
AD-A171 803 COMPILER DIRECTED MEMORY MANAGEMENT FOR NUMERICAL V/2
PROGRRMS(U) ILLINOIS UNIV AT UROANA COORDINATED SCIENCE
LAB N I MALKAMI AUG 86 UILU-ENG-86-2229

7 UNCLSSIFIED N88614-84-C-8149 F/O 9/2 ML

L-0 %

11L25 E4~ 2

t
S

lI N '' ____-- illi

MICROCOPY RESOLUTION TEST CHART

NATIONAL BURTAU Of SIANDA DS 1963 A

ze.

b ,- "

*8
.% 5'a'.

..s..* 9 *'

=m

a

August 1986 UILU-ENG-186-2229
CSG-54 .

COORDINATED SCIENCE LABORATORY
College of Engineering

AD-A171 803 L LEC 1v

COMPILER DIRECTED _

MEMORY MANAGEMENT
FOR NUMERICAL PROGRAMS

Mohammad Isam Malkawi

L&J

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

86j 10 638

c - f.. ad -.

CURITY CLASSIFICATION OF THIS PAGE h A17f03
REPORT DOCUMENTATION PAGE

I&. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

N/A N/IA
2.SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAI LABILITY OF REPORT

N/A Approved for public release;
2. DECLASSIFICATION/DOWNGRADING SCHEDULE distribution unlimited

N/A___________________ .
PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBERIS)

UILU-ENG-86-2229 (cSG-54) none-

NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7s. NAME OF MONITORING ORGANIZATION

.~Coordinated Science Laborator ~ ''

University of Illinois Joint Services Electronics Program
Sc. ADDRESS (City. State and ZIP Coda) 7b. ADDRESS (City. State and ZIP Code)

1.101 W. Springfield Avenue Off ice of Naval Research4
Urbana, IL 61801 800 N. Quincy

Arlineton. VA 22209
:..NAME OF FUNDINGISPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION elf applicable)
NOOO 14-84-C-O 149

NA __________________________ProN/

aADDRESS iCuty. Stast. and ZIP Code) 10. SOURCE OF FUNDING NOS.

Office of Naval Research PROGRAM (PROJECT TASK WORK UNIT

800 Quincy ELEMENT NO. NO. NO.NO

1 .Ar fnegton. VA 22209
"n'"scrt lsfeco"Cmie Directed Mem N/A ..-

mnnpntfr Numeia Progrms____
12. PERSONAL AUTHOR(S) 1

Mohammad I. Malkawi
.. 1l3& TYPE OF REPORT 13b. TIME COVERED 14aAEO RPORT (Yr., M.. Day) 15. PAGE COUNT -

P.
Technical FO - TO -August, 1986

.16. SUPPLEMENTARY NOTATION

N/A.

17. COSATI CODES I&. SUBJECT TERMS (Continue on reverse if necessaryand identify by block numnber)
FiED GOPSB R

EL D ROUPsue.OR. Virtual Memory, Compiler Directive, Memory Directive,
ALLOCATE, LOCK, UNLOCK

~I.ABS5TR ACT Continue on rvovrso ifnecessary and idrn tify by block numberl

This report presents a new approach to the management of memory hierarchies in the multi-
.fprogramming virtual memory system. Memory management related problems are solved partially at
>%.ompile time, where memory directives are inserted into the object code of a compiled program.

*rhe main objectives of memory directives are to determine the memory requirements of a program
~at compile time and to pass this information to the operating system at execution time. A mul

.iprogramming system has been simulated to evaluate the performance of a compiler directed m 4
t ry management policy (CD). Empirical results obtained from this study show that CD can bepro sutebs nw mlmnal oiis n atclr Dhsbe oprdwt h

!orkine set policy (WS). The results reported in this report show that CD outperforms WS by a
.elatively large margin.

SAlthough CD has been designed to improve the behavior of numerical programs in virtual
memory svstems, it could be extended to cover other application programs. Moreover, CD has
he potential of being applied to multiprocessor systems.

20. :4STnI9Ur)CN,A J1 %LASIL. TY CP ;'.8SSRACT 21. AaSTRPAC- SZC.. RITY CLASSI~iCATION

*.jNc:.AssirFiD/UNL SIE A-.1E AS P" OTC USERS - -~jfe

2& AVE OF IRESP NSiSLS INtO'v,AL 22b. TELED'.iCNE N4UMBEP 22c. :F=:CE SYMBOL
(IflcluaiE i -4 Code)

___noneI

:50 FORM o473, 83 APR i 01IlON OF I .ANy 1: -S CSSC LE'=-. unclassified
A....................................... .;.... C- C7

COMPILER DIRECTED MEMORY MANAGEMENT
FOR NUMERICAL PROGRAMS

,

BY

MOHAMMAD ISAM MALKAWI

Dipi.. Tashkent Polytechnical Institute. 1980
M. Eng., Yarmouk University. 1983

THESIS

Submitted in partial fulfillment of the requirement
for the degree of Doctor of Philosophy in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign. 1986

* Urbana. Illinois S

Im~irJrL 14r~wrfKXPLI.

UNIVE:RS&-&"Y OF ILLINOIS AT URBANA-CHAMPAIGN

THE GRADUATE COLLEGE

11ME 1986

L
WE HEREBY RECOMMEND THAT THE THESIS BY

XOHA1M!Af TqAM MAT.RWtT

ENTITLED COMPT7,R flTR~rT"f MMMORY MANAaWV.WNT

FOR ;NIMERTCAL PROCRAMq

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQU)LIREIE-NTS FOR

THE DEGRZEE OF 'IflCTnflv (W %WTTnqAP14v

ietroi Thesis Researcri

'Ha iDepartm~nt

* ~ Cmmittee on Final E'caminationt $~I Accesion For

____ ___ ___ ___ ___ ___ ___ __ TIS CRAMISChiairman DTIG TAB
Urannouricec 0
Justificatiol

- -y By---------

Avdilability Codes

Dit val ai-dor a

Rdi~ o ioro S dere !ur nor :or -ma-ter's.Spca

PP

iii

COMPILER DIRECTED MEMORY MANAGEMENT
FOR NUMERICAL PROGRAMS

Mohammad Isam Malkawi, Ph.D.
Department of Electrical and Computer Engineering W
University of Illinois at Urbana-Champaign, 1986

Janak H. Patel, Advisor

This thesis presents a new approach to the management of memory hierarchies in the mul-

tiprogramming virtual memory system. Memory management related problems are solved partially

at compile time. where memory directives are inserted into the object code of a compiled program.

The main objectives of memory directives are to determine the memory requirements of a program

at compile time and to pass this information to the operating system at execution time. A multipro-

gramming system has been simulated to evaluate the performance of a compiler directed memory

management policy (CD). Empirical results obtained from this study show that CD can be superior

to the best known implementable policies. In particular. CD has been compared with the working

set policy (WS). The results reported in this thesis show that CD outperforms WS by a relatively

large margin.

Although CD has been designed to improve the behavior of numerical programs in virtual

memory systems, it could be extended to cover other application programs. Moreover, CD has the

potential of being applied to multiprocessor systems.

%.

ii

'.1,.

iq'

U S.

V

ACKNOWLEDGEMENTS

3 I am deeply grateful to my parents who continue to provide me with moral and material sup-

rport without which I could not have reached this stage. My wife's patience, love and care had a

great impact on my work's performance and I am very grateful to her.

I would like to thank my thesis advisor Janak Patel. for his support and encouragement.

Many thanks to all my friends who provided an atmosphere of brotherhood during my stay at the
I

university campus.

.....-
'V "_
,-* ,

.4."

V

I.~
-

p,

*~0

II Vi

TABLE OF CONTENTS

PAGE

CHAPTER 1 INTRODUCTION... 1

1.1. M otivation and Research Objectives .. I

1.2. Overview of This Work ... 3

CHAPTER 2 WORKING SET PERFORMANCE IN MULTIPROGRAMMING SYSTEMS 5

2.1. Introduction...........................5

2.2. W S Load C ontrol 6

2.3. Sw apping Strategies

2.4. Previous trk 9

2.5. M ultiprogram m ing M odel 12

2.6. WS Anomalies in Multiprogramming Systems 17

2.6.1. Param eter fault rate anom alies .. I1

2.6.2. Parameter-virtual memory anomalies 24

2.6.3. Virtual memory-fault rate anomalies 28

2.6.4. System memory-fault rate and system memory-virtual memory

- anomalies .. 3

2.6 .5. Explaining the anom alies 3 1

2.7. Sum m ary and C onclusions ... 35

(IIAPTER 3 CD: A COMPILER DIR-CTED MIMORY \1ANAGE.IENT POLICY 36

j 3.1. Mlem orv D irective: A LI.()(T.-\TF ... 3,S

3.1.1. LocalitV characteristics o numerical programs 39

31.2. Processing of ALLOCATE directive by the operating system 4-4

77

3.1.3. Swapping mechanism ... 46

3.1.4. Primitives of ALLOCATE directive.. 48

3.1.4.1. Priority primitive. P ... 48

3.1.4.2. Mlemory request primitive. X ... 50

3.1.4.3. Data structure for computing X at compile time.............................. 69
ke

3.1.5. Automatic insertion of ALLOCATE at compile time 7

3.2. LOCK and UNLOCK Directives ... 80

3.3. Subprogram Sequence Control Under CD ... 86

3.4. Cost of CD ... 91

*3.5. Summary and Conclusions .. 93 j

(2.HAPTrER 4 PERFORMANCE EVALUATION AND MIEASURE.MENTS 95

4.1. Introduction ... 95

4.2. 'Modeling CD... 99

4.3. CD Characteristics .. 101

4.3.1. Dynamic memory allocation .. 101

4.3.2. Partial swapping .. 102

4.3.3. Effect of context switch.. 105

4.4. CD Versus WS... 112

4.4.1. Page faults... 113

4.4. 1.1 Page faults of individual processes .. 113

4.4.1.2. Ov.erall system page faults.. 121

4.4.2. Space time cost.. 123

4.4.3 . S'-stem th roughi-ut 121)

4.4.4. Controllablit:.. 131

viii

pro

4.5. Sum mary and Conclusions ... 133

CHAPTER CONCLUSIONS.................................... 136

5.1. Sum m ary of Results ... 136

5.2. Suggestions for Future Research ... 137

REFERENCES .. 139

VITA .. 142

a

"-,

p

h" p

* 1. ' . . ' ' ' ' .- , - . - .V ' - .-- " ..- , -" .• .-.-.

.4,l,-.. - V . 7, .. . ,-...

CHAPTER 1

INTRODUCTION

1.1. Motivation and Research Objectives

Virtual memory systems V.M have been around for the past few decades and continue to

provide cost effective memory management despite the modern achievements in memory technol-
,r-

ogy. Today modern computers ranging from supercomputers to supermicrocomputers and works-

tations implement virtual memory [37]. The great amount of research in the area of VM has pro- .,/

duced several models of program behavior and several memory management policies NM.MP. Carr

in his Ph.D. thesis [13] presents a survey of models of program behavior. Denning [201 cites two v

* forms of program behavior models: models of programs' memory demand and models of memory

management policies. Batson and Madison [30] define another model of program behavior, phase

transition model. based on locality characteristics. However. the best model of program behavior.

Carr concludes [13]. is the program itself. In a simulation environment, as is the case of this

study, a program is represented by its iddress reference string.

Memory management policies, cited in the literature or implemented in real systems, have

"een classified into two classes: the class of variable allocation. dynamic, memory management '..

policies and the class of fixed allocation, static. memory management policies. Examples of .r

"-" dynamic policies are the Working Set policy (\VS) [18] and its variation: the Page Fault Fre-

quencv algorithm (PFF) [141: and globally implemented policies. Examplcs of static policies are

least Rpcentlv U'sed (LRU) and First In First Out (FIFO).

. 4 D namic t'olicies have been shown to outperform static ones [10]. -16]. However. thev ha.e

their .',n rrd'lems. WS. for example. is to expensr.e to implement: tur, hermore. it is unable to

aoi,. neax v aut:ng rate dur:ng inter.ocalitv transitions [23]. The Damped \,orking Set DWS)

[36] as ntroduced to avoid :nterlocalitv :ransition faults. Ho,.xever. Graham [251 shved that

-L 2 . ","' ..' '44 - . ' .,- ,

,-..q. .-.-........ '.'......,-.i

2

DWS outperforms WS by less than 10%. The Sampled Working Set (SWS) [34] is a cheaper reali-

zation of WS. but has a poorer performance [20]. Ferrari and Yih [23] combined SWS and DWS

and introduced the Variable Sampled Working Set (VSWS). VSWS performance is no worse than

that of WS [23].

The page fault frequency algorithm is cheaper to implement [15] but has poorer performance

than WS [25]: also. it exhibits anomalous behavior [24]. Also. WS exhibits some types of

anomalies when tested against numerical programs [4]. [8). Other types of WS anomalies are

discovered in a multiprogramming environment. (See Chapter 2.) Carr [13] compared WS with

"global* CLOCK. The WS policy was shown to be only slightly superior to CLOCK. Carr com-

bined the features of WS and CLOCK into a new algorithm WSclock which has a similar to WS

performance, although cheaper to implement.

Based on the survey cf the research published in VNI area. two observations could be made.

The first is on the nature of the experiments. Simulation of single programs is a common charac-

teristic of a vast majority of the experiments, regardless of the fact that multiprogramming sys-

tems are the real VM environment. See. for example. the experiments in [3]. [4]. [6], [81,(16]. (17].

* [211. [251. [28]. and [361. One can only guess that researchers have assumed that results obtained

," from simulating in a single programming environment would not differ significantly when

applied to multiprogramming systems. One objecti4 e of this thesis is to investigate the accuracy"

of this claim.

The second observation is in regard to memory management policies. A common characteris-

tic of all existing policies. xhether static as is LRU or dynamic as is WS. or prefetching [39] or

non-prefetching, is that they try to estimate program behavior at run time. In other words, these

rolicies solve all memory management related prohlems at run time. Three memory management

related problems are; 1) lhen to bring a page into memory. 2 which page to replace and 3)

much memory to allocate. In this thesis. this type of lIN.P is referred to as r:t :1ime policies. An

nalterati, e .pproach to run time policies is to ha,.e some or all of memor\ management related

NU
...............4*

.

I3
.. J*

S', problems solved at compile time. Memory management policies using this approach will be

q referred to as compiler directed policies (CD). The main objective of this thesis is to construct and

develop a compiler directed policy.

Run time policies suffer from two major drawbacks. First, the design of these policies did

not take into account that program behavior varies from one program category to another. For

example. numerical programs behave differently from system programs [3]. [27). Also. data base

referencing has a different behavior from other types of applications [40]. [38]. The second draw-

back results from the fact that run time policies do not consider the interaction of programs in a

" multiprogramming system. Programs affect each other through swapping for local policies and

through paging for global policies. Also. in a multiprogramming system, the amount of free

memory on the system is variable; it varies according to the load on the system and to the

amount of memory occupied by each process in the system.

w In this thesis, a compiler directed (CD) policy is designed with three main features:

(1) It exploits source level information at compile time. This information is passed to the

operating system through memory directives and is used to define memory requirements of a

1 program during execution.

(2) It is designed to respond to the changes in program intrinsic memory requirements. and to

the requirements of other programs running in the system.

(3) The compiler directed policy recognizes the difference in program behavior exhibited by

different program applications. It is designed specifically for numerical programs.

1.2. Overview of This Work

This work is concerned with designing a compiler directed policy. The performance of C1) is

ealuated in a multiprogiamming environment and compared with \V. since all other run time

rolic:es either perform worse than WS or nearly the same [13], [15]. [20]. [231.

-...

d .1. . .~* ***

7 -. -

4!

Chapter Z focuses on the performance of WS in a multiprogramming environment. The

%orking set policy is shown to exhibit anomaly types which may not be discovered in a unipro-

gramming environment. A multiprogramming model is used in Chapter 2 to evaluate the perfor-

mance of WS. The model generates other results than those needed for the investigation of

anomalies. These results are used later in Chapter 4.
7.

Chapter 2 demonstrates how the results obtained from simulating in a multiprogramming

environment may differ from those obtained from a single programming environment.

In Chapter 3 CD. a compiler directed policy, is presented. CD uses three types of directives.

These directives are used by the operating system (OS) to define a process's memory requirements.

We develop algorithms to be used by a preprocessor at compile time to generate memory direc-

tives. We also present algorithms for processing a directive when executed by the CPU.

Chapter 3 also deals with implementation issues of CD. In particular, a swapping strategy is

de',eloped for CD. The strategy is based on the amount of free memory available on the system

and the overcommitment of memory to one or more processes in the system.

Subroutine and procedure call handling can cause a significant problem for generation of Il

compile time directives and processing of run time directives, a problem commonly encountered

in compilation techniqu..s. Chapter 3 presents a technique for solving such problems. Issues

related to the cost of CD. specially the cost associated with executing memory directives, are dis-

cussed in Chapter 3.
"p,

Performance evaluation and measurements are presented in Chapter 4. The performance of

CD is compared to tne performance of \VS. Empirical results are gathered from a trace driven

simulator of a multip-ogramming system.

The conclusiors drawn from this research are presented in Chapter 5 together with some

suggestions for future research in this area.

/.#. 9.%

e. 1

| 5

CHAPTER 2

WORKING SET PERFORMANCE IN MULTIPROGRAMMING SYSTEMS

2.1. Introduction

The Working Set policy (WS) [18] is a local variable memory management policy. WS is

described as follows. Let P be the set of all pages of a program. Also. let a reference string con-

sists of a sequence of T references, r (1).r (2)...r (t)...r (T). in which r(t) is the segment that con-

tains the virtual address generated by a given program. Time is measured in virtual time. At vir-

.e 4tual time t. the program's working set W (t .r) is the subset of F which has been referenced in the

previous r virtual time units. where " is the WS window size. The size of the working set w (t .')

is given by the number of pages in the working set at time t. The average working set size X (r) is
;,.

defined as

pr
_ (2-1)X(r) i='

d 7"___ _ _
T

q where T is the length of the reference string. More definitions will be given as we proceed in this

chapter.

A mechanism equivalent to the one designed by Morris [32] is used in this study to compute

the working sets of a program. A reference register is associated with each page frame which is set

to zero each time the page is referenced. At the same time. the reference register of every other

page is incremented by one. In [32] the register i:; incremented at regular time intervals, rather

than at every reference to a virtual address: the value in the register is an approximation to the

amount of virtual time since the last reference. In our model, the value in the register is the exact

amount of % irtual time s'nce the last reference. Therefore. our model computes the exact '.vorking

sets of a program, When the value in the register equals r. the page car be removed from the

Aorking set. The .,orking sets are computed by performing W'S scans of each task at each ,irtual

* S jj*:..-. ,. .

6

time unit t : an approximation of the working sets is achieved by performing WS scans at various

virtual time intervals [13]. In a WS scan, each page p in P is examined. If the value a in the refer- .

ence register of p is equal to or larger than r (a ?,,). then p is not in the working sets. otherwise.

p E W (t .T). Performing a scan each time a page is referenced is very expensive. However. it is the

only way to capture the real dynamic behavior of WS. The main concern, in this work. is with ,

the performance of WS rather than with the implementation cost.
4-

2.2. WS Load Control

The working set policy requires each process to allocate enough memory to accommodate its '-

working sets. In a multiprogramming system. however, the working sets of a program may grow

beyond the available free page frames. In such a case. the working set can not be allocated in main

memory. Denning [20] provides WS with the following load control policy to guarantee that the "'.

working set of a program is allocated:

The load control maintains an uncommitted frame pool, which is a list of available page frames.
and a count K of the pool's (non-negative) size. The highest priority ready task may be activated
if that task*s working set size w satisfies:

w I<,K -K,,
where K, is a constant specifying the desired minimum on the pool. The purpose of K, is to
prevent needless overhead of dealing with memory overflow shortly after a new tiask is activated.
When a page fault occurs. the page fault handler subtracts I from the count K ... f K is already
0 the page fault handler will first cause the load control to preempt a page from the lowest priori--
tv active task: this implies that the lowest priority active task may not have its worki.ig set fully
resident. A deactive decision may be issued by the page fault handler if the lowest r.riority task 4
has its resident set reduced to naught. "

Note that WS load control has two parameters r and K,,. If r is small, the average working -:

set size w of each process is small and the multiprogramming level is increased. A small 7. ho%\w-

ever, increases the fault rate of each process and can lead to thrashing. Moreover. 'AS. using small

7. performs much worse than CD (as will be discussed in Chapter 4). A large 7 reduces the fault

rate but causes the process's working set to grow and depresses the multiprograniming level.

Selecting a value for K,, represents a trade-off between maximal use of m~tin memory and

reducing the overhead that occurs 'k'hen the system becomes ocercommitted. If K, is ,.er% large.

the multiprogramming level is depressed. If K,, is very small, a s'vapping will be required each

I4

.. (' ' *dl% ' II'.*" . " :'* " *'i ' : :if% ' j 1 -

7

time the working set expands beyond the free pool size. In this thesis. K', =0. However. a free

page pool is dynamically created when the working set of a process grows beyond the free pool

size. In this case the resident set of a "low priority process" is turned into the free pool, as a result

of swapping. Swapping the resident set of a process is a modification to Denning's suggestion to

preempt a page from the "lowest priority active task.* Carr [13] argued that preempting the pages

of the lowest priority task. one by one. "would appear to be a mistake, since the lowest priority

active process will be forced to execute with a restricted resident set and will fault often and gen-

erates a great deal of paging 1//O without making much progress." In the next sub-section we dis-

cuss the swapping policy used in our model.

2.3. Swapping Strategies

Swapping is the deactivation of a process that occurs when load control detects overcommit-

ment and directs a reduction in the multiprogramming level. A process that causes memory over-

commitment is called the swapping process. A process whose resident set is preempted is called

the swapped process. The mechanism which handles swapping is called the swapping mechanism

(SM). SM has the following functions: find a candidate process for swapping and preempt its

resident set. In [20]. a process to be swapped out is the lowest priority process in the system.

.•While this could be the proper choice from the policy standpoint, it is not necessarily the best

. from a performance point of view. Carr [13] suggested four policies to select a candidate process

to swap out of memory. A swapped out process can be the faulting process. the last process

. activated, the smallest process, or the largest process. The usefulness of any of these policies

depends on the optimizing criterion under consideration and the immediate goal to he achieved. In

our model, it is assumed that all the processes in the system are of equal priority. Therefore.

Denning's suggestion of the lowest priority process is not practical for our model. Also. we argue

that the faulting process should not be swapped out since it has just invoked SM. Wnen it is reac-

ti ated. it ma'" have to invoke S.I again, and thus continue to be blocked. It is very likely that

the last process acti'.ated has suffered a s' apping just before it has been deactivated: essentiall,. a

dc;

8

discrimination may occur against one of the processes in the system. The smallest process policy

discriminates against small processes. whereas the largest process policy discriminates against

large processes.

We introduce a new swapping policy based on treating every process in the system with

equal priority. No process should be swapped out more than one time in a row. A process that

has been swapped out can not be swapped out again until all the processes in the system have

experienced the pain of being swapped out. In a system with N processes. a process swapped out

at time t may become a candidate for swappini only after N swapping operations. Note that N

may change its value if a new process is activated or a process completes execution and leaves the

system. One way of implementing this policy is to use a CLOCK- like mechanism. All the

processes in the system are assumed to be arranged about the circumference of a circle. The

CLOCK pointer (or "hand") points at the last process swapped out by SM. and is advanced "clock-

wise" when SM is invoked to find the next candidate for swapping.

The resident set of a swapped out process is preempted by setting the value in the reference

register ot each page equal to the value of r. The size of the preempted resident set is added to the

free page frames.

Another major issue of swapping is how to reclaim the working set of a swapped out pro-

cess. There are two methods for a swapped out process to reclaim its working set. Demand paging

loads a page only when that page is referenced. whether it was or it was not a member of the

process's previous working set. Prepaging loads a collection of pages (the prepage set) when the

process is activated. The prepage set. in this context. is a process's working set or its resident set

when the process was swapped out. The main advantage of prepaging is to reduce page fault inter-

rupts. Howeer. the working set of a process has to be carefully arranged in auxiliar.y memory

slots when the process is swapped out. Although prepaging has intuitive appead, many systems

a'.oid using prepaging simply because of its added complexity. From the performance standpoint.

prepaging the entire working set has the same 1, 0 effect of demand paging each page of the work-

C, *- .* -
'

- - = T'-. - TV- - -

'1 9

ing set. Prepaging eliminates some page fault interrupts, and possibly, if the working set pages I

are sequentially stored on disk. reduces the latency seek time for all but the first page. There are

other disadvantages for prepaging cited in [13]. Above all, the working set of a process is not

necessarily the same when deactivated and later when reactivated. It is very likely that a process

may prepage some pages which might not be referenced in the future. Besides wasting memory.

prepaging may result in extra paging and wasting paging I/O capacity. At any rate. from a perfor-

mance point of view. prepaging is treated as a regular page fault with a smaller service time. Page

fault service time includes page fault interrupt as well as latency seek time. The model used in

this study implements the demand paging mechanism.

2.4. Previous Work

Since the early 1970's many research studies have investigated the performance of WS. For

bibliography and empirical results reported on WS's performance see the paper written by Den-

ning [20). and Abusufah and Malkawi [3]. [8]. Denning summarized the results of research con-

ducted on WS [201 and drew several important conclusions. In 1972 Chu and Opderback observed

that WS generates lower space time cost than the least space time generable on the LRU policy

[4]. A similar conclusion could be derived from the experiments performed by Graham and Den-

ning [26]. Denning concludes that "the evidence available suggests that global CLOCK and global

LRU do not perform as well as WS." (The word global is added since global policies are discussed

but the statement did not explicitly mention the word global.) It is interesting to note. however.

that in the same section of .he paper Denning refers to the evidence obtained from Graham's Ph.D

thesis: "Graham's data show s that LRU is normally significantly worse than WS when applied to

single programs" [25]. Also. Denning notes that "there is. unfortunately, little published perfor-

mance data on the CLOCK and global LRU." Evidently. XVS had not been compared with global

LRT>U and global CLOCK at the time of the conclusions made in [20].

I)ne can easily argue c. ith the above conclusions regarding the performance of %VS. It is

onl'% natural that a d-namic local policy. ,0hen pr-operly "tuned." performs better than a static

4 *'.'

10

(local) one. However. the performance of a globally implemented static policy may or may not be

worse than that of WS. Such a performance can be obtained only from measurements of a mul-

tiprogrammed system. The only relevant measurements cited in [20] were those performed by

Simon [35]. However. Simon compared WS and VMIN [33] in a queuing network model. His

thesis did not address the problem of comparing global and local dynamic policies. On the other

hand. Carr [131 simulated global CLOCK and WS policies in a multiprogramming environment.

Carr concludes that "little difference between local policies (e.g.. WS) and global policies (e.g..

CLOCK) has been observed in a representative system". Carr introduced a new policy. WSclock,

which performs as well as WS. even though "it is much simpler than any of the other WS algo-

*" rithms" [13].

Compared to the page fault frequency policy. PFF [14]. Denning concludes that:

WSi and PFF. when properly "tuned* by a proper choice of their control parameters, perform near-
ly the -ame and considerablv better than LRU; WS has a slight tendency to produce lower space
time minima than PFF. However. PFF may display anomalies for certain programs. Moreover, the
performance of PFF is much more sensitive to the choice of control parameter than is the perfor-
mance of WS.

However. Abusufah. et al. [4]. [81 showed that WS exhibits certain types of anomalies for a cer-

tain type of programs. Out of 30 numerical programs studied in [3]. all but one displayed two

tvpes of anomalies: parameter-real memory and fault rate-real memory anomalies [24]. Moreover. -'

WS displayed great sensitivity to the choice of control parameter. r [8]. Denning concluded from

the empirical studies conducted by Graham [25] and Simon [35] that "the WS policy can be run

with a single global r-value and deliver throughput tvpically no worse than 10 percent from

optimum." Alanko. Haikala. and Kutvonen [61 concluded from their empirical results that "it is

impossible to find a single global r-,.alue that achieves ,he results reported in [20]." The work -.

done by Abusufah. Lee. \Ialkawi, Yeu [3]. [S] shows thdL at least 6 values of r are needed to run

a set of 17 programs within 10 percent from ,ptimum. It is worthwh:!e to mention that the sen-

siti', itv of WS or PFF to the choice of control parameter can be displayed only in a multipro-

,rammed s.stem. A1,11 emrircai results 'were oenerated I rom individ:ual re!ference traces. assum-

'tU
.';,"..".", ..". .",.-." " ,'--" .

ing a uniprogrammed system, and ignoring any interaction between the programs. For this reason

we believe that the sensitivity of WS to the choice of 'r has not been fully investigated, although

the contradiction in the reported results in literature makes previous conclusions about finding a a

single r--value optimistic.

Based on comparing WS and VMIN [33] by Simon [35]. Denning concludes that "no one is

likely to find a policy that improves significantly over the performance of the tuned WS policy."

Such a conclusion is motivated by the fact that VNIIN is an optimum unimplementable policy.

Carr [13] argued that Simon's work did not provide enough evidence to support such a conclusion.

Simon estimated that VMIN achieves lower space time cost than WS by less than 5 percent on the

average. It is interesting to note, however, that VMIN is the optimal policy for finding the

minimum page fault rate: V.MIN does not find a minimal space time cost. Therefore. comparing

.WS with VNIEN can not serve as "compelling evidence" for the WS optimality. The optimal policy

is DMIN [10]. In [11]. DMIN showed significant improvement over both WS and VMIN.

I A common characteristic of almost all research studies on the WS performance is that they

use individual virtual address traces. Even when WS is compared to a global policy (g'obal LRU).
,,0'

individual programs are used in the experiments: "Graham's data shows that global LRU is nor-

mally significantly worse than WS when applied to single programs" [20]. Denning states tL.au .e

The WS policy serves as a dynamic estimator of the se2ments (pages) currently needed b" - pro-
gram. The WS is defined in a program's virtual time. independently of other programs !hus. thereP
is no danger that the load on the system can influence the measurement...

While it is true that WVS defined in a program's virtual time is not affected by load on the system.

in a real system the resident set of pages of a program does indeed change according to system

load. To maintain the resident set equal to the working set may incur overhead in ternis of more

page transfers not reflected in the program's intrinsic demand. Thus it is clear that tht. 'iad on the ,

-s.stern does affect the measurement of paging activities of a program. The paging acti ittes of the

WS in a multiprogramming en',ironment were empirically meas-ared.

..

'Af

* 5' ft]

12

The experimental model is described in the next section. Empirical results on the WS ..

behavior in multiprogramming systems are reported in the following sections. n

2.5. Multiprogramming Model

In this thesis a simple model is used to evaluate the performance of WS in a multiprogram-

ming system. The model is shown in Figure 2-1. The same model is used for evaluating CD

(described in the next chapter): specific features related to CD will be discussed in Chapter 4. The

Process Queue (PQ) is implemented as a First in First Out (FIFO) and used to hold the active

processes. Each process is represented by its virtual address trace. An address trace consists of

references to array elements only. Initially, all array data elements are stored in the virtual

storage. All instructions, constant, and simple variables are assumed to be resident in the main I

memory. The reason behind this assumption is that references to arrays dominate the referencing r,

behavior of numerical programs [4]. [30]. Moreover, the virtual size of the storage containing

instructions, constants. and variables is usually much smaller than that used for array structures.

Time Out Interrupt

Paging
Device I-

Process Queue

InutJob Sta-
tis- -

-SwappingMechanis Complete tics

M ain 'Memory

Fault Ser- Page Fault
vice Delay

Figure 2-1 Multiprogramming model

it.

