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Ti: Initial observation time.

Tf: Final observation time.

MMSE and LMMSE: Unconstrained minimum mean square error and linear minimum

mean square error, respectively. Here these terms can be

used interchangeably because the processes are Gaussian.

Subscript n: Noncausal estimate or system.

Causal estimate or system.

Subscript c:

ML: Maximum likelihood

Vector or matrix transposition.

T (superscript):

Tr{’*: Trace of matrix argument.

RS

|g|2: Squared Euclidean norm, IQI2 = QTQ.

§(t): Dirac delta function.

Gij: Kronecker delta function.

SGN(K}: Algebraic sign function. SGN(R) = 1 for A > 0, :

SGN(R) = -1 for A < O.

= v

Random or unknown variables are denoted by lower case letters. Given

or assumed values of random or unknown variables are denoted by upper case

letters.
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MAXIMUM-LIKELIHOOD ESTIMATION
OF TIME-VARYING DELAY

1. INTRODUCTION

In their <classic paper, "The Generalized Correlation Method for
Estimation of Time Delay.“] Knapp and Carter presented the solution to the
probiem of maximum-likelihood (ML) estimation of constant delay, do'

between signals received at two spatially separated sensors in the presence

of uncorrelated noise. The received waveforms were modeled mathematically as

ra(t)

rp(t)

s(t) + na(t), -wo<t <+a, (1-1a)

s(t - dg) + np(t), -wo <t <+, (1-1b)

where @ was a relative attenuation constant and s(t), na(t), and nb(t)
were uncorrelated, stationary Gaussian random processes. Knapp and
Carter] showed that the ML estimator of do can be realized by a pair of
prefilters followed by a crosscorrelator. Their solution is identical to

that proposed by Hannon and Thomsonz’3

whose motivation for estimating
delay was to improve estimates of the spectra, cross spectra, and coherence
of stationary time series. Here we present a major generalization of these
preceding analyses that includes (1) arbitrary time-varying delay, d(t);

(2) nonstationary random signal process; and (3) arbitrary observation

interval.

Previous attempts to extend the theoretical solution described in

references 1, 2, and 3 have been relatively limited in scope. Assuming a
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stationary signal process and an infinite observation interval, Knapp and
Carter4 obtained an approximate ML estimator of both differential delay
and Ooppler for a source whose relative velocity is much less than the
signal propagation velocity. Here the estimator structure included a
time-compander following one of the two prefilters before crosscorrelation
to compensate for the Doppler time scaling of the waveform. wax5
generalized the analysis to include differential phase. Several other

zauthor'sf"9

have described the degradation in compensated and uncompensated
crosscorrelator outputs due to motion of the source. Beyond these
relatively limited theoretica) studies, there has been both a need for and a
continuing effort to develop practical algorithms that estimate time-varying

delay more gener‘a]]y.m-16

The new and general theory presented here can
provide guidance to that effort, as well as fresh insights into previous

theoretical results.

We model the problem of time-varying-delay estimation as follows:

A vector of real waveforms,

ri’t) s(t) wi(t)
r(t) = = + , (1-2)
ra(t) as(t - d(t)) wo(t)

is abserved on the interval [Ti' Tf], where T1 and T_ denote initial

f
and final observation time, respectively. For convenience, we define r(t)
as zero for t outside this interval. The signal s{(t) is a sample function

of a zero-mean Gaussian random process having covariance function

Re(ty.ty) = E{s(ty)s(tp)} . (1-3)

-----------
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The delayed and attenuated signal Js(t - d(t)) is related to s(t)

through a nonrandom but unknown invertible linear operator,

L), 3{s(t)}= Ts(t - d(1)) . (1-4)

The noise waveforms w](t) and wz(t) are sample functions of white

Gaussian random processes having covariance functions

N
= = 9 - -
Rw](t1‘t2) = sz(t],tz) = zé(t] t2) . (1-5)

The signal process and noise processes are mutually independent. The
attenuation factor @ and delay function d(t) in (1-2) and (1-4) are
nonrandom but unknown. Since d(t) represents delay, we will assume here
that d(t) > 0. This restriction can be removed with a somewhat more lengthy

analysis. The attenuation constant & can be any nonzero real number. The

problem is to estimate d(t) and 3.

The model in (1-2) through (1-5) assumes white noise processes and a
nondispersive (frequency independent) propagation medium for simplicity.
One can extend the developments of the following sections to include
nonwhite noise by applying noise whitening techniques similar to those
described in reference 17, p. 290. One can also include dispersion, as well
as time varying delay, by replacing the operation (1-4) by a more general
invertible time-varying linear system. Hamon and Hannan]8 have previously

described an approximate ML solution to the time-delay-estimation problem

for dispersive sysc.ems.
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Although the details of our derijvation differ substantially from
those in reference 1, the estimation criterion is identical. We seek a
function, the 1log-likelihood function 1nA(D(t),R), whose value is an
indicator of the likelihood that a hypothetical delay function, D(t), and
attenuation constant, A, caused a particular received vector waveform, R(t),
T, £t < T
maximizing 1nA(D(t),A) are the ML estimates of d(t) and 3, respectively,

4
The function D(t)]ML and the constant A]ML jointly
when R(t) is the received vector waveform.

This report is organized as follows: The log-likelihood function
InA(D(t),R), derived in section 2, is shown to depend upon the minimum mean
square error (MMSE) estimators of s(t) and ds(t - d(t)) from r(t)
conditioned on given attenuation and delay. We show how to implement these
estimators in section 3. In section 4 we obtain the four alternative
systems for computing 1nA(D(t),A). In section 5 we show that the general
solution to the problem of ML estimation of d(t) reduces to the generalized
crosscorrelator receiver in reference 1 for the special case that d(t) is a
constant, the signal process is stationary, and the observation interval is

long.

LANCRS R |
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2. DERIVATION OF THE LOG-LIKELIHOOD FUNCTION

The derivation of the log-likelihood function, 1nA(D(t),A), is somewhat
lengthy and, therefore, has been separated into three parts. The first part
of the derivation, described in subsection 2.1, obtains a series form for
TnA(D(t),A) using the generalized Karhunen-lLoeve expansion. The result is
given in equations (2-16), (2-17), and (2-18). The second and third parts,
in subsections 2.2 and 2.3, show that the series (2-17) and (2-18) can be
put into the closed forms (2-19) and (2-36), respectively, that, in turn,
depend upon the noncausal and the causal MMSE estimators of s(t) and

as(t - d(t)) from r(t) conditioned on given attenuation and delay.

