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SECTION 1

INTRODUCTION

The governing equations in fluid mechanics are usually
expressed in terms of Cartesian coordinates. They are not
readily convertible into forms useful for practical appli-
cations to one-, two- and three-dimensional cylindrical and
spherical problems. One of the purposes of this report is to
transform the mass, momentum and energy conservation equations
for a nonsteady flow of a compressible viscous single~phase
fluid from expressions in vector and dyadic notations to those
in terms of orthogonal cuvilinear cocordinates and then to
specialize the equations for Cartesian, cylindrical and
spherical coordinates.

Another purpose of this report is to provide a theoretical
basis for usage of Eulerian sliding grids in modern computa-
tional fluid mechanics by establishing a kinematic transport
theorem which is a generalizaticn of the Reynolds transport
theorem. Based upon the theorem the conservation eguations

in iantegral form are first formulated in terms of moving '
volume and surface elements and then converted into the corres-
ponding equations in differential form by using the general-
ized definition of the vector operator V.

In order to present an cverall survey of the basic equations
this rupct also summarizes the equations for the vorticity,
entropy «iu enthaipy and Bernoulli eguation.




SECTION 2

INTEGRAL FORMULATION
2.1 KINEMATIC TRANSPORT THEOREM.

Let x = (xl, Xg, x3) denote the rectangular spatial ("Eulerian®)
coordinates which identify a fixed point in space. Let X =

(xl, X5, x3) denote the rectangular material ("Lagrangian")
coordinates which identify a fluid particle in motion. Let

F = F(x, t) represent any arbitrary single-valued scalar or
vector point function (of position x and time t) possessing
continuous derivatives. The function

M =jv F(x,t)aV = fVo Flx (X, t),t]lJ av, , (1)

where V = ¥(t) denotes a material volume (that is, a volume

moving with the fluid), is a well-defined function of time.
In Eq. (1) the Jacobian {Ref. 1, p.33)

av amloxzaxa) ' axi |
J = avo = acxl'xz'xa) ] det(ﬁ:), (i’ 1;2’32 a = 10203) (2)

relates the element dV of the moving volume V in the x-variables
to the element dV_ of the fixed volume V_ = V(g) = V(t) as £ = 0
in the X-variables.

Using Euler's expansion formula (Ref. 2)

g% = JV.yv (3)




(where v is the velocity vector of the fluid motion) and the
relation between the material time derivative and the gpatial

derivatives (Ref. 3, Eq. (3.6))

d 3 .
a-t—s's-t—'.'!'v ) (4)

we can express the material time derivative of Mg as
d dr az '
Feug=f, 0§+ r F)av,
o
dF
-f [a—t- + F(V°!)] Jav,
Vo

s.f | [%FE + YIUF + F(Voy_)] av
v | | 1

ar 7 .
.T/; [5.6 + aiv (F y_)] aw . (5)

Then in view of Green's transformation (Ref. 1, Eq. (7.2))

for any vector or tensor field é
fdivedave=§ di « ¢, (dA = ndn) (6)
Jv a = = =

we obtain




f, 50 = - § rendn v gy )
or

A

-fae vadV = = f Fy+ndA + a-uvdt ’ (7a)

where V denotes the volume fixed in space which instantaneously
coincides with the materialvolume V¥, A denotes the surface
bounding the volume V and n denotes the unit vector along the
outward nermal to A. Eq. (7a) is known as the transport
theorem of Reynolds (Ref. 1, BEq. (25.4) and Ref. 4, § 14).

It is a kinematic relation independent of any meanxng attached
to F. All fluid physics is contained in the a—uv term.

ﬂow 1et us conajider a volume V = V(t) with bounding surface
A - A(t) sliding with respect to the fluid and obey;ng the

- relation

3 A a -
JE@V) = uendh , ()}
where u is the loocsl surface velocity. We can write
PR R . - ,
“'3 Pyg(aV) = kog-n__dA . o

To each time instant t when the fixed volume V coincides with
the material vulumf V there corresponds a time instant t, when
the moving volume V coincides with the same material volume

V instantaneously. At t, Eq. (9) becomes

fF1 g—(dV) -f (U ondk (10)