3 13

Therefore. it would be reasonable to have the code of a program locked in main memory during the

execution of that program: in case of a structured program, the code of a subprogram should be

locked during the execution of that subprogram.

PQ serves as the input to the system which consists of the CPU and the main memory. The

main memory is organized into a set of blocks of equal sizes (pages). Similarly, the virtual storage

is divded into pages of the same size. The maximum memory available on the system. 0. is used as

a system variable. A list of unoccupied page frames in main memory (free pool) is maintained. The
summation of the working sets of all programs is given by 0 minus the free pool size (p). The main

memory is initially empty. Pages of a program are paged into main memory on demand. The work-

ing set of a program is allowed to grow indefinitely into the free pool as long as the free pool size is

*larger than zero. If the free pool becomes empty. a swapping process is invoked and the working set

of a process is removed from main memory. The pages occupied by a swapped out process are

turned into the free pool. The. swapping mechanism is discussed in the previous section.

k round robin scheduling strategy is used to schedule the control of the CPU by the multiple

2:. processes. A process. in control, relinquishes the CPU in one of three cases: time out interrupt. page

fault occurrence, or program completion.

A tin-e slice is used as a system variable in the model to control the time out interrupt. Upon

generatinog a time out interrupt, the process controlling the CPU is removed from the system and -.

entered at the tail of the PQ. However. the interrupted process's working set is not removed from

mein memory.

'.Xhen a page faut occurs the process in control leaves the CPU and another process from the

PQ gains control. The page fault is serviced by the page fault service device. The faulting process is

dela'.eo bv a fault service delay element until the page fault service is completed. before it is fed

back ;,ito the PQ. Page fault service time L consists of the interrupt handling time. the time spent

:n searcilng for the addressed page in the virtual storage, the transfer time of a page fr-m disk to

main memor\ and the time Ior allocating a page frame. In this thesis .e use a \alue uf L =200()

° ° ..

?5~* %$-'

14

time units; each time unit is one memory reference. The paging device is the only 1'0 device used in

the system: this consideration further simplifies the model. In other words, the programs are U
WV

assumed to be executing in a CPU bound phase. Such assumption is valid for programs which con-

sume most of the input data at the beginning of execution and generate the output data at the end

of execution. The programs used in our experiments comply with such behavior.

A process leaves the system after all of its virtual address trace has been processed. Upon

completion of a processs execution, the necessary statistics are collected. These statistics include

process specific and overall system statistics. The system parameters are:

(1) The maximum available physical memory on the system. 0. Very small values of 0 are used

for theoretical purposes. For example, 0=5 pages is clearly impractical choice of the main

memory size. However. it is used to capture the behavior of WS in small memory environ-

ment. characterized by heavy swapping activity. On the other hand, using a very large 0 may

leads to a case similar to uniprogramming environment where the working set of a program

can grow indefinitely and no swapping takes place at all. A wide range of 0 values is used in

order to evaluate the dependence of WS behavior on the available memory space. A large

_ value of 0 is interpreted in the context that the resident set of any program can grow to its 4R

maximum limit assuming that a prcgram is running alone in the system.

(2) The WS parameter (the window size r). It is difficult to find an optimal r for any program

without empirical investigation. Therefore. we vary r from r=l to r=R. where R is the refer-

ence string length of the !argest program trace in the system. The window size is incremented

bv 5 from r=l to -=1000: then , is incremented bv 100 from 7=l() to r=10000: beyond this

value, an increment of 1000 i- L sed. Such choices of r are used to capture the behavior of WS

in great accuracy. For small 'a'ues of -. the \VS characteristics change rapidly depending on

the intrinsic program behavior. In numericai programs the changes in locality Structures are

abrupt. The life time curves obti.ined from numerical programs exhibit a step-iike function

,eha\ or ,] Therefore. a '.erv small increment in the vaiue of 7 m' result in a drastic

n-.

a .15

change in the characteristics of program behavior under WS. See. for example, the life time

curves reported in [7]. [8].

For each program in the system, we find an optimal r depending on the optimizing criterion.

For example. we find the values of T for which the fault rate is minimum, the space time cost

is minimum, and the throughput is maximum. We also find global values of r for which the

system page faults and space time cost are minimum, and the throughput is maximum.

(3) The number of processes running simultaneously in the system. This number reflects the

maximum multiprogramming level. NIPL. The values of .MPI, used in this thesis are 3. 4. 5.

and 10. However. only 5 programs are traced; the characteristics of these programs are found

in Table 2-1. MPL=Io is obtained by running two copies of the same program at the same

time.

(4) The context switch (CS). CS is used to control the time out interrupt. In our model, we use a

large value of CS to reduce the dependence of the results on the time out interrupts. CS=100O-

is much larger than the maximum possible life time between successive page faults for any of

. the programs: Averaging over all the programs in the system, the maximum life time is 350

time units. However, a smaller value. CS=100. is used to demonstrate the effect of CS on the

paging behavior.

Process specific measures used in this chapter are: I..

.

Table 2-1
Program characteristics

Program # Statements D O Stat. i # Arras I Arrav References # Pages i

MAIN 163 16 7 79.325 7*, I -_______________________

FIF.1D 76 9 24 1(.823 00
I 53 1-1 35 10 .745 -

(L CT (i I N 21 S2,452 2,)l
lI \WSC'R'I" 135 5 22.721

U"4

16

(1) The average virtual resident set size w(O9r). For each value of r and 9. w is found by finding

the average of the working set size of a program over its virtual execution time. R. The work-

ing set of a program is computed during each memory reference to the virtual space of the

program. A page is considered in the working set if the value in its reference register (a) is

less than r. The value in the reference register is incremented during each reference. All pages

with a-r belong to the free pool. In a uniprogramming system, the working set of a program

can change only when the program is executing. In a multiprogramming system, the working

set of a program is likely to be affected by other running programs. In systems using global

policies, a running program's fault may result in replacing a page from another program's

working set; thus, programs interact through paging. WS restricts paging activity to the

program's own working set and to the free memory pool. Therefore. it seems that the working

set of a program is purely intrinsic to the program behavior. We have discussed that swapping ,

activity may. as well. be a means of interaction where the resident set of a program is affected

by another program's paging activity. A swapped out processloses its entire working set in

one swapping operation. or it may lose its working set pages. one by one. in several successive

swapping operations if the model suggested by Denning [201 is to be used. In the previous sec-

tion we discussed two methods for claiming the resident set of a process that has beer,

swapped out of main memory. It was argued that demand paging is less complicated tha-,

prepaging. Prepaging preserves the inclusion property of the WS; namely. that w(rT)Cwvr2)."

where rl<r,. The inclusion property may he .iolated if demand paging is used. Our model

implements demand paging for the reasons discussed in the previous section. Also, with

demand paging we will be able to investigate the claim that "the WS serves as a dynamic e-ti-

mator of the egrnents (pages) currently needed by a program" [201.

2 The page '-ault rate F(O.r). The fault rate oi a process is updated -, erv time a reference to a

ncnrsikient page is made. The fault rate cf a process depends ,n the intrinsic beha. :or ,l l~ e

e and .'n the interactin ,If the mitpiregramining mix through s'xL-.pping. Whether the

demand Fag!ng .,r pre-aoing method 's ..ged. the .. rkng set of a s'. apped out he's ha. :o

-A-

be faulted back into main memory. In prepaging . one operation initiates an I/0 for the entire

working set: whereas in demand paging, a page is faulted only when a reference is made to

that page.

(3) The swapping rate S(9.r). S is the number of process's pages that get swapped out of main

memory on the request of another process's growing working set. Swapping does not. neces-

sarily. involve I/O operations. The working set of a process needs to be written back to the

virtual storage only if the pages have been updated (dirty pages). However, in this thesis we

simplify the model by considering only clean pages. Therefore, the cost of swapping is associ-

ated with the swap interrupt, the search for a swapped out process. and the time for setting

the values in the reference registers of the members of the working set of the swapped out

process.

'he overall system statistics include the system page fault rate. F:. (M.r) and the system average
virtual memory V,.,, (O.r). F... and V,,, are given as the sum of the fault rates and the average

U virtual memory. respectively, of the individual processes.

'N" 2.6. WS Anomalies in Multiprogramming Systems

In this section we report empirical results on WS anomalies in multiprogrammed systems.

Five types of anomalies are defined by Franklin, Graham and Gupta in [24). Empirical results. r.

reported previously, on WS anomalies have been generated from simulation of individual reference

traces [P]. [8] and from the analysis of individual reference strings (24]. These results show that

WS exhibits two types of anomalies: namely, the real memry-Iault rate (,l-f' and parameter-real

memory (r-MI anomalies. M-F anomaly exists if-
M(r 1)<M (r,) and F(1 I)< FT,)

for some values of the WS parameter -t and r,. And r-M anomaly exists if. for some r, and r,.

r 1 >r2 and M (rl)<.kl(r,)

Both t,.pes cf anomales M -F and r-.l do not violate the conditions of the eneralizetj inclu icn

% pr ;'erty rroposed by Franklin et al. [24]. The other anomaly t. pes ire: Carameter-/ault rate r-F.I ',.

p% •

T * *

18

anomaly. parameter-virtual memory (r-V) anomaly, and virtual meriwry-fault rate (V-F) anomaly. 6%

The WVS policy can not exhibit any of these three types of anomalies when tested against individual U

programs in a uniprogramming environment. However, we will show that this is not the case in a

multiprogramming system. We will also define two more anomaly types specific for multipro-

gramming systems.

We do not report in this thesis the results on r-MI and M -F anomalies since they have been

empirically reported in the literature [4] [8]. [24]. Besides. they have little influence on the control-

lability of the policy [24]. The new anomaly types discussed in this section are the system memory-

fault rate anomaly (0-F) and the system menmry-virtual memory anomaly (O-V). These and the other

anomalies are defined and discussed in details in the following subsections.

2.6.1. Parameter-fault rate anomalies

A parameter-fault rate anomaly (r-F) in a multiprogramming system exists, for some T1. 7?

and 0. if

71 > 'r, and F(' 1 ,.O) > F(r1 .6).

Parameter-fault rate anomalies, exhibited by individual processes are shown in Figures 2-2a - 2-2e
O.

for program MAIN. FIELD. INIT. CONDUCT. and HWSCRT respectively. Each figure contains

several plots for different values of 0. We have used four different values of 0: 50. 100. 150 and 'p." o

200 pages. Smaller values of 0 represent the case of a high memory contention. especially for

higher degrees of .IPL. In each of these figures we plot the page fault rate. F. versus r. A well

behaved fault rate is a nonincreasing function of 7. An increasing portion of the curve indicates

that a r-F ano,ndlv exists in that region. Consider. for example. Figure 2-2e for program HWSCRT m

for 0=200 rages (solid line). The fault rate increases from 123 to 188 when r increases from 10.0()

to 15.000. Ancther anomaly exists in the r region (901.951). The anomalies reported in Figures 2-

2a - 2-2e are summarized in Table 2-2. For each 0 value and for each -rogram ',e report the

.urnber At r-F anomalies (N) and the size of the largest anomaly. 'I The anc malv si/.e i" oen bi,

