ﬂD-ﬂi?i 8.3 COMPILER DIRECTED NEMORY HRNRGEHENT FOR

NUNE 1CAL
PROGRRHS(U) ILLINOIS UNIY RT URBANA COORD TED SCIENCE
LAB MALKARI AUG 86 UILU-ENG-86-22.
UNCLASSIFIED N00014-84 C-0149 F/6 972

I O N A -

o
5o 32

fls * =
= I

o

I

N
&
==
[N

»ll

F————
F—

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU Of STANDA DS 1963-A

SRR PSP POPR N S AN AL AT

August 1986 ' : UILU-ENG:86-2229 @ ! o
CSG-54 AR

COORDINATED SCIENCE LABORATORY
College of Engineering

AD-A171 803 QET%
SSEP 1 11986

COMPILER DIRECTED o
MEMORY MANAGEMENT -
FOR NUMERICAL PROGRAMS

P’

Mohammad Isam Malkawi

.

(-

[)

w —

= NSO

. RS

‘g’ SRR
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN S
Approved for Public Release. Distribution Unlimited ‘¢

-

CURITY CLASSIFICATION OF THIS PAGE

ADA|7/80 3

I" REPORT DOCUMENTATION PAGE

J1s. REPORT SECURITY CLASSIFICATION
:

1b. RESTRICTIVE MARKINGS

| N/A N/A

28. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
. N/A .
P20, DECLASSIFICATION/OOWNGRADING SCHEDULE Approved for public release;
l N/a distribution unlimited

:; . PEAFORMING ORGANIZATION REPORT NUMBER(S)

5. MONITORING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-86-2229 (CSG-54)

none

13
3

NAME OF PERFORMING ORGANIZATION . OFFICE SYMBOL 7s. NAME OF MONITORING ORGANIZATION

. Coordinated Science Laboratory| (/fepplicsble)
' University of Illinois Joint Services Electronics Program
l 8c. ADDRESS (City, State and ZIP Coda) 7b. ADDRESS (City, State and ZIP Code)
R 1101 W. Springfield Avenue Office of Naval Research
I Urbana, IL 61801 . 800 N. Quincy
Arlington, VA 22209

! :C.. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION {1/ applicadie) .
N00014-84-C-0149
011 ,"'_ B o1} O &1 A1k NjA
y9c. ADCRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS.
Office of Naval Research PROGRAM PROJECT TASK WORK UNIT
800 QuinCy ELEMENT NO. NO., NO. NO.
LArli 2209
1. TITLE tInciude Secunty Clamsification) compjler Directed Mem- N/A N/A N/A N/A
0 ANAZLNED QY Numne a3 Program

§ 12. PERSONAL AUTHOR(S)
I Mohammad I. Malkawi

" 13a. TYPE OF REPORT
Technical

13b. TIME COVERED
FROM

14, OATE OF REPORT (Yr., Mo., Day) 15. PAGE COUNT

= TO ___— August, 1986
-.‘.16. SUPPLEMENTARY NOTATION
o
N/A
g 7. COSATI CODES 18. SUBJECT TEAMS (Continue on reverse if necessary und identify by block numober)
N EIELD GROuUP SUB. GA.
«

Virtual Memory, Compiler Directive, Memory Directive,
ALLOCATE, LOCK, UNLOCK

1 P p—
;4:419. ABSTRACT Continue on reverse if necessary and identify by block number;

N This report presents a new approach to the management of memory hierarchies in the multi-
programming virtual memory system. Memory management related problems are solved partially at
“ompile time, where memory directives are inserted into the object code of a compiled program.
**The main objectives of memory directives are to determine the memory requirements of a program
jat compile time and to pass this information to the operating system at execution time. A mul-
‘xiprogramming system has been simulated to evaluate the performance of a compiler directed mem-
Sty management policy (CD). Empirical results obtained from this study show that CD can be su-
'ﬁerior to the best known ‘mplementable policies. In particular, CD has been compared with the
‘working set policy (WS). The results reported in this report show that CD outperforms WS by a
~relatively large margin.
Although CD has been designed to improve the behavior of numerical programs in virtual

a
memorv systems, it could be extended to cover other application programs.
‘he potential of being applied to multiprocessor systems.

Moreover, CD has
l"'o. NSTAMAUTICN. A VA LABILITY CE ABSTRACT 21. ABSTRACT SECURITY SLASSIFICATION
SUNCLASSIFIED/UNL MITES & SAME 3§ APT _ OTIC USERS ‘
N Unclassified J
226 NAME OF AESPANSIBLE INOIV.OUAL 22b. TELEPHCNE NUMSER 2%c. SFFICE STYMBGL
tInciuge irea Code)

1
v - R M
9D FORM 1473, 83 APR EDITION OF § AN 73.5 CBSCLETE. unclassified

TNLASSIFCATION 2F T=g 33
. Tl .\1.. WA ., ™

AR S Y SNy

B S R R R TN N

.‘'..‘, AN ALY

I 7.T
(X
[3

, .
4

.
0
»
(2

v

e

»
&

|

-
.« 'y
L

.
R L]
22

¢ o

<,
o

.
v

2y
VXY

A

»

AR .
AR o

oy

A

N N] N ek Al b Nl et o Tafa F) ASL AL SE ...Lv..‘ A A SO ACARALAAAL S

k! COMPILER DIRECTED MEMORY MANAGEMENT
i1 FOR NUMERICAL PROGRAMS

=

"

h BY

> MOHAMMAD ISAM MALKAW!

Dipl., Tashkent Polytechnical Institute, 1980
M. Eng., Yarmouk University, 1983

o
. THESIS
Submitted in partial fulfillment of the requirement
o for the degree of Doctor of Philosophy in Electrical Engineering
in the Graduate College of the

. University of Illinois at Urbana-Champaign, 1986

.

N Urbana, Illinois

AT SE TR TRE N “"’ A T N A R AT N NN I N T NPT AT AT AP AT NN
A %7 i e v W6 ~ L . -

3 bt)

S

K

LY

,
a

L4
a

“Rat

Ka-

UNIVERS.ITY OF ILLINOIS AT URBANA-CHAMPAIGN

THE GRADUATE COLLEGE

WE HEREBY RECOMMEND THAT THE THESIS BY

_JUNE 1986

MOHAMMAD ISAM MATKAWT

ENTITLED

COMPTTLER DIRFCTFD MEMORY MANAGFMENT

FOR_NUMERICAL PROGRAMS

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF

_NOCTOR QF PHITLQSQPHY

//

J’L ML

Erector of Thesis Researcn

e

Committee on Final Examinationt

_ 'fM H l)r“/k

Chairman

= Regquired for loctor’s degree bur not Jor master's.

\/ Head of Departm[nt

Accesion For

NTIS CRA&I
DTIC TAB 0
Unannounced O
Justitication

By

—

Distribution | T
[O tbution |

Availability Codes

Ava W an d / .or

Dist Special

V.

W G TR S SN \." 5 CRERIRA TN

COMPILER DIRECTED MEMORY MANAGEMENT
FOR NUMERICAL PROGRAMS

Mohammad Isam Malkawi, Ph.D.
g \ Department of Electrical and Computer Engineering
‘ University of Illinois at Urbana-Champaign, 1986

- Janak H. Patel, Advisor
¢
¥ \
3 ~ This thesis presents a new approach to the management of memory hierarchies in the mul-
<
* tiprogramming virtual memory system. Memory management related problems are solved partially
:‘ at compile time, where memory directives are inserted into the object code of a compiled program. ".
3
The main objectives of memory directives are to determine the memory requirements of a program ::'_"
of,
‘ at compile time and to pass this information to the operating system at execution time. A multipro- N
~ gramming system has been simulated to evaluate the performance of a compiler directed memory "‘
.\: *.:v-
-~ management policy (CD). Empirical results obtained from this study show that CD can be superior i_'
N
. to the best known implementable policies. In particular, CD has been compared with the working R
,-. r
set policy (WS). The results reported in this thesis show that CD outperforms WS by a relatively \'E
, o
= L
A large margin. E:
? Although CD has been designed to improve the behavior of numerical programs in virtual oy
. Ry
memory systems, it could be extended to cover other application programs. Moreover, CD has the {!E-'
': potential of being applied to multiprocessor systems. :;‘
S ¢ -
M 1. }k.- -
) o
A “‘.\“
e
~w '\
) s
-
R
3 3
b, N
Vol ":
i ‘
EX
K
CS N
L h. "o
..-: s.‘:\
32

r
._'\

F

F s Py | ERARAN ELrolEe - DROOKY XD | 200000 IR SR |5

PR PRI R Y

> »

..;.. m
_. :
. _

™
'S
@]
~

W S B MR B M G B o SR A B SE N WE W vER N BR

ACKNOWLEDGEMENTS

I am deeply grateful to my parents who continue to provide me with moral and material sup-

. port without which I could not have reached this stage. My wife’s patience, love and care had a

o,

great impact on my work'’s performance and I am very grateful to her.

s

I would like to thank my thesis advisor Janak Patel, for his support and encouragement.

Many thanks to all my friends who provided an atmosphere of brotherhood during my stay at the

" . *

university campus.

LS
S

~
I*:
\\.
i
DA
-:.‘
v
L %
- .0
oo Rt
“a WN
\ '.:f_.
T
- \‘.
2 .}.-J‘-'
-
g2
o\
N .
o [
*J‘

.

e
- P XA
h":"-“" ', Yt
E XA RALL

TABLE OF CONTENTS

07

CHAPTER 1 INTRODUCTION

43

1.1. Motivation and Research Objectives

1.2. Overview of This Work

€.

. Swapping Strategies
. Previous Work
5. Multiprogramming Model
2.6. WS Anomalies in Multiprogramming Systems
2.6.1. Parameter fault rate anomaljes
2.6.2. Parameter-virtual memorv anomalies

2.6.3. Virtual memorv-fault rate anomalies

2.6.4. System memory-fault rate and system memorv-virtual memory

anomalies
2.6.5. Explaining the anomaliesccccoo.cooil.
2.7. Summary and Conclusions
CHAPTER 3 CD: A COMPILER DIRECTED MEMORY MANAGEMENT POLICY
3.1. Memory Directive: ALLOCATE
3.1.1. Locality characteristics of numerical programs

3.1.2. Processing of ALLOCATE directive by the operating syvstem

™ 3.1.3. Swapping MechaniSmcoceiviiiiiiiiiiiieeiiectee ettt
B 3.1.4. Primitives of ALLOCATE directiVve ...oooovveeuiiiiiiinie e eeeeeeeeeee e

3.1.4.1. Priority primitive, P oot

3.1.4.2. Memory request primitive, Xccccceiiiiiiniienine e _

3.1.4.3. Data structure for computing X at compile timeccocovvinirinccnne

bt]

3.1.5. Automatic insertion of ALLOCATE at compile timec.coccevrvieincesunnnnne

3.2, LOCK and UNLOCK DireCliVES coeoiieeiiteeeeee et eee e e e eeeeeeaeassaeseaseeasaeaans

3.3. Subprogram Sequence Control Under CDcoccvviiiiiininiiincniccicenene
J.4. €S Of CD .ottt ettt ettt ettt e e e e bt e e tanre s
3.5. Summary and ConclUSIONSocoiiiriiiieiiiiinieec e
CHAPTER 4 PERFORMANCE EVALUATION AND MEASUREMENTS w.cooumvveeocesrennene.
A1 IRTPOAUCTION oottt s
4.2 Modeling CD oo
4.3, CD CharacteriSUics . .oomiiiiiieei ittt ettt et et e st e sae et esernae e eaeeas
4.3.1. Dynamic memory allocation ..ot
4.3.2. Partial SWapPing ..ot et et
4.3.5. Effect of conteXt SWItCh ..ot
44 CD Versus WS et et ere e
441 Page taults o e
4.4.1.1 Page faults of individual processes ...
4.4.1.2. Overall system page faulls ..o
4.2 SPACE LIME COST ittt e e ettt ettt e e et

4430 SUNtem LhTOUGRFUL Lot e

4440 Controllubilit:

- o)

9

BN

."-'v

R
.

s'
-

4.5. Summary and Conclusions

L L L L P e eoseersnnsnan

CHAPTER 5 CONCLUSIONS

R L L T T L T PRI seceanee

5.1. Summary of Results

R e L L T

3.2. Suggestions for Future Research

REFERENCEScuiinteetntcecacancncssenneansasssesses s ssacsssssssssssssssessessasesesses s en s e ssesesmeee oo

VITA

R R R T R,

Vil

133

136

136

137

139

142

G

L

(A &

“
LN
IR

e
y 0 H Y
3

-
R e
.

L T -
A .

ISR

e

Y e,
O T
.

.
(]

)
»

INTRODUCTION

i
% CHAPTER 1
.
i

v 1.1. Motivation and Research Objectives

Virtual memory systems VM have been around for the past few decades and continue to

A U

~)

- provide cost effective memory management despite the modern achievements in memory technol-
ogyv. Today modern computers ranging from supercomputers to supermicrocomputers and works-

tations implement virtual memory [37]. The great amount of research in the area of VM has pro-

i duced several models of program behavior and several memory management policies MMP. Carr

in his Ph.D. thesis [13] presents a survey of models of program behavior. Denning [20] cites two

forms of program behavior models: models of programs’ memory demand and models of memory

' management policies. Batson and Madison [30) define another model of program behavior, phase
R

transition model. based on locality characteristics. However. the best mode! of program behavior.
o~ Carr concludes [13], is the program itself. In a simulation environment, as is the case of this

- study. a program is represented by its address reference string.

Memory management policies. cited in the literature or implemerted 1n real systems, have
keen classified into two classes: the class of variable allocation. dvnaimnic, memory management
policies and the class of fixed allocation. static. memory management policies. Examples of

- dynamic policies are the Working Set policy (WS) [18] and its variation: the Page Fault Fre-

quency algorithm (PFF) [14]: and globally implemented policies. Examplcs of static policies are

l.east Recently Used (LRU) and First In First Out (FIFO).

Dvnamic policies have heen shown to outperform static ones [10]. /16]. However. they have
'.\ therr ~wn problems. WS, for example. is 1co expensi.e to implement: turtnermore, it is unable to
avoic heavt faulting rate during interiocality transitions (23], The Damped Working Set (DWS)

I3

. {361 .ax atroduced 1o avord interlocality transition fauits. However, Graham [25] showed that

DWS outperforms WS by less than 10%. The Sampled Working Set (SWS) [34] is a cheaper reali-
zation of WS, but has a poorer performance [20]. Ferrari and Yih (23] combined SWS and DWS
and introduced the Variable Sampled Working Set (VSWS). VSWS performance is no worse than

that of WS [23].

The page fault frequency algorithm is cheaper to implement [15] but has poorer performance
than WS [25]: also. it exhibits anomalous behavior [24]. Also. WS exhibits some types of
anomalies when tested against numerical programs [4]. [8]. Other types of WS anomalies are
discovered in a multiprogramming environment. (See Chapter 2.) Carr [13] compared WS with
"global" CLOCK. The WS policy was shown to be only slightly superior to CLOCK. Carr com-
bined the features of WS and CLLOCK into a new algorithm WSclock which has a similar to WS

performance. although cheaper to implement.

Based on the survey cf the research published in VM arez. two observations could be made.
The first is on the nature of the experiments. Simulation of single programs is a common charac-

teristic of a vast majority of the experiments. regardless of the fact that multiprogramming sys-

tems are the real \'M environment. See. for example, the experiments in [3]. [4]. [6]. [8]. [16]. [17]. ~

W aba¥a 2274 s

{21]. [25]. [28]. and [36]. One can only guess that researchers have assumed that results obtained

from simulating in a single programming environment would not differ significantly when

applied to multiprogramming systems. One objective of this thesis is 10 investigate the accuracy 5

L4 4 % T,

of this claim.

The second observauion is in regard to memory management policies. A common characteris-

tic of ail existing policies. whether static as is LRU or dvnamic as is WS. or prefetching [39] or

I RO

non-prefetching, is that they try to estimate program behavior at run time. In other words, these
policies solve all memory management related problems at run time. Three memory management ..

related problems are: 1) when to bring a page into memory. 2 which page to replace and 31 how

s & 5 3 &L A

much memory to allecate. In this thesis, this tvpe of MMP ix referred to as run rime policies. An

aiternative approach to run ume policies 1s 1o have some or ali of memory management related

‘PSS
Th 5%

sy B AN

o)

problems solved at compile time. Memory management policies using this approach will be
referred to as compiler directed policies (CD). The main objective of this thesis is to construct and

develop a compiler directed policy.

Run time policies suffer from two major drawbacks. First, the design of these policies did
not take into account that program behavior varies from one program category to another. For
example. numerical programs behave differently from system programs [3], [27]. Also. data base
referencing has a different behavior from other types of applications [40]. [38]. The second draw-
back results from the fact that run time policies do not consider the interaction of programs in a
multiprogramming system. Programs affect each other through swapping for local policies and
through paging for global policies. Also., in a multiprogramming system. the amount of free
memory on the system is variable: it varies according to the load on the system and to the

amount of memory occupied by each process in the system.

In this thesis, a compiler directed (CD) policy is designed with three main features:

(1) It exploits source level information at compile time. This information is passed to the

operating system through memory directives and is used to define memory requirements of a

program during execution.

It is designed to respond to the changes in program intrinsic memory requirements. and to

the requirements of other programs running in the sysiem.
(3) The compiler directed policy recognizes the difference in program behavior exhibited by

ditferent program applications. It is designed specifically for numerical programs.

1.2. Overview of This Work

This work is concerned with designing a compiler directed policy. The performance of CD is
evaluated in a multiprogiamming environment and compared with WS, since all other run time

rolicies either perform worse than WS or nearly the same (13], [15]. [20]. [23].

i L i N N A e AN e T AN YT T S N T N

>

N %
3.

A

el

-~ g3

TN,

|\

'i’v"

IR

.
LB

P .

e
v

TN

v

e
DOGOA

N

",."..'}:f'a." .-'.: 'a

Ny
AN

o el

PPl

> -
e

b4 v

A ,
A
.l'. . &

¥4

TSPl

b A% NS YS

LN

Chapter 2 focuses on the performance of WS in a muliiprogramming environment. The
working set policy is shown to exhibit anomaly types which may not be discovered in a unipro-
gramming environment. A multiprogramming model is used in Chapter 2 1o evaluate the perfor-
mance of WS. The model generates other results than those needed for the investigation of

anomalies. These results are used later in Chapter 4.

Chapter 2 demonstrates how the results obtained from simulating in a multiprogramming

environment may differ from those obtained from a single programming environment.

In Chapter 3 CD. a compiler directed policy. is presented. CD uses three types of directives.
These directives are used by the operating system (OS) to define a process's memory requirements.
We develop algorithms to be used by a preprocessor at compile time to generate memory direc-

tives. We also present algorithms for processing a directive when executed by the CPU.

Chapter 3 also deals with implementation issues of CD. In particular, a swapping strategy is
developed for CD. The strategy is based on the amount of free memory available on the system

and the overcommitment of memory to one or more processes in the svstem.

Subroutine and procedure call handling can cause a significant problem for generation of
compile time directives and processing of run time directives. a problem commonly encountered
in compilation techniqu:s. Chapter 3 presents a technique for solving such problems. Issues

related to the cost of CD. specially the cost associated with executing memory directives, are dis-

cussed in Chapter 3.

Performance evaluation and measurements are presented in Chapter 4. The performance of
CD is compared to tne performance of WS. Empirical results are gathered from a trace driven

simulator of a multip-ogramming system.

The conclusiors drawn from this research are presented in Chapter 5 together with some

suggestions for future research in this area.

%

.'-‘v

-

Can

Cs HIR

vadd G TER

o,

X

LS 5““-

s 2

s

>

AN

. =
l"‘

»

e d

RO

-
1

 §

CHAPTER 2

WORKING SET PERFORMANCE IN MULTIPROGRAMMING SYSTEMS

2.1. Introduction

The Working Set policy (WS) {18] is a local variable memory management policy. WS is
described as follows. Let P be the set of all pages of a program. Also. let a reference string con-
sists of a sequence of T references., 7 (1).r(2)...r (z)...r (T), in which r(1) is the segment that con-
tains the virtual address generated by a given program. Time is measured in virtual time. At vir-
tual time ¢ . the program’s working set W (¢ .7) is the subset of £ which has been referenced in the
previous 7 virtual time units. where 7 is the WS window size. The size of the working set w (¢ .7)

is given by the number of pages in the working set at time ¢ . The average working set size X (7) is

defined as

iw (t,' .7)

— i=1
X(r)= =

where T is the length of the reference string. More definitions will be given as we proceed in this

(2-1)

chapter.

A mechanism equivalent to the one designed by Morris [32] is used in this study to compute
the working sets of a program. A reference regisrer is associated with each page frame which is set
to zero each time the page is referenced. At the same time. the reference register of every other
page is incremented by one. In [32] the register is incremented at regular time intervals. rather
than at every reference to a virtual address: the “value in the register is an approximation to the
amount of virtual time since the last reference. In our model. the value in the register is the exact
amount of virtual time since the last reference. Therefore. cur model computes the exact working

sets of a program. When the value in the register equals 7. the page can be removed from the

working vet. The . orking sets are computed by performing WS scans of each task at each virtual

.
: 6
o
R
time unit 7 ; an approximation of the working sets is achieved by performing WS scans at various
. .
virtual time intervals [13). In a WS scan, each page p in P is examined. If the value a in the refer- vy
i
ence register of p is equal to or larger than 7 (a 27). then p is not in the working sets; otherwise. v
N
p EW(z.7). Performing a scan each time a page is referenced is very expensive. However, it is the 2
only way to capture the reai dynamic behavior of WS. The main concern, in this work, is with "S
¥
,
X ~
the performance of WS rather than with the implementation cost.
(._.
X .
el
2.2. WS Load Control
o
The working set policy requires each process to allocate enough memory to accommodate its ~
. working sets. In a multiprogramming system. however, the working sets of a program may grow r

bevond the available free page frames. In such a case, the working set can not be allocated in main

f‘(_.c

memory. Denning [20] provides WS with the following load control policy to guarantee that the

working set of a program is allocated:

.
A
’

The load control maintains an uncommitted frame pool, which is a list of available page frames,
and a count X' of the pool’s (non-negative) size. The highest priority ready task may be activated)

if that task’s working set size w satisfics: Ta ;

w S K - K() 'lk:
where K, is a constant specifving the desired minimum on the pool. The purpose of K, is to |

prevent needless overhead of dealing with memory overflow shortly after a new task is activated, -

When a page fault occurs. the page fault handler subtracts 1 from the count K. ... If K is already o
O the page fault handler will first cause the load control to preempt a page {rom the lowest priori- S
., 1y active task: this implies that the lowest priority active task may not have its workiag set fully 3
' resident. A deactive decision may be issued by the page fault handler if the lowest rriority task et
has its resident set reduced to naught. -

Note that WS load control has two parameters 7 and K ,. If 7 is small. the average working

]
e 7w

: set size w of each process is small and the multiprogramming level is increased. .A small 7. how- X
ever, increases the fauli rate of each process and can lead to thrashing. Moreover, WS, using smal! N

7. performs much worse than CD (as will be discussed in Chapter 4). A large 7 reduces the fault .

N

o

. . . . ~
rate but causes the process’'s working set 10 grow and depresses the multiprogramming level. }

N
Selecting a value for A'.. represents a trade-off between maximal use of m:un memory and X
reducing the overhead that occurs when the system becomes overcommutted. If A, is very large. <
'J': -
the multiprogramming level is depressed. If A, 1s very small. a swapping will be required each -
rm T
i .
., .. - . » » - - e - - - e g ;o .,. - - - cor e _.- ..- . et .."

L o ‘7'¢’$.{. "." G "\.l. -.‘.'.’ \-"of'-. - ""*’ "‘I'H _, . J.‘ '- "“*"‘%f. S ‘.-’.' n) .' v WYL IAGY

[y
G
i o
.
»
. ¥
g time the working set expands beyvond the free pool size. In this thesis. X, =0. However, a free N
Ty
. . . t!
page pool is dynamically created when the working set of a process grows bevond the free pool e
! size. In this case the resident set of a "low priority process” is turned into the [ree pool, as a result E
- [}
+
a of swapping. Swapping the resident set of a process is a modification to Denning’s suggestion to -'i
preempt a page from the "lowest priority active task.” Carr [13] argued that preempting the pages v
s{ of the lowest priority task. one by one. “would appear 1o be a mistake. since the lowest priority N
~ v
. l‘-
active process will be forced 10 execute with a restricted resident set and will fault often and gen- ~
~ ~
o At
> erates a great deal of paging I//0 without making much progress.” In the next sub-section we dis-
<A cuss the swapping policy used in our model. '.:.-
:.{ -
" 2.3. Swapping Strategies ~3
Swapping is the deactivation of a process that occurs when load control detects overcommit- -
::: ment and directs a reduction in the multiprogramming level. A process that causes memory over- ,
i commitment is called the swapping process. A process whose resident set is preempted is called
the swapped process. The mechanism which handles swapping is called the swapping mechanism ~:
- (SM). SM has the following functions: find a candidate process for swapping and preempt its S
. »
-~ W
resident set. In [20]. a process to be swapped out is the lowest priority process in the system. o4
. :
- While this could be the proper choice from the policy standpoint. it is not necessarily the best K
[
from a performance point of view. Carr [13] suggested four policies to select a candidate process .
-~ ~
l' -
i _ »
* 10 swap out of memory. A swapped out process can be the faulting process. the last process
ALY
» . . .
- activated. the smallest process, or the largest process. The usefulness of any of these policies
depends on the cptimizing criterion under consideration and the immediate goal to be achieved. In '\:
3
2 our model. it is assumed that all the processes in the system are of equal priority. Therefore.
b, Denning’s suggestion of the lowest priority process is not practical for cur model. Also. we argue }.
l’. ".
l“. - . . ~ - . ‘&
that the faulting process should not be swapped out since it has just invoked SM. Wnen it is reac- :}.
<,
. tvated. it may have to invoke SM again. and thus continue to be blocked. It is very likely that .
"t
. the last process activated has suffered a s'vapping just before it has been deactivated: essentiallv. a 3
IR N
- <9

- - - - - . e a e = s “ . .- " et et et e PR ..
<y e, ':._ ‘;u_'.\ " _f.'i " gl RO AR S T TS (S w'-‘t'-_ L LR .;'\ ~ 'f._'(ST
Lot e B he " L) « N . ! & e, A . o

R R T WP P i Ra T T\ e Rt el 0 ah Wl A > ol \J \

0o
> ER

5.

