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SECTION 1

INTRODUCTION

The governing equations in fluid mechanics are usually

expressed in terms of Cartesian coordinates. They are not
readily convertible into forms useful for practical appli-
cations to one-, two- and three-dimensional cylindrical and

spherical problems. One of the purposes of this report is to
transform the mass, momentum and energy conservation equations
for a nonsteady flow of a compressible viscous single-phase
fluid from expressions in vector and dyadic notations to those

in terms of orthogonal cuvilinear coordinates and then to
specialize the equations for Cartesian, cylindrical and
spherical coordinates.

Another purpose of this report is to provide a theoretical

basis for usage of Eulerian sliding grids in modern computa-
tional fluid mechanics by establishing a kinematic transport
theorem which is a generalization of the Reynolds transport

theorem. Based upon the theorem the conservation equations
in integral form are first formulated in terms of moving
volume and surface elements and then converted into the corres-
ponding equations in differential form by using the general-
ized definition of the vector operator V.

In order to present an overall survey of the basic equations
this rt~p.,rt also summarizes the equations for the vorticity,

entropw entha.py and Bernoulli equation.



SECTION 2

INTEGRAL FORMULATION

2.1 KINEMATIC TRANSPORT THEOREM.

Let . = (x1 , x 2 , x3 ) denote the rectangular spatial ("Eulerian")

coordinates which identify a fixed point in space. Let X =
(X1 , X2, X3 ) denote the rectangular material ("Lagrangian")
coordinates which identify a fluid particle in motion. Let
F = F(x, t) represent any arbitrary single-valued scalar or
vector point function (of position x and time t) possessing
continuous derivatives. The function

S= • ~F~x_, t•d f • Ft_ (X_, t),t]J o, )
V o

where V = V(t) denotes a material volume (that is, a volume
moving with the fluid), is a well-defined function of time.
In Eq. (1) the Jacobian (Ref. 1, p.33)

dV i}J # X2 x3 ) ax
J 0,v~ det(-_') (i 1 ,203: aa 1,203) (2)3V0 aocXl 2 X3)

relates the element dV of the moving volume V in the x-variables

to the element dV0 of the fixed volume Vo (o) 0 V(t) as t , 0
in the X-variables.

Using Euler's expansion formula (Ref. 2)

a- = JV'V (3)
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(where v is the velocity vector of the fluid motion) and the

relation between the material time derivative and the spatial

derivatives (Ref. 3, Eq. (3.6))

d aa+ V(4

we can express the material time derivative of 'I as

f [F + FOv.vj JdVQ

af[ ~+ VOW+F(V*V)JdV

uf [•+divcvv y .v5 )

Then in view of Green's transformation (Ref. 1, Sq. (7.2))

for any vector or tensor field *

.0 div *V dý (dA ndA)()

we obtain

3



f FVnd + AMA (7)

or

f Fd -, Fv-ndA +,* (7a)

where V denotes the volume fixed in space which instantaneously
coincides with the material volume V, A denotes the surface
bounding the volume V and n denotes the unit vector along the
outward normal to A. Eq. (7a) is known as the transport

theorem of Reynolds (Ref. 1, Eq. (25.4) and Ref. 4, § 14).
It is a kinematic relation independent of any meaning attached

dto F. All fluid physics is contained in the term.

Now let us consider a volume V a V(t) with bounding surface

A - A(t) sliding with respect to the fluid and obeying the
relation

WdV) (- _ (8)

where u is the local surface velocity. We can write

FaE(dr) - Fu-sdA ( 9)
V

To each time instant t when the fixed volume V coincides with
the material volume V there corresponds a time instant t1 when
the m~oving volume V coincides with the same material volume
Sinstantaneously. At t, Eq. (9) becomes

Ir ~dV) Pmf (10)

4



where F1 = F(x,t 1 ), u 1 = u(x,tI) and -l(dV) = f5(dV)t = tI"

Since V, A and n in Eq. (10) have the same meaning as those
in Eq. (7) and dV and dA (at t) in Eq. (7) equal to dý and

dW (at t1) in Eq. (10) we may add Eqs. (7) and (10) to obtain

ý A F=- (Fv_ FU1) .ndA + t • (11)

In case V and V can coincide with V at the same time (tI = t)