The developments in subsections 2.1, 2.2, and 2.3 are basically
extensions of the material in references 17 (pp. 203-205 and 221-223) and 19

(pp. 22, pp. 170-173) from scalar to vector random processes.
2.1 SERIES FORM
The problem of estimating attenuation and time-varying delay can be

reframed as a parameter-estimation problem. One way to do this is to

represent the time-varying delay, d(t), by a generalized Fourier series,

dt) = Y ddi(t) STt T, (2-1)

where

T A s % e a et e e " ~ . e R T N N N vt aw .
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Te
d, =I d(t) ¥ (t)dt (2-2) \

T

and where y.(t) is any convenient set of basis functions that s X
i

complete and orthonormal (CON) over the interval [Ti’Tf]' Because d(t)
is nonrandom but unknown, the coefficients d]. d2' d3, ... are
nonrandom but unknown. The substitution of (2-1) into s(t - d(t)) yields a
function that depends upon the basis set {¢i(t)} , the vector of unknown -
d

coefficients d = (d ..), and t. To show the dependency on d

1. 2' -
explicitly, we will denote this function by s(t;d); that is, y
an
s(t;d) & s(t -Z diw; (1)) (2-3)
i= it
']
It follows from notation (2-3) that !
s(t;0) = s(t) . (2-4) :

We now write r(t) of (1-2) as K
7

¢

r(t) = s(t;d,3) + w(t) , (2-5) -
where E
- '

Pty = (r(t) e’ (2-6a) :
~ A ~ T
s(ti;d,a) = (s(t;0) as(t;d)) ., (2-6b) R
X

hY

and
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W(t) = (w (1) wy(t)' .  (2-6c)

The problem of estimating the unknown delay d(t) and relative
attenuation constant T from r(t) in (1-2) 1s equivalent to that of
estimating the unknown vector d and scalar 3 from r(t) in (2-6). We have
considered the generalized Fourier series representation of d(t) in (2-1)
because it is both well-known and general. Other techniques for representing
d(t) as a vector may be preferred in a particular application. For example,
if it is known a priori that d(t) = ag + a]t + azt2 for Ti <t< Tf

(where a and a are unknown), one can set d = (ao. a

VRS 2 1’
T X . < <
az) to obtain a four-parameter-estimation problem involving the unknown

attenuation ¥ and the physically meaningful constants ag. a5, and a,.

Notice that if d(t) is a known function, D(t), and if T is a known
constant A, then As(t - d(t)) is related to s(t) simply by a known linear

transformation, {s(v)} = Rs(t - D(t)). Therefore, for given 3 and

LD(t).'/?
d(t), the signal s(t) and its delayed, attenuated version dqs(t - d(t)) are
jointly Gaussian random processes. Let D be the vector of coefficients
corresponding D(t). Then, for d = D and @ = x, r(t) in (2-6) is a Gaussian

random vector process having mean zero and 2 X 2 matrix covariance function,

E{r(t)r’(u)[d = 0,3 = A}

e

KE3 .g(t.u.;Q.A)

= £{§(t;g,K)§T(u;g,K)} + E{y(t)vgr(u)!
= Ks;g,z(t'U;Q'A) + - I 8(t - u) , (2-1)

To_ i AN

AR A

w e s e e -
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where I is the 2 X 2 identity matrix.

We proceed by representing vector process r(t) as an infinite
dimensional vector r wusing the generalized Karhunen-Loeve expansion

(references 17 (pp. 221-223) and 20). We define

N
4 .0 X -
() & D et (2-8)
i=1
where
T, o
ry = 8, (t;0,A)r(t)dt ; i=1,2, ..., N (2-9)
T

and where the g.(t;g.ﬁ3 are the normalized vector eigenfunctions of the
matrix covariance function K ~(t u;D,R). We assume that {gi(t;Q,A)}
is complete. The normalized vector eigenfunctions are two-element-column

vectors that satisfy the equations

T
f
M (D, A)e. (1;0,R) =j Ks;q,3(t 00 Mg, (W0 F) du s Tyst < Ty
Ts (2-10)
and
T
T - -
-[ 8, (t.Q.A)Qj(t;Q.A) dt = 61j , (2-11)
T

where xi(g,i) is the (scalar) eigenvalue associated with @, (t

With the gi(t;g,x) so specified, it follows that

RARMOEANE AN I -5 Nk e N gl ' abara e An i 4By B

-'.1
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r(t) =1.i.m. ry(t) . (2-12)

N 90

This is the generalized Karhunen-Loeve expansion of r(t).

Because { gi(t;g.A)} is complete, one can represent r(t) by (2-12)
(using (2-8) and (2-9)) for hypothetical or assumed values of D and A, It
is easy to show that if the assumed values of D and A are the true values of
the unknown quantities d and 3, respectively, then the ri's in (2-9) are
statistically independent Gaussian random variables having zero- means and

variances,

e{r, a0, @ - Aban@B +3®iisn, 2, N (2-13)

The joint probability density function of the rs conditioned on d = D and

3 = R is, therefore,

2
. 1 R;
p . ~(g 3Q-A) = " exp - ’
Ty:d.a2~N i=1 N N,
2v[2;(0,A) + 57) 200 (0,8) + 5]
(2-14)
h = T d R = R R R T T
where r, = (r1 ry rN) an Ry = ( 1 2 e N) . Q

obtain the likelihood function associated with r(t), we take the logarithm
and the 1imit N 2o . This leads to a convergence difficulty that can be

bypassed in the usual way (see reference 17, p. 274) of dividing (2-14) by

the function

-,

NV ¥ "
' .
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N R'ig
f(R) = T — expi-§— - (2-15)
N =1 'J'No No

The result of this division is still a likelihood function because f(gN)
does not depend upon D or A. After dividing (2-14) by (2-15), we take the

logarithm and the 1imit N 2. The result is the log-likelihood function

1nA(D,A) = LR(D,R) + £g(D.R) . (2-16)
where
(- <)
(D, A) 2
1,(0,%) & N—1 Z l Ry (2-17)
o 4T 20K + N /2
and
1 2
~ A& 1 2 ~ -
1,(0,4) = - 3 Z (1 + N £(0LE] (2-18)
i=1

2.2 CLOSED FORM FOR DATA DEPENDENT TERM IR(Q’K)
The first term in (2-16), IR(Q[K), can be written as

T

Tele

1,(0,7) = le RT(E)H (t.viD.F)R(v)dtdv |, (2-19)
0

17

where
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(2-20)

and R(t) is the sample vector function of r(t) corresponding to the vector R:

R(t) = }E: Ri;(t;0,A) , (2-21)
i=1

with
T

f
R, =I o, (t;0.F)R(t)dt . (2-22)

i
T,
i

Equation (2-19) can be verified by substituting ﬂn(t.v;ng) in (2.20)
into (2-19) and using (2-22). An interpretation of (2-19) is obtained by

considering the following noncausal linear estimate of ;(t;g,x):

T

f
A . . x
s,(t:0 J’ Ho(t.viD.A)r(v)dv, T,

1
T;

~~
as
.
o
1
-
"

<t<T (2-23)

f *

where the subscript "n" is used to denote a noncausal estimate or system.