] discrimination may occur against one of the processes in the system. The smallest process policy
discriminates against small processes. whereas the largest process policy discriminates against

large processes.

x5 W

We introduce a new swapping policy based on treating every process in the system with

equal priority. No process should be swapped out more than one lime in a row. A process that

v,
a

) has been swapped out can not be swapped out again until all the processes in the system have

experienced the pain of being swapped out. In a system with N processes. a process swapped out

| OO

at lime ¢ may become a candidate for swapping only after N swapping operations. Note that N

-
-

ot

may change its value if a new process is activated or a process completes execution and leaves the &
system. One wayv of implementing this policy is to use a CLOCK- like mechanism. All the o

processes in the system are assumed to be arranged about the circumference of a circle. The

F CLOCK pointer (or "hand") points at the last process swapped out by SM. and is advanced "clock- _
. wise” when SM is invoked to find the next candidate for swapping. ”
| N
The resident set of a swapped out process is preempted by setting the value in the reference)
register ot each page equal to the value of 7. The size of the preempted resident set is added to the
free page frames.
R
Another major issue of swapping is how to reclaim the working set of a swapped out pro- - ;
cess. There are two methods for a swapped out process to reclaim its working set. Demand paging :'.i :
loads a page only when that page is referenced. whether it was or it was not a member of the ‘
process’s previous working set. Prepaging loads a collection of pages (the prepage set) when the
process is activated. The prepage set. in this context, is a process’s working set or its resident set ‘
g
when the process was swapped out. The main advantage of prepaging is to reduce page fault inter-
3 rupts. However, the working set of a process has to be carefully arranged in auxiliary memory ;
vlots when the process is swapped out. Although prepaging has intuitive appeai. many systems »
void using prepaging simply because of its added complexity. From the performance standpoint. i
.: prepaging the enure working set has the same [. O effect of demand paying each page of the work- o)

-

1
'

i 9
H
g ing set. Prepaging eliminates some page fault interrupts. and possibly. if the working set pages E:
| are sequentially stored on disk. reduces the latency seek time for all but the first page. There are
! other disadvantages for prepaging cited in {13]. Above all, the working set of a process is not
" necessarily the same when deactivaled and later when reactivated. It is very likely that a process £ ;
§ may prepage some pages Which might not be referenced in the future. Besides wasting memory. . v
,§ prepaging may result in extra paging and wasting paging 1/0 capacity. At any rate, from a perfor- ;’.:i
mance point of view, prepaging is treated as a regular page fault with a smaller service time. Page “\I
- Ny
a“‘ fault service time includes page fault interrupt as well as latency seek time. The model used in -
o7 this study implements the demand paging mechanism. :;f:
e 2.4. Previous Work .::::
Since the early 1970’s many research studies have investigated the performance of WS. For ':
;.: bibliography and empirical results reported on WS's performance see the paper written by Den- :_‘
ning [20]. and Abusufah and Malkawi [3]. [8]. Denning summarized the results of research con- :
! ducted on WS [20] and drew several important conclusions. In 1972 Chu and Opderback observed ~:
T
;_';: that WS generates lower space time cost than the least space time generable on the LRU policy .:
" {14). A similar conclusion could be derived from the experiments performed by Graham and Den- :::
0 ning [26]. Denning concludes that "the evidence available suggests that global CLOCK and global }
LRU do not perform as well as WS." (The word global is added since global policies are discussed ’.
R but the statement did not explicitly mention the word globdal .) It is interesting to note. however, S
;2 that in the same section of *he paper Denning refers to the evidence obtained from Graham’s Ph.D ::-:-
<, A
- thesis: "Graham's data shows that LRU is normally significantly worse than WS when applied to “:3
E single programs" [25]. Also. Denning notes that "there is, unfortunately. little published perfor- z
e mance data on the CLOCK and global LRU." Evidently., WS had not been compared with global i
- LKL and glchbal CLOCK at the time of the conclusions made in [20]. :‘E
: ¢
u Une can easily argue with the above conclusions regarding the performance of WS, It is by
S" onlv natural that a dvnamic local policy. when properiyv "tuned." performs better than a static ".-.‘
X ' :&:
A

e e e A Aot e B e
" .'v'.\',‘-"-' iy 8. "o P DA “ . .'q"-&,-,\'&‘..‘ " " % % BLN) % *‘»‘ i ‘;’ ." » - » g

“Taa

PAA e a S

10

(local) one. However. the performance of a globally implemented static policy may or may not be
worse than that of WS. Such a performance can be obtained onlv from measurements of a mul-
tiprogrammed system. The only relevant measurements cited in [20] were those performed by
Simon [35). However. Simon compared WS and VMIN [33] in a queuing network model. His
thesis did not address the problem of comparing global and local dynamic policies. On the other
hand, Carr [13] simulated global CLOCK and WS policies in a multiprogramming environment.
Carr concludes that "little difference between local policies (e.g., WS) and global policies (e.g..
CLOCK) has been observed in a representative system”. Carr introduced a new policy. WSclock,

which performs as well as WS, even though "it is much simpler than any of the other WS algo-

rithms” [13].

Compared to the page fault frequency policy. PFF [14], Denning concludes that:

WS and PFF, when properly "tuned” by a proper choice of their control parameters, perform near-
ly the <ame and considerably better than LRU; WS has a slight tendency to produce lower space
time minima than PFF. However, PFF may display anomalies for certain programs. Moreover, the

performance of PFF is much more sensitive 1o the choice of control parameter than is the perfor-
mance of WS,

However. Abusufah. et al. [4]. [8] showed that WS exhibits certain types of anomalies for a cer-
tain type of programs. Out of 30 numerical programs studied in [3]. all but one displayed two
tvpes of anomalies: parameter-real memory and fault rate-real memory anomalies [24]. Moreover.
WS displayed great sensitivity to the choice of control parameter. 7 [8]. Denning concluded from
the empirical studies conducted by Graham [25] and Simon [35] that "the WS policy can be run
with a single global r-value and deliver throughput tvpically no worse than 10 percent from
opimum.” Alanke. Haikala. and Kutvonen [6] concluded from their empirical results that "it is
impossible to find a single global 7-value that achieves the results reported in [20]." The work
done by Abusufah. Lee. Malkawi, Yeu [3]. [8] shows that at least 6 values of 7 are needed 10 run
a set of 17 programs within 10 percent from ~ptimum. It is worthwh:le to mention that the sen-
sitivity of WS or PFF 1o the cheice of control parameter can be displayved only in a multipro-

Jrammed svstem. All empirical results were generated rom individual ref2rence traces. assum-

Mk

a s

‘B

.,

RN

A

-
r
[¥}

A
"y
"aTe

.

[

W

NP |

D]
e ¥
P

- /" e

-t Wy T - Fad Sl ALl Sl N AN PadLradb i I Sl Ml R cA il Sal et el AdPiaty - ; o e e -ale S Shn 4 s She Sie A4 "h.
“~
O\ 1
i 11 =
&
ﬁ ing a uniprogrammed system, and ignoring any interaction between the programs. For this reason E:
\ r
e |
we believe that the sensitivity of WS to the choice of 7 has not been fully investigated. although
! the contradiction 1n the reported results in literature makes previous conclusions about finding a '
Y
. T w?
i& single T-value optimistic. D¢
- b
Based on comparing WS and VMIN [33] by Simon [35]. Denning concludes that "no one is -
- >,
o likely to find a policy that improves significantly over the performance of the tuned WS policy.” :;
- “)
. . . . by
. Such a conclusion is motivated by the fact that VMIN is an optimum unimplementable policy. "
¥ 3
= Carr [13] argued that Simon’s work did not provide enough evidence to support such a conclusion.
+
:‘\\ Simon estimated that VMIN achieves lower space time cost than WS by less than 5 percent on the <
A o
average. It is interesting to note. however. that VMIN is the optimal policy for finding the 0
Y)
] minimum page fault rate: VMIN does not find a minimal space time cost. Therefore, comparing _
WS with VMIN can not serve as "compelling evidence” for the WS optimality. The optimal policy
K is DMIN [10). In [11]. DMIN showed significant improvement over both WS and VMIN.
i A common characteristic of almost all research studies on the WS performance is that they h:
P-.
o : o . , . o
~ use individual virtual address traces. Even when WS is compared to a global policy (global LRU), o>
~ -~
Y
: individual programs are used in the experiments: "Graham's data shows that glodal L.RU is nor- pe
X
" mally significantly worse than WS when applied to single programs” [20]. Denning states that: >
<.) v
The WS policy serves as a dynamic estimator of the segments (payes) currently needed hy 3 pro- .i
gram. The W'S is defined in a program’s virtual time. independently of other programs: thus. there e
o ts no danger that the load on the system can intluence the measurement... N ¢
3 While it is true that WS defined in a program’s virtual time is not affected by load on the system, ‘:::
in a real system the resident set of pages of a program does indeed change according to system .
o . . a1
:4_" load. To maintain the resident set equal to the working set may incur overhead in terms of more
rage transfers not reflected in the program’s intrinsic demand. Thus it is clear that the 'vad on the T
.‘f
- <rstem dJoes affect the measurement of paging activities of a program. The paging activities of the Y
Ry
') : . . '
i WS in a multiprogramming environment were empirically measured. :
X
'ﬂ
A

'\
.
o
> e
"

Te Ly g - Ta . - . Ctd AN O Ja i i i e A M P it e A A A Vi ‘G i el o D W R
[v, 3 AR A RN A A ACN

Ll
12 u
; ,e
3 N
h The experimental model is described in the next section. Empirical results on the WS Ce
1
* - . -
behavior in multiprogramming systems are reported in the following sections. []
by
\ 2.5. Multiprogramming Model ™
(]
>
In this thesis a simple model is used to evaluate the performance of WS in a multiprogram-
¥
. ming system. The model is shown in Figure 2-1. The same model is used for evaluating CD '{'ﬁ
, (described in the next chapter); specific features related to CD will be discussed in Chapter 4. The .
() _"
X Process Queue (PQ) is implemented as a First in First Out (FIFO) and used to hold the active =
processes. Each process is represented by its virtual address trace. An address trace consists of .
) . T D
3 references 10 array elements only. Initially, all array dala elements are stored in the virtual
o‘:‘
g storage. All instructions, constant, and simple variables are assumed to be resident in the main ~
] memory. The reason behind this assumption is that references to arrays dominate the referencing rl
S
-

behavior of numerical programs [4], [30]. Moreover, the virtual size of the storage containing

instructions, constants. and variables is usually much smaller than that used for array structures.

.
-

Time Out Interrupt "
L
Paging o
CpU Device AR

Process Queue
Lb Sta- oy
EL ——————a | Swapping Mechanism Job s T
R - -5 .

pping ‘Tompleted tics
r’ 1C i

‘kj

Main Memory

Fault Ser- Page Fault o

vice Delay N
Figure 2-1: Multiprogramming model RE .

[

L R T Y B . P U PR A I P I
A S A A W R P 2T

13

Therefore. it would be reasonable to have the code of a program locked in main memory during the

e Wl

I‘l

Pl
. . .
execution of that program; in case of a structured program, the code of a subprogram should be
g locked during the execution of that subprogram. he
g PQ serves as the input to the system which consists of the CPU and the main memory. The o "
6
main memory is organized into a set of blocks of equal sizes (pages). Similarly, the virtual storage
=
-f_-: is div:ded into pages of the same size. The maximum memory available on the system, 9. is used as -7
ma a system variable. A list of unoccupied page frames in main memory (free pool) is maintained. The .
summation of the working sets of all programs is given by @ minus the free pool size (p). The main
.'!
R memory is initially empty. Pages of a program are paged into main memory on demand. The work- :,
. ing set of a program is allowed to grow indefinitely into the free pool as long as the free pool size is &
i larger than zero. If the free pool becomes empty. a swapping process is invoked and the working set h
-
>
e of a process is removed from main memory. The pages occupied by a swapped out process are f'l’_
o 3
turned into the free pool. The swapping mechanism is discussed in the previous section. 3
! A round robin scheduling strategy is used to schedule the control of the CPU by the multiple b
“ LY
-~ processes. A process, in control, relinquishes the CPU in one of three cases: time out interrupt. page o
’ fault occurrence. or program completion. Al
» -
- A time slice is used as a system variable in the model to control the time out interrupt. LUpon o
L4 -
e generaling a time out interrupt. the process controlling the CPU is removed from the system and P
\." «_.-
*, {
o entered at the tail of the PQ. However. the interrupted process’s working set is not removed from
S *_.'
s: m4n memory. .
When a page fault occurs the process in control leaves the CPU and another process from the t;
. L =y
D.i
b PQ gains control. The page fault is serviced by the page fault service device. The faulting process is -
. 5
::' delaved by a fault service delay element until the page fault service is completed, before it 18 fed ::; ,
-’ .
hack 110 the PQ. Page fault service time L consists of the interrupt handling time. the ime spent K
i in search.ng for the addressed page in the virtual storage. the transfer time of a page trom disk to _.
. main memors . and the ume tor ailocating a page frame. In this thesis we use a value of L =2000 ::
.)
":_ :~‘
7

e m e

A A4S e 2 A0 S 4 2 b S0 Sl et B T R el gt 4 et et

14

time units; each time unit is one memory reference. The paging device is the only 1'0 device used in
the system: this consideration further simplifies the model. In other words. the programs are
assumed 1o be executing in a CPU bound phase. Such assumption is valid for programs which con-
sume most of the input data at the beginning of execution and generate the output data at the end

of execution. The programs used in our experiments comply with such behavior.

A process leaves the system after all of its virtual address trace has been processed. L' pon
completion of a process’s execution. the necessary statistics are collected. These statistics include

process specific and overall system statistics. The system parameters are:

(1) The maximum available physical memory on the system, 8. Very small values of 8 are used
for theoretical purposes. For example, 8=5 pages is clearly impractical choice of the main
memory size. However. it is used o capture the behavior of WS in small memory environ-
ment. characterized by heavy swapping activity. On the other hand. using a very large 8 may
leads to a case similar to uniprogramming environment where the working set of a program
can grow indefinitelv and no swapping takes place at all. A wide range of 6 values is used in
order to evaluate the dependence of WS behavior on the available memory space. A large
value of 8 is interpreted in the context that the resident set of any program can grow to its

maximum limit assuming that a pregram is running alone in the system.

(2) The WS parameter (the window size 7). It is difficult to find an optimal 7 for any program
without empirical investigation. Therefore. we vary 7 from 7=1 to 7=R. where R is the refer-
ence string length of the largest program trace in the system. The window size is incremented
bv 5 from 7=1 to 7=1000: then * is incremented by 100 from 7=1000 to 7=10000; bevond this
value. an increment of 1000 is tsed. Such choices of T are used to capture the behavior of WS
in great accuracy. For small values of 7. the WS characteristics change rapidly depending on
the intrinsic program behavior. In numericai programs the changes in locality structures are

abrupt. The life time curves obtiined from numerical programs exhibit a step-uhe function

N r . - .
henavior .S]. Therefore, a very small increment in the vaiue of 7 muyv result in a drastic

»

o

v Ty

<,

£y |

NN

x|

PRI
P

| S B

[AL

l.' ..' .'l ,

(3)

(4)

- 15

change in the characteristics of program behavior under WS. See. for example. the life time
curves reported in [7]. [8].

For each program in the system, we find an optimal 7 depending on the optimizing criterion.
For example, we find the values of 7 for which the fault rate is minimum. the space time cost
is minimum, and the throughput is maximum. We also find global values of 7 for which the

sysiem page faults and space time cost are minimum, and the throughput is maximum.

The number of processes running simultaneously in the system. This number reflects the
maximum multiprogramming level. MPL. The values of MPL used in this thesis are 3. 4. 5.
and 10. However. only 5 programs are traced: the characteristics of these programs are found

in Table 2-1. MPL=10 is obtained by running two copies of the same program at the same

lime.

The context switch (CS). CS is used to control the time out interrupt. In our model. we use a
large value of CS to reduce the dependence of the results on the time out interrupts. C8=1000
1s much larger than the maximum possible life time between successive page faults for any of
the programs: Averaging over all the programs in the svstem. the maximum life time is 350

time units. However. a smaller value, CS=100. is used to demonstrate the efect of CS on the

paging behavior.

Process specific measures used in this chapter are:

Tablie 2-1
Program characteristics

’i Program # Statements | # DO Suat. ? # Arravs i # Arrav References L # Pages |
MAIN 163 16 I' 7 79.325 . 75
FIFLD 76 ; 9 24 10.523 60
INIT s3 ! 14 35 10,745 174
CONDUCT 9% ' 15 21 82,452 291
HAVSCORT 135 'S 7 22721 2

|

16

>

(1) The average virtual resident set size w(0.7). For each value of 7 and 6. w is found by finding o

the average of the working set size of a program over its virtual execution time. R. The work-]

ing set of a program is computed during each memory reference to the virtual space ¢f the E

program. A page is considered in the working set if the value in its reference register (a) is -_‘

less than 7. The value in the reference register is incremented during each reference. All pages -

with a2 7 belong to the free pool. In a uniprogramming system. the working set of a program s

can change only when the program is executing. In a multiprogramming system, the working .:::

b3

set of a program is likely to be affected by other running programs. In systems using global 7

: policies. a running program’s fault may result in replacing a page from another program'’s

{ working set; thus, programs interact through paging. WS restricts paging activity to the ».

. program’s own working set and to the free memory pool. Therefore. it seems that the working a
: set of a program is purely intrinsic to the program behavior. We have discussed that swapping . :‘ .
. activity may, as well. be a means of interaction where the resident set of a program is affected N l
by another program’s paging activily. A swapped out process loses its entire working set in =

one swapping operation. or it may lose its working set pages. one by one. in several successive X

swapping operations if the model suggested by Denning [20] is to be used. In the previous sec- -
tion we discussed two methods for claiming the resident set of a process that has teen .2 y

swapped out of main memory. It was argued that demand paging is less complicated tha~ '

prepaging. Prepaging preser.es the inclusion property of the WS; namely. that w (7)Qw 7T,), =
where 7,<7.. The inclusion property mayv be violated if demand paging is used. Our model ',:j
implements demand paging for the reasons discussed in the previous section. Also. with R
demand paging we ‘will be able to investigate the claim that "the WS serves as a dvnamic esti- :: |

mator of the segments {pages) currently needed by a program” [20].

a_ b B
s

The page fault rate F(8.7). The fault rate oi a process is updated every time a reference 10 a

- o e mg e~

aAcnrasident page is made. The fault rate of a process depends on the intrinsic hehavior ot ibe

| R

-y v 8

rrocess and on the interaction of the muitiprogrammung mix through swapping. Whether the

demand paginyg or pre~aging method 1§ Lsed, the aorking vet of a swapped out process has o .-

e

sy B8 W

[4 f‘

vh Y

L)

)

A BN

17

ve faulted back into main memory. In prepaging . one operation initiates an 170 for the entire

working set: whereas in demand paging. a page is faulted only when a reference is made to

that page.

(3) The swapping rate S(6.7). S is the number of process’s pages that get swapped out of main
memory on the request of another process’s growing working set. Swapping does not. neces-
sarily. involve 170 operations. The working set of a process needs to be written back to the
virtual storage only if the pages have been updated (dirty pages). However. in this thesis we
simplify the model by considering only clean pages. Therefore, the cost of swapping is associ-

ated with the swap interrupt. the search for a swapped out process. and the time for setting

Ly
.l
REAS
the values in the reference registers of the members of the working set of the swapped out "oy
55
process. -
The overall system statistics include the system page fault rate. F,,;(8.7) and the system average
virtual memory V., (0.7). F,, and V,, are given as the sum of the fault rates and the average !
virtual memory. respectively. of the individual processes. -
$}_.-'
s
N
2.6. WS Anomalies in Multiprogramming Systems f{
5%
In this section we report empirical results on WS anomalies in multiprogrammed systems. o
Five types of anomalies are defined by Franklin, Graham and Gupta in [24]). Empirical results. {t'.::
reported previouslv. on WS anomalies have been generated from simulation ot individual reference :_.-:_
traces [4]. [8] and from the analysis of individual reference strings (24]. These results show that
WS exhibits two types of anomalies: namely, the real memory-fault rate (M-£) and parameter-real
memory (7-M) anomalies. M —F anomaly exists if
M(r)<M(r2)and F(1)<FT,) ;'
. . . e e
for some values of the WS parameter 7, and 7.. And 7—V anomaly exists if. for some 7, and 7. e
AT

h -ty
¢ .
"

T, >7;and M (r)<M(7,)

Both tvpes of anomalies M —F and 7=M do not violate the conditions of the jeneralized inclusien

.,.. 7 .
i ".

N
s

prorerty prorosed by Franklin et al. [24]. The other anomaly U.pes are: parameter-fault rate (7-1)

i

LT o o AN D T d

b p AL o I Sy S S AC R
- * e W L ISR A - . v e - .- L . - PREEEE ST DY S D

18

anomaly, parameter-virtual memory (7-V) anomaly. and virtual memory-fault rate (V-F) anomaly.

b L e

The WS policy can not exhibit any of these three types of anomalies when tested against individual
programs in a uniprogramming environment. However, we will show that this is not the case in a

multiprogramming system. We will also define two more anomaly types specific for multipro-

gramming systems.

We do not report in this thesis the results on 7—M and M —F anomalies since they have been

X empirically reported in the literature [4] [8). [24]. Besides. they have little influence on the control-
lability of the policy [24]. The new anomaly types discussed in this section are the system memory-

fault rate anomaly (0-F) and the system memory-virtual memory anomaly (6-V'). These and the other

" anomalies are defined and discussed in details in the following subsections.

2.6.1. Parameter-fault rate anomalies

A parameter-fault rate anomaly (7-F) in a multiprogramming system exists. for some 7,. 7,

and 8. if

T, > T and F(Tle) > F(T:.e).

Parameter-fault rate anomalies. exhibited by individual processes are shown in Figures 2-2a - 2-2e
for program MAIN, FIELD. INIT. CONDUCT. and HWSCRT respectively. Each figure contains
several plots for different values of §. We have used four different values of 6: 50. 100. 150 and
200 pages. Smaller values of O represent the case of a high memory contention. especially for
higher degrees of MPL. In each of these figures we plot the page fault rate. F. versus 7. A well
behaved faull rate is a nonincreasing function of 7. An increasing portion of the curve indicates
that a 7-F ancmaly exists in that region. Consider. for example. Figure 2-2e for program HWSCRT
, for 8=200 payges (solid line). The fault rate increases from 123 to 188 when 7 increases from 10.000
1o 15.000. Ancther anomalyv exists in the 7 region (901,951}, The ancmalies reported in Figures 2-
2a - 2-2e are summarized in Table 2-2. For each 8 value and for each ~rogram we report the
aumber ot 7-F anomalies (N) and the size of the largest anomaly. AF. The uncomaly size s given by

AF = FiB.r) = F(8.r;). From Figures 2-2a - 2-2¢ and Table 2-2 it s ¢ivar that the fauit rate s

- . e e e e - P S I ST U Y P PR T L L SRRy SR LY, O, (S G AR X
K .(.f X ’l.-' '.".\.‘.-'I'o‘ .t-'-‘-'r v ..ﬁ, "" S .t "> R’ "'\ ~ ‘ - \' W ‘-\ > ' v

e

102

100

10

10000

F1000

100

19

Ll Lt 1 tit

A Lt il L 11 L 111t Lol 4 1 11t

i s L bt ith

10! 102 T 103 104

2-2a: MAIN, 6=50, 100. 150, 200

105

L b L L ALL

] Ll 1t 111 | L.t L1111 i L L L1}

1 L1 1 113

10!

102 T 103 10?

2-2b: FIELD. MPL=5, 8=50, 100, 150. 200

10°

/

T T YT r'”/

™ —

» [¥

]()() b A A 10 2L D S W W | 11 1 3141) L1t 1141l L4 L lriiy
10Y 10! 102 T 103 10*
2-2¢0 INIT. MPL=5. =50, 100, 150, 200
ACAL € oy ‘ vl '-'A-' "-\$\-f~i\~‘ L ! 1\ .'1 1"\‘

]()5

\b
"

| EALAT

*

Y v,
.
s Jay

) "‘.'t

104

103

| St

-
10-] Lt 1141t A Lot b 14 Y [EEET L L1 11 0L1

10° 10! 10° T 108 104

2-2d: CONDUCT. MPL=S, =50, 100, 150, 200

LJ l"lFl'l

Lt 1 bt 1iid i S i il il L L i)l 'l Lol 1 111} 1 1.t L2 Att

10° 10! 10° T 108 104 10°
2-2e: HWSCRT. MPL=S, 6=50, 100, 150, 200

T 1T VVTvey

Figure 2-2: Parameter fault rate anomalies

-Table 2-2 .
Summary of parameter fault rate anomalies

CONDUCT i
| AF
—
| 8¢

82
0

| § | MAIN | FIELD _ INIT |
| N1 AF [N ! AF | N T aF |
s ‘
2
|
|

I S0 129 L1 ﬁT
100 | 4| 21 2 | | |
150 10! 01 | i
200 | 1 1 20 f

N
2
2
3
G

net o decreasing function of 7 as in the case of aell-behaved furctions.

