A. (1986). Direct manipulation interfaces. In D. A. Nor-
man & S. Draper (Eds.), User centered system design: New perspectives on human-computer
interaction. Hillsdale, NJ: Lawrence Erlbaum Associates.

Rumelhart, D. E., Smolensky, P., McClelland, J. L., & Hinton, G. E. (1986). Schemata and sequential
thought processes in PDP models. In J. L. McClelland, D. E. Rumelhart, & the PDP Research
Group, Parallel distributed processing: Explorations in the microstructure of cognition. Vol. 2:
Psychological and biological models. Cambridge, MA: MIT Press/Bradford Books.

Shneiderman, B. (1982). The future of interactive systems and the emergence of direct manipulation.
Behavior and Information Technology, 1, 237-256.

.

%w

.,. "

[I.

r %-%

ICS Technical Report List

The following is a list of publications by people in the Institute for Cognitive Science. For reprints,
write or call:

Institute for Cognitive Science, C-015
University of California, San Diego
La Jolla, CA 92093
(619) 452.6771

8301. David Zipser. The Representation of Location. May 1983.

8302. Jeffrey Elman and Jay McClelland. Speech Perception as a Cognitive Process: The Interactive
Activation Model. April 1983. Also published in N. Lass (Ed.), Speech and language: Volume
10, New York: Academic Press, 1983.

8303. Ron Williams. Unit Activation Rules for Cognitive Networks. November 1983.

8304. David Zipser. The Representation of Maps. November 1983.

8305. The HMI Project. User Centered System Design: Part I, Papers for the CHI '83 Conference
on Human Factors in Computer Systems. November 1983. Also published in A. Janda (Ed.),
Proceedings of the CHI '83 Conference on Human Factors in Computing Systems. New York:
ACM, 1983.

8306. Paul Smolensky. Harmony Theory: A Mathematical Framework for Stochastic Parallel Pro-
cessing. December 1983. Also published in Proceedings of the National Conference on Artifi-
cial Intelligence, AAAI-83, Washington DC, 1983.

8401. Stephen W. Draper and Donald A. Norman. Software Engineering for User Interfaces. January
1984. Also published in Proceedings of the Seventh International Conference on Software
Engineering, Orlando, FL, 1984.

8402. The UCSD HMI Project. User Centered System Design: Part 1I, Collected Papers. March
1984. Also published individually as follows: Norman, D.A. (1984), Stages and levels in
human-machine interaction, International Journal of Man-Machine Studies, 21, 365-375;
Draper, S.W., The nature of expertise in UNIX; Owen, D., Users in the real world; O'Malley,
C., Draper, S.W., & Riley, M., Constructive interaction: A method for studying user-computer-
user interaction; Smolensky, P., Monty, M.L., & Conway, E., Formalizing task descriptions for
command specification and documentation; Bannon, LJ., & O'Malley, C., Problems in evalua-
tion of human-computer interfaces: A case study; Riley, M., & O'Malley, C., Planning nets: A
framework for analyzing user-computer interactions; all published in B. Shackel (Ed.),
INTERACT '84, First Conference on Human-Computer Interaction, Amsterdam: North-Holland,

1984; Norman, D.A., & Draper, S.W., Software engineering for user interfaces, Proceedings of
the Seventh International Conference on Software Engineering. Orlando, FL, 1984.

8403. Steven L. Greenspan and Eric M. Segal. Reference Comprehension. A Topic-Comment Analysis
of Sentence-Picture Verification. April 1984. Also published in Cognitive Psychology, 16,
556-606, 1984.

8404. Paul Smolensky and Mary S. Riley. Harmony Theory: Problem Solving, Parallel Cognitive
Models, and Thermal Physics. April 1984. The first two papers are published in Proceedings of
the Sixth Annual Meeting of the Cognitive Science Society, Boulder, CO, 1984.

8405. David Zipser. A Computational Model of Hippocampus Place-Fields. April 1984.

8406. Michael C. Mozer. Inductive Information Retrieval Using Parallel Distributed Computation.
May 1984.

8407. David E. Rumelhart and David Zipser. Feature Discovery by Competitive Learning. July 1984.
Also published in Cognitive Science, 9, 75-112, 1985.

8408. David Zipser. A Theoretical Model of Hippocampal Learning During Classical Conditioning.
December 1984.

8501. Ronald J. Williams. Feature Discovery Through Error-Correction Learning. May 1985.

8502. Ronald J. Williams. Inference of Spatial Relations by Self-Organizing Networks. May 1985.

8503. Edwin L. Hutchins, James D. Hollan, and Donald A. Norman. Direct Manipulation Interfaces.
May 1985. Also published in D. A. Norman & S. W. Draper (Eds.), User Centered System
Design: New Perspectives on Human-Computer Interaction, 1986, Hillsdale, NJ: Erlbaum.