It follows from (2-23) and (2-7) that
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e{s(tid, D) - (60K (] = 0.3 = A= ko <(t,0i0.5)

sid,a s
N Tf
9 .n Xy - .0 i - .0 % .
- 3 ﬂn(t,u,Q.A) Jﬁ ﬂn(t,v.Q,A)KE;g’é(v,u,Q,A)dv ; Ti <t,uc< Tf.
T4
(2-24)
According to the matrix version of Mercer's Theorem:20
< T
Kg‘g‘;(t.u.Q.A) = E XI(Q.A)91(t.Q.A)Qi (u;D,A) ; Ti <t,uc< Tf .
i=]
(2-25)

By substituting (2-25) and (2-20) into the right-hand side of (2-24) and

using (2-11) one obtains

N Tf
.n &y - 2 .05y - .0 % - .n i
Kg.g. 36005 - 32 H (t,u;0,5) _[ Hy (v D EOKG 5V, 0 K)ay
T.
1

=0, T,.<t.,,u<T,, (2-26a)

which yields
~ - T -~ ~
e(s(t:d,3) - 80, A1 () [ 4= 0.3 = A= 05 Tyt T (2-26b)

Therefore, if D and A are the true values of d and 3, then the estimation

error

12
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is orthogonal to r(u), T1 <uxT Consequently (see reference 21,

£
p. 390) Qn(t;g,ﬁ) in (2-23) 1is the noncausal point LMMSE estimate of

= A and

a

s(t;d,@) from r(u), T, < u < T, given that d = D and
ﬂn(t.v;g.ﬁ3 is the impulse response of the noncausal point LMMSE
estimator. Note that the 2-by-2 matrix function ﬂn(t,v;g,i\‘) is the
solution to equation (2-26a). As will be described in section 4, the
substitution of (2-23) into (2-19) results in a vector estimator-correlator

realization for lR(g{K).

The error convariance matrix of the noncausal point LMMSE estimate nf

s(t;d,3) conditioned ond = D and T = A is

£,(t:0.8) & ede (1:4,5.0.00e, T(t:0,5.0.0) ¢ = 0, = &Y. (2-28)

By substituting (2-27) into (2-28) and using (2-23) and (2-26), one obtains
(t,t;D,A) . (2-29)

2.3 CLOSED FORM FOR BIAS TERM IB(Q,K)

The term IB(Q,K) in (2-18) can be written in closed form by noting
that, according to (2-10) and (2-11), the eigenvalues ki(g,x) and the
vector eigenfunctions gi(t;g,i) depend upon the final observation time
Tf. To indicate this dependency, we write

Ai(0,R) = Ai(D,R,T¢) (2-30)

13
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P 1 N A

8i(t;0,%) = py(t:D,A,T¢) . (2-31)
' It follows that £(D,A) in (2.18) can be rewritten as
;

T, -

z(oK)--lI at & Z]n[1+2—x(DAt)]
' g\ 2 dt 4 TR AN
1 Ti i=1 o
N
, i = [da(0.F,t)]/dt

- - dt — (2-32)

: 0 T, =4 1+ (2N )N (D,A,t)
) where xi(g,K.Ti) = 0. It can be shown by a straightforward extension of

the derivation in reference 17, pp. 204-205, that

dx,(0,4,1) _ _ T
; —r— = A\ (0,A,t)Treg.(t;0,A,t)8; (t;Q.A.t)} . (2-33)
Y dat iv- =i - i
: When we use (2-33) and the fact that Tr {¢} is a linear operator, (2-32)
becomes
Tf - _
; - 1 k1(Q-Avt) ~ T ~
lB(Q.A) =3 Tr = Qi(t:Q.A.t)gi (t;0,A,t)pdt .
. T, =1 A, (D,A,t) + N /2
Y (2-34)
A closed form for the quantity in the braces in (2-34) is recognized by
. rewriting (2-20) with the notation of (2-30) and (2-31):
1
]
.l

14
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= M(Q.xon) T
Ho(tviD K, Tp) = )~ ——1 8,(t:0.K.T )8, (v;0.K,T))
=0, (0.K,T,) + N /2

(2-35)

The quantity in the braces in (2-34) is H (t,t;D,K,t).  Since
ﬁn(t.v;g.ilt) is the matrix impulse response of the point LMMSE estimator
of s(t;d,3) from r(v), T, £ v <t, givend =D and T = X, then
ﬂn(t,v;g,i.t) is, by definition, the matrix impulse response of the
causal point LMMSE estimator of s(t;d,¥) from r(v), given d = D and @ = A.

[f we denote the causal matrix impulse response by ﬂc(t.v;g,iﬁ, then (2-34)

becomes

T

f
f TriH (t,t;0,8)] dt . (2-36)

T,
i

1,(0,%) = -

~n{—

A1l the previous equations describing noncausal estimation of
s(t;d,3) from r(v) describe causal estimation of s(t;d,3) from r(v) when t
is substituted for Tf. In particular, with Tf = t, equation (2-29)
describes the error covariance matrix of the causal LMMSE estimate of

s(t;d,3), givend = D and T = A:

(t,t;D,A) . (2-37)

The substitution of (2-37) into (2-36) yields an alternative expression

for IB(Q.A):

Te
£50.%) = - N—‘J TrE (t:0.8)] at . (2-38)
°T,
1

15
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3. THE MATRIX IMPULSE RESPONSE Ho(t,v;0,%)

In this section we derive a simple explicit form for the matrix impulse
response ﬂn(t.v;ng). 1t is relatively difficult to obtain this form by
solving equation (2-26a). The constructive approach of subsection 3.2 has
the advantage of being both mathematically and conceptually simple. Before
proceeding with the constructive solution, it will be helpful to derive the

explicit form for the inverse of the operator (1-4).
3.1 INVERSE OF QPERATOR (1-4)

By definition, the inverse operator satisfies

-1

-] ~
LQ'K {s(t;0,M)} = LD(t)'K

fAs(t - o)} = s(t) . (3-1)

Let v(t) be an arbitrary waveform and try an inverse having the form

LBZt).K )} = ']E v(B(t)) , (3-2)

where B(t) is to be determined. DOefine

f(t) =t - D(t) (3-3)

so that by the definition (3-1)
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T ey = Lyt (3-4a) ~
D(t),A ry

Replacing t by f(t) in (3-2) gives N

Loty 2 VCFCENE= T v(B(F())) (3-4b) "4

D(t),A i i 3

which, when compared with (3-4a), yields -

B(F(t)) = t . (3-5) :

Therefore, the inverse operator is given by (3-2), where B(«) is the inverse "

of the function f(t). Since LD(t) 7 {+} 1s invertible, the function f(t) N

is one-to-one. We now proceed to the constructive derivation of ;

0 1
ﬂn(t.V.Q.A)-

3.2 CONSTRUCTIVE DERIVATION OF H (t,v;D,A) ”

The first step in the derivation of ﬁn(t,v;Q,F) is to (noncausalily) :i

transform r(t), Ti <t < Tf. into the vector process r'(u), :i

f(Ti) Su < T, where w

~=1 o

A rZ(B(u)) =

r'(u) = ; f(Ti) <u< Ti . (3-6a) o

0 -

~=1 -

r](u) + A rz(B(u)) ’:

, ]

r'(u) =5 P Ty <u < f(To) (3-6b) 3

1
r](u) - A rz(B(u))
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ry(u)
r'(v) = P F(Te) SugTe, (3-6c)
0

and f(u) is defined in (3-3). 1In (3-6), A can be regarded as an assumed
value for the unknown relative attenuation constant @, and 0(t) as an
assumed function for the unknown delay function d(t). (We naturally
require D(t) > 0, which implies that f(t) < t.) Notice that (3-6b) assumes
that f(Tf) is not less than Ti' This is equivalent to the assumption
that the signal delay does not exceed the observation interval. Since this
assumption is likely to be met in most applications, we will retain it in
the following. It is not hard to generalize our results to include the case

of f(Tf) < Ti.

