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BY
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In this paper we study the connectedness of 3 dimensional designs
by reducing the dimension of designs from three to two. A new
graphical method of determining the connectedness of designs is
presented. The method is easier and simpler than the earlier known
methods of Birkes, Dodge and Seely (1976) and Srivastava and Anderson
(1970). A generalization of this method for 4 or higher dimensional

designs is also discussed.
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1. Introduction

A 3 dimensional (i.e., 3-factor) design involves 3 factors
treatment, row and column. The sets of treatments, rows and columns
are the sets of levels of 3 factors. The determination of
connectedness of 3 and higher dimensional designs is a difficult
task. The method of Srivastava and Anderson (1970) involves the use
of A-operator. The method of Birkes, Dodge and Seely (1976) known as
BDS algorithm, uses the incidence matrix of a design to find the
estimable parametric functions by R-and Q-processes. The A-operator
is indeed a powerful mathematical tool and R- and Q-processes are
indeed good mathematical algorithms. When it comes to actual doing
and finding, we find those two earlier known methods are difficult to
implement and there is something conspicuously missing. Our search
leads to a new concept of connected path for three dimensional
designs, a generalization of a powerful idea of Bose (1947) for two
dimensional designs. The proposed method takes into account the idea
of reduction in dimensionality, discussed in Section 2, and the
concept of connected path, discussed in Section 3, and some graph
theoretic tools. The method consists of drawing graphs, i.e., joining

points by lines directly from the design and does not require to write

down the incidence matrix and construct another matrix from it to

perform R~ and Q-algorithmic processes like in BDS algorithm.
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2. Reduction in Dimensionality

Consider a 3 dimensional design with a rows. b columns and v

treatments. The standard additive model for the observations is
E(yijk) = u + ai + Bj + Tk’ i=1,...,a, j=l,e.c,b, k=l,...,v, (1)
where the observations yijk's are correlated or uncorrelated random g

variables with equal or unequal variances. Consider a pair of columns

(j,j'), the row 1 and the pair of treatments (k,k') occurring in the

design corresponding to i and (§,j'). Define T(k’k') = Tk' - T :'
B(j,j') = 8j' - Bj' Then we have from (1), .
By = Yagd ™ Bgagny * Tyt 3 2) :

Similarly for a pair of rows (i,i'), the column j and the pair of
treatments (k,k'), we have

EOyogier = Vi) ™ %10y T Ty T 3 :

where a -a. The pair of columns (i,j') (or. the pair of

r

(1,1 © %o

rows (1,1')) can be treated as a one-dimensional block. We thus

reduce the dimension of a 3 dimensional design to two by considering

v v Vv ®w

all pairs of columns (or rows) and all pairs of treatments. The

1= <y

equations (2) and (3) are essentially less than full rank
reparametrization of (1).

Denote the sets whose members are the pairs of rows, columns and
treatments, respectively by

I={(1,1"), 1#1', 1, 1' (1,...,a)},

J= {53, 323", 3, 3' (1,0},

K = {(k,k"), K,k' €(1,.0.,v)}. (4)




The cardinalities of the three sets are 'Il = a(a-1), 'J' = b(b-1) and
lKl = vZ, In case, the treatments are not replicated more than once
in a row or a column of the design, we assume k#k' in K. Then lKI =
v(v-1).

We write k~k' if two treatments k and k' are connected, i.e.,
T(k,k') is estimable. Similarly for rows and columns.
Definition 1. Two members (k;,k;) and (k3,ky) in K are said to be
connected, (kj,k;) ~ (kj3,k,), if T(k3,kk) - T(kl’kZ) is estimable
under (1).
Note in Definition 1, the cases k;=k,, k3=k, and ky=k3, ky=k, are
trivially true. Clearly, ~ is an equivalence relation on the set K.
Let Kl, )

classes of ~ on K.