(for example, if u1 =,0 or u! = v) Eq. (11) becomes

S d
4 5-(FdV) F - F(V " u).ndA + mv U(lia)

or (since V is fixed in space)

dVn (lib)P 1A F (v u) +jM

This is a generalization of the Reynolds transport theorem
and gives the fundamental transport formula for the time vari-
ation of the volume integral of any fluid state quantity F
over a moving volume which instantaneously coincides with
the material volume. As u = 0 (V - V, hence tI = t) Eq. (llb)

reduces to Eq. (7a) which is the basis of the Eulerian grid
fto

representation in numerical algorithm. As U -- V (V = V, hence
tI f t) Eq. (llb) becomes a statement of the Lagrangian mesh

representation. Ref. 5 shows an example of the application

of Eq. (llb).

2.2 CONSERVATION LAWS.

The mass, momentum and energy conservation equations for a non-

steady flow of a compressible, viscous, heat-conducting fluid

5



derived and discussed in reference books on gas dynamics (see,

for example, Refs. 6 to 13) have been summarized in recent

books on computational fluid mechanics (see, for example,

Refs. 14 to 16) in compact vector and dyadic (second order

tensor) notations. In a fixed Eulerian frame of reference

these equations in integral form (which is more basic than
the differential form in expressing the physical laws) are as
follows:

mass: a PA pv.dA = 0 (12)

momentum: -f pvdV + pv(vgn)dA g'ndA +fjdV , (13)

energy: -fpEdV + pEv.ndA = fA ) - a)ndA

"+ f dV (14)

In these equations, p is the density, E the total specific

energy ("specific" means per unit mass)

E e (15)

(where e is the specific internal energy), g is the stress

tensor, a the heat-flux vector, f the external force vector

per unit volume, and G is the energy generation per unit

volume, and V is a control volume fixed in space, A is the

-, surface bounding V, and n is the unit vector along the out-

-. ward normal to A.

6
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In these equations the properties of the fluid need not be

continuous functions of space and time.

By comparison of Eq. (7a) with Eqs. (12) to (14) the function

F may be identified as p, pv and pE respectively and the term

dM-/dt as the right-hand side terms of each of these equations.

Then in terms of the moving elements (dV = dV and dA = dA

instantaneously) the mass, momentum and energy conservation

equations in case tI t (exactly or approximately) can be

expressed exactly or approximately as a single vector equation

according to Eq. (llb):

f dV - - W_ - u)' ndA

+ fA _ZndA IQV (16)

where

P 0Z£ 0

Eq. (16) provides a theoretical basis for usage of Eulerian

sliding grids in finite-difference numerical algorithm (see,

for example, Ref. 5).

2.3 CONSTITUTIVE IRELATIONS.

The basic dependent variables in Eqs. (12) to (14) or Eqs. (16)

are p, v and E (or e). Constitutive relations for g and q

must be added to these equations in order to obtain a closed

system. We are concerned here with the case of Newtonian

fluids, i.e., by definition, fluids such that the stress tensor

7
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is a linear functicn of the velocity gradient. From this

definition, excluding the existence of distributed force
couples, results Newton's law, also called the Navier-Stokes

law, for 4:

with

X= (V.v)_ + 2UR (19)

and

S' [jv .+ (vV)tJ (20)

the superscript t denoting the transpose of a tensor. In
Eqs. (18) to (20) p is the pressure, I is the viscous (or
deviatoric) stress tensor, ; is the unit tensor, U and X are

the first (shear) and second (dilatational) coefficients of
viscosity, and 2 is the tensor of rates of deformation.
Furthermore, the fluid is assumed to obey Fourier's law of
heat conduction for %t

a=-kVT , (21)

where T is the absolute temperature. and k is the thermal con-

ductivity coefficient. Many fluids, in particular air and
water, follow Newton's law and Fourier's law.

22.4 THEROMDYN•AHIC/TRANSPORT PROPERTIES.

The state variables 0, e, p, T and the specific entropy S are

connected by thermodynamic relations (assuming local thermo-
dynamic equilibrium).