"= F(0.r.)- F(Or-). From Figures 2-2a - 2-2e and Tabie 2-2 it is c. ,r that the !-ault rate is

~~~~~~~~~~~~~~~ I" 5 .. %Sr 9%'~.~ % .,y . ~f

I 19

F 5

100 101 102 T 0110 0

2-2a: MAIN. 0-50, 100. 150, 200

10000

5... ~1000__ _ _ _ __ _ _ _ _

* F

100

10 101 102 7 10o3 10
2-2b: FIELD. MPL=5. 0=50, 100. 150. 200

'-pF 1000

10 1 J0 I I

2-2c: INI ML-5. 0=50. 100). 150. 200

CL
a .

20

100 101 102 10,10

2-2d: CONDUCT, NMPL=5. 0-50. 100. 150. 200

10000

100 101 102 7 10 104 0
2-2e: HWSCRT. NIPL-5. 0=50. 100. 150. 200

J Figure 2-2: Parameter fault rate anomalies

Table 2-2
Summary of Parameter fault rate anomalies

* ~7 MANI ILD INIT CONDUCT HWSCRT

__IL A F N~ AF N F N~ AF_ iN AF

50 v1 r 129 1 155 1 250 j2 13 1 2 9__
100 4 21 21 7 3f250 2I 865 1431

!150~ 0 0 1 5 4 __T3 82j 4 1418
2CO 1 1 20 o0 0!2 62 0t 0 1 i 6 5

not decreasing f unction of r as in the case of w.kell1-behaved f u:-cticins.

5 21

Individual program anomalies can occur in a multiprogramming system since a program's i e

fault rate may decrease at the cost of an increase in some other program's fault rate. However. as

long as the total system fault rate decreases with increasing r. individual anomalies are not of prac-

tical importance. We would, however, like to point out that anomalies do exist even for the sys-

tem fault rate. Parameter-fault rate anomalies are reported in Figures 2-3a and 2-3b. where F is the

106

105 "-"

10
4

'"

S1 0 3 1 at 1 1 1U 1 1 1 1 1 a I . I i j I . . . i

1 10 I00 1000 10000 .

2-3a: MPL=5. 0=100 ---. 150 ...

10.

F

14
' ~103 -*-

2-3b: NPL='10 50 100 - - -, 150 200--

Figure Z-3: Sstem parameter fault rate anomaiies

.,.

22

system fault rate. for .IPL-5 and 10. Figure 2-3a is a plot of the system fault rate versus T" when

the multiprogramming mix contains 5 programs. Two 0 values are used in this plot. 0=100 (solid U

line) and 0=150 pages. For 0=150. anomalies exist for larger values of r than those exhibited for

0=100 pages. The system fault rate versus r when 10 processes are present in this system (two

copies of each program) is shown in Figure 2-3b. Four plots are shown for four values of 0: 0= 50.

Table 2-3a
Parameter-fault rate anomalies (SYSTEM. MPL=10)

___Parameter Fault Rate
71 T-) F (9,71) F (0.,r,) AF, .

50 21 51 29332 32376 3044
61 71 I 32175 33299 1124 .

] 81 91 132038 32370 a3

100 51 61 23885 24058 173
201 2511 23402 23507 105 "'

451 501 23367 23405 38

551 701 22870 23459 589

150 551 951 6241 8905 2664

1100 1300 7696 8748 1052

1600 2400 7555 9280 1725

2600 2700 8569 9258 689
3000 3100 8528 9223 695

_ 3200 3700 8100 8870 770
4000 4300 8388 8514 130
4700 4800 8326 8621 285

* 4900 5000 8176 8606 430-

5500 5600 8292 8425 127
600W 6200 8178 8378 200
I7000 7 710 W 10 IS 8293 I193

__7600 i7700 1 8229 8293 64
% 00) 8100) 794 8025 1 81

200 600 700 [4710 L 5396 686

L_ 1200 1500 4444 4633 j 189
1600I 1700 4360 4420 60,

1800 I 1900 4345 4499 1541

* ' 200() 2100 4385 4407 2 22
2200 2300 4290 4306 16 16] II
2400) 2700 i 4235 4276 41

3000 5 900 4055 60'4 2039-,

-,)

23

orC

100. 150. 200. For 0-50. the anomalies exist with small values of r" (r < 100). This represents the

case of a high memory contention as does 0 -< 20 for MPL=3. The anomalies demonstrated by Fig-

ures 2-3a and 2-3b are summarized in Tables 2-3a and 2-3b.

In Tables 2-3a and 2-3b we report all the anomalies exhibited at the system level for MPL-5

and MPL-10. Each anomaly region is described by two values of r (r, and -2) and the two

corresponding values of the fault rate (F1 and F,). The anomaly size. AF. is measured as the

difference between F, and Fl. For large values of 0 (0=150. 200) the anomalies occur with larger

values of r. Table 2-3b shows that the anomaly region for 0=100 occurs with i<551. whereas for

0 0=150 it starts with r>551.

The significance of the anomalies is emphasized by both the size and the number of anomalies.

Figures 2-3 show that the anomalies do not occur in the same 7 region when different 0 values are

:2 used: this further complicates the control of the WS fault rate function. Furthermore. such

anomalous behavior provides suitable conditions for the existence of system memory-fault rate

anomalies, discussed in a later section.

2.6.2. Parameter-virtual memory anomalies

A parameter-virtual memory anomaly (r-V) in a multiprogramming system exists for some

r1 . r' and 0. if

Table 2-3b
Parameter-fault rate anomalies (SYSTEM. N1PL-5)

Parameter Fault Rate
71 _ _ _ _ _ F (0r) I I __ __) _ _ _I_

100 601 651 24,S9 2596 107

1__ 701 951 2594 2751 157 1
. .. 901 951 2621 2717 96
150751 70 1 217 2272 1255 7 0 1 1" - -I'

! l S51 2269 22S5 16

901 951 2232 2243 11
3500 4 000 14'5 15o 1 06

6500 S(OO0 1303 1544 241

I

It" ::::U
'.. • 1 " "" - - -" - "- -" " ' " " ' i ' ' ' '

24

T, > €, and V(r 1 .0) < V'(r2,0).

The anomaly size is given by: AV - V(7 1 .0) - 7(t,.0) Figure 2-4 illustrates parameter-,.irtual

memory anomalies for programs FIELD. INIT. and HWSCRT for MPL=5 and 0=100. It is obvious

from the plots in Figure 2-4 that the average virtual memory is a nonincreasing function of . In

Figure 2-5 V is plotted versus 7 for program INIT and 0-50. 100. 150. and 200. The anomalies of

Figure 2-5 are summarized in Table 2-4. Figures 2-5 and Table 2-4 show that anomalies associated

MPL=5. 0=100. FIELD-. INIT HWSCRT - - -)

V 20.-f

0
110 1 1(W 1000

Figure 2-4: Parametei --virtual memory anomalies O

NIPL-5. INIT 0-50 ___100 -- -. 150 ... 200

404

20

,1'

I I o11 , I IIolI - 11 1 I II ~ I I 1

Figure* * 2-5: P. -"~.,' ,.*.I. * -. *

25

with the larger values of 0 tend to be shifted to the right of the anomalies associated with smaller

values of 0. The r-V anomalies when 0=200 exist for r> 10.000. whereas for 0-150 anomalies

occur in the region r < 7000. Increasing the memory space available on the system may eliminate

the anomalies in one region of r-values and generate other anomalies in another region with larger

values of r.

IN

The overall system virtual size is obtained by summing up the virtual sizes of the individual

processes. Figures 2-6a and 2-6b demonstrate r-V anomalies, where V is the systems average
A'2

memory, for 0= 100 and 200. respectively. Each figure contains three plots for MPL=4, 5. and 10.

The average virtual memory of a process can be reduced only as a result of a swapping pro- b.

cess. It is very likely that a swapped out process. when reactivated, can not allocate its working set;

therefore, it initiates the swapping mechanism. A chain of swapping operations will definitely lead

to a reduction in the average memory space allocated to all processes. Consequently. r-V anomalies "I

exist at the individual process level as well as at the system level.

Upon reducing the average virtual memory allocated to a program or to the system. as a

result of a parameter-virtual memory anomaly. the fault rate is expected to increase, assuming that

the fault rate function of virtual memory is well behaved, i.e.. F(rO)<F(r2) if V(ri)>V(r2).

This suggests that a parameter-virtual memory anomaly should be associated with a parameter-

Table 2-4
Parameter-virtual memory anomalies (INIT. MPL=5)

Parameter Average \'irtual lemorv 1
, r r (.r 1) V(0.r) AV

50 51 T 61 9,15 -T 8.82 0.33

_ I ,,, 0 1 601 ' 29.5 28.8 07

701 801 30.3 29.7 0.6

150 .%01 1 851 34.0 33.4 ,

2000 I 2500) 46.4 40.6 5.S

0)) 6)0)0 43.5 i 34.6 S.()

6500 7000 43.5 35.0 S.5

2()() v.woo 3 4.0()o 54. , 46.4 S.4
p 7

'' ,

26
Jr,

200

V 100
77- A . -

110 100 1000 10000

2-6a: System, 0-100, NPL=4 --- ,5 - --. 10 ...)

400 1.-

200)

1011o2 7 10 10 10.

2-6b: System. 0=200. NMPL-4 ---. 5 - - -. 10 ...)
Figure 2-6: Parameter virtual memory anomalies

NIPL-5. EITT. 0=150
10000

F
100)-

%

I (A) 10 000) 10000

V4 Iure 2-7 PNge Idults and a'. erage .irtual merni r, 'ersals 7

..... QWL L -I- 1

27

fault rate anomaly. However. the results obtained from our experiments show that this is not

always the case. To illustrate this observation Figure 2-7 presnts a plot of the page fault rate and

the average virtual memory versus r for program INIT (0=150 and MPL=5). In this figure a r-V

major anomaly occurs in the r region [2000.2500]. The average working set size drops from 46.4 to ,.

40.6 pages as r increases from 2000 to 2500. In the same region, the fault rate drops from 220 to

209. The reduction in the average working set size in this region did not generate extra page faults.

However. 7-V anomalies in the regions r= [5000.6000] and [6500.7000] are accompanied with r-F

anomalies in the same regions. The fault rate increases from 198 to 226 as the average working set

- size is reduced from 43.5 to 34.6 pages, when 7 is increased from 7=6500 to 7=7000. For 0=200. a

i%-V anomaly (see Table 2-4) is not associated with a 7-F anomaly. Therefore. a parameter-fault

rate anomaly does not always accompany a parameter-virtual memory anomaly.

Similar observations are made when the average working sets of all of the processes (,.,) are

g used instead of one process. In Figure 2-8 we plot V, and F,,, versus i" for MPL=5 and 0-100. Six

7-V anomalies are exhibited bv the figure. four of which are not matched with 7-F anomalies. For

examrte. V',,, drops from 77.5 to 57.8 pages (AV=20) as 7 increases from 7= 250 to 7=300. In the

same region F,,, drops from 5627 to 5343 (AF=284).

Svstem. MPL=5. 0=100

F 1 0%

%It
I01

) 1 100 I0()

Figure 2-S: Page I'aults and a',erage virtual memory v ersuS 7
'.4

-vA

28

P:

The fact that a r-F anomaly does not necessarily accompany a r-% anomaly. implies that WS

may overestimate the size of a running process's working set. since a reduction in the working set .r i
'4.

size may not result ini a subsequent increase in the fault rate. instead, the fault rate continues to .

decrease. In other words. WS may accumulate in the working set of a process more pages than it -

actually requires. This is especially true during interlocality transition periods. However. it is also

possible for WS to accumulate redundant pages during the execution of a phase. rather than in

transition between phases. Assume that a program contains a large locality structure (phase A) and -

several smaller phases. A properly tuned WS should be able to cover the locality comprised by

phase A. The choice of a 7 value, large enough to cover phase A. may result in covering several

smaller phases before or after executing phase A. As a result of choosing large value for rT. some

pages from previous phases may continue to be members of the working sets. Thus, the conclusion

that "the WS serves as a dynamic measure of a program's memory demand" [201 is not accurate.

The results reported in this section show that WS may overestimate the memory requirements of a

program.

2.6.3. Virtual memory-fault rate anomalies

A ,irtual memory-fault rate anomaly (V-F) in a multiprogramming system exists for some 0. ' '

r1 and 7,. if

'(0,r l) > V(O.r,) and F(O.ri) > F(O.ri)

The existence of virtual memory-fault rate anomalies is due to the existence of only one of either

the parameter-fault rate anomaly or the parameter-virtual memory anomaly in the same 7 region.

The existence of both anomalies in the same -, region eliminates the pcssibility of exhibiting a vir- -

tual memory-fault rate antmaly. This observation is illustrated in the following three cases.

7 r 1 > 7. \(7, J > \r. and F(7 1) > l(r,), r-F and V-F anomalies

7 r1 > 7:. \(r < V'r,)and F(r < F(R /. r-V and V-F: anomalies

-7,,

0.,

"0**~~ * ~ ~~ * ~ -*0~~. * n _- 0

i#
29

(3) 7- > r'2, V(r 1) < V(7'2) and F(rl) > F(r 2), i-F and r-V anomalies

In the first case, there exist a virtual memory-fault rate and a parameter-fault rate anomalies;

_however, there exists no parameter-virtual memory anomaly. In the second case. there exist a vir-

tual memory-fault rate and parameter-virtual memory anomalies but not a parameter-fault rate

anomaly. In the third case, both parameter-fault rate and parameter-virtual memory anomalies

exist but the virtual memory-fault rate anomaly does not exist. All of these cases do in fact exist,

as was shown in the previous section in Figures 2-7 and 2-8.

The virtual memory-fault rate anomalies are. graphically, illustrated in Figure 2-9 where we

plot the page fault rate as a function of the average virtual memory for program INIT for 0 = 30

and MPL=3. The anomalies in the figure are indicated by the increasing portions of the curve. V-F

anomalies exist at the system level as well. In the previous subsection we observed that 7-V

anomalies are not always accompanied with a r-F anomaly. a condition necessary for the existence

U of V-F anomalies.

The V-F anomalies are particularly significant since they distort the shape of a life time

curve, which is the inverse of the fault rate plotted versus the average virtual memory. Life time

curves are used to model program behavior. Besides. some optimal multiprogramming management

NMPL=3, 30. MAIN ---. INIT -- -
• ". 105

10 4 ,,__ __ __ __ __ _ _ __ _ _

- F

103 Ar

I '

0 20 \ 40 60

Figure 2-9: Fault rate. irtual memcrv anomal es %

!il
30

strategies make use of life time curves, e.g.. the primary knee criterion [20]. Most importantly, V-F

anomalies prove that WS tends to accumulate more pages in the working set of a program than it

actually needs. Furthermore. the existence of V-F anomalies suggests that the working set of a pro-

cess need not be prepaged into main memory after it has been swapped out. In fact. swapping

allows a process to re-evaluate its working set and demand paging. after a swapping operation,

allows a process to remove redundant pages which could have accumulated in its working set.

2.6.4. System memory-fault rate and system memory-virtual memory anomalies
',

One would like to control the fault rate of individual processes or of the entire system by

controlling the amount of memory available on the system. Such control is viable if the fault rate

does not increase when 0 increases. System memory-fault rate anomaly (0-F) exists if. for some

0 1, , and -r
.4. ,

01>0, and F(r.0j)>F(r.0,)
where F is the fault rate of one process or of the entire system. This anomaly type can exist only

in multiprogramming systems where the amount of memory available on the system dynamically

changes. Increasing the maximum memory allowable on the system can be thought of as a means of

reducing the page fault rate of individual programs or of the whole system. Contrary to one's

expectation the fault rate may increase with increasing the maximum memory available oTl the sys-

tem.

Our empirical results show that WS exhibits 0-F anomalies for both system fault rate and the

individual processes' fault rate. For NIPL=3. the fault rate achieved with 0=14 is larger than that

achieed \Vith 0=12 for r values 20-30. For NPI_=4. the fault rate achie,,ed with 0=150 can be

larger than that achiev.ed with 0=100 bv as much as 1512 faults. as shown in Table 2-5. Similar

observations are made :or \IPL=5 and 10. For example. for r=151 and 01=100,0,=150.

F 7.0,)> F (r.0,_

S stem memorv-xirtual memory anomalies 0-V exist in the same w)ay as do .stem

parameter-faul, rate anomaiies. 0-V exists .f. for some O. O, and

-7Ir ,U

- . . ° a' ,€ " -,, .,. . . . ° . % % . ". °"* _p, . , •. .,%, %, .' -,"% ,r. -, , • • ' , '% . % "% . ,

* 3i

Table 2-5
System memory-fault rate anomalies

7 0=100 0--150 AF

15 8768 10280 1512
255 5123 5125 2

265 5054 5059 5
385 4403 4408 5
395 4334 4336 2

01>02 and V(r. 1o)<V(T,02)

i.e.. the average virtual memory allocated to a process decreases instead of increases when 0 is

* " increased.

ii The anomalies reported in this section are not exclusive. There are many other anomalies, of

all discussed types, which are not reported here; however, the figures and tables presented in this

section are sufficient to illustrate the anomalous behavior of WS in multiprogramming systems.

| a 2.6.5. Explaining the anomalies

*. The WS policy is a local dynamic memory management policy and. therefore, the programs in

a multiprogramming system may affect each other's working sets through swapping as discussed

earlier in Section 1 of this chapter. The swapping activity, thus. may be responsible for the

unpredicted paging behavior. Our empirical results show that the swapping activity in a multipro- %

gramming system is indeed the main reason for the existence of anomalies. To illustrate this obser-

vation we record for each r the swapping rate. S (0.r). The swapping rates associated with

parameter-fault rate anomalies of program INIT (MPL=3) are presented in Table 2-6a. This table

includes all the anomalies exhibited by program INIT in order to illustrate the effect of swapping

on the fault rate. Consider, for example, the table entry for 0 = 11. r1=21, and r,=66. The fault

rate increase. AF. is 262 page faults and S(0.r,) = 2635 > S(O."1) = 1600. Note that the sw-apping I-

j rate increase. S(0,r,) - S(0.r 1) = 1635. is much larger than the fault rate increase. AF = 262. The

reason for this difference is that not all the pages. previously swapped out. .vill have to be paged

1 '..',-,'* . ,. - . ~ % ~ % N

'. "- % - ... * - * .-.. ;.."%" "b~ " "" * ""- "" """""" ''

32

Table 2-6a U
Parameter-fault rate anomalies and swapping rates (INIT)

71 T.)¢ F(O.-r 1) F(9,7 2) AF S(O.1) S(@17 2)

6 6 11 3406 4446 1040 1338 2710
6 126 131 1932 3695 1763 1738 3687
6 376 381 3686 3704 18 3678 3695

7 6 11 3108 3771 663 964 345

7 61 66 3166 3256 90 3027 3120

8 6 61 3038 3266 228 718 3140
8 126 131 3241 3248 07 3133 3146

9 6 16 2610 3122 512 300 2437
9 21 66 2818 2911 93 2396 2775
9 191 196 1537 3098 1561 1350 2929

10 6 16 2556 3189 633 138 2299
10 21 66 2753 2840 87 2237 2669
10 131 141 2823 2830 07 2678 2681 I0

10 256 261 2781 2788 07 2632 2642 h
11 6 16 1525 306. 543 21 2178
11 21 66 2550 2812 262 1600 2635
11 71 131 2799 2813 13 2624 2637
11 196 206 1445 1455 10 1281 1287
11 321 381 1393 2836 14,13 1343 2785

11 386 516 1395 2829 1434 1213 2796

12 6 21 2525 2558 30 14 666
12 36 41 1548 158' 39 1263 1374

12 201 205 1404 1418 14 1224 1241
12 256 326 1412 1493 81 1238 1311

12 381 391 1472 1513 41 1290 1331
12 761 766 1412 1424 12 1328 1341 P
13 26 31 1602 1670 68 634 790
13 361 41 1572 1785 213 998 1246

13 06 101 1505 1512 07 1287 1298
13 196 256 1365 1444 79 1185 1242
13 321 } 376 1404 1458 54 1222 1276
13 506 511 1308 1333 25 1222 1248
13 576 581 1306 1362 1 56 1223 1279
13 761 766 1326 1367 _ 41 1243 1285 1

_30 71 -6j 06+ 950 20 20 51
301 261 t 266 459 47' IS 189 207

30 396 lot) 407 44 41 141 1 2
30 '?01 731 '.7 314 27 124 155
3oj sI 791 1 2% 298 08 147 155

30 1 1101 1201 271 2 L 28 128 156
.30 , 2201 5101 26, S57 1 125 - I1 I
k00 i 11,1 12ol 17 223 1 I1 001)

into mrmorv in the luture. The working set of a program. at the time of swapping. contains pages

not related to the program's current lo~alitv. These pages ha'4 e been resident in memory since they

..

33

were paged in; they remained in the working set of a program until a swapping operation occurred.

Accumulation of unnecessary pages is viable because the window size. 7. can be large enough to

cover more than one of the program localities, as has been discussed earlier. Similar to V-F

anomalies, this observation suggests that the working sets of a swapped out program need not be

brought entirely into memory once the program is rescheduled for execution. Such a strategy is

further supported by the fact that a swapping rate increase does not necessarily produce fault rate

increase. The choice of this strategy in this study is. therefore, justified. Moreover, it further weak-

ens the claim that the WS serves as a measure of program demand.

The swapping activity is also responsible for parameter-virtual memory anomalies (see Table

2-6b.) This is obvious, since a swapping operation removes the working set of a process from main

memory, thus equating the working set size to zero. This by itself does not generate anomalies.

Anomalies by definition are related to the WS parameter '. Therefore. if the swapping rate gen-

erated under a larger value of r is more than that generated under a smaller value of r. then there

Table 2-6b
Parameter-virtual memory anomalies (INIT)

0 7-) V (0.,r) V(9.,r2) -S(O-'r 1) S(O0,)

6 6 126 1 131 8.31 3.69 1736 3687
7 6 1.1 3.8 3.6 964 3455
7 16 21 3.85 3.76 3009 3024

8 _6 11 3.84 3.71 718 2782
8 256 1 261 5.59 4.86 3158 3180
9 191 i 196 9.54 j 6.68 T 1350 2929

10 321 326 2639 2768805.10 __8.0_ [.1l 2639 2768

1 10 756 1 761 5.19 5.07 12752 2755
11 241 246 10.14 8.59 1304 1369

1iI 271 376 12.22 5.72 1220 2794
S11 386 391 12.38 I 5.65 1213 2795
13 321 326 11.S9 11.84 j 1221 I 1231

130 i 766 77 1 I 31.37 30.62 138 147
30 3401 1 3501 55.12 54.81 187 28o

30 5001 5101 i 61.83 58.68 404 714
100 1101 1201 37.97 37.90 00 68

lo ,.a~~iTe - ..

34

is a chance for the anomalies to appear. A plot of the swapping rate of the system versus 7 is given

in Figure 2-10 for MPL=5 (0=100. 150, 200). Figure 2-10 shows that the swapping rate is an

increasing function of T most of the time. Moreover, swapping occurs at relatively large values of '-

r. For 0=200. the swapping rate curve is shifted to the right of that for 0=150 and 0=100; swapping

occurs at larger values of r.

A swapping rate increase that results in a parameter-virtual memory anomaly, but not in a

parameter-fault rate anomaly, produces a virtual memory-fault rate anomaly as discussed earlier

in this section. Hence. a swapping rate increase that results in a parameter-fault rate anomaly, but

not in a parameter-virtual memory anomaly, results in a virtual memory-fault rate anomaly.

Moreover. a system memory-fault rate anomaly has been shown to be preceded by a parameter- o

fault rate anomaly. Therefore. it can be concluded that the swapping activity in multiprogram-

ming systems is the main reason for the anomalous behavior discussed in this chapter.

System. MPL=5. 0=100 ---. 150 - -. 200 ...

1000

800 I,

600

S

400__________

200

20 4 . __ __ _ __ _

lo_ o,' 0 IoI I

Figure 2-10: S%'A apping rate versus 7

401) ' -) ,..'

35

2.7. Summary and Conclusions

This chapter has demonstrated WS anomalies in multiprogramming s.ystems. The presence of

anomalies is of theoretical interest in itself. However, we found that the anomalies are far too

numerous to be considered only of pathological or contrived nature. Practically. the existence of

anomalies complicate the control process of WS policy. The WS parameter, r, may not be used in a

straightforward manner to control the fault rate in the system and memory allocation. Moreover.

WS anomalies, especially the parameter-virtual memory anomaly, illustrate how WS overestimate

a process's working set and. hence, memory could be overcommitted during the execution of a pro-

cess.

Furthermore. this study suggests that results obtained from uniprogramming studies should

not be used in a simplistic manner to arrive at multiprogramming paging strategies. The WS policy

* " exhibits only certain types of anomalies in a uniprogramming system. In a multiprogramming sys-

tem. performance measures depend not only on the intrinsic behavior of a program but also depend

on the behavior of other processes in the system. Interaction between processes takes place through

paging in global policies such as global LRU and through swapping in local policies such as WS.

The WS anomalies, together with the WS high cost of implementation. leaves open the search ,

for a better policy for managing memory hierarchies in multiprogramming systems. The next

chapter presents a new approach to the memory management problem. A parameterless policy is

proposed which can respond to the memory requirements of a program taking into consideration

S-" the requirements of other processes in the system.

%%

36

CHAPTER 3

CD: A COMPILER DIRECTED MEMORY MANAGEMENT POLICY

The idea of using menry directives (MD) for the management of memory hierarchies in a

multiprogramming virtual memory system (VM) has been hinted at by many authors. Madison

and Batson [30] suggested that if program localities generated by the BLI model could be correlated

to the source level code. then it would be possible for the compiler to generate MD to identify pro-
4~; .4

gram localities at run time. Abu-sufah [5] suggested the use of data dependence graphs to isolate

the localities at the source level. In his Ph.D thesis Abusufah found that the localities of numerical
programs in a paged system generated by the BLI model are due to loop structures. A similar con-

clusion was made by .Malkawi [31] for segmented systems. The use of memory directives for

optimal memory management was also siiggested by Hagmann and Fabry [271 and by Kearns and 3
DeFazio [29]. Except for [5] and [31] none of the researchers have proposed any particular MD to be

used. Abu-sufah proposed a directive called allocate which has the function of locking a page in

memory if it can be identified as a member of a program locality. When the program moves to

.* another locality phase. a deallocate routine is called to release those pages allocated during the exe-

cution of the previous locality. Abu-sufah suggested that a program has to be transformed [21 '.

before allocate and deallocate can be effectively used. Program transformation requires the use of

data dependence graphs to resolve data dependencies. The directives suggested by Abusufah fail to

reflect 'he hierarchical structure of program localities which is a common locality characteristic

(30]. Besides. allocate and deallocate can not resnond to the dynamic change in the memory status

, of a multiprogramming system. %

the idea of using .ID has been practically implemented in real systems. Both VAX. \'NIS and

Berkeley UNIX allo-w the user to lock and unlock some pages in physical memory. The effectieness

tt such fac:lities in VAX \.IS was illustrated by Abaza [i].,)ho showed that .he Ferf.-rnance I i%

• , ,.., * s ~ . % .. . , ., ,4. '4 "." - . ..-. ... ,-. ,.*J..'.-.',,,,'.*....

I 37 S

6%

some numerical algorithms can be enhanced if the directives provided by VAX/V.MS are properly

used. However. one would like to free the user from having to call a system routine to lock or to

release a page. and having to isolate a page that should be locked in memory in order to achieve a

better performance. Besides, a user may not be able to determine which page should be locked and

when it should be released, unless he has the proper knowledge of his program behavior as well as

the knowledge of the system.

In this thesis. three memory directives are designed to achieve two goals. The first one is to

allocate X physical page frames to a running process s resident set. A directive, designed for this V-

I.
•

purpose. should be able to define the size of a program's resident set and allocate enough physical

pages to accommodate it. In this study. such a directive is called ALLOCATE. The second goal is to

lock a page or set of pages in main memory. A locked page. by definition, is exempted from being

paged out by the page replacement mechanism. A directive is developed for this purpose, and called '.

in this thesis LOCK. LOCK has a similar function to the directive proposed by Abusufah [5) and to

the system facilities provided by VAX/V.MS and Berkeley UNIX (V.MS and UNIX user manuals).

A page that has been locked in memory bv LOCK is unlocked by a directive called UNLOCK. Later

in this chapter. we shall discuss a case in which the operating system (OS) is entitled to release a

page before UNLOCK does so. ALLOCATE. LOCK. and UNLOCK are discussed in greater detail in

the following sections.

Based on the three directives developed in this study, a compiler directed memory manage-

ment policy (CD) is proposed. CD operates as follows. At compile time, a preprocessor generates

directi'es ol the type ALLOCATE, LOCK, and UNLOCK. These directives are inserted at appropri-

ate locations into the compiled ofiject code of a user's program. At execution time. the directives are

V. executed by the CPU When a direct:,e is executed. CPU generates a call to a particular OS routine

responsible :or processing and handling memor% directi\es. Figure 3-1 presents a block diagram of

("D.

"-"

II

38

Source Directives CompilerCode :Cmie

Object
Code CPU

Direc tives

Operating Memory
System Management

Figure 3-1. Block diagram of a compiler directed memory management policy

3.1. Memory Directive: ALLOCATE

One of the major problems a memory management policy has tc solve is the amount of physi-

cal memory that should be allocated to a program during its execution. Run time policies, whether

static or dynamic, determine the number of pages to he allocated at run time as discussed in the

first chapter It has been shown in Chapter 2 that WS. a dynamic run time policy. may overesti-

mate a program's memory requirements. Compiler directed memory management policies estimate

the memorv requirements of a program at compile time. using source level information. and passed "

to the OS through ALLOCATE. which is designed in accordance with locality characteristics of pro-

gram beha'.ior and the constantly changing free memory space a'. ailable on a multiprogramming

\\I system.

6I

_!. , '. ,..". .'- ..-.-. ..-".., ..'.-)-..:'. ..,.-,,.- 1',- '-', '-' ,- .: ',- , ., \'., ' '-'.''-.% '. '".--

mI 39
3.1.1. Locality characteristics of numerical programs ,i

A locality structure may result from data structures created at run time. e.g. stacks, or from

data structures declared in the source code of a program. The later case is considered in this thesis.

The BLI model of program localities (301 suggests that array references inside loop structures of

numerical programs are the main reason for the existence of localities at execution time [5]. [31]. A

nested loop structure produces a hierarchical locality structure. Such structure defines one of the

locality characteristics, namely the level of a locality in the hierarchy of localities. Another charac-

teristic of major significance to our study is the virtual size of a locality. The time duration is also

a locality characteristic as seen in [5]. [30]. [31]. Consider Example 3-1 for illustration.

Example 3-1 shows a FORTRAN-ike piece of code. The maximum nest depth of the loop

structure is three. Two arrays, E and F. are referenced inside loop 20. Arrays E and F are refer-

enced in a row major order. i.e.. the elements of a row are referenced while the current column

index. I. is fixed. The elements of an array are stored in a column major order; this assumption

Example 3-1:
DO I0 I= 1, N

DO 20 J=l, M
E(iJ) = F(IJ)

- 20 CONTINUE

DO 30 K= l,M
G(K,) = H(K,I)
DO 40 L= 1,NN

V(L) = V(L)*2
40 CONTINUE

30 CONTINUE
10 CONTINUE

The localities of the above code are illustrated in the following diagram:

Level 1: Loop 10 I {E,F,V 4

Level 2: Loop 30 * ' L " ,..".,

level 3: Loop 40 -V - V - 1-

.,:'

40

holds throughout this thesis. Every element of arrays E and F is referenced one time during one

iteration of loop 10. i.e.. the entire virtual space of arrays E and F is spanned during one iteration U7,bP

of loop 10 due to a full execution of loop 20. Hagmann and Fabry called this type of referencing

pattern total [27]. Note that there are M iterations of loop 20 per each iteration of loop 10. There- V

fore. a locality comprised by loop 10 includes the virtual spaces of E and F.

Loop 10 is the outermost loop which forms the highest level locality, or level one locality as

termed in [30]. '

Arrays G and H are referenced in a column major order inside loop 30. When loop 30 exe-

cutes. the column elements of arrays G and H are referenced sequentially. while the column index.

1. is fixed at the outer loop level (loop 10). Since the elements of one column are stored in consecu-

tive pages. according to the storage scheme, the locality at this level includes only the virtual space

of the column being referenced in the virtual space of arrays G and H. The index I takes a new

value only when loop 10 reiterates. The elements of a new column will be referenced during the

next iteration of loop 30. In other words, the virtual space spanned during the execution of loop 30

is determined by the new column elements of G and H. Consequently. references to G and H inside

loop 30 form a locality as long as loop 30 remains active. However. every time loop 30 resumes -

execution a new set of pages form the locality. In the diagram of Example 3-1. localities formed by -"

loop 30 are illustrated by G IJI 1 . .G, 1, . where G, is the virtual size of column i of array G.

A one-dimensional array, vector V. is referenced inside loop 40. During the execution of loop

40. the virtual space of V is spanned totally. The virtual space of V is referenced totally during

each iteration of loop 30 and loop 10. Therefore. V participates in the localities formed at level I

and 2 as well as at level 3. The localities are illustrated. graphically. in the diagram of Example 3-

1 Fxample 3-1 is too simple to illustrate how program localities can be automatically extracted -

I r--m the source level code. j
Our :cncern here is %xith the hierarchical characteristic of program localities. A ,nacrsc'p c

. e' 0! the kocalit'. str,.cture exhibited in Fxamnle 3-1 shows that all arra',. F. F. (. I and \.

A -. " .'-" "". " ,

41 VI

should be considered part of the program's current locality. This view is obtained by looking at

loop 10 as indivisible entity. If the program's memory reference pattern is observed while the pro-

gram is executing loop 40. the program's current locality appears to include vector V only. Such a

microscopic view of the locality structure shows that the smallest program locality dominates all

other localities. This illustrates how a program may change localities within a given locality struc-

ture. (intra-locality transitions). In Example 3-1. intra-locality transitions occur between levels I

and 2 and between 2 and 3.

The problem of intra-locality transitions was treated in [9] by linearizing the locality struc-

ture. To linearize a locality structure consisting of two levels is to decide that one of the locality

levels is more significant than the other at some time instance. Least significant localities are

dropped from the locality structure, thus leaving only one path connecting all locality levels. The

difficulties of this approach are cited in [5] and [31]. Besides. each locality level in a locality struc-

ture reflects the memory referencing behavior of a program during a particular phase of the pro-

3 gram execution. In Example 3-1. while the program executes loop 40. the virtual space of vector V

is being referenced continuously, irrespective of the significance of level 3 locality compared to

level 2 or 1. Therefore, the locality comprised by loop 40 is significant during the execution of loop

40 and the locality comprised by loop 30 is significant during the execution of loop 30 and so on.

Allocating the outermost loop produces the minimum possible fault rate for a given locality struc-

ture. irrespective of its relative significance to other levels, since the virtual spaces of all referenced

arrays within the outer loop are made resident in memory. lowever, it may not alwavs be possible

to allocate the localitv comprised by the outer most loop (level one locality) due to insufficient free

memorv In such cases. the availability of free memory should determine which level of the local-

it, structure -hould be allocated.

From tle above discussion the Followin" observations are made. The highest level locality.

(leve I) produces the lowest possible fault rate. l hen allocated completel in main memory. That

is because e,.erv page referenced inside a level one localit,. is raged onl% once into main memor'.

..--..-
=." .N

I.

42

(assuming a demand paging strategy), and will not be replaced by the page replacement strategy.

The allocation of a level one locality implies that the resident set of a program should not be less
a.

than the number of pages referenced inside the Iccality. However, if a level one locality is too

large to fit in the main memory. the next lower level locality should be considered for allocation

(lower level localities have a smaller size than higher level localities). In other words, a program

settles down to a microscopic view of its locality structure. If the second level locality can not be

allocated, the third level locality is tried for allocation, and so forth. A program may keep recon-