The transformation r(t) -» r'(u) is illustrated in figure 3-1, where,
for simplicity in interpretation, the noise processes w1(t) and wz(t)
have been drawn as small ripples. A system block diagram for the
transformation is shown in figure 3-2. An examination of equation (3-6),
figure 3-1, or figure 3-2 will reveal that the transformation from r(t) to
r'(u) 1is linear and invertible. Thus, r(t), Ti < t < Tf, can be
recovered from r'(u), f(Ti) <u < Tf. using a linear transformation. It
follows from the reversibility theorem (reference 17, p. 289) that the
noncausal LMMSE estimate Qn(t;g,i) in equation (2-23), given d = D and
3 =R, can be obtained from r'‘(u). Before describing the structure of the
LMMSE estimator, it will be helpful to observe that if d = D and ¥ = A

then, from equations (2-5), (2-6), and (3-6),

18
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._A‘f-(t) .
(a)
T, T t
rz(t)
(b)
TI -
Lo T, t
1
‘A-rz(ﬁ(u))
(c)
—t—
(T, T, BTy T, U
ry(u) 1 "
1 V2 [ry(u) + Y r-(A(u)] ~
~a p
L AT T
| —+— -
fH(T) T, BTy T u
ré(u>
(e) 0 ‘'2fr.(u - %-rz(ﬁ(un} )
N —= T
_% i.?""&:t\" S .
f(T T‘ f\,..f - -

Figure 3~1. Components of r(t) = (r,(t) r'z(t))T and r (t) =

(r‘]'(t) r;(t))T: (a) r](t), (b) r2(t)’ (c) Output of

Inverse Operator LB]T in Figure 3-2,

(@) r(u), (e) ry(u)

19
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. ri(u)

7 (@ ra(t)

;3 L—[;,AH —> 3(u)

. t
~ L -5 i

2 (b) 1) { ) r'(u)

% ra(t) -1 '
. —>» Lp A} {-W rp(u) J

ry(t)

»

» I4(u)

Y

b l“.‘ J*-’

(c)

0
> ru)

o4

N W

Figure 3-2. System Block Diagram Corresponding to Transformation (3-6):
(@) F(T3) < u < Ty: (b) Ty <u < f(Tg), (c) f(Tg) <u < Tf
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>

r'(u) =0 ; u<f(Ty, (3-7a) ;}:

s(u) ny(u) .

r'(u) = + 0 F(T§) su<Tg, (3-7b) N

0 ny(u) D

‘(

and el
:f:;

r'(u) =0 ; Tg <u, (3-7¢c) 2

W

where

- "'-] ::.

n](u) A wZ(B(u)) w

= P f(T9) Su Ty, (3-8a) .

ny(u) 0 :

. ~=1 ::'

n](u) w.'(u) + A wz(B(u)) e

= 15 -l P Ty <u < f(Te), (3-8b) '.

nz(u)_ w1(u) ~ A wz(B(u)) ‘

and
v,

'\

n,l(u) w1(u) )

= s fF(T,) <u<xT (3-8c) -

n,(u) f - f

2 0 [‘

We present the form of the LMMSE estimator of s(t), f(Ti) <t< Tf. \

in the following theorem: N
.

Theorem. The noncausal point LMMSE estimator of s(t) from r'(u), .!
f(T,) < t, u < T, conditioned on d = D and 3 = A, is given by the 9
system in figure 3-3, where f(t,u;D,A) is the impulse response of the '-
noncausal point LMMSE estimator 'n\](t) of n,(t) from n,(u), =
X

~

21 '
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-

g

i el

)—<::>—————-D— grjﬂgLULQHA)

f(t,u;D,A) ——-l

Figure 3-3. Structure of the Noncausal Conditional LMMSE Estimator of
s(t) From r'(u), f(T4) < u < T¢ (When d = D and @ = A, then x(t)
equals the noncausa] LMMSE estimate of s(t). The impulse
responses f(t,u;D,A) and gn(t.u;g.ﬂ) are defined by the
theorem in section 3. f(t,u;0,A) is specified by
equations (3-30) and (3-31), and gp(t,u;0,A) is
specified by equations (3-44) and (3-41).
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T
f

ﬁ](t) = f ft,u;0,K)ny(u)du ; F(Ty) <t < T, (3-9)
f(T,)

and gn(t.u;g,ﬁ) is the 1impulse response of the noncausal point LMMSE

estimator ?n(t) of s(t) from s(u) + n](u) - ﬁ](u).

&) = | g (t.us0,B) [su) + np(u) - (u)ldu s F(T) st <T, . (3-10)

Proof. According to the orthogonality principle (reference 21, p. 390)
a linear functional p = L[q] is the LMMSE estimate of a random variable p
from data vector g(g) £eD (where D is the domain of the data) if and only if

the estimation error p - 6 is orthogonal to g for all £eD,
E{(p - P)alg)} =0 ; gD . (3-11)

Therefore, a necessary and sufficient condition that ?n(t) be the LMMSE

estimate of s(t) from r'(u), given that d = D and ¥ = A, is that the vector

n
o
R

L}
>

v(t.w) SE{Is() - & (] r'(w) | d (3-12)

be identically zero for f(Ti) < t,u T Using (3-7), we note that the

¢
components of v (t,u) are

vi(tow) = Ef[s(t) - £ ()] [s(w) + n (W]} (3-13)




R
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A
vy(t,u) = E dIs(t) - S ()] nz(u)} (3-14)

for f(Ti) < t,u

<Te .

By the definitions of f(t,u;D,R) and g (t,u;D,R),

E{ln (t) -

and

Ef0s(t) - € (D) 10s(w) + ny(u) - Rt = 0 F(T) <tucT

6‘1(t)]n2(u)} =0; f(T,) stusT, (3-15)

£
(3.16)

Recall that the signal process s(t) is orthogonal to the white noise

processes w](t) and wz(t). Therefore, s(t) is also orthogonal to the

noise processes
It follows

vz(t,u) =

which, with the

vz(t.u)

24

n](t) and nz(t) defined in (3-8).
that (3-14) simplies to

—E{é‘n(t)nz(u)} (3-17a)

aid of (3-10), becomes

T
f
= -t _’. gn(t.o:Q.K) [s(a) + n,(0) - 9](0)]dc]n2(u)

£(T,)

.
f

f 9,(t.a;:0,A)E{[N,(0) - R (a)Iny(w)} do

F(T5)

05 f(T) <t,u<T (3-17b)

f A

- — -~
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where the last step follows from (3-15). The result that vz(t,u) in
(3-14) equals zero and the fact that 91(t) depends linearly upon nz(t)
together imply

E{ls(t) - S (I} =0 FT) <t usT, . (3-18)
Substracting (3-18) from (3-13) leads to
vi(t.u) = E{[s(t) - en(t)] [s(u) + ny(u) - 'f}](u)]}- (3-19)
Comparing (3-19) with (3-16), we see that
v](t.u) =0 ; f(Ti) <t,ux Tf . (3-20)

This completes the proof.