We consider the case of a simple fluid such that all its thermo-
dynamic properties can be deduced from a single fundamental

relationship which, for a compressible fluid, can be chosen of

the type

S = S(p,e) • (22)

Fxom tCis zelationship p and T are obtained in terms of the

basic vaiiableL p and e from

p =p 2 T(•Se T = iT . (23)

An important special case is a perfect gas with constant spe-
cific heats c and v.* For inuch a gas the laws of state are

p = (y-l)pe, (Y C p/CV) (24)

and
e = CvT • (25)

The viscosity and thermal conductivity coefficients depend
on the local thermodynamic state; in most conditions they depend

only on the temperature;

ii i i(T), X X(T), k = kT) • (26)

The coefficient

K 3X + 2p (27)

is called bulk viscosity coefficient In the "Stokes relation"
(Ref. 3, p. 238\

3X + 2o,= 0 (2C)

0



it is assumed to be zero. However, except for very special

conditions, for example, monatomic gases, there is no reason

to assume 3X = -2p. (Ref. 9, p.337 and Ref. 7, p.540.)

10



SECTION 3

CONSERVATION LAWS IN DIFFERENTIAL FORM

3.1 CONVERSION BY GENERALIZED DEFINITION OF OPERATOR V.

If the properties of the flui•d are continuous and sufficiently
differentiable in some domain of space and time, then the con-

servation equations in integral form can be converted into an
equivalent set of partial differential equations through a
generalized definition of the vector operator V (Ref. 17, p.40)

V.0 = i V an!dA (29)

where 0 is an unspecified (scalar, vector or dyadic) function
of position, V is the volume enclosed by a surface A to which
the point P at which Vý is to be calculated remains interior,
while the largest dimension of A tends to zero, and the multi-
plication in Vý may be scalar, vector or dyadic. In particular

when • - b, a vector, the scalar product becomes

Veb=lim bendA (30)V.0.

which is a scalar, and when 4 = •, • dyadic, the dot product

becomes

V.0 V - A'

which is a vector. Eqs. (30)and (31) can be also obtained by
dividing Eq. (6) by V and then taking the limits of both sides
as V approaches to zero.

11



3.2 CONSERVATIVE FORM.

Dividing Eqs. (12) to (14) by V, taking the limit of every
term as V approaches zero and applying Eqs. (30) and (31) we
"obtain the conservation equations in differential form:

mas.s: + V(pv) = 0 , (32)

momentum: at (pv) + V°(pvv_- =Y) = f , (33)

energy: a (pE) + V.+(pE.- ._+ ,) , _ G • (34)

An alternate form of the energy equation Eq. (34) is in terms

of the enthalpy per unit mass

hw, e + p/p (35)

Substituting

12E -h + v p/p H -p/p (36)

into Eq. (34) we obtain

S (pH) + V.(p v-pv -- .v_ + ) f.v + + G (37)

-- at

where

=h + Zv + P/P (38)

is the total enthalpy per unit mass (which is also known as the
"specific stagnation enthalpy" or for nonviscous and nonheat-
conducting fluid in steady motion the *total energy per unit
mass*, -fif. 18, p. 33).

12
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Substituting Eq. (36) into Eq. (14) we obtain the integral

form of the conservation equation for pH in terms of fixed
elements dV and dA

SfpdV + fA pHv.ndA

-inJ(g.-X-SL~). dA +f/v(f. +G+ ,)dV . (37a)

The corresponding conservation equation in terms of moving
elements dý and d• in case tI - t is Eq. (16) with

wa (pH). _q a (gI-~pvQ (.v+G+ )(17a)

3.3 NONCONSERVATIVL FORM.

Eqs. (32) to (34) are mass, momentum and energy equations in
"conservative" or"divergence" form. (See Section I11-A-3 of
Ref. 14 for the meaning and beneficial effects of using this
form). The corresponding equations in nonconservative form
in which & follows Newton's law are (Ref. 16, Section 1.1):

at (39)mass: r + 0v'v'o , 39

momentum: o d + Vp - f + UV2V + (X+ui)V(V.v)

+(V.v)VX + 29.Vu , (40)

energy: p d + pV-v - O-V.a + G ,(41)

13



where 0 is the dissipation function

O= I:Vv = )(V'v) 2 + 2uD:D (42)

and rt is the material derivative given in Eq. (4).