8504. Mary S. Riley. User Understanding. May 1985. Also published in D. A. Norman & S. W.
Draper (Eds.), User Centered System Design: New Perspectives on Human-Computer Interaction,
1986, Hillsdale, NJ: Erlbaum.

8505. Liam J. Bannon. Extending the Design Boundaries of Human-Computer Interaction. May 1985.

8506. David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning Internal Represen-
tations by Error Propagation. September 1985. Also published in D. E. Rumeihart, J. L.
McClelland, & the PDP Research Group, Parallel Distributed Processing: Explorations in the
Microstructure of Cognition: Vol. 1. Foundations, 1986, Cambridge, MA: Bradford Books/MIT

*Press.

8507. David E. Rumelhart and James L. McClelland. On Learning the Past Tense of English Verbs.
October 1985. Also published in J. L. McClelland, D. E. Rumelhart, & the PDP Research

- Group, Parallel Distributed Processing: Explorations in the Microstructure of Cognition.: Vol. 2.
Psychological and Biological Models, 1986, Cambridge, MA: MIT Press/Bradford Books.

8601. David Navon and Jeff Miller. The Role of Outcome Conflict in Dual-Task Interference. January
1986.

8602. David E. Rumelhart and James L. McClelland. PDP Models and General Issues in Cognitive
Science. April 1986. Also published in D. E. Rumelhart, J. L. McClelland, & the PDP
Research Group, Parallel Distributed Processing: Explorations in the Microstructure of Cogni-
tion. Vol. 1: Foundations, 1986, Cambridge, MA: MIT Press/Bradford Books.

8603. James D. Hollan, Edwin L. Hutchins, Timothy P. McCandless, Mark Rosenstein, and Louis
Weitzman. Graphical Interfaces for Simulation. May 1986. To be published in W. B. Rouse
(Ed.), Advances in Man-Machine Systems (Vol. 3). Greenwich, CT: Jai Press.

N.'

.%

Nom % 2

4

4,

4

4m

Earlier Reports by People in the Cognitive Science Lab

The following is a list of publications by people in the Cognitive Science Lab and the Institute for
Cognitive Science. For reprints, write or call:

Institute for Cognitive Science, C-015
University of California, San Diego
La Jolla, CA 92093
(619) 452-6771

ONR-8001. Donald R. Gentner, Jonathan Grudin, and Eileen Conway. Finger Movements in
Transcription Typing. May 1980.

ONR-8002. James L. McClelland and David E. Rumelhart. An Interactive Activation Model of the
Effect of Context in Perception: Part L. May 1980. Also published in Psychological
Review, 88.5, pp. 375-401, 1981.

ONR-8003. David E. Rumelhart and James L. McClelland. An Interactive Activation Model of the
Effect of Context in Perception: Part I1. July 1980. Also published in Psychological
Review, 89, 1, pp. 60-94, 1982.

ONR-8004. Donald A. Norman. Errors in Human Performance. August 1980.
ONR-8005. David E. Rumelhart and Donald A. Norman. Analogical Processes in Learning.

September 1980. Also published in J. R. Anderson (Ed.), Cognitive skills and their
acquisition. Hillsdale, NJ: Erlbaum, 1981.

ONR-8006. Donald A. Norman and Tim Shallice. Attention to Action: Willed and Automatic

Control of Behavior. December 1980.
ONR-8101. David E. Rumelhart. Understanding Understanding. January 1981.
ONR-8102. David E. Rumelhart and Donald A. Norman. Simulating a Skilled Typist: A Study of

Skilled Cognitive-Motor Performance. May 1981. Also published in Cognitive Science,
6, pp. 1-36, 1982.

ONR-8103. Donald R. Gentner. Skilled Finger Movements in Typing. July 1981.
ONR-8104. Michael I. Jordan. The Timing of Endpoints in Movement. November 1981.
ONR-8105. Gary Perlman. Two Papers in Cognitive Engineering: The Design of an Interface to a

Programming System and MENUNIX: A Menu-Based Interface to UNIX (User Manual).
November 1981. Also published in Proceedings of the 1982 USENIX Conference, San
Diego, CA, 1982.

ONR-8106. Donald A. Norman and Diane Fisher. Why Alphabetic Keyboards Are Not Easy to Use:
Keyboard Layout Doesn't Much Matter. November 1981. Also published in Human
Factors, 24, pp. 509-515, 1982.