_ _ 3 v _ ) N
where F, = F(x,t;), u; = u(x,t,) and EEI(dV) = [5E(dV?]
Since V, A and n in Eq. (10) have the same meaning as those
in Eq. (7) and 4V and dA (at t) in Egq. (7) equal to aV and

ax (at tl) in Eq. (10) we may add Egs. (7) and (10) to obtain
;) 3 v d

", —
In case V and V can coincide with V at the same time (tl = t)
or example, if w, = 0 or w, = v) Eq. (1l1) becomes

d ¥ ~ N d N
_[-&-(NV) = - fAF(V_{ = W) endA + MG, (1la;}

or (since V is fixed in space)
Ny
;Efm?i o - §F( - wendk + Fog (11b)
Sy ]

This is a generalization of the Reynolds transport theorenm

and gives the fundamental transport formula for the time vari-
ation of the volume integral of any fluid state quantity F
over a moving volume which instantaneously coincides with

the material volume. As u =0 (v = V, hence t, = t) Eq. {1llb)
reduces to Eq. (7a) which is the basis of the Eulerian grid
representation in numerical algorithm. As u =¥ (3 = ¥, hence
¢, = t} Eq. (llb) becomes a statement of the Lagrangian mesh
representation. Ref. 5 shows an example of the apwlication

of Eq. (1llb).

2.2 CONSERVATION LAWS,

The mass, momentum and eéhergy conservation eguations for a non-
steady flow of a compressible, viscous, heat-conducting fluid




A

derived and discussed in reference books on gas dynamics (see,
for example, Refs. 6 to 13) have been summarized in recent
books on computational fluid mechanics (see, for example,
Refs. 14 to 16) in compact vector and dyadic (second order
tensor) notations. In a fixed Eulerian frame of reference
these equations in integral form (which is more basic than
the differential form in expressing the physical laws) are as
follows:

. 3 . = :
mass: 3E Vpdv +»f; pv:ndA =0 , (12)
momentum: 2 pvdv + ﬁ pv(ven)da = f gendA + [ fav ., (13)
energy: —Q—prdV + f PEV-ndA = f (gev - g)°ndA

ot Sy S N A== =

+L§-zdv + dev . (14)
v

In these equations, p is the density, E the total specific
energy ("specific" means per unit mass)

E=e+ 3yl (15)

(where e is the specific internal energy), g is the stress

tensnr, g the heat-flux vector, f the external force vector

o pér unit volume, and G is the energy genevation per unit

AN
X '\\“_‘\

volume, and V is a control volume fixed in space, A is the
surface hounding V, and n is the unit vector along the out-~

ward normal to A.

. ‘e ., 8, LU
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In these equations the properties of the fluid need no* be
continuous functions of space and time.

By comparison of Eq. (7a) with Egs. (12) to (14) the function
F may be identified as p, pv and (E respectively and the term
dMV/dt as the right-hand side terms of each of these equations.
Then in terms of the moving elements (d@ dv and dA da
instantaneously) the mass, momentum and energy conservation
equations in case t, =t (exaétly or approximately) can be
expressed exactly or approximately as a single vector equation
according to Eq. (llb):

] Yo ‘Wiv - ondAN
5 fH AV = - § Wl - wendk

N v
+ f Z+ndA > ‘Lg_dv ' (16)
A
where
P 0 0
W=tev}jr 2=y ¢ }JeQ=f £ . 7)
E g v-g £.04G

Eg. (16) pruvides a theoretical basis for usage of Eulerian
sliding grids in finite-difference numerical algorithm (see,
for example, Ref. S).

2,3 CONSTITUTIVE RELATIONS.

The basic dependent variables in Egs. (12) to (14) or Egs. (16)
are p, v and E (or e). Constitutive relations for g and g
must be added to these equations in order to obtain a closed
system. We are concerned here with the case of Newtonian
fluids, i.e., by definition, f£luids such that the stress tensor

S CRI N S *»."'\ \*\""A _.'\\._;:.i o *.'\. *,"-\‘\“ " " SRR ROAT "\‘“‘” e

=
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is a linear functicn of the wvelocity gradient. From this
definition, excluding the existence of distributed force
couples, results Newton's law, also called the Navier-Stokes
law, for g:

g=-pL+1 . (18)
with

I=X2(Vs9)] + 2uD (19)
and

D -._%- [v! + (vx)t] ' (20)

the superscript t denoting the tranapose of a tensor. In
Eqs. (18) to (20) p is the pressure, 3 is the viscous {or
deviatoric) stress tensor, ] is the unit tensor, u and A are
the first (shear) and second (dilatational) coefficients of
viscosity, and R is the tensor of rates of deformation.
Furthermore, the fluid is assumed to vbey Fourier's law of
heat conduction for gq:

q = -kVT , (21)
where T is the absolute temperature, and k {s the thermal con-
ductivity coefficient. Many fluids, in particular air and
water, follow Newton's law and Fourier's law.