&5

Individual program anomalies can occur in a multiprogramming system since a program's

21

fault rate may decrease at the cost of an increase in some other program’s fault rate. However. as y
long as the total system fault rate decreases with increasing 7, individual anomalies are not of prac- Y
\
tical importance. We would, however, like to point out that anomalies do exist even for the sys- h o’
&
‘I
tem fault rate. Parameter-fault rate anomalies are reported in Figures 2-3a and 2-3b. where F is the
t;i
§
]
k\
o
&
10°
10° 4
\— '0
104 . N
103 L (NSRS L Ao b 1 2 1Al AL 1 L 11l L l..l'.l"l “r s
1 10 100 1000 10000 e
.
Lol
.
2-3a: MPL=5. 8=100 ---. 150 ... *
-
3
10° N
Lo
r:'
o’.:
fo
109
- \
\\\%‘t’; .-"’
T o
104 |\<‘-. . _ ::::
‘\‘ - .‘ . o
]()3 Lo i 3 L tidl L A0t [NS N I I N T AL L1l) :::
100 10! 102 ¢ 103 107 03 R
2-3b: MPL=10, 8= 50 --, 100 - - -, 150 ..., 200 -- 2
Figure 2-3: Svstem parameter fault rate anomaiies el

22

system fault rate. for MPL=5 and 10. Figure 2-3a is a plot of the system fault rate versus 7 when
the multiprogramming mix contains 5 programs. Two 8 values are used in this plot, 8=100 (solid

line) and =150 pages. For 6=150. anomalies exist for larger values of 7 than those exhibited for

6=100 pages. The system fault rate versus 7 when 10 processes are present in this system (two

copies of each program) is shown in Figure 2-3b. Four plots are shown for four values of 8: 8= 50,

Table 2-3a
Parameter-fault rate anomalies (SYSTEM, MPL=10)

Parameter Fault Rate
T, T, F(0.r)) { F(0.7)) | AF

21 51 29332 32376 3044
61 71 32175 33299 1124
81 91 32038 32370 332

51 61 23885 24058 173
201 251 23402 23507 105
451 501 23367 23405 38
551 701 22870 23459 589

551 | 951 6241 8905 | 2664
1100 | 1300 7696 8748 | 1052
1600 | 2400 7555 9280 | 1725
2600 | 2700 8569 9258 689
3000 | 3100 8528 9223 695
3200 | 3700 8100 8870 770
4000 | 4300 8388 8514 130
4700 | 4800 8326 8621 285
' 4900 | 5000 8176 8606 430
5500 | 5600 8292 8425 127
6000 | 6200 8178 8378 200
7000 | 7100 5100 8293 193
L 7600 | 7700 8229 $293 64
i $000 | 8$100 7944 8025 81

600 1 700 T 4710 5396 | 686
1200 | 1500 | 4444 4633 | 189 |
11600 | 1700 | 4360 4420 60 |

1800 | 1900 | 4345 4499 | 154
12000 1 2100 | 4385 4407 | 22
2200 12300 1 4290 7 4306 | 16 |
2400 12700 1 4235 1 4276 41
3000 1 5900 1 4055 | 609 2039

AL e T T [N

o Hb

i

A

AR

(XX

vy
et

. o

23

100. 150, 200. For 8=50. the anomalies exist with small values of 7 (7 <100). This represents the
case of a high memory contention as does 8 < 20 for MPL=3. The anomalies demonstrated by Fig-

ures 2-3a and 2-3b are summarized in Tables 2-3a and 2-3b.

In Tables 2-3a and 2-3b we report all the anomalies exhibited at the system level for MPL=5
and MPL=10, Each anomaly region is described by two values of 7 (7, and 7,) and the two
corresponding values of the fault rate (F, and F,). The anomaly size, AF, is measured as the
difference between F, and F,. For large values of 8 (8=150, 200) the anomalies occur with larger

values of 7. Table 2-3b shows that the anomaly region for 8=100 occurs with 7<551, whereas for

0=150 it starts with 7> 551.

The significance of the anomalies is emphasized by both the size and the number of anomalies.
Figures 2-3 show that the anomalies do not occur in the same 7 region when different 0 values are
used: this further complicates the control of the WS fault rate function. Furthermore. such

anomalous behavior provides suitable conditions for the existence of system memory-fault rate

anomalies. discussed in a later section.

2.6.2. Parameter-virtual memory anomalies

A parameter-virtuzl memory anomaly (7-V) in a multiprogramming system exists for some

T,.7-and 0.1

Table 2-3b
Parameter-fault rate anomalies (SYSTEM, MPL=5)

0 Parameter | Fault Rate |
Ty Ta I F(@.r)) | FlO.r2) © AF
C100 | 601 | 651 | 2489 2596 | 107 |
! | 701 | 851 | 2594 | 2751 i 157
L 901 | 951 | 2621 2717 96 |
150 | 701 ; 7s1 . 2147 | 2272 | 135
| Ls01 7 851 2269 | 2285 16 .
L o901 9st 2232 1 2243 11
' T3500 1000 . 1495 1501 06
; 16500 5000 1303 1544 ' 241

»
g, % 'c:-)
’
s 2

P AP

-

& &

>
‘\
oS
S

G.&A?

71 > 7, and V(7,.0) < V(7,.6).

The anomaly size is given by: AV = V(7,8) - V(7,.0) Figure 2-4 illustrates parameter-virtual
memory anomalies for programs FIELD. INIT. and HWSCRT for MPL=5 and 6=100. It is obvious
from the plots in Figure 2-4 that the average virtual memory is a nonincreasing function of 7. In
Figure 2-5 V is plotied versus 7 for program INIT and =50, 100, 150. and 200. The anomalies of

Figure 2-5 are summarized in Table 2-4. Figures 2-5 and Table 2-4 show that anomalies associated

MPL=S5, =100, FIELD —, INIT ..., HWSCRT - - -)

LI

0 [B W W | 1 b 1111 43 . 412

1 10 T 100 1000

Figure 2-4: Parameter-virtual memory anomalies

MPL=S, INIT 6=50 100---,150....200
g i
! o
10 A
[‘A/ En -..;.
vt J,d
20 4,4/ '
7
A |
L /"!
() 1 LA 111t 1 1 llllllll D A NI 1 i lllllli 1 I eeeyl
1O 10! 100 7 108 10° 10¢

Figure 2-3: Parameter-virtual memory anomaltes

25

with the larger values of 0 tend to be shifted to the right of the anomalies associated with smaller
values of 6. The 7-V anomalies when 0=200 exist for 7> 10,000, whereas for 8=150 anomalies
occur in the region 7<7000. Increasing the memory space available on the sysiem may eliminate

the anomalies in one region of 7-values and generate other anomalies in another region with larger

values of 7.

The overall system virtual size is obtained by summing up the virtual sizes of the individual
processes. Figures 2-6a and 2-6b demonstrate 7-V anomalies. where V is the system’s average

memory. for 8= 100 and 200, respectively. Each figure contains three plots for MPL=4, 5, and 10.

The average virtual memory of a process can be reduced only as a result of a swapping pro-
cess. It is very likely that a swapped out process, when reactivated. can not allocate its working set;
therefore. it initiates the swapping mechanism. A chain of swapping operations will definitely lead
to a reduction in the average memory space allocated o all processes. Consequently. 7-V anomalies

exist at the individual process level as well as at the system level.

Upon reducing the average virtual memory allocated to a program or to the system, as a
result of a parameter-virtual memory anomaly. the fault rate is expected to increase. assuming that
the fault rate function of virtual memory is well behaved, i.e.. F(7,)<F(7,) if V(7,)>V (7).
This suggests that a parameter-virtual memoryv anomaly should be associated with a parameter-

Table 2-4
Parameter-virtual memory anomalies (INIT. MPL=5)

Parameter | Average Virtual Memorv | j

T, | T, V(e.r)) Vi(8.75) AV

31 61 9.15 §5.82

5011 601 | 295 28.5
701 501 1 30.3 29.7
S01 1 851 1 340 ! 33.4
2000 1 2500 1 464 ! 10.6
2000 1 6000 ' 435 34.6
6500 7000 0 438 ; 35.0
10000 30000 548 16.4

4

i

|",_-

P A MR

-

A
L

Pt Rt 2]

2 00 20a s Y

(B mm A

200

V 100 S

........ A Vv
------------ NEEVINE 4
:_ /
0""'1"1’1—1-;1-11—-_:_1 L1331t L4 23111 11119
1 10 100 1000 10000
T

400

g - Vb
AW [1 M

ST —.—:‘—'-;-———:_M
0'... E— _-l__l_'TllJl L L 1 111t 11 1 1111 1 L0 L1l
10° 10! 102 103 s J

T

2-6b: System, 6=200. MPL=4 ---5 - - -.10 ...)
Figure 2-6: Parameter virtual memory anomalies

MPL=5. INIT. 8=150

10000

|
|
|
|

F —
. 100
\ ;
| e
| e T t
i A :
- i |
-7 |
T | ;
1 L L4l 1 1 it L) 11 11111 L 1 A 1 1 1114 1 A Jd Ll a1l
1 10 100 1000 10000

Frgure 1-7: Page faults and average virtual memory versus 7

v et et e . -

RTINS S WA Y SR

. LR GG, L0
- - L)

.‘.‘~..' R

..

l,'f

- e
AASTEEE (A

1

s

. -

1B

N5

“ .

.
.

27

fault rate anomaly. However, the results obtained from our experiments show that this is not
always the case. To illustrate this observation Figure 2-7 presnts a plot of the page fault rate and
the average virtual memory versus 7 for program INIT (6=150 and MPL=5). In this figure a 7-V
major anomaly occurs in the T region [2000,2500]. The average working set size drops from 46.4 to
40.6 pages as 7 increases from 2000 to 2500. In the same region, the fault rate drops from 220 to
209. The reduction in the average working set size in this region did not generate extra page faults.
However. 7-\" anomalies in the regions 7= [5000.6000] and [6500.7000) are accompanied with 7-F
anomalies. In the same regions. The fault rate increases from 198 to 226 as the average working set
size is reduced from 43.5 to 34.6 pages, when 7 is increased from 7=6500 to 7=7000. For 6=200, a
7-V anomaly (see Table 2-1) is not associated with a 7-F anomaly. Therefore. a parameter-fault

rate anomaly does not always accompany a parameter-virtual memory anomaly.

Similar observations are made when the average working sets of all of the processes (Vi) are
used instead of one process. In Figure 2-8 we plot V, , and F,,, versus 7 for MPL=5 and 6=100. Six
7-\ anomalies are exhibited by the figure. four of which are not matched with 7-F anomalies. For

example. V., drops from 77.5 to 57.8 pages (AV=20) as 7 increases from 7= 250 to 7=300. In the

same region F,, drops from 5627 to 5343 (AF=284).

System, MPL=5, =100

100 ‘ i
T~
F ’ | T —
: 0l ‘
\ ! i i
- ; : PR o)
! } ~
|
/T,’//}—/\'
1()0 [l L4 sl 1 Lo Ll 3l L i 41 L1l

1 10 T 100 1000

Figure 2-5: Page faults and average virtual memory versus 7

WL
LRI
0

]

[A

e e d
' Kar

oy
A

R
F R A A

r“;";.'lc :-I"‘. ‘ol

=

o aay g;;"

) [

‘4
2

L en an it e g b Ruot g oL Senliu i deri Sl e A e N

3 13

28

(I

L

The fact that a 7-F anomaly does not necessarily accompany a 7-\ anomaly. implies that WS
may overestimate the size of a running process’s working set. since a reduction in the working set

size may not result in a subsequent increase in the fault rate: instead. the fault ratie continues to

“~
2
decrease. In other words. WS may accumulate in the working set of a process more pages than it -
actually requires. This is especially true during interlocality transition periods. However, it is also -

possible for WS to accumulate redundant pages during the execution of a phase, rather than in

transition between phases. Assume that a program contains a large locality structure (phase A) and -

several smaller phases. A properly tuned WS should be able to cover the locality comprised by .

phase A. The choice of a 7 value, large enough to cover phase A, may result in covering severai

o

smaller phases before or after executing phase A. As a result of choosing large value for 7. some

pages from previous phases may continue 10 be members of the working sets. Thus, the conclusion

'.’

that "the WS serves as a dvnamic measure of a program’s memory demand” [20] is not accurate.

The results reported in this section show that WS may overestimate the memory requirements of a

program.

LINL Y |
L

2.6.3. Virtual memory-fault rate anomalies

(A |

A virtual memory-fault rate anomaly (V-F) in a multiprogramming system exists for some 6.

Tyand 7, if
‘-'(e.T]) > \.(9.72) and F(O.Tl) > F(G.T:) . ¢

The existence of virtual memoryv-fault rate anomalies is due to the existence of only one of either
the parameter-fault rate anomaly or the parameter-virtual memory anomaly in the same 7 region.
The existence of both anomalies in the same 7 region eliminates the possibility of exhibiting a vir-

tual memory-fault rate ancmaly. This observation is illustrated in the following three cases.

s

1) 7y > 7. \Viryy > Virs)and F(7)) > F(75), 7-F and V-F anomales

vIvory > 7. Ve < Virs)and Fl7)) < F(ro) 7-Voand V-F anomalies -

v (3) 7, > 75 V(7)) < V(7;) and F(1,) > F(7,), 7-F and 7-V anomalies

g In the first case. there exist a virtual memoryv-fault rate and a parameter-fault rate anomalies;
v however, there exists no parameter-virtual memory anomaly. In the second case. there exist a vir-
N

tual memory-fault rate and parameter-virtual memory anomalies but not a parameter-fault rate

SE anomaly. In the third case. both parameter-fault rate and parameter-virtual memory anomalies
Ny

exist but the virtual memory-fault rate anomaly does not exist. All of these cases do in fact exist,

< as was shown in the previous section in Figures 2-7 and 2-8.

X The virtual memory-fault rate anomalies are. graphically. illustrated in Figure 2-9 where we
plot the page-fault rate as a function of the average virtual memory for program INIT for 6 = 30
i and MPL=3. The anomalies in the figure are indicated by the increasing portions of the curve. V-F
anomalies exist at the system level as well. In the previous subsection we observed that 7-V

anomalies are not always accompanied with a 7-F anomaly. a condition necessary for the existence

i of V-F anomalies.

The V-F anomalies are particularly significant since they distort the shape of a life time
curve. which is the inverse of the fault rate plotted versus the average virtual memory. Life time

! curves are used to model program behavior. Besides. some optimal multiprogramming management

e MPL=3, 8:= 30, MAIN -— INIT - - -

Jf

oy
-
LELELAAL]

o)

103

b

T T rrm
3

6HO

<
to
<
—

4
z

N Figure 2-9: Fault rate virtual memery anomalies

e - i 3 - 8 "Rt "t s et B SR i g e I AR Sl N M A S S S T W TRy, R T WEw Ty
o At e et TR NI AT ETS TR NTR TN S T e - R s e s B

¢ .
b 30
-
2,
&, strategies make use of life time curves, e.g.. the primary knee criterion [20]. Most importantly, V-F
anomalies prove that WS tends to accumulate more pages in the working set of a program than it
LY
N actually needs. Furthermore. the existence of V-F anomalies suggests that the working set of a pro-
3 cess need notl be prepaged into main memory after it has been swapped out. In fact. swapping
*
allows a process to re-evaluate its working set and demand paging. after a swapping operation,
<«
’ allows a process to remove redundant pages which could have accumulated in its working set.
= 2.6.4. System memory-fault rate and system memory-virtual memory anomalies

s

One would like to control the fault rate of individual processes or of the entire system by

P R
R

controlling the amount of memory available on the system. Such control is viable if the fault rate

does not increase when 0 increases. System memoryv-fault rate anomaly (6-F) exists if. for some

55

< 0,0-and 7
<.
e 8,>0, and F(r.9,)>F(7.,)
where F is the fault rate of one process or of the entire system. This anomaly type can exist only
.:3 in multiprogramminyg systems where the amount of memory available on the system dynamically
ML
:‘ changes. Increasing the maximum memory allowable on the system can be thought of as a means of
, reducing the page fault rate of individual programs or of the whole system. Contrary to one's
ﬁ expectation the fault rate may increase with increasing the maximum memory available on the svs-
: tem.
i Our empirical results show that WS exhibits 8-F anomalies for both system fault rate and the
:‘ individual processes’ tault rate. For MPL=3, the fauil rate achieved with =14 is larger than that
o .
X achieved with =12 for 7 values 20-30. For MPL=4d, the fault rate achieved with 8=150 can be -
larger than that achieved with 8=100 by as much as 1512 faults. as shown in Table 2-5. Similar ::;:
E observations are made tor MPL=3 and 10. For example. for 7=151 and 6,=100.6,=150.
L’

FlrB>F(r9.).

System memorv-virtual memory anomalies (8-V) exist in the same way as do system

i N s, -'.

‘<o

parameter-fault rate anomaiies. 8-\ exists £, for some 8. 6> and 7

IR SR

31

&

Table 2-5
System memory-fault rate anomalies

=
.-('
- 7 | 6=100 | 6=150 | AF ‘o
. -
g 15 | 8768 | 10280 | 1512 Y
255 | 5123 5125 2 3
265 | 5054 5059 5 '
5 385 | 4403 | 4408 | 5 R
° 395 | 4334 | 4336 2 o]
o
4\ B
- 6,>0, and V(7.9,)<V(7.8,)
e i.e.. the average virtual memory allocated to a process decreases instead of increases when 6 is :
2 :
te increased.
>
i The anomalies reported in this section are not exclusive. There are many other anomalies. of -
all discussed types, which are not reported here; however. the figures and tables presented in this :
.-“ .a_
N section are sufficient to illustrate the anomalous behavior of WS in multiprogramming systems. ".;
.- 2.6.5. Explaining the anomalies N
i‘.‘
The WS policy is a local dynamic memory management policy and. therefore. the programs in : ;
a multiprogramming system may affect each other’s working sets through swapping as discussed o
» X
- earlier in Section 1 of this chapter. The swapping activity. thus. may ove responsible for the :."'
)
P unpredicted paging behavior. Our empirical results show that the swapping activity in a multipro- ~
5 2
~ gramming svstem is indeed the main reason for the existence of anomalies. To illustrate this obser-

- "
. vation we record for each 7 the swapping rate. S (0.7). The swapping rates associated with o]
. .}.

rarameter-fault rate anomalies of program INIT (MPL=3) are presented in Table 2-6a. This table ;

'.h‘ » 9

o ‘
- includes all the anomalies exhibited by program INIT in order to illustrate the effect of swapping

r.

. . 5%

RS on the fault rate. Consider, for example, the table entry for 8 = 11. 7,=21, and 7,=66. The fault o

- o

) rate increaxe. AF. is 262 page faults and S(8.7,) = 2635 > S(0.7,) = 1600. Note that the swapping :_?

‘ rate increase. $(8.7,5) - S(8.7,) = 1635, is much larger than the fault rate increase. AF = 262. The :
0%
- reason for this difference 1s that not all the pages. previousiy swapped out. will have to he paged X
2 0
. N

{7}

R

Table 2-6a
Parameter-fault rate anomalies and swapping rates (INIT)

JB

PPN

8 [7, [7o |FO.7) [FO.75) | AF | s(@.7) | 50.75) §
6 6 11 | 3406 4446 | 1040 | 1338 2710
6] 12 | 131] 1932 3695 [1763 | 1738 3687 x
. 6 [376 | 381] 3686 3704 18 | 3678 3695 N
' 7 6] 11| 3108 3771 063 | 964 345
7] el 66 | 3166 3256 90 | 3027 3120
5| 6| ol | 3038 | 326 | 225] 718 | 3140 e
§ | 126 | 131 | 3241 | 3248 07 | 3133 | 3146 o
9 6 16 [2610 3122 512 300 2437
: 9 21 66 [2818 2911 93 | 239 2775 -
) 9] 191 | 196 [1537 3098 1561 | 1350 2929 o
: 10 6 16 [2556 3149 633 13§ 2299
. 10| 21 66 | 2753 2840 87 | 2237 2669 "
y 10 | 131 [141 | 2823 2830 07 | 2678 2681 ."’
10 | 256 [261 [2781 2788 07 | 2632 2642
11 6 16 | 1525 3065 543 21 2178 .
11 21 66 | 2550 2812 262 | 1600 2635
1| 71 131] 2799 2813 13 | 2624 2637 "~
. 111 196 | 206 | 1445 1455 10 [1281 1287 !
11} 321§ 381 [1393 2836 | 1443 | 1343 2785 B |
. (1 { 386 | Ste | 1395 2829 [1434 [1213 2796 -
g 12 6 21 | 2525 2558 30 14 6606
X 12 36 41 1548 1587 39 1263 1374 %
. 127 200 | 205] 1404 1418 14 [1224 1241)
12| 256 [326 | 1412 1493 81 [1238 1311 .
12] 351 [391 [1472 1513 41 | 1290 1331
12| 761 | 766 | 1412 1424 12 11328 1341 | "\
131 26| 31] 1602 1670 68 | 634 790 N
13 36 41] 1572 1785 213 995 1246
. 13] 9 | 101 | 1505 1512 07 [1287 1298
' 13 | 196 | 3% | 1365 | 1444 79 | 1185 | 1242 &
13 | 321 | 3% [1404 1458 54 1232 1276)
131 506 | 511 [1308 1333 25 [1222 1248
13, 576 | 5811 1306 1362 s6 [122 1279 e
13| 76l | 766 | 1326 1367 41 [1243 1285
30 1L "6 %60 950 20 20 51
301 26t I 266 159 47" 1% 149 207
01 3% | 100 107 145 41 141 182 '_f
30 0 701 | 731 oy? 314 2 124 155
p 30| Ts1 | ;91 29 295 0% 147 155 .
v 30 | 1101 | 1201 27 S 133 156 oo
. 30 . 2201 | 5101 26% §57 1 5%9 125 14 N
1 {100 1101 1200 175 | 223 | 1 00 | o8 . '
' |
. into ramory in the tuture. The working set of a program. at the time of swapping. contains pages

not related to the program’s current locality. These pages have been resident in memory since they

S
‘e

d

AN

+

e ey,

A A P TN S O

5% WD

= |

b

Al

[AR

[e N

Uy
CRL R

#

|2

N L0

33

were paged in; they remained in the working set of a program until a swapping operation occurred.
Accumulation of unnecessary pages is viable because the window size. 7, can be large enough 1o
cover more than one of the program localities. as has been discussed earlier. Similar to V-F
anomalies, this observation suggests that the working sets of a swapped out program need not be
brought entirely into memory once the program is rescheduled for execution. Such a strategy is
further supported by the fact that a swapping rate increase does not necessarily produce fault rate
increase. The choice of this strategy in this study is, therefore, justified. Moreover. it further weak-

ens the claim that the WS serves as a measure of program demand.

The swapping activity is also responsible for parameter-virtual memory anomalies (see Table
2-6b.) This is obvious. since a swapping operation removes the working set of a process from main
memory. thus equating the working set size to zero. This by itself does not generate anomalies.
Anomalies by definition are related to the WS parameter 7. Therefore, if the swapping rate gen-
erated under a larger value of 7 is more than that generated under a smaller value of 7. then there

Table 2-6b
Parameter-virtual memory anomalies (INIT)

0 Ty T2 \'% (9.7'1) v(e.fz) S(O.Tl) 5(91'2)
6 | 126 | 131 8.31 369 | 1736 | 3687
7 6 11 3.8 3.6 964 | 3455
7 16 21 3.85 3.76 | 3009 | 3024
8 6 11 3.84 3.71 718 | 2782
8 | 256 261 5.59 4.86 | 3158 | 3180
9] 191! 19 9.54 6.68 | 1350 | 2929
10] 3211 326 8.00 517 | 2639 | 2768
10 | 756 | 761 5.19 507 | 2752 | 2755
11] 241 1 246 | 10.14 8.59 1 1304 | 1369
11 | 271 | 376 | 1222 5.72 | 1220 | 2794
11 | 386 ; 391 | 1238 565 | 1213 | 2795

L 130 321, 326 | 11.89 1184 § 1221 1 1231

| 30 | 766 . 7711 3137 T 3062 | 138 | 147

| 30 | 3401 | 3501 | 5512 | 5481 | 187 |, 280

30 ' 3001 1 5101 | 61.83 . 5868 ! 404 ' 714 !

(100 1101 ' 1201 37.97 | 37.90 00 | 6y |

3, , TR SRR S SIS A

U

.]
L)

;.

“ g0
S

AT

o .'.._' .

1'. ot et .i'-" kr‘ 7

vy vy ro
' o
TR (RO

¥, .‘. e] '.'l s :I’-

4,
’

-

v

At Ayt %y o Y

NN

L il e

34

is a chance for the anomalies to appear. A plot of the swapping rate of the system versus 7 is given
in Figure 2-10 for MPL=5 (6=100, 150, 200). Figure 2-10 shows that the swapping rate is an
increasing function of 7 most of the time. Moreover, swapping occurs at relatively large values of
7. For 8=200, the swapping rate curve is shifted to the right of that for =150 and 8=100: swapping
occurs at larger values of 7.

A swapping rate increase that results in a parameter-virtual memory anomaly, but not in a
parameter-fault rate anomaly, produces a virtual memory-fauit rate anomaly as discussed earlier
in this section. Hence, a swapping rate increase that results in a parameter-fault rate anomaly, but
not in a parameter-virtual memory anomaly, results in a virtual memory-fault rate anomaly.
Moreover. a system memory-fault rate anomaly has been shown to be preceded by a parameter-
fault rate anomaly. Therefore. it can be concluded that the swapping activity in multiprogram-

ming systems is the main reason for the anomalous behavior discussed in this chapter.

System, MPL=5, =100 ---, 150 - - -, 200 ...

1000

SO0 |

)
!
! |
: |
600 \ 1 :
S | T
2 \ / A
oy
100 l ;7 T < T
| W,)
/ L/ N /
200 i ! - /
i } Iy
3 4‘ . .
() L A L1 L J Ll i J 1 11111 ’ ‘l heeed b LA 2L L L 1.4 112084 1 1 Ll 1l ili .
10V 10! 10° r 103 10? 103

Figure 2-10: Swapping rate versus 7

.t ‘,'-'\-' ,..'\-'._ -',\4‘__1"_‘-'“‘-'_..'\.' .;'N.-'_ ..‘_‘-‘\. .
A N

T T S T A S S Py
R R e L e R N R L S L L A S SO S AT A S
0 . . x . \

2.7. Summary and Conclusions

This chapter has demonstrated WS anomalies in multiprogramming systems. The presence of

anomalies is of theoretical interest in itself. However. we found that the anomalies are far too

numerous to be considered only of pathological or contrived nature. Practically. the existence of

s

anomalies complicate the control process of WS policy. The WS parameter. 7, may not be used in a

§ straightforward manner 10 control the fault rate in the system and memory allocation. Moreover.

WS anomalies, especially the parameter-virtual memory anomaly. illustrate how WS overestimate

'9 a process's working set and. hence, memory could be overcommitted during the execution of a pro-

v cess. :
s

Furthermore. this study suggests that results obtained from uniprogramming studies should
not be used in a simplistic manner to arrive at multiprogramming paging strategies. The WS policy
exhibits only certain types of anomalies in a uniprogramming system. In a2 multiprogramming sys-
tem. performance measures depend not only on the intrinsic behavior of a program but also depend

on the behavior of other processes in the system. Interaction between processes takes place through

paging in global policies such as global LRU and through swapping in local policies such as WS.

The WS anomalies. together with the WS high cost of implementation. leaves open the search
for a better policy for managing memory hierarchies in multiprogramming systems. The next
chapter presents a new approach to the memory management problem. A parameterless policy is
proposed which can respond to the memory requirements of a program taking into consideration

the requirements of other processes in the system.