ONR-8107. Donald R. Gentner. Evidence Against a Central Control Model of Timing in Typing.
December 1981. Also published in Journal of Experimental Psychology: Human
Perception and Performance, 8, pp. 793-810, 1982.

Op'4*4.11 11.P
1

NOI I

ONR-8201. Jonathan T. Grudin and Serge Larochelle. Digraph Frequency Effects in Skilled
Typing. February 1982.

ONR-8202. Jonathan T. Grudin. Central Control of Timing in Skilled Typing. February 1982.
ONR-8203. Amy Geoffroy and Donald A. Norman. Ease of Tapping the Fingers in a Sequence

Depends on the Mental Encoding. March 1982.
ONR-8204. LNR Research Group. Studies of Typing from the LNR Research Group: The role of

context, differences in skill level, errors, hand movements, and a computer simulation.
May 1982. Also published in W. E. Cooper (Ed.), Cognitive aspects of skilled
typewriting. New York: Springer-Verlag, 1983.

ONR-8205. Donald A. Norman. Five Papers on Human-Machine Interaction. May 1982. Also
published individually as follows: Some observations on mental models, in D. Gentner
and A. Stevens (Eds.), Mental models, Hillsdale, NJ: Erlbaum, 1983; A psychologist
views human processing: Human errors and other phenomena suggest processing
mechanisms, in Proceedings of the International Joint Conference on Artificial
Intelligence, Vancouver, 1981; Steps toward a cognitive engineering: Design rules based
on analyses of human error, in Proceedings of the Conference on Human Factors in
Computer Systems, Gaithersburg, MD, 1982; The trouble with UNIX, in Datamation,
27.12, November 1981, pp. 139-150; The trouble with networe.,, in Datamation, January
1982, pp. 188-192.

ONR-8206. Naomi Miyake. Constructive Interaction. June 1982.
ONR-8207. Donald R. Genmer. The Development of Typewriting Skill. September 1982. Also

published as Acquisition of typewriting skill, in Acta Psychologica, 54, pp. 233-248,
1983.

ONR-8208. Gary Perlman. Natural Artificial Languages: Low-Level Processes. December 1982.
Also published in The International Journal of Man-Machine Studies, 20, pp. 373-419,
1984.

ONR-8301. Michael C. Mozer. Letter Migration in Word Perception. April 1983. Also published in
Journal of Experimental Psychology: Human Perception and Performance, 9, 4, pp. 531-
546, 1983.

ONR-8302. David E. Rumelhart and Donald A. Norman. Representation in Memory. June 1983. To
appear in R. C. Atkinson, G. Lindzey, & R. D. Luce (Eds.), Handbook of experimental
psychology. New York: Wiley (in press).

'p%

ONR DISTRIBUTION LIST

0 OW 0
0, 44 1 0 1, w In

I: 0 040 N*
c u4.

4v .4 H o0 I m4
40 0 N*9 0 0

o 41. r 44 .) 0 US V, M44 N
o 0 0 I c u: 2 2o 2o oN 0

.0 0 6-3 0 N. CLA N . - .91 a
04 In In N: U' o. o 0 t04 N CIn.U .4 00 4)94 a 4 t C67 '4 NW a

o1 002

CW W o

00 0
t, , 4

C) 0

14 0 M. C.v

C 14 4) 0 U.

.4) V) e) Nv . 1 0
0 1-.4 >IN 40 W .4 4 4) 4) 440.

0CC0 0 C 0. .4 0 4)oC0 4 OUN0 0) 7 c 1010 04 N aC'. .. 4 uc uN
'4

£N c 0w O
r40. u .C. .4.:

0 CC 0 9> 0 u-0 C I 470 I 4 .0 0 2)CU

n 0 c9 0CC E04 0, 044 4)W 4)1 14
o4 . M 014 C 014 CO C.0 o... 'a*8- moc .41440 (1 v0Ur 4 ;.

4) w 0 00 a0 C4)64 .1 0 N V 14.141 00

01 ,. M S 1. 48Wo t u w w -41 m 4)4 0 00 - 0 0In 0 0C0 14.40)0 4) z4 6140 A)41

0140 14 0144 4. 4144.414 0 0 00C NX4 00)444 C.0% 4 0) I '74149
9101 4)41)0 0) 4~) O rO 40 00, c .0. 41

14)404 16614) N644 HN 4414 N t-0. LI4N) 0 864 N

00r). 0 00~. ~~ 2 0 0 0 IC 0 0 7 0 . 2 4 0 .

c 0.