sidering its lower level localities for allocation as long as there exists at least one more lower level

locality. The program should not. however, be allowed to run if the lowest level locality can not be

allocated: this restriction is necessary to prevent thrashing. Assume that the lowest level locality

contains N pages and there are only N-I free memory pages. N-1 pages from the lowest level local-

itv may reside in main memory and one page has to be maintained in virtual memory. Every time a

reference is made to the N '1 page (in virtual memory). a page has to be removed from the main

memory. A reference to a replaced page. in the future, will cause a page fault which results in W
replacing another page. The outcome of this cyclic faulting process is a short life time between suc-

cessive faults, a phenomenon known as thrashing.

These observations lead to two key principles underlining the design of the ALLOCATE direc-

tive. First. the highest level locality, level one in the hierarchical locality structure, is favored over

localities of lower levels for allocation purposes. Secondly, the lowest level locality in a hierarchi-

cal locality structure, imposes a lower limit on the memory space that should be allocated to a run-

ning process. These two principles reflect the dynamic change of the program's memory demand

due -o intrinsic properties of program behavior. The failure to recognize these principles may lead -

to improper memory allocation strategies. In order to incorporate the above principles into MIl).

each locality at some le'1 el in the hierarchicai locality structure is assigned a priority index. P.

Up to this end one can recognize two primities for ALLOCATE. The first one is the .mount

of memor',. to he ailocated. X. given 1y the ,. irtual size of a locaitv. The second one is t e -- :orit.

%%

UI

a.-. " t*\ ..

43

of allocation. P. ALLOCATE may have the following form

ALLOCATE(P ,X) 1

where X is the virtual size of a locality, and P is the priority index associated with that locality.

Upon executing a directive of type ALLOCATE, a request is issued to the operating system to allo-
I,

cate X pages. given that the priority of allocation is determined by P. Both primitives. P and X will

be discussed in more detail in Section 3.1.4.
-

ALLOCATE, in its simple form given above, can not respond to the dynamically changing

amount of free memory spacein a multiprogramming system. The amount of free memory space

available on the system may increase if a running process completes its execution and returns to the

svstem. whatever memory it has occupied, or if a process enters a new phase with a smaller size

S locality, thus. adding the released pages to the free memory. On the other hand. the free memory

• ." may shrink in size if a new process is added to the system or if a running process enters a new

phase with a larger size locality. Moreover. the above form of ALLOCATE does not completely

incorporate the first principle cited above: namely, that higher level localities should be favored

over lower level ones. To account for these two drawbacks. a more complex form of ALLOCATE

directive is given below:

* ALLOCATE(PI.X)else (P,,X1) else ... else (P, .X,)where X 1 X,> "X.

Each ALLOCATE directive has one or more parameters. Each parameter has two primitives

enclosed in parentheses "(P.X)". At any level of a locality hierarchical structure. ALLOCATE con-

. tains a parameter associated with the current level and one parameter for each level enclosing the

current level. The order of parameters in ALLOCATE is such that parameters associated \ith

higher level localities precede those associated with lower ones. as shown in Figure 3-2. A mul-

tinested loop structure is shown in Figure 3-2. Each loop forms a locairv with size X, and has a

priorit': P The ouiermost loop forms a level one locality %.ith XI and PI. The directioe associated

ith "!::s !c'calit-, :s ALI.()CATE (P 1 .X). Going down in the hierarchy stY octure to the second ir'p

xith rest deth the directive reconsiders the allocation of the pre\ ious ocalitv , pecified hv

P 1 . ., het,re It LO,.iders the primitives of the second level locality specitied Iy ,.X.. . and >o

i

44

forth.

3.1.2. Processing of ALLOCATE directive by the operating system

For the moment. we assume that directives of the form

ALLOCATE(P 1 ,X 1) else (P,.X,) else

have been inserted into the programs code at compile time. At run time the directives are executed

by the CPL. Once a directive is executed, a system routine is invoked to handle its processing. ".

ALLOCATE issues requests of the form (P 1 .X).(P,.X). in the same order. The OS first receives

ALLOCATE (P 1X 1)

X

P1

ALLOCATE (P 1 ,X 1) else (P,,X,)

P2

ALLOCATE (P I,X 1) else (P,X) else (P 3 ,X 3)

X3
P3

...1

ALLOCATE (.P ,X) else (P,,X4) "

P4

Figure 3-2: Example of ALLOCATE directive

5 45

the request (PI.X1) and tries to allocate X, pages from the available free memory. If X, pages can

not be allocated, then the OS examines the value of PI. As a convention P=l is chosen to be the

priority of the lowest level locality in a hierarchical locality structure. Hence. P I> I means that

there is at least one more lower level locality, and at least one more directive argument (P 2 "X2)

where X 2 <Xl and P.<P. In this case. the program is allowed to continue its execution, with its

current memory allocation from the previous directive, until the next request (P 2,X 2) is received.

Once again, if X.Y can not be ailocated. the execution continues only if P,> 1. This process continues -

until a memory request X, is allocated, or the priority of the request is P, =1. In other words, the

program exists in the scope of its lowest level locality, or. using source level code notation. the pro-

gram is currently executing the innermost loop of a multi-nested loop structure. In this case. OS

j either suspends the program's execution or invokes a swapping mechanism (SM). The choice

between these two actions depends on the priority of the running job and the priorities of other *4"

•4,
jobs existing in the system at the time of processing a directive. In the performance evaluation of

CD it was assumed that all processes have the same priority and, thus. the OS invokes SM when-

ever it has to make a choice. SM is discussed below in greater details. The processing of ALLOCATE -

is shown in Figure 3-3.

In Figure 3-3 the priority index P=1 is used to indicate the lowest level locality. With P-l

associated with the lowest level locality, the OS simply checks whether the current priority is

larger than one or not in order to determine the next step when sufficient memory can not be allo-

- cated. Otherwise. if P=l is associated with the highest level locality and P is increased with the

increase Of the depth of the locality structure, a look-ahead scheme will be necessary to know the

relative position of the current locality. Htowever, assigning P-l to the lowest level locality.

comprised by the innermost loops, inhibits the use of a one pass top down parsing scheme when the

directives are inserted, as will be seen in Section 3.1.4.

.

*. ,I%

46

Directivem
Received

Figre3-: irctvercssigb temOS

Availabl

Allocate I '

no , .,

highJoye
Prort Execute Until

Swapper[Next Directive-.
" , lo w is R eceived) '

Figure 3-3: Directive processing by the OS

3.1.3. Swapping mechanism

The OS may invoke a swapping mechanism (SM) if the available memory space is not enough

to allocate the current request and the priority of the current request is P-1. Besides being able :o

invoke SM. CD provides a strategy for partial swapping, using the priority primitive of ALLO-

CATE.

In regular swapping strategies, a process is selected for swapping, according to some criteria. __

and its resident set i:; removed from main memory. We call this strategy total swapping as opposed

to partial swapping strategy (PS). Partial swapping reduces the current resident set of a process.

selected for swapp~ng. to a smaller 'alue. The viability of partial swapping is facilitated by the

priority primitive and the hierarchical nature of AI.LOCATE. PS operates as follows. When

in'aked by a directive xith P=l. the s'vapper searches for any process occupying memory space X.

7U

with a priority P, > 1. The resident set of such a process is reduced from X, to a new value X.,. X

is the size of a lower level locality with X, <Xi and Pj < P,. In the model used in our study we V

reduce the resident set size of a process to that one associated with P-1. The philosophy behind par-

tial swapping is that a process A may find enough memory space to allocate its largest locality.

while process B can not allocate its smallest locality. This may happen if process A is scheduled to

run when the system is not heavily loaded, while process B enters the system when it is heavily

loaded. Forcing all processes to run with their smallest localities allows more processes to share

memory. However. thrashing is prevented by ensuring that every process is allocated enough

memory to accommodate one of its localities, no matter how small the locality is.

Various schemes of partial swapping could be implemented. For example, a multiple queue

could be used to hold processes with different directive priorities. The partial swapping mechanism

. xould transfer the processes in the largest priority queue to the next lower level and continues

until either the memory request is satisfied or the only unempty queue is the one with P=l. Total

swapping becomes necessary if every process in the system is running with P=l. Partial swapping

* strategy is further illustrated in Example 3-2.

Example 3-2:

Assume that two processes A and B are running in a system with 120 memory pages. A executes
the directive MD..: ALLOCATE(3.100) else (2.5e) else (1.10) and B executes VD3 : ALLO-
CA TE(1.25). Assume further that A is activated first. The following execution time intervals (t,)
are observed:
tl: A executes MD.A. The first request (1,100) is granted since X=100 is less than the available free

memory F=M-0=120. The status of A is S.A =100. P._. =3 (S is the resident set size):
the last argument of MD. (1,10) is saved in a process specific record. F=120-100
=20 pages.

.: Interrupt occurs and B is activated.
t3 B executes .ID 3 . The first request (P=LX=25) can not be granted because X=25 is larger than

F=20. Since P=l. OS invokes SM. Fhe partial swapper (PS) finds A occupying 100
pages with a priority larger than one. P=3. PS reduces S.A from 10() to 10 pages:
S,*.' P=3,X=100) -- (P=I.X=I0. F= 120-1() = 110 pages. Now B's request can
he granted: Sq =25 pages. F=l 10-25=.S5 pages.

t-4: Interrupt occurs and B is activated.
15: A executes MD:.. The first request (P=3.X=100) can not be granted hecause X =100 > F=95. A

continues execution %k ith its pre%, iou. allocation S-. =10 until the next request (2.50)
is received. The request is granted since X = 5 0 < F =.,5. The status of A is
S . 0 and PA =2. -" =45.

' A teady state :s reached . ith 25 pages allo, ated to B and 50 pages allocated to A. B alwavs gets

.

-IIWJW W ,Fu W- -7--fa 1 -TI -- .. w r J -.F

48

the 25 pages it asks for since the request has a high priority P-i. A cannot be allocated 100 pages
as long as B is in the system: A will not, however, be forced to run with 10 pages since B cannot
invoke SM anymore.

34.1. Primitives of ALLOCATE directive

ALLOCATE incorporates two primitives: the priority index P and the memory request X.

Both primitives are discussed in the following subsections.

34.1.1. Priority primitive, P

The hierarchical nature of memory demands due to the hierarchical nature of locality struc-

tures is reflected into the hierarchical form of ALLOCATE through the priority primitive P. Recall

that the allocation of the highest level locality, level one, achieves minimum page fault rate dur-

ing the execution of a multi-nested loop while the allocation of the lowest level locality.

comprised by the inner-most loop, is sufficient to prevent thrashing. The highest level memory

demand is determined by the highest level locality, comprised by the outermost loop of a multi-

nested loop structure, whereas lowest level memory demand is given by the virtual size of the

lowest level locality. Memory requirements in between the outermost and innermost loop of a

program are defined by the sizes of corresponding localities. .

The priority primitive. P. is used to determine the sequence in which lozalities of a given

construct should be tried for allocation. A locality at level one should be tried for allocation

before a locality at level two. and a locality at level two should be tried for allocation before a

locality at level three, and so forth. Such precedence is motivated by the hierarchy of locality

sizes. Higher level localities are larger in size than lower ones. And the allocation of larger locali-

ties is sought to achieve lower fault rates.

The priority primitive is used to impose a lower limit on the memory requirement of a pro-

gram. Such a lower limit is given by the virtual size of the lowest level locality. The inability to

allocate the lowest level locality results in thrashing. The execution of a directive associated with

a lowest level locality requires the allocation cf such locality een at the expense of swapping

A

. . . .io

49

some processes out of memory. Thus. P is used by OS to invoke SM when necessary. Moreover. P

is used by the partial swapping mechanism as discussed in the previous section. A process. running

with P> 1. might be selected for swapping by PS.

The value of P can be deduced from the relative position of a locality in a hierarchical local-

ity structure. The largest value of P is defined by the maximum nest depth (A) of a loop structure

;*S* since A imposes an upper bound on the number of localities in a given locality structure. Hence.

the values of P range from I to A. The outermost and the innermost loop compose an envelop

enclosing all other intermediate localities. P= can, in principle, be assigned to either one and P=A

to the other. In the previous section we assigned. by convention. P=I to the innermost loop. The

motive behind this is to enable OS. while processing a directive, to determine the memory request

associated with the lowest level locality. This is necessary for two reasons. First, if the current

. memory request can not be allocated and P=l. SM should be invoked. Otherwise (if P=A is

assigned to the lowest level locality). A should be known at the time of executing a directive to

compare it with P every time a request can not be satisfied. The second reason. the value of the

(P.X) pair associated with the lowest level locality should be stored in order to partially swap a

process if needed.

In a multi-nested loop structure, there can be more than one innermost loop. Each of these

loops forms a lowest level locality which must be allocated if the process is to continue execution.

The priority P=I is assigned to every innermost loop and P=A to the outermost loop. The priority

of any intermediate level takes the value between 2 and A-1. Such value is used to indicate how

many more parameters a directive could have. In effect the -,alue f P at any level L, is a measure

of the distance d between L, and the innermost loop enclosed by L,. The priority P, assigned to

any loop L, can be iterativelv evaluated by finding the maximum nest depth A, of an inner loop

enclosed by L, . assuming that L, is an outermost loop. and assigning P, =A,. ..

Assigning priorities to a loor structure, thus, cannot be performed with a single top dow n

parsing technique since it is necessary to know the depth of the innermost loop relative to the ,..h

50
..

current outer one. A single top down parsing scheme can be used, however, if P-1 is assigned to
U

the outermost loop. A procedure for assigning priorities to various loops in a multi-nested loop

construct is given in Algorithm 3-1.

Algorithm 3-1: Assign priorities to loop structures;

Repeat:

Step 1: Parse until a loop is encountered.

Step 2: Find the maximum nest depth, A, related to this loop.

Step 3: Assign P-A to the current loop.

Until the end of the program is reached.

An example using Algorithm 3-1 is shown in Figure 3-4.

3.14.2. Memory request primitive, X

The memory requirement of a program. X. at a given time. is determined by the virtual size

of the current program locality under execution and is used as a primitive of ALLOCATE. In this

study the localities are restricted to those comprised by loop structures since the study is con-

ducted on numerical programs where the locality structures can be correlated to loop structures

at the source level code [5]. [30] and [31]. In this section. the virtual size of a program locality is

estimated using source level information.

Only references to array data structures are considered in this study. The instructions code

and data constants are assumed to be locked permanently in main memory. This assumption is

realistic since the paging behavior of numerical programs is dominated by references to array data

structures inside loops [4]. [30]. Moreover, the virtual size of the instructions and the constants is

* relatively small compared to the virtual size of array data structures.

The estimation of the virtual size of the current locality utilizes only the informaton avail-

able at the source level code. A wide range of FORTRAN programs used in different packages was

examined for the purpose of identifying their localities, using the information inherent in

U6

51

5U

2 1

4

3

2

1%

Figure 3-4: Example of assigning priorities

the source code. Some of these packages are UTARL : University of Illinois Atmospheric Research

Lab. ACNI: ACMI Standard Programs. IEEE: IEEE Standard Programs for signal processing; XRL:

Naval Research Laboratorv. AFWL: Air Force Weapons Laboratory. Fish pak. Eispak. \Iinpak.

Fishpak is a package of Fortran subprograms for the solution of separable elliptic partial

differential equations dev-:-ioped at NCAR (National Center for Atmospheric Research). Eispak is a

package of Fo)rtran subroutines for the analysis of standard and generalized eigenvalue programs.

\ir.ak is a package of For1.ian subroutines for finding the minimum of solution squares of sets of

nonlinear equations.

4'. $

-. -. . -...-. -....-. .'. 27

i
52

'.p

Examining the source code of these programs reveals that six parameters can be used to calcu-

late the virtual size of a locality. Five of these parameters are program dependent and one is system U

dependent. The system dependent parameter is the page size (P). The page size is necessary for cal-

culating the virtual size of a locality in pages. since memory allocation is measured in pages. Pro-

gram dependent parameters are

(1) Array size (1) Z " is usually given as (NI x N) dimension, where NI is the number of rows and

N is the number of columns. A vector is an array with N = 1. Only up to two-dimensional

arrays are considered in this study. Array sizes are given explicitly in dimension declaration

statements. The virtual size of an array (SA) is given by

(M xN)
SA- p

assuming that each array element is one word long. The virtual size of all arrays referenced

in a program comprise an upper bound on its memory requirements. The memory require-

ments during the execution of a loop structure are bounded by the virtual size of the arrays

referenced inside the structure.
%

(2) The nest depth of a loop structure (W): A determines whether the current locality has a

hierarchical structure or not. The value A> I implies that a hierarchical locality structure

with utmost A levels may exist. It is possible. however, not to have a hierarchical locality

structure with A> 1. For example, a doubly nested loop (A = 2) with arrays referenced in a

row major order inside the inner loop forms a single locality of level one. The nest depth is

also useful for assigning priority indexes to nested loops.

t 3) The number of indexed variables used to reference the elements of an array (N): N is used to

give an upper bound on the number of distinct array pages referenced at a given locality level.

iThe maximum number of arrav elements which cn be referenced during one iteration of a

lo,.- is determined by the number of distinct indexes. N. used to address the array. If the

arrav elements eferenced at a particular level are stored in distinct pages. then N distinc

rages are referenced at this leel. Depending on the dimension and the order of reference of

Vn

an array. N can be used to give an upper bound on the number of array pages which partici-

pate in the formation of the locality at the current level.

(4) The order in which arrays are referenced has a direct effect on the formation of a locality. If

an array is referenced in the same order as the elements are stored in the virtual storage. then

each arrav referenced inside a loop contributes to the locality comprised by that loop. On the

other hand. if the elements of an array are referenced in a different way than that of the

-" storage scheme, then references fall across pages. In this study we have assumed a column

major order scheme. The elements of the first column are stored sequentially in the same page.

If the number of elements in a column exceeds the number of words in a page. a second page

is used, and so on until all elements of a column are stored. Then the elements of the second

I column of the array are stored in the same manner, until all columns have been stored.

An array is said to be referenced in a column major order. Ac. if the column index. J. is

fixed and the row index. I. varies during the execution of a loop. L,. The addresses generated

bv references to A ' fall into adjacent virtual space locations. Once a page is addressed, its ele-

ments will be referenced sequentially until a second page is addressed. When a second page is

referenced, the first page will no longer be active. Therefore. only one page from A' will be

Pactive at a time. However. if several row indexes are used to reference a column's elements.

several pages might become active during the execution of L,. Hence. the localit: comprised

by L,. may consist of several pages. depending on the number of row indexes used in combina-

tion with a column index. It is also possible that several column indexes. I. could be specified

at outer levels. In this case, the virtual space specified by each column x ill participate in the

formation of CL.

An array is referenced in a row major order. A'. if the elements of a row 'ire referenced

sequentially during the execution of a loop. L, . The row inde : I is fixed. while J. the

column index, varies inside L,. Anv elements referenced in a row masor order a.-r located in

two different columns and. hence. in tw.o different pages. unless the column size is less than

the page size. Therefore. the num-er of pages to be referenced luring the execition of L is

'4, * ,. , % ',- ,.-,• . . "' """"" """"""" " " "' ' """ " ' " "" " "
"

" " "" """" "" "" "

54

equal to the range of the column index J. A page referenced in one iteration of L, would not

f
be referenced in the next iteration, since the next reference is made to an element in a different

column. Hence, no locality of reference exists at L, level. If the virtual size of a column. S(.

is less than the page size. the elements of two successive columns may be stored in the same

page: assuming that all pages of an array are filled except. possibly. for the last page. In this

case the number of pages expected to be referenced during the execution of L, is equal to the

total number of pages in the virtual space of A' . The maximum number of pages referenced

from the virtual space of A' depends on the size of each column compared to the page size.

Given a A' with a dimension (MxN). where M is the number of elements in a column or the

range of the row index 1. and N is the number of elements in a row or the range of the

column index J. the following equation finds the maximum number of pages. X, . that may be

referenced during the execution of L,"

Al*N
p if S.1 <P (3-1)

X= N if S% '>P"

where S,1 is the virtual size of a column and .l*N/P is the virtual size of the array. Note

"hat references to .4' do not form a locality of reference at the same level of reference (L,).

However, a macroscopic view from a higher level L. where j=l.....i-I shows that a locality of

reference results from references to .4' at L,.

(5) The level (or nest depth) at which an array is referenced (W): X = 1 is the nest depth of the

outermost loop in a multi-nested loop structure. X increases as we go deeper into the loop nest.

The nest depth of the inner most loop, A = A. is the maximum nest depth of a loop structure.

The smaller the value of X. the higher is the level. A row-wise referenced array at some level

X=i does rot form a locality at this level. llo'.e,-r. if there exists a higher lesel X<i . then 2

.1 forms a locality at all levels vith A<i. That is because the virtual space from A' . reler-

enced at k=i . is rereferenced repeatedly during .he exe~ution of any higher :evel loop ', ith

\ <i The entire irtual space of .4' .S.. . is referenceo during each iteration -A any 1otpo ,ith

mU

55

level X=1.2...i-2. Therefore. A' tends to form a locality at higher levels A<i with a size

X,_1 given by equation 3-1 for the locality at level X=i-1 and a size X =S..A for

j= 1.2. .i -2.

Similarly, for the case of a vector, one iteration of a higher level loop X=j is sufficient to

span the entire virtual space of all vectors referenced at lower levels. X> j. Therefore. the

entire virtual space of a vector referenced at level X=i . i 1 contributes to all higher level

localities, X<i.

In the case of a column-wise referenced array inside a loop at level Xi . one or more columns

of an array are spanned during the execution of L, loop. These columns are usually specified

by an outer loop with level X<i. The entire virtual space of A' is spanned during one itera-

tion of a loop at level X=.2,.... -2. Thus, the entire virtual space of a column-wise refer-

enced array contributes to localities formed at least two levels higher than the level at which

"- the array is referenced.

Next, the above parameters are used in a more quantitative manner to evaluate the contribution of

vectors and arrays to a locality structure. For the convenience of the analysis the cases of vectors

and arrays are treated separately.

Vectors

A vector (V) is actually a matrix (M x 1) with NI rows and one column. Memory locations in

wvhich the elements of a vector are stored constitute the vector's virtual space. The elements of a

.ect'r are stored sequentially in a page until the page is filled, and then a second page is used. and

so on until all the elements of a vector are completely stored in the virtual storage. A page contains

only the elements of one ector. fhornogeneous storage). The virtual size of a vector (S,) is defined

S. =.M /P

hee P is the rage size and %1 is the number of elements in the ,ector. assuming that each element

is one .'rdlong.

I I - ,n %

-7. .

56

Assume that a vector. V, . is referenced inside a loop at a nest depth X=i. as shown in Figure

3-5. and V, "s elements are referenced through the indexed variables specified by the current loop.

L,. The locality comprised by loop L, is the current locality (CL). A vector V, contributes to the

CL as well as to all higher level localities comprised by outer loops. L;.L2... L, -1 with nest

depth X=1.2. i -1, respectively.
k'p.

Consider the contribution of V, to the locality at level i-1. Assume that L,-, has a range of

N,- iterations. Each iteration of L,_ 1 involves a full execution of Li. The virtual space of Vi is

spanned totally in the time duration of L,. Therefore. the virtual space of V, will be spanned N,_I.

times (the of L,- 1). Similarly. at level X=i-2 with N,_-, iterations, the virtual space of V, will be

spanned N, , 2XN, - times, thus forming a locality at level X=i-2. The same analysis applies to all

higher level localities. Therefore. a macroscopic view of the virtual space of V from any level
.

X=1.2.....i -1 shows that the virtual space of V, is being referenced repeatedly.

In general. a vector V, referenced at the current locality level. L,. contributes to localities at

higher levels L. .j =1.2.i-I with its entire virtual size. S, For K vectors referenced at CL. each

vector contributes to all higher level localities with its virtual size S, . Let X, be the size of the

1P
current locality and X 1 . where i<i. is the size of higher level localities with nest depth X=j

" Using these notations the contribution of all vectors referenced at CL to all higher level localities is

calculated as follows:

i-I

-- _

"". Figure 3-5: lop" structure examr'le•

57

K

XJ=XJ + S,k (3-2)

v here j= 1. 2. i-I and S,, is the virtual size of the k" vector. K is the number of different vec-

tors referenced inside the CL. For illustration consider Example 3-3.

S Example 3-3:

Dimension V 1(1000), V2(1000)

"e DO 10 1=1, 1000
Do 20 J-1,1000
V 1(J)=V 1(J)+V2(I)

20 CONTINUE
10 CONTINUE

Assume that the page size is P=100 words and each vector element is one word. The virtual size of

VI and V2 is 1000/100 = 10 pages each. The code in Example 3-3 adds the sum of the elements of

V2 to each element of V1. Each element from the virtual space of VI (VI(1). V1(2).
.

V"-1(1000)) is added to one element from V2 (V2()) during the execution of Loop 20. All the ele-

ments of VI are referenced during the execution of loop 20. while only one element of V2 is refer-

enced. In other words. the entire virtual space of V1 (10 pages) will be referenced by the time loop

20 completes 1000 iterations. These 10 pages will be referenced again when Loop 10 executes

another iteration. By the time Loop 10 iterates 1000 times, the virtual space of VI will have been

spanned 1000 times. Hence. V1 contributes to the locality comprised by loop 10 witn SJ 1 =10

pages. Therefore, if the first level locality comprised by loop 10 is to be considered for allocation.

then at least 10 pages must be allocated in order to avoid replacing VI's pages during the execution i

of Loop 20. The contribution of Vi and V2 to the locality comprised by Loop 20 is discussed next.

The contribution of I, to the virtual size of CL is determined by the number of distinct vec-

tor elements referenced during one iteration of the current loop. The number of distinct elements
referenced at level L, is determined bv N. the number of distinct indexed variables used to refer-

en~e vector elements. The distinct elements of a vector referenced by N indexes can be stored in

utmost N nages, depending on the virtual size of a vector and the distribution of N over the ,ector

elements. In Example 3-3. one index. I . is used to reference VI elements inside loop 20 and I is

.5I

* -- -- a- -~O~ S .5*.*'-a % N

- - - - of.'.. R-- .' -' lo -V

58

used to reference elements in the virtual space of V2. There are only two elements (VI(J) and

V2()) referenced during each iteration of loop 20. Consider the first iteration of Loop 10. 1 =1. and

the execution of loop 20 (J=1.1000). A reference made to V2(1) is translated to a reference to the

virtual address where the first element of V2 is stored. In effect, a reference is made to the first

page in the virtual space of V2. PI(V2). The first page. PI(V2). which contains the first 100 ele-

ments of V2,. remains active during the execution of Loop 20 (1000 iterations), since the index I

varies only at the level of Loop 10. A reference made to VI(J) is translated to the virtual address

of the page containing the element VI(J). depending on the value of J. For example. the first 100

references are made to the first page PI(V 1). The next 100 references (100<J<200) are made to

P,(V 1). and so on until Pl,,(V 1) is referenced. Note that when a new page is referenced. the old

one will no longer be referenced until loop 20 is reinitiated by loop 10. Therefore, during the execu-

tion of loop 20. V1 needs only one page to be allocated in memory and so does V2. Any extra allo-

cation is redundant.

In general,if the virtual size of a vector is less than the page size, the vector contributes with

" one page to X,. However, if the virtual size of a vector is larger than the page size. S, > 1. the

number of distinct vector elements referenced at CL comprises an upper bound on the number of q

distinct pages that could be referenced at CL. The number of distinct vector elements referenced at
..-

Cl. is determined by the number of distinct indexes. N. used to reference a vector.

Figure 3-6 shows a memory representation scheme of a vector. The indexes I 1.12... I..\- are

-" used to reference distinct elements in the form V(1).V(I-).). The number of distinct

v -/

P IP2 ... Pn
WU

f g. ure 3-6: A ector's memorv representation

,

| -

-',,"". "- "'-'.," .''.2 .,r .' €'--'., '...".'-.. . .-.. . . ". . '.. ".-....--. . . .""*" ".- - .., ."..* ."- ."- - "- - - --"-,'..-'-' '

1 59
t.'

indexed variables. N. is used to determine the maximum number of pages that might become active

during the execution of CL. Such active pages constitute the body of CLsand N is the virtual size of

the locality. Therefore. V, contributes to the current locality size. with the number of distinct

indexes. N pages, or the vector's virtual size. whichever is less. Consequently. the memory request '

primitive. X, is given by

N +1 if N >S. .
X, X, + S3-3S, < S,(33 '

A vector is allocated N+1 pages. although the active set of pages contains only N pages. The extra

page is used as a buffer to allocate a newly referenced page after N pages have already been refer-

* enced. Buffering the new page avoids immediate replacing one of the active N pages. Since the local-

ity of a program contains only N pages, one of the allocated N+1 pages will be idle and. hence. will

be a candidate for replacement if a new page is referenced. The underlying assumption. here, is that -"

a least recently used (LRL) or a similar replacement policy is used.

In general, if there are K vectors referenced inside a loop L, . then the memory requested to

' allocate K vectors is given by

X, =X, + Xv, (3-4)

" In Example 3-5. each vector has 10 pages in its virtual space. At the first level (loop 10) both vec-

tors need to be allocated entirely since they are referenced at the lower level locality (Loop 20).

% Hence. the memory allocation primitive at the first level is X=20 pages. The directive inserted at

the ' eginning of Loop 10 would be of the form ALL()CATE (2,20). At the second level, there are

Example 3-5:
Dimension V 10000), V2(1000)
DO 10 J=l, 1000

DO 20 1=1,1000
VI(I*2); V 1(I)
V2(1) V2(I+1); V2(J)"

20 CONTINUE
10 CONTINUE

".'q'.

'A

60

two indexes. I and 1*2. used to reference two elements in the virtual space of VI; hence. N=2 and

utmost two memory pages. from the virtual space of VI. are active during the execution of Loop %

20. Since N=2 is less than S- 1=10. the memory requested to allocate V1 is X1 1=2+1=3 pages. Note

that if only two pages were allocated to V1. a page will be replaced every 50 iterations and then

faulted during the next iteration of the loop. Such extra faults are avoided by using the extra

buffering page.

Three indexes. 1. 1 +1. J. are used to reference three elements in the virtual space of V2. The

three referenced elements could be stored in utmost three pages. N=3. Since N<S- 2 . the memory

required to allocate V2 is X-=3+1=4 pages. The total memory space required at the second level

is X=3+4=7 pages. and the directive at this level has the form ALLOCATE (2.20) else (1.7). Note

how ALLOCATE prefers the allocation of 20 (the entire virtual space of VI and V2) over 7. How-

ever, if 20 pages cannot be allocated. 7 pages are enough to avoid thrashing while loop 20 is in con-

trol of CPU.

" Equations 3-3 and 3-4 are incorporated into a data structure constructed at compile time to

estimate the memory requirements of a program. The construction method of such a data structure

is discussed later in this section.

Twodimensirmnal arrays C

Depending on their referencing order, arrays can be referenced in a column major order

(column wise referenced arrays A') or in a row major order (row wise referenced arrays A'

Both types are discussed in the following subsections.

Column wise referenced arrays