The LMMSE estimator of 3s(t - d(t)), Ti <t <T from r(u),

f’
, follows easily from the

T, < u < T, conditioned on d = D and ¥ = &

fact that ds(t - d(t)) is a linear transformation of s(t). Because all

available data have been used to obtain ?n(t), F(T,)) € t < T, the

f’
noncausal LMMSE estimate of ¥s(t - d(t)), given d = D and ¥ = A, is simply

the scaled and delayed version of & (t) in (3-10), namely, K?h(t - D(t)).

The explicit form for f(t,u;g.x) follows easily from (3-9) and (3-15),

which together imply
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.
f
E[n](t)nz(u)} - f f(t,a;o,'K)E[nz(a)nz(u)}do L E(T) <t ueTe .

L (3-21)

This can be simplified by using (3-8) and (1-5), which imply

No =2
8 [é(t -u) + A" &(B(t) - B(u))]; Ti <u < f(Tf)
E[nz(t)nz(u)} =
0 ; otherwise (3-22)
and
No =2
5 [t - w - E 2 sty - Bun]i Ty <RI
E[n](t)nz(u)] =

0; otherwise (3-23)

Since B(t) is a one-to-one function, then

1
|ﬁ(uﬂ

8(B(t) - B(u)) = §(t - u) , (3-24)

where the dot denotes the derivative of a function. It follows from (3-3)

and (3-5) that

Bu) = —— (3-25)

1 - D(B(u))

Note that s(t - D(t)) is locally reversed in time where 6(t) > 1 and
frozen in time where b(t) = 1. Therefore, it is reasonable to define D(t)

as a valid delay function if and only if

b(t) <1, (3-26)

PP I AP
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~
where the equality holds only at isolated values of t. It is easy to see '{
N
that the above condition guarantees that f(t) is invertible. By combining 3
(3-24), (3-25), and (3-26), we obtain :ﬁ
3
;
§(B(t) - B(uw)) = (1 - 6(B(u))] §(t ~u) . (3-27) ,
iyt
Therefore, (3-22) and (3-23) become, respectively, .
R
No 1 - D(B(u -
O fy . L=DBMW Iy _ gy s T, <t < £(T,)
8 K? i - f N
Efn, (t)n, (u)} = :
0 ; otherwise (3-28) _
*
and .
No 1 - D(B
04y - 1 =DOBW D jgeeoyy T, < u < F(T,) .
8 7\'2 L f ',
E{n, (t)n,y(u)} = %
0 ; otherwise (3-29) '
The substitution of (3-28) and (3-29) into (3-21) yields
f(t,u;0,R) = k(u) &(t - u) , (3-30)
where o
R - [0 - B(B(u))] '
k(w) 252 S Ty U (T N
1R+ [ - D(B(u))] -
0 ; otherwise. (3-31) ;
[
Therefore, g
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ﬁ](t) = k(t)nz(t) (3-32)

Note that the MMSE estimate of n1(t) from nz(t) requires only

multiplication of nz(t) by a time-varying gain.

It is interesting to observe from (3-29) that if

D(t) =Dy + (1 - 'Kz)t (3-33)
then n](t) and n2(t) become statistically independent and

ity =o0. (3-34)

Equation (3-33) is a necessary and sufficient condition for (3-34). A

sufficient condition arises when the delay is constant,
0(t) = D0 , (3-35a)

and the magnitude of the attenuation constant is unity,

b
"
+

—

(3-35b)

These results are a consequence of the fact that the statistics of w.(t)

5!
are unchanged by the inverse operator (3-1) when D(t) and A satisfy (3-34).
The point is that if d(t) and ¥ are known a priori to satisfy (3-33) then
the hypothetical quantities D(t) and A can also be assumed to satisfy

(3-3). This results in a simplified receiver because under these conditions

k(u) is identically zero.

28
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An equation specifying gn(t,u;g,KS can be obtained by using the fact

that gn(t.u;g.r) is the LMMSE estimator of s(t), f(T,) <t < T, from

Z(u) = s(u) + n{u) ; f(Ti) <u<xg Tf . (3-36)
where

n(u) & npu) - M) 5 F(Ty) <u S TE . (3-37)

The noise process n(u) is zero mean and uncorrelated with the signal process

s(u). Its covariance function is

E{n(t)n(u)}

Eftn (1) - (1) 10n (u) - A ()]}
E{{n; (1) - A;(t)In, ()}
= E{n ()0, ()} - k(t)e{nz(t)n](u)}. (3-38)

By a derivation similar to that leading to (3-28) one finds

[ N
=510 - B(B(W)) st - u) 5 AT <t T,
2R
N .

E{n](t)n](u)} = —% [1 + l—:_%%QLﬂll]é(t -u) 5 T <t < (T (3-39)
A

N0

[ 2 3t - T <t < T

Combining (3-38), (3-39), and (3-31) gives

E{n(t)n(u)} = Q(u)s(t - u) ; FIT) <u < T, (3-40)
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where

[N
— 01 - BB(uY 5 F(Ty) <u <

Yo - bl g
2[R + (1 - BB

. <u<

N
[ 2 ¢

f(Tf) <u < Tf .

and it follows that n(t) 1is nonstationary white noise.

specifying g (t,u;D,A) is now obtained by substituting
n

into the orthogonality condition ,

Efls(t) - ’sn(t)] z(u)} =0 ; F(T) < thu < T,

This leads directly to

T¢
R (t,u) = f gn(t,o;g,i) R (o,u) do
f(T,)

+ Q(u)g (t,us0 ) ¢ F(TL) < tu<T .

(3-41)

The equation

(3-44)

Note that the problem of finding gn(t,u;g.ﬂ) is equivalent to the

problem of deriving the noncausal LMMSE estimator of s(t) from s(t) + n(t),

where the process n(t) is nonstationary white noise uncorrelated with s(t).
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If s(t) is a state representable process, then ?n(t) can be obtained using

optimal linear smoothing (reference 22, chapter §).
3.3 EXPLICIT FORM FOR ENTRIES IN ﬂn(t,u;g,i3

We have now specified the structure of ﬁn(t,u;gfi). This structure
is shown in figure 3-4, where the filter gn(t,u;g,ﬁﬁ ijs given by the
solution to (3-44) and where k(t) is given by (3-31). Using this structure,
we now derive the explicit form for the individual entries hij(t,u;g,K) in
ﬂn(t.u;g,T). This can be done be noting that, by definition, the output

of ﬂn(t.u;g,K3 is (see figure 3-4)

T T
f f
x(t) =f h”(t.u;_Q.K)r](u)du +f h12(t.u;Q,K)r2(u)du (3-45)
P T,
T¢ T¢
y(t) =.[ hZ](t,u;Q,K)r](u)du + h22(t,u;Q,K)r2(u) du . (3-46)
T, T,
1 1

On the other hand, by tracing the signals through the system in fiqure 3-4,
we can express x{t) and y(t) in terms of gn(t,u;Q,K) and k(u). To keep
the notation simple, we will subsequently write gn(t.u;Q,K) as gn(t,u).