1. 1 rI* r 1
a)' . - ,

t, 14,4) 01

, 44W1 0 0 c 0* 041 0N

- 1Cm 06- 0> 4)0 0"7 0400 4)10 o .4 -1-2 . C
W 14 N) 100 0 9 0 JO 0.4) c . C. 90N .40 - 4.

0C 014 4) 4 c.44 o-IN 400. I a) 04 m0 001) 300 .m% 0
*644 14 m 6104) 0 0.. =) .. 4)4 9o NW *404. 0c

C q O 040 lu doo 0>1 Nc0 0 4..H0 .p r 040 .461 C4).00 4C00
04 0, @4 4)w14>14 CC 0 0 N 0 o.
c%) 4.24 04 0 0 . 0 w..

4) -0 00o4.40 . 00. 0 44). 4) *0 * ' 04W4Z

0.0 -0. 41 4) In .41 44)41 z) .7 c m4)w

-t4 .- 004 A 09 0~0 A0 W4.) aC 0.4 u.401 w u... 41.,

* % H.47 40 '42 0 4.40W aD0= 0m 4 0 o I- 0H 0 0 a0 DO 00.440 0020

00

-' 1 1 0 >1 At

0V) 0 04 614> .
m ol m wN 0 e .4) 61

0 4 NU 0m 6- 00

41 a 0 4 47 044 9 M .-4 N 0 2 IN?19 C,4 r N UN4
0 .4 040)4 0 c1 4) £

* 0, 14 .4 N6

91 . . ue c N 0 r4C n(~ 0. 00
.414 00m.4 C 4 61 0 1
W 0-40 *0 *D 44

619 4 4 -. 4H. C. C.

.0% '3 1. 1400 NA2 1AC 001470

rr

00

'a' -2 A4

N o 0 1 o8 6

-I 064. C0i4 A404

.0 44.40 ' 6(. v 1. ~ P48 N a4%. C' 4

4'. -4 '6. 4 o0 0 0 - 44. r 4.J .(4
x44 U ~ 06 >4 .00 '--4 00 v~

m
%1

o4 644 a 044 o 4o C 02, o.
0. 1 It),4 "coo w~ mc 6464 mq CU '4 co t

4 . p0 a 4. '-0u4I r. x1 v14 f
4 f~i

O 6-04U 40. 4 o c 4'f No u4 C. 6 4 .20 0 . .6vA 6 .8 o SCO U cr *m46 4 m 0 U- N)4 44.44
440.4.4~~~e 04=. 40. m.- 004 (80. i.04 4j .04

o o 4
c o0 4

> 44 U v

N4 4 mI

o -6 c' I4 R0o l0

- 0 64 104 44 64 > 0c0' a4 44 40oc
w ' ' .4 0 .. 00 c! a4 640 op a4 A440' $)

a, A wv 4 x 8Q N v44(.4 C 0 44

6,1 40 11144 u Nf NI
40.4 U a 1444

4160. 34, (. 084 U '043. - 4o 443. 4 >644 46440 "44 04M4 '0. 0 .1 0 00. 604 U' Jo4. 444- 0660 4 u 40.0 166. 8
a,46 4o 846 =c a44 a' 'N4 0 4

jUO>44 IZ"4 '44Q .040.4 44 ~ 04.4 0 4'4444~44664 1044 . U
J~~~ ~~~~~~~~~ m 44 64 ~~'- 0 666 1~5~ 44 U 44"

u0 .14 e:0. '0 06 0 a w11
m4w4v.4 o4 0 44 NC v.

wU6 o u N I ". w 0 t N s.. 6 o o 4 4)1i NU1

c4 Uj4 coI A .

44
0

z c4 H4 0 4

o -n o a
a4 .4 0 0 U $4oc

4~ 04 0.
.4 Sc 4m 0 .00 6u4

C; N 04 4 4 4 4
W4 14 W 0 0.0 pc4 0u u4 .4 4 4

o 02 00 644 u0 m4 44 0wuu Q4-

8.64 64 44 40 44 4 4. 0444 0 '4 N 0 4
z 4 4 6UCj 46 4 4 4 4 4 0.0 4"

% 4b 04 . 4 . 4 4 64 4 .. 0) o'

$4. 4 S 0A AE4 N N44N 4N 6 40 0 .. >0 .6
64 U4 U 44.1 C 4 N 004 0 4 0. N 44 N U.44.4 CU-

0 ~ ~~ ~~~~~~ 6 00o444 00 10 NJ 0 .04

So .0.44 c 0=0 ONo eN 4 .1 l, oe.4 r 00 * .4 044.