K ,...,Kq,q(z_l) is an integer, be the distinct equivalence

Lemma 1. If (kl,kz) ~ (k3,k4) then (kul,kuz) ~ (kU3’ku“)’ where

(u,uy,u3,u,) is any permutation of (1,2,3,4) in the dihedral group D,

of permutations of order 8.
lemma 2. The following are true.

. k Y ~ ~n o 0
a. (k) .k)) ~(k,ky) L 3 w-1""w

l’kw) ~ (kw’kl) ==} kr~kz,k ook <k,
where w(> 2) is an integer,

b. kj~k, => (k;,k) ~ (k,,k) for any k,

c. (kj,kp) ~ (k3,k,) and k3 ~ k, ==> k; ~ ky,

d. ki~ky, ky~k, ==> (k;,ky) ~ (k3,k,).

The proofs of Lemmas 1 and 2 are easy. Lemmas 1 and 2 are very useful

in finding the equivalence classes. To illustrate this, suppose

(ky,kp) ~ (k3,k,), (ky,kg) ~ (ky,kg) and (kg,kg) ~ (kg,ks). Then,
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by Lemma 1, we have (k;,k3) ~ (k,,k,) and (kjy,k,) ~ (kg,kg). Thus,

[}
(k,k3) ~ (kg,kg). Tt now follows from Lemma 2 that kI~k3 and ky~k,.

Note that cT ,» ¢y and ¢, are real constants, is a

- CoT
(k3 ,k“) 2 (kl ka)
constrasts of T's. However, in Definition 1, we treat (kl,kz) and
(ka,k“) as two treatments in the reduced 2 dimensional design and

consider a simple contrast T (i.e., ¢; = c,). The

(k3,ky) - T(k1.k2)

estimability or nonestimablility of c¢;7 can easily

- T
(k3,ky)” S27(ky,kp)

be determined from the equivalence classes K ,Kz,...,Kq.

1
Theorem 1. A 3 dimensional design is connected w.r.t. treatment if
and only if (iff) any two members in K are connected.

Proof. Suppose any two members in K are connected. Then, for an two
treatments k, and k,, we have (k,,k,) ~ (kakl)' Thus k;~k, by Lemma
2. If the design is connected, then for any two pairs (k;,k;) and
(k3,k,) in K we have k)~k, and ky~k,. Therefore, (kl,kz) ~ (k3,k“) by
Lemma 2. This completes the proof.

Theorem 2. A 3 dimensional design is completely connected (i.e.,
connected w.r.t. treatment, row and column) 1ff any two members in
each of I, J, and K are connected.

Proof. Similar to the proof of Theorem 1.

If the design is connected w.r.t. treatment then q = 1, i.e., there is
one and only one equivalence class. In case the design is not
connected w.r.t. treatment we have q > 2 and any two members in an

equivalence class are connected and any member in an equivalence class

is not connected to any member in a different equivalence class. The

. .'_‘.‘:,‘.:ﬁ-‘...\'.,.-.’.-._



equivalence classes KI’K2’°'°’Kq give all the estimable and non-
estimable row and column contrasts from the equivalence classes
Il""’Ir and Jl,...,Jp, p,r(> 1) integers, of ~on I and J.

It is easy to see that any two members in K occuring in two
distinct rows (or, columns) of (j,j') (or, (i1,i')) are connectd. Two
pairs of columns (j,,i,) and (j3,j,) are connected if a pair of treat-
ments in (j),j;) is connected to a pair of treatments in (jj3,j,). If
(31,32) and (j3,j,) have a common pair of treatments then (31,32) ~
(33,Ju) or, in other words, every pair of treatments in (j;,j2) is
connected to any pair of treatments in (j3,3},). Similarly, two pairs
of rows (i;,i5) and (i3,i,) can be connected. If there is a pair of
treatments (k,k) appearing in any row (or, column) of (j,j') (or,

(i,1')) than j~3' (or, i~1').