Cons;Jer in Figure 3-4. the column wise referenced array A' (ij) at le,.el L. The column

index of .1< J . remains unchanged during the execution of L, J is specified at hi,'er leve!s

L,.Ll. The value of the row index. 1. changes its value at L, leve!. Arra,. elements are

releenced in the form A (1.J). During the execution of L., elements stored :n the ir. _ i sPace)I

.%

61

a: Column Size K< Page Size b: Column Size > Page Size

J, il J, J2 ill
12 l1 P P ... P

12 P PP, li 1p p *.p ,.

PIP2 "'LPnt
I,,,I... P P ... IP ?.

Figure 3-7: Column wise referenced arrays

a column J are addressed using one or more row indexes,],.' " .. Array elements A(II.J).

A(1 2 .J) ... A(.J) could be stored in one page if the column size (So.) is equal to or less than the

page size (Sc -< P) (Figure 3-7a) or in several pages if Sc > P (Figure 3-7b).

In the first case, no matter how many row indexes are used to designate a particular element.

only one page could be referenced during the execution of L,. In the second case, several pages in

the virtual space of a column could be referenced during one iteration of L,. Consequently. the "I

number of row indexes. N,1 . used in combination with a particular column index J determines the

number of active pages from the virtual space of A' in the time duration of Li. Obviously, if the

number of pages present in the virtual space of a column is less than the number of row indexes. .
'-I'

i.e, Sc < N; . the entire virtual space of a column is active.

Consider Example 3-6. where array A is referenced in a column major order inside the inner-

ft, 100_
most loop of a doubly nested loop. The virtual size of A is SA =1O00x00 =1000 pages. where the

100

S1000 -1 ppage size P=100 words. T'ie virtual size of each column is Sc = -=10 ages. The sequence of

addresses generated during the execution of Loop 20 is shown in Figure 3-8 for JI. A reference to

A(I.I) is translated into a reference to PI for 1<1<100. P2 for 10(10I<200. and to P5 for

-400,<1<500: i.e.. a new page is referenced every 100 iterations of Loop 20. Similarly references to

A(I*2.1) generate references to a new page every 50 iterations of Loop 20: i.e.. P1 for I-<I<50. P2

A

62

Example 3-6:
DIMENSION A(1000,100) j
DO 10 J=1,100

DO 20 1=1,500
A(1,J), A(*2,

20 CONTINUE
10 CONTINUE

10 20 300 40 500
Aij) I P1 P2 P3 P4 P5

1 5P 1V 1 0o ? 2 o 32o 3 o 4Q0 _4 o5
A(I*2.J) I I PI P21 --P3 ' P4 ' P5 ' P6 --P7 ' P8 ' P9 "P10

Figure 3-8: Virtual address sequence for A

for 50-1< 100. P3 for 100-1< 150. ... and PlO for 450<1 <500. Figure 3-8 shows that two pages

*; remain active in the time duration of Loop 20. except for the time interval 1 <50. These pages are

determined by the indexes I and 1*2. In principle both elements designated by I and 1*2 could be

stored in the same page and, therefore, the same page will be referenced twice, or in two different

pages and. therefore, two distinct pages will be active. In effect, the number of row indexes used in .

combination with a particular column. J. gives an upper bound on the maximum number of pages

that could be active during one iteration of L, (Loop 20 in our example). The set of active pages

and their time intervals, derived from Figure 3-8. is

(Pl: 1 <50). (PI.P2: 50K<1< 100). (P5.PlO: 450!5 <500))

Naturally, more than one column of A' could be referenced inside L,. In this case. the

number of active pages is defined for each column. J, . by finding tihe number of row indexes used
S.'

in combination with J,. The maximum number of active pages from'The virtual space of an array is

found by summing up the numbers found for each column. If the total number of active pages

determined in this manner exceeds the number of pages present in the virtual space of an array, *.he

*! '-irtual size of the array defines the set of actie pages at the current execution level. 4,

17

63

The referencing behavior of AC resembles that of a vector. In fact. an (MxN) array referenced

in a column major order can be viewed as a set of N vectors, each vector containing NI elements.

The memory required to allocate the active pages of a column. Xc is given by

=(IN,+ I if N1 < Sc (3-5)
X = if N, >Sc

The extra page "N1 +1" is used to avoid replacing active pages when a new page is activated as dis-

cussed earlier. Memory requirements of a column wise referenced array. X.A. is defined as the sum

of the memory requirements defined.for each column. or

X = Xc (3-6)

where N is the number of columns addressed at level Li : j =0 means that no array is referenced in

a column major order. In general, if there are K arrays referenced in a column major order, the

memory required to allocate these arrays at the current level of execution. L,. is given by

Xi = X, + X.. (3-7)

where X.1' is the memory requirement of the kth column wise referenced array.

Next we evaluate the contribution of a column wise referenced array to higher level localities.

IP A column wise referenced array contributes to all higher level localities of levels L, where j = 1.2.

.... i-2 with its entire virtual size. The A " s contribution to the next higher level locality. L, 1.. is

similar to its contribution to CL. comprised by L, . because the virtual space of A' is referenced

only once during the execution of L,_-. Whereas. at higher levels. L I.L. .L,_,. the virtual
N"'V

space of .4" is entirely referenced at least once during each iteration of any L, loop,. where

j= 1.2 i -2. The memory request primitive at higher levels, defined by column wise referenced

arrays is given b.

X= X + (3-S) ,.

w here j ; 1. 2 i-2 and K is the number of different arrays referenced inside L. S. is the virtual

Zize ol the ks" arra, r

4..;.

l ---''

P V:K. Erb tU LN , ,_ - . ,r.,.',- . . -' ' -! ' '-" ':'* . . ' *

64

Example 3-7 is used to further explain the process of calculating the virtual size of a locality

comprised by arrays referenced in a column major order. Two arrays (Al and A2) are referenced

in a column major order inside the innermost loop of a triply nested loop.
Example 3-7: Dimension A 100,100), A2(400,100)

DO 10 K = 1, 10
DO 100 J 1, 100

DO 1000 1 = 1, 400

A l(IJ) ; A M(+ I j); A l(J+2); A W(+ 1,d+2);,

A2(IJ) ; A2(I*2,J); A2(I,J+5); A2(I+2J+5); A2(M-IJ+5),

1000 CONTINUE
100 CONTINUE

10 CONTINUE

AI and A2 are referenced inside Loop 1000. The contribution of Al and A2 to the localities defined

at level one (Loop 10). level two (Loop 100). and level three (Loop 1000) is evaluated, using Equa-

tions (3-5) through (3-8). The virtual sizes of Al and A2 are given by
lOX10 4~O 0 0 5 age

S 100X100 =64 pages and S 1 2 4 00 =256 pages

and the virtual size of each column of Al is Sc M100/100=1 page and each column of array A2 is

stored in S(2=400/100=4 pages. The memory requirements of Al and A2 at loop 1000 level are

found as follows. For Al. two columns are referenced inside Loop 1000. Since each column has

only one page in its virtual space, there could be only one active page in the virtual space of J and

J-2 during the execution of Loop 1000. Therefore. the memory requested to allocate Al is equal to

the number of referenced columns. or X.A I = 2 pages.

For A2. each column occupies 4 pages. And there are 2 columns referenced inside Loop 1000

'J and J-5). Two elements n the virtual space of column J are designated by the row indexes I and

1*2 (A", = 2). The memory required to allocate both active pages of ./..,2 is given by Equation (3-5):

X- .- -4-1 = 3 pages. And three elements are referenced from the virtual space of column J5.

These elements are specified by the ro%\, indexes 1. 1-2. and %I-[. The maximum number of active

pa:e, :r,m the ', irtual space of J-5 is gi-.en by N1. = 3. ttence. the memorv: space required to allo-

cate these actie pa-es is gi,,en by: X-- 5 = 3--1 =4 pages. The total number of ,ages required to

S.

* 65

allocate A2 at the lowest level (Loop 1000) is X2 = 3+4 =7 pages. Finally. the memory require-

ment of Al and A2 at the lowest level (Loop 1000) is X 3 = 7+2 =9 pages, where X 3 is the

memory request primitive of ALLOCATE associated with Loop 1000.

When Loop 100 reiterates, a new set of columns from the virtual space of Al and A2 is

spe-ified ana the addressed virtual space will change accordingly. However. the amount of memory

required at this level does not change. Therefore. the value of X at this level is also 9 pages 5-

(X, = 9). At the first level (loop 10) the locality size consists of the entire virtual sizes of Al and

low A2. During each iteration of the first level locality (loop 10) the virtual spaces of Al (100 pages)

and A2 (400 pages) are totally referenced. At this outer level, all 500 pages will have been refer-

enced 10 times by the time Loop 10 completes execution. Therefore, the memory requirement at

level one is given by X 1 = 100+400 = 500 pages.

Finally. ALLOCATE directives with both primitives, priority and memory request. are

inserted in the code of Example 3-7:
Dimension A 100,100), A2(400,100)
ALLOCATE (3,500)

DO 1 K =1, 10
ALLOCATE (3,500) else (2.9)
DO 100 J = 1, 100

ALLOCATE (3,500) else (2,9) else (1,9)
DO 1000 1 = 1, 400

AI(IJ) VI ; AI(I+I,J);* AI(I,J+2)*; A(I+Ij+2); ,.-

A2(IJ) ; A2(I*2,J), A2(IJ+5); A2(I+2,J+5), A2(M-I,J+5);
1 C T

'-5 1000 CONTINUE
100 CONTINUE

', 10 CONTLNUE

Row wise referenced arrays

A memory r-.presentation scheme of a row wise referenced array. A. is shown in Figure 3-9.

N A row index 1, i =1.....m) of A' remains unchanged. during the execution of CL in which A' is

referenced. ,whereas the column index J changes its value within the range J and J%- where N is

the number of columns (the second dimension of the arrav). In Figure 3-9. the arrows point to the

direction in ,wnich the elements are referenced. With 1, being fixed, the elements

,.,
II,,:,, v.. -.. ,....,.'- :-.-.'. ': . -'- '-'..'s'. '....,?: - ',:'.".,: ... ' '.'.' '? .r-.' 5 ,, .9 ,,5 ,, '?'.,'

66

n
J1 J, Jl ?1

P, P,,,1.1 ... P,+1

-,l P. P . P,,-

Figure 3-9: Row wise referenced arrays ,

A(I, .J 1). """A (li -.v)are stored across pages. If the column size. specified by the first dimension

0, N.I of the array, is larger than a page size (NI> P) then any two elements referenced in a row major

order are fetched from two different pages. Two successively referenced elements may be stored in -

'. the same virtual page if the virtual size of a column is less than P (MI < P).

The contribution of A' to CI., comprised by L, in Figure 3-5. is determined by the maximum [

number of pages repeatedly referenced during the execution of Li . Assume that the elements of the .

first row, I =1. are referenced during the execution time of Li. A reference to the element A(1.) is

translated into the address of P1. The next elenient A(1.2) will be referenced during the next itera- N

."

tion of L, ,Fassuming that J is incremented by 1. Rhe page containing A ra.2) is P,,,, (Figure 3-9).

Ever, next iteration generatesr aaddress to a new pag e olu virtual space of A The referencing

-'! pattern at L, level does not seem to comprise a locality of reference. A referenced page. P,., may .

not be referenced more than once in the time duration of L,. unless the same element is referenced

moree tonce at fro same een. T o succansin index re spans those elements stored in

virtual spaes of columns . where J = 1.2 V i. Therefore N distinct paes are expected to be

ureferenced in ae rpae d rnced during the eN pages remains active during the execution of

w L .Such h:eha% ior is u:nfavored in a virtual memory svstem, sin'e everv iteration of L: requires a

reference to the virtual storage to fetch a new page. Anely fetched age proves to be useful.

mst rnl the itme. onlr for that reference. Therefore. if l' is referenced at the outer ra-st level,i..'

Evrnetieaingnrtsa drs oanw aei h ita pc fA h eeecn

• paternat .. lveldoe not.seem to.comprise a locality..-....of.,.reference......, A.refereced.pg..- P,... may;,.-',,:... .
• .,'", ,': not be, referenced<,, v:,,,,, more: than, once,: in ' the time" durtio o L, " . unles the same element is..... referen ...ed

I 67

%'Nthen it makes no difference if the entire virtual space of the array is allocated or only one page is

allocated in main memory.

However, if A" is referenced at level X> 1, then a locality of reference is observed at higher

levels. The set of pages referenced during the execution of L, could be referenced again during the

next iteration of L,-1 if the row index is varied at this level. In this case the same set of pages

remains active until the value of I exceeds the page size limit. At any rate. the number of

active pages observed at L,_-1 level is given by the range of the column index J at the lower level

L,. It has been assumed earlier that the range of J is N. In this case, the number of active pages at

iL,_- level is N. So far we have considered that only one row index is being used in combination

with the column indexes to reference elements in the virtual space of A' . However. several row

indexes could be used in any order. In such case. there could be several rows of pages active during

the execution of L,_-1 depending on the relative location of one row index to another. For each row

index. I. the memory requirement is given by

IR(J) if R(J)<SA (3-
Xt = (3-9) :

X.= iS.4 if R(J) >, SA

where R(J) is the range of J and S4 is the virtual size of A. In general, if several row indexes are

. used. the memory required to allocate X A , is given by

"X' = (310)

where A; is the k' array referenced in a row major order, and R is the number of row indexes

used at level L,. For K arrays referenced at L, level, the memory requirement X, is given bv

N
X, = Xt + X. and X,=X, (11

=1

Ali the elements of .4' will get to be referenced in the time duration of L, - which includes

multiple executions of L . By this time. all pages in the virtual space of .'A' will have been refer-

enced. However. only N pages or several sets of N pages, according to Equat ons (3-9) and (3-10)

remain resident in memory during this time. where .V is the range of the column index of A' . It-

L _i is enclosed by a loop at a higher lei, el L_ then all pages referenced at L. -xill be referenced
- % Al.U I

68

again during the next iteration of L, Therefore, the entire virtual space of A' contributes to the

locality size at L, _2 and to all higher levels Li 3.L,- 4 . .,.L 1 . The contribution of K arrays

referenced in a row major order to X. at level Lj. where j =1.2.....i -2 is given by

K
X, = X1 + ' (3-12)

where A, is the k'h row wise referenced array at level Li. For illustration, consider Example 3-8.

where two arrays A I and A 2 are referenced in a row major order inside Loop 1000. The nest depth

of Loop 1000 is X=3. The virtual size of A I is S. 1 = 100x 10 -100 pages. And
100

S.2 = 200x10 =200 pages. The virtual size of each column of AI is Sc 1000 = 10 pages.
1 A 00100

And S(- 2 = 2 pages. Memory representation schemes of A I and A 2 are also shown in Exam-

pie 3-8. The virtual space of A I is organized into 10 rows. each of which contains 10 pages. The

virtual space of A , has two rows. each of which contains 100 pages. Consider the execution

sequence. K=1. 1=1. and observe the reference pattern during the execution of Loop 1000. J=1.100.

References to A I are translated into addresses to the virtual space in which the elements of row
-d

m

I = I and row 1 =999 are stored. This virtual space consists of the first and the last rows of pages.

During the next iteration of Loop 100, 1=2. the same set of pages will be referenced again. Refer-

* ences will continue to fall into these pages until I> 100. where the second row and the pre-last row

will be referenced. And so at every 100 iterations of Loop 100. a new set of 20 pages is referenced.

Therefore. the maximum memory requirement of A I at this level is 20 pages. Or, as given by Equa-

tions (3-9), and (3-10). the memory requirements of .-1 at the second level is X,= 10 + 10 = 20

where the range of the column index is I0, as given in the dimension statement.

For A there is only one row index. 1. used at the third level (Loop 1000). Hence. the number V?

of active pages consists of one row (100 pages) from the virtual space of A E 1ach row will remain

active for half of the time duration of Loop 100. Therefore. the memory requested to allocate A, at

level 2 is X, = 100 pages. Considering both arrays..¥, = 1A) + 20 = 120 pages. The execution

-A

4. 4

69 4

of Loop 100 touches completely the virtual spaces of A 1 and A 2: i.e.. all 300 pages are referenced

at least once in the time duration of Loop 100.

Now consider the case when Loop 10 continues its execution and K is incremented by 1,

K-2. Ignoring the details of reference patterns at Loops 100 and 1000, the virtual spaces of A I

and A 2 are completely touched once more. This process continues until Loop 10 completes execu-

tion. Observing the virtual space of A I and A 2 from the first level, the locality of reference seems

to cover all 300 pages of A I and A 2. The memory requirement at this level is given by

X 200 + 100 300 pages. ALLOCATE directives are inserted into the code as shown in Exam-

ple 3-8.

3.1.4.3. Data structure for computing X at compile time

This section presents a method for computing X at compile time. Since program localities

"0.exhibit a hierarchical structure. a linked list can be very useful for representing localities at vari-

ous levels of the hierarchy. When a loop is encountered, a new element is added at the head of the

%4 list. All data structures referenced inside a loop are considered as part of the record of a recently

created element. When a loop exits, its entry element in the list is deleted and the the contribution

of data structures to the locality comprised by the exiting loop is evaluated. Also. the contribu-

tion of these data structures to higher level localities, represented by all the remaining elements in

the list. is evaluated. The outermost loop is always represented by the element at the tail of the

- list. When this loop exits, the list becomes empty until another loop construct is encountered.

Just prior to a deletion of an element from a list. it should contain the virtual size of the locality

,- comprised by the exiting loop. i.e., the memory request primi:ive X associated with the current

.. locality.

The use of a linked list data structure (LLDS) facilitates a top down parsing strategy with a

back tracking. Back tracking is necessary to compute the contribution of data structures refer-

enced at level Li to all previously parsed higher level loops L 1 .L 2, .Zi-.

U

70

Example 3-8:
Dimension A l(1000.10), A 2(200.100)

DO 10 K=1.10 ALLOCATE (3.300)

DO 10 K-1.10
DO 100 1-1.1000

ALLOCATE (3.300) else (2,120)

DO 10001=1l.100 DO 100 I1.1000

ALLOCATE (3.300) else (2.120) else (1.120)
If 14 200 then A (I.J) DO 1000 J=1.100

f 1<200 then A I(I.J); A I (1000-1,J) If 1200 then A(IJ)

If I<200 then A (I.J): A 1 (1000-1.3)
1-00 0 OE U-Y,

1 1000C. . E
100~~ OC 0N7Tr

10 CN.TKL

A I's Virtual Space A 2's Virtual Space
i J1 ,i 0J1 " 2 JO 'o 2 J1 '1J0o .,)

l -" .-. -.-

I P1 P 1 PI P 3 ... P,.

-. ;- -I -:
P2 P12 ... "'2

""

I P . P

U5 -

I 71

A.L L A CP

B.L2 B Xl X2 CP

CL3C X1 X2 X3
IP

D D X2
CP,

pE xi
D

E F Xl X4

F. L4 -

G l H IL

G

H

Figure 3-10: Linked list data structure for evaluating primitive X

Figure 3-10 shows the dynamic construction of (LLDS) for evaluating the memory require-

-, ments of the loops shown in the figure. A current pointer (CP) always points at the head of the list.

Eight parsing stages are shown in the figure. Each stage represents either a beginning or an end of a

loop. At stage A. the control statement of the first loop (LI) is encountered. A new element (X1) is

created at the head of the list. The current pointer po;nts at XI which will eventually contain the

value of the memory requested by ALLOCATE at level 11. i.e.. the virtual size of the locality

comprised by LI. The second loop L2 is parsed at slage B and a new entry X2 is added at the head

of the list. Now CP points at X2. and will continue to do so until L3 is encountered and X3 is

created and added at the head of the list. Loop L3 exits at stage D. At this stage the locality size

comprised by L3 is completely computable since all data structures contributing to X3 ha'e been

parsed. Also. the contribution of these data structures to X1 and \2 can be e,aluated at this point.

|V

72

The record for X3. which includes the data structures referenced inside L3. is deleted from LLDS.

Note that an exiting loop does not enclose any more loops: therefore. its memory requirement is

fully determined when it exits. At stage E, X2 is computed. The contribution of data structures

referenced inside L3 to X2 has already been determined when L3 exited. Therefore. L2 is treated as I,

if it were an innermost loop, although L2 encloses L3 as indicated by the loop structure. The effect

of this technique is similar to unrolling L3 and linearizing the nested structure at L2 level. At stage

E. the contribution of data structures referenced inside L2 to X1 is evaluated and X2 is deleted

from the list. CP now points at X1. At this stage XI contains the memory requirements due to L2

and L3. Loop L4 is the only remaining enclosed loop that affects the locality at level L1. Loop L4 is -"

encountered at stage F. where a new element X4 is added at the head of the list. At stage G. X4 is

computed and the contribution of L4 to XI is found. Finally. the memory requirement of the

entire loop construct is evaluated at stage H. when LI exits.

The list data structure described above allows a single top-down parsing scheme. However, a

back tracking mechanism is necessary to add the contribution of lower level localities to higher

level ones because of the hierarchical nature of localities. Back tracking achieves the same effects of

unrolling enclosed loops and linearizing the nested loop structure. Moreover. the LLDS technique

transforms the job of back tracking to a simple scan of the list.

Each element of the list is a list structure by itself. A graphic illustration of one element of

the list. X:. is shown in Figure 3-11. A record X has two major fields, one for vectors and one for

arrays. The array field has two fields, one for column wise referenced arrays. A' . and the other is -,

for rov, wise referenced arrays. A' . The vector field has several entries, one for each vector refer--

enced at the current level L, . represented by X, . Each vector is described by two attributes: the

Sector variable identifier V, and its virtual size Sv. Sk., is used for evaluating the contribution of

V to h igher level localities represented by X 1,X2 ... X:_-. Furthermore. each vector is characterized V

1)v a list of distinct indexes used t,- reference V, elements at L. level. The number of entriee; in the

*ndex list determines the maximum number of pages required to allocate V at the current le',el. :-,

i X X2 l, X l X

Array

Vector
o umn ow

rtua irtua
1 B.. Bs iz " i irtua 'irtua irtua i"t

index index

Ii

12 12

.id xlx

In In

Figure 3-11: Data structure for evaluating X

The B field in the V, record serves as a boolean variable. The value of B is set to 1 if V, is not

referenced at any lower level. L, 1 .L 1 .2 . L.v. The need for such a boolean variable will

shortly be explained.

Each column wise referenced array has several entries, one for each array A,. Each A'" is

- described by the array identifier A, . its virtual size S.A,. a hoolean variable B similar to the one

dSed lor ectors. and a list of the columns referenced at the given level. Each column in the column

lIit is characterized. in its turn. by its virtual size and a list of row indexes used for des.gnating

• particuar array elements. The contribution of any array referenced at L. to X, is computed as

i 1,,. [For each column J, we find the number of entries .V1 in the list of ro%- indexes which is.

then. pared .ith the value of the column virtual size S(stored in the field of the column index

record. The leas: of A'. and S, defines the memory requirement requested to allocate the given

74

column. The contribution of A, to X, is found by summing up the values obtained for each

column J,. The contribution of A, to Xj is also attributed to X,-. The array A, contributes to all i

higher level localities, represented by XI.X 2 X,- 2. with the value stored in the virtual size

field in A, record.

A row wise referenced array is described by an identifier A,. the virtual size of A,. the
,%

boolean variable B and a list of row indexes used at the current L, level. The value in the virtual

size entry is attributed to the memory requirements X I. X2 Xi-2. The number of entires in the

row index sublist multiplied by N (the range of the column index or the second dimension of the

array) defines the contribution of A, to X, . and the next higher level. Xi-l.

At any level of the main LLDS list. there should be only one copy of any array (a vector is a

onedimnesional array). This restriction avoids allocating memory to the same array more than

once. Assume that an array A is referenced at two levels L, and L, where j <i : i.e.. L, is higher

than L,. Data structures created for A at X, level contribute to both X, and X1 . Data structures

constructed at X, level contribute only to X . If data structures for A were kept at both levels.

then A would be allocated more memory than it actually requires. Obviously. if the copy associ-

ated with X1 is considered and that associated with X, is ignored. then the memory request X,. at

L, !evel. will be underestimated. Hence, data structures created for A at X, level should be used

* for computing X, and X1 . Data structures at X, are ignored.

The boolean variable B associated with every array referenced at any level is used to enforce

the use of one copy for an array rule. When a data structure is created for an array A at level X,.

',he boolean variable B is set to 1 (B =I). The value of B associated with A at all higher levels

(X X:) is reset to 0 (B =0). The contribution of any array \ ith B =0 is ignored. since the

contribution of this array has been accounted for at a lower level. \e-'t a F:ocedure is presented for

computing .

Procedure (3- 1) Compute X;

BEGIN
Initialize LLDS: LLDS:- NIL; ,

• .. , -. .. ,. . .,.. -.-.. . ', ./ -,..' .,.-., ..). ., .. .

|r T

75

Case of encountering a loop L, DO
BEGIN

Create X,; {X, has two fieldsl
Vector: list;
Array: (column wise, row wise),

Column Wise Arrays: List;
NRow Wise Arrays: List;

Initialize the list of vectors (VL. VL-=NIL;
Initialize the list of column wise referenced arrays: CAL.=NIL;
Initialize the list of row wise referenced arrays: RAL-NIL;
CP:= Pointer to X,;

End;
Case of Parsing a vector V, (I,) DO
BEGIN

IF V, E X,
THEN Updated V,
ELSE Create V,;

END;
Case of Parsing an array A, (I, , J) DO

b "BEGIN

IFA, is A'
THEN IF A, E X,

THEN Update A f
ELSE Create A, ,;

ELSE IF A, E X, {.A, is A'}
THEN Update A,!3 ELSE Create A,';

END;
Case of Exiting a loop L, DO
BEGIN
Compute X,;
Compute the contribution of data structures at X, level to X I.X 2. Xi -1 levels;
Reset B =0 for each V, and A, encountered at level X, and any other higher level;
Delete X, from LLDS;

END;
END. (of Procedure 3-11

5 . Procedure (3-2) Create V,;
BEGIN

Create a new elment (v,) at the head of the vector list (VL);
Compute S.;
Create index list (IL) for I,;
Enter I, into IL.

END: {o/ procedure Create V.,
Procedure (3-3) Update V,;
BEGIN

.I
% d? IF I is not a member of LZ(V,

THEN Add 1. to the index list LI of V,;
END; 1of pr'cedure Update 1" '
Procedure (3-4) Create .4e;
BEGIN

Create a new element .4, at the head of the list of column wise referenced arrays (CAL);
Compute the virtual size of A, S, ; Istore S., in .4, record ,
Create a column index list (CIL);

I
!1

- - - ~ - - :7-r -. .

76

Compute the virtual size of a column ScA;, store it in CIL record);

Enter the column index Jr into CI4,
Create a row index list (RIL for J, ;
Add the row index I, to RIL.

END; (of procedure Create A sub i sup c)
Procedure (3-5) Update Af;
BEGIN

IF J ECIL
THEN IF I, E RIL(J,)

THEN Skip
ELSE Add element I to RIL(JJ);

ELSE
BEGIN

Add J, to the list of column indexes C1L;
Create a row index list RIL for J,;
Add I, to RIL(J,);

END; {of ELSE statementI
END;, of Procedure Update Af)
Procedure (3-6) Create A;
BEGIN

Create A, element at the head of the list of row wise referenced arrays RIL4
Compute the virtual size of A,; (store SA, in A, record)

Create a row index list RIL for A,; IRIL:=NIL)
Add the row index 1, at the head of RIL,

END; (of Procedure Create A i
Procedure (3-7) Update A,';
BEGIN

IF I, E RIL(A,)
THEN Skip
ELSE Add 1, at the head of RIL(A,)

END; I of Procedure Update A,'}

A

Consider the following notations and definitions which are necessary to define a procedure for

evaluating X, when the corresponding loop L, exits. The length of a list L is the number of ele-

ments in the list. Each vector is associated with a list of row indexes: the length of this list is

denoted by L (,).i =1 N. where N is the number of vectors or N =L (VL). Each column index

of A' has a list of row indexes: the length of this list is denoted by L (JI.)=1 K where K is

the length of the list of column indexes, K =L (CIL). The rumber of A is given by W the length

of A list. Ml =L (CAL). Each row wise referenced array .1,' has a list of row indexes: the length

of this list is denoted bv L (.4).i=I Swhere S is the length of the list of A' . S=L (R.1 1.). 'he I

range of the column index of a row wise referenced array is denoted by R' (.., ' Using these nota-

tions, the ,ollowing function can be used to compute X, :

- , - f (, ,, . I i

, % N

Xi =Xj + ,min(L(Vi),Sv,)+

+ E Imin(min(L (J),S,)). S 4 }
n=1 k =1

S

+ E"min (L(A,)xR" (A,).S 4) (3-13)
S=1

The terms in Equation (3-13) represent the contribution of vectors, column wise referenced arrays

and row wise referenced arravs, respectively. This contribution is added to what has been already

stored in X, field. due to contributions from lower levels.

!.! The contribution of vectors and arrays to higher levels is given by the following two formu-

las:
l

X) =J + Est., + E s + F J' (3-14)
i=1 ,5=1 s=1 a

and

X,- - X,-1+Est", + Q (3-15)

t=1

%here Q is the last two terms in Equation (3-13).

3.1.5. Automatic insertion of ALLOCATE at compile time

ALLOCATE is inserted just before the beginning of each loop comprising a locality. The two

primitives of ALLOCATE. P and X. are computed and assigned to each loop according o Algo-

rithm 3-1 for P and Procedure 3-1 for computing X. It would have been very simple to insert

ALLOCATE at the beginning of each loop. once P and X are evaluated, if ALLOCATE exhibited a

inear structure. Because of the hierarchical structure of ALLOCATE. the primitives of hi.gher level

localities are carried into all subsequent lower level localities. Therefore, the mechanism to be used

for inserting a directive at a particular level should be able to memorize the primitives associated

,k ith all levels enclosing the current level. The memor, capacity should be at least equal to the nest

i depth of the currently parsed loop. A suitable data structure for implementing such a mechanism is

a stack or a linked list.

% %
*',,, ,,, -,, ,':....,' '. ;', ,r. .. ,:'.., ' ' : .. r ' r ;, ' ': .", ,, ,

Aw F-, -w -A 7T[- V w__ r

78

ALLOCATE directives are inserted using a stack data structure as follows. When a loop L, is ""

encountered. its primitives (P, .X,) are pushed to the top of the stack. When a loop L, exits, the

(P, .X,) pair at the top of the stack is deleted. At any parsing level, a directive's parameters consist

of all the elements in the stack ordered from bottom to top and separated by the word "else." The

directive inserted at the beginning of L, has the form

ALLOCATE (PI.X 1) else (P,.X,) else " else (P, .X,)

Linked list implementation is similar to stack's. sirce a linked list is a form of stack. Besides simu-

lating the hierarchical natare of ALLOCATE, stack implementation facilitates a single top down

parsing scheme without backtracking. Algorithm 3-2 automatically inserts ALLOCATE at compile

time into a prgram's compiled code.

Algorithm 3-2: Insert ALLOCATE at Compile Time;
Initialize the directive's stack DS;

Parse {until the end of the program)
Case of encountering a loop L, with primitives (P, .X,) DO

BEGIN
PUSH (P, .X,) at the top of DS;
FORM the directive

ALLOCATE (P I.X 1) else ... else (P, AX,
Istarting from the bottom of DS until the top of DS)

INSERT the directive right before the beginning of L,;
END; {o/ case statement) p

Case of exiting a loop L, DO
DELETE the pair (P, .X,) from the top of the stack;

END. {of Algorithm 3-21

An example using Algorithm 3-2 is shown in Figure 3-12. A loop construct with a maximum nest

depth X=3 is used in Figure 3-12 to illustrate the operation of Algorithm 3-2. The primitives P, .X,

are assumed to be known for each of the four loops. The directives are inserted as shown at the

beginning of each loop. The stack is updated upon encountering of a loop begin control or end con-

trol statements. When Loopl is encountered, the (Pi.X1) pair is pushed at the top of the stack. The .

directive at the beginning of Loopl has the form ALLOCATE (PI.X). Next. l.oop2 is encountered

and (P,.X) pair is pushed at the top of the stack. The directive at this point has the form

ALLOCATE (P !.X) else (',.X,).

At stage 3. loop3 is encountered and the -air (P3 . 3) is pushed to the top ol *he tatck. The

-i

79

ALLOCATE (P 1,X 1)
Loop 1

P1

ALLOCATE (P J,X 1) else (P,,X-)
Loop 2

di P,

ALLOCATE (P 1 ,X 1) else (P.2 ,X,) else (P3,X 3)
Loop 3

X3

ALLOCATE (P 1 ,X 1) else (P 41X)
Loop 4

-~ X 4

4. P4

Figure 3-12: Example of algorithm 3-2

directive inserted at the beginning of Loop3 has the form

AlU-1OCATE (P1 .X 1) else (P:,X,) else (PI.X_).

- When Loo7n3 exits, the pair (p 3 .Xy3) is removed from the top of the stack. Similarly, upon exiting,

D4

d *.~~~J - . 4.. -b~ -.. '. 4. * (j*. .P 4 .
L w,. . .4

80

Loop2. the pair (P 2 .X 2) is removed. Loop4 is, then, encountered and the pair (P 4 .X 4) is pushed at

the top of the stack. The directive inserted at the beginning of Loop4 has the form

ALLOCATE (P I.X 1) else (P 4.X 4).

Note that Loop 4 is enclosed by Loop 1. The pairs (P 4 .X 4). (PI.X1) are deleted upon exiting Loop '•

4 and Loop 1, respectively; the stack remains empty until another loop structure is encountered.

3.2. LOCK and UNLOCK Directives
. .4.

LOCK is used to prevent particular pages from being paged out of memory by the replace-

ment policy. UNLOCK is used to relase these pages. LOCK and UNLOCK have been used as system

facilities by VAX/VMS and UNIX operating systems. Abaza [1] measured the effectiveness of

using LOCK and UNLOCK under VMS. His results show that the behavior of some numerical

algorithms can be drastically improved, if LOCK and UNLOCK under VMS are properly used.

However, in these systems the problem of locking and unlocking particular pages is still a user

rather than a system problem. A user is supposed to have adequate knowledge of the behavior of

4.

his program. In particular. he should be able to identify those pages which are needed mostly in

memory so he can order them locked in memory.

In this study, pages to be locked in memory are identified automatically at compile time. As

in the case of an ALLOCATE directive, the cases of vectors and arrays are considered separately. In

general. a page may be a candidat' for locking if it is located in an intra-locality transition period. " ,.'

Intra-locality transition periods occur within a hierarchical locality structure. whereas inter- :-

locality transitions occur between two successive hierarchical locality structures. Using source

level code notations, intra-locality transitions are caused by references to array data structures in

bet\een two successive ioop start control statments. Let L, refer to the beginning of a loop in a

multi-nested loop structure and L... refer to the beginning of the next loop. Intra-locality transi-

tion pages are those pages referenced in between L, and L, +-_

A page referenced in an intra-locality transition period does not contribute to localitie.-

formed at the next lo, er levels I. ,.L:... Intra-locality transition pages. on the other hand.

are included in all higher level localities. L .L,. Further illustration is presented in Example

3-9.
Example 3-9 i1N

DO 10 i=l.N
V1(i)
DO 100 j-1.M

Vi(j)
100 CONTINUE

10 CONTINUE