2.4 THERMODYNAMIC/TRANSPORT PROPERTIES.
The state variables p, e, p, T and the specific entropy S are

connected by thermodynamic relations (assuming local thermo-
dynamic equilibrium).




We consider the case of a simple fluid such that all its thermo-
dynamic properties can be deduced from a single fundamental
relationship vhich, for a compressible fluid, can be chosen of
the type

S = S(p,e) . (22)

From tiuis relationship p and ¥ are obtained in terms of the
basic variables p and e from

~ _2m (38 = 1
P= -0 T(‘a—p‘)e ¢ T mp . (23)

An important special case is a perfect gas with constant spe-
cific heats c, and <,. For such a gas the laws of state are

p = (y-llpe, (v = c /ey (24)

and .
e=cT . (25)

The viscosity and thermal conductavity coefficients depend
on the local thermodynamic state; in most conditions they depend
only on the temperature: .

ps (™, A=aA(T), k =KT) . ' (26)
The coefficient

€ = 3\ + 24 (27)

is called bulk viscosity coe€ficient In the “Stokes relation"
(Ref. 3, p. 238}

I+ 24 =0 (2€)

‘o




it is assumed to be zero., However, except for very special
conditions, for example, monatomic gases, there is no reason
to assume 3\ = -2p. (Ref. 9, p.337 and Ref. 7, p.540.)




4 SECTION 3
CONSERVATION LAWS IN DIFFERENTIAL FORM

) 3.1 CONVERSION BY GENERALIZED DEFINITION OF OPERATOR V.
i Lo ’
1

B If the properties of the fluid are continuous and sufficiently
differentiable in some domain of space and time, then the con-
servation equations in integral form can be converted into an
equivalent set of partial differential equations through a
generalized definition of the wvector operator V (Ref. 17, p.40)

t
A e e oo

1
V¢ = lim = ¢ondA , (29)
vio 7 §a on

. where ¢ is an unspecified (scalar, vector or dyadic) function
of position, V is the volume enclosed by a surface A to which
the point P at which V¢ is to be calculated remains interior,
while the largest dimension of A tends to zero, and the multi-
plication in V¢ may be scalar, vector or dyadic. In particular
when ¢ = b, a vector, the scalar product becomes

‘ Vb = Lim & §, bendA (30)

which is a scalar, and when ¢ = @, a dyadic, the dot product
becomes

, 1
Vel = lim = sndh (31)
g Va0 ijk g nd

which is a vector. Egqs. (30)and (31) can be also obtained by
dividing Eq. (6) by V and then taking the limits of both sides
as V approaches to zero. '

11
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3.2 CONSERVATIVE FORM.

Dividing Egs. (12) to (14) by V, taking the limit of every
term as V approaches zero and applying Egs. (30) and (31) we
obtain the conservation equations in differential form:

mass: 8+ ve(pw =0 , (32)
momen tums: %% (pv) + Ve(pyv - g) = £ , (33)
energy: é% (PE) + Ve(pEBY - gev + q) = f2v + G . (34)

An alternate form of the energy equation Eq. (34) is in terms
of the enthalpy per unit mass

hee + p/p ' (35)
Substituting

Ewh +i% vg - p/o = R - plo ~ (36)

into Eq. (34) we obtain

2

¢ (0H) + VelpHy - py - grv+ @) = £ov+ 46, (1

where

B=h+3vi=E+ph (38)
is the total enthalpy per unit mass (which is also known as the
"specific stagnation enthalpy" or for nonviscous and nonheat-
conducting fluid in steady motion the “total energy per unit

mass®, ¥+ £, 18, p. 33).