C ~~~C'C. 4'. o 6C u 0~4 003 u46.. 860. 0040"
.4 -4 .. 4U (4. 644 . 0_ 4 o). .o 0 1.4. u C 64.4o

cc -4 >4 4

6A 44 ': 4 go 64 0m u
.41 1 C .44 64 (80 -o .0 o4 0 0 m.0

N"0 -644 4 _c0 U r .8 0 U' 0
r 4 ' 44 0 0 C NN 0 >4 0 44 -. 4

0 ~ ~~~ 0Q o4 04. 0 -c4644 A 4 0 . 4'. 4 6 a. 646 U 44 0. 446 -"Q 4 3

LVOVr W r

ONR DISTRIB3UTION LIST

P.C

040

0 0' 0 .0
0 10 -

44. 0 - 0 .4
0- 0 0 0 C 4- N

0 C. A. 0 0 C0 0

00 N N 40

0 0 0 CC 40 0Ic X v)t
1) 4 .0 a,

0 .4 0 .0 C - 0 4 1 1 0 ~0 0 N 0 6,
w .y, 0o IV) (0 0 00 4 >1 C4 N010. v .4
0 C, I co 44440 w.40 4)44 0, 04 0

C O>N. w00- CO 0 0 w 0 40 0 0 in 0*. b4 a 1 , 4,
4'> 00 C 0 0 04 44 00 0.4 4 '~ 0 @

0 0 0 4.0. 04'.~4' . w A I 0 4 '0N
0, 0 N C0 04' C w4 I04' 040 .4 O

3"';.Nt 0440'-.- NaO .40 Z-4 0m SH. 001-0 -1

WC '. > . ~ 0 0 0- 4.

r 100 0) zo40 0044 2~~ 00.0 0

0>0 m 0 1w1I m0.0 " 40r

'a u
C No >1u W uC uw 0 I 0
0 *4 = 0 4 C 0 NU 1 .

4' cc .0 t ,4 -c 0(0
0 '0 0 0 004 40 0 0

0.6 u~ 0-' 0 0 0 0u
NO ON 0 0.0 NN4 N A'' . 0'w

C ~ ~~ 0J C44 a DO l.. 0 0 0
ZO >0 44 O I 000 0 >C. 0) A4 4 A4 0

C 0 4.4C ~ 0> 0 .'4 40 >O44 C-00 0 0 04000 4
0 >4)> 0.0 >4 >0 0 t 40 .- 4 NaM' W 41 40 OF M to o 0 >O 0

.0o 00 004 0 - 40 o 4 CO 44 . 0 '4C 00
C .o O0 >444. 4 .~0 0 0 0 U N -w044 0 0

N 0 00 0) 004 L. 0 0)C. 0 0t c4 0 00

0 0.2 0.4. 0-4 -4004 c444 '4 0000 0
-. 0 0 U 40 . 4 04 00 u.444 O NC r.

0 ~ ~~~~~ uE40. N4' r404 -. aOC :D>. Nc(0 00 >

04404 ON~-~ .00 400 0NOO 000 4-.0O 0 >1 00 00.

440004-4~ ~~~~~ 00 C 0 4 4440. O4 40' 410 >0

>,00. NC,
4 4

440 wN:, N C 04 N 0.0 N O 00-i N 04 4

C0 m c o
m 0I 4' 0 0A2

A4 .04 D.0> C4 0

04 oN N01 0c ' oo .O 0

40 404 42 00. 10 -40
0 0 0 .0 V 4 4 0 NO

0.0 04 40 40 CN x. u 0.0) 0 00 40 1Zt
*.0>44'N~ ~ i' 4 04. 4 0 N 44 0 0 0 444 4 -. 0 -. 0

-. 0 C In0 0 .440 O.4 - 0 0 '.4 -0~.0 0 ,

N N.. 40 0 0 w*

00 0*' . >4 00 0 N No
0 9) .40 04' 0CC o~ Io'C '0 40 0... 4> C

141 a o 1 >, (1 4 0-4 0 C . v Il VN EC.4 0.4 1.0 14
v. 4 0 0I)4 In'00 U4.~ .

a. u.04r'w'.4 04G 6 03 440 0 0 C
C .4004' .