An alternate forn of the energy equation Eq. (41) is in terms

of the specific entropy S such that (Ref. 3, Eq. (33.1))

TdS = de + pd(I) (43)

By use of Eqs. (39) and (43) we obtain from Eq. (41)

dSPT at- 4- V-q + G . (44)

Adding Eq. (32)(multiplied by S) and Eq. (44) (divided by T)

we have the conservative form of the conservation equation
for PS

(PS) + V. (pSv) = (O-V.a+G) . (44a)

Taking the integral of Eq. (44a) over a fixed control volume V
and applying Green's transformation Eq. (6) we obtain the
integral form of the conservation equation for pS in terms of
fixed elements dV and dA

4PSdV + fpSv.ndA

S(1-V.4+G.dV (44b)

14



The corresponding conservation equation in terms of moving
elements 6 and dk in case tI = t is Eq. (16) with

W_ (pS), t- (0), Q = (O/T-V-S/T+G/T) (1.7b)

3.4 VORTICITY DISTRIBUTION.

The vorticity vector

S- V x v (45)

gives the intrinsic rotation of each fluid element.

By taking the curl of both sides of Eq. (40) (divided by p)
and noting that

? * a =0 (46)

and

V x V (scalar function) -0 (47)

we obtain the general equation of vorticity distribution

dil a ~ + Q( -v + V 1 ) x V
pv

V x f + V (1) xC f + Vi V2  - V(RL) x V xP 0 -

+ V(•.)x V(V.v) - _ VX x V(V.v)
Pp

+ (V.v)1V(!) x 71 + V x (R.V70 + V(1) x(DVi)4)- oP (=.u (48)

If u and X are not functions of space variables Eq. (48)
reduces to

15



d_ (flV)v + 11(V.v) + V( x Vp

-V x f +IV(-xf + 7 2• P

+ (X2p V(*~ 161)(U ) xVxfl (49)

If the flow is incompressible which is characterized by the

condition

V.v - 0 (50)

and implies that p is constant along a fluid particle trajec-

tory but not necessarily independent of space variables (as

in stratified flowspRef. 16, Section 1.3) Eq. (48) reduces to

-V( )xV7_.4 +. IV (9.VU) + V(A) x (R-vu). 5!1),
0 P

If, in addition, P is constant everywhere Eq. (51) reduces to

,']V x f÷+ V20l

1
- -.v 0 vx_-2 .v).1

4

1
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If, in addition, p is not a function of space variables
Eq. (52) reduces to (Ref. 16, Eq. (1.37))

dl1 2
M-_.V)v = V. x f + R V S . (53)

This equation is usually associated with an equation for a

solenoid stream-function vector IF such that

v = V x , (54)

which automatically satisfies the incompressibility condition

Eq. (50). The equation satisfied by T is derived by applying
the curl operator to Eq. (54) and using definition Eq. (45)

to obtain

V2T + a ,0 (55)

since

V - 0 (56)

as T is solenoid.

Let us return now to consider the case of compressible flow.

For an ideal fluid (*a)w0) either Eq. (48) or Eq. (49) reduces
to [Ref. 18, Eq. (7-20)]

df
- (silV)v_ + n_(V-V)

V x f + x f_- V Vp) (57)

17



Another form of this equation can be obtained by using
Eq. (43)[Ref. 18, Eq. (7-211 *

i- (f_.V)v + f_(V.v)

v x f + 7(1) x f + VT x VS (58)P P

If p is a function of p only the last term of Eq. (57) can

be written as

( Vp) V XV~i'rdA (59)

which is zero according to Eq. (47). If the specific entropy
S is a constant, then the last term of Eq, (58) is zero
because VS B o. 2oth conditions are satisfied if the fluid is
isentropic, i.e., the fluid has the same entropy everywhere.
In the absence of any external force f, if a is zero for one
instant at every point of the flow field then da/dt - 0.
Therefore the vorticity at every point of the field will
remain zero and the flow is irrotational. On the other hand,
if the flow is not isentropic, i.e., the fluid has different
entropy at different points of the field, the last term of
Eq. (58) will cause the vorticity to be different from zero in
the next instant. Therefore, nonisentropy flows cannot be
irrotational. Hence irrotationality impliet. isentropy, but
isentixopy does not imply irrotationality.