In Example 3-9. a page of vector V1 designated by the virtual address of I l(i). P1 ,. is refer-

enced in the transition period between Loop 10 and Loop 100. This page remains idle as long as

Loop 100 is in execution. However. it is reactivated when Loop 100. after NI iterations. returns con- ,

trol to Loop 10. Therefore, locking P1 1(,) in memory avoids the need to page it into main memory

every time loop 10 executes. Note that if the request generated by an ALLOCATE directive associ-

ated with loop 10 (ALLOCATE (2.Sj- 1)) is granted. locking a page from the virtual space of VI has

no significance.

Thus far, a LOCK directive may have the following form with one primitive:

LOCK (Y .Y 2." .Y,,) Y,

where Y, is a particular virtual page. Once LOCK is executed by the CPU. a request is made to the

1 operating system to lock into memory those pages identified by the virtual addresses

I' 1.'2. •.Y. Pages are unlocked, or released, by an UNLOCK dirfctive which has the following

form:

UNLOCK (Y .Y2 . .Y,,).

" LOCK is inserted inside th loop and UNLOCK is inserted at the end of L,. See Example 3-10.

Example 3-10:
DO 10 i=l.N

LOCK P,
'% DLO 1oo j=l.\

V(j)
100 CONTINUE

10 CONTINUE
U.VLOCK P,

:.,. a'.

82

In a multi-nested loop structure. pages could be locked at various levels of a locality struc-
a

ture. Therefore, it is possible that a program would be running with its lowest level locality 1

(P-i) while some pages belonging to higher level localities are being locked in main memory as a

result of executing a LOCK directive. In case of high memory contention, a program should be

allowed to run only with its lowest level locality. Partial swapping. introduced previously for ,".

ALLOCATE, guarantees that higher level localities are not allocated when a program's request
I.

with P =1 cannot be granted. In a similar fashion, the operating system should be allowed to C.:

unlock a previously locked page. even before it is released by an UNLOCK directive. Since pages ...

can be locked at various levels of a locality hierarchical structure, a priority index P can be used

to define the priority of releasing a page by the operating system before it is released by

UNLOCK. For this purpose a priority index primitive is introduced into the LOCK directive:

-: LOCK (P, YIY2. " .

Pages locked at the lowest level of a locality structure should be released last, since they are

invoked more frequently than those referenced and locked at higher levels. Therefore. pages

locked at lower levels of the locality hierarchical structure should have a higher priority than ,

those at higher levels. To be consistent with the priority inde= used for ALLOCATE. smaller P

values are used to denote a higher priority. In other words. pages locked with larger P values are

released before pages locked with smaller P values. Priorities are assigned to loops in the same

way as for an ALLOCATE directive: see Algorithm 3-1. A directive may have in principle a

priority P =, associated with the innermost loop. However, in practice such a directive is never

A. used because the memory requirement of the innermost loop, defined by the ALLOCATE direc-

tive. is always granted. For further illustration, consider the example in Figure 3-13. -
The maximum nest depth of the loop construct in Figure 3-13 is 3. The priorities assigned to

Li and L2 are P-3 and P-2. respectively. The value P-I is the priority of L3. Inside L3 no pages

should be locked, since the locality comprised by L3 is allocated by the ALLOCATE directive

with P-1. Assume that the ranges of loops Li. L2, and L3 are K. N. and M. respectively. Each Y,

page is referenced, at level L2, at least N times more than any Xi page. referenced at level L1.

e ;¢ .- '. ¢ 4 . . .?. * . : ... "9' " ,• :

83

L I

L2

LOCK (2.' Yn
L3

UNL K 3.X) ")

Figure 3-13: Example of LOCK and •LOCK directives

For this reason, a page locked at a higher level. Li in this case. should be released before a page

locked at a lower level. L2 in our example.

a,. Inserting LOCK at compile time is very simple since LOCK does not exhibit a hierarchical

structure as ALLOCATE does. Algorithm 3-3 is used for automatic insertion of LOCK and

UN\'LOCK directives.

Algorithm 3-3: Insert LOCK and UNLOCK directives;
CASE olencountering a loop DO

P = P assigned to current loop;
For t sYn = Page to be locked Q= 1,2, in ,

IF P ;A 1 THEN INSERT
1- LOCK after the loop BEGIN control statenzeni;
2- UNLOCK alter the loop END cont rol stat ement;

Pales to be locked h% LOCK are either vector or array pages as diSCuSsed earlier for ALI.-

,ATe. For the case of a vector. V. any page referenced at sonme level L, is likely to be rereferenced

after the execution of the L- 1 oop. A reference to a ector element is translated to a refer-

",':~~V UNLOA A:.civs -['

, ." Algrith 3-: InertLOCKandUNLOK drectves

* .,' CASE o/nontrn a~~ ...p~ DO,.°"

84

ence to a virtual page P1.j). If more than one vector element is referenced at a particular level.

using more than one index, then it is possible that more than a page needs to be locked, depending

on the value of the indexed variable. Therefore, a page to be locked is identified by the referencing

index, j. For example. if a vector is referenced as V(j). V(jl), V(j2). then the page(s) containing

these three elements is locked. At compile time. a candidate page for the LOCK directive is

identified by the vector name identifier and the vector's indexed variable; no address translation is

assumed at compile time. At run time, a reference to a vector element V(j) is translated into the

virtual address of the page Pl.(,) storing the element V(i).

The fact that OS can release a locked page before UNLOCK does so. gives LOCK a soft pro-

perty. LOCK's soft property can be incorporated into the partial swapping mechanism. This feature

of the swapping mechanism further supports the property of redistributing memory space among

processes in cases of high memory contention.

For arrays referenced in a row major order, a referenced page at L, level is unlikely to be

rereferenced after the execution of L,, unless the page size is larger than the column virtual size

of the array. where two successive row elements may be stored in the same page. Therefore, a page

of A' may be locked only if the column virtual size is less than the page size, where a page to be

locked is of the fcrm PA o.) where i is the row index and j is the column index.

Arrav. referenced in a column major order.." . are similar to vectors. Each column, in fact.

resembles a vector. Therefore. for each column the distinct row indexes determine the virtual pages

that may be referenced at a given level. A page to be locked is identified at compile time as P.A,

' here i is the row index and j is the column index.

The implementation of LOCK is fairly simple. A loch bit (113) is associated with each page.

When a request is generated to lock a page Y, into memory, the lock bit of Y' is set to one.

LB(Y)=1. The replacement policy avoids replacing any page '.ith 1-13=1. The partial swapping ,.

W mechanism searches for pages with I.B=l for unlocking them ' hen !nitiated :v a running process.

I j

r.,

85

A list data structure (LLSD) similar to the one designed for ALLOCATE can be used to iden-

tifv those pages which should be locked at each level. Once a new loop Li is parsed. a new entry

! X, is created and appended at the head of the list: LLSD is initially empty. Upon exiting a loop L,.

the list of virtual pages found at this level is assigned to LOCK directive and the element X, is

deleted. If the exiting loop has P=I. no LOCK directive is inserted. The data structures created for

each element are similar to those described for ALLOCATE. The main difference is that for ALLO-

CATE the number of distinct pages that could be referenced at a particular level is of primary con-

cern. whereas for LOCK the particular pages referenced at a given level are of primary concern.

Moreover. the data structures associated with an element do not contribute to other elements in the

list; therefore, no back tracking is necessary. An example is given in Figure 3-14 where the primi-
J.z

tives of LOCK are further explained.

DO 10 i =1.N DO 10 i =I.N
V (i):A (.I j V(i): A (U.i

DO 20 j=I.M LOCK(3.V(i).A (i .1))

V(j) DO 20 j=I.M

,. DO 30 k =I.R V()

A (k.j) LOCK(2.V(j))
V (k) DO 30 k =1 .R

30 CONTINUE A (k .j)
V(k)

20 CONTINUE%' 30 CONTINUE•

A (i .1) 20 CONTINUE
DO 40 j = I.i UNLOCAV (i)

.4 (j .) A (i .1)
40 CONTINUE DO 40 j =I.M

10 C)NTINLE A (i).
10 40 CONTINUE

l40 CONTINUE
10 CONTINUE

('NLOCK (V(i '.A (i .1))

i 3Figure 3-1 4: Example using L.OCK and UNLO)CK directives

'S

_ .4 ~ *

86

3.3. Subprogram Sequence Control Under CD n

In this section our concern is with mechanisms for controlling memory allocation when a sub-

program is called. Programs are usually hierarchically structured into a main program and subpro- V,

grams. Each subprogram may call another subprogram and so forth. The simplest control structure

of subprograms can be explained by the copy rule (CR). The effect of a subprogram CALL state-

ment is the same as would be obtained if the CALL statement were replaced by a copy of the body

of the subprogram before execution. Viewed in this way. a locality may be comprised partially by

the calling program and partially by the called subprogram. Memory directives are inserted into

the program code after subprogram CALL statements have been substituted by the subprogram

body. During execution, a call to a subprogram will have no effect on the current memory alloca-

tion unless the called subprogram generates a new memory directive with a new memory allocation

request.

The copy rule could, explicitly, be applied and the body of a called subprogram be copied in-

line only if the subprogram is very short. Otherwise. a subprogram call is eliminated in principle.

not in practice. Identifying program localities under the copy rule is a complex problem. since sub-

programs can no longer be considered separate entities which comprise separate locality structures.

Moreover. the depth of a locality hierarchy is increased by as much as the depth of subprogram

hierarchical structure. Another major drawback of CR technique is that subprograms can not be

recursi,e. However. recursion is a common characteristic of many algorithms which naturally

leads to recursive subprogram structures. Although our program model in this thesis is FORTRAN

programs which do not support recursion, it is desired to extend the application of CD to other

languages supporting direct or indirect recursion.
,J

In order to simplify the process of directive insertion, a subprogram (.AI.1. statement should

1)e treated as a reg'ular statement without affecting the current locality 4iructur, Moreover. a sub-

program, when compiled. should be considered as a separate entity ,onsitinm of its ,,,.n localit'v

structures. Finally. it is desired to allow recursi',e subprogram calls rather Than just simple

7

AD-ft71 N3 COMPILER DIRECTED MNMORY MANAGEMENT FORN CA
PROGRRAS(U) ILLINOIS UNIV AT URBANA COORDINATED SCIENCE
LAB N I NALKRI RUG 96 UILU-ENG-86-2229

UNCLASSIFIED NBBBI4-84-C-0149 F/G 9/2

llllllllllmhlllmlmhhll
mhlhlillihllhmhu
K'.llllll

u 1.8

tilll, -

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDA DS 1963-A

.~--

V-..

%.

VV~ ~u%777-7-7k

* 87

CALL-RETURN subprogram statements. These goals can be achieved using the activation record

technique.I
Activation record technique

Under the activation record technique, memory directives are inserted in the usual manner at

compile time. Subprogram CALL statements are treated as regular code statements having no effect

on the current locality structure. Locality structures comprised by the called subprogram code do

not contribute to the locality structures of the calling program. In effect, each subprogram is con-

sidered a separate locality entity.

At execution time. when a subprogram is activated due to a CALL statement the calling sub-

program or main program is temporarily halted. The memory allocation previously set by direc-

tives generated at the calling program level may be altered by a directive generated during the exe-

cution of the callee active subprogram. When the execution of a subprogram is completed. execu-

tion of the calling program resumes at the point immediately following the call of the subprogram.

The memory allocation at this point should be similar to the memory allocation at the point of exe-

cuting the CALL statement. The activation record technique is used to keep records for memory
r.a

directives' primitives for each subprogram as long as it remains in execution. A subprogram

remains in execution until it returns control to the calling subprogram. The CPU is always con-

trolled by an active subprogram.

At the time of a subprogram call. a new activation record is created for the newly activated

subprogram. which is subsequently destroyed upon its return. A simple central stack may be used

to store the activation records of all subprograms in execution which have not returned yet. The

last item created on the stack must be the first item to be deleted. Similarly, the first item created

on the stack is the last one to be deleted. The implementation of the subprogram call and return

proceeds as follows. At the start of program execution. a large storage is reserved for the central

stack. The activation reccrd for the main program is allocated at one end of the block. This

, T becomes the bottom of the stack.

N--7I..T-- -.7 7111w- W -7p - WgW V - 7

88

When a subprogram A is called, a storage for its activation record is allocated adjacent to that i
of the main program's activation record. If A calls B. B's activation record is allocated adjacent to

A's. If B calls C. C's activation record is allocated adjacent to C's. and so on. When C terminates

and returns control to B, C's storage is deleted. and then B's when B returns, and so on. The central

stack implementation for a series of subprogram calls and returns is shown in Figure 3-15.

Each activation record contains several data objects. One data object is used to store the return

address of a subprogram which can be thought of as a pointer pointing at the previous activation

record in the central stack. Return address values form a linked list that links together the activa-

tion records on the central stack in the order of their creation. The current environment pointer

.MAIN PROC. A PROC. B

I.- CALL A

2: CALL B 4: CALL B

3: END 5: END 6: END

S.,-

CP CP CP

MAIN! I MAINI A 4 IN .A B

CP C' Cl CP

6: MAIN. A 1 5: MAIN I 2 MAIN B 6 NAIN i 3: END

Ficure 3-15: Use of a central stack of act,,i.aton records

-j U
'° d* e. -~.. 5.. p .* .. * ° . °'. .'\ -** °45.*

* 89

(CP) is constantly updated to point at the "top" activation record in the stack. From the return

address value in the return point, the second activation record in the stack may be reached. From

the return address value of this record, the third activation record can be reached. and so on. At

the end of this chain, the last link leads to the activation record for the main program. This chain is

called a dynamic chain because it chains together subprogram activations in the order of their

- dynamic creation.

Our main concern in this study is with the directive primitives (DP) data object. The direc-

tive primitives data object is used to store the values of the (P .X) pair used by the ALLOCATE

directive. The entries of an activation record are shown in Figure 3-16. The current memory allo-

cation of a program is determined by the values of the (P.X) pair of the "top" activation record -.
specified by CP. While the new subprogram is executing, the contents of P and X are constantly

changing as new directives are executed. When a subprogram terminates, its activation record is

deleted together with its data objects. Now CP points at the second activation record in the stack. 01

A previously terminated subprogram resumes execution by restoring the values of (P.X) pair.

among other data objects recorded at the time of executing a CALL statement. The memory alloca-

tion of a program is determined by the values of the (P.X) pair obtained from the activation

record at the top of the stack. pointed at by CP.

When a subprogram A calls subprogram B (executes CALL B statement) the directive primi-

tives entry of A's activation record contains the values P4 and X4 . B executes for a while and then

, ".

rp p X

Figu:e 3-16: Acti .ation record entries

771
"4

" 90

terminates. A then resumes its ex-ution. requesting the allocation of XA. pages with a priority 'PA -4

The request is satisfied if X4 pages can be allocated from the free page pool in main memory. It is

possible that X 4 pages can not be allocated, although subprogram A was running with X.A pages at

the time of its interruption. In such a case, OS invokes the swapper if PA =1. Otherwise. the execu- 4.

tion continues with the current allocation until the next directive is received with a new pair

(P.X).•

Rather than storing only one (P .X) pair in the activation record, it is more effective to store

the set of pairs (PI.X 1).(P,.X,). .(P,, .X,,) specified by the argument list of ALLOCATE associ-

ated with the lowest level locality. When subprogram A resumes its execution after the termina-

tion of subprogram B. the activation record of A is searched for a pair P, .X, that can be allocated.

The first pair to be tried for allocation is PI.XI and then P2 .X 2 . and so on until P =I.X is reached.

Note that P1 >P,> • >P,, and X 1 >X 2 > • >X,,. This scheme avoids the need to wait for the

arrival of a new directive when the current directive entry pair (P.X) can not be allocated. More-

over. it reduces the cost of processing a directive as will be discussed in the next section. An exam-

pie is shown in Figure 3-17. A multi-nested loop structure with a maximum nest depth of 3 is

shown in the figure with ALLOCATE directives inserted at the appropriate levels (ALL stands for

ALLOCATE). Memory request primitives. X. are arbitrarily assigned. Note that the number of

(X .P) pairs in the directive entry is limited by the maximum depth of the loop structure compris-

ing the current locality. The activation record of A is dynamically updated. At stage 1. the pair

P=3.X =I0) is stored in the record. At stage two. the second parameter of the directive is entered

into the activation record. At stage 3. the activation DP entry is filled. At any time during the exe-

cution of A. the memory space allocated to A is given by one of the (P.X) pairs in the activation -

record.

Recursive calls to a subprogram is simply implemented by creating a new activation record

cr a subprogram every time it is called. The size of the central stack may, hccome too) large due to

an mncrea.Ned number of actr\ ation records created for a recurso. elv called subprogram.

%

*! 91

1: ALL (3.100) Activation Record for A

2: ALL (3.100) else (2.50)
3: ALL(3.100) else (2.5) else (1,10) 1 P 4:P 321

[X xlc X1o o

2: P 3 12 5: E 3

4: ALL(3.100) else (2.60) X IM0 X l10 60 30

Ile, 5: ALL(3.100) else (2.60) else (1.30) 3: P 3 2

,- X 1lOq 50 1

Figure 3-17: Example of subprogram sequence control

3.4. Cost of CD

h There are two types of cost associated with CD. The first one is the cost of inserting directives

at compile time. The second one is the cost of executing a directive.

Compile time cost is less severe because directives are inserted only once. This cost can be lim-

ited by having the directives inserted only into syntactically error free programs. This restriction

is aimed at reducing the number of times a compiler has to insert the directives into the program

code. The actual cost of inserting memory directives at compile time is not measured in this study.

This problem is left for further research and studies. -S.

This section elaborates on the cost of CD at execution time. The cost of CD at execution time

is the cost of executing the directives ALLOCATE. LOCK and UNLOCK. Our concern here is with

the overhead due to multiple executions of a directive located inside a loop. We will also discuss
,b .

the overhead due to the execution of "else" conditional statements incorporated by ALLOCATE.

since a conditional statement is a time-consuming operation compared to regular evaluating expres-

sions. These two factors contributing to the cost of CD at execution time are discussed next.

The structure of ALLOCATE can be relaxed to exclude the conditional statement "else." thus

ii.ing ALLOCATE the simple form ALLOCATE (P.X) where P and X are the primitives associ-

ated with a loop. However. it is necessary that ALLOCATE reflects the hierarchical nature of a

-- 'S

" o. ** . ~*'~.*p*,

.- .:' i .. , . . .- . - . -. . - . . '.. : . . ; . ' . . . , . ' .'. .. -- - .- - ,' . . -

92

locality structure and to respond to the constantly changing memory status of the system due to

multiprogramming interaction. One way of preserving the hierarchical structure of ALLOCATE is

to use a multiple DP entry for the activation record discussed in the previous section. When a

directive is executed, the values of the (P.X) pair are stored in the activation record in a descending %

order. When a second directive is executed the values of its (P.X) pair are stored in the activation

record. and so on until the directive at the lowest locality level with P-i is executed: at this point A

the DP entries are filled.

When a program is allocated a time slice. OS examines the activation record at the top of the

central stack. The pairs (PX) are tried for allocation in a descending order. If OS fails to allocate

the first pair. it tries the second one, and so on. until the last one is reached. The swapper is invoked
i

upon failing to allocate the pair (P =I.X) as explained in Section 3-1-3. 'ote that the conditional

statement is now transferred to the OS level of execution. where OS checks the values of the

activation record and compares them with the available free memory space.

Multiple execution of a directive is caused by executing a directive located inside a loop. Obvi-

ously. the directive is treated as a regular instruction which has to be executed. unless otherwise

stated. Such multiple execution of a directive adds to the cost of CD. especially when the memory

status has not changed since the last time the directive was executed, in which case the execution of

a directive is a mere overhead. Using a multiple directive point entry in the acti,,aton record and

the relaxed form of ALLOCATE proves to be useful in reducing the number of times a directi e is

executed. A directive inserted at a higher level needs not be executed at loer le.els befause its

primiti\es have already been stored in the activation record. lloever. a lover le,.el directive.

although relaxed. stili has to be executed e~erv time the loop containing the directive terate. =-

The optimal solution to this problem is to move all the directives outside the loop tru%,ure.

Th,- can be done either at compile time .,hen the direc'i~es are inserted, or at run time ' hen :he

J!rectives are first executed. E'.entuallv. all the directives of a loop structure ,A ill he stored in the .

activ\ation record. Therefore. if the removal of a directi'.e is to take place at run time. then once a

-%

- : *-"t(.'/ .,.' .'r , ",". . ..""" '""" % ":"' ; "" "' "-' ". 5. . . . -." , . . ".," -'" .'" '*. - .' " '* e .'. ,,"," .I
°

" """" -
'

93

directive is processed. its primitives are stored in the DP entry of the activation record and the

directive is removed from the program code.

The cost of executing the directives in their original form. without relaxation and without

using activation records with multiple data entry, is measured in this study. The results are r

reported in the next chapter.

3.5. Summary and Conclusions J

Ve have presented in this chapter a compiler directed memory mangement policy (CD). Three

,1, memory directives. ALLOCATE and LOCK and UNLOCK are inserted at compile time into the

program s source code. When a directive is executed by the CPU during execution time. it generates

a request to OS to allocate X number of pages or to lock into memory a particular page. We have

developed algorithms for inserting directives, automatically, at compile time. These algorithms

utilize ,;ource level code information to identify program localities and to evaluate the size of these

U localities.

We have also treated the problem of subprogram control sequence using the activation record

technique. A subprogram may be defined as a subroutine, a function or a procedure. When a sub-

q= program is called. program locality structures will be redefined according to the localities present in

the newly called subrro2:am. Therefore. the memory requirements of a program are also redefined

by the recently called subprogram. However, when a subprogram returns. the memory require-

ments of the main program have to be restored. This problem is handled by creating a new activa- *

" :et'n record for each sumprogram whenever it is called. The activation record contains the most 14%

recent !nt.,rmation generated by memory directives In particular each activation record contains

the ,,aiue% of (P.x) ri!'-. w.here \ is the memory allocation request and P is the priority of alloca-

" i n i ath a%'ivation record has a pointer pointing at the pre,. ious one. thus. forming a dynamic

V; na.in :, nnec ',ing all acti ation records in the order of their creation.

Fie cost o: executing memor, directives has also been discussed in thi,; chapter. A ,arlation

. : -X[.)C-TF direct:,e structure mav be used to reduce the frequency of executing a JWrpctive.

N V-
* * * * * 0 * - * b ** .- * V.. -.."s,.".. °-.- . ,,

" 0 .5. " " " * e + ++ +i - 'I -

I - -: . , -. _ . -. -, - -. 4 4. b

A SA;

!p.' 94 -

The compiler directed policy can be implemented in such a way that a directive does not have to be 4?.

located inside a loop structure. where it has to be executed several times. n

The performance of CD in multiprogramming systems is of significance importance to this

study. The CD policy is designed to be able to react to the constantly changing status of the free

memory available on the system due to multiprogramming. For this purpose. CD incorporates a

p swapping mechanism. The swapping mechanism initiates a swapping process if the minimal

memory requirement of a running process exceeds the amount of free memory available on the sys-

tem. Moreover, the swapping mechanism incorporates a partial swapping strategy. Partial swapping

allows a swapped out process to maintain a resident set in memory. lowever. the resident set size

of a swapped out process is reduced to its minimal memory requirement specified by the directive

associated with its lowest level locality.

The performance of CD in a multiprogramming system is evaluated in the next chapter. We

'• "will examine the fault rate characteristics of CD among other performance measures. The useful-

ness of partial swapping is investigated. Finally. we will compare the performance of CD with the

performance of WS in a multiprogramming system.

OR

• "

a

q L

S°

U°'

*-.- .'g ' l
o

I l - - ..- l .'.i *,m m m m-m m-

95

CHAPTER 4

PERFORMANCE EVALUATION AND MEASUREMENTS
Z4a

4.1. Introduction

The importance of performance and its evaluation in all technical fields is obvious. Ferrari

[221 considers performance evaluation as indispensable for the viability of any technical system as

the functionality and economicity. The previous chapter has addressed the other two categories:

functionality and economicity of CD. The main goal of this chapter is to evaluate the performance

* of CD in a multiprogramming system.

The term performance is understood in the context of the performance indexes used in this

study. The most common performance index of paging systems is the page fault characteristics.
':.A

The number of page faults, F. is a significant index by itself whcih.serves as a measure of the traffic

between virtual and real memory. It also reflects the lifetime of a process: the lifetime of a process .5

.s is inversely proportional to F. A process's lifetime is commonly used to model program behavior l

[131, [191. Also, F can be used as a measure of a process's virtual turn around time. A virtual turn

.P. around time ignores the delay time in queues waiting for other processes to be served However, the 0

-. virtual turn around time differs from that obtained from a uniprogramming environment. This,,r€.
difference results from the swapping activity which is a characteristic of multiprogramming sys-

tems only. The virtual time. VT. of a process is given by

VT = T + F xL

,vhere T is the length of the reference address trace: each memory reference is one time unit. F is

the number of page faults generated during the execution time of a process. L is the time needed to

ser'. ice a page fault. L includes the time needed to interrapt CPL and to transfer control to a pag- L

j !ng device: the seek time needed to locate a missing page in the virtual storage: -and the time to

transier a page from disk (the ,,irtual storage) to main memory. The real turn areund time. RT. of

Ai

U~ %a
% _a. _a __ _-.-* -_. _'.5.. -aa. -..*' *' *'.:

+W U --- T7 -- . . .W+.-:,

96

a process includes the waiting time in system queues:

RT =T+FxL +Q

where Q is the time a process spends in the system's queues waiting for a service. In this study we
71

find the number of page faults for each process in the system. F,,. and for all processes in the sys-

tem. F, . where 7

F,, = yF. .
p =1

The space time cost. ST is another performance index, commonly used to evaluate memory

management policies. ST is the time integral of the memory space occupied by a process. Obvi-

ously. a process may occupy memory space while it is running. or while in the process queue (PQ)

waiting for a time slot. or while in the fault queue (FQ) waiting for a page to be paged into main

memorv. The real space time cost of a process is given by

r F

ST= ES, +L<XES, + XS,
,=I I =1 q=1

.where S, is the space occupied by a process at virtual time. i : S, is the space occupied by a process

during the service of a page fault: and Sq is the memory space occupied by a process while waiting

in the process queue for a CPU time quantum Space time cost is a system performance index.

* rather than a process specific. From the user point of view, it is desired to minimize the running

* time of a process irrespective of the memory space it occupies during its execution.

Maximizing the throughput of the system is a desired goal from the system's point of view.

The throughput :s the number of jobs completed per unit time. With the throughput in mind as a

performance index, the space time cost becomes an important criterion of performance. The results

of queuing network analysis claim that a maximoam throughput can alwvavs be achieved if each

proce-s in the s'stem runs xith a minimal space time cost [12]. (20]. A theoretical support for this

claim is ba:.ed on the assumption that memory capacity is completely ut;:ized. Assume that the

total memory space is 0 pages. and ,V processes are running for t time units. The a erage space

* t;me cost per process is given by:

iJ", "" " " " " " "" "" + " " * - " " ',"•, ","4 ', '. " ". "" *"" .""-"", "" ,- ,"". '-"ails, ?t ",

i 97

ST =Oxt

The system throughput. 0. is given by

N Oxt

N or N =txc. hence. ST =
t Xt

The above formula implies that maximizing the system throughput. 0, can be achieved by minimiz-

ing the space time cost of every process in the system. or equivalently, minimizing the overall sys-

"" tern space time cost. The overall system space time cost. ST, . is given by

- s, =)"ST S"~p=1

The empirical results presented in this chapter contradict the above conclusion. However, the space

time cost is still an important criterion of performance. Memory management policies have been

designed and proposed to optimize the space time cost of a running process: among these are WS

[18] and DMIN [1o] (an optimal dynamic memory management policy).

.4

The average memory size allocated to a process, or the average resident set size of a process.

j V is commonly used as a performance measure of memory management policies. V is useful in

studying the locality property of program behavior: it also helps evaluating the ability of a policy

to measure the memory demands of a program.

We have already mentioned that throughput, d. is used as a system performance index. A

s%,S'em manager .,-uld like to increase the output of his system by maximizing the throughput.

i towever, this should not happen at the expense of slowing down the execution of some processes.,P%

A tradeoff must be made between the interests of individual processes and the system as a whole.

- e.,. minimizing a process's turn around time versus maximizing system's throughput.

A multiprogramming specific measure index is the swapping rate. Program behavior in a mul-

-, rogramming system is not a function only of its intrinsic properties, it also depends on the

behavior of other proce: .es in the system. For global memory management policies, a running pro-

cess may replace the pages of any other process. For local d% namic memory management policies, a

r nning process may s', ap out of memory the resident set of any other process. The sapping rate

Alk.

.

~ % - - * ~ . --- -. - - .

98

N is defined in this thesis as the total number of a process's pages swapped out of memory as a result

of a swapping operation initiated by a running process. The swapping rate. Z. is a significant perfor-

mance index by itself. Moreover. Z has an impact on the page fault rate, as we have discussed in

Chapter 2. Also, Z is responsible for the anomalous behavior of WS (see Chapter 2).

In this chapter the performance measures, discussed above, are used to evaluate the perfor-

mance of CD, whcih will be compared with WS. The WS policy is chosen because it has been advo-

cated in the literature [20] as a near optimal policy. Besides, most of the Ovnamic. nonglobal poli-

cies prcposed to manage memory hierarchies are derivatives of WS. For example. the Damped

Working Sets (DWS) [36] modifies the WS slightly to improve its behavior during interlocalitv

transitions. DWS outperforms WS by no more than 10% in terms of minimizing the space time cost

[2()]. The Sampled Working Set (SWS) [34] has been proposed to reduce the implementation cost of

WS Ferrari and Yih [23] proposed the Variable Interval Sampled Working Set policy (VSWS)

\x hich combines the properties of S\VS and DWS. The performance of VSWS is comparable to WS.

(;1obai policies which are not \VS descendants. such as global [RL" and global CLOCK, have been

Issumed to perform worse Than WS [20]. The page fault frequency policy (PFF) [14] also achieves

similar to WS performance. Carr's proposed policy WSclock [13] is an approximation and global

implementation of WS; WSclock p.rforms nearly the same as the pure WS.

It most be pointed out. hr,,wever, that C1) is not being compared with the optimal. But since

'.VS and its - ariations are considered to have near optimal performance. CD is compared vith the

V\S roc. This charter preents compelling e. idence that C) performs better than \VS in many

Helore comparing CD .,,iih \VS the characteristics of C) are examined: namelv, its dynamic

1 ehavior. the partial sw appinK mechanism emplo'.,ved ,,. C). and the impact of the context ,, Itch

,,n D> 'er, rmance.

"Sr

U'

S... *o...........
S . .%o . *

4.2. Modeling CD

The multiprogramming model used in Chapter 2 for evaluating the performance of WS is

i used for modeling CD (Figure 4-1). Following is a description of CD's implementation.

Each process is represented by its virtual address trace. A trace contains both virtual

addresses and memory directives. The directives are introduced manually into the source level

code. Each directive is represented by an integer number with a value larger than 1000. The most

significant digit is the priority index. P. of the directive and the rest of the digits constitute the

memory request, X. For example, a reference of the form 2120 is interpreted as a directive with

P--2 and X =120.

Each process maintains a list of its referenced pages in the main memory. The memory space

reserved for a process is determined by the X value of the last processed directive. All paging K..