12




Substituting Eq. (36) into Eg. (14) we obtain the integral
form of the conservation equation for pH in terms of fixed
elements 4V and da

E%;jrpﬂﬁv +.}; pHV.ndA
v

'j;(g.g-g-bp!) -ndA +_/;,(_f_-g+G+ %{-)dv . (37a)

The corresponding conservation equation in terms of moving
elements d¥ and dX in case t; = t is Eq. (16) with

We (), L= (g.v-g+py), @ = (£.v+G+ §) (17a)

3.3 NONCONSERVATIVE FORM.

Eqs. (32) to (34) are mass, momentum and energy equaticns in
“conservative” or‘*divergence" form. (See Section 1IX-A-3 of
Ref. 14 for the meaning and beneficial effects of using this
form). The corresponding equations in nonconservative form
in which g follows Newton's law are (Ref. 16, Section l.l):

mass: 8 4 pveg=o (39)
momentum: 0 g% +Vp = £+ uvzy_ + (A+n)V(Vey)

+(Vev) UL + 2DeVy , (40)

| energy: ) g% + pVey = &-Veg + G , (41)

13




where ¢ is the dissipation function
0= 1:Vv = A(Vow) 2 + 2uD:D (42)
and é% is the material derivative given in Eqg. (4).

An alternate form: of the energy equation Eq. (41) is in terms
of the specific entropy S such that (Ref. 3, Eq. (33.1))

7dS = de + pd(%-) . (43)

By use of Egs. (39) and (43) we obtain from Eq. (41)

T = ¢=7:q+G , (44)

Adding Eq. (32) (multiplied by S) and Eg. (44) (divided by T)
we have the conservative form of the conservation equation
for psS

ST (pS) + V.(pSy) = f (4-V.g+G) . (44a)

Taking the integral of Eq. (44a) over a fixed control volume V
and applying Green's transformation Eq. (6) we obtain the
integral form of the conservation equation for pS in terms of
fixed elements 4V and dA

3¢ [rsav + fosy.nan
A

,L% (9-7.g+G)av (44b)

14




The corresponding conservation equation in terms of moving
elements dV and dX in case g, =t is Eq. (16) with

W= (pS), 2= (0), Q= (&/T~V.q/T+G/T) (17b)

3.4 VORTICITY DISTRIBUTION.
The vorticity vector

Q=9Vxy (45)

gives the intrinsic rotation of each fluid element.

By taking the curl of both sides of Eq. (40) (divided by o)
and noting that

VefQlmy ' (46)

¥ x ¥ (scalar function) =0 (47
we cbtain the general equation of vorticity distribution

B-@ny+amy + od x o

-1 i Lg2p - gl
S U XE+TR x £+ 5 Ve VS x v xq

+ VR 9(wy) - 2o x ey

2

1 2
+ (V'X)V(a) x YA ¢+ 5 v x (B.Vu) + V(E) x (D+Vu) (48)

If u and A are not functions of space variables Eq. (48)
reduces to
15
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an

Q- (@Vy+amw + VDX
=1 i ¥ g2
S5V XL+ V(p)x £+578
+ BTG % V(TeY) - WT ) x7x) (49)

If the flow is incompressible which is characterized by the
condition

Vey = 0 (50)
and implies that p is constant along a fluid particle trajec~-
tory but not necessarily independent of space variables (as
in stratified flows, Ref. 16, Section 1.3) Eq. (48) reduces to

- @ny+ )« p

1 7y L U o2
~FUXELVE x £+ VR
oy Byxvnn + 27 @evw) + Vi)« @em). (5D

If, in addition, p is constant everywhere Eq. (51) reduces to

B - @oy

a%-ng_qn%vzg_
1 2 52
-z W ux + 50 x (%) . (52)
16
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If, in addition, u is not a function of space variables
Eq. (52) reduces to (Ref. 16, Eq. (1.37))

an
a-"t.: - (goV)Y_ =

—

= U g2
s Vx £+ 5V, (53)

This equation is usually associated with an equation for a
solenoid stream-function vector ¥ such that

v=9xy¥ , (54)

which automatically satisfies the incompressibility condition
Eq. (50). The equation satisfied by ¥ is derived by applying
the curl operator to Eq. (54) and using definition Eg. (45)
to obtain ' :