An examination of figure 3-4 with the aid of figure 3-2 and equation (3-6)

yields, after a little labor,

3
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x(t) = g, (t.u) -‘i rp(B(u))du

F(T,)
+ f gn(t.t) 3 11 = k(w)] r(u)du

j

—

F(T¢)

. f g, (t.u) = [0+ k(u)] ry(B(u))du
T, 2A
1

T¢
+ Jﬁ g (t.u)r(u)du, . (3-47)
F(Te)

By changing variables in the first and third integrals (set o = B(u))

(3-47) becomes, after a 1ittle more labor,

B(T5)
x(t) = J. 9,(t,0 - D(9))

T

ry(e) [1 - 0(o) 1do

b hd

£(T,)
' f gy (thw) 3 01 - k(u)]r, (u)du

T
i
R g,(tia = D(6)) 1= [1 + k(o - D(@))Iry(a) [1 - B(o)]do
T¢
+ g9,(t,u)ry(u)du . (3-48)
F(Te)
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By comparing (3-48) with (3-45) we obtain for T1 <t,ucx Tf

g, (LW - k(W] Ty < u < f(Tp)

-~

h]](t’U;goA)

g (tiw) 3 F(T) <usT (3-49)

f

gp(tou = DL - Bl 5 Ty < u < B(Ty)
A

by (t,u;05A)
Gp(tu = D(w) 1+ k(u = D()IN = Blw ] 5 B(T)) < u s T .

(3-50)
We note that since o - D(o) = f(o) then from (3-5) and (3-31)
R -1 - b))
k(s - D(a)) = -3 x . (3-51)
AT + [1 - D(o)]

The formulas for hz](t.u;g,K) and h22(t,u;g,i) in (3-46) can be obtained

easily by noting from figqure 3-4 that
y(t) = Ax(t - D(1)) , (3-52)

which leads to

hZ](t.u;Q.A) = Ah]l(t - D(t),u;D,A) (3-53)
hzz(t.u;g.A) = ﬁhlz(t - D(t),u;0,A) , (3-54)

where T1 < t,u < Tf.

34
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3.4 EXPLICIT FORM FOR BIAS IB (0,R)

We can obtain the explicit form for the entries of the causal matrix
impulse response ﬁc(t.u;g,33 by noting that if Tf = t then none of the
data r(v), Ti < v < Tf. are future data. Thus, for Tf = t and for d =
D and ¥ = &, ﬂn(t.v;g,l') becomes the impulse response ﬂc(t.v;p_,m of the

causal LMMSE estimate § (t;D,R) of s(t;d,3) from r(v), T, < v < t, and

*c i
gn(t.c) in (3-42), (3-43), and (3-44) becomes the causal LMMSE estimator
gc(t,o) of s(t) from z(o), f(Ti) < o < t. Therefore, we can obtain the
components of ﬂc(t,v;g,l) by replacing gn(t,u) in equations (3-49),
(3-50), (3-53), and (3-54) with gc(t,u), where gc(t,u) is the solution
to (3-44) for T, = t, with g (t,u) = 0 for t < u. With _H_C(t,v;Q,T\') S0
determined, IB(D_,'E) and gc(t;g,'i\') can be obtained directly from (2-36)

and (2-37), respectively. For example, by straightforward substitution,

(2-36) becomes

(Te)
15(D.A) = - ‘5 gc(o,a)lz-[’l - k(o) ]do

T

T¢

~N -

gc(d.d)dd
T

nN|—

B(T,)
I Ag (o - 0(a), o - D(a))I(1 - (o) ]da
A

T

T
f
- %J Rg_(o - D(a), o - D(a)) {1 + k(o - D(a))1(1 - B(o)) ]do.
2A

B(Ti)
{3-55)
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This result can be put into a simpler form by changing the variable of

integration in the last two integrals. With o - D(o) » o, (3-55) becomes

The minimum mean square error associated with gc(t,u) is

A 2
Eoc(t) = E{(s(t) - §.(tN°}

t
= Rs(t.t) - ./. gc(t.u)RS(t,u)du
f(Ti)

= Q(t)g (T.1) (3-57)

where the last step follows from (3-44), with Tf = t. An alternative
expression for !B(Q,K) can be obtained by substituting (3-57) into
(3-56). This observation is 1important because if s(t) 1is a state
representable process, then goc(t) can be obtained from the matrix

Riccatti equation (reference 22, chapter 4.3).
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4. CANONICAL REALIZATIONS

Our formulation of the delay estimation problems leads naturally to
four canonical realizations, which are based upon well-known receiver
structures for the detection of Gaussian signals in white Gaussian noise
(reference 19, section 2.1). Here we simply point out the potential
application of these structures in delay estimation. A more &etailed
development and comparison of these structures, with the view to obtaining
practical estimation algorithms, appears to be a fertile area for future

research.

The substitution of (2-23) into (2-19) (with r(.) replaced by R(.))

yields

RIS (t:0,Kyat .

The resuliting ML estimator of d(t) and ¥ is shown in fiqgure 4-1, where,
following the terminology of Van Trees, it is referred to as Canonical
Realization No. 1. O0Observe that this realization is a vector estimator-

correlator analogous to the scalar estimator-correlator in fiqure 2-2 of
reference 19. Here's how it works: The system tentatively hypothesizes

that the unknown delay d(t) is D(t) and that the unknown attenuation I is A&,

where 0(t) is a possible delay function and A is a possible relative

attenuation constant. The received vector waveform R(t) is input to the

noncausal conditional LMMSE estimator of s(t;d,¥). which is designed with
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the assumption that D and A represent the true values of delay vector d and
attenuation scalar 3. The output of the estimator is .'s_\n(t;g,‘i) in
(2-23). A possible realization of the estimator was shown in figure 3-4.
The vector correlator then yields IR(Q,T) in (4-1), which, when added to
£5(0,F) of (2-36), (2-38), or (3-55), yields the value of the
log-likelihood function 1nA(D(t),A) for the assumed 0(t) and A. This
process is repeated for all choices of D(t) and A that are possible for the
application in question. The particular D(t) and a jointly maximizing

~ A A
1nA(D(t),A) are the ML estimates D(t)]ML and A]ML of d(t) and 3.

An alternative form for Canonical Realization No. 1 can be obtained by

noting that the lower integrator output in figure 4-1 can be written as

T¢ T¢
ilf y(t) r,(t) dt = N—‘-I R x(t - D(1)) ry(t) dt
0. 0

i i

(Tf)
= _:7 A x(o) rZ(B(O)) [1 - D(B(o))] do .
0

f(T,)

(4-2)

The process 'K_] rz(B(u)) js avajlable at the output of the inverse
operator LB‘K {rz(un in ﬂn(t,u;g.x). shown in figure 3-2, and
x(t) is the output of gn(t.u;g,i’), shown in figure 3-4. Equation (4-2),

therefore, provides a means for eliminating the operator LD(t) 7\-{] from

the system in figure 3-4.

Alternative estimator structures can be obtained by straightforward

39
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‘t

? generalizations of the material in reference 19, pp. 15-23.