activities of a process occur within its specific memory area. The resident set of a process grows or

shrinks upon processing a directive or as a result of a swapping operation.

Time Out Interrupt

m Paging

DeviceProcess Queue ---

- Swapping Mechanism Jb tis-
• CompleteT" t's

'..

, Main Mlemory

' fault set- Pag~e Fault -

v,.ice delay

Figure 4-1: Multiprogramming model "'..

,, -6Z

100

The CD policy does not have any control parameter. For this purpose. CD exhibits no control-

lability problems at run time. The directives are inserted at compile time, and evaluated at run

time in light of the status of the free memory. For each 0 value. CD generates only one value for

each of the performance indexes described in Section 1. whereas WS needs to be tuned in order to

achieve a particular performance. The window size. r. has to be properly chosen. Moreover.

different values of r might be needed to optimize different performance criteria.

System parameters are used as control parameters in order to generate more results of CD and

to study the performance of CD in different environments. For example, a wide range of G is used

to demonstrate the performance of CD in small and large memory systems. The value of 0 is varied

from 6 to 500 pages. Also. the multiprogramming level. MPL. is varied between 3 and 10. Another

system \,ariable is the context switch. CS. Several values of CS are used ranging from 100 to -1000

. time units.

The CD policy has the option of using or not using the partial swapping feature described in

-" Chapter 3. The partial swapping mechanism is implemented as follows. Each process keeps a record

of its current allocation and the memory request associated with P=1. The swapping mechanism

keeps a circular list of all the processes in the system and a pointer pointing at the next candidate

- process for swapping. Upon invoking the swapping mechanism, the processes are periodically exam-

ined searching for a process occupying memory with P > 1. If such a process is found. its memory

allocation is reduced to that associated with P 1: this value is stored in the directive record (used

:. to store the values of a directive's parameters) of the process. The difference in menory space.

*between the old X and the new X, is added to the free memory pool. If all the processes have been

forced to run xwith P=I and the free memory pool size is too small to satisfy the current memory

, request. a total s'wapping is applied. i.e.. the entire resident set of a process is pre-empted.

When a process .gains control of CPL. it is assigned a memory space according to the values

'und in its d rec'.ive record. Initially. *,he directive record contains the value of the minimal

mernory space a process is entitled to have. In this model, this value is equal to 0. i.e.. the resident

iU

". . ~ ~~ ~~~. .i.-.- -. -'. - "- 4 , . . 4.'.' *2 .* " "" ">-"' ''''r " '- - - " - - ° ' -

101

set of each process is initially empty. When a process is removed from the control of CPU for a

time out interrupt, or for a page fault service, its directive parameters are remembered in the direc-

tive record. The CD policy does not keep a record of the members of its resident set at a time of

relinquishing CPU. Upon regaining control of the CPU. CD demands its resident set's pages back

into memory: WS is implemented in a similar manner.

4.3. CD Characteristics

4.3.1. Dynamic memory allocation

The amount of physical memory allocated to a program vary during execution for two rea-

sons. The first one is attributed to a program's intrinsic locality characteristics. A transition from

one locality structure to another results in a change in the memory requirement of a program.

Therefore. the amount of memory allocated to a process may vary every time a new directive is

executed and its request is satisfied. Variable memory allocation also occurs within a locality struc-

ture. The amount of memory allocated to a process may be reduced due to a partial swapping

operation. This happens when a process is occupying memory with P > 1. i.e., low priority. Also. a

* process may switch its memory allocation from that required by a lower level locality to a larger

one requested by a higher level locality: this is viable because the size of free memory may be

increased if a process releases some memory or a process completes its execution. r

The variation in the memory size allocated to a process is not expected. however, to be abrupt.

A process is expected to spend some time inside a locality; therefore. directives are spread apart by

the duration of a locality. Once a directive is processed and a particular request is satisfied, the size

g of free memory is not expected to change until another process executes and changes its memory

requirements. For both these reasons, it is not expected to notice an abrupt change in the amount of

memory allocated to a process over execution time. In this section we report some results about the

dynamic memor' allocation obtained under CD.

c77

%. %I-., .-. , , .- ,_...'.-' • ..%,,. ,"-' ,, ' ','','' ; 4..'.:'"?."7

-I 7

102

In Figure 4-2. the memory space allocated to a process is plotted versus real time. Five plots
J

are shown in the figure. one for each of the programs. The plots are generated for MPL-3 and three

values of 0 (6-50. 100, 300). Consider. for example. program MAIN. For 0-50, all memory

requests larger than 50 pages are not satisfied. Memory allocation varies between I page and 17

pages according to the directive:

ALLOCATE (2.17) else (1.I)

The memory request. X=60. generated by the directive

ALLOCATE (2,60) else (1.2)

cannot be satisfied when 0=50. However. 60 pages can be allocated when 0=100. Depending on the

size of the free memory pool. memory allocation varies between 1.2.4. and 60 pages: this variation

represents intra-locality transition. An example of transition from one locality to another (inter-

locality transition), is illustrated in the time region. t-1.28xlO6 and t=l.31x106. where the amount

of memory allocated to program MAIN changes from 60 to 3 pages. With larger values of 0.

memory allocation within a locality structure seems to be stationary: the first request of a directive

(and the largest) is allocated most of the time. For program MAIN. 60 pages are always allocated

whenever a directive is executed of the form ALLOCATE(2.60) else.. Similar observations can be

made from the analysis of the rest of the figures.

Compared to other dynamic policies, such as WS and global algorithms. CD does not exhibit

high implementation costs. A program's resident set does not have to be updated or computed at

every memory reference time. The number of times a resident set has to be updated is limited by

the frequency of generating directive requests. The plots in Figure 4-2 show that for the five pro-

grams. inemorv allocation does not change in a rapid continuous fashion: it is rather discrete and

xide!y spread over time.

4.3.2. Partial swapping

J A major characteristic of CD is that it prohibits any program from running unless there :s

enough memory space to allocate at least one level of its current locality structure. The CD polic" ""

UI

103

50 :,
N1.

0 2XI0 6 4X10 6 6x 10 6 8xI06 1 1 .2xl07 1.4XI07

Time
4-2a: MAIN. 0=50 --. 100 300 -- -

\j 10

Si i

- I:, i ',

0 -
0 2 X105 4X15 ()X,0 5 SX10 5 106 1.2X1(P l.4XI06

Time
4-2, FIELD, 0- 50 100 300 ---

40 ____-

,_.0 xlO6 4xlot) 6 xip 2 x I 0 .x.o 3 10"

°a.

d Time

4-2c: INIT. O= 50 ---. 100 300 - - -

AZ

]U

104

100
-NI

50:

"* I.

,,

0 5X 10 6 07 1.5x10 7 2X 10 7

Time
4-2d: CONDUCT, 0=50 ---. 100 300 ---

I I

0U
0 5x10 6 107 1.5X 10 7 2 X10, 2.SX 107 3 X10 7

4-2e: .. WSCRT. Tim 100 300 ---

Figure 4-2: Dynamic memory allocation under CD

incorporates a swapping mechanism to facilitate this feature. I'he~ swapping mechanism has been

discussed in Chapter 3. Partial swapping is introduced in order to give a process a chance to keep

* some pages in memory before it is completely demoted. Hopefully. with partial swapping more

processes can share the memory and CPU resources at no risk of thrashing. One may argue that

partial swapping may increase the number of processes in the system at the expense of generating

more page faults. In a multiprogramming environment, it is not easy to agree or disagree with this

argument on a purely theoretical basis. On one hand it mnight be true that less memory allocation

results in more fault rate. or at least should. On the other hand. the lowest level locality might

have a time duration even longer than the context s-witch time interx al gi-,en to a process. In this

cas-e partial swapping can have only a positive impact on the performance of' an individual process

I ******* **"*. 1

I.
and of the system. Besides. total swapping may result in extra completely unutilized memory

space.
64.

The empirical results reported in this section demonstrate the impact of using a partial swap-
*..

ping strategy along with a total swapping. For MPL=IO and 0=50, the total number of system page t*

faults is 39015 with partial swapping turned on; without partial swapping the page faults

increased to 53220. a difference of 12105 faults. However, for larger values of 0 the big difference

disappears. For example. the number of page faults for 0=150 with partial swapping on is only 3

faults less than the fault rate without partial swapping. For 0=200. 300. and 400 the difference

• - disappears completely.

For each process in the system the total number of pages. E. swapped out from the resident

B set of a process is recorded. Figure 4-3 presents a plot of . versus 0 for programs MAIN. INIT, and

IWSCRT with .IPL-5. ,<

Our results show that partial swapping can indeed result in more page faults. However, for

high memory contention cases. partial swapping has the tendency to generate less faults than total

s% apping.

4.3.3. Effect of context switch

One reason for a process to relinquish CPU is to use up its context switch interval where a

time out interrupt is generated. A process may actually use all of its time slot if it is not inter-

rupted during the context switch period. In our model, the only other interrupt is caused by a page

fault. Therefore, if the average lifetime of a process. i.e.. the time between successive page fault:;, is

larger than -he context switch value, CS. a process is likely to use up its time slot before a page

fault occurs. Similarly. if the time between successive faults is shorter than CS. a process is ui.tely

to lese control of CPU before its context time runs out.

The a,, erage lifetime of a process is inversely proportional to the fault rate. The average ''r-

tual lifetime. G . of a process is defined as (\ T 'F where T is the len.gth of the address reference

.7~

...-.-........

106

100 _ _

50 A

0-

0 50 100 150 200

0 "

4-3a: MAIN. MPL=5 d

100

£ 50 0I
4.0.. ..

0 50 100 150 200

4-3b: INIT. MPL=5

i,"mI

1001

50

0
() 50 1 00 150 2()o

4-3c: I\VS(RT. \IPL=5

Figure 4-3: Partial arring rate . ersus 0

107

string, and F is the number of page faults. The average virtual lifetime is maximum if F is

minimum. The minimal number of faults in a demand paging system is equal to the number of

pages in the virtual space of a process. The maxin um value of G for the programs used in our

experiments is given in Table 4-1. Averaging over all of the programs. the maximum average life-

% time is 365. In reality the lifetime of each process is lower than the values given in Table 4-1

because the actual number of faults is much higher than the absolute minimum.

All of the results reported in this thesis use CS=1000. This value is large enough to exclude

the impact of CS on the results. Mainly we are interested in paging related characteristics of pro-

gram behavior. However. we report in this section more results using smaller values of CS. The

fault rate characteristics are observed under different values of CS.

" In Figure 4-4 we plot the fault rate versus 0 for each program (MPL=5). Two values of CS

are used. CS100 (solid line) and CS-1000 (dotted). From the curves in Figure 4-4 we note that

most of the programs favor larger values of CS. Program MAIN. with Gmax=lO1 7. generates

significantly less faults. with CS-1000. than with CS=I00. especially with 0 in the range 75-100

• pages. For example. F(0=80.CS=OO)=5524 and F(0=80CS"1000)=852. a difference of 4872

faults. For large 0 values, the difference page faults for different CS values disappear since, for

large 0 values, the number of faults is considerably low, and a process is allowed to use all of its

time slice. Moreover. the swapping rate is considerably lower with large values of 0. and therefore.

a process is likely to retain its resident set pages when it regains control of CPU during the next

context switch.

Table 4-1
Maximum lifetimes of programs

Program !-P,-f. Length (T) Virtual Size G ax

N N79.325 78 1017
FIELD lO.,S23 60 ll

i INIT 10.745 174 1 62

CoN1LCT S2.152 291 2 3
IIWSCRT 22.721 76 299

US N

* J .€

* -- . -. '- .* .. 4,~ . * i **~ .. 4 tt t. t

O r - . .- - - .-. . .N ,

108

P..

F

I°

10,..- ,, |, , ':

0 20 40 60 80 100 120 140 160 180 200

4-4a: INIT. MPLs5. CS=100 . 000 ...

10000 _

F \

IW,.,

0 20 40 60 80 100 120 140 160 180 200

4-4b: FIELD,MPL5. CS- 100 ---. 100 ...

10000 _____ _ __ _ _

F .

....."......
\

.1

IN

0 20 40 60 80 10) 120 140 160 1SO 2(00

0~~~4-4t IIT. \PL-5 CS--I() ---. 1) ...

-
n.

-•.
,JJ

~ . ** I. S

109

105

F,...

,% ~~~102 I

0 20 40 60 80 100 120 140 160 180 200

4-4d: CONDUCT. NIPL=5. CS-100 -. 1000 ...

10000_ _ _'_'__ -

.. ... _

F 5000 - ._- _ _ _ __

- °p

i-a

. o,,'- ,

0 20 40 60 80 100 120 140 160 180 200

4-4e: HWSCRT. MPL=5, CS=100 ---. 1000 ...
Figure 4-4: Effect of context switch on page faults

System fault's curves for three values of CS (100 solid. 1000 dotted. 2000 dashed) are shown

in Figures 4-5a and 4-5b for MPL=5 and 10. respectively. The curves are almost identical fOr

0> 100 and 0> 300 for .MPL=5 and .IPL=10. respectively. For smaller 0 values, smaller CS values

generate a larger number of faults. For small 0 values, the swapping activity is considerable and.

therefore. it is possible that a process be swapped out before its next time slot. Using a relatively

large CS allows a process to benefit from those pages it has paged into its resident set.

Hiowever, using a large CS value affects the response time because a process h-is to wait tco

long in the process queue before its next scheduling time. Small CS value., as discussed above, have

the tendency to generate more faults and c nsequently increase the turn .,round time of a process.

There is a tradeoff between response time and turn around time. Response time, howe',er. has to he

110

106

105 _ _ __

10 4 -

I o

103

0 50 100 150 200

7

4-5a: SYSTEM. MPL-5. CS-100 ---. 1000 2000 ---

106 _ _

Io !

F

103

0 100 200 300 400

T°

4-5b: SYSTEM. MPL=10. CS=100 ---. 1000 2000 ---
Figure 4-5: Effect of context switch on page faults

acceptable to human norms. And therefore, a maximum response time can be enforced by using a

global context switch. g. The distribution of g among the processes depends on the lifetime of a

process and the number of processes in the system. The general criterion is that a process should be

allc'xed to continue using CPL as long as it does not generate a reference to a non-resident page.

i.e. page !ault. Hoxever. the smooth beh ,ior of a process should not be a reason to keep other

processes -xa:tirn.g in the queue: after all. these processes may ha,.e a Smooth heha-.tor as ,eil.

iU

, . .~ ~~ ~ . -, . ** • ./ J.-. /", . . .". : "- - , , '- - ". '""". ,. '"'- .@ , '"-

111 , ,

-.. "o:

77-7" 77-777

Therefore. a process should be pre-empted from CPU if it exceeds a threshold value. Following is a

dynamic strategy for allocating time quantums to running processes.

Let g be a global context switch; g is set to a maximum value m. Also, let N be the number

of processes which have not been scheduled yet to run during one scheduling cycle: a scheduling

cycle is completed when all the processes in the system have used CPU once for some time. Define a

threshold. h. as h =-L; g is always evenly distributed among the remaining processes in the sys-

ten. Every time a process leaves CPU after some time t. g is updated as g =g -t and N is

updated as N =N -1. The time a process spent using CPU is determined by an interrupt due to a

page fault or a time out interrupt after h time units. whichever occurs first. We further illustrate

this strategy using an example.

Example 4-1:

Assume that there are 4 processes in the system. Let m =1000 time units: i.e.. the maximum

response time for any process is 1000. Initially. g =1000 and h =1000/4=200. Let process P1 run

until a fault occurs after 100 time units. t =100: i.e.. P1 does not use all of the time it is entitled to 6 ""

(h1 =200). At this point g is updated as g =1000-100 =900; and g is distributed among three

processes since N -4-1 =3 (h =900/3 =300). Note at tnis point that the remaining processes in the

system have a higher threshold than did Pi when it controlled CPU. Next P, runs and uses up all

of its time quantum (300 units) before it generates a fault. All parameters are updated as

g =900-300 =600: .V =3-1 =2: and h =600/2 =300. Assume that P3 executes until a page fault

occurs after 150 time units. The value of g now becomes g =600-150 =450: V =2-1 =1. and , ,

h =450. Process i', can use CPU for 450 time units unless it generates a page fault : assume that a

fault occurs after 400 time units. Now g is reset to 1000 and a new cycle begins. Note that no pro-

cess in the system may wait in the queue more than SO() time units. and each process is allocated at

least 25') time units

'The allo~e cneme allows smoothly beha% ing Frocesses '.vith Io-,\ tault rate) i- take a,.%. an-

a,,e of the shcrt lifetime)f hr-a':ziv faulting processes. At the same time hieavily faultinz rrcesses

-" SAS r

7~~ 77-7-7 7 M. 7. -7

112

are not punished for bad behavior: a heavily faulting process is scheduled to run after at most m-

time units. In the above example. P, could use CPU for 300 time units because P1 did not use all

of its time. Similarly. P4 could use CPU for 400 time units because P3 was pre-empted before its

time had expired. However, P1 is rescheduled after 1000 time units from the time it first controlled

CPU. Using static CS distribution. P, could have been scheduled after 650 time units. Of course

this is a shorter response time. but it makes little difference if m is chosen within the range of

human acceptable reaction (few' milliseconds for example) for interactive systems. Moreover. two

processes could be interrupted (P, and P4) although they could have used CPU for useful work.

The notion of response time is. mostly, applicable to interactive systems. In batch processing

systems, response time has little significance. Therefore. for batched scheduled jobs. it is more

effective if a process is allowed to execute until it generates a page fault.

Dynamic time allocation is still to be further investigated. One way to pursue this issue is to

look into the possibility of using memory directives introduced in this thesis, or possibly some time

directives, to guide a dynamic time allocation strategy. In this thesis we investigated only static

time allocation.

4.4. CD Versus WS :

Simulation is performed for several values of 0 ranging from 0 = 6 to 200 pages. Small values

of 0 represent the case of high memory contention characterized by a relatively high rate of swap-

ping. Larger values of 0 are used to evaluate the performance of CD and WS when there is enough .

memor', .o allocate the resident sets of progiams as requested by CD or defined by r. the \VS

rarometer Four leveis of multiprogramming (MPL) are used: MPL=3. 4. 5 and 10. NIPL=1) is

achie'.ed by running two copies of each program simultaneously. For \IPI.=3 high memory conten-

,;on results for 0 < 30 pages. For NIPL=l0. memory contention is observed for 0 < 150 pages.

Next ('1) C s compared ,xith WVS :n terms of the page faults. the spz.ce "me cost, the sv'tem,-

•r "g:..-ut .and c:nrrollamlit'.,7

I
!
. -',-'.'-'.-'," .,.. ,,• '""5-

113

4.4.1. Page faults

Minimizing the turn around time of a job is a primary performance objective from the user's

point of view. In a virtual memory system. this objective can be achieved by minimizing the page

faults of a user's process. However, minimizing the faults of a process in the system may adversely

affect other running processes' page faults and worsen the overall system performance. In the next

subsection we study the page fault characteristics when the objective is to minimize the faults of

,r. individual processes.

4.4.1.1. Page faults of individual processes

In a uniprogrammed system. WS can be easily tuned to achieve the absolute minimum

number of page faults by choosing a relatively large value for r. Earlier experiments (20]. (3] have

always assumed a uniprogrammed system with infinite memory where r value is not restricted by

the memory size. However. in practice r is restricted by the finite memory capacity available on

the system. In a multiprogramming system the page faults of a process is affected by other

processes running in the system; therefore, large r values may not always generate a low number
..

of faults. In Chapter 2. t was shown that increasing r may result in increasing the number of

faults. i.e.. anomalous behavior. Also. larger r values yield large working set sizes which lead to a

memory contention problem among processes in the system.

Table 4-2a (MAIN)
CD compared with the minimal achievable page faults under WS

with corresponding space time costs

____Page Faults . ST Cost(10)) T r
0 CD WS Ar F 1 CD WS Az- % WS

6 923 1743 89% 3.84 9.07 136'% 196
10 923 978 06% 1 3.84 5.77 5()7 6

20 1 872 921 06% 3.79 5.71 51l" 6
25 855 1 921 08- 4.33 5.71 32-c 6

I 50 855 380 -44'% -1.33 22.7 42.. 6'

100 1 169 302 79-, 5.22 2-1.7 373-, 9'O()

.-171 7. 7. -

114

Table 4-2b (FIELD)
CD compared with minimal achievable page faults under WS U

with corresponding space time costs
-~

Page Faults ST Cost(10 6) _"_ __-__

6 CD WS A % CD WS Air % WS

6 173 7903 4468 2.858 31.6 1005 1
7 173 3795 2094 2.858 33.1 1058 6
8 173 3172 1733 2.858 27.2 862 386-436
9 173 2892 1572 2.858 26.2 816 441-co ,

10 173 3357 1840 2.858 34.1 1093 6
11 173 2784 1509 2.858 30.8 978 381
12 1136 1307 1861 2.899 11.9 310 261
13 136 1217 795 2.899 12.3 324 396-436

14 136 1153 748 2.899 12.1 317 771-1101 , :
15 136 1163 755 2.899 12.3 324 221-226

451-511

16 136 1146 743 2.899 13.1 352 386
17 136 1101 710 2.899 13.5 366 581-761

18 136 341 151 2.899 3.91 35 261
20 136 1 219 61 2.899 3.1 7 381-396
25 143 149 4 2.768 2.98 8 1301-1501
30 136 134 00 2.899 2.62 -9 1601-
35 136 104 -23 2.899 3.03 5 1801-2301

40 136 113 -17 2.899 2.92 1 4201-5401

45 136 107 -21 2.899 3.04 5 921-961
50 136 106 -22 2.899 3.2 10 6501-

10 136 691 -49 2.899 3.68 27 J4701-6001

For CD. the number of faults is a function of 0 only (FCD (0)). although 0 is not a control

parameter. In this study we use a wide range of 0 values to demonstrate the ability of each policy

to function in small and large memories. For each 0 value CD generates one set of results including

the number of faults for each process and for the system. -

The WS policy is controlled by r. the window size. Each performance index is a function of

r. For each 0 and each 7". WS generates one set of results. Since we use several \alues of r. several

sets of results are obtained. The minimum - value used is r=l. An increment of 5 is used up to a ,

,.alue of r=1000. A small increment is necessary to capture the behavior of WS in transitional

%? %

U

....................................

periods. In numerical programs. changes in locality structures occur in abrupt fashion: this is obvi-

ous from the lifetime of individual numerical programs (see reference [8]). A larger increment is

used for r> 1000. The WS window size is increased until the working set size of any procem

exceeds the amount of physical memory. 0. where an overload condition is raised: in this case the

II
results are generated for all preceding r* values and the simulation is terminated. Simulation way

be continued only with larger 0 values.

Each r value is used by all processes in the system (fully detuned policy (20]). Alternatively.

one can use for each process in the system a separate - which optimizes the performance of the far-

ticular process (fully tuned policy (20]). The high overhead associated with fully tuned policy res-

Table 4-2c (INIT)
CD compared with the minimal achievable page faults under WS

with corresponding space time costs

Page Faults ST Cost(10 6) [
0 CD WS AF % CD WS Asr % WS

6 2520 3686 46 13.8 24.5 78 196-376 -

7 2520 3150 25 13.8 24.3 765 256
8 2520 3038 21 13.8 31.7 130 6

9 2520 2610 04 13.8 28.4 106 6
10 2520 2556 02 13.8 28.7 108 6

11 2520 2525 00 13.8 28.9 109 6

12 2457 2525 03 13.19 29.0 120 6

13 2457 2519 03 13.19 43.2 228 11

14 2457 2515 02 13.19 44.3 236 11

15 2457 2511 02 13.19 415.6 I246 11

16 2457 2513 02 13.19 46.0 249 11
17 2457 2514 02 13.19 50.0 279 11-16

18 2457 2514 02 13.19 160.2 i 356 16

20 2457 2509 02 13.19 46.5 1 253 11
25 945 250q 164 5.16 50.0 3695 11-16

30 945 978 03I 5.16 35.6 590 81

35 945 i 960 02 13.41 33.2 148 66-86

40 945 947 00 13.41 48.7 263 1 121

45 945 947 00 13.41 47.2 252 I 116

50 _ _369 ! 947 157 11.22 61.0 444 156-161
100 273 175 1 -36 15.47 I 14.2 -8 516-1101,.

%R. • . • -. -. .,- , ..% "

116

tricts its use. To achieve a performance close to that of fully tuned WS with relatively low over-

head we find for each process 7F-,,,, which produces the minimal number of page faults

F (F...n(9.7)); recall that our objective is to minimize the turn around time of individual proesses.

* The side effects of operating with 7-Fr, are measured by evaluating the corresponding space time

costs ST (rF_,,i,) and the average working set size W (F-,,,,).

For MPL=3. the results are shown in Tables 4-2a. 2b. 2c. for programs MAIN. FIELD. and

INIT, respectively. In the first column of each table is the memory size, 0. The number of page

faults generated under CD and WS are given in the next columns for WS the number of faults is -.

the minimal value selected from several values generated under different r values. The relative

difference between FCD and F%.s is given by

A= F-_D x 100% (4-1)
FCD

*' Positive A- values indicate that the number of faults under WS is larger than that under CD. For

the same 0. the space time costs under CD and WS are given in the next two columns. For CD this

is the only value. For WS this is the space time cost achieved using T F-,,,i,. The relative difference

between STrs and ST*(* is given by

.ST A = STWs-STCD xlO0% . (4-2)
STCD

The last column shows the optimal r for each process.

The analysis of Tables 4-2 shows that CD performs better than WS in high memory conten-

tion cases (small 0 values): high memory contention is characterized by high swapping activity.

Consider, for example. 0 = 8. The minimal faults under WS for programs MAIN. FIELD. and INIT

are higher than those ichieved under CD by 53%. 1733%'c. and 21%, respectively. Under CD. 4

swapping operations .re performed to pre-empt 18 pages of memory, whereas under WS. more

than 40 swapping operations are initiated. The performance of WS improves when the memorV

a\ ailabte on the system ii relatively large. For example. WS produces 36' and 49", less faults than

() for 0-100 for INIT and FIELD. respectively C) still outperforms \VS for proram MAIN hV

*i

- , ". . ".-., ,', , , '. -"". -"":'--" , . ".":" : " "" ' " " "'l 'i "U

117

Table 4-3a (MAIN)
CD compared with the minimal achievable page faults under WS

with corresponding space time costs (MPL=4.5.10)

Page Faults ST Cost(10 6)

MPL 0 CD WS AF% CD WS AsT % WS

4 10 923 1469 59% 3.841 7.59 98% 9

1 20 923 947 3% 3.841 5.87 53 10
25 923 921 00 3.841 5.71 49% 6

30 889 921 04% 4.367 5.81 33% 10

40 855 921 08% 4.331 5.83 35%. 26

50 855 921 08% 4.331 5.83 35% 50

100 169 919 444% 5.221 15.6 199% 415

150 152 258 70% 7.117 23.4 2291 6600

200 152 79 -48% 7.117 10.8 52% 16.500-

5 50 855 1157 35% 4.331 11.9 175% 51

100 237 921 288% 4.72 9.92 110% 50-250

150 169 310 83% 5.21 22.9 340% 6000

___200 152 139 -9% 7.117 14.4 102% 20.000-

10 50 895 1029 20% 4.334 6.11 41% 11

100 237 956 303% 4.72 5.96 26% 51

150 245 564 130% 8.113 22.2 174% 6900

_.__200 152 1 474 212% 7.117 23.1 225% 7900

79%. For 0=100, the swapping rate is 0 under both CD and WS.

The improvement of WS with a relatively large rremorv size (0=100 for .MPL=3) is expected

since the working set size of a program can grow with less restriction. Using large values of 0 may

result in a situation similar to a uniprogramming system with infinite memory. where WS can

achieve the absolute minimal number of faults bv uing a relatively large r. In a multiprogram-

ming system it is always possible to transfer the system into high memory contention state by

increasing the number of processes competing for memory space and CPU time. i.e.. increasing .. r

, IPL. Comparing CD and WS for small 0 values can be a useful measure of ,he optimal NIPL sup-

ported by both policies. Consider. for example. te ,erformance of CD and \VS for 0=50. For

S .MPL=3. WS .generates less faults than CD does for programs .MAIN and FIELD by 44,(and 22,(.

respec:!. el. 1When the multiprogramming ie'el is increased to .MPL=4. \WS generates more faults

2 '" **%~* S * ~ * *
ly,

. -... -" -. " - "" . -. ''. . ,'" '" :' i'" " . - ':', ; "" ' ', , : A %" '

118

Table 4-3b (FIELD)
CD compared with minimal achievable page faults under WS i

with corresponding space time costs (.MPL-4.5.10)

Page Faults ST Cost(10 6)

MPL CD WS AF % CD WS As % WS

4 10 2501 3909 56% 8.946 35.5 275% 9
20 173 1806 944% 2.858 21.7 659% 15
25 136 241 77% 2.899 3.14 08% 21

___ 30 136 193 42% 2.751 2.81 02% 30

___ 40 136 161 18% 2.899 3.33 15% 31

50 136 161 18% 2.899 3.55 22% 45

100 136 133 00 2.899 3.76 30% 415

150 136 64 -53% 2.899 4.25 47% 6600
200 136 61 -55% 2.899 4.09 41% 10.500-

5 50 136 2762 1931% 2.899 38.1 1214% 101

100 136 109 -20% 2.899 3.67 27% 951

150 136 68 -50% 2.899 3.8 31% 5500 JA

200 136 61 -55% 2.899 4.09 41% 15.000-

10 50 135 405 200% 2.762 4.82 43% 21

___100 165 164 00 2.852 3.07 08% 701
___I150 128 114 -11% 2.893 3.58 24% I7000-
___200 128 83 -35%c 2.893 3.03 059 j 1800

than CD by 8% and 18% for MAIN and FIELD. respectively. Increasing MPL further to MPL-5

and 10. the number of faults under WS exceeds that under CD by 35% and 20% for MAIN. and bv

1931% and 200% for FIELD. respectively. The results for YIPL=4. 5. and 10 are reported in Tables

4-3. one table for each program.

From Tables 3 we note that CD benefits from increasing MPL for the same e value, whereas

the performance of WS degrades with increasing MPL. Consider. for example. program H\WSCRT

(Table 4-3-e). Doubling NIPL has almost no effect on the performance of CD. v. hereas the page

faults under WS increased more than 12. 3. and 2 times for 0=100. 150. and 200. respecti'.ely.

The low number of page faults under \VS. generated ",ith larger 0 \-alues. is aimt,-t alwa\s

assoc:ated .*ith a space time cost (ST) larger than CI)s. in)ther words. \WS generates less faults

on the expense of occupying more memory space for a longer time. Consider. for example. Tabeie

...... 2

.. . . '. ** *4 . - . ° ° . " % " -w 'l 4 4' *
"

l
'

NV X'- Wi WV M -- r

119

4-3a for program 'MAIN. MPL-3. and 0-50. The WS policy generates 44% less faults than does CD

(AF =-44%) . However, the space time cost under WS is 4.24 times more than that under CD

(Asr =424%). For program CONDUCT in Table 4-3d. WS's improvement over CD in terms of page

S faults for MPL-5 and 0-100.150.200 is accompanied by excess space time cost of 25%. 186%. and

247%, respectively. On the other hand. STcD is lower for most of the time than STMs even when

CD generates fewer faults than WS. For 0 - 9. in Tables 4-3a. 3b. 3c. CD generates less faults than

WS by 16%. 1572% and 4% for MAIN. FIELD and INIT. respectively. For the same 0. CD outper-

forms WS in terms of ST by 59%. 816% and 106% for the same programs.

The analysis of Tables 2 and 3 show that CD achieves better performance than WS in a small

memory environment. The WS is a better policy when using a large memory size. However. for the

same memory size. CD can support higher multiprogramming levels. CD is designed to respond to
V

Table 4-3c (INIT)
CD compared with the minimal achievable page faults under WS

with corresponding space time costs (MPL-4. 5. 10)

____ T Page Faults ST Cost(10') __,".,
MPL 0 CD WS AF % CD WS Asr % WS

4 10 2520 3298 31% 13.8 22.5 63% 9
_ 20 2525 2544 00 13.04 42.3 224% 10

___ 25 2525 2521 00 13.04 29.0 123% 6
__ 30 j 2525 1113 -55% 14.05 18.9 35% 30

50 729 977 34% 14.05 26.9 92% 60
"_ 100 J 297 274 -07% 14.6 14.5 00 415

"___ 150 273 175 i -36% 15.47 19.0 23% 2400
_ 200_ 273 175 -36%1 15.47 28.7 86% 6500

5 I 50I 729 2818 287- 5.045 38.8 669%I 101

-- __ 100 273 I 187 -32% 9.28 9.69 04% j 551
1_0 273 175 -36-c 9.28 T13.8 49% 1000

__,__ 200 273 i 175 -36% 9.28 13.4 44% 950

10 50 535 1500 10 so____2.7 2.S 190___ 201

100 273 523 92 1 10.7 15.9 F 52-, 600
150 273 215 -21% 3.15 12.6 3(2% 200()
200 273 175 -36-, 9.3 12.A 31c , I6(X) ',
'4" IA
'"I

4."~ .

120

changes in the memory status in a multiprogramming system. Both the hierarchical structure of

memory directives and the partial swapping mechanism enhance the performance of CD.

In the above analysis we have assumed that each process can use its own optimal r (fully

tuned policy). The high overhead associated with this policy restricts its usage in real systems.

Choosing one Tr among the optimal ones (p% detuned policy [20]) may degrade the overall system

performance. Moreover, an optimal r for one process may not be usable by other processes. For

example, the optimal T for program MAIN (0=45) is 6200. This r cannot be used by INIT since the

working set size (a function of 7) exceeds the available memory on the system: V(=6200.0=45) =

69 pages > 0=45. In the next subsection we consider optimizing the overall system page fault per-

formance.

d

Table 4-3d (CONDUCT)
CD compared with the minimal achievable page faults under WS

with corresponding space time costs (YIPL=,4. 5. 10)

Page Faults ST Cost(106) 'r
WS WS. AST~ % WSWMPL 0 CD WS A F % CD W s S"

4 [10 5043 23005 356% 96.96 268.0 176% 9

20 4788 5507 15% 173.9 92.8 -47% 15
,_ 25 4634 5148 11% 207.2 106.0 1- 21

30 4456 4952 11% 236.0 185.0 -22% 60

__ 40 4125 4876 187c 284.9 203.0 -29% 6640 47 2 90 4876 1
!.__ 50 3873 4637 20% 328.4 278.0 -15% 116

1001 789 290)3 268% 301.71 42 .0 40% .415
1150 748 572 -24% 22.22 70.6 21 8% 6600

__" _200 748 406 -46% 22.22 79.7 J 259% 20,01/

; _5 0 4562 5979 31%, 96.9 160.0 65% 1 01
1 100 789 754 -04% 30.17 37.7 i 25%?c 601

150 748 1 582 -22 %9c 22.22 63.5 1 h 6% I 65001
200 74h 403 -46% 22.22 77.1 2477 I 5).0!)1

I 50 3873 15864 51 %c 38.0 ' 105.0 176% 21

oo I 100 789 1 4875 518%'r 1 30.17 202.() 570- 1 451,

-___ 15o1, 748 1241 66- 22.22 84.8 2h 2% 24.500
2100 -48 67, -0977- 22.22 35.3 _59,% 1000

...-. * . o. - ' *. ..

_ , , . °

Table 4-3e (HWSCRT)
CD compared with minimal achievable page faults under WSUwith corresponding space time costs (MPL=5. 10)

M LPage Faults ST Cost(106) 1

NPL 0 CD WS A-% CD WS Asr % WS

5 50 649 4744 631% 11.33 84.4 645% 101
100 646 378 -42% 11.33 19.5 72% 401
150 646 155 -76% 11,33 13.3 17% 6500
200 646 123 -81% 11.33 9.43 -16% 10.000

10 50 4680 4684 00 11.33 820) 632% 71
100 649 4580 606% 11.33 188.u 1559% 651
150 646 474 -27% 11.33 23.2 105% 551
200 646 340 -47% [11.33 17.2 I 52% 551

4.4.1.2. Overall system page faults
" '.

For WS we find one global r which minimizes the overall system page faults. We then use

this r to find the corresponding page faults and space time costs of the individual processes. The

. results for NIPL=3 are reported in Table 4-4. In Table 4-4 we compare the minimal overall system

* and the corresponding individual processes' page faults under WS with page faults achieved under

IP CD. The space time costs of generating the given fault rate performance are also compared. From

Table 4-4 it is easy to see that CD produces less faults than WS, irrespective of the maximum