- ~ ~ ~ ~ ~ ~ ~ ~ W -0.0- C44 000 A4 ;0. . . . '40 - .0 .. CO 04 1.
Is 0'0 4 000 0210 01.. 4)(1 '0 gr z0 r40. 00. n4 '40 0 0

00

4' a N 6

m m a4 104www
C) 0m NC ON 0a N A.0

v) 4' w u. a N 44 D a 0 500aIo-

0 ~ ~ ~ ~ ~ ~ ~ ~ lA 0 .0 0 00 004 (0 4C4
.44 . 4 0 0 *C'0 0 4 4 04

4', 0400 .0 N 044 0440 444

OINR DISTRIBUTION LIST

41 00 v

N0)4 -.4.u-) 2 .4
0)l v w4 O0 0

W- 0 I' . I. 0)0)0 0N, 44 0 00 c) c

4 0) a4 '.@ N u0 c4 .
0 0 :0 > 0 0 000 0 9- r44l. WOO. 0 c

oo 0 0. NO 0 0)4W' w4 g4O .4 6, t40. 0 " 1 l N

r w 100w I.'s40 00 0 Ov

00 9 00 t7'. 4-~ 944

>,g .4.4 0Co 0 0) Z 000o 0f .04 40 ~ ~ 400 N
u c94 40 0 9-, .. O 4o4 v06 -00 a 0444 44444 V)4 00

-- -00 .0W t4 .444 I09 -0 0 00w 00 4 w 0. 0 4 40
4 m u.- 060- NO 0 l 0oWwM 0 1. -0 4) . 0 0 b,4 44 -44@.

04.0 00 ON A00 0c04 40 4 0 310

0)442 1.4. 0.Z 0 2. 0 404. 00) D0 00 D 000 0 so 24

04x a a 6 0 t0

z

00

4, 0 @

00

44 @0 212 .w

0 .r .4. 0 92 0 m4

.0 m 4-u 0 .0 C: z0 0 0 In
I. z. 3: 04 0 vC 00) C:.4N44u

0 .u U ~ 0 10c

10.04 .. - 04 00 40240 u44 -O 44 60
44 0 N4 '0 0 4 Q4444 0 4) 0 4 0 O.

a4 . Wt- 4 44 0 4 N 0 04 4) @04

44' 0 vw v119
V0 0j 4 (4 Or N1 .4.0 00 . C 24 N . 0' 0 .40 - 01

ivl A-..4 N l0 U w w~04 060 4 0N) Ot 1:.40 04 01 w I ~ *

611 1 4 -I 04 -0- ON 0 9 - it- ON ; 04,
W40 .0 40 - 0404 44 0

wI .4> G a N 2 zl2) aa m .0 r w) . 4 z44 9 0 0. 4 a 49- ll a ' .4 0. l- .4 ' A a - u. W O

o4 0- .9'.
W0.0 40 O NO 464. 46 04 O 0 OO0 .4)4o.0

*~ 00400 a04) 0 aZ0J0. 0 .2 0.) 04 004 22 .Z

I .4 44)

I 0 44 ;N~~~1 0 o 4 44 0. -

"4 E - 0. N t - 1 .4, ,.

X w- 444 v m4.4 .40
u- 0H I0443. w 6 m" o o

0 m.) v4 4l) 44 ON 40 c4 4' CON

- o0 ON, N(040 N. 04 .44 N.) 04 9

.4 WOO).. 1044 -m 44e OWr4 v.0 o06 c4 -. 'n44. 030)- rI) 0) 1) 9 kO44 044lo444
n 049 .0 440 o 04>4420.

44~ ~ aS o) =4444 I C -- 0.40 r 4U 0004 ~ .0.
0v40 4.44 49 4

I 0c 2- W4O0 I4044 I0-0 'm 504N a '04z u 0? 94- In4. r4004 u a31 ,

o'-4' -) 4 -440 443 . 40 2 444

a* .0~ . N 4.0N 4.04 . 444
ro 04 9-WN4 a444. o400 4 404 04 '04 4W- N .04

4.w v)0 4 0 .4 0 9. O 0 . O 4@444 IW
N~ ~~~~~~~ c4444 WOo D,4 m4 0 -04 9- -4. 0

44. 00.9-ogN. 90 N '"44(4 M 144 w m. W40-4 W0 W 400.0 W44

* '. 0~~w) " o0 N 4 2 4) 0No ' 0 0N0 v 0 0.0 0
4 1. cN; wN u cc -w

go -04 .ra v 6

a. a a04a C
44 u.4. 0Lo c4 14 r 6 0

.n O n D 0 '0

ONR DISTRIBUTION LIST

r

00

w 0

- 0 0
444 4Z 00 14 u0 0 0

.0 0 0 0 A w

wo r V0 w0w0 0 0 I.4 A 44 c404 at- O. . I4 i 2 . 4 2~
'-1.0 0 04 C'4 C.44 e"4 4 "