)
b,
€
‘l
bt.

0%ate"s%4

g
‘>

X E

A AN

A A Y Y e W

Card

Dt

i e 4

EAONENE AR Y -

2]
\
by
"

CHAPTER 3

CD: A COMPILER DIRECTED MEMORY MANAGEMENT POLICY

The idea of using memory directives (MD) for the management of memory hierarchies in a
multiprogramming virtual memory system (VM) has been hinted at by many authors. Madison
and Batson [30] suggested that if program localities generated by the BLI model could be correlated
to the source level code. then it would be possible for the compiler to generate MD to identify pro-
gram localities at run time. Abu-sufah [5] suggested the use of data dependence graphs to isolate
the localities at the source level. In his Ph.D thesis Abusufah found that the localities of numerical
programs in a paged system generated by the BLI model are due to loop structures. A similar con-
clusion was made by Malkawi [31] for segmented systems. The use of memory directives for
optimal memory management was also siiggested by Hagmann and Fabry [27] and by Kearns and
DeFazio [29]. Except for [5] and [31] none of the researchers have proposed any particular MD to be
used. Abu-sufah proposed a directive called allocate which has the function of locking a page in
memory if it can be identified as a member of a program locality. When the program moves to
another locality phase, a deallocate routine is called to release those pages allocated during the exe-
cution of the previous locality. Abu-sufah suggested that a program has to be transformed (2]
hefore allocate and deallocate can be effectively used. Program transformation requires the use of
data dependence graphs to resolve data dependencies. The directives suggested by Abusufah fail to
reflect the hierarchical structure of program localities which is a common locality characteristic

[30]. Besides. allocate and deallocate can not respond to the dynamic change in the memory status

of a multiprogramming system.

The idea of using MD has been practically implemented in real systems. Both VAX. VNS and
Berkeley UNIX allow the user 10 lock and unlock some pages in physical memory. The effectiveness

ot such facilities in VAX VMS was illustrated by Abaza [1]. who showed that “he performance of

- L e L N e S e e et e el e e T e e e e T
AT SSTNNRAY SO e -.'-.','.".'\ et e e) . e TN Ny I A K 5 I v o -

Isl.

%
B

*4

P ey YER W B

4,

it

. (>

~

rP Ll
a

;|-

37

some numerical algorithms can be enhanced if the directives provided by VAX/VMS are properly
used. However. one would like to free the user from having to call a system routine to lock or to
release a page. and having to isolate a page that should be locked in memory in order to achieve a
better performance. Besides. a user may not be able to determine which page should be locked and

when it should be released. unless he has the proper knowledge of his program behavior as well as

the knowledge of the system.

In this thesis. three memory directives are designed to achieve two goals. The first one is to
allocate N physical page frames 1o a running process’s resident set. A directive. designed for this
purpose, should be able 1o define the size of a program’s resident set and allocate enough physical
pages to accommodate it. In this study. such a directive is called ALLOCATE. The second goal is 10
lock a page or set of pages in main memory. A locked page. by definition. is exempted from being
paged out by the page replacement mechanism. A directive is developed for this purpose, and called
in this thesis LOCK. LOCK has a similar function to the directive proposed by Abusufah [S]and to
the system facilities provided by VAX/VMS and Berkelev UNIX (VMS and UNIX user manuals).
A page that has been locked in memory by LOCK is unlocked by a directive called UNLOCK. Later
in this chapter. we shall discuss a case in which the operating system (0OS) is entitled to release a

page before UNLOCK does so. ALLOCATE. LOCK. and UNLOCK are discussed in greater detail in

the following sections.

Based on the three directives developed in this study, a compiler directed memory manage-
ment policy (CD) is proposed. CD operates as follows. At compile time, a preprocessor generates
directives of the type ALLOCATLE. LLOCK. and UNLOCK. These directives are inserted at appropri-
ate locations into the compiled okject code of a user’'s program. At execution time. the directives are
executed by the CPU. When a direct:ve is executed. CPU generates a call to a particular OS routine

responsible or processing and handling memory directives. Figure 3-1 presents a block diagram of

D.

:’,"d

A

> w
h™

"N

»

-

3

AL .-" 5‘? !

o,

R

e S I IE Y L
el

l"."

) Y

- ot -

Ve e e el

38

Source Directives .
Code - Compiler
Object
Code < cPU
Direqtives
Operating Memory
System Management

Figure 3-1: Block diagram of a compiler directed memory management policy

3.1. Memory Directive: ALLOCATE

One of the major problems a memory management policy has tc solve is the amount of physi-
cal memory that should be allocated to a program during its execution. Run time policies. whether
static or dvnamic. determine the number of pages to he allocated at run time as discussed in the
first chapter [t has been shown in Chapter 2 that WS, a dvnamic run time policy. may overesti-
male a program’s memory requirements. Compiler directed memory management policies estimate
the memory requirements of a program at compile time. using scurce level information, and passed
to the OS through ALLOCATE. which is designed in accordance with locality characteristics of pro-

gram behavior and the constantly changing free memory space available an a multiprogramming

VA svstem.

HE

A4

“
P4

k) |

s

>

L X
.

-

Shn

=

: v
.:' 3.1.1. Locality characteristics of numerical programs :"’;
28]
A locality structure may result from data structures created at run time, e.g. stacks, or from -
A o
data structures declared in the source code of a program. The later case is considered in this thesis. :}'
» ("-\
té The BLI model of program localities [30] suggests that array references inside loop structures of
; RN
‘ numerical programs are the main reason for the existence of localities at execution time [S), [31). A iy
‘ -
. o
hY
< nested loop structure produces a hierarchical locality structure. Such structure defines one of the ::)_
rY
= locality characteristics, namely the level of a locality in the hierarchy of localities. Another charac- {4
[
teristic of major significance to our study is the virtual size of a locality. The time duration is also %
~ e
- a locality characteristic as seen in [5]. [30]. [31]. Consider Example 3-1 for illustration. 3
-‘.‘-
L)
i Example 3-1 shows a FORTRAN-ike piece of code. The maximum nest depth of the loop
structure is three. Two arrays. E and F. are referenced inside loop 20. Arrays E and F are refer- ‘._
[S ¥
g enced in a row major order, i.e.. the elements of a row are referenced while the current column o+
index, L. is fixed. The elements of an array are stored in a column major order; this assumption .
N -
N
Example 3-1: o
o) DO 10I=1,N Sl
- DO 20 J=1, M T,
E(LJ) = F(1,]) int
- 20 CONTINUE
DO 30 K=1.M -‘:::: ..
G(K,D = H(K,I) oy
; DO 40 L=1,NN oy
- V(L) = V(L)*2
~ 40 CONTINUE
2 30 CONTINUE -
10 CONTINUE o
) The localities of the above code are illustrated in the following diagram: e
) S
Level 1: Loop 10 + {EF,V} 4 oY
™ ’(}'n
~ ~ . . B - . Y
v Level 2 Loop30 i VY o G- HVY coerreranraeees NG A V) %
. . . . - - 1‘;‘
ﬁ level 3: LOOp 40 9___4 ; v .} Vv T V i sssessscessssescessae g i \ -
I::.
e
2
. :
2 o
“~

RN iy Ca Tt N T T ST R T n A T e gt ,'r‘_, __—.\._‘.,'-',_.-\.- » ._.-\.. ,- s

TS W N ST

40

holds throughout this thesis. Every element of arrays E and F is referenced one time during one
iteration of loop 10, i.e.. the entire virtual space of arrays E and F is spanned during one iteration
of loop 10 due to a full execution of loop 20. Hagmann and Fabry called this type of referencing
pattern total {27). Note that there are M iterations of loop 20 per each iteration of loop 10. There-

fore. a locality comprised by loop 10 includes the virtual spaces of E and F.

Loop 10 is the outermost loop which forms the highest level locality, or level one locality as

termed in [30).

Arravs G and H are referenced in a column major order inside loop 30. When loop 30 exe-
cutes. the column elements of arrays G and H are referenced sequentially, while the column index.
1. is fixed at the outer loop level (loop 10). Since the elements of one column are stored in consecu-
live pages. according to the storage scheme. the locality at this level includes only the virtual space
of the column being referenced in the virtual space of arrays G and H. The index J takes a new
value only when loop 10 reiterates. The elements of a new column will be referenced during the
next iteration of loop 30. In other words. the virtual space spanned during the execution of loop 30
is determined by the new column elements of G and H. Consequently, references to G and H inside
loop 30 form a locality as long as loop 30 remains active. However, every time loop 30 resumes
execution a new set of pages form the locality. In the diagram of Example 3-1, localities formed by

loop 30 are illustrated by G ./ ,. - - .G, M, . where G, is the virtual size of column i of array G.

A one-dimensional array. vector V, is referenced inside loop 40. During the execution of loop
40. the virtua! space of V is spanned totally. The virtual space of V is referenced totally during
each iteration of locp 30 and ioop 10. Therefore. V' participates in the localities formed at level 1
and 2 as well as at level 3. The localities are illustrated. graphically. in the diagram of Example 3-
1. Fxample 3-1 is oo simpie to illustrate how program lecalities can be automatically extracted

rom the source level code.

Our concern here 1s with the hierarchical characteristic of program localities. A macroscopic

view of the locality structure exhibited in Example 3-1 shows that all arrass, ECFD GO H and VL

X {3

. %%
.'-'J

.
)

NAAS

.
-

- e
v,

¢
L

iR

A e I N I

PR
RIS

A,

=
o
.
'
.
»
)
B
LY
L}
N .
o

=23

a1

‘..

l‘c

P
LR
.

2.
A

. .
LA A

o
-

41

should be considered part of the program’s current locality. This view is obtained by looking at
loop 10 as indivisible entity. If the program’s memory reference pattiern is observed while the pro-
gram is executing loop 40. the program’s current locality appears to include vector V only. Such a
microscopic view of the locality structure shows that the smallest program locality dominates ail
other localities. This illustrates how a program may change localities within a given locality struc-

ture, (intra-locality transitions). In Example 3-1. intra-locality transitions occur between levels 1

and 2 and between 2 and 3.

The problem of intra-locality transitions was treated in [9] by linearizing the locality struc-
ture. To linearize a locality structure consisting of two levels is to decide that one of the locality
levels is more significant than the other at some time instance. Least significant localities are
dropped from the locality structure, thus leaving only one path connecting all locality levels. The
difficulties of this approach are cited in [5] and [31]. Besides. each locality level in a locality struc-
ture reflects the memory referencing behavior of a program during a particular phase of the pro-
gram execution. In Example 3-1. while the program executes loop 40. the virtual space of vector V
is being referenced continuously, irrespective of the significance of level 3 locality compared to
level 2 or 1. Therefore, the locality comprised by loop 40 is significant during the execution of loop
40 and the locality comprised by loop 30 is significant during the execution of loop 30 and so on.
Allocating the outermost loop produces the minimum possible fault rate for a given locality struc-
ture. irrespective of its relative significance to other levels. since the virtual spaces of all referenced
arrays within the outer loop are made resident in memory. However, it may not always be possible
to allocate the locality comprised by the outer most loop (level vne locality) due to insufficient free
memory. In such cases. the availability of free memory should determine which level ol the local-

ity structure should be allecated.

From tae above discussion the following observations are made. The highest level locality
(level 1) produces the lowest rossible fault rate. when allocated completely 1n main memory. That

ix because every page referencad inside a level one locality 15 paged only once into main memor:

' -‘J';\'.:"' < ,‘:f'l' & ' .f " "‘:-".-";-';I -"._n‘..f\(B PO e

P
i ’

...
’-'v‘,-'v

P Lt

Sy
S

.
«

Lt
CSCARAES,

v e, e, LT
AR R v e e N
L. W

Ty v e

42

(assuming a demand paging strategy). and will not be replaced by the page replacement strategy.
The allocation of a level one locality implies that the resident set of a program should not be less
than the number of pages referenced inside the lccality. However, if a level one locality is too
large to fit in the main memory. the next lower level locality should be considered for allocation
(lower level localities have a smaller size than higher level localities). In other words. a program
settles down to a microscopic view of its locality structure. If the second level locality can not be
allocated. the third level locality is tried for allocation, and so forth. A program may keep recon-
sidering its lower level localities for allocation as long as there exists at least one more lower level
locality. The program should not. however. be allowed to run if the lowest level locality can not be
allocated: this restriction is necessary to prevent thrashing. Assume that the lowest level locality
contains N\ pages and there are only N-1 free memory pages. N-1 pages from the lowest level local-
ity may reside in main memory and one page has to be maintained in virtual memory. Every time a
reference is made to the N’ page (in virtual memory). a page has to be removed from the main
memory. A reference to a replaced page. in the future, will cause a page fault which results in
replacing another page. The outcome of this cyclic faulting process is a short life time between suc-

cessive faults, a phenomenon known as thrashing.

These observations lead to two key principles underlining the design of the ALLOCATE direc-
tive. First. the highest level locality, level one in the hierarchical locality structure. is favored over
localities of lower levels for allocation purposes. Secondly. the lowest level locality in a hierarchi-
cal locality structure, imposes a lower limit on the memory space that should be allocated to a run-
ning process. These two principles reflect the dynamic change of the program’s memory demand
due 1o intrinsic properties of program behavior. The failure 10 recognize these principles may lead
to improper memory allocation strategies. In order 1o incorporate the above principles into MD.

each locality at some level in the hierarchicai locality structure is assigned a priority index, P.

Up to this end one can recognize two primitives for ALLOCATE. The first one 1s the amount

of memor. 1o be ailocated. X. given by the virtual size of a locality. The second vne s the priornits

mr

'v

'\

7’ - L

-
1

o4y

o

R

1

ot

“~ %%

- 18

r .
oy

P I

L PR

e A P

cv .
0 |

43
of allocation, P. ALLOCATE may have the following form

ALLOCATE(P .X)

where X is the virtual size of a locality, and P is the priority index associated with that locality.
Upon executing a directive of type ALLOCATE, a request is issued to the operating system to allo-

cate X pages. given that the priority of allocation is determined by P. Both primitives, P and X will

be discussed in more detail in Section 3.1.4.

ALLOCATE. in its simple form given above, can not respond to the dynamically changing
amount of free memory spacein a multiprogramming system. The amount of free memory space
available on the system may increase if a running process completes its execution and returns to the
svstzm, whatever memory it has occupied, or if a process enters a new phase with a smaller size
locality, thus. adding the released pages to the free memory. On the other hand. the free memory
may shrink in size if a new process is added to the system or if a running process enters a new
phase with a larger size locality. Moreover. the above form of ALLOCATE does not completely
incorporate the first principle cited above: namely. that higher level localities should be favored

over lower level ones. To account for these two drawbacks. a more complex form of ALLOCATE
directive is given below:
ALLOCATE(P,.X) else (P3.X,)else -+ else (P, . X,) where X 2X.2 - 2X,

Each ALLOCATE directive has one or more parameters. Each paramcter has two primitives
enclosed in parentheses "(P.X)". At any level of a locality hierarchical structure. ALLOCATE con-
tains a parameter associated with the current level and one parameter for each leve! enclosing the
current level. The order of parameters in ALLOCATE is such that parameters associated with
nigher level localities precede those associated with lower ones. as shown in Figure 3-2. A mul-
tinested lcop structure is shown in Figure 3-2. Each loop forms a locatity with size X, and has a
priority £ . The outermost loop forms a level one locality with Xy and Py, The direcuve associated
aath s localits s ALLOCATE (£71.X). Going down in the hierarchy struvcture to the second loop

rith rest depth - the directive reconsiders the allocation of the previous jocality speaified by

"X betore 1t conviders the primitives of the second level locality specified by 125, X) and ~o
: P YN A RERA S

) '-.::1

[N

T

r"l

L}
Y o

12

)
.

v

N 2 A

IR

-
«

v s e o,
PA Y
P .,

y
[4

%y

¢
I3
.

o
‘,t'&;.v'ﬁ-' "

44

forth.

3.1.2. Processing of ALLOCATE directive by the operating system

For the moment, we assume that directives of the form
ALLOCATE(P X)else (P3.X,) else
have been inserted into the program'’s code at compile time. At run time the directives are executed
by the CPU. Once a directive is executed, a system routine is invoked to handle its processing.

ALLOCATE issues requests of the form (P;.X,).(P1.X,). ... in the same order. The OS first receives

ALLOCATE (P ,X)

Xy
P,

ALLOCATE (P ,,X) else (P5,X 5)

X2
i

ALLOCATE (Pl,X l) else (P:,X 2) else (PJ,X 3)

X,
Ly

I

ALLOCATE (P ,X) else (P,,X)

Figure 3-2: Example of ALLOCATE directive

Ek

s
-

M5

L5
»

2

SRS B ¥ 2

F R
4

P

K

cf
* l."

Mt aT Y B A

“» "¢ "Wj

B % %

"{\)\‘_\

“

- s

9% the request (P,.X,) and tries to allocate X, pages from the available free memory. If X, pages can

A
L FoiN

»
’
"

-
k33

not be allocated. then the OS examines the value of P,. As a convention P=1 is chosen to be the

>

priority of the lowest level locality in a hierarchical locality structure. Hence. P;>1 means that

WA
u~’:¢

there is at least one more lower level locality. and at least one more directive argument (P,.X 2)

. . . - LY

where X,< X, and P,<P;. In this case, the program is allowed to continue its execution, with its N

o)

% current memory allocation from the previous directive, until the next request (P,.X>) is received. ~
- Y
Once again, if X can not be ailocated. the execution continues only if £>>1. This process continues i

e

[/KA
v ,

until a memory request X; is allocated. or the priority of the request is P, =1. In other words, the

<1

s

o program exists in the scope of its lowest level locality. or. using source level code notation. the pro-

» ':.'

P
2
Ly

gram is currently executing the innermost loop of a multi-nested loop structure. In this case. OS

W
.'::_:,

either suspends the program’'s execution or invokes a swapping mechanism (SM). The choice

H

between these two actions depends on the priority of the running job and the priorities of other

‘JU
A, 4

jobs existing in the system at the time of processing a directive. In the performance evaluation of Rt

>
i CD it was assumed that all processes have the same priority and. thus. the OS invokes SM when~ .

[
v

) ever it has to make a choice. SM is discussed below in greater details. The processing of ALLOCATE

=
- is shown in Figure 3-3. o
“ -'.t
-
s In Figure 3-3 the priority index P=1 is used to indicate the lowest level locality. With P=1 :
X
f associated with the lowest level locality, the OS simply checks whether the current priority is e
o
larger than one or not in order to determine the next step when sufficient memory can not be allo- -
. cated. Otherwise. if P=1 is associated with the highest level locality and P is increased with the -
A ! A N
- increase of the depth of the locality structure. a look-ahead scheme will be necessary to know the o
py 2
bt relative position of the current locality. However, assigning P=1 to the lowest level locality. ~
: 0
.;- comprised by the innermost loops. inhibits the use of a one pass top down parsing scheme when the X
LS .
directives are inserted. as will be seen in Section 3.1.4. e
" ”
Y
. .':*:
rl -..\
- Y

RN

ot

- W

46
3
\

Directive

Received

Memory

Available
s
4y
) Allocate
o
\
) Job

Priority Execute Until
3 Swapper Ngxt Dlrgclxve
: is Received
: Suspend [
- Figure 3-3: Directive processing by the OS
E 3.1.3. Swapping mechanism
N The OS may invoke a swapping mechanism (SM) if the available memory space is not enough
X to allocate the current request and the priority of the current request is P=1. Besides being able 0
invoke SM. CD provides a strategy for partial swapping, using the priority primitive of ALLO-
) CATE.
) In regular swapping strategies. a process is selected for swapping. according o some critera.
and its resident set i5 removed from main memory. We call this strategy total swapping as opposed

: W partial swapping strategy (PS). Partial swapping reduces the current resident set of a process.
&

selected for swapping. to a smaller value. The viability of partial swapping is facilitated by the
priority primitive and the hierarchical nature of ALLOCATE. PS operates as follows. When

invoked by a directive with P=1. the swapper searches for anyv process occupving memory space X

« -y s EEPRE TP

;e ‘A -.“ Y.

?i%‘f."! & ‘,‘-‘ ','{~I~‘# ,_-'.;J' e ‘ ‘(.‘.'_;f Ca .f. o,

SR el)

"
k¢

e | [

r
-

| S

x, See s
‘5 .

L

47

with a priority P, > 1. The resident set of such a process is reduced from X, to a new value X, . X,
is the size of a lower level locality with X, <X, and P; < P,. In the model used in our study we
reduce the resident set size of a process to that one associated with P=1. The philosophy behind par-
tial swapping is that a process A may find enough memory space to allocate its largest locality.
while process B can not allocate its smallest locality. This may happen if process A is scheduled to
run when the system is not heavily loaded. while process B enters the system when it is heavily
loaded. Forcing all processes to run with their smallest localities allows more processes to share
memory. However, thrashing is prevented by ensuring that every process is allocated enough

memory to accommodate one of its localities. no matter how small the locality is.

Various schemes of partial swapping could be implemented. For example, a multiple queue
could be used 1o hold processes with different directive priorities. The partial swapping mechanism
would transfer the processes in the largest priority queue to the next lower level and continues
until either the memory request is satisﬁéd or the only unempty queue is the one with P=1. Total
swapping becomes necessary if every process in the system is running with P=1. Partial swapping

strategy is further illustrated in Example 3-2.

Example 3-2:

Assume that two processes A and B are running in 2 system with 120 memory pages. A executes
the directive MD,: ALLOCATE (3.100) else (2,5C)else (1.10) and B executes MDjz: ALLO-
CATE (1.25). Assume further that A is activated first. The following execution time intervals (¢,)
are observed:

tl: A executes MD, . The first request (1,100) is granted since X=100 is less than the available free
memory F=M-0=120. The status of A is $3 =100, P, =3 (S is the resident set size):
the last argument of MD, (1,10) is saved in a process specific record. F=120-100
=20 pages.

12: Interrupt occurs and B is activated.

13: B executes MDj3. The first request (P=1.X=25) can not be granted because X\=25 is larger than
F=20. Since P=1. OS invokes SM. The partial swapper (PS) finds A occupying 100
pages with a priority larger than one. P=3. PS reduces $, from 100 to 10 pages:
§.:(P=3X=100) = (P=1.X=it"). F= 120-10 = 110 pages. Now B's request can
he granted: Sg =25 pages. F=110-25=85 pages.

t4: Interrupt occurs and B is activated.

15 A executes MO .. The first request (P=3,X=100) can not be granted recause X =100 > F=95. A
continues execution with its previous allocation S, =10 until the next request (2.50)
is received. The request is yranted since X =50 < F =585 The status of A is
S, =50and P, =2 F =45

A Steady state s reached with 25 payges allocated to B and 50 pages allocated to A, B always gets

K .-_. T '_._._-'..\'.‘:.,‘;.‘.\'3\"_._;_.) -..\-.. I -‘. -‘, \,..*’-..'u)‘\..‘-_.

~
Al

R
.V
D

*
-
.
()

48

the 25 pages it asks for since the request has a high priority P=1. A cannot be allocated 100 pages
as long as B is in the system: A will not, however, be forced to run with 10 pages since B cannot
invoke SM anymore.

3.4.1. Primitives of ALLOCATE directive

ALLOCATE incorporates two primitives: the priority index P and the memory request X.

Both primitives are discussed in the following subsections.

3.4.1.1. Priority primitive, P

The hierarchical nature of memory demands due to the hierarchical nature of locality struc-
tures is reflected into the hierarchical form of ALLOCATE through the priority primitive P. Recall
that the allocation of the highest level locality, level one, achieves minimum page fault rate dur-
ing the execution of a multi-nested loop while the allocation of the lowest level locality,
comprised by the inner-most loop, is sufficient to prevent thrashing. The highest level memory
demand is determined by the highest level locality, comprised by the outermost loop of a multi-
nested loop structure, whereas lowest level memory demand is given by the virtual size of the
lowest level locality. Memory requirements in between the outermost and innermost loop of a

program are defined by the sizes of corresponding localities.

The priority primitive, P, is used to determine the sequence in which lo.alities of a given
construct should be tried for allocation. A locality at level one should be tried for allocation
before a locality at level two, and a locality at level two should be tried for allocation before a
locality at level three, and so forth. Such precedence is motivated by the hierarchy of locality

sizes. Higher level localities are larger in size than lower ones. And the allocation of larger locali-

ties is sought to achieve lower fault rates.

The priority primitive is used to impose a lower limit on the memory requirement of a pro-
gram. Such a lower limit is given by the virtual size of the lowest leve! locality. The inability to
allocate the lowest level locality results in thrashing. The execution of a directive associated with

a lowest level locality requires the allocation cf such locality even at the expense of swapping

‘B

P 1Y

(2]

Ay
-y

A
A

.

&

i 49
"‘;f.
ot
W some processes out of memory. Thus, P is used by OS to inveke SM when necessary. Moreover. P "
l‘) ;
is used by the partial swapping mechanism as discussed in the previous section. A process. running
. . . LY
! with P> 1. might be selected for swapping by PS. .
%
b The value of P can be deduced from the relative position of a locality in a hierarchical local- o
[2
ity structure. The largest value of P is defined by the maximum nest depth (A) of a loop structure
.
f’é since A imposes an upper bound on the number of localities in a given locality structure. Hence, "
W A
\ the values of P range from 1 to A. The outermost and the innermost loop compose an envelop .
' T
: enclosing all other intermediate localities. P =1 can. in principle, be assigned to either one and P =4
'
v'~:
‘eo to the other. In the previous section we assigned. by convention, P =1 to the innermost loop. The N
‘¢ ‘-
" ".‘
motive behind this is to enable OS, while processing a directive. to determine the memory request
. -
associated with the lowest level locality. This is necessary for two reasons. First, if the current]
X
- memory request can not be allocated and P=1. SM should be invoked. Otherwise (if P=A is
S
-1 .
v assigned to the lowest level locality). A should be known at the time of executing a directive to i
4
' compare it with P every time a request can not be satisfied. The second reason. the value of the i
(P.X) pair associated with the lowest level locality should be stored in order to partially swap a .:-:'.
. I
N process if needed. ~:::
! In a multi-nested loop structure, there can be more than one innermost loop. Each of these b
A - I-.<
loops forms a lowest level locality which must be allocated if the process is to continue execution. :'.:"
B ._\'.
:-_', The priority P=1 is assigned to every innermost loop and P =A to the outermost loop. The priority o
e of anyv intermediate level takes the value between 2 and A-1. Such value is used to indicate how Ko
.y R
many more parameters a directive could have. In effect the value «f P at any level L, is a measure -:::

[

of the Jistance d between L, and the innermost loop enclosed by L,. The priority P, assigned 1o

any loop L, can be iteratively evaluated by finding the maximum nest depth 4, of an inner loop .