memory available on the svytem. However, the performance of CD is much better than that of WS

whe n the memory contention is very high. For 0 = 6. WS generates 1641" more faults than CD does.

For 0 = 25 CD still outperforrs WS bv 85%. CD also outperforms VS on the individual processes

level. For 0 = 50. WVS gene.-ztes S(. 21%. 157"(and 50% more faults than CD does for programs

MAIN. FIELD. INIT and the o,,erall system, respectively.

The results for \IPL=4.5 and 10 are reported in Table 4-5. For \IPL=4. CD outperforms \WS

S for 0<150. The improvement is higher for smaller 0 values, e.g.. INS' for 0=10. Similarly. for

\PI.=5. CD outperforms NVS !or 0< 150: A - =8%c for 0=5() and 100. For NIPI-=I0. WVS generates

73c. 333%. and 3.V- more taults than CD for 0=50. 100. and 1505. respectvelv. Note that when 4

U--

.F, -,-. "..:.v .,',.:',- ,, ,." -,*, "". ," ,:' ;¢

122

Table 4-4
Optimizing system performance. MPL=3 U

__ -%__ Asr %

0 MAIN FIELD INIT System MAIN FIELD INIT System

6 85 2464 35 164 113 733 136 215

7 65 2094 23 133 96 1058 123 248 1
8 45 1956 21 119 83 1048 130 248

9 16 1864 4 95 59 1072 106 232

10 6 1840 1 91 50 1093 108 235

11 5 1836 00 89 48 1090 109 235

12 24 2016 3 89 66 1356 120 362

13 28 2110 3 91 72 1345 228 361 IN
14 17 2041 2 85 60 1363 236 367

15_ 5 1930 2 77 53 1407 246 328
16 4 1921 2 77 52 1407 249 380

17 20 1163 2 52 64 869 340 365

18 6 1151 2 48 54 1114 356 408

20 7 1136 2 47 54 1176 363 384

25 9 1076 166 85 33 1269 1111 762

30 8 18 6 7 35 11 2(0 98

35 8 18 6 7 35 14 16 31

40 9 29 1 6 53 20 138 104

45 8 18 2 5 52 24 124 95

50 8j 21 157 50 54 19 288 191

100 131j -48 -27 15 377 18 31 106

MPL is doubled (from 5 to 10) the improvement of CD over WS increases. The CD policy outper-

forms WS for MPL=5 and 0-50 by only 8%; however, a 73% improvement is achiev, or MPL=10.

as well as for NIPL=5 and 0=150. WS generates less faults than CD bv 36%; for tWe same 0 value

*, (150) and \IPL=1() th: number of faults under CD is increased from 2048 to 4515. while the page

* faults under WS increased from 1303 to 6241. i.e.. CD's faults increased bv 2.2 times and WS's

faults by 4.8 times. The outcome is a CD improvement of 38(over WS. For 0=200. the \S's

impro\-ement o'.er CD decreased from 49"c for MPL=5 to less than 2C for IPL=I0.

As has been concluded from the analysis of indi'. idual processes, CD is more capable than \\S

for suprc,:rtmin higher IPl for the same .nemor' si.'e. Recall that CD lorces e'ery process in the

system to run wkith minimal mernorv allocation in high memory contention cases. A process

aml
d' m

123

running with a priority index P > 1 for some .'PL. could be forced to run with P=1 (less alloca-

Lb tion) for a higher MPL.

The second major column in Table 4-5 shows the excess space time cost that WS produces

over CD for the overall system and the individual processes. The very large ST exhibited by WS

does not reduce the fault rate of WS below that of CD. For 0 = 25 WS produces 85% more faults

than CD. and STw. is higher than STcD by 762%. Together with the results in the previous subsec-

tion. this observation suggests that CD make better use of the allocated memory over execution
Ie

time.

4.4.2. Space time cost

Minimizing the fault rate under WS by using large values of r may produce high space time

costs. Therefore. a more realistic cost measure of WS policy is the space time cost. In fact. WS is

advocated as a near optimal policy in terms of minimizing space time costs. Moreover. ST has been

used to control the system throughput. A maximum throughput is claimed to be achieved when the

Table 4-5 (SYSTEM: MPL=4. 5. 10)
CD compared with the minimal achievable page faults under WS

t". with corresponding space time costs

____ ____ST Cost(10 7) Page_ _____ ____

IPL 0 CD WS AF% WS CD Asr%

4 12.34 33.2 1170% 31681 1 8 t88,7 9

•50 4.77 31.6 562% 6858 5643 22% 116

" 100 5.29 45.5 760% 4268 1391 207% 6200

- 150 4.77 j (l.() 131% 1117 1 1309 -19% 6200 ,

{200[4.77 11.7 1457c 725 _ 1309 -457 i 20.000

5_ 1050 12.05 30.4 152% 11875 6931 72%17 31]

__,__, 100 5.84 9.44 62%r 2489 2081 20 601

150 5.09 11.8 1132%- 1303 1972 -34.

• 200) 5.28 12.8 142% 991 1955 1 -50% 25.000 -

r1) 5(13.62 49.1 260%17 29332 12174 1417 101

1 100 13.5-1 88.1 5517 I 22,70 4226 441% 551

i150 11.13 27.5 147% 6241 4080 53%- 551

200 12.17 22.7 S7 ' 4055 3QN4 02% 3000

....Wt.

-. 5

124

space time cost is minimized [12]. [20). In this subsection we compare minimal space time costs

achieved under WS with those achieved under CD for different values of 0.

The results for individual processes are reported in Tables 4-6a-e for .MPL=4. 5 and 10. For

each process we find T
ST-,n which minimizes the space time cost of that process. The space time

costs and the number of page faults generated using 7 sr_.,,I are compared with the space time costs

and number of page faults generated under CD. The relative difference between STa,- and STeD is

given by As;- in Equation (4-2): Ap- is given in Equation (4-1). Positive A.qr and AF mean that WS

has a higher space time cost and generates more faults than CD. The value AF is used to study the

time cost due to running each process at its minimal space time cost. A low space time cost may

result from using relatively small memory at the expense of generating many faults.

Table 4-6a (MAIN)
CD compared with the minimal achievable space time cost under WS

with corresponding page faults (MPL-4. 5. 10)

_____ ____ ST Cost(10 6) _ Page Faults ___Y.IPk 0 CD WS Asr% CD WS -F

4LI 10 3.84 7.59 98% 923 1469 59-7 9

S20 3.84 .5.87 53% 923 1'947 03% 10

25 3.84 5.71 49% 923 921 00 61
1 30 4.37 5.81 33% 889 921 04% 10;..

40 4.33 5.71 32% 855 921 08% I 6' 1
5 40 4.33 5.81 3 t 855 921 08% 10

100 5.21 5.81 11% 169 921 445% 10
150 7.12 5.82 18,7 152 t 921 506% 15

200 7.12 9.87 _ 3W., 152 i920 (506%17 21
5 50_ _ 4.33 5.81 34' 855 921 08% i11

100 4.72 5.86 24-,: 237 9 2S9 5 1i-
* 150 8.11 5.S6 -2S 1 245 921 276% I 51 -

200 7.12 I 5.86 -18 152 921 506% 51

1) 50 4.33 6.11 41% 895 1029 15%. 11'
10) 3 824 5.96 56% 906) 956 ()6% 51
150 .11 5.86 -281,- 245 921 276-
20, .7:2 5.86 -1. S- I 152 21 506%" 51

Ud

................................ *.%b.~N~. ... N. . []
* * . -- * -.

B 125

Table 4-6b (FIELD)
CD compared with minimal achievable space time costs under WS

with corresponding page faults (MPL=4. 5. 10)

_ ST Cost(10) Page Faults
MPL 0 CD WS AF 0 CD WS AST %

4 10 8.95 32.3 261% 2501 4546 261% 5
-,, 20 2.85 21.7 660% 173 1806 944% 15

25 2.90 3.14 08% 136 241 77% 21

_._130 2.75 2.81 03% 136 193 42% 30
40 2.90 3.11 08% 136 161 18% 21

50 2.90 3.03 05% 136 166 22% 86
100 2.90 3.07 06% 136 161 18% 20
150 2.90 3.19 10% 136 72 -47% 24.000
200 2.90 3.53 22% 136 97 -29% 1000

5 50 2.90 3.01 04% 136 214 57% 61

100 2.90 3.14 09% 136 168 24% 151

"'_150 2.90 3.42 18% 136 72 -47% 3500

10 200 2.90 3.52 22-7 136 97 -29% 951

10__ 50 2.76 4.82 75% 135 405 200% 21
I__100 2.85 L 3.07 08% 165 164 00 700

150 2.89 3.25 12% 128 167 30% 201

.%200 2.89 3.03 05% 128 83 -35% 1800

"Fables 4-6a-e show that CD has considerably lower space time than WS. Consider program

MAIN. For MPL=4. ST.,; is !arger than ST(J for all 0 values except 0=150. However, for 0=150

- \VS gererates 5 times more page faults than CD in order to achieve Is ' less space time cost. Simi-

larlv,. for NIPL=5. ST., is larger than ST¢-, for 0=50 and 100. Note that the low space time cost

.*- under CD is not achieved at the expense of a large number of page faults: for 0=100 ST, is 24(

. less 'han ST.A., and F--) is almost 3 times less than !".. A Wu S'" cost under CD is due to a rela-

'.1'%elv lower page fault number and a relati-vely lower memorv consumption. In Table 4-6b. the

, result: are shown f,-r program FIELD. The space time cost under CD, .ST, is lower than ST:;. for

aI1 0 and \IPI_ .al ues. For 0=150 and 2 (). \VS achie% es a loxer number of pace faults than CD. For

.,u~h !arge .alue ,-f 9. WS can use a 'arge r vaiue to generate a minimum number of faults. C).

• ,e.e, achie'. e a m:nimam numrnber ol faults f'r mucn smaller 0 %alues. e.g.. 0=25 !er \lPIl_=4

II 7

126

iW

Table 4-6c (INIT)
CD compared with minimal achievable space time costs under WS

with corresponding page faults (M1PL=4. 5. 10)

_ ST Cost(1 0 6) Page Faults
MPL CD WS AT % CD WS AF %

5 50 5.04 17.8 253% 729 1016 39% 31
100 9.28 10.7 15% 273 282 03% 601
150 9.28 9.44 02% 273 178 -35% 501

200 9.28 9.44 02% 273 178 -35% 501 -"
10 50 11.74 44.0 275% 535 2634 392% 11

100 10.7 16.7 56% 273 523 92% 551

150 3.15 9.43 199% 273 215 -21% 601
200 9.33 9.33 00 1 273 184 -33% 551

and 0=50 for MPL=5 and 10. Similarly for program INIT. WS achieves lower fault number than

CD when CD achieves lower space time cost for 0=150, and 200 for MPL=5 and 10. Again this is

because WS can generate a close to the minimal page fault number by using a relatively large r.

The virtual size of INIT is 175 pages: WS generates 178 pages for 0>500. The CD policy achieves

273 faults at its best. Howev.'er, CD still has a lower space time cost than the minimal achievable

under VS.

Tables 4-6 show that the space time cost of WS. when WS is properly tuned. is considerably

larger than the space time cost of CD for most of the time. Even when WS has a lower space time

cost. its page faults number is higher than CD's and the low ST is mainly due to small memory

consumption. Our results show that WS is not optimal in terms of minimizing fault rate as

claimed in [20]. I-owe\er. CD remains to be compared with DMIN to show how close to optimal it

can generate a -pace time cost.

In a multiprogramming system. minimizing the space time ost of individual processes may

not er,. e the purpose of optimizing the system performance. It would have been \ ery helpful if the

processes in the s,.stem utilized one r t,, achie'.e their mnimal space time cost. (;raham. and Den-

nin L261 laim that al processes in the svsteem can use one r to achie',e a space time cost . ithn

71'

Table 4-6d (CONDUCT)
CD compared with the minimal achievable space time cost under WS

with corresponding page faults (MPL-5. 10)

ST Cost(10 6) Page Faults ___

-NPL 6 CD WS AST % CD WVS A,% -
5 50 96.9 106.0 09% 4562 5144 13% 21

100 30.17 37.7 25% 789 754 -04% 601
150 22.22 30.17 36 748 611 -18% 601

200 22.22 30.17 36% 748 611 -18% 601

10 50 38.0 106.0 179% 3873 5144 33% 21

100 30.17 37.7 25% 789 754 -04% 601
____150 22.22 30.17 36% 748 611 -18% 601

p-,-, 200 22.22 33.70 52% 748 679 -09% 8011

Table 4-6e (HWSCRT)
CD compared with the minimal achievable space time cost under WS

with corresponding page faults (MPL=5. 10)".4

_____ ST Cost(106) Page Faults

IPL 0 CD WS Asr % CD WS AF %

M5 50 11.33 23.10 104% 649 7 788% 1 1 %
o 10 11.33 19.50 72% 646 378 -41% 401

150 11.33 13.3 18% 646 155 -76% 6500
200_ 11.33 13.5_ 19%__ 646 188 -70% 30.000-

i 10 50 11.33 23.1 104% 649 5766 788% 1
.-.o 100 19.23 23.1 20% 649 5766 788% 1

150 19.28 20.8 08% 6461 486! - 2 5 % 401

:% 200 19.28 15.1i -22% 646I 347 -46% 451

10' of the minimal space time cost (10% detuned policy). The goal is. therefore, to minimize the

S overall system space time cost. assuming that individual processes are x ithin Pl. of their minimal

ST values. In Table 4-7 the minimal system space time cost. S7.., . under WS is compared with

ST(. J.

'4'. For WS. we find a window s-ze. r _, ,,,,T-m, . ,vhich minimizes the o',erall system space time

cost. ST,-. .. ,.. which is compared with ST(.D. The number of page faults generated using U
, _ :,is also folnd and compared with F&--. Table 4-7 shows that CD outperforms \VS by a

. . . .- -. " ".:,. - " " ",-,-.'.%

128

Table 4-7 (SYSTEM) m
CD compared with minimal achievable space time costs under WS

with corresponding page faults (MPL=4. 5. 10)

ST Cost(10 7) page faults
MPL 0 CD WS A % WS CD Asr % T

4 10 12.34 33.2 170% 31681 10987 188% 9
50 4.77 13.7 187% 7186 5643 27% 25

100 5.29 13.7 159% 7186 1391 417% 25,'
150 j 4.77 6.25 31% 1830 1309 40% 590
200 4.77 6.33 32% 1830 1309 40% 601

5 50 12.05 28.1 133% 19313 6931 178% 11
100 5.84 9.44 62% 2489 2081 20% 601
150 5.09 8.06 58% 2149 1972 10% 601

200 5.28 8.06 53% 2149 1955 107 601

10 50 13.62 49.1 260% 29332 12174 141% 21

100 13.54 84.6 525% 23885 4226 465% 5 i
150 11.13 27.5 147% 6241 4080 53% 551

_ 200 12.17 17.8 46% 4710 3984 21% 601 w
great margin, especially for 0=10. 50. and 100. Note that the improvement of CD over WS

increases with increasing IPL for the same 0 values. For instance, for 0-150. CD outperlorms WS

by 31%. 58%. and 147% for NIPL=4. 5. and 10, respectively. The CD policy achieves lower faults

* numbers than WS for all 0 and YIPL values exclusively. The negative Air and AF values in Tables

4-6 disappear in Table 4-7, indicating that a process may have a lower space time cost under vS

than ST under CD at the expense of some other process in the system.

The corresponding STs and page faults for individual programs are found when the overa!l

system ST is minimized. using . These values are compared with ST,-D and FCD for the

individual processes. The results are reported in Table 4-8 for NIPL=3. Tabie 4--S shows that CD

outperforms WS at the individual process level when the overall system performance is be ng

optimized.

. .

mU

4 .--'' -"'-"""¢", " " "" '":: "" '' : " ":"%''' ""'"''""": " ' y I "

129

Table 4-8
Optimizing system performance. MPL=3

M lAIN FIELD INIT System MAIN FIELD INIT System

6 85 2464 35 164 113 733 136 215

7 65 I 2094 23 133 96 1058 123 248

8 45 1956 21 119 83 1048 130 248

9 16 1864 4 95 59 1072 106 232

10 6 1840 1 91 50 1093 108 235
11 5 1836 00 89 48 1090 109 235

12 24 2016 3 89 66 1356 120 362

13 28 2110 3 91 72 1345 228 361

14 17 2041 2 85 60 1363 236 367

15 5 1930 2 77 53 1407 246 328 h.

16 4 1921 2 77 52 1407 249 380

17 20 1163 2 52 64 869 340 365

[18 6 1151 2 48 54 1114 356 408

20 7 1136 2 47 54 [1176 363 384

25 9 1076 166 85 33 1269 1111 762

30 8 18 6 7 35 11 200 98

35 8 18 6 7 35 14 16 31

40 9 29 1 6 53 20 138 104

45 8 18 2 5 52 24 124 95

50 8 21 157 50 54 19 288 191

100 131 -48 -27 L 15 377 18 31 106

4.4.3. System throughput

.% A major design goal in a multiprogramming system is to maximize the number of jobs completed

.7-' per unit time. i.e.. the system throughput (0). In Table 4-9. the maximum throughput achieved

under WS ((',v) is compared with the throughput under CD) for NIPL=3.5.10. The relative

difference (A4,) between the WS's maximum throughput and CD's throughput is given by

A, - 1(,()17 . (4-3)

Table 4-9 shows that CD outperforms WS by a large margin, especially for smaller values of 0.

Consider. for example. NIPL=3. For 0 = 6, CD has a hwiher throughput than WS by a factor of -

15. For 0 loO. CD achieves a 13" higher throughput than WS. For .MPL=I0. CD achieves higher

V, .%%

'I _,.

130

throughput than WS by 87% and 27% for 0=100 and 150. respectively. The results suggest that
U

CD outperforms WS when the memory is highly utilized.

.

Table 4-9
CD compared with the maximum achievable throughput under WS

°.

Throughput D (10-')

MPL CD WS AO.

3 6 4.09 0.26 1497%
7 4.09 1.77 131%

8 4.09 1.88 118%
9 4.09 2.11 94%

10 4.09 2.16 89%

11 4.09 2.18 88%
12 4.21 2.23 89%

1 13 4.21 2.22 90%

_ 14 4.21 2.29 84%

15 4.21 2.39 76%

16 4.21 2.39 76%
17 4.21 2.79 51%
18 4.21 2.86 47%j

20 4.27 2.89 48%
25 7.53 4.11 83%
30 7.55 7.05 7%

35 7.55 7.09 6%"
40 7.55 7.121 6%

45 7.55 7.171 5%
50 10.6 7.20 47,

1 100 23.9 _L21.1 M 13%

10 1.81 1.0.63 187%

20 2.35 2.15 09%
25 2.41 2.23 08%

I 50 2.67 2.88I -7%
100 13.5 4.63 192%

150 14.3 16.7 -14%"
_ _ j 200 14.3 24.5 I -4211,

10 50 1.83 1.69 09%,

100 4.05 2.17 S79,
IL 150 8.,89 j 7.76 S 2% ,

200 11.5 I 11.7 Oo ,

U

-t - __

• .. -L.jl , _.-..• -j- . ,-\,, ... ,-,. .;... '..:% ,:,>."'.--;:i,","'I" 7 e- g "*,N;

131

4.4.4. Controllability

In a multiprogramming system it is necessary to tune WS policy in order to find a suitable r

to achieve a desired goal. For CD this problem does not exist since the directives are inserted at

compile time and executed as part of the code at run time. Memory allocation is performed dynam-

ically as the directives are received by the operating system. Finding the appropriate T in the WS

case can be a tedious problem for several reasons.

The first reason is the anomalous behavior of WS's fault rate function discussed in Chapter 2.

With the the existence of anomalies, fault rate reduction is not always achievable by increasing f-

Instead. the fault rate may increase. Moreover. the fault rate anomalies distort the shape of fault

rate function curves and. hence, the lifetime curves. Life time curves because of the anomalies do
p.-#

not exhibit well defined knees: knees in a lifetime curve are essential for the primary knee criterion

[201. The primary knee criterion suggests that the primary knee of a lifetime curve is approxi-

mately associated with the minimum space time cost point: i.e.. by using r where the primary knee

occurs a process would be running with minimal space time cost. For this reason. Denning rejects

• • lifetime models of program behavior if they do not exhibit knees [20]. With the existence of 7-F

anomalies, it is not obvious how one would locate the knees of a lifetime curve. The primary knee

* criterion, therefore. may not be useful for controlling WVS.

The second reason is the difficulty of controlling the policy to produce the maximum possible -

throughput. It has been assumed (12] that the maximum throughput is achieved by minimizing the

space time cost. The average ST of a process in the system is given by .

% ST = (44) -

where N is the number of jobs in the system and T is the total elapsed time of all the jobs in the

svstem. The throughput. (. is given by

so OxT 4-5)

Equation 4-5 implies that a maximum throughput can be achieved if each process in the system

- -7 *p**~~% **~~ ~**-**,~~.*- " .- o-, /1

132

operates at its minimal space time point, or, equivalently, minimizing the overall system space time

cost. This argument is not realistic for two reasons. First. the above formula assumes that the U
memory space. 0. is completely utilized. This assumption is not always true. especialiy for large

values ofO.

The second reason is that minimizing the space time cost of each process does not necessarily
minimize the overall system ST. Each process may have its own optimal 7 which differs from those

..1

used by other processes in the system. The assumption that the space time cost has a flat minimal

region. meaning that a wide range of 7 can minimize the space time cost. has been shown to be

optimistic for individual programs running in a single programming machine [3]. [6]. [81

Our results also show that each program may use a different optimal T. For example. for

NMPL=3 and 0 = 50. three values of r" (r = 6. 316. 7000) are needed to minimize the ST of MAIN.

FIELD and INIT. respectively. Tables 4-6 further illustrate this fact. For example. for MPL=5 and

0=150. five values of -r (51, 501. 601. 3500. 6500) are used by programs MAIN. INIT. CONDUCT.

FIELD. ItWSCRT, respectively. Similarly. for 0=200 and MPL=200. five values of r are used (51.

451. 551. 601. 1800). Furthermore. a process using an optimal 7. 7 ',_., P, from the system's stand

point. may run with a relatively large space time cost compared to its local minimum space time

-, cost with M- In Table 4-10 we show for each program both space time cost values ST(75_p,)

and ST (r:..). The relative difference between these values is given by

ST (7,,'P)-ST (rn,)A = ''X 100% ,
ST Mill

* In Table 4-10 the optimal 7" for which the system space time cost is minmized is 601 for YIPL=1(

and 0=200. For the moment we assume that it is possible to find an optimal 7' value which minim- '

izes the space time cost of each process or the space time cost of all the processes in the system. The

question is whether using this 7 achieves a maximum throughput; i.e.. is this an optimal 7'?. Fqua-

tion',4-5)[12]. [201 gives a positive answer to this question. We have argued that this is true only if

* the memory is completely utilized. Our results show that for underutilized memory the rea! max-

imum throughput can de% iate from the throughput achieved by using which minimizes the -pace

4 *(, Z. 2

133

Table 4-10
Relative difference between global ST and local ST for each process

MPL=10: 0=200: ', =601 _ _

Program Tmin ST r in(60) STov, (06) A

MAIN 51 5.86 19.5 233%

FIELD 1800 3.03 3.42 13%

INIT 551 9.33 9.71 04%
HWSCRT 801 33.7 40.1 20%

COND'CT 451 15.1 18.9 25%

time cost by almost a factor of 2. In Table 4-11 we show the relation between the maximum .

throughput 0m, and the throughput achieved at the minimum space time cost point OSTmm. The

relative difference between these two values is given by

., rnax-ST .. x100% .
sr m3

Table 4-11 shows that for relatively small memory sizes the minimum space time cost and the

maximum throughput are achieved by using the same 7. See in Table 4-11 the entries for 0=6. 10

for .MPL=3; 0=10. 20. 30. 40 for MPL=4: 0=100 for MPL=5: and 0=150 for MPL=I0. However, for

larger values of 0. M.ax deviates from sr-, by a large percentage. For example. A =167% for

0=100 and YIPL=3: For 0=200. A=136%. 106%. 15% for MPL=4. 5. and 10. respectively. It is

or,% worthwhile to mention. however, that WS has a poor performance compared to CD when the

memory is highly utilized: small values of 0 in Tables 4-2. 4-3. 4-4.

4.5. Summary and Conclusions

We have presented in this chapter performance measurements on program behavior in mul-

. tiprogramming systems. Program traces are simulated in a multiprogramming system under CD. a

compiler directed memory management policy, and WS. a dynamic policy. \Ve have ccmpared the

i performance of CD with that of WS since the latter has been claimed [20] to out;'erform other

existing policies. Four characteristics of multiprogramming \,irtual memory systems have been

in estigated: page faults. space time cost. system throughput, ard controllability.

%

134

Table 4-11
Maximum throughput versus throughput at STmin, under WVS

_____Throughput (D (10-7)__

MPL B max ~ Smin

3 6 0.26 0.26 00
___ 10 2.16 2.16 00 1

___ 17 2.79 2.2 27
___ 18 2.86 2.2 30

___ 20 2.89 2.2 31
25 4.11 2.2 87

___ 30 7.05 7.05 00
40 7.12 7.05 1

___ 50 7.20 7.05 2

___100 21.1 7.05 201

___200 28.6 10.7 167

4 10 .63 .63 00 4

20 1.77 1.77 00
*25 2.23 1.84 22%
*30 2.70 2.68 00

40 12.76 2.75 00
50 2.88 2.75 05%

100 4.63 1 2.75 68%
150 16.7 10.4 61%7-
200 24.5 10.4 136%

5 .50 2.091 1.29 62%
100 9.65 9.65 00
150 17.8 11.1 6 1%c

200 22.9 11.1 106%

10 50 1.69 1.69 (
100 2.17 [2.08 047c

___150 7.76 7.76 00
___200 111.7 10.2 15

The results reported in this chapter show that CD outperforms WVS by a fairly large margin.

especially wvhen the memory is igohly utilized. CD is able to dynamically allocate memory space

according to the need of a running program. the available memory space. and thle need of other

processes in the system. The Outcome of this facility is a relatively low fault rate at a relatively

Io'.x memory space zost and. hence. a low space time cost. Mlore importantly'. CT) is shov.nr to have a

. ,,. ..-

135 %

higher throughput than WS.

We have also illustrated that WS lacks controllability while CD does not exhibit controllabil-

ity problems at all. CD is a parameterless policy while WS has a parameter. 7, which needs to be

tuned in order to achieve a desired goal. It is necessary. for instance, to find 7 that minimizes the

space time cost in order to maximize system throughput [201. However. it is not obvious how one

would choose the right 7 to minimize ST, even using the primary knee criterion (11, (12]. The pri-

mary knee criterion is difficult to apply due to r-F anomalies exhibited by WS. See Chapter 2. In

any case. we showed that using an optimal 7 which minimizes the space time cost does not. neces-

sarily. maximize the throughput. STr..j, maximizes the throughput only when the memory is corn-

pletely utilized, but then WS has a poor performance compared to CD.
1' IV

m . +..

. "

%V

9

• •4-

ro 4

..

136

CHAPTER 5

U
i 9.

CONCLUSIONS

5.1. Summary of Results

A new approach to the management of numerical programs in virtual memory systems is

presented in this study. We have presented a compiler directed policy (CD) which incorporates two

memory directives: 1) ALLOCATE and 2) LOCK and UNLOCK. ALLOCATE estimates the

memory requirements of a process at compile time. Memory requirements are passed to the operat-

ing system at run time through two primitives: the amount of memory requested and the priority

of the request. The CD plicy is designed to dynamically adjust a program's memory allocation

according to the status of the available free memory on the system which dynamically changes as

processes acquire and release memory space. For this purpose. CD incorporates a swapping mechan- w
ism. Subprogram control structures are handled dynamically at run time. thus enabling the prepro-

cessor at compile time to consider each subroutine as a whole unit.

The performance of CD is evaluated using a trace driven simulator of a multiprogramming

system. Traces of numerical programs are used in the experiments. The performance of CD is com-

pared to the performance of WS policy. The rcsults reported in Chapter 4 show that CD is superior

to WS in high memory contention cases. The CD policy produces lower fault rates and lower space

time costs than WS. and therefore, achieves higher throughput. As a result. CD is able to support

higher multiprogramming levels for a given size of physical memory.

We have presented evidence in this stud-.,, that WS has a controllability drawback. In Chapter ., .9

2. we reported empirical results on the WS anomalies. The anomaly types exhibited by WS are

related directl:., to the WS control parameter, the window si;,e T. Thus, tuning WS to achieve a

desired performance is not always attainable because of the anomalous behavior. The anornal',

t'..'es reported in this thesis are not exhibited by WS when tested in a uniprogrammir.

C i I I l4

Z' /.
r --

M ./ r-7 -1 1.. * a; . ', PW RF7....

k 137

environment. The results suggest that conclusions based on experiments with individual single prW-

grams should not be used in a simplistic manner in multiprogramming systems. It has also been

observed that it is not possible to find a single value for the control parameter which can be used

by every process in the system.

On the other hand. CD exhibits no controllability problems and has no control parameter.

Memory requests issued upon executing a directive are processed by the operating system, granted

or rejected. according to the available free memory.

In conclusion, this thesis has

(1) presented CD. a compiler directed memory management policy for numerical programs.

(2) shown that WS exhibits anomalies in multiprogramming systems. otherwise unpredicted from

experiments with uniprogramming systems.

(3) shown that CD outperforms WS by a relatively large margin.

5.2. Suggestions for Future Research '"

The compiler directed policy presented in this thesis applies only to numerical programs. The

extension of CD to other program categories is essential before such an approach to the memory

management problem can be adopted. The locality characteristics of different aprlication programs

have to be understood thoroughly before memory directives can be designed. Typical applications

are data base systems, system programs. and Al application programs. The compiler directed policy

is designed for single processor machines. However. the ideas used in this the-os can be useful in

pursuing similar techniques in multiprocessing systems.

The performance of C) compared to WS. although the latter is claimed to be the best nonloo-

kahead policyv [20]. is not sufficient to evaluate the performance of CD,which should he compared ZQ''q

to other dvnamic policies such as PFF, global l.RL. and global CLOCK. Moreover. it is essential to

e.aluate the rerformance of CD when comparing it with the optimal policics. For instance. CD

should be compared ,x ith D.IIN [10]. ,x hich generates the absolute minimum space time cost.

U

% \.I%* II

I" i
138

Also. we feel that performance evaluation techniques for virtual memory systems should be

upgraded to include multiprogramming specific characteristics. For instance, one should be able to

measure the influence of one program on the rest of the programs in the system. This is necessary

for scheduling strategies. The techniques developed in this study can also be used to enhance

scheduling strategies. especially in allocating time slots to running processes.

Finally. the main issue which remains to be pursued is the issue of implementation. The com-

plexity of such a problem lies in the fact that CD has to be incorporated into both the compiler and

the operating system. Furthermore, some architectural features are necessary to implement CD.

particularly at the processing stage of a directive. Therefore, an integrated approach to the design of

computer systems is necessary for CD to be implemented in real systems.

p-

.°

-. n
.........

139

REFERENCES

[I] M. Abaza. "O'n the Effectiveness of Memory Management System Calls In
VA.IJVMS." M.S. Thesis. Yarmouk University. Dep. Elect. Eng.. October 1984.

[2) W. Abu-Sufah. D. Kuck. and D. H. Lawrie. "Automatic Transformations for Vir-
tual Memory Computers." Proc. of the 1979 National Computer Conf., pp. 969-974,
June 1979.

[3] W. Abu-Sufah. R. Lee and M. Malkawi. "'Identifying Two Program Categories for
Memory Management Purposes" Proc. of the 1984 IEEE 8th International
COPMSAC, pp. 492-503. November 1984.

[4] W. Abu-Sufah and D. A. Padua. "Some Results on the Working Set Anomalies in
F'.: Numerical Programs." IEEE Trans. on Software Engineering, vol. SE-8. no. 2. pp.

97-106. March 1982. ,-..

[5] W. Abu-Sufah. 'Identifying Program Localities at the Source Level." University of
Illinois, Dep. Comp. Science. Rep. No. UIUCDCS-R-82-1108. October 1982.

[6] T.O. Alanko. H. J. Haikala, and P. H. Kutvonen• 'Methodology and Empirical
, Results of Program Behavior Measurements.* Performance 80, ACM Signtetric Per-'.,

formm~e Evaluation Review, vol. 9. no. 2. pp. 55-66. Summer 1980.

[7] W. Abu-Sufah. R. Lee. M. Malkawi. and P-C. Yew. "Empirical Results on theBehavior of Numerical Programs in Virtual Memory Systems." University of Illi-nois. Dep. Comp. Science. Report No. UIUCDCS-R-81-1076. November 1981.

[8] W. Abu-Sufah• R. Lee. M. Malkawi. and P-C. Yew. "Experimental Results on the
Paging Behavior of Numerical Programs." Proc. of the 6th International Conf. on

P Software Engineering, pp. 110-1 17, September 1982.

[9] A. P. Batson. D. W. E. Blatt. and J. P. Kearns. "Structure Within Locality Inter-
vals" in Measuring, Modelling and Evaluating Computer Systems, H. Beilner and E.
Gelenbe. Eds.. Amesterdam. The Netherlands: North-Holland. 1977.

[10] R. Budzinski. E. Davidson. W. Mayeda. and H. Stone. "DMIN: An Algorithm for
Computing the Optimal Dynamic Allocation in a Virtual Memory Computer," IEEE

4'. Trans. on Software Engineering, vol. SE-7. no. 1. pp. 113-121. January 1981.

[II] R. Budzinski. E. Davidson .*A Comparison of Synamic and Static Virtual Memory %
Allocation Algorithms." IEEE Trans. on Software Engineering vol. SE-7, no. 1. pp.
122-131. January 1981.

[12] J. P. Buzen. "Optimizing the Degree of Multiprogramming in Demand Paging Sys-
tems," Proc. IEE COMPCON, pp. 139-140, September 1971.

S[13] R. W. Carr. "Virtual Memory Management". Ph. D. Thesis. Computer Science
Department, Stanford University. August 1981.

• "°- '

140

[14] W. W. Chu and H. Opderbeck. "'The Page Fault Frequency Replacement Algorithm.,
in 1972 AFIPS Conf. Proc., Fall Joint Comput. Conf., vol. 41. AFIPS Press, pp. 597-
609. 1972.

[1S] W. W. Chu and H. Opderbeck, "Program Behavior and the Page Fault Frequency
Replacement Algorithm." Computer, vol. 9. no. 11. pp. 29-38, November 1976.

[16] P. J. Denning and G. S. Graham. "Multiprogramming Memory Management," IEEE.
Proc., vol. 63. pp. 924-939, June 1975.

[17] P. J. Denning and K. C. Kahn "A Study of Program Locality and Life-time Func-
tions," Proc. 5th Symp. Operating Systems Principles, ACM SIGOPS, pp. 207-216.
November 1975.

[18] P. J. Denning. "Working S., Model for Program Behavior." Comm. of the ACM, vol.
11. no. 5, pp. 323-333. May 1968.

[19] P. J. Denning. "On Modeling Program Behavior." Proc. AFIPS SJCC, pp. 937-945.
1972.

[20] P. J. Denning, "Working Sets Past and Present." IEEE Trans. on Software Eng. vol.
SE-6. no. 1. pp. 64-84, January 1980.

[21] D. Ferrari. "'Improving Locality by Critical Working Sets," Comm. ACM vol. 17, pp.
614-620, November 1974.

[22] D. Ferrari. "Considerations on the Insularity of Performance Evaluation," IEEE
Trans. on Software Engineering, vol. SE-12, no. 6. pp. 678-683. June 1986

[23] D. Ferrari and Y-Y. Yih. "'VSWS: The Variable-Interval Sampled Working Set Pol-
icy." IEEE Trans. on Software Engineering, vol. SE-9. no. 3. May 1983.

[24] M. A. Frankln. G. S. Graham. and R. K. Gupta. "Anomalies with Variable Partition
Paging Algorithms." Comm. of the ACM, vol. 21. no. 3. pp. 232-236, March 1978.

[25] G. S. Graham. "A Study of Program and Memory Policy Behavior," Ph.D. thesis.
Purdue University. Dep. Comp. Science. December 1976.

[26] G. S. Graham and P. J. Denning, "On the Relative Controllability of ,Memory Poli-
cies," in Computer Performance, K. M. Chandy and M. Reiser. Eds.. Amsterdam, The
Netherlands: North-Holland. pp. 411-428, Augast 1977.

[27] R. B. Hagman and R. S. Fabry, "Program Page Reference Patterns." Proc. of the 1982
ACM SIGMET"RICS Conf. on Measurement and Modeling of Computer Systems, pp.
20-29, August 1982.

[28] H. J. Haikala and H. Pohijanlahti, "'On the BLI-Model of Program Behavior." Proc.
of the 1983 ACM SIGMETRICS Conf. on Measurement and Modeling of Computer
Systems, pp. 28-38, August 1983.

[29] J. Kearns and S. DeFazio.- Locality of Reference in Hierarchical Database Systems.
IEEE Trans. on Software Eng., vol.SE-9. no. 2. March 1983.

141

[30] A. W. Madison and A. P. Batson. " Characteristics of Program Localities." Comm. of
the ACM, vol. 19. no. 5, pp. 285-294, May 1976.

(31] Mohammad Malkawi. "Some Aspects of Numerical Program Behavior In Virtual
Memory Systems." M.S. Thesis. Dep. Elect. Eng.. Yarmouk University, Jordan.
June 1983

[32] J. B. Morris. "Demand Paging Through the Use of Working Sets on the MANIAC IV,"
Commun. Ass. Comput. Mach., vol. 15, pp. 867-872. October 1972.

(33] B. G. Prieve and R. S. Fabry, "VMIN: An Optimal Variable Space Page Replacement
.3 Algorithm." Comm. of the ACM, vol. 19, no. 5. pp. 295-297. May 1976.

[34] J. Rodriguez-Rosell and J. P. Dupuy. "The Design. Implementation and Evaluation
of a Working Set Dispatcher," Commzun. of the ACM, vol. 16. pp. 556-560, Sep-
tember 1973.

- f[35] R. Simon. "The Modeling of Virtual Memory Systems." Ph.D. Thesis. Purdue
h University, Dep. Comp. Science. September 1979.

[36] A. J. Smith. "A Modified Working Set Paging Algorithm." IF.E Trans. on Comput-
ers, vol. C-25, no. 9. pp. 907-914. September 1976.

[37] S. S. Thakkar, and A. E. Knowles. "A High Performance Memory Management %

Scheme." IEE-, Computer, pp. 8-20. May 1986.

[38] I. L. Traiger. *Virtual Memory Management for Database Systems." SIGOPS Symp.
on OS Review, pp. 26-48, October 1982.

(39] K. S. Trivedi. "Prepaging and Application to Array Algorithms." IEEE Trans.
Compt., vol. 12, no. 4, pp. 39-56, 1978.

[40] A. I. Verkamo. "Empirical Results on Locality in Database Referencing." Proceedings
of the 1985 ACM SIGMETRICS Conf. on Veasurement and Modeling, pp. 49-58.
May 1985.

r

A-- %

p., "2 . p., • , , - -| ddl dl

142

VITA j

Mohammad Isam Malkawi was born on September 15, 1957 in Jordan. He was an American

Field Service foreign exchange student in 1972-1973 and graduated from Arcola High School.

Arcola, Illinois. In 1974 he received the Jordanian general secondary school certificate from Irbid

Secondary School. Jordan. He then won a scholarship to study computer engineering in the Soviet

Union. In 1980. Malkawi graduated from Tashkent Polytechnical Institute with honors. From 1980

until 1983 he attended Yarmouk University in Jordan, where he received his master's degree in

Electrical Engineering. During his stay at Yarmouk, he was a teaching and research assistant.

In 1983. Mohammad Malkawi joined the computer systems group at the Coordinated Science

Laboratory at the University of Illinois at Urbana-Champaign as a graduate student and research

assistant.

-4,

S.1

%V %
11~~~~"i 41,1-1, Z.