2y +aa0 : (55)
since
V¥ =0 | - {56)
as ¥ is solenoid.
Let us return now to consider the case of compressible flow.
For an ideal fluid (u=A=0) either Eg. (48) or Eq. (49) reduces
to [Ref. 18, Eq. (7-20) |

& - @y +ar-y

L
P

Ixfr 0B £~ x g . (57)

17




Another form of this equation can be obtained by using
Bq. (43) [Ref. 18, Eq. (1-21) :

g% = (Q:V)Y + Q(Vev)

=leagru xgrrxs . (58)

If p is a function of p only the last term of Eq. (57) can
be written as

v x (%- Vp) w9 x y(j‘d-‘g) , (59)

which is zero according to Eq. (47). If the specific entropy
S is a constant, then the last term of Eq. (58) is zero

- bacause VS = 0. Both conditions are satisfied if the fluid is
isentropic, i.e., the fluid has the same entropy everywhere.

~ In the absence of any external force £, if Q is zero for one
instant at every point of the flow field then dQ/dt = 0.
Therefore the vorticity at every point of the field will
remain zero and the flow is irrotational. On the other hand,
if the flow ls not isentropic, i.e., the fluid has different
entropy at different points of the field, the last term of

Eq. (58) will cause the vorticity to be different from zero in
the next instant. Therefore, nonisentropy flows cannot be
irrotational. Hence irrotaticnality impliec isentropy, but
isentropy does not imply irrotationality. |

Multiplying Eq. (48) by p, expanding the term (pQ1-V)v by
formula (X) on p. 44 of Ref. 17 and adding Eq. (32) (multiplied
by Q) we have the conservative form of the conservation equa-
tion for of |

18




5% (pQ) + Ve(py Q) = =Ve(pR v) + Q; (48a)
where
Q) = -¥IV+(pR)] = pR(Vey) = pV(Z)XVp + oV (Z)xE + Vxf
+ ur?a + oV ()7 (vey) - o7 (hxTxg
+ p(VeY)V(Z)XVA = VAKXV (Vey) + 2Vx(R-Tu)
+ oV (2 x(gevu) (48b)

Taking the integral of Eq. (48a} over a fixed control volume V
and applying Green's transformation Eq. (6) and Eqs. (6) and
(7) on p. 53 of Ref, 17 we obtain the integral form of the
conservation equution for pQ in terms of fixed ,ol;ment.s av
and dA

5t fpaw + f,
pRdv + 9 ofi(ven)da

-fog(g'p__)aﬁ'* _Cgldv | (48c)
A .

The corresponding conservation equation in terms of moving
elements dV and aX in case t; = t is BEa. (16) with

ﬁ“(oﬁ). _“_:. = (9‘_’_ &) ' Q - (_Q_l) . {17¢)
Combining Egs. (17a), (17b) and (17¢) with Egs. (17) we con=-

vert Eq. (16) to a vector equation representing six conser-
vation equations in integral form with '
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3.5 BERNOULLI EQUATION.

As discussed in Ref. 18, Secticn A,6, aside from the boundary
layer, the effects of viscosity and heat conduction can be
neglected for the majority of gas dynamics problems. Further-
more, the heat addition, except in problems involving combus-
tion, is either zero or very small. Then under ordinary
conditions the gas behaves very much like an ideal fluid
(i.e., a nonviscous and nonheat-conducting fluid). Therefore,
one of the fundamental problems of gas dynamics is to study
the adiabatic flow of an ideal gas. :

Let us further assume that the density of the fluid is a func~-
tion of pressure only (i.e., the fluid is barotropic, Ref. 3,
p. 150) and that the external force per unit mass is repre-
sentable by a potentialy

Then by using the relation (Ref. 17, p. 44)

L yv?

7 = v x(Vx vV (61)

(v Dy =

and definition of Q (Eq. (43)) Eq. (40) can be written as
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ov
- =1 - 1 .2\ _ = o
-é-E‘Y_xQ-TVP V(}'V) Vo= -V¥X , (62)
where
xafg-pﬁ-a-%-v2+(p . (63)

Let s be a parameter along an arbitrary curve in space. At
any peint (with position vector r) along this curve dr/ds is
a unit tangent vector to the curve. The component of Eg. (%2)
in the direction of dx/ds is

v @ar

dr dr
Fram WY g eE X (64)
Since
{ v dr
. Vf{%.‘i gf.)dsagx-a% ' (65)

we may express Eg. (64) as (Ref.l9, p. lil)

ar _d
(Lx@ +E=g5- 9% , (66)

where

\(uf-ﬂ-{» v+ga+f(%-€: g%)ds .. (67)

At any point in time and at every point in the flow field
let dr/ds represent a tangent vector to a streamline (in the
direction of v) or a vortex line (in the direction of Q).