==
[N 2
L]

enclosed by L, . assuming that L, is an outermost loop. and assigning P, =4, . Y

Assigning priorities to a loop structure, thus, cannot bhe performed with a single top down

A
-

parsing techinique since il is necessary to know the depth of the innermost loop relative o the

22

A
N
.
‘—.,‘;'..;'..*.-.",5,...--.,"',‘\.'..g'. o n’,."'»t" oy --.“.'s‘-'-' .‘A"-V'--‘._- ' - -_-_'- . .', N e N e e T e e e e T T e T T T e T

n
¥
50 -
Iﬁ'
A)
1 current outer one. A single top down parsing scheme can be used, bowever, if P=1 is assigned to
the outermost loop. A procedure for assigning priorities to various loops in a multi-nested loop o~

construct is given in Algorithm 3-1.

"lL

. Algorithm 3-1: Assign priorities to loop structures;
. Repeat: E‘
Step 1: Parse until a loop is encountered. R
k Step 2: Find the maximum nest depth, A, related to this loop.
Step 3: Assign P=A to the current loop. -
Until the end of the program is reached.)
f -
i
.
An example using Algorithm 3-1 is shown in Figure 3-4.
> &
X 5
o) 3.14.2. Memory request primitive, X
.
-)
The memary requirement of a program, X, at a given time, is determined by the virtual size i
- of the current program locality under execution and is used as a primitive of ALLOCATE. In this .
) _\:
- study the localities are restricted to those comprised by loop structures since the study is con- N
ducted on numerical programs where the locality structures can be correlated to loop structures ’
s
at the source level code [5]. [30] and [31]. In this section, the virtual size of a program locality is
. estimated using source level information. :-:
Only references to array data structures are considered in this study. The instructions code -
y and data constants are assumed to be locked permanently in main memory. This assumption is
. Ix-
) realistic since the paging behavior of numerical programs is dominated by references to array data :_
A structures inside loops [4], [30]. Moreover, the virtual size of the instructions and the constants is (o
. \
5 relatively small compared to the virtual size of array data structures. e
" .
W The estimation of the virtual size of the current locality utilizes only the informat.on avail- i
able at the source level code. A wide range of FCRTRAN programs used in different packages was . 4
. A \
‘ examined for the purpose of identifying their localities, using the information inherent in -
a
<
L

e e e e e N A N O
) s el o O i, A A e e T, AN T T T I T T e "':' R N A S A AR R A A

”
N

LS~ =nex

Fr

[

<

=

[ty

[N o
"-.-.'»

»

w

- ."‘

51

S
— 3
— 2
— 1
L
1
4
1
3
2
1

Figure 3-4: Example of assigning priorities

the source code. Some of these packages are UIARL : University of Illinois Atmospheric Research
Lab. ACM: ACM Standard Programs, IEEE: IEEE Standard Programs for signal processing: NRL:
Naval Research Laboratorv. AFWL: Air Force Weapons Laboratory. Fishpak. Eispak. Minpak.
Fishpak is a package of Fortran subprograms for the solution of separable elliptic partial
differential equations devzioped at NCAR (Naticnal Center for Atmospheric Research). Fispak is a
package of Fortran subroutines for the analysis of standard and generalized eigenvalue programs.

Miinnak is a package of For.ran subroutines for finding the minimum of solution squares of ~ets of

nonlinear equations.

A
o

X5

~ -

. 2
~ b

Al

2

SereTe, Y
P4
{‘- 4y

PR A RS

o

- o ok -

PPl e il e

a s a & Tave 8 0 & ¢

Py IR

AalR-ACI

B Vit I'TVY'.';'- Al Al sl iadi A b Saliony
v e e e P S .

52

Examining the source code of these programs reveals that six parameters can be used to calcu-

late the virtual size of a locality. Five of these parameters are program dependent and one is system

dependent. The system dependent parameter is the page size (P). The page size is necessary for cal-

culating the virtual size of a locality in pages. since memory allocation is measured in pages. Pro-

gram dependent parameters are

(1)

Array size (T) : L is usually given as (M x N) dimension, where M is the number of rows and
N is the number of columns. A vector is an array with N = 1. Only up to two-dimensional
arrays are considered in this study. Array sizes are given explicitly in dimension declaration

statemeats. The virtual size of an array (S,) is given by

- (M xN)
P

assuming that each array element is one word long. The virtual size of all arrays referenced

Sa

in a program comprise an upper bound on ils memory requirements. The memory require~
ments during the execution of a loop structure are bounded by the virtual size of the arrays

referenced inside the structure.

The nest depth of a loop structure (A): A determines whether the current locality has a
hierarchical structure or not. The value A>1 implies that a hierarchical locality structure
with utmost A levels may exist. It is possible, however. not to have a hierarchical locality
structure with A>1. For example. a doubly nested loop (A = 2) with arrays referenced in a
row major order inside the inner loop forms a single locality of level one. The nest depth is

also usetul for assigning priority indexes to nested leops.

The number of indexed variables used 1o reference the elements of an array (N): N\ is used to
give an upper bound on the number of distinct arrav pages referenced at a given locality level.
The maximum number of arrayv elements which cun be referenced during one iteration of a
loon is determined by the number of distinct indexes. N, used to addrexs the array. If the
arrav elements referenced at a particular level are stored :n distinct pages. then N distinct

rages are referenced at this level. Dependiny on the dimension and the order of reference ot

')

Wy

e

B

J{-I‘ e

“ s
5,0

S |

[

14
’y

£
»

L
%

P

ﬁ 53 s
.
¢ : . . Y
E:; an array. N\ can be used to give an upper bound on the number of array pages which partici- b
! pate in the formation of the locality at the current level.
* (4) The order in which arrays are referenced has a direct effect on the formation of a locality. If Kr
.
2 an array is referenced in the same order as the elements are stored in the virtual storage, then '
- ‘
each array referenced inside a loop contributes to the locality comprised by that loop. On the
-~ .
] - »
o other hand. if the elements of an array are referenced in a different way than that of the A
-
< storage scheme. then references fall across pages. In this study we have assumed a column e
major order scheme. The elements of the first column are stored sequentially in the same page.
L
Ix. l..
A If the number of elements in a column exceeds the number of words in a page. a second page ‘o
. -»,
K
. is used. and so on until all elements of a column are stored. Then the elements of the second K
- column of the array are stored in the same manner, until all columns have been stored. N
[Ay¢
- i -
s An array is said to be referenced in a column major order, A, if the column index, J, is -
., e
fixed and the row index. /. varies during the execution of a loop. L,. The addresses generated e

by references to A* fall into adjacent virtual space locations. Once a page is addressed. its ele-

5 2,0 1]

.

N ments will be referenced sequentially until a second page is addressed. When a second page is "
[N »
v referenced. the first page will no longer be active. Therefore. only one page from A€ will be -
, active at a time. However. if several row indexes are used 1o reference a column'’s e¢lements. ::-
) several pages might become active during the execution of Z,. Hence. the localit: comprised
: by L, may consist of several pages. depending on the number of row indexes used in combina- i
- tion with a column index. It is also possible that several column indexes. J . could be specified -
A N
B at outer levels. In this case, the virtual space specified by each column will participate in the ,
-)
v. formation of CL. -
:(- An array is referenced in a row major order. A’ ., if the elements of a row are referenced *
-"t' sequentially during the execution of a loop. L,. The row index / ix fixed. while J . the :$

cclumn index. varies inside L,. Any elements referenced in a row ma‘or order are located in

o«

two different columns and. hence. in two different pages. unless the column size is less than "

LA

the page size. Therefore. the numkbker of pages 10 be referenced during the execuation of L is

]
[
.
.
4

T A

3

«*e

vy

o ‘ P

Celd W

e
PY

AW

F ARAANR AR

ot e® A

(5)

54

equal to the range of the column index J. A page referenced in one iteration of L, would not
be referenced in the next iteration, since the next reference is made to an element in a different
column. Hence, no locality of reference exists at L, level. If the virtual size of a column, S .
is less than the page size. the elements of two successive columns may be stored in the same
page: assuming that all pages of an array are filled except. possibly. for the last page. In this
case the number of pages expected to be referenced during the execution of L, is equal to the
total number of pages in the virtual space of 4’ . The maximum number of pages referenced
from the virtual space of A’ depends on the size of each column compared 10 the page size.
Given a A’ with a dimension (MxN). where M is the number of elements in a column or the
range of the row index /. and N is the number of elements in a row or the range of the
column index J . the following equation finds the maximum number of pages. X, . that may be
referenced during the execution of L, :
- M*N

P lf S_\‘r <P (3_1)

Xi =N if s, =P

where S.; is the virtual size of a column and M*N/P is the virtual size of the array. Note
that references to A’ do not form a locality of reference at the same level of reference (L,).
However, a macroscopic view from a higher level L, , where j=1.....i-1 shows that a locality of

reference results from referencesto A’ at L,.

The level (or nest depth) at which an array is referenced (A): A = 1 is the nest depth of the
outermost loop in a mului-nested loop structure. A increases as we go deeper into the loop nest.
The nest depth of the inner most loop. A = A, is the maximum nest depth of a loop structure.
The smaller the value of A. the higher is the level. A row-wise referenced array at some level
A=t does rot form a locality at this level. Howevar, if there exists a higher level A<i . then
A7 forms a locality at all lTevels with A <¢. That 1s because the virtual space from .\ | refer-

2nced al A=:. is rereferenced repeatediyv Jduring the execution of any higher ievel loop with

A <:i The entire virtual space of A" . S, .. s referernced during euch iteration =1 unyv loop with

'h
L

L
7

“e_®
et]
Y

i

55

level A=1.2...i —2. Therefore. A’ tends to form a locality at higher levels A<i with a size
X,-; given by equation 3-1 for the locality at level A=i—1 and a size X,=S,, for
j=12.- - i=2.

Similarly. for the case of a vector, one iteration of a higher level loop A= is sufficient to
span the entire virtual space of all vectors referenced at lower levels, A> j. Therefore. the
entire virtual space of a vector referenced at level A=i.i 1 contributes to all higher level
localities, A <i .

In the case of a column-wise referenced array inside a loop at level A=i , one or more columns
of an array are spanned during the execution of L, loop. These columns are usually specified
by an outer loop with level A <i. The entire virtual space of A is spanned during one itera-
tion of a loop at level A=1.2.....i —2. Thus. the entire virtual space of a column-wise refer-

enced array contributes to localities formed at least two levels higher than the level at which

the array is referenced.

N\ext, the above parameters are used in a more quantitative manner to evaluate the contribution of

vectors and arrays to a locality structure. For the convenience of the analysis the cases of vectors

and arrays are treated separately.

Vectors

A vector (V) is actually a matrix (M x 1) with M rows and one column. Memory locations in
which the elements of a vector are stored constitute the vector’s virtual space. The elements of a
vecior are stored sequentially in a page until the page is filled. and then a second page is used. and
so on until al! the elements of a vector are completely stored in the virtual storage. A page contains

only the elements of one vector, homogeneous storage). The virtual size of a vector (S,) is defined

BN

S =M;P
where P s the page size and M is the number of elements in the vector. assuming that euch element

i one aerd long.

'y

e

Mdah i Bad Jk Sk Bah ek gt ek Sdh i SuliCi S

N)
Q] 56
o '_.
N ‘.
"
‘ Assume that a vector, V,, is referenced inside a loop at a nest depth A=i, as shown in Figure
A 3-5. and V', 's elements are referenced through the indexed variables specified by the current loop. o
~ L,. The locality comprised by loop L, is the current locality (CL). A vector V, contributes to the e
N 3
: CL as well as to all higher level localities comprised by outer loops, L ;.L,. ---.L,_; with nest -
. . Lo
r. depth A=12, - - -i—}, respectively. '
L.
o Consider the contribution of V, to the locality at level { —1. Assume that L,_, has a range of
- N, _, iterations. Each iteration of L,_,; involves a full execution of L;. The virtual space of V; is =
spanned totally in the time duration of L,. Therefore. the virtual space of V, will be spanned N, _,
g
'l . . v
" times (the of L,_;). Similarly, at level A=i =2 with N, _, iterations. the virtual space of V, will be
L] .
..‘ v . . . - . . .'.
spanned NV, _;X.N, _; times. thus forming a locality at level A=i-2. The same analysis applies to all 8
. higher level localities. Therefore, a macroscopic view of the virtual space of V,; from any level 8%
AN .
) K
N A=1.2...i—1 shows that the virtual space of V, is being referenced repeatedly.
] =
In general. a vector V, referenced at the current locality level, L, . contributes to localities at !
B
: higher levels L, .j=1.2....i —1 with its entire virtual size. S, . For A" vectors referenced at CL. each
S ey
O vector contributes to all higher level localities with its virtual size S, . Let X, be the size of the >
A4
current locality and X, . where i<i. is the size of higher level localities with nest depth A=j. g
» Using these notations the contributioa of all vectors referenced at CL to all higher level localities is
3 calculated as follows:
4
1
e —
N 2
e ! ol
N | i- 1 v
\I ‘i—_— l -
| r———— .
» : i v i+1 R
: i : ! B (L ./)v
. L : Al
| — u
- Figure 3-5: Loop structure example o
- .
-

A8

-y
-

"-.

K-

N

L

n:

g0

.

-
-

FRCR
B

*
4
N}

e

S

=

'.. "' l'.

X
X, =X, + LS., (3-2)
where j= 1,2, ..., i-1 and S‘R is the virtual size of the k" vector. A is the number of different vec-

tors referenced inside the CL. For illustration consider Example 3-3.

Example 3-3:

Dimension V1(1000), V2(1000)
DO 10 I=1,1000
Do 20 J=1,1000
V1=V HI+V2AD)
20 CONTINUE
10 CONTINUE

Assume that the page size is P=100 words and each vector element is one word. The virtual size of
V't and V2 is 1000/100 = 10 pages each. The code in Example 3-3 adds the sum of the elements of
V2 to each element of V1. Each element from the virtual space of V1 (V1(1). VI(2),
V'1(1000)) is added to one element from V2 (V2(I)) during the execution of Loop 20. All the ele-
ments of V1 are referenced during the execution of loop 20, while only one element of V2 is refer-
enced. In other words. the entire virtual space of V1 (10 pages) will be referenced by the time ioop
20 completes 1000 iterations. These 10 pages will be referenced again when Loop 10 executes
another iteration. By the time Loop 10 iterates 1000 times. the virtual space of V1 will have been
spanned 1000 times. Hence. V1 contributes to the locality comprised by loop 10 witn § ;=10
rages. Therefore, if the first level locality comprised by loop 10 is to be considered for allocation.
then at least 10 pages must be allocated in order to avoid replacing V1's pages during the execution

of Loop 20. The contribution of V1 and V2 to the locality comprised by Loop 20 is discussed next.

The centribution of V', to the virtual size of CL is determined by the number of distinct vec-
tor elements referenced during one iteration of the current laop. The number of distinct elements
referenced at level L, is determined by N. the number of distinct indexed variables used to refer-
enve vector elements. The distinct elements of a vector referenced by N\ indexes can be siored in
utmost N pages. depending on the virtual size of a vector and the distribution of N over the sector

eiements. In Example 3-3. one index. J. is used to reference \'1 elements inside loop 20 and / is

1
PO)
k4 ll.J

L
f‘(‘{

“»

58

used to reference elements in the virtual space of V2. There are only two elements (V1(J) and
V2(1)) referenced during each iteration of loop 20. Consider the first iteration of Loop 10. /=1, and
the execution of loop 20 (J=1.1000). A reference made to V2(1) is translated to a reference to the
virtual address where the first element of V2 is stored. In effect. a reference is made to the first
page in the virtual space of V2. P,(V 2). The first page. P;(V 2). which contains the first 100 ele-
ments of V2. remains active during the execution of Loop 20 {1000 iterations), since the index I
varies only at the level of Loop 10. A reference made to V1(J) is translated to the virtual address
of the page containing the element V1(J). depending on the value of J. For example. the first 100

references are made to the first page P,(V 1). The next 100 references (100 <J<200) are made to

P~(V 1), and so on until P (V1) is referenced. Note that when a new page is referenced, the old

one will no longer be referenced until loop 20 is reinitiated by loop 10. Therefore, during the execu-
tion of loop 20. V1 needs only one page to be allocated in memory and so does V2. Any extra allo-

cation is redundant.

In general,if the virtual size of a vector is less than the page size, the vector contributes with
one page 10 X,. However, if the virtual size of a vector is larger than the page size. S, > 1. the
number of distinct vector elements referenced at CL comprises an upper bound on the number of
distinct pages that could be referenced at CL. The number of distinct vector elements referenced at

Cl is determined by the number of distinct indexes. N\, used to reference a vector.

Figure 3-6 shows a memory representation scheme of a vector. The indexes /,./2. - ./\ are

used to reference distinct elements in the form V' (/,).V(/,)...V (/). The number of distinct

Fogure 3-60 A vector's memory representation

e hle S80 A% e R Ralniy 9

R
59 —
W
>
N
E: indexed variables, N, is used to determine the maximum number of pages that might become active .
‘.
’ . 5
during the execution of CL. Such active pages constitute the body of CL,and N is the virtual size of]
vy
the locality. Therefore. V, contributes to the current locality size, with the number of distinct b
o indexes, N\ pages, or the vector’s virtual size, whichever is less. Consequently, the memory request '%
- !
3 primitive, X, is given by
LS
N +1 if N>S. (3.3) ‘
X’ = X‘+ S\'l N QS\-I :‘\
A vector is allocated N+1 pages. although the active set of pages contains only N pages. The extra \
page is used as a buffer to allocate a newly referenced page after N pages have already been refer- :'.;
enced. Buffering the new page avoids immediate replacing one of the active N pages. Since the local- 7
ity of a program contains only N\ pages. one of the allocated N+1 pages will be idle and. hence. will :::
g be a candidate for replacement if 2 new page is referenced. The underlying assumption, here, is that ::'_
i a least recently used (LRU) or a similar replacement policy is used.)
In general, if there are K vectors referenced inside a loop L, . then the memory requested to P\
R '”
. »
: allocate K vecters is given by S
o X =X + ZX\', (3-4)
=0 .-':
In Example 3-5. each vector has 10 pages in its virtual space. At the first level (loop 10) both vec- j-:.
Y
: tors need to be allocated entirely since theyv are referenced at the lower level locality (Loop 20). -
e
N Hence. the memory allocation primitive at the first level is X=20 pages. The directive inserted at G
-t -\:
. the eginning of Loop 10 would be of the form ALLOCATE (2.20). At the second level. there are _;:
o Example 3-5:
Dimension V 1(1000), V'2(1000) -
- DO 10 J=1,1000
p DO 20 1=1,1000 =
V(I*2); VD) e
: V215 V2I+1); V21)
i 20 CONTINTE ey
10 CONTINUE N
7 N
< ~

La s C "

R SKRA YR OE S

60

two indexes. I and I*2, used to reference two elements in the virtual space of V1; hence, N=2 and
utmost two memory pages. from the virtual space of V1, are active during the execution of Loop
20. Since N=2 is less than S;-;=10. the memory requested to allocate V1 is X;-;=2+1=3 pages. Note
that if only two pages were allocated to V1, a page will be replaced every 50 iterations and then
faulted during the next iteration of the loop. Such extra faults are avoided by using the extra

buffering page.

Three indexes. /. /+1.J, are used to reference three elements in the virtual space of V2. The

three referenced elements could be stored in utmost three pages, N=3. Since N <S;->. the memory

required to allocate V2 is X;-»=3+1=4 pages. The total memory space required at the second level
is X\=3+4=7 pages. and the directive at this level has the form ALLOCATE (2.20) else (1.7). Note
how ALLOCATE prefers the allocation of 20 (the entire virtual space of V1 and V2) over 7. How-

ever, if 20 pages cannot be allocated. 7 pages are enough to avoid thrashing while loop 20 is in con-

trol of CPL.

Equations 3-3 and 3-4 are incorporated into a data structure constructed at compile time 10

oL

estimate the memory requirements of a program. The construction method of such a data structure

is discussed later in this section.

Twodimensional arrays

Dejending on their referencing order, arrays can be referenced in a column major order
(column wise referenced arrays A¢) or in a row major order (row wise referenced arravs 4").

Both tyvpes are discussed in the following subsections.

Column wise referenced arrays

Cons:Jer in Figure 3-4, the column wise referenced array A (i./) at level L. The column

(LN,

: A
o d

index of A . remains unchanged during the execution of L,: J is specified at highar levels

Ly.L-_;. The value of the row index, /. changes its value at L, level. Array elements ure

r=ferenced in the form A (/.J). During the execution ol L, . elements stored in the irtasi space ol -

o> LNERENC AL A

2Yy

e 3 AR

(3
-

[

61
a: Column Size € Page Size b: Column Size > Page Size
Jl JZ Jn Jl ‘12 Jn
Iy I,IP|P|.|P
I, /
Lid ! 2|p(P|...|P
pl p2 Pn XX XX} erw XX
1, I,|P|P|...]1P
Figure 3-7: Column wise referenced arrays
a column J are addressed using one or more row indexes, /,./,. - --. Array elements A(/,.J).

A(7,.3). ... A(Zy;.J) could be stored in one page if the column size (S¢) is equal to or less than the

page size (Sc € P) (Figure 3-7a) or in several pages if S- > P (Figure 3-7b).

In the first case. no matter how many row indexes are used to designate a particular element,
only one page could be referenced during the execution of L;. In the second case, several pages in
the virtual space of a column could be referenced during one iteration of L,. Consequently. the
number of row indexes. .V, , used in combination with a particular column index J determines the
number of active pages from the virtual space of A¢ in the time duration of L;. Obviously, if the

number of pages present in the virtual space of a column is less than the number of row indexes,

i.e, Sc <N; . the entire virtual space of a column is active.

Consider Example 3-6. where array A is referenced in a column major order inside the inner-

most loop of a doubly nested loop. The virtual size of A is S, =1000x1_09.=1000 pages. where the

100

page size P=100 words. The virtual size of each column is S¢ =11—(:3;—)='° pages. The sequence of

addresses generated during the execution of Loop 20 is shown in Figure 3-8 for J=1. A reference to

A(L1) is translated into a reference 1o P1 for 1X1<100. P2 for 100<1<200. and to P35 for

J00S1<S00; i.e.. a new page is referenced every 100 iterations of Loop 20. Similarly references to

A(I*2.1) generate references to a new page every S0 iterations of Loop 20: ie. P1 for 1S1<30, P2

£
n

62

P e

. Example 3-6:

. DIMENSION A(1000,100) i
DO 10 J=1,100 *

b DO 20 [=1,500

S A(LT); AGIS2,3% !

b 20 CONTINUE G

N 10 CONTINUE

&

l“ >

R AGp) 1L 100 200 300 400 500

R R - L > RN NI - LI B 3

y. -
-
E_“.

50 1 150 200 250 3 330 400 450 5 -
* ..
» A(IR2.D)1 i 7} 5 , i NS
< L
o«
‘
L4 ~
% %,
s Figure 3-8: Virtual address sequence for A]
N - =
- for 5051<100, P3 for 100<1<150. ... and P10 for 450<1<500. Figure 3-8 shows that two pages -
‘
Iy remain active in the time duration of Loop 20. except for the time interval 1<50. These pages are i
5 determined by the indexes I and I*2. In principle both elements designated by I and 1*2 could be
»
> stored in the same page and. therefore. the same page will be referenced twice, or in two different 5
pages and. therefore, two distinct pages will be active. In effect, the number of row indexes used in
o combination with a particular column. J . gives an upper bound on the maximum number of pages ~
e that could be active during one iteration of L; (Loop 20 in our example). The set of active pages
and their time intervals. derived from Figure 3-8, is .
i"‘
! {(P1: 1<50). (P1.P2: 50<1<100). (PS.P10: 45051 <500))
" Naturally. more than one column of A could be referenced inside L,. In this case. the &
number of active pages is defined for each column. J,. by finding tie number of row indexes used
> . L . . . : . :
.: in combination with J,. The maximum number of active pages from the virtual space of an array s
found by summing up the numbers found for each column. If the total number of active pages .i
X
determined in this manner exceeds the number of pages present in the virtual space of an array. the -
]
B¢ A
5 virtual size of the array defines the set of active pages at the current execution level. \.
) -
) _
TN T e e P A AL . RN AR AT L R T TS F Y F R T AR TR TR ,-‘.';. \\.' J'~.'..-"'~'.' ._\'. _'.~’-.'_~.;_\‘_,'_‘\~ .,

4

g J
il
L

T,
e

Yy

X,

S

63

The referencing behavior of A€ resembles that of a vector. In fact. an (MxN) array referenced
in a column major order can be viewed as a set of N vectors, each vector containing M elements.
The memory required to allocate the active pages of a column. X is given by

N; +1 if N, <S¢

_ 3-5
Xe =1ise if N, 2S¢ (3-5)

The extra page "N; +1" is used 10 avoid replacing active pages when a new page is activated as dis-
cussed earlier. Memory requirements of a column wise referenced array. X ,.. is defined as the sum
of the memory requirements defined.for each column, or

A

¢ == -6
X3 Z Xc, (3-6)

=
where N is the number of columns addressed at level L;: j =0 means that no array is referenced in
a column major order. In general,if there are X arrays referenced in a column major order, the
memory required to allocate these arrays at the current level of execution. L, . is given by

x
X,- = X, + ZXA“,‘ (3"7)
L

=()

where XA,;' is the memory requirement of the k" column wise referenced array.

Next we evaluate the contribution of a column wise referenced array to higher level localities.