3. A Simple Graphical Method

Suppose the pairs of treatments (k;,k,) and (kj3,k,) are occuring
in a block (j;,j;) and the rows 1, and i, of a 3 dimensional design.
It follows from (1) that

RTEI Yi130ks T Vaadiks ¥ Vip90k) Tlyakg) T gkt )
We therefore say that (k,,k,) and (kj3,k,) are connected in the
analytical sense of Definition 1 if they occur in a block (3;,32), or,
in other words (k,,k,) and (kj,k,) are connected by the block (jl,jz)
which contains them. From Lemmas 1 and 2, it follows that (kl’kz) and

(k3,ky) with k) = k3, occuring in two different blocks may be

connected because some other pairs of treatments, e.g. (ks,kz) and

A 1 r e
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(kg ,k, ), are connected by some other block containing them. 1In this
case, we say that (k,,k,) and (kj,k,) are connected by a third block.

Suppose (k) ,k;) is occuring in a block (j;,j;) and a row i; and
(k3,k,) is occuring in a block (j3,j,) and a row i, of a 3 dimensional
design. It follows from (1) that

E(yixhkl BRETED TN Y123 3ks * yizjuku) )
- + B - B .
D Gy T TG T T(gady)

If (k;,k,) and (ky,k,) are connected by a block, then it follows from
172 3%y

T
(k,,k

(6) that (j;,3i») and (j3,j,) are also connected and vice versa. We
say combining (5) and (6) that two blocks (j;,j,) and (j;,3,) are
connected if every treatment (k;,k;) in (j;,j;) is connected to every
treatment (kj,k,) in (j3,3,)-

We now introduce a new concept of connected path for three
dimensional designs. Consider a graph whose points are the pairs of
treatments and any two points are joined by an edge if they are
connected, 1in the sense of Definition 1, by a block. When two points

(ky,k,) and (kj3,k,) are joined by a block (31,32), we write

(kp5kp) 1032) e, iy,

The adjacency of any two points in the graph can be determined from
the fact that all points occuring in the same block of the design are

adjacent and applying the Lemmas 1 and 2.
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Definition 2. Two points (k),k;) and (k{,k&) in the graph are said to

- - e

be connected if there is a path

(ky,k2) (j/l iz) (k3 ,ky)me e on(k] k2),
. joining (k;,kz) and (ki,ké).

It follows from Theorem 1 that the design is connected w.r.t.
treatment if any two points of the graph are connected (i.e., the
graph is connected). Thus for a design connected w.r.t. treatment
there is a single component in the graph (or, equivalently, there is
one and only one equivalence in K as discussed in Section 2).

We now discuss a simple procedure of determining whether a design
is connected or not. We assume without any loss of generality that
; b < a and consider the column blocks (1,2), (1,3),...,(1,b) and

(2,3). Note that the points in any block form a completely connected

subgraph. Two subgraphs are connected when any point of one subgraph

can be joined by a connected path to any point of the other subgraph.
. Lemmas 1 and 2 are the only tools needed in verifying connectedness or
disconnectedness of two subgraphs. The main step in our procedure is
to check whether b subgraphs are part of a single component of the
graph or, in other words, whether these b subgraphs are connected or
not. If these b subgraphs belong to different components of the graph
(i.e., any of them is disconnected from some others), then the design

is not connected w.r.t. treatment and block (column). If b subgraphs

belong to a single component of the graph, then the design is

connected w.r.t. block (column). This in fact means the connectedness

of b(b-1) subgraphs corresponding to b(b-1) column blocks. The

WA e et e T e . et B A T AT I L D . RN TP RN A . . - Te ta v, " PR R
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connectedness of the subgraphs (j;,i,) and (j;,3;) implies the
connectedness of treatments (k),kp) in (j;,j) and (kp,k;) in (§3,3))
occuring in the same row. This, in turn, implies the connectedness of

two treatments k; and k;, or, in other words, all treatments in every

row of the design are connected.

4. Examples
We now present two examples to illustrate the procedure discussed
in the earlier Section. Our first example of a 3 dimensional design

is taken from Shah and Khatri (1973).