T Ry ", L » -
."'f‘.',.'-‘.ql',f..a',.“q" n'wwqr X0, - *pe o -
f,' S 'h',,,'p N ‘-,' ,‘" ". St 'ﬁ "u\.."“"&' ) " - KX u" .‘r",-" » *“5‘ \'? Nl"!'t&(""n"\q"" xub" NN
"‘“‘-.-‘-.-- g. -»; e, .- ., A \'. 6,- '_'
e BB A SAL R S .S 4‘ a’ !Ae A S, LL‘.'AQ%\“'sQ 9 N, s.' MR o ,-‘?"*‘
LAY a3 3' AT t., R‘ ‘ Vet te ot




Then the scalar triple product on the left side of Eq. (66)
is zero and the Bernoculli's equation

X = a constant (68)

is valid along any streamline or vortex line but may have
different constants for different streamlines and vortex lines.

For an irrotational flow @ = 0 and there is a velocity poten-
tial ¢:

v = ve (69)

Eq. (68) is valid along every curve in the flow field since
in Eq. (66) VX = 0 everywhere. Furthermore, from Egs. (62)
and (69) we obtain the Bernoulli's equation for a potential
flow

f%ﬂ’_+%v2+w+-§%-aconstant' (70

which holds throughout the flow field. The integral in Eq. (70)
must be computed with isentropic pressure-density relation
because as discussed in the previous section, irrotational
motion can generally be maintained only by constant specific
entropy throughout the field.

For a perfect gas with constant specific heats, the equation
of state can be written in terms of S, p, » as [Ref. 18,

p = const pYe™Sv . (11)
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Then Eq. (70) becomes [Ref. 18, Eg. (8=3)] for ¢ = 0 and
S = const (isentropic) :

%% + % v + ?%I % = %% + H = a constant . (72)

Therefore irrotational flows are not necessarily isoenergetic
in the sense that the total energy H is a constant throughout
the field. Irrotational flows are iscenergetic only if they
are steady, i.e., 3¢/9t = 0.

On the other hand for a rotational flow Egs. (67) and (68) show
that when the motion is steady (i.e., 3v/3t = Q) the total

energy H is a constant along any streamline or vortex line
(compare with the energy equation Eq. (37)]. The differenca
is that for steady (rotational) isoenergetic £low the motion
is not necessarily isentropic, while for steady irrotational
(iscenergetic) flow the motion must be isentropic. An example
for the isoenergetic but nonisentropic flow is the problem of
steady supersonic flow over a body with curved detached shock.
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SECTION 4

TRANSFORMATION OF CONSERVATION EQUATIONS IN
TERMS OF ORTHOGONAL CURVILINEAR COORDINATES

The vectorial forms of the mass, momentum and energy conserva-
tion equations Egs. (32), (33), and (34) can be expressed in

a general curvilinear coordinate system by substituting the
expressions for the gradient, divergence, and curl operators

in such a system given, for example, in Reference 20, Appendix C.
For practically useful orthogonal curvilinear coordinates Xy

X5, X3, with local unit vectors e;, e,, €3 in the directions

of increase of Xy Xy, Xg the specific expressions can be

found in Ref. 21, Appendix 2.