-

i‘ Canonical Realization No. 2, shown 1in figure 4-2, is a vector
L]

b filter-correlator receiver. The matrix impulse response H'(t,u;D,R) is
.

¢ defined by

L)
- . - H (t,u;0,8) 5 t>u

- H (t,u;D,A) = (4-3)
» 0; t<u.

. Note that the output of the realizable filter H'(t,u;D,A) is not the
’ causal MMSE estimate of s(t;d,¥), givend =D and ¥ = A.

N Canonical Realization No. 3, shown in figures 4-3(a) and 4-3(b), are
Y

o vector versions of the filter squarer receivers shown in figures 2-5 and 2-6
f of reference 19. The matrix impulse responses ﬂfn(t,u;g,ﬁj and
__ ﬂfc(t.u;g,i) are the noncausal and causal solutions, respectively, to

<

: T

H (t,u;0,A) = f Ho(z,t;0,R)H.(z,u;0,R)dz, T, <t, u<T_. (4-4)

” n = -f = MTf - i- - f

" T

"~ 1

Cad

o«

- As with the scalar case, there are an infinite number of noncausal

solutions because, with H_ (t,u;0,%) given by (2-20),

! LS A (0,A) T .
- He (t,u;0,A) = + - gi(t.Q.A)Qﬁ (u;0,A), Ti <t,ux< Tf

2 =] M(DLA) + N2
‘. (4-5)
i is a solution to (4-4) for any assignment of plus and minus signs. The
o

substitution of (4-4) into (2-19) yields

a%a%s "

a0
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f _ 2
U He(z. t:0 RR()AL[S (4-6)

A straightforward but 1lengthy generalization of the material in

reference 3, pp. 19-24, leads to the expression

1 (0.F) = -},—ffing(t)’s_‘cmg.K) - @c(t;g.i)lzfdt , (4-7)
0 T,
where Qc(t;g.K) is the LMMSE causal estimate of s(t;d,3) from R(t), given
d =D and T = R. Equation (4.7) can be realized by the system shown in
figure 4-4, which is referred to as Canonical Realization No. 4. The system
ﬂc(t.u;g.i) in figure 4-4 1is the matrix 1impulse of the casual LMMSE
estimator encountered previously. Its structure can be obtained from
H_n(t.u;g.'K) by setting T, = t. If s(t) is state representable, then

f
gc(t.u) can be realized using the Kalman filter (reference 22, chapter 4).

44
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5.0 THE SPECIAL CASE OF CONSTANT DELAY, STATIONARY PROCESSES, AND LONG
OBSERVATION INTERVAL (CDSPLOT)

This section links the general solution to the problem of ML time-delay
estimation presented above to the solution of Knapp and Carter] in which
the delay 1is constant, d(t) = do’ the signal process is stationary, and
the observation interval is long. We call this the CDSPLOT case. This
exercise has the benefit of providing additional insight into Knapp and
Carter's solution, as well as a more explicit description of the bias term,

IB(DO.A).

As was shown in (2-16) the log-likelihood function, lnA(g,K), consists
of the sum of a data-dependent term, tk(g,Z). and a bias term, lB(g,T).
; The forms of these terms under the CDSPLOT approximation are derived in the

next two subsections.

5.1 DATA—DEPENDENT TERM IR(D,K) UNDER CDSPLOT APPROXIMATION

The data-dependent term, LR(Q,K). is given in the general case in

(2-19), where the entries of ﬂn(t.v;g.x) are given in (3-49), (3-50),

- e .

(3-53), and (3-54). It can be seen that the entries themselves are
specified in terms of gn(t.u) and k(u) in (3-44) and (3-31),
respectively. Under the CDOSPLOT approximation, we obtain gn(t.u)
(approximately) by replacing Ti and Tf in (3-44) by -« and +o,
respectively, Rs(t,u) by Rs(t - u), and Q(u) in (3.41) by

46
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1
No
Qu) = —w<y <o, (5-1a)
where
N
A 0
N = (5-1b)
0 %2 4

(Equation (5-1) 1is obtained by setting D(t) = Do in (3-41) and noting
that, with [Ti'Tf] = [-o » ], the middle expression for Q(u) in (3-41)
applies for all -eo< y <wo,) With (3-44) so modified, we try a solution of
the form g (t,s;0,A) = go(t - o;0,A).  Thus, under the CDSPLOT

approximation, (3-44) becomes

+ '

N
= - a0 A - 9 - u: ry -
Rs(t -u) = .’.gn(t °'Do’A) Rs(° u) do + > gn(t u,Do,A) (5-2a)
- 0
for —eo< t,u <w,

The above can be notationally simplified by a change of variables and
by again assuming the dependence of g (<) on D  and A implicitly. This

leads to

+00
[]

N
Ry(T) = f g, (T - X)) R(A) dn +

- a0

~lo

9,(T) (5-2b)

for -wo< 7 <,

The solution to (5-2b) can be obtained easily by Fourier transforms and is

20700 n ingtagtntg
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+
g, (t) =f 6(f) eI2 ftas (5-3)
where
5.(f)
6(f) = ——— (5-4)

Ss(f) + N,/2

and where Ss(f) is the power spectral density of s(t). Since s(t) is
real, Ss(f) and G(f) are real and even. This implies that gn(t) is real

and even:

g, (-t) = g (1). (5-5)

It can also be seen from (5-2) that gn(t) does not depend on Do'

Also, with D(t) = Do and with T1. = -oo, Tf = 4w, k(u) in (3-31) reduces

to the constant

k(u) = 50— = k. (5-6)

The substitution of the above with [Ti'T [-w, » ]}, into (3-49),

¢
(3-50), and (3-53) will cause (3-54) to yield the time-invariant impulse

responses,

h..(t) = g (t) (5-7)
11 7\'2 s+
R w1 P °

48
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A
h21(t) = KT:——l g (t - 0,) (5-9)

KZ

+1

hyp(t) = 5= g,(t) (5-10)

A

which, when substituted into (2-19), yield

t
% +a0 4o

~ 1 1
q 2, (D _,A) = =— = g (t - v) R,(t) R,(v) dtdv
R 0 No.Jr‘j’ A2 +1 0 1 1
- @0 — a0

+00 +o0 -
, 1 A
. *N - g (t-v+0) R, (t) R,(v) dtdv
‘ Noff 2 ,q0n o/ ™ 2

-0 —o0

gn(t -v - Do) Rz(t) Ry(v) dtdv

+00 +o
L f 5 g.(t - v) Ry(t) R.(v) dtdv (5-11)
N, 22, % 1 2
~-g0 ~ a0

In (5-11) we bhave written the integration 1limits as +eo for

convenience, Since r(t) is defined as zero outside [Ti,Tf], the

integration is actually still over the 1long but finite fdnterval

[Ti'T ]J. Therefore, the integrals exist.

A
We are interested in finding the ML estimate of do. Do]ML' which

will be obtained by choosing Do to maximize lR(Do.A) + lB(Do.A).