A column wise referenced array contributes to all higher level localities of levels L, where j=1, 2,
. i-2 with its entire virtual size. The A's contribution to the next higher level locality. L, ;. is
similar to its contribution to CL. comprised by L;. because the virtual space of A is referenced

only once during the execution of L,_;. Whereas, at higher levels. L |.L.. L, >, the virtual

space of AY is entirely referenced at least once during each iteration of any L, loop. where

] =

j=12...0—-2. The memory request primitive at higher levels, defined hy column wise referenced

arrayvs is given by

X, =X, + L5, (3-8

£ =1

where j = 1. 2.....i-2 and K is the number of different arrays referenced inside L, . S is the virtual
Byt

[x

7

l"'l
XA

Wy fie 'y
s

l{.l

&

s e %

X

Ry By Ay S "y Tl
(A

Lt

B4

64

Example 3-7 is used to further explain the process of calculating the virtual size of a locality
comprised by arrays referenced in a column major order. Two arrays (Al and A2) are referenced

in a column major order inside the innermost loop of a triply nested loop.
Example 3-7:
Dimension A 1(100,100), A2(400,100)
DO10K=1,10
DO 100 = 1, 100
DO 10001 = 1, 400

AlLY); A1(0+1,3% ANLI+2) A1(I+1,)+2)%
A2(LY) ; A21*2,7); A2(1,J+5); A2(1+2,J+5) A2(M-LJ+5);

1000 CONTINUE

100 CONTINUE
10 CONTINUE

Al and A2 are referenced inside Loop 1000. The contribution of A1 and A2 to the localities defined
at level one (Loop 10). level two (Loop 100), and level three (Loop 1000) is evaluated, using Equa-

tions (3-5) through (3-8). The virtual sizes of Al and A2 are given by

. 100x100 _ = 400x100 _ .
=50 64 pagesand S, —oo— 256 pages

and the virtual size of each column of Al is S¢, ,=100/100=1 page and each column of array A2 is

San

stored in S, ,=400/100=4 pages. The memory requirements of Al and A2 at loop 1000 level are
found as follows. For Al, two columns are referenced inside Loop 100Q. Since each column has
only one page in its virtual space, there could be only one active page in the virtual space of J and

J+2 during the execution of Loop 1000. Therefore. the memory requested to allocate Al is equal to

the number of referenced columns. or X, = 2 pages.

For A2, each column occupies 4 pages. And there are 2 columns referenced inside Loop 1000
«J and J-5). T'wo elements n the virtual space of column J are designated by the row indexes | and
1*2 (N, = 2). The memory required to allocate both active pages of J,, is given by Fquation (3-5):
X- , = .N:+1 =13 pages. And three elements are referenced from the virtual space of column J-5.
These elements are specified by the row indexes [, [-2. and M-I. The maximum number of active

paces Trom the virtual space of J+5 is given by V. = 3. Hence. the memor: space required to allo-

cate these acltive payss is given by: X._y = 3+1 =4 pages. The 1otal number of pages required to

&

<N

3

b)

).~ -

R R

65
—
o,
. . ‘S
o allocate A2 at the lowest level (Loop 1000) is X4, = 3+4 =7 pages. Finally. the memory require- =
o .
ment of Al and A2 at the lowest level (Loop 1000) is X; = 7+2 =9 pages, where X; is the K
p

memory request primitive of ALLOCATE associated with Loop 1000. .'&
r

, When Loop 100 reiterates, a new set of columns from the virtual space of Al and A2 is

spe-ified and the addressed virtual space will change accordingly. However, the amount of memory

2 . : . 2%
::< required at this level does not change. Therefore, the value of X at this level is also 9 pages :?_
- v !
. (X5 =19). At the first level (loop 10) the locality size consists of the entire virtual sizes of Al and "4
.‘-. l-
; "

A2. During each iteration of the first level locality (loop 10) the virtual spaces of A1 (100 pages)
5 and A2 (400 pages) are totally referenced. At this outer level, all 500 pages will have been refer-
."

enced 10 times by the time Loop 10 completes execution. Therefore, the memory requirement at

-
'/

level one is given by X ; = 100+400 = 500 pages.

-
o

§ T
d
S: Finally. ALLOCATE directives with both primitives. priority and memory request, are :.
"t : §
inserted in the code of Example 3-7: "
. Dimension A1(100,100), A2(400,100) o
l ALLOCATE (3.500) o,
DO10K=110 :::
. ALLOCATE (3.500) else {2.9) Y
o DO 100] = 1, 100 7
v ALLOCATE (3,500) else (2.9) else (1,9) ’d
DO 10001 = 1, 400
; 5
" ALY ; A1I+1,J)% ANTLI+2); ANI+1,]+2) ‘
ALY ; A21*2,J)% A21,J+5) A2(1+2,J+5); A2(M-LJ+5) .
~ 1000 CONTINUE
100 CONTINUE
2, 10 CONTINUE S
...‘ c‘*
D '-‘
By
0 Row wise referenced arrays N
o _
= A memory rapresentation scheme of a row wise referenced array. A’ . is shown in Figure 3-9. N
' .
:: A row index /, {i=1....m) of A’ remains unchanged. during the execution of CL in which A" is :z
- ‘- U
referenced. whereas the column index J changes its value within the range J and J,- where \ is
a the number of ¢wiumns (the second dimension of the urrav). In Figure 3-9. the arrows point to the -‘
oW
o direction in wnich the elements are referenced. With [/, being fixed. the -elements AN
- A
a OA
5

CaNCS

.....
A R S AP R A)
It u...

R ¢ S TR R AW AN

STV R TR A T T AT T

‘Wt

66
o
M
(v 9
Jl J'.’ Jn "'3
11 — — —
I- Pl Pm+l PL+1 E‘u
-— — — X
o
-— — -
PZ P/n +2 Pl +2 &
-— — — e
by
—~— — —p
1,” P," Pk PI u;b:
— —_ — b
Figure 3-9: Row wise referenced arrays -
A, .J). -+ AW, Jy) are stored across pages. If the column size, specified by the first dimension
M of the array, is larger than a page size (M>P), then any two elements referenced in a row major é
order are fetched from two different pages. Two successively referenced elements may be stored in o
the same virtual page if the virtual size of a column is less than P (M <P). '
The contribution of A’ 1o CL., comprised by L, in Figure 3-5. is determined by the maximum E
number of pages repeatedly referenced during the execution of L;. Assume that the elements of the ~;
-
first row, / =1, are referenced during the execution time of L;. A reference to the element A(1.1) is -
translated into the address of P,. The next elemient A(1.2) will be referenced during the next itera- -
tion of L,. assuming that J is incremented by 1. The page containing A(1.2) is P, ., (Figure 3-9).
N
Every next iteration generates an address to a new page in the virtual space of A’ . The referencing 01
pattern at L, level does not seem to comprise a locality of reference. A referenced page. P,. may ,\
.:_‘
not be referenced more than once in the time duration of L,, unless the same element is referenced
o~
more than once at the same level. The fast changing index. J . spans those elements stored in the -
-
virtual spaces of columns J. where J =1.2,....NV. Therefore, N distinct pages are expected to be -
Ry
referenced in the time duration of L . None of the N pages remains active during the execution of
L. . Such behavior is unfavored in a virtual memory svstem. since every iteration of L, requires a i
reference to the virtual storage to fetch a new page. A newly tetched page proves to be useful.
most of the t:me. only Yor that reference. Therefore. if A" iy referenced at the outer most level, :‘_:-
a
=

IR R R R I SIS SL A S Y e " ol - - - '.“...'.".‘l.‘-‘."4.-'-‘
T L A O S HatHR VNGNS o -

i 67
::3 then it makes no difference if the entire virtual space of the array is allocated or only one page is
allocated in main memory.
]
"4 . - . . . '
However, if A" is referenced at level A>1, then a locality of reference is observed at higher t
Y
DY levels. The set of pages referenced during the execution of L, could be referenced again during the ::'
(99 1
: - next iteration of L,_, if the row index is varied at this level. In this case the same set of pages i
I
Y k.
W remains active until the value of / exceeds the page size limit. At any rate, the number of D
9
-~ active pages observed at L;_, level is given by the range of the column index J at the lower level 0
" *
-
L,. It has been assumed earlier that the range of J is N. In this case, the number of active pages at ~
I\ .i!.
< L,_, level is N. So far we have considered that only one row index is being used in combination -
with the column indexes to reference elements in the virtual space of A’ . However, several row o
i indexes could be used in any order. In such case. there could be several rows of pages active during b
ol the execution of L, _, depending on the relative location of one row index to another. For each row C:.
index. /. the memory requirement is given by "
R(D) if RQ<S, (3-9) =
X1 =1s, it RY)ZS, 3
- P d
¥ where R(J) is the range of / and S, is the virtual size of A. In general,if several row indexes are e
[] used. the memory required to allocate X, . is given by K
.f - .-
-J * .
R .
X, = XX (3-10)
‘:- Tk 1 =1 b
) where A/ is the k" array referenced in a row major order. and R is the number of row indexes)
....
) used at level L,. For K arrays referenced at L, level. the memory requirement X, is given by ‘:
NS
‘. & et
EZ X =X + ZXA; and X, =X, . (3-11) '
‘=1
e All the elements of A’ will get to be referenced in the time duration of L, _; which includes
multiple executions of L,. By this time. all pages in the virtual space of :+° will have been refer-
T) . ol
enced. However. oniv .V pages or several sets of N pages. according to Equat ons (3-9) and (3-10)
remain resicent in memory Jurinyg this time. where .V is the range of the column index of A’ . I ._
e
- L _; is enclosed by a Joop at a higher level L _». then all pages referenced at L._; ~ill be refarenced "
=
»

/8

RPN (W N N e P T e N ‘.‘-' O ‘....-"
AR SA Y TARS S (5 ¢ o ot e B U0 N e L

2 . (it Bt 2 Sth T et g
e tai s A sen Baredet ek v inA el Aate e iuiC b et but e SRS S S .

' :
¥, "y
' n
68
) ::‘
X again during the next iteration of L, _,. Therefore, the entire virtual space of A’ contributes to the
N T n
locality size at L,_, and to all higher levels L, _3.L, 4. - .L3.L ;. The contribution of K arrays =
N J
! referenced in a row major order to X; at level L;, where j=1.2....i —2 is given by o
¢
A I
» K
by X, =X; + ‘ng__\: (3-12) -
. o~
- where A/ is the k' row wise referenced array at level L;. For illustration. consider Example 3-8. e
Q where two arrayvs A, and A - are referenced in a row major order inside Loop 1000. The nest depth :.:
N &
of Loop 1000 is A=3. The virtual size of A; is S; = IOOOX%)()_ = 100 pages. And)
e, _ 100 _ . . : : _ 1000 _
j‘ Sy, = 200xm- = 200 pages. The virtual size of each column of A is SC-‘: = o5 - 10 pages. ‘
2 00 i‘
’ And S¢, = '1'—06 = 2 pages. Memory representation schemes of A ; and A, are also shown in Exam-
_ 2
N : : . 2
ple 3-8. The virtual space of A, is organized into 10 rows. each of which contains 10 pages. The <3
f. virtual space of A, has two rows, each of which contains 100 pages. Consider the execution .
sequence, K=1, I=1, and observe the reference pattern during the execution of Loop 1000, J=1,100. !.
References to 4, are translated into addresses to the virtual space in which the 2lements of row
o X
.3
: /=1 and row / =999 are stored. This virtual space consists of the first and the last rows ol pages.
: During the next iteration of Loop 100, I=2, the same set of pages will be referenced again. Refer- -
. ences will continue to fall into these pages until I> 100, where the second row and the pre-last row
: wiil be referenced. And so at every 100 iterations of Loop 100. a new set of 20 pages is referenced. .
'; Therefore. the maximum memory requirement of 1 at this level is 20 pages. Or, as given by Equa-
- tions (3-9). and (3-10). the memory requirements of A | at the second level is X, =10+ 10 =20
. RN .
! where the range of the column index is 1} as given in the dimension statement. -
- -
\ For A, there is only one row index. I, used at the third level (Loop 1000). Hence. the number e
" 5
r of active pages consists of one row (100 pages) from the virtual space of A 5. Each row will remain e
L)
) active for hulf of the time duration of Loop 100. Therefore. the memory requested to allecate A ; at -~
: level 2 is X2 =100 pages. Considering both arrays, X, = 100 + 20 = 120 pages. The execution o ‘
' n

v
Ny N

P [O S S (VUL S
T T T e T e e e e N e e e S
\y_-}. e _¥. W NI - e)

-, L L P VR T S R R IR
IR AR RN o -" FRCA S o DAY A VTR
I { .

- 69 Py
o - P
’.
of Loop 100 touches completely the virtual spaces of A, and A ,; i.e., all 300 pages are referenced
! at least once in the time duration of Loop 100. -

Now consider the case when Loop 10 continues its execution and K is incremented by 1, t

e

K=2. Ignoring the details of reference patterns at Loops 100 and 1000, the virtual spaces of A ;

at
ko
« and A are completely touched once more. This process continues until Loop 10 completes execu-
.. tion. Observing the virtual space of A, and A, from the first level. the locality of reference seems)
l’.‘: .
ta

to cover all 300 pages of A; and A,. The memory requirement at this level is given by

X, =200 + 100 = 300 pages. ALLOCATE directives are inserted into the code as shown in Exam-

ll"(g

ple 3-8. Iy

3.1.4.3. Data structure for computing X at compile time

This section presents a method for computing X at compile time. Since program localities
exhibit a hierarchical structure. a linked list can be very useful for representing localities at vari-

ous levels of the hierarchy. When a loop is encountered, a new element is added at the head of the

list. All data structures referenced inside a loop are considered as part of the record of a recently

-
created element. When a loop exits, its entry element in the list is deleted and the the contribution i
of data structures to the locality comprised by the exiting loop is evaluated. Also, the contribu- o
L

tion of these data structures to higher level localities, represented by all the remaining elements in)
N

the list, is evaluated. The outermost loop is always represented by the element at the tail of the
list. When this loop exits, the list becomes empty until another loop construct is encountered.
Just prior to a deletion of an element from a list, it should contain the virtual size of the locality -
A
comprised by the exiting loop. i.e., the memory request primitive X associated with the current

»

il

locality. N
o
The use of a linked list data structure (LLDS) facilitates a top down parsing strategy with a oy

e

back tracking. Back tracking is necessary to compute the contribution of data structures refer- 2
enced at level L; to all previously parsed higher level loops L,.L,, - - - .L;_;. :}'_.
N
N

-
70 -

Example 3-8:
Dimension A ,(1000.10), A 5(200.100)

A

«

£

DO 10 K=1.10 ALLOCATE (3.300)

DO 10 K=1,10

P

DO 100 1=1.1000

KN |

ALLOCATE (3.300) else (2.120)

[=1.1000
DO 1000 J=1.100 DO 100 1-1.10

| A

ALLOCATE (3.300) else (2.120) else (1.120)
DO 1000 J=1.100 =

If 1200 then 4 5(1.J)

If 15200 then A,(1.J)

If 15200 then A ((1.J); A4, (1000-1.J)

If 15200 then A ((1.1); 4, (1000-1.J) 5
1000 CONTINTCE
T00 CONTINCE 1000 CONTINTE I
100 CONTINUE
10 »
) 10 CON L ,
A’s Virtual Space A ’s Virtual Space X
.
Jy 7, 10 J, T, J 100 ~
] l[- — — L[= — -
12 1 Pll PQI 12 Pl P3 Pn)q :\
: —_— End — -— - kS
P'.’ Plz Pa; 12()1) Pz [’4 Pum .-
lllun1 Plt I P:I) P“N) \..- .
1 -
Lo
U
n
o

(9]}
2

1 A. L1 NS Cf

.. _B.12 B X1 X2 cP

% |
C.L3 - - -

- — C X1 X2 X3

o

0
-

..

~n
A
=

'a- ~
o
’e_

b
m
T

— X1 X4
. S cp cp

P
.

‘ G X1 H NIL
i G

H

P Figure 3-10: Linked list data structure for evaluating primitive X

Figure 3-10 shows the dynamic construction of (LLDS) for evaluating the memory require-
-4 ments of the loops shown in the figure. A current pointer (CP) always points at the head of the list.
- Eight parsing stages are shown in the figure. Each stage represents 2ither a beginning or an end of a

loop. At stage A. the control statement of the first loop (L1) is encountered. A new element (X1) is

- created at the head of the list. The current pointer points at X1 which will eventuallyv contain the
- value of the memory requested bv ALLOCATE at level L1, ie.. the virtual size of the locality
A
-

comprised by L1. The second loop L2 is parsed at stage B and a new entry X2 is added at the head

,'.: of the list. Now CP points at X2, and will continue to do so until L3 is encountered and \3 is
"

created and added at the head of the list. Loop L3 exits at stage D. At this stage the locality size
A

comprised by L3 is completely computable since all data structures centributing to X3 have heen
- parsed. Also. the contribution of these data structures to X1 and X2 can be evaluated at this point.
}l
»

+{1B

e e mm . LIPS
"0. v.‘.-.". ‘\‘. ..\g LT "

'-‘,\4‘-\'_-‘;:_-\:.\\; -\'.. CACA O TR ‘,:* & "):_-

o AT A T L SN

-~
»™

A5
e

- W
A

*e
Lt

- N
) 4

ORG

PSR T 9
LN -
S

K 1N

PR

I

B

R

s
o

L

;i o -

a 2 7 a B S

72

The record for X3, which includes the data structures referenced inside L3, is deleted from LLDS.
Note that an exiting loop does not enclose any more loops: therefore. its memory requirement is
fully determined when it exits. At stage E, X2 is computed. The contribution of data structures
referenced inside L3 to X2 has already been determined when L3 exited. Therefore, L2 is treated as
if it were an innermost loop. although L2 encloses L3 as indicated by the loop structure. The effect
of this technique is similar to unrolling L3 and linearizing the nested structure at L2 level. At stage
E. the contribution of data structures referenced inside L2 to X1 is evaluated and X2 is deleted
from the list. CP now points at X1. At this stage X1 contains the memory requirements due to L2
and L3. Loop L4 is the only remaining enclosed loop that affects the locality at level L1. Loop L4 is
encountered at stage F. where a new element X4 is added at the head of the list. At stage G. X4 is
computed and the contribution of L4 to X1 is found. Finally. the memory requirement of the

entire loop construct is evaluated at stage H. when L1 exits.

The list data structure described above allows a single top-down parsing scheme. However, a
hback tracking mechanism is necessary to add the contribution of lower level localities to higher
level ores because of the hierarchical nature of localities. Back tracking achieves the same effects of

unrolling enclosed loops and linearizing the nested loop structure. Moreover, the LLDS technique

transforms the job of back tracking to a simple scan of the list.

Each element of the list is a list structure by itself. A graphic illustration of one element of
the list. X, . is shown in Figure 3-11. A record X has two major fields. one for vectors and one for
arrays. The array field has two fields. one for column wise referenced arrays. -A* . and the other is
for row wise referenced arrays. A’ . The vector field has several entries. one for each vector refer-
enced at the current level L, , represented bv X,. Each vector is described by two attributes: the
vector variable identifier V, and its virtual size S . S¢ is used for evaluating the contribution of
V. 1o higher level localities representeu by X |,X,.....X, _|. Furthermore. each vec:or is characterized

by a list of distinct indexes used to reference V| 2lements at L. level. The number of entries in the

ndex list Jdetermines the maximum number of pages reguired to allocate V' at the current level.

N
P

)
)

5t K

a

s 1‘.""

-
.
«v 8

o s
»

P’

>

.-
‘.

A N

Py

AL

e
e

Jaels

73

X1 X2 - X, X, Xn

Array

Vector / \
Column Row

\ Wise Wise

irt
V1 s:z:a B|... anWsritz:a B A:V/H'IUalB Trial jl vIFTuall ;r{nrtua)
1 | size nr size size - size
index index / ro]w ro]w
folumnrolum nd ind
11 n index | size neex ncex
L] Il 11
12 12] -
— — M Tow i oW 12 12
__ - index| " |” [index ‘ .
In In ._L _L - -
— L 11 11 In In
] bt I L
12 12
_— _-—
_—
In h:
—J L

Figure 3-11: Data structure for evaluating X

The B field in the V, record serves as a boolean variable. The value of B is set to 1 if V, is not

referenced at any lower level, L,,;.L;4s, ...,Ly. The need for such a boolean variable will

shortly be explained.

Each column wise referenced array has several entries, one for each array AS. Each A4°¢ is

described by the array identifier A, . its virtual size S, . a hoolean variable B similar to the one

used for ectors. and a list of the columns referenced at the given level. Each column in the column
list s characterized. in its turn. by its virtual size and a list of row indexes used for des:gnating
narticular arrav elements. The contribution of any array referenced at L, to X, is computed as
Patlows. For each column J, we find the number of entries .V, in the list of row indexes which is.

then. compared ‘vith the value of the column virtual size S¢ stored in the field of the column index

record. The leas: ol V. and S,

defines the memory requirement requested lo allocate the given

IR
)
Sy O

& e S |

» Tt S Yy Ty

‘-‘Ll:‘-'-‘w\ ol

«
PRI I

K3
.

L s
>

.~ '- ‘-‘

.
|

PRl M

“ e

PAEE

S

SOl A

NI NN

N

.
Ly,

column. The contribution of A, to X, is found by summing up the values obtained for each

column J,. The contribution of 4, to X, is also attributed to X, -,. The array A, contributes to all

[

higher level localities. represented by X ,.X,..... X, 2. with the value stored in the virtual size
,
- A
field in A, record. ¢
A row wise referenced array is described by an identifier A,. the virtual size of A;. the -

boolean variable B and a list of row indexes used at the current L, level. The value in the virtual
size entry is attributed to the memory requirements X1. X2, ..., Xi-2. The number of entires in the
row index sublist multiplied by N (the range of the column index or the second dimension of the

array) defines the contribution of A, to X, . and the next higher level. Xi-1.

At any level of the main LLDS list, there should be only one copy of any array (a vector is a a

onedimnesional array). This restriction avoids allocating memory to the same array more than

YA

once. Assume that an array .1 is referenced at two levels L, and L, where j <i:.ie.. L, is higher

than L;. Data structures created for A at X, level contribute to both X, and X, . Data structures i
constructed at X, level contribute only to X, . If data structures for A were kept at both levels,
-
Cd
then A would be allocated more memory than it actually requires. Obviously. if the copy associ- e

ated with X, is considered and that associated with X, is ignored. then the memory request X, . at
L, level, will be underestimated. Hence, data structures created for A at X, level should be used

for computing X, and X, . Data structures at X, are ignored.

The boolean variable B associated with every array referenced at any level is used to enforce

the use of one copy for an array rule. When a data structure is created for an array A4 at level X, . .
the boolean variable B is set to 1 (B =1). The value of 8 associated with -4 at all higher levels :i.'
(X, X._) is reset to O (8 =0). The contribution of any array with 8 =0 is ignored. since the -
contribution of this arrayv has been accounted for at a lower level. Ne~t a procedure is presented for :-

computing \'.

Procedure (3-1) Compute X;)
BEGIN

Initialize LLDS: LLDS := NIL;

"M AT RT 2 8" 2 " M m* e e a4t R YR R S T R IPA TR A T N T
et A e e TN e A fq"q".-" A AN RN A A

-_.-_‘-‘._..-..“.:’.-_.\.-.} LS S Y

.. ’
et
DS

-
L4

75

-

».
4
TN

Case of encountering a loop L, DO

”-‘
¢v

BEGIN
Create X,; {X, has two fields}
g Vector: list; e
Array: (column wise, row wise); h
Column Wise Arrays: List; ':|:
o) Row Wise Arrays: List; o0
; Initialize the list of vectors (VL): VL&=NIL; 0
Initialize the list of column wise referenced arrays: CAL:=NIL; N
- Initialize the list of row wise referenced arrays: RAL:=NIL; :
W CP = Pointer to X,; A3
W 1'4,, \l
End;]
. Case of Parsing a vector V,;(/;) DO =3
-, BEGIN o
- IFV, € X, i
~ THEN Updated V,]
o ELSE Create V,; g
-~ END;
Case of Parsing an array A, (/,.7,) DO w:,
o BEGIN d
[IF 4, is A€ ;
THEN IF 4, € X, a
THEN Update Af . N
o ELSE Create 45 .:\
) ELSEIF A, € X, {A, isA’} o
THEN Update A/ =
i ELSE Create A3 -
. END; o~
Case of Exiting a loop L, DO =
ie BEGIN oS
A Compute X;; K
Compute the contribution of data structures at X; level to X ,.X,, ..., X _; levels; .
" Reset B =0 for each V, and 4, encountered at level X, and any other higher level; _.‘
~ Delete X, from LLDS; e
END; 2
, END. lof Procedure 3-1} 2]
~ Procedure (3-2) Create V. ; "
- BEGIN iy
. Create a new elment (V,) at the head of the vector list (VL) =
N Compute S.-; A
Create index list (IL) for V %\
. Enter /. into IL. iy
- END; {of procedure Create V', | *
- Procedure (3-3) Update V', ; _
BEGIN o
:: IF /. is not a member of L/ (V) -
s, THEN Add /, to the index list LI of V'; <
END; {of procedure Update V', j 3
Procedure (3-4) Create 4,3 ;
i BEGIN
Create a new element 4, at the head of the list of column wise referenced arrays (CAL) v
“ Compute the virtual size of 1, S43 {store S, in A, record} ,:
I"

Create a column index list (CIL); 2

76

Compute the virtual size of a column S, ; {store it in CIL record};
'}

Enter the column index /, into CIL;
Create a row index list (RIL) for J,;
Add the row index /, to RIL.
END; {of procedure Create A sub i sup c}
Procedure (3-5) Update A
BEGIN
IFJ, € CIL
THENIF /; € RILUJ,)
THEN Skip
ELSE Add element /, to RIL(J;)
ELSE
BEGIN
Add J; to the list of column indexes CIL;
Create a row index list RIL for J;;
Add /; toRILUJ,);
END; {of ELSE statement}
END; {of Procedure Update Af)
Procedure (3-6) Create A;
BEGIN
Create A, element at the head of the list of row wise referenced arrays RIL;
Compute the virtual size of A,; {store S, in A, record }
Create a row index list RIL for A, ; {RIL:=NIL}
Add the row index /, at the head of RIL;
END; {of Procedure Create A}
Procedure (3-7) Update A/;
BEGIN
IF /, € RIL(4,)
THEN Skip
ELSE Add /, at the head of RIL(A,)
END; {of Procedure Update A, }

Consider the following notations and definitions which are necessary to define a procedure for
evaluating X, when the corresponding loop L, exits. The length of a list L is the number of ele-
ments in the list. Each vector is associated with a list of row indexes: the length of this list is
denoted bv L(V,)i=1...N. where \ is the number of vectors or N=L (VL). Each column index
of A has a list of row indexes: the length of this list is denoted by L (/.).i=1....K where K is
the length of the list of column indexes, K =L (CIL). The cumber of A" is given by M the length
of A" list. M =L(CAL). Each row wise referenced array .1, has a list of row indexes: the length
of this list is denoted by L (A)i =1....S. where S is the length of the listof A’ . S§=L(RAL). The
range of the column index of a row wise referenced array is denoted by R* (A ". U~ing these nota-

tions. the tollowing function can be used to compute X, :

....................
.........................
.................