Multiplying Eq. (48) by p, expanding the term (p!I.V)v by
formula (X) on p. 44 of Ref. 17 and adding Eq. (32) (multiplied
by 0) we have the conservative form of the conservation equa-
tion for pa

18



ia

i (P0) + V* (pv_ Q) = -V. (pA V) + 2I (48a)

where

Q_.- -zv(. (,Q)]j - pfl(V.v_) - , (•)xVp, ,. 1••_ •
ýV[V-0101 011-v) P(!)X P+ V(!)Xf + VXf

"+U~ + PV(ý±+3±)xV(V.Z) _-VR)xx

"+ o(Iv)V_ )xV), - V.xV(V-v) + 2Vxl(-VU)

2+ pV( 1)x (R.VU) (48b)

Taking the integral of Eq. (48a) over a fixed control volume V
and applying Grean's transformation Eq. (6) and Egs. (6) and
(7) on p. 53 of Ref. 17 we obtain the integral form of the

conservation equation for pa in terms of fixed elemnts dV
and dA

f - PII.n aA+ dV (48c)

The corresponding conservation equation in terms of moving

elements dý and dA in case ti - t is Eq. (16) with

- (o_ I)), - 1 ) • (17c)

Combining Eqs. (17a), (17b) and (17c) with Eqs. (17) we con-

vert Eq. (16) to a vector equation representing six conser-
vation equations in integral form with

19



Pv a / f

W OE' 1  =- '-~ a f'v +G .(17d)

PHIV - S p! .v + G +
I at

PS/ 0 O/T - V._q/T + G/T

3.5 BERNOULLI EQUATION.

As discussed in Ref. 18, Sectien A,6, aside from the boundary
layer, the effects of viscosity and heat conduction can be
neglected for the majority of gas dynamics problems. Further-
more, the heat addition, e,.-ept in problems involving combus-
tion, is either zero or r)ery small. Then under ordinary
conditions the gas behaves very much like an ideal fluid
(i.e., a nonviscous and nonheat-conducting fluid). Therefore,
one of the fundamaental problems of gas dynamics is to study
the adiabatic flow of an ideal gas.

Let us further assume that the density of the fluid is a func-
tion of pressure only (i.e., the fluid is barotropic, Ref. 3,
p. 150) and that the external force per unit mass is repre-
sentable by a potentialýP

f/p =(60)

Then by using the relation (Ref. 17, p. 44)
1 2

(v.V)v = L Vv2 - v x (V x v) (61)

and definition of _ (Eq. (45))Eq. (40) can be written as

20



-V x vVP - V( v) V - -vx (62)

where

X + v2 + (p (63)

Let s be a parameter along an arbitrary curve in space. At
any point (with position vector r) along this curve dr/ds is
a unit tangent vector to the curve. The component of Eq. (C 2)

in the direction of dr/ds is

av dr dr dr• ••-(v_ X e) * •• •VX (64)

Since

dr 8V/.v dr\d av dr

we may express Eq. (64) as (Ref.19, p. 11)

dr dr . VX (66)

where

X , 2 ½ ,, + ,, + fd (67)

At any point in time and at every point in the flow field
let dr/ds represent a tangent vector to a streamline (in the
direction of v) or a vortex line (in the direction of 0).
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Then the scalar triple product on the left side of Eq. (66)

is zero and the Bernoulli's equation

X = a constant (68)

is valid along any streamline or vortex line but may have

different constants for different streamlines and vortex lines.

For an irrotational flow a = 0 and there is a velocity poten-

tial *:

v -Vt (69)

Eq. (68) is valid along every curve in the flow field since
in Eq. (66) VX = 0 everywhere. Furthermore, from Eqs. (62)

and (69) we obtain the Bernoulli's equation for a potential

flow

f .+ v2  + ( + -a constant, (701

which holds throughout the flow field. The integral in Eq. (70)
must be computed with isentropic pressure-density relation
because as discussed in the previous section, irrotational
motion can generally be maintained only by constant specific

entropy throughout the field.

For a perfect gas with constant specific heats, the equation

of state can be written in terms of S, p, p as (Ref. 18,
Eq. (7-16)]

p ,const pYGS'cV . (71)
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Then Eq. (70) becomes [Ref. 18, Eq. (8-3)] for • = 0 and

S = const (isentropic)

, + -v 2 + t- t+ H - a constant • (72)

Therefore irrotational flows are not necessarily isoenergetic
in the sense that the total energy H is a constant throughout
the field. Irrotational flows are isoenergetic only if they
are steady, i.e., 3/3t - 0.