8 6 1 3

X 7 5 2 4
E The column blocks (1,2), (1,3), (1,4) and (2,3) are shown below.
y (1,2) (1.3 (1,4) (2,3)
12 15 16 25
34 37 38 47

8 6 81 8 3 61
. 75 72 74 52

From the block (1,4) we have

i

(1,4) (1,4)
(1,6) : (3,8 - — (8,3).

It follows from Lemma 2 that 1~6 and therefore (8,6) ~ (8,1).

a e a 8

Note that (8,6) is in the block (1,2) and (8,1) is in the block

R LR et % e N N T L ey e e e T et e T e e e et e e e e e e,
>y - .‘ P 8 Y 4 e 'S‘.‘-‘,\ \ - e . y \_.\ .‘~ o e iyt LN Lt . EF TSI N Sy ~ e
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(1,3). Thus the third block (1,4) is connecting the treatments (8,6)

and (8,1). This fact is expressed by

1,4
(8,6) S,—~2 (8,1).

Similarly from the block (2,3),

2,3
(2,5) E-\3 (5,2),

and this 1mﬁ11es 2 ~5. Thus (1,2) in the block (1,2) and (1,5) in

the block (1,3) is connected by a third block (2,3) and we have

(2,3)
(1’2) T~ (1)5)0

It is interesting to observe
(1,4)
or

(2,3)
(1,6) —— (6,1).

The subgraphs corresponding to the blocks (1,2) and (1,3) form one
connected component and the subgraphs corresponding to the blocks
(1,4) and (2,3) form another connected component in the graph.

Therefore the design is not connected w.r.t. treatment and block

(column).
//(2’3)\
{}.2) (3,4) (3,7) (1,21 (3,8) (1,6) (6,1) (2,5
(1,4) / (1,4)
/ . or Vi
/ (2,3)
- ’ (1)4) /)”t\
(1,2) L (1,3) (1,4) or /(2,3)\ A
(I)A) / (2$3) B L2
(7,5) (8,6) (8,1) (7,2) (8,3 (7,4) (4,7) (5,2)

\(2,3)-/

Figure 1. Connected and disconnected subgraphs correspondiang to the
blocks (1,2), (1,3), (1,4) and (2,3).

e k]



The second example of a 3 dimensional design is given below.

From the column blocks (1,2) and (2,3) we have

(1,2)
or

(1,2) (o2 (5.3y a3 (5 4y @223) 4y,

From Lemma 2, it follows that the treatments ] 2 3 4 and the design is

completely connected.

5. Interrelation

The graphical method, BDS algorithm and A operator in Srivastava
and Anderson are techniques in solving the same problem of determining
connectedness. There is a common ground to all these methods and this
can be seen from the equations (5) and (6). The R-process and the
Q-process in the BDS algorithm can be applied to find estimable
constrasts involving only 1 parameters. A loop L defined in the BDS

algorithm can be obtained from the observation y, . s Y s
Lyirky Tiydok;

dy and the corresponding t1-functional is T(L) =

y an
1232ky i231ks

T - T which appears in (5). Thus the observations
(kyokp) Tk k)’ PP 5

corresponding to the treatments (kl,kz) and (k3,k4) in the rows il and ]
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i; of the block (j;,j2) gives a loop. A loop can also be a

combination of several such loops. A quasi-loop defined in the BDS '
algorithm is in fact obtained this way. From the connected paths

discussed in Section 3, one can write down the loops and the

quasi-loops in the BDS algorithm. There is obviously an even number

of pairs, in the sense of BDS algorithm, in a loop or a quasi-loop. g
The graphical method discussed in this paper is lot simpler to imple- -
ment than the BDS algorithm. To illustrate this let us consider