...............
A RIS T PO AL AT AL ALY MO I RERE T AL P, W P

Aol DA e fy "
Lt Sl sl At el Afull il Mabt B on b T R S T e e e - -

m

'.. $.'l

ZB

e

vvy

| EaN

P

5 ¢
-

£)

'

‘r

(Fs:

1)

()
Ve

oL Wy

o
A
l\ Pl
S N o
> X =X, + Zmin(L(V,).S\-l)+ <
i=1
Y K -
¢ + 2 {min (X min(L (J;).Sc,)) . S, .} y
m=1 k=1 ” t_
[s $
L .
- + Y min (L(A,)XR(A,).Sy) - (3-13)
s=1
- The terms in Equation (3-13) represent the contribution of vectors, column wise referenced arrays =
he -
’ and row wise referenced arrays, respectively. This contribution is added to what has been already e
" stored in X, field. due to contributions from lower levels. e
2 :
" The contribution of vectors and arrays to higher levels is given by the following two formu- s
] KR
._:‘ _.:
' las: .
% hY M < -
X, =X, + 1S+ LS.+ XS, (3-14)
i=1 m=t " s=l " W
. .
N and 4
N
AY
. Xia= Xi—l+ZSl', +0Q (3-15)
i=1 =
.
where Q is the last two terms in Equation (3-13). \
% A
]
n S : 2
3.1.5. Automatic insertion of ALLOCATE at compile time)
= ALLOCATE is inserted just before the beginning of each loop comprising a locality. The two
.
-~ primitives of ALLOCATE, P and X . are computed and assigned to each loop according 10 Aigo- !
'
.\
rithm 3-1 for P and Procedure 3-1 for computing X . It would have been very simple to insert
. o
- ALLOCATE at the beginning of each loop. once P and X are evaluated. if ALLOCATE exhibited a t
I.'~ - ~.
) iinear structure. Because of the hierarchical structure of ALLOCATE. the primitives of higher level i
o s
Lo localities are carried into all subsequent lower level localities. Therefore, the mechanism tuv be used
o for inserting a directive at a particular level should be able to memorize the primitives associated E
. .\' D
with all levels enclosing the current level. The memory capacity should be at least equal to the nest :
K
i depth of the currently parsed loop. A suitable data structure for implementing such a mechunism is i
[y
)
. a stack or a linked list. :
o o
b:‘. ‘:
vl

- .® A A Tl T - DS W L S R TR AR NN Yo IR AE WO R Tl) . . Lt et Wt T - -4-\:a-».'-_1-‘--".&'--'._'.-
LR L2 ax .' ‘-4‘\ oy ‘.'-’.P y \-L" - N ‘v"‘ ‘l ¢ {) "o N \Pt"‘. Ve J‘-"‘J‘ J‘,‘\'\~ . ."-.- M Ntk ‘ . ‘. ; C & Loy
W3 d - L) " g A 4 3 - n

' -‘v.vyvu'w—v.w, N - - "_‘T_“T‘-’f.'."ﬂv:'ﬁ‘
v p e ik pgiliar il U

78

ALLOCATE directives are inserted using a stack data structure as follows. When a loop L, is

encountered, its primitives (P,.X,) are pushed to the top of the stack. When a loop L, exits, the
(P,.X,) pair at the top of the stack is deleted. At any parsing level, a directive's paramelers consist
of all the elements in the stack ordered from bottom to top and separated by the word "else.” The

directive inserted at the beginning of L, has the form

ALLOCATE (P,.X) else (P>.X1)else - else(P, X,)

Linked list implementation is similar to stack’s, sirce a linked list is a form of stack. Besides simu-
lating the hierarchical natare of ALLOCATE, stack implementation facilitates a single top down

parsing scheme without backtracking. Algorithm 3-2 automatically inserts ALLOCATE at compile

time into a prrgram’s compiled code.

Algorithm 3-2: Insert ALLOCATE at Compile Time;
Initialize the directive’s stack DS;
Parse {until the end of the program)
Case of encountering a loop L, with primitives (7,.X,) DO
BEGIN
PUSH (P, .X,) at the top of DS;
FORM the directive
ALLOCATE (P,.X) else ...else (P, X,)
{starting from the bottom of DS until the top of DS}
INSERT the directive right before the beginning of L,;
END; {of case statement)
Case of exiting a loop L, DO
DELETE the pair (7, .X,) from the top of the stack;

END. lof Algorithm 3-2}

An example using Algorithm 3-2 is shown in Figure 3-12. A loop construct with a maximum nest
depth A=3 is used in Figure 3-12 to illustrate the operation of Algorithm 3-2. The primitives 7, .X,
are assumed o be known for each of the four loops. The directives are inserted as shown at the
heginning of each loop. The stack is updated upen encountering of a loop begin control or end con-
trol statements. When Loop! is encountered. the (P,.X ;) pair is pushed at the top of the stack. The
directive at the beginning of Loopl has the form ALLOCATE (P .X). Next. Loop2 is encountered

and (P5.X-) pair is pushed at the top of the stack. The directive at this point has the form

ALLOCATE (P,.X) else (P2.X5).

-]

oy
F)

At stage 3. Loop3 is encountered and the rair (F3.X;) is pushed to the top of he stack. The

/B
RS P al VN

. "

ALl
i 79

o ALLOCATE (P ,,X,)

:; Loop 1

3 2

vy 1

-*: ALLOCATE (P],X 1) else (Pz,.Y 2)
: Loop 2

N X

e
LA A

ALLOCATE (P 1 X 1) else (P;.,X -_)) else (P3,X 3)
Loop 3

ALLOCATE (P ,X)else (P ,X,)

_-., Loop 4
4
Ay X,

‘ P, ;
~-' i
&

Qs Figure 3-12: Example of algorithm 3-2
"4 l‘
i directive inserted at the beginning of Loop3 has the form J
ALLOCATE (2 .X) else (P1.X 1) else (P .X 4). o
> -.'
s . . 3 ’:
.;-: When Loop3 exits. the pair (P4,X;) is removed from the top of the stack. Similarly. upon exiting ro
’.
‘I

18

80

Loop2. the pair (P,.X,) is removed. Loopd is. then, encountered and the pair (P4.X) is pushed at
the top of the stack. The directive inserted at the beginning of Loop4 has the form

ALLOCATE (P,.X) else (P .X).
Note that Loop 4 is enclosed by Loop 1. The pairs (P;.X,). (P,.X,) are deleted upon exiting Loop

4 and Loop 1. respectively: the stack remains empty until another loop structure is encountered.

3.2. LOCK and UNLOCK Directives

LOCK is used to prevent particular pages from being paged out of memory by the replace-
ment policy. UNLOCK is used to relase these pages. LOCK and UNLOCK have been used as system
facilities by VANX/VMS and UNIX operating systems. Abaza [1] measured the effectiveness of
using LOCK and UNLOCK under VMS. His results show that the behavior of some numerical
algorithms can be drastically improved. if LOCK and UNLOCK under VMS are properly used.
However, in these sysiems the problem of locking and unlocking particular pages is still a user
rather than a system problem. A user is supposed to have adequate knowledge of the behavior of

his program. In particular. he should be able to identify those pages which are needed mostly in

memory so he can order them locked in memory.

In this study, pages to be locked in memory are identified automatically at compile time. As
in the case of an ALLOCATE directive, the cases of vectors and arrays are considered separately. In
general. a page mav be a candidate for locking if it is located in an intra-locality transition period.
Intra-locality transition periods occur within a hierarchical locality structure. whereas inter-
locaiity transitions occur between two successive hierarchical locality structures. Using source
level code notations. intra-locality transitions are caused by references to array data structures in
hetween two successive i0op start control statments. Let L, refer 1o the beginning of a loop in 4
multi-nested loop structure and Z, .., refer to the beginning of the next loop. Intra-locality transi-

tion pages are those pages referenced in between L, and L, 4.

A page referenced in an intru-locality transition period does not contribute to localities

formed at the next lower levels [.,.L, ... - . Intra-locality transition pages. on the cther hand.

X

J

’I\

-

. v
P

v

| NEN
.

.,JJ.

¢ W

«

-

e

e P

\PLVM Xy

LW

PAs

,".'.'n'r""'

; - w B
L1l

1]

rr
F}

ISR A g

\

- '...:-ﬁj' ’

(R

AN

4

"y v YR W

i .
?{ are included in all higher level localities. L .- -.L,. Further illustration is presented in Example
3-9.
! Example 3-9 &
’ DO 10 i=1.N
Vi) o
L DO 100 j=1.M ‘
Vi(j) .:
100 CONTINUE —
. 10 CONTINUE e
< 2
In Example 3-9. a page of vector V1 designated by the virtual address of V1(i). Py y,). is refer- ol
- ‘-'
ﬁ enced in the transition period between Loop 10 and Loop 100. This page remains idle as long as Pt
e Loop 100 is in execution. However, it is reactivated when Loop 100. after M iterations. returns con- f;-:
e '(5
N &>
' trol to Loop 10. Therefore, locking Py- ;) in memory avoids the need to page it inlo main memory ¢:
" .]
a’ every time loop 10 executes. Note that if the request generated by an ALLOCATE directive associ- =
e
) ated with loop 10 (ALLOCATE (2.5,-,)) is granted. locking a page from the virtual space of V1 has ::E_
- e
< no significance. o
i Thus far. a LOCK directive may have the following form with one primitive: :
LOCK(Y,Ys - X,)
s o
}::j where Y, is a particular virtual page. Once LOCK is executed by the CPU, a request is made to the ::-:
) operating system to lock into memory those pages identified by the virtual addresses e
..' \t A
* Y,.r, ---.Y,. Pages are unlocked. or released. by an UNLOCK directive which has the following ‘;_1
b
\:: form: :‘3
‘-f -
UNLOCK (Y .Y 5. - - .Y,).
o LOCK is inserted inside th loop and UNLOCK is inserted at the end of L, . See Example 3-10. :-
R Example 3-10:)
& DO 10 i=1.N
V(i) ' o
e, LOCK P'\‘(,, :‘-
3 DO 100 j=1.M 4
Vi 3
- 100 CONTINUE o,
." 10 CONTINUE -
UUNLOCK P. ., Sl
Sa
- ¥
3 3
a

J T SRR TP T TP T I S Nt R Bt B R R R S P RN Ny ."-:\
. - ey m .‘ .-., St Pl AS ..‘. -., - - : - " ' s . { o h Wi~ h ‘.‘ \ ‘) .) ASNSY Y
3% v o) - " L s e »

ot WA

o

P

iy y
cfu‘.rll‘.‘.

A AT A Vol A A KA.

2]

Pl

A8, b A

RN

82

In a multi-nested loop structure, pages could be locked at various levels of a locality struc-
ture. Therefore, it is possible that a program would be running with its lowest level locality
(P=1) while some pages belonging to higher level localities are being locked in main memory as a
result of executing a LOCK directive. In case of high memory contention, a program should be
allowed to run only with its lowest level locality. Partial swapping, introduced previously for
ALLOCATE, guarantees that higher level localities are not allocated when a program’s request
with P=1 cannot be granted. In a similar fashion, the operating system should be allowed to
unlock a previously locked page, even before it is released by an UNLOCK directive. Since pages
can be locked at various levels of a locality hierarchical structure, a priority index P can be used
to define the priority of releasing a page by the operating system before it is released by
UNLOCK. For this purpose a priority index primitive is introduced into the LOCK directive:

LOCK (P, Y Y3, -+ X,)
Pages locked at the lowest level of a locality structure shouid be released last, since they are
invoked more frequently than those referenced and locked at higher levels. Therefore, pages
locked at lower levels of the locality hierarchical structure saould bhave a higher priority than
those at higher levels. To be consistent with the priority index used for ALLOCATE, smaller P
values are used to denote a higher priority. In other words, pages locked with larger P values are
released before pages locked with smaller P values. Priorities are assigned to loops in the same
way as for an ALLOCATE directive; see Algorithm 3-1. A directive may have in principle a
priority P =1, associated with the innermost loop. However, in practice such a directive is never
used because the memory requirement of the innermost loop, defined by the ALLOCATE direc-

tive, is always granted. For further illustration, consider the example in Figure 3-13.

The maximum nest depth of the loop construct in Figure 3-13 is 3. The priorities assigned to
L1 and L2 are P=3 and P=2, respectively. The value P=1 is the priority of L3. Inside L3 no pages
should be locked. since the locality comprised by L3 is allocated by the ALLOCATE directive

with P=1. Assume that the ranges of loops L1, L2, and L3 are K. N. and M, respectively. Each Y,

page is referenced, at level L2, at least N times more than any X; page. referenced at level L1.

A

R

e
'h
»

A |

s,

1!
LY

_'x I‘l.

O)
[

e

AW

RhR

83

L1

LOCK(3.X,. - .X,)
L2

LOCKQY, - .X,)
L3

UNLOCK(Y,.---.Y,)

Figure 3-13: Example of LOCK and UNLOCK directives

For this reason, a page locked at a higher level. L1 in this case, should be released before a page

locked at a lower level, L2 in our example.

Inserting LOCK at compile time is very simple since LOCK does not exhibit a hierarchical

structure as ALLOCATE does. Algorithm 3-3 is used for automatic insertion of LOCK and

UNLOCK directives.

Algorithm 3-3: Insert LOCK and UNLOCK directives;
CASE of encountering a luop DO
P = P assigned to current loop;
Y = Page to be locked (i= 1,2, ..., n}
IFP = 1 THEN INSERT
1- LOCK after the loop BEGIN control statement ;
2- UNLOCK after the loop END control statement;

Pages to be locked by LOCK are either vector or array pages as discussed earlier for ALLO-
CATE. For the case of a vector. V. any page referenced at some level L, is likely to be rereferenced

after the execution of the [, ., loop. A reference to a vector element V(j) is translated 1o a refer-

. O SRR T AP T Tt L LT N TS T e e T e
R R R A S SR TSR WY

5

Ts
A

AN ‘f’ » -’ " -)\'. ...\ . -~ .‘-'-‘-.r\\ \f._'.-_‘-... ™

(Y
-

forn

s

Iy
.3

r'S
~

- YY

$ 2 Xl

WY

Lt

N o, P o T

acv s we
LI 3
AL

0

,‘,,
L ST
N

o
o B

»

]

<13

-

A
a o 0

A
2Lttty

A

.
~ "“-\"" “-‘\ 'P‘

atee Ak A

L T e AN

'
4
od
4
-
4
*

84

ence to a virtual page Py-(,,. If more than one vector element is referenced at a particular level,
using more than one index. then it is possible that more than a page needs to be locked. depending
on the value of the indexed variable. Therefore, a page to be locked is identified by the referencing
index, j. For example, if a vector is referenced as V(j). V(j1), V(j2). then the page(s) containing
these three elements is locked. At compile time. a candidate page for the LOCK directive is
identified by the vector name identifier and the vector's indexed variable: no address translation is
assumed at compile time. At run time, a reference to a vector element V(j) is translated into the

virtual address of the page Py (;, storing the element vai).

The fact that OS can release a locked page before UNLOCK does so. gives LOCK a soft pro-
perty. LOCK's soft property can be incorporated into the partial swapping mechanism. This feature

of the swapping mechanism further supports the property of redistributing memory space among

processes in cases of high memory contention.

For arrays referenced in a row major order, a referenced page at L, level is unlikely to be
rereferenced after the execution of L,., unless the page size is larger than the column virtual size
of the array. where two successive row elements may be stored in the same page. Therefore, a page
of A’ may be locked only if the column virtual size is less than the page size, where a page to be

locked is of the fcrm Py, ;) where i is the row index and j is the column index.

Arrayvs referenced in a column major order, A, are similar to vectors. Each column, in fact.
resembles a vector. Therefore, for each column the distinct row indexes determine the virtual pages

that may be refarenced at a given level. A page to be locked is identified at compile time as P, .

where ¢ is the row index and ; is the column index.

The implementation of LOCK is fairly simple. A lock it (LB) is associated with each page.
When a request is generated to lock a page }, into memory, the lock bit ol } is set 1o one.
LB (Y)=1. The replacement policy avoids replacing any page with [LB=1. The partial swapping

mechanism searches for pages with LB=1 for unlecking them when nitiated hy a running process.

i (A

. A"
«te
.. £

v,
“a

A]
n

' .
v
e

'

7 ':' ..

[£, v,

Al

.

i . 85

: d
&
:\‘ A list data structure (LLSD) similar to the one designed for ALLOCATE can be used to iden- ";
- R
QY 2
tify those pages which should be locked at each level. Once a new loop L; is parsed. a new entry 3
! X, is created and appended at the head of the list: LLSD is initially empty. Upon exiting a loop L, . ‘;
] D
NS
N the list of virtual pages found at this level is assigned to LOCK directive and the element X, is E
~ {)
N deleted. If the exiting loop has P=1, no LOCK directive is inseried. The data structures created for ad
< each element are similar to those described for ALLOCATE. The main difference is that for ALLO- e
-‘h' R
ot e
CATE the number of distinct pages that could be referenced at a particular level is of primary con- -
“~ 1.
L‘ cern. whereas for LOCK the particular pages referenced at a given level are of primary concern. <
Moreover. the data structures associated with an element do not contribute to other elements in the :‘_:.
= -
’ list; therefore, no back tracking is necessary. An example is given in Figure 3-14 where the primi- "
','u
"'a tives of LOCK are further explained. B
2
" DO 10 =1.N DO 10:i=1.N
) V@) AQLE) V(i) A(LD) Y
i DO 20 j=1.M LOCK (3.V(i).A(i.1) _
S
B V(j) DO 20 j=1.M .%.
o DO 30k =1.R V(j) P
> Alk.j) LOCK (2.V(j)) S
Vi) DO 30k =1.R N
[] I
N 30 CONTINUE Alk.j) 0
— Vi(k)
20 CONTINUE i - o
Y : 30 CONTINLE
. ! AG.D 20 CONTINLE
Y ! DO 40 j=1.M UNLOCKV ())
) | AG) AG.1)
n i e
B | 40 CONTINUE DO 40 j=1.M ok
- ‘ AGd) o,
10 CONTINUE : - ~
w2 40 CONTINUE N,
3 — N
i 10 CONTINUE ’
i UNLOCRK (Vv A G !
Figure 3-14: Example using LOCK and UNLOCK directives :
' o
a
7.

AT RGN 08 Y AR v

TR N T R NE R iy~ o cUi B Y N R A S R .‘\'..n‘ " --“4‘\\'(-.\'.‘;‘.‘1"'.-"_s" Ten -,' \-:' <
o~ ARG SRR, A S Y VA LR T ! -

o
¥
1
\

86

3.3. Subprogram Sequence Control Under CD

In this section our concern is with mechanisms for controlling memory allocation when a sub-
program is called. Programs are usually hierarchically structured into a main program and subpro-
grams. Each subprogram may call another subprogram and so forth. The simplest control structure
of subprograms can be explained by the copy rule (CR). The effect of a subprogram CALL state-
ment is the same as would be obtained if the CALL statement were replaced by a copy of the body
of the subprogram before execution. Viewed in this way. a locality may be comprised partially by
the calling program and partially by the called subprogram. Memory directives are inserted into
the program code after subprogram CALL statements have been substituted by the subprogram
body. During execution, a call to a subprogram will have no effect on the current memory allcca-

tion unless the called subprogram generates a new memory directive with a new memory allocation

request.

The copyv rule could. explicitly. be applied and the body of a called subprogram be copied in-
line only if the subprogram is very short. Otherwise. a subprogram call is eliminated in principle.
not in practice. Identifving program localities under the copy rule is a complex problem, since sub-
programs can no longer be considered separate entities which comprise separate locality structures.
\Moreover. the depth of a locality hierarchy is increased by as much as tne depth of subprogram
hierarchical structure. Another major drawback of CR technique is that subprograms can not be
recursive. However. recursion is a common characteristic of many algorithms which naturally
leads 1o recursive subprogram structures. Although our program model in this thesis is FORTRAN
programs which do not support recursion, it is desired to extend the application of CD to other

languages supporting direct or indirect recursion.

In order to simplify the process of directive insertion. a subprogram CALL statement shouid
be treated as a revular statement without affecting the current locality structure Moreover. a ~ub-
program. when compiled. should be considered as a separaie entity consisting of its own locality

structures. Finally. it is desired to allow recursive subprogram calls rather than just simple

t |£

-

"
L S

—

-

.

-

)

ALY

a®a"e " w AT

A

-".‘:‘l PR PO EPRVESUKEP |, %o

N S

[}
T
.

k]

‘AD-R174 803

UNCLASSIFIED

COMPILER DIRECTED MEMORY MANAGEMENT FOR NUMERICAL 272
PROGRAMS (U) ILLINOIS UNIV AT URBANA COORDINATED SCIENCE

LAB M I MALKAWI AUG 86 UILU-ENG-86-2229
NO0914-84-C-0149 F/G 972

"'.‘> RO Ba' Lar o A¥aal -
ARG S A A N G N NN S A e e oy
—a . —mw ehas By AP A D SRS R LR WY

o

I

FFFEEEE
FEf
==
N
~N

) . P
m—
—
= “m 1.8

N
O

|

L2s flis pie

I

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDA. DS-1963-A

AT T e CL SR AL ALY WA
v N AT T A A G AR A N 80
‘ Sl A G A i N .\‘f&.‘\

3
RS N
DA

AR A
qn 'h

] R0 W SRR O

L3

«

«
)

& "a .'. .

| Y

XA

re

-

., »
[

~JIB

87

CALL-RETURN subprogram statements. These goals can be achieved using the activation record

technique.

Activation record technique

Under the activation record technique. memory directives are inserted in the usual manner at
compile time. Subprogram CALL statements are treated as regular code statements having no effect
on the current locality structure. Locality structures comprised by the called subprogram code do

not contribute to the locality structures of the calling program. In effect, each subprogram is con-

sidered a separate locality entity.

At execution time. when a subprogram is activated due to a CALL statement the calling sub-
program or main program is temporarily halted. The memory allocation previously set by direc-
tives generated at the calling program level may be altered by a directive generated during the exe-
cution of the callee active subprogram. When the execution of a subprogram is completed, execu-
tion of the calling program resumes at the point immediately following the call of the subprogram.
The memory allocation at this point should be similar to the memory allocation at the point of exe-
cuting the CALL statement. The activation record technique is used to keep records for memory
directives’ primitives for each subprogram as long as it remains in execution. A subprogram

remains in execution until it returns control to the calling subprogram. The CPU is always con-

trolled by an active subprogram.

At the time of a subprogram call. a new activation record is created for the newly activated
subprogram. which is subsequently destroved upon its return. A simple central stack may be used
Lo store the activation recerds of all subprograms in execution which have not returned yet. The
last item created on the stack must be the first item to be deleted. Similarly, the first item created
on the stack is the last one to be deleted. The implementation of the subprogram call and return
proceeds as follows. At the start of program execution. a large storage is reserved for the central

stack. The activation reccrd for the main program is allocated at one end of the block. This

hecomes the bottom of the stack.

Al
o~

AR
s

L.EF

19 ‘;‘.'\ % !

AN

AR A AN

W
o

5 A

AN

(WA

88

When a subprogram A is called. a storage for its activation record is allocated adjacent to that
of the main program’s activation record. If A calls B. B's activation record is allocated adjacent to
A's. If B calls C. C’s activation record is allocated adjacent to C's. and so on. When C terminates
and returns control to B, C's storage is deleted. and then B's when B returns, and so on. The central

stack implementation for a series of subprogram calls and returns is shown in Figure 3-15.

Each activation record contains several data objects. One data object is used to store the return
address of a subprogram which can be thought of as a pointer pointing at the previous activation
record in the central stack. Return address values form a linked list that links together the activa-

tion records on the central stack in the order of their creation. The current environment pointer

MAIN PROC. A PROC. B
} 1: CALL A
|
, 2: CALL B 4:CALL B
3
' 37END 3 END 6: END
cP CP cp
—L — .
MAIND 1 MAIN] A 1MAN] A | B
/ —_ L N

cp cp cp Cp
6 'MAIN. A | SUMAINI 2)MAINT BT 6 MAIN] 3:END

Figure 3-15: Use of a central stack of acuivat.on records

E=] |

) KRR

g
»

| 7C
™

.

f" o .

i e b 2o 4

89

(CP) is constantly updated 1o point at the "top” activation record in the stack. From the return
address value in the return point. the second activation record in the stack may be reached. From
the return address value of this record. the third activation record can be reached. and so on. At
the end of this chain. th.e last link leads to the activation record for the main program. This chain is
called a dynamic chain because it chains together subprogram activations in the order of their

dynamic creation.

Our main concern in this study is with the directive primitives (DP) data object. The direc-
tive primitives data object is used 1o store the values of the (P .X) pair used by the ALLOCATE
directive. The entries of an activation record are shown in Figure 3-16. The current memory allo-
cation of a program is determined by the values of the (P,X) pair of the "top" activation record
specified by CP. While the new subprogram is executing. the contents of P and X are constantly
changing as new directives are executed. When a subprogram terminates, its activation record is
deleted together with its data objects. Now CP points a1 the second activation record in the stack.
A previously terminated subprogram resumes execution by restoring the values of (£ .X) pair.
among other data objects recorded at the time of executing a CALL statement. The memory alloca-

tion of a program is determined by the values of the (P.X) pair obtained from the activation

record at the top of the stack. pointed at by CP.

When a subprogram A calls subprogram B (executes CALL B statement) the directive primi-

tives entry of A's activation record contains the values P, and X, . B executes for a while and then

1
grp P X!