o.40 0044 H U)4* N.4- 44 'n C,4 4 0

~ .~ 0 N 00i N u1N ~ [0 [1 N
cc :NN .4~. sJ; 0J 4444 4~~~~.4 041 .0 rN .ON .4 ON .4 4 ON09

mco t,4 - U -C CL W 0 C 44 C,44 C3

1 04.4 404.41 04 aI C 4 C 0 0 0 0 p04 0 0 0 0
149 004 40 .0 '.444 0 414 Ch. 44 4 4l .4 4

w 00 0u4 0 04 4 040c

-4 '".00. 0 0"44 a 4 '00-4 w 0 .4 a404 4 .- 4 0 44 0-4 44 a~

0000 ~ ~ ~ ~ i o4 '.~4a 0~0 0~ 0 a4 0 w4 ~ 4

0

0 -ia

O~ 01 4.
044 U 0

41. r4 t 0 m 0

04 0 w 044 w4
V0 04 r 0D0 4454

v4 0 0 m 41M0 4-00. 0 , w.44 0-n 0 14

.0 4(0m 6Nz WS " .00 N C 04 1 0 4 04 C0
41 0) 4V lA (

44 4 0 4-41 0 04 14 00 0 4~ 4 -A W. 04"1

"4 00 3440 .0 1) A z4 c' 000 0. 0s 4''."4 - J C . k
"41 t24 0- a..4- a 4

-z- - -. 4)

'0

04 0

c 0 444
w 0i r 5uw40A I

44 go0 44 .'4 u v14 0 '
mI 00 04-I c0 0M .010 01r4 . n. c5. 4 0

441 "4 140 0 N 0' 04 c

V0'0/ N 0r u 0 0 l.04 04 ' 04 I 44 0 " 4 ' .

z0 W I r 4 14 040 &J 1 4) N40 444 I6.' 0 4 a 44 0 411 X0 44
V. 1. . 0 0 .-4 I4 a40 0 0 0 0444 0 0 O 0 0 m 0

t4 ~ 404 - 41 N N :N w 0 r :0 m' N w0-..' 0. 1444 II N 044

A0 a 40 "4V 00,0 0"4 0
0~~~ r4"4 . 0 24 0 U 04o 0 0.4 uC 0 0 0

44' 00 .4 04 0c 44 id'4 C4 . 0 C0 6j >
14440 04 040 40 44 * 4 0 . 4lk.4 * 4

4440 4 " n ~.4 Uc m " 0 C1 00 0 c0 44 ,'~4 Z 44I0
14 '1 V~ vi00 0 04. 40

mm u 34044

9. 0

00 01

40 4 44

* o P) x 0 "40n

0004 4 '0 '0 IS '14 e0 04 a

0 40 0 4 '" 0 N N4A 0 IA0
III' 0 '4~ C 0 0 A 0 4 4 A , all, 0 f4 * -4.'Ir "4A00 44 M V4 .0104

01 0 0'
a 0 -N 4 0004Au 0 - 0O A4444 44W4 N7.04~4

1 .0- "4 4 0 40140a.v4 0 c 14 2 9) ,' g.0"
44 0040 r.1 0 040 ' w444', 44 4440 ~0 AC 01

'~~~2.~1 ,44 " 0I0* 0 . 1 4~~~
040 0 40.0 0 400. 14 ~41 All0'~

04.4 1064 0 m 44 .g . , .'' '44.

zw 0 0 - CH O '440 6 g a0 Mm4 §04 '44. 0

14;S0 40 1 '00 0 1 NO 1 0 1441r

ONR DISTRIBUTION LIST

100

i2.a

. wo 1 w4 U.
0 c vn 0 4, 6

F. W 0 1 w- 'ON01. .0 0 11

IDu 0.1 01* 0140.2

20 -0 - 4..0 -6

COR~~~ ~ ~ ~ Mu 0 l: "D B.-,-* , n:

0 0 ~ ~ '44 8444. ~ 41 '
z4.-0I 4.20 *4 ~ 1

a29O ~ 21I 1 - N . , 2 02 .990 60 N 1 0.