Example 1 on page 103 in Birkes et. al. (1976). Assuming Y = T and

N
considering the blocks (2,3) and the rows 2 and 3, we get (2,4) QEIJ) i
(2,1) and (4,4) (3:3) (2,1). It follows from Lemma 2 that 1~2 and :
1~4, i.e., T} - T2 and T} - T, are estimable. Considering the block
(1,2) and the rows 2 and 4, we find the treatments (3,2) (1133 (1,3). :
Now 1~2 implies (1,3) (2f3) (2,3). Thus we have the connected path E
(3,2) (113? (1,3) (2,3) (2,3) and this, in turn, implies 2-~3 i.e.,
Ty - T3 is estimable. We do not need to write the matrices N and M :
and to do complicated operations as in the BDS algorithm. S
The idea of a loop or a quasi-loop is present in Definiton 4.2 z
and in the condition (a) of Theorem 4.2 in Srivastava and Anderson i
(1970) when t-functional is a simple contrast of t's. To illutrate 5
this, suppose (k;,k,) and (k;,,k;) are occurring ia (j,,j,) and the -
rows {; and 1,. Then T, = (ED = (11,5;,k;),t, = (12,j2,k1)), -i

N
r
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T, = (EJ = (11,32.k2), t3 = (12,j1,k2)). § =2, and T =

(tg> t;, to, t3) is a chain connecting the levels kl and k, of
treatment in the notation of Srivastava and Anderson. (Incidentally,
there are some misprints in the equation (4.6) and the other places,

} although the results are all correct.)

S N

6. Higher Dimensional Designs

The method discussed in Sections 2-5 for 3 dimensional designs

R o o B

can be generalized for designs of dimensions 4 or more. Consider a &
dimensional design with a blocks of type I, b blocks of type II, ¢
blocks of type III and v treatments. The standard additive model is

BTy i) = ¥ +'o.i FBH Y F T, mlena, Sel,b,

L=1,..0.,¢, k=1,...,v, 7
Suppose the treatments k;,k,,ky and k, are occurring in the blocks 1,
and 1; of type I, j; and j, of type II and £y, 25, 23, &, of type X
III. Then

E(y -y -y, -y )
113141k 1132%2k2 i23143k3 123280k,

=T + Y
where T =T -1
((kusk3), (kaky)) ~ “Ckpuky) — (kyoky), T((Lga23). (£5,20)) .
= - nd = - . A4 di i 1 ;
Y(22,20) 7 V(0,03 * Yiag,a) T Ty T Yy mensiona :
design 1s thus reduced to a 2 dimensional design. Any two treatments

occurring in a block, say ((%,,%3), (2,2))), are connected. Any two

blocks are connected if treatment, ((ku4,k3), (k2,k1)), in one block,

g v, v e~
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say ((24,%3), (2,,%;)), is connected to a treatment, say ((k;,ké),
(k3,k1)), in the other block, say ((%,,%3), (23,%2;)). The connected-
ness or disconectedness w.r.t. treatment and type III block can easily
be determined by defining an equivalence relation on appropriate

sets. The determination of connectedness w.r.t. type I block and type
II block is then straightforward. The idea of reduction in dimension-
ality jutifies the partitioning of the parameters in the model (7)
using the BDS algorithm, see Example 2 of Section 10 in Birkes, Dodge,

and Seely (1976).

Remarks

If the model is nonadditive, i.e., interactions are present in
the model, then the idea of reduction of dimensionality does not
work. However, the idea in this paper helps in identifying the
estimable parametric functions. To illustrate this, we consider a

nonadditive model for a 3 dimensional design

E =
(Y1 k) u+a

i + Bj + (aB)ij + rk, (8)

3

h

where (aB)ij is the interaction effect between the ith row and the jt

column. A loop can still be obtained from the observations yi jiky’
1J1%1
y y Y and y and the corresponding 1, (aB) -
1132kz " “i232ky 1231ks &0
functional 1is T -1 -7 + 1 + (aB) - (aB) -
k) k2 k3 ky 115 i132

(aB) + (aB) , the right hand side of (5) under (8).
iz 1232

i
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