An elementary displacement can be written as

ds = hydxje) + hydxpe, + hydxye; (73)

~where hl’ hz'and h3 are the scale factors. The velqcity com-
ponents are v;, v, and vy such that

Y= vig Vit Ve - e

Then Egs. (32), (33) and (34) can be written as follows
(Ref., 16, Section 1.2.2):

) d 1 '3 41 ,
mass: 5% + ﬁ;ﬁ;ﬁ; §§; (Kg hlh2h3pvj) =0 |, {75)
momentum: ‘é§€ (Wl) + fx—'f%'h_ 5-%— (1%- h,h,h,9, .)+
— 17273 %5 \Y J

. 1 (, ahl _ g anz)
hihy \12 3x; ~ Y227%%])
1 L ah,
*EE; (’13 = - Y ’53c““) = £ (76)
173 3 1
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and two morens by cyclic permutation

L9 1 3 (1
energy: 'éiml A -——axj {ﬁ-—j h;h hgy [(pEﬂD)vj
1 9T . ' 7
TigVi T kﬁ_axj}"f.!"’G ' (77)

where the suconvention has been used and gij are the
components omnsor J :

pYV - g =pww +pl -1 . (78)

They can be ed as

= - 79
| = PVyVy + péi] iy (79)
with
= MV Gy + WDy (80)
where
s =1 81)
543 {0 ¥ 3) (
is the Kroneciol.
In BEg. (80)
FERT T ( hyh, “3"&) ' (82)
1723 "z -
v v, oh
1{ "1 ......l. + 3 1) (83)
EI(axL By 9%, * By TRy
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with D,, and Dy, following by cyclic permutation and

v, ov, dh oh.
1 ., 1. 1 L -
P13 (i) T [h‘; 7, ' By % " Eh; (Vi 3% V3 axi)] - (84)
26
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SECTION 5

CONSE EQUATIONS IN CARTESIAN COORDINATES
To the Carcoordinates
X) =X, Xy =Y, X3 = 2 (85)
there corrthe scale factors
hj =h, =hy =1 ., (86;

The consdrequations Eqs. (75}, (76) and (77) become
when Eq. (used:

3
X,

mass: — (pvj) =0 , (87)
J

art, .
. 3 ap _ _ij _
momentum: j.) + T’q (pvivj) + -5%1 Tx—Jl f‘i ' (88)

enerqgy: ) +\§§-j- [(pE+p)vj - Tijvi -k -%?J—]a fj_vi + G .,

(89)
where,sindys. (82) to (84)
avz
and
v v
1 i
Dij w ‘f(‘sﬁi’; + '3“5“1‘) ' (91)
we have., £3{80),
v, [3v,  dv )
= A § + 4 + . (92)
ij axg 3xj X,

These resue with those usually found in the literature
expressed :sian tensor notations (see, for example,
Ref. 9' Ea9>) .
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SECTION 6

CONSERVATION EQUATIONS IN CYLINDRICAL COORDINATES
To the cylindrical coordinates

Xy =TI, X, = 0, X3 =2 (93)

there correspond the scale factors (Reference 22, Appendix 4)

hy, =1, h, = r, h3 =1, (94)

1 2

1

The conservation equations Egs. (75), (76) and (77) become

mass: 22+ 1.2 (rov) + I (ovy) + = (ovy) = 0, (95)
momentum: é% (ov,) + % é% (xF),) + % g% (%;,) + g% (J4)
-z 9,=f, , (96)
o tovg) + L (3, + L E g, + L (e,
+18, =8, (97)
3E V) + 5y (593 + 1 gy O3y
top By = £, | (98)
energy: 3¢ (°B) * I 7% H“’E“P"'r = MVt T Vet Ty Vs)

3T
'k:rf]}
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9
30 [(DE+P)V3 = (T12VI+T22v6+T32vZ)

]

5 ) .
+ 3% [(pE+p)vz - (Tl3vr+‘tz3ve+‘t33vz).

-k]

£V, + fgvpt £V, + G (99)

+
] L

1
HIw
a3

S

where Sij is given by Eq. (79) with Ti4 given by Eq. (80)
in which,according to Eqs. (82) to (84),

ov v
et L Mo 2V —
Ve=gar V) Y oyt oz (100)
and
| v, (av6 ) avz <
Dyy =5 + P22 =" F\35 * V) » P33 = 3% ¢

(101)

A4

D3

1
31’913"‘2"(‘3‘2‘*'&“
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SECTION 7
CONSERVATION EQUATIONS IN SPHERICAL COORDINATES

To the spherical coordinates

X)=x, X,= e, X4 =y . (102)

there correspond the scale factors (Reference 21, Appendix 2)

The conservaticn equations Egs. (75), (76) and (77) become

mass: %+

] 2 . ]
" sinB [55 (r sxnepvr) + = (rsinepve)