0 210~ ~ *'09 0 9.2 2/ 0 0. 10 9 0 94

0 . 0 C600 a.- 1.4
CM 06 1 '4C9 0 14W . 1.. 202 U4.90

F0140.%4 0 .4
V4 001 0,-I 14101 10, 40 2 0, k

N 6N w4 m1

go, >,t VP o .. " 1
00 A21 -0'c 00

O $ 4 092 .4 92/ 4 U- W 0. W 4 X w a0c

a NOml 0 0 0& 14 30 920o 4,.- C 9/4 0-9 2 QO-Na 1 A

o z 1 0 21 . 9111/n O. 0.2 F 9/N 4
In42 - 0- - 1 - 40042 2 90 04 40 2 10 4 O

0042/ . 4 4 1 O 92, 200 g 4 021
04,449.2 4,-2 1.4 0 0 F

924260 .14 C 0.0 14~E

00.~ 0. 0 0 m4 0q Ad-211. c 4~ N

A11 V4.29 4241 4

64 . 692 .1. 0

0414 00 14 : 10 z140
1400144~ ~~~~~ 0.041901~ 40 /1

u 0 a .1
Q f 0,0 04 003 Do '43 . -C20 21/1Z a2.

0

In 0 1.
A~ w .0 0 0 14

.01 444 At92 ., C
- F. 02 0N 0 01 m4 a19 u N

i0 91 - 0 0
0j 141 14 0144 -

.j .1 01 C 2-M20 .1 1 8 1
0201 NO 02 M0 CO- 0 0 00 4-4 42
0-2 09 *.0 14 n4 N4 In0 D .61 04 -"00.42 0 0 0g -, 14 N 1121 44

* - - 14 . 1.0 01. A.21 .4 04 1 In Z 4 T 24 1.I C.
92 * 9.140 0 092V00 C ," 0 '4 0Co- 'I . C 9 . 9F

211 .5~1. ~ .. I 0 92 O 0 .F 0.1 ai4 0 6. 4,44
14 .4 0 1. 0 241 02 . . E 2 .
0 U 92 0.g F.~ 0.0 k1 " 0 0 4 0 F. .9 0.20 0 14 - 20

0 4 0. 1 N0 . a:44 . . 4. 3 0 . 2 1. 02 . 1 J 0 .
oo .0 1.0 2~.004 144 8 6; 2 a .. OX 4 4 60 01

1422 0 ~ 692 4100.4. .4%

ONR DISTRIBUTION LIST

r 10
0o 4)0

E4 -4 C v r .4 - - 4 N v0

Z1 0 .

a,. v 04 0 4'!

1.3 i14 a4 u. a.. Ow 0. 0441
* 0,44.0. m 2 ~ g g v r *-40 4 i 0 0 a - *-

In 004400 0 0w 4

0-~

4.4

4.4 o4 .4 .000

00 4 4 44 .

0~ 044 4lM .4 NN 1

U.u N..4 4 c4 .0:N >. 41 1 0 144 c4'O 0
U4.4.4 0~ U4- m 0u H , 0 .4 04) * 4.

ru a 9 0 .4

.4. .44 .4 0 - H 1 240' w a4 4. On 1 .0 we.
1*4 0 31 41.' a14 0 N)

Nwh W bgo-I 4 V c ". 4. v0 w4IC @4-4 In1. .4w

0.0 41 z- c01 w4~ 14 04u11 2 0
4 1 8

0.

.4-4 0 n 0 j44. 0004 1

414 4. 0 c ' 41' 0 =

0 14 0- 2 W 14 40 .4 0 0 .4 r142 0a 41

- 41

414 . .
.

X 0 .4 1

A > r - 14 0 0, a, NO 411

'41N 0 o41'

-~ ~ 00 144 .
410 14 U) 414

IL
1

.0 0 1'A~41 0 N 0. $4 0. -4 0- t %. .0

'41 41 u O004
-44 41

-4.-0 0 0 -49.40m 0. 14
- c4 10 0 9.

D. 0~ 00 0041 01

-V.. 0
z

u

-0 04

0 1100".14c N '4.3 V4.V. N
0~~ v1 N40

.4 ~ ~ ~ ~ ~ W mw4 00 0.. 4944. 401'

to 21 -.4 'N . 0
,a- . 4 A 41. 0. .. 4 0)I A. 1

P4 N .404 u 0010Jl4 K 4 ~ .4

0- 4140 4j

.60
41.11

-V g*'- #A a V) c aW W

ONR DISTRIBUTION LIST

)0

'AA

.4n 0

" I - 14.

4 .3 a

av 14 .1 r
aS 0 .. v44 .4

A . vo 0 a' a '0" u

V aN
M.4~ .~4.4 A

14 4.41 w cca44w. .

Be U" go0 0 A.4. .4 s.4

4.,

S....--

L

3~2