We will find in the next subsection that ‘B(Do'iu does not depend on

Do under the CDSPLOT assumption. Thus, it will be equivalent to maximize

......................................................................
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o’

2 IR(DO.K) in (5-11). Note that only the two middle terms in (5-11)

depend on Do. Using the fact that gn(t) is an even function, we note

o

) that these two terms can be combined and written as
»
»
¢ - + o
[ —~ _z A _ ~
ﬁ lR (DO,A) = No 7\'2 o J,f gn(t o) R](t) Rz(" + Do) dtdv . (5-12)
Cd
4 - o
'
o
’ tEquation (5-12) can be written another way by introducing functions
: h,(t) and h,(t), satisfying the equation
.
.
-+
- + a0
\ N—2 = A gn(t - qg) = I h1(z - t) hz(z - g) dz . (5-13)
o~ o A" +1
o« a0
o The substitution of (5-13) into (5-12) yields
»
::~ +00 + o0 + 00
> ‘R (DOK) = I dz h](z -t) R](t) dt J‘ hz(z - o) R2(c + Do) do , (5-14)
~ B me -
and we see that !R(DO.T\') can be obtained from the “generalized
‘ correlator" shown in reference 1, figure 1. By taking the Fourier transform
in (5-13) it follows that
' 2 A * -
N o G(f) = H1(f) Hz(f) = ¥(f) , (5-19)
) o A+
’
. where Y(f) is the “"frequency weighting function" appearing in reference 1,
o

equation (6). Combining (5-4) and (5-15) gives

a

«
. -

50
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% S _(f)
W) = 52 P (5-16)
o A+ 1 S (f) +N_ /2
S 0
The function (f) can be written in terms of the coherence function of
r](t) and rz(t). defined as
A Sr1r2(f)
) S, (f
J " s
; where
b Sr (f) = power density spectrum of r](t),
1
P
. N,
: Sr](f) = Ss(f) 5 (5-18)
h Sr (f) = power density spectrum of r2(t).
f 2
b
~2 No
S, () = REs ()« 5 (5-19)

S (f) = cross-power-density spectrum of ry(t) and r,(t),

S (F) = A
r]rz S

\
>
(%3]

~—~
-

—
[}

(5-20)

The detailed algebraic steps are shown below, which starts by

substituting (5-2) into (5-16):

»
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A 2 Ss(f)
W) = 'KZ N, N . !
1 + o Ss(f) + _0:2_ L
2(1 + AY) g
) ASs(f) }
2
N N
(1 + R T s.(f) + (—3)
~ y
ASs(f) 3
T NT T N 2 T
_o] |32 o] _ 32

[Ss(f) + 2] A Ss(f) + 2] A Ss(f) b
sr]rz(f) SGN(A) :

= > ; (5-21)
S (f)y S_(f) - S (f) s
" 2 "r2 4
.'.
By multiplying the numerator and denominator in (5-21) by ':
s (f)l/[s (f) S_ (f)]
I "r2 " 2 iy
“
we obtain N
2 ~ .
lYlZ(f)l SGN(A) ,
V(f) = > (5-22) N
|sr],. (f)l 0 - (O] ;

2

For A > 0, this is the frequency weighting function associated with the ML . :_;
or HT (for Hannon/Thomson '~ processor in reference 1, table 1. Knapp and &'.:
Carter] do not include the factor SGN(A) because their receiver has a T
square law device before the peak detector. 7'
¢
I
g
52 "




L = = . o

TR 7665

5.2 BIAS TERM IB(DO,ij UNDER CDSPLOT APPROXIMATION

The bias term for the general case is given by (3-56), where gc(t,u)

is the solution to (3-44) for T, = t, with gc(t.u) =0 for t < u. Under

f
the COSPLOT approximation, we set O(t) = 00. Rs(t.u) = Rs(t - u), and

Tf =t in (3-44) to obtain
t
R (t - u) = f 9 (t.o) Ri(o - u) do + Q(u) g.(t,u) (5-23)
T30
for T 0 < u < t. Under the CDSPLOT approximation the function Q(u)

i VYo
in (3-41) becomes

NO
> T1 - Do <u<x< Ti
N0
L)(U)=1—2-;T1.<u5t-0o
N
L—%;t-00<u5t. (5.24)

where No was defined in (5-1b). Recall that gc(t,o) is the impulse
response of the casual LMMSE estimator of s(t) from z(t) = s(t) + n(t),
where n(t) has covariance function Q(u)é(t - u) (see (3-36) through
(3-40)). Looking at (5-24) we see that under the CDSPLOT approximation n(u)

is "piecewise" stationary in the three intervals [T1 - Do' Ti]'

[Ti' t - Do]’ and [t - D t]; but Q(u) changes abruptly at the

o!
interval boundaries. If we let Ti + -o, then n(u) will be stationary for
-wo< y <t - Do and gc(t,u) will be time-invariant in this range. Thus,
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g (o) = g((:])(t ~u) for-w<ust-o_, (5-25)

where the function gé])(v) is the solution to the Wiener-Hopf equation:

Ry() =fg§”(v) R,(r - V)dv ; 0 <, (5-26)
with
N,
R, () = R(7) + =5 &(7) (5-27)
and
¢y =05 r<o . (5-28)

Since the statistics of n(u) change abruptly at u = t - Do and

gc(t.u) operates, 1in general, over all past data, we cannot expect

gc(t.u) to be time-invariant for t - D < u < t. Thus, under the

o
COSPLOT approximation, gc(t,u) is a time-varying casual impulse response
that has the approximate time-invariant form gé])(t - u) specified in
(5-26) for Ti < u <t - Do' but not otherwise. Using these results in
(3-56), with f(t)

t - 0, we have
0

T, t-0

b | [o]
]5 I gc(o,o)do—]z‘ J gé])(O)do

570, T

>
g
]
t

t
- %J 9.(0,0)do . (5-29)

Because DO is finite, the values of the first and the third integrals in

(5-29) are negligible compared with that of the second integral for
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sufficiently large t - Ti' Consequently,

Iy 1 m
2, (0,R) = - [t -0 -T,1g.’ (0)

1 (1) -
-yt -T1g. " (0) . (5-30)

We can obtain a more explicit form for IB(DO,K) by referring to
(3-57), which, under the CDSPLOT approximation (for T1 = -~w<y<t - Do)’

becomes

E,c(W) = E{(s(0)- S, (u?}

N'
= 24" )

§°C ] (5-31)

If the signal spectrum Ss(f) is rational with finite variance, then

(reference 17, p. 501)

' 4o

€oc = 7 f]n 0 +z—.ss(f)] df .
0

Combining (5-30), (5-31), and (5-32), we have

400

1y (0,8 = - 3 [t - Ty fln 0+ Lsgnaf

- a0

and we see that, as in reference 1, the bjas does not depend upon Do

for COSPLOT.
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6.0 SUMMARY

This report has generalized previous theory concerning ML time-delay
estimation to include time-varying delay, finite observation interval, and
nonstationary signal process. It has presented several receiver structures
that can be used to obtain the ML estimates of time-delay and attenuation in
one of two received signals compared with the other. Here it is shown that
the general theory reduces to that of Knapp and Carter] for constant

delay, stationary signal process, and long observation interval.
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