+ .saw (rpvv)] = 0 , | (104)

momentum 3— (pv ) + —i;;; [g% (rzsine$1l) + é%‘(rsineﬂiz)

1 _
3

(pv,) + [ (r 8ined,,) + (xr8indy,,)
T 6 rzsme 9T 21 ?6‘ 22

3 cost o
tw ("23’] TetnE %3~ F a1 ™ £ (108)

] 1 9 2. . ]
_ (pv,) + [ (r°sind¥.,) + (rsineY.,.,)
ot 8 rzsine or 3; 90 32

0 ‘ cose
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2 1 9 2
enerqgy: E) + 54— . ind E+p)v,. - +T
energy ot (pE) rzsine '5'; {r 5 [(D P) r (T llvr 21 e 31 w)
-k -g%]} + -—2-—1— }-aa-{tsine[(pﬁﬁp)ve - (T‘12Vr+t22v6+1'32v¢)
r“sind

_k 3T [

- + T

z ‘3'6']} Zoirs k) { (PE+p) Vo © (T 4V, * 23ve+r33v¢)

= £ oyt £qvg + ﬁp?p +G , (108)

where 3ij is given by Eq. (79) with Tij given by Eq. (80),
in which according to Eqs. (82) to (84),

Vey = T——-— [ (rzsinevr) + 5% (rsineve) + 3% (W\P)] , (109)

r“sind
and
v av v
r = X 9 1 )
Dll = Ti;— ' D (.W + Vv ) 33 = m (-5-—.3- + sinevr+coseve);

v v v\
1 0 8 l ' 'r
Du‘“n”i(w ‘?*EW) '

1 av‘p ave >‘ (ll(
Dy3 = D3z = 37aime \®3M 3o * °°9°"¢)

v Iy
1 - _
D3y = P13 = Irsin® (W + rsdnd 5“‘%) J
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SECTION 8
COMPACT ONE-DIMENSIONAL FORMULATION

The conservation equations in Sections 5, 6 and 7 for three-
dimensional Cartesian, cylindrical and spherical problems
respectively, can be readily reduced to those for various one-
and two-dimensional problems by setting appropriate velocity
components, force components and derivatives to zero. 1In
particular, if we consider the one-dimensional problems in
which

okl AR LR

(111)

X =r ys= glvr(r), Vy = Vy S 0,

the conservation equations in Cartesian, cylindrical and
spherical coordinates can be compactly expressed in one single
set of equations (with j = 0, 1, 2 rep:esentipg plane, line

. and point symmetry respectively):

o .3 o33 e |
mass: - ¢+ 3 % (rlov ) =0, . (;12)

momentum: g% lov,) + ﬁ% g% ‘rjpvrz)

energy: g% (pE) + J% g% v (pE+p4
r




SECTION 9
CONCLUSIONS

Following a survey of the basic equations, the mass, momentum
and energy conservation equations and the components of the
deformation and stress tensors for a nonsteady flow of a com-
pressible viscous single-phase fluid have been expressed in
vector and dyadic notations, transformed in terms of ortho-
gonal curvilinear coordinates and specialized for the three-
dimensional cases in Cartesian, cylindrical and spherical
coordinates. These equations caa then be reduced to corres-
ponding equations for one~- and two-dimensional flows in various
coordinates. They are in a format readily applicable to
practical problems.

If desired the procedure can be extended to general nonortho-
gonal curvilinear ccordinate systems.

This report also contains a generalization of the conservation

equations in integral form based on an'extension of the Reynolds
transport theorem. ‘
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“ATTN: CNEEDHAM
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DEFT OF DEFENSE CONTRACTORS (CONTINUED)

SCIENCE APPLICATIONS INTL CORP
ATTN: H WILSON

SCIENCE APPLICATIONS INTL CORP
ATTN: J COCKAYNE
ATTN: W LAYSON

SCIENCE APPLICATIONS INTL CORP
ATTN: A MARTELLUCCI
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SCIENCE APPLICATIONS INTL CORP
ATTN: G BINNINGER

TRW ELECTRONICS & DEFENSE SECTOR
* ATTN: G HULCHER
ATTN: PDAI

WEIDLINGER ASSOC, CONSULTING ENGRG
ATTN: P WEIDLINGER

RS DA NG L LACSEEAS LI iaY

TN
ST

L}