On the other hand for a rotational flow Eqs. (67) and (68)show

that when the motion is steady (i.e., ay/_t - 0) the total

energy H is a constant along any streamline or vortex line
(compare with the energy equation Eq. (37)]. The differenca

is that for steady (rotational) isoenergetic flow the motion
is not necessarily isentropic, while for steady irrotational

(isoenergetic) flow the motion must be isentropic. An example
for the isoenergetic but nonisentropic flow is the problem of

steady supersonic flow o•ver a body with curved detached shock.
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SECTION 4

TRANSFORMATION OF CONSERVATION EQUATIONS IN
TERMS OF ORTHOGONAL CURVILINEAR COORDINATES

The vectorial forms of the mass, momentum and energy conserva-
tion equations Eqs. (32), (33), and (34) can be expressed in

a general curvilinear coordinate system by substituting the
expressions for the gradient, divergence, and curl operators
in such a system given, for example, in Reference 20, Appendix C.
For practically useful orthogonal curvilinear coordinates x1,

x 2, x 3, with local unit vectors e1, e 2, e3 in the directions

of increase of x1 , x2 , x 3 the specific expressions can be

found in Ref. 21, Appendix 2.

An elementary displacement can be written as

ds = hIdxle1 + h 2 dx 2e 2 + h3 dx3 e 3  (73)

where h1 , h2 and h 3 are the scale factors. The velocity com-
ponents are vl, v 2 and v 3 such that

v = vlel + v 2 e2 + v 3 13 (74)

Then Eqs. (32), (33) and (34) can be written as follows

(Ref. 16, Section 1.2.2) :

mass; a + h 1h 3  a~ (1-h h hPv) M.0 *(75)

Bt h ~ h h h1 2 3 sJ ) +

1 (12 3' l ;)2
momentum: (Pv1) + h Fj 2h3O i

+ -.
+ -1- (Tl 2h T'Xh3 22

4(76)

24



and two morons by cyclic permutation

energy: a 1 a h(

I1 3T

Tijvi - k _ BT f-v + G (77)

where the suconvention has been used and Tij are the
components omsor I :

pvv - w+ . (78)

They can be ed as

=pviv + P6ij T ij (79)

with

I(V*v)6ij + 21 Dij (80)

where

(1 = (81)

is the Kronecbol.

In Eq. (80)

h1  2  3  1 ~ h1 h h v )(2

vi v 2  h1  V3  h(83)
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with D22 and D3 3 following by cyclic permutation and

ij(ij ax i -2) .ax4
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SECTION 5

CONSE EQUATIONS IN CARTESIAN COORDINATES

To the Cazcoordinates

x 1 = X, X2 = y, X3 =Z (85)

there corzthe scale factors

h 1 = h2 = h 3 = 1 (86)

The cons4zequations Eqs. (75), (76) and (77) become

when Eq. (used:

mass: - (Pv ) = 0 , (87)'C. j

Ja

momentum: .) + x- (Pvivj) + " (88)
""i 

8

energyt + 4 (PE+P)vj -T~V k f~v + G
I R ij i 4 - ivi(89)

wheresindqs. (82) to (84)
av£

V.v (90)

and

Di + i(91)

we havefg(80),

= a ( 3 (92)Sij rx + ( x +
These resme with those usually found in the literature

expressed.sian tensor notations (see, for example,
Ref. 9, Ed9)).
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SECTION 6

CONSERVATION EQUATIONS IN CYLINDRICAL COORDINATES

To the cylindrical coordinates

x1 = r, = e, x 3 = z (93)

there correspond the scale factors (Reference 22, Appendix 4)

hI1 = 1, h 2 = r,, h 3 = 1 .(94)

The conservation equations Eqs. (75), (76) and (77) become

ms + (rpvr) + 5 (pv,) + a (PV) 0, (95)

momentum: • (pVr) + + +(

5 r 22 = fr (6

r (Pvo) + r rr 21) + n (323)

+ _ 21  f 1 (97)

3-E (2vz) + (rf 3 1 ) + (32)

+ a (8+ jz (533) =f (98)

energy: (pE) + 1 'r I E+pr- (TIIVr+T2 iv +T3 1vz)

-k 
2
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+ I- (pE+p)V 0 - (TI 2 Vr+T22V0 +T3 2Vz)

k T

+z 13 +T2vPE+P)vz - (Tl3 r¶2V+¶33vz)

az

=frvr + foVe+ fzvz + G (99)

where 3'ij is given by Eq. (79) with Tij given by Eq. (80)

in which,according to Eqs. (82) to (84),

a (rv) +1 + (100)
Tr r T

and

SD11 2 r 7 + 2 0 D33 IF

12 21 " IT -r r (101)

Di (D vz + v 0
D23 032 1f 1 - W "a',0

S3 r V z2D31 = 13 2 ½ \"a T r-)/
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SECTION 7

CONSERVATION EQUATIONS IN SPHERICAL COORDINATES

To the spherical coordinates

xI = r, x2 = 6, x3 =p (102)

there correspond the scale factors (Reference 21, Appendix 2)

h1i = 1, h2 = r , h3 = r sin 6 • (103)

The conservation equations Eqs. (75),, (76) and (77) become

mass: + r 2 sin 7 F (r 2sinOpvr) + a (rsin8opv 0 )

+ (rpv,)] =w 0 (104)

momentum: - (vr) + r 2 (r sin0 ) + (raineis 12 )
r a in l

r+ 1 3 ),1  " I 22 rl S33 rf (105)

Oe (Pv) + 1 (r2 sinas,) + •..(rsinOS2 2 )

cose 3 - , (106)

US23 MJ3 - Fo8 r 21 fe

"3E (Pvc) + r-s-.. [ (r siner 3 1 ) + I (rsinS 3 2 )
r sino er32

+ ] 1 cosp,(107)
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energy: PE + 1 r 2 sin (E+p)vr -21e31r 2 sine

k + ir2sin sinel(PE+P)ve- (T. 1 2Vr+22v6+T3 2v•)

k +r~sn1 a r[(pE+p) vv (T Vr+2

r r2sin)

k T f .f v e oV+ f,,pV +G j, (108)

where Tij is given by Eq. (79) with Tij given by Eq. (80),

in whick according to Eqs. (82) to (84),

VV1 (r 2sin0v ) + (rsin~ v + (109)

rVs sine

and

aV r a(3  Vra 3D f- D22 1 + vr t D33 = + sinevr+cCOGO

ive ve + ! aVr\
12 D 21 f m r- +r r

D D 1 sn av+ ave (11'

23 322sn YESINO Tr "W

I lav r'., a \

D 31 D13 = 2rsin " + rsainO -r- sine .
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SECTION 8

COMPACT ONE-DIMENSIONAL FORMULATION

The conservation equations in Sections 5, 6 and 7 for three-

dimensional Cartesian, cylindrical and spherical problems

respectively, can be readily reduced to those for various one-
and two-dimensional problems by setting appropriate velocity

components, force components and derivatives to zero. In
particular, if we consider the one-dimensional problems in
which

a( ) •()

x r, v = elvr(r), v 2  v 3  0, v = =0 f 2 V f 3 = 0

S~(111)

the conservation equations in Cartesian, cylindrical and
spherical coordinates can be compactly expressed in one single

set of equations (with j - 0, 1, 2 representing plane, line
and point symmetry respectively):

maus: + r (rJpvr) -0, (112)
- ~at rr

momentum: (ov) + a4 (rJPv 2)

[.V

S.~r ~ i (113)

f r3rrF ar - r Vr ar'(13

energy: (pE) + - [rivr0E+p)I
[Tr vr rrv ~

r

+ 1 a (k~r aT G *(114)
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SECTION 9

CONCLUSIONS

* Following a survey of the basic equations, the mass, momentum

and energy conservation equations and the components of the
deformation and stress tensors for a nonsteady flow of a com-

pressible viscous single-phase fluid have been expressed in
vector and dyadic notations, transformed in terms of ortho-

gonal curvilinear coordinates and specialized for the three-
dimensional cases in Cartesian, cylindrical and spherical

coordinates. These equations caa then be reduced to corres-
ponding equations for one- and two-dimensional flows in various
coordinates. They are in a format readily applicable to

4 practical problems.

If desired the procedure can be extended to general nonortho-

gonal curvilinear coordinate systems.

This report also contains a generalization of the conservation
equations in integral form based on an extension of the Reynolds
transport theorem.
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