Figure 3-16: Activation record entries

. - N AT A
ORI AAY

P4

-

> vy w
oLl &

3

\

YXXAEX

o
Y

v
v

Lot oSN
Sty %y ‘e 'y

[y

>

m s

""\"'
v v v vl

.
4
.

v

4

2 LAY

Lk e 4
"".

oo a v,
-,

-

[
o
A e

terminates. A then resumes its ex <ution. requesting the allocation of X, pages with a priority P, .
The request is satisfied if X pages can be allocated from the free page pool in main memory. It is
possible that X, pages can not be allocated. although subprogram A was running with X, pages at
the time of its interruption. In such a case, OS invokes the swapper if P, =1. Otherwise. the execu-
tion continues with the current allocation until the next directive is received with a new pair

(P.X)

Rather than storing only one (P.X) pair in the activation record. it is more effective 10 store

the set of pairs (P;.X).(P2.X,). - (P, .X,) specified by the argument list of ALLOCATE associ-

ated with the lowest level locality. When subprogram A resumes its execution after the termina-
tion of subprogram B. the activation record of A is searched for a pair P,.X, that can be allocated.
The first pair to be tried for allocation is P,.X, and then P,.X>. and so on until P=1.X is reached.
Note that ;> P.> - >P, and X > X,> - - >X,. This scheme avoids the need to wait for the
arrival of a new directive when the current directive entry pair (P.X) can not be allocated. More-
over. it reduces the cost of processing a directive as will be discussed in the next section. An exam-
ple is shown in Figure 3:17. A multi-nested loop structure with a maximum nest depth of 3 is
shown in the figure with ALLOCATE directives inserted at the appropriate levels (ALL stands for
ALLOCATE). Memory request primitives, X, are arbitrarily assigned. Note that the number of
(X .2) pairs in the directive entry is limited by the maximum depth of the loup structure compris-
ing the current locality. The activation record of A is dynamically updated. At stage 1. the pair
P=3.X =100 is stored in the record. At stage two. the second parameter cf the directive is entered
into the activation record. At stage 3. the activation DP entry is filled. At anv time during the exe-
cution of A, the memory space aliocated to A is given by one of the (P.X) pairs in the activation

record.
Recursive calls to a subprogram is simply implemented by creating a new activation record
for a subprogram every time it is called. The size of the central stack mayv become too large due to

an increased number of actisvation records created for a recursively called subprogram.

r
V-]
[~

I

-
]

1: ALL (3.100) Activation Record for A i
! 2: ALL (3.100) else (2.50) N
37 ALL(3.100) else (2.5) else (1,10) LIP3 2]t a[P]3]2]1 s
X [100 X [100(60 o
- "“.‘
ﬁ 2[P[31211] s[P[3[2]1
X 100 50 X [100160}30 X
% 4: ALL(3.100) else (2.60) X
) e O
4 1 . .30 !
5. ALL(3.100) else (2.60) else (1,30) 2 PT3 T2 ey

" X {100150]10

&

> Figure 3-17: Example of subprogram sequence control ::_
3.4. Cost of CD o)

o
!

There are two types of cost associated with CD. The first one is the cost of inserting directives

::: at compile time. The second one is the cost of executing a directive. '..'_"
'y "-
\ - » ’.-
Compiie time cost is less severe because directives are inserted only once. This cost can be lim- 2\
-. ited by having the directives inserted only into syntactically error free programs. This restriction "
e
v is aimed at reducing the number of times a compiler has to insert the directives into the program ol
]
"~ »
W [y
code. The actual cost of inserting memory directives at compile time is not measured in this study. AL
: _ . I
s. This problem is left for further research and studies. N
., "-\ S
n\
,e This section elaborates on the cost of CD at execution time. The cost of CD at execution time e
] :
. o
is the cost of executing the directives ALLOCATE, LOCK and UNLOCK. Our concern here is with .
»
-, b.'.-
ReC the overhead due to multiple executions of a directive located inside a loop. We will also discuss o
-:‘:n
i the overhead due 1o the execution of "else” conditional statements incorporated by ALLOCATE. ;:}
E since a conditional statement is a time-consuming operation compared to regular evaluating expres-
e
KN sions. These two factors contributing to the cost of CD at execution time are discussed next. e
‘.QJ ‘.::'-
, N
The structure of ALLOCATE can be relaxed to exclude the conditional statement ‘else.” thus ‘
i giving ALLOCATE the simple form ALLOCATE (P.X) where /” and X are the primilives ussoci- =

e

>
N

" ated with a loop. However. it is necessary that ALLOCATE reflects the hierarchical nature of a .t‘,
e (
@ X
)

NN AN N
; o

L a0 o a0

-

92

locality structure and to respond to the constantly changing memory status of the system due to
multiprogramming interaction. One way of preserving the hierarchical structure of ALLOCATE is
to use a multiple DP entry for the activation record discussed in the previous section. When a
directive is executed, the values of the (P.X) pair are stored in the activation record in a descending
order. When a second directive is executed the values of its (P,X) pair are stored in the activation

record. and so on until the directive at the lowest locality level with P=1 is executed: at this point

the DP entries are filled.

When a program is allocated a time slice. OS examines the activation record at the top of the
central stack. The pairs (P.X) are tried for allocation in a descending order. If OS fails to allocate
the first pair. it tries the second one. and so on. until the last one is reached. The swapper is invoked
upon failing to allocate the pair (P =1.X) as explained in Section 3-1-3. Vote that the conditional
statement is now transferred to the OS level of execution. where OS checks the values of the

activation record and compares them with the available free memory space.

Multiple execution of a directive is caused by executing a directive located inside a loop. Obvi-
ously. the directive is treated as a regular instruction which has to be executed. unless otherwise
stated. Such multiple execution of a directive adds to the cost of CD. especially when the memory
status has not changed since the last time the directive was executed, in which case the execution of
a directive is a mere overhead. Using a multiple directive point entry in the activation record and
the relaxed form of ALLOCATE proves to be useful in reducing the number of times a directive is
executed. A directive inserted at a higher level needs not be executed at lower levels because its
primitives have already been stored in the activation record. However. a lower level directive.

although relaxed. suli has 10 be executed every time the loop containing the directive iterates.

The optimal solution to this problem is 1o move all the directives cutside the loop structure.
This can be done either at compile time when the directives are inserted. or at run time hen the

Jrrectives are first executed. Eventually, all the directives of a loop structure will be stored in the

activation record. Therefore. 1f the removal of a directive is to take place at run time. then once a

"L

-~ "¢
'
o'

1

e EE

ax] B2 OB

-

.
"l

[L%

P

S

.

‘h. ‘-.

93

directive is processed. its primitives are stored in the DP entry of the activation record and the

directive is removed from the program code.

The cost of executing the directives in their original form. without relaxation and without

using activation records with multiple data entry, is measured in this study. The results are

reported in the next chapter.

3.5. Summary and Conclusions

We have presented in this chapter a compiler directed memory mangement policy (CD). Three
memory directives, ALLOCATE and LOCK and UNLOCK are inserted at compile time into the
program’s source code. When a directive is executed by the CPU during execution time. it generates
a request to OS to allocate X number of pages or to lock into memory a particular page. We have
developed algorithms for inserting directives, automatically, at compile time. These algorithms

utilize source level code information to identify program localities and to evaluate the size of these

localities.

We have also treated the problem of subprogram control sequence using the activation record
technique. A subprogram may be defined as a subroutine. a function or a procedure. When a sub-
program is called. program locality structures will be redefined according to the localities present in
the newly called subprog:am. Therefore. the memory requirements of a program are also redefined
by the recently called subprogram. However, when a subprogram returns. the memory require-
ments of the main program have to be restored. This problem is handled by creating a2 new activa-
tion recerd tor each sunmprogram whenever it is called. The activation record contains the most
recent information generaied by memory directives. In particular each activation record contains
the ~alues of (P.X) par-, where \ is the memory allocation request and P is the priority of alloca-
(v n Fach activation record has a peinter pointing at the previous one. thus. forming a dynamu

aain connecting all activation records in the order of their creation.

The cost of executing memur: directives has also been discussed in this chapter. A varation

of ALLOCATF directive structure may be used to reduce the frequency of executing a directive.

._‘.

LU NEL N

- A

et s, %%

94

The compiler directed policy can be implemented in such a way that a directive does not have to be

located inside a loop structure. where it has to be executed several times.

The performance of CD in multiprogramming systems is of significance importance to this
study. The CD policy is designed to be able to react 1o the constantly changing status of the free
memory available on the system due to multiprogramming. For this purpose. CD incorporates a
swapping mechanism. The swapping mechanism initiates a swapping process if the minimal
memory requirement of a running process exceeds the amount of free memory available on the sys-
tem. Moreover, the swapping mechanism incorporates a partial swapping strategy. Partial swapping
allows a swapped out process to maintain a resident set in memory. However. the resident set size

of a swapped out process is reduced 1o its minimal memory requirement specified by the directive

associated with its lowest level locality.

The performance of CD in a multiprogramming system is evaluated in the next chapter. We
will examine the fault rate characteristics ¢f CD among other performance measures. The useful-

ness of partial swapping is investigated. Finally. we will compare the performance of CD with the

rerformance of WS in a multiprogramming system.

T
[

Y

SA

-
&t
A

A

e e e A AR TTR IR SRR e
. .

I 95

o CHAPTER 4
' PERFORMANCE EVALUATION AND MEASUREMENTS
w4
\
X

4.1. Introduction
3
L The importance of performance and its evaluation in all technical fields is obvious. Ferrari
:': [22] considers performance evaluation as indispensable for the viability of any technical system as
£

the functionality and economicity. The previous chapter has addressed the other two categories:
kS
{:‘-: functionality and economicity of CD. The main goal of this chapter is to evaluate the performance
" of CD in a multiprogramming system.
.

The term performance is understood in the context of the performance indexes used in this

4
‘:j study. The most common performance index of paging systems is the page fault characteristics.
'_ The number of page faults, F. is a significant index by itself whcih.serves as a measure of the traffic
between virtual and real memory. It also reflects the lifetime of a process: the lifetime of a process
~
~ 15 inversely proportional to F. A process’s lifetime is commonly used to modei program behavior
(13], [19]. Also. F can be used as a measure of a process's virtual turn around time. A virtual turn
-~ around time ignores the delay time in queues waiting for other processes to be served However. the
A virtual turn around time differs from that obtained from a uniprogramming environment. This
difference results from the swapping activity which is a characteristic of multiprogramming svs-
o tems only. The virtual time, VT . of a process is given by
-_I
> VT =T + FxL
— where 7 is the length of the reference address trace: each memory reference is one time unit. F is
- the number of page laults generated during the execution time of a process. . is the time needed to
L)
cﬁ'
service a page fault. L includes the time needed to interrupt CPU and to transfer control to a pag-
i :ng device! the seek time needed to locate a missing page in the virtual storage: and the time to

transfer a page from disk {the virtual storage’ to main memory. The real turn arcund time. R7 . of

_‘:\
N

Ll el S 4 0 e A acadecds aan oy A aed atdues e Au i NS AL I AC AL B I AL SN

a process includes the waiting time in system queues:

)
RT =T+FxL +Q N4

where Q is the time a process spends in the system’s queues waiting for a service. In this study we
)

find the number of page faults for each process in the system. F, . and for all processes in the sys- .

tem, F, . where >

The space time cost. ST is another performance index. commonly used to evaluate memory
management policies. ST is the time integral of the memory space occupied by a process. Obvi- "
ously. a process may occupy memory space while it is running, or while in the process queue (PQ)
waiting for a time slot, or while in the fault queue (FQ) waiting for a page to be paged into main
memory. The real space time cost of a process is given by

T F 4 R .
ST =S, +LxES, + 28, i
=1 f =t ¢ =1
where S, is the space occupied by a process at virtual time. i: S, is the space occupied by a process
during the service of a page fauit: and S, is the memory space occupied by a process while waiting
in the process queue for a CPU time quantum. Space time cost is a system performance index.]
rather than a process specific. From the user point of view, it is desired to minimize the running

time of a process irrespective of the memory space 1t occupies during its execution. .

Maximizing the throughput of the system is a desired goal from the system’s point of view.
The throughrut s the number of jobs completed per unit time. With the throughput in mind as a
rerformance index, the space time cost becomes an important criterion of performance. The results 3
of gqueuing network analvsis claim that a maximum throughput can alwavs be achieved if each
process in the svstem runs with a minimal space time cost [12]. (20]. A theoretica! support {or this
clatm is based on the assumption that memory capacity is comrpletely ut:iized. Assune that the <,
total memory space 1s 6 pages. and NV processes are running for ¢ uime unmits. The average space

Lime COst per process is given by S

oy

<R

Al

455

3 |

1.
e

¢

a

-

o~ 4

97

The system throughput. ¢. is given by

¢=¥ or N =t X¢. hence, ST=—9—Xt—

dxt
The above formula implies that maximizing the system throughput, ¢, can be achieved by minimiz-
ing the space time cost of every process in the system. or equivalently. minimizing the overall sys-
tem space time cost. The overall system space time cost. ST, . is given by
Y
STy = ZST,,
p=l
The empirical results presented in this chapter contradict the above conclusion. However, the space
time cost is still an important criterion of performance. Memory management policies have been
designed and proposed to optimize the space time cost of a running process: among these are WS
(18] arnd DMIN {10] (an optimal dynamic memory management policy).
The average memory size allocated to a process, or the average resident set size of a process,
1%

. is commonly used as a performance measure of memory management policies. V is useful in

studying the locality property of program behavior: it also helps evaluating the ability of a policy

1o measure the memory demands of a program.

We have already mentioned that throughput, @, is used as a system performance index. A
svstem manager would like to increase the cutput of his system by maximizing the throughput.
However. this should not happen at the expense of slowing down the execution of some processes.

A tradeoff must be made between the interests of individual processes and the system as a whole,

S
<.

2. MiAimizing a process’s turn around time versus maximizing svstem'’s throughput.

A multiprogramming specific measure index is the swapping rate. Program behavior in a mul-
Liorogramming system is not a function only of its intrinsic properties. it also depends on the
behavior of other proce: ses in the svstem. For global memoryv management policies, a running pro-
cess may replace the pages of any other process. For local dynamic memory management policies. a

running process may swap out of memor. the resident set of any other process. The swapping rate

.'.
2

iy
-

0 7

NN .‘.-‘;:\

AN

'y’l" ." . .-".',. Aﬁ’ .l'..l

-

R
. ',‘\N'."- '-"n

«
TRy

|.'I

|

.
?

"‘}’l’ *\ '-‘ '{ ok

0

S
o
e Y,

i
‘ll-
M)

SRR ATV

OO
SIS

h s

|

ENENENENE N

P s, l‘ i
’f_”a, P

.‘l’:l'

4!

-

‘l‘.‘l.
Cea'sts

v ’ g “".l_"

.l

+54)

4

X

.' ‘.

FAr AN
s 00

r .7

*

o a's,

98

1s defined in this thesis as the total number of a process’s pages swapped out of memory as a result
of a swapping operation initiated by a running process. The swapping rate. Z. is a significant perfor-
mance index by itself. Moreover, L has an impact on the page fault rate, as we have discussed in

Chapter 2. Also, L is responsible for the anomalous behavior of WS (see Chapter 2).

In this chapter the performance measures. discussed above. are used to evaluate the perfor-
mance of CD, whcih will be compared with WS, The WS policy is chosen because it has been advo-
cated 1n the literature [20] as a near optimal policy. Besides. most of the dynamic. nonglobal poli-
cies proposed to manage memory hierarchies are derivatives of WS. For example. the Damped
Working Sets (DWS) [36] modifies the WS slightly to improve its behavior during interlocality
transitions. DWS outperforms WS by no more than 10% in terms of minimizing the space time cost
{20]. The Sampled Working Set (SWS) [34] has been proposed to reduce the implementation cost of
WS Ferran and Yih {23] proposed the Variable Interval Sampled Working Set policy (VSWS)
which combines the properties of SWS and DWS. The performance of VSWS is comparable to WS,
Globai policies which are not WS descendants. such as global LLRU and global CLOCK, have been
assumed to perform worse than WS [20]. The page fault frequency policy (PFF) [14] also achieves
similar 1o WS performance. Carr’s proposed policy WSclock [13] is an approximation and global

implementation of WS: WSclock parforms nearly the same as the pure W§.

1 most be pointed out, hewever. that CD is not being compared with the optimal. But since
‘WS and its variations are considered to have near optimal performance, CD is compared with the

WS pelice. This chapter presents compelling evidence that CD performs better than WS in many

dspects

Betore comparing CD wiuh WS the characteristics of €D are examined: namely. its dynamuc

behavior. the partial swapping mechanism emploved by CDLand the impact of the context switch

o UD's pertormance.

e R

&as <3

>3

-
Vs

I 5

. r P
et “

o3y
o

a’c

4.2. Modeling CD

The multiprogramming model used in Chapter 2 for evaluating the performance of WS is

used for modeling CD (Figure 4-1). Following is a description of CD’s implementation.

Each process is represented by its virtual address trace. A trace contains both virtual
addresses and memory directives. The directives are introduced manually into the source level
code. Each directive is represented by an integer number with a value larger than 1000. The most
significant digit is the priority index. P. of the directive and the rest of the digits constitute the

memory request, X . For example, a reference of the form 2120 is interpreted as a directive with

P=2and X =120.

Each process maintains a list of its referenced pages in the main memory. The memory space
reserved for a process is determined by the X value of the last processed directive. All paging

activities of a process occur within its specific memory area. The resident set of a process grows or

shrinks upon processing a directive or as a result of a swapping operation.

Time Out Interrupt

Pazing
CPU Device
Process Queue
L= Sta-
1 : . h
Anput ——————— | Swapping Mechanism -Q—)F{%Fet—ea- 33;

Main Nemory

fault ser- Page Fault
vice delay

Figure 4-1: Multiprogramming model

RS IRS St S GATRARAD SRNH AT

)

]

» -‘-.".' -..'.,

!

. . ~ v
> 'ns‘u';.',! S 4

~S S

»

¢
Yo e
-

&l .-f ’:’ .,

,.
/-5

-y ¥
'!)

Y
0
v

|2

-

o

Pt

"

- 1{1"{',

100

The CD policy does not have any control parameter. For this purpose, CD exhibits no control-
lability problems at run time. The directives are inserted at compile time, and evaluated at run
time in light of the status of the free memory. For each @ value. CD generates only one value for
each of the performance indexes described in Section 1, whereas WS needs to be tuned in order to
achieve a particular performance. The window size. 7. has to be properly chosen. Moreover.

different values of 7 might be needed to optimize different performance criteria.

System parameters are used as control paramelers in order Lo generate more results of CD and
to study the performance of CD in different environments. For example, a wide range of @ is used
to demonstrate the performance of CD in small and large memory systems. The value of 8 is varied
from 6 to SO0 pages. Also. the multiprogramming level, MPL, is varied between 3 and 10. Another

system variable 1s the context switch, CS. Several values of CS are used ranging from 100 to =1000

time units.

The CD policy has the option of using or not using the partial swapping feature described in
Chapter 3. The partial swapping mechanism is implemented as follows. Each process keeps a record
of its current allocation and the memory request associated with P =1. The swapping mechanism
keeps a circular list of all the processes in the system and a pointer pointing at the next candidate
process for swapping. Upon invoking the swapping mechanism, the processes are periodically exam-
ined searching for a process occupving memory with P > 1. If such a process is found. its memory
allocation is reduced to that associated with 2 =1: this value is stored in the directive record (used
to store the values of a directive's parameters) of the process. The difference in memery space.
between the old X and the new X . is added to the free memory pool. If all the processes have been
forced to run with P =1 and the free memory pool size is too small to satisfy the current memory

request. a total swapping is applied. i.e.. the entire resident set of a process is pre-empted.
When a process gains control of CPU, it is assigned a memory space according 1o the values
Lhund in its Jdirective record. Initially, the directive record contains the value of the minmimal

memoary space J4 process is entitled to have. In this model. this value s equal to 0. ie.. the resident

|G

Uy 3

LA

A

¥

r
¥4

s

-ﬁl'

101

set of each process is initially empty. When a process is removed from the control of CPU for a
time out interrupt, or for a page fault service. its directive parameters are remembered in the direc-
tive record. The CD policy does not keep a record of the members of its resident set at a time of

relinquishing CPU. Upon regaining control of the CPU. CD demands its resident set’s pages back

into memory:; WS is implemented in a similar manner.

4.3. CD Characteristics

4.3.1. Dynamic memory allocation

The amount of physical memory allocated to a program vary during execution for two rea-
sons. The first one is attributed to a program’s intrinsic locality characteristics. A transition from
one locality structure 1o another results in a change in the memory requirement of a program.
Therefore. the amount of memory allocated to a process may vary every time a new directive is
executed and its request is satisfied. Variable memory allocation also occurs within a locality struc-
ture. The amount of memory allocated to a process may be reduced due to a partial swapping
operation. This happens when a process is occupying memory with P > 1. ie.. low priority. Also, a
process may switch its memory allocation from that required by a lower level locality to a larger
one requested by a higher level locality: this is viable because the size of free memory may be

increased if a process releases some memory or a process completes its execution.

The variation in the memory size allocated to a process is not expected. however, to be abrupt.
A process 1s expected to spend some lime inside a locality: therefore, directives are spread apart by
the duration of a locality. Once a directive is processed and a particular request is satisfied. the size
of free memory is not expected to change until another process executes and changes its memory
requirements. For both these reasons. it is not expected to notice an abrupt change in the amount of

memory allocated 1o a process over execution time. In this section we report some results about the

dyvnamic memory allocation obtained under CD.

>

AL

PLITRE S W B

Ll .
PR A S

WAL S

s

s s k&AM

102

In Figure 4-2, the memory space allocated to a process is plotted versus real time. Five plots
are shown in the figure, one for each of the programs. The plots are generated for MPL=3 and three
values of @ (8=50. 100, 300). Consider. for example. program MAIN. For 6=50, all memory

requests larger than 50 pages are not satisfied. Memory allocation varies between 1 page and 17

pages according to the directive:

ALLOCATE (2.17) else (1.1)

The memory request. X=60. generated by the directive
ALLOCATE (2.60) else (1.2)

cannot be satisfied when 8=50. However, 60 pages can be allocated when 6=100. Depending on the
size of the free memory pool. memory allocation varies between 1, 2. 4, and 60 pages: this variation
represents intra-locality transition. An example of transition from one locality to another (inter-
locality transition). is illustrated in the time region. t=1.28x10° and t=1.31x10° where the amount
of memory allocated to program MAIN changes from 60 to 3 pages. With larger values of 0.
memory allocation within a locality structure seems to be stationary: the first request of a directive
(and the largest) is allocated most of the time. For program MAIN, 60 pages are always allocated

whenever a directive is executed of the form ALLOCATE (2.60) else.. Similar observations can be

made from the analysis of the rest of the figures.

Co:npared to other dynamic policies, such as WS and global algorithms. CD does not exhibit
high implementation costs. A program’s resident set does not have to be updated or computed at
everv memory reference time. The number of times a resident set has to be updated is limited by
the frequency of generating directive requests. The plots in Figure 4-2 show that for the five pro-

grars, memory allocation does not change in a rapid continuous fashion: it is rather discrete and

widelw spread over time.

4.3.2. Partial swapping

A major characteristic of CD is that it prohibits any program {rom running unless there is

encugh memory space Lo allocate at least one level of its current locality structure. The €D policy

.

.
v Yy

-1

B Al

50
\
=
0
5
-
-

“-

e 40
. M

b 20
i :

-
]
]
]

e |

-~

P S

L

L

-

2x10°

4x10°

6x10°

Time

8x10°

107

1.2x107 1.4x107

4-2a: MAIN, 6=50 ---, 100 ..., 300 - - -

n}(

Los

L

s, i

4x10°

6x10° 8x10°

Time

10°

1.2Xx10% 1.4%10°

4-20: FIELD., 0= 50 ---, 100 300 - - -

Time

“ | j
£ ;
WA — |
- I/ Y /* —_— |
; i Y N ./ i
/ AN s :
| —t] N
73 | \‘v/ 1
L { . i ! . L
Sx10° 10° 1.5x10° 2x100 2.5%100 Ix e

4-2¢: INIT. 8= 50 ---, 100 ..., 300 - - -

104

SN Bkl

100

R

-
-
L}

z
3
N,

=

E . l\ \\
‘ 0 == J L . . -

0 5x10° 107 1.5x107 2x10
Time
4-2d: CONDUCT., =50 ---, 100 ..., 300 - - -

2
: T \
: Loy
E M
)
]

v
»
Lale

L\

50

M

-

0 ok e Sttt LI I AT [L T —
0 5x10° 107 1.5%107 2%x107 2.5x107 3x107
Time R

3-2e: HWSCRT, 6= 50 -—-, 100 ..., 300 - - - N

Figure 4-2: Dynamic memory allocation under CD

incorporates a swapping mechanism to facilitate this feature. The swapping mechanism has been

.
> o e e~

-
discussed in Chapter 3. Partial swapping is introduced in order to give a process a chance to keep
.. '
; some pages in memory before it is completely demoted. Hopefully. with partial swapping more R
] processes can share the memory and CPU resources at no risk of thrashing. One may argue that L]
. . . ‘ o
rartial swapping may increase the number of processes in the svstem at the expense of generating -
s more page faults. In a multiprogramming environment. it is not easy to agree or disagree with this >~
’ argument on a purely theoretical basis. (*n one hand it might be true that less memory allocation K

.

results in more fault rate. or at least should. On the other hand. the lowest level locality might

have a time duration even longer than the context swilch time interval given to a process. In this > \
3
care partial swapping can have only a positive impact on the performance of an individual process N i
{
- }
PP LR A L R R R G Wy R A AR A
--;".. - ’-.‘c’.- -\-.:.. -.-‘\.-. - N o g LY ‘c" e n > .

R EE

wel BX A

| AS

,";'

o

.)
te s

-
0

XX |

el

. .
‘l- ‘D

105

and of the system. Besides. total swapping may result in extra completely unutilized memory

space.

The empirical results reported in this section demonstrate the impact of using a partial swap-
ping strategy along with a total swapping. For MPL=10 and 6=50, the total number of system page
faults is 39015 with partial swapping turned on; without partial swapping the page faults
increased to 53220, a difference of 12105 faults. However, for larger values of 0 the big difference
disappears. For example, the number of page faults for 8=150 with partial swapping on is only 3

faults less than the fault rate without partial swapping. For 6=200. 300, and 400 the difference

disappears completely.

For each process in the system the total number of pages. L. swapped out from the resident

set of a process is recorded. Figure 4-3 presents a plot of T versus 0 for programs MAIN, INIT, and

HWSCRT with MPL=S5.

Our results show that partial swapping can indeed result in more page faults. However. for

high memory contention cases. partial swapping has the tendency to generate less faults than total

swapping.
4.3.3. Effect of context switch

One reason for a process to relinquish CPU is to use up its context switch interval where a
time out interrupt is generated. A process may actually use all of its time slot if it is not inter-
rupted during the context switch period. In our model. the only other interrupt is caused by a page
fault. Therefore. if the average lifetime of a process. i.e.. the time between successive page faults. is
larger than 'he context switch value, CS. a process is likely to use up its time slot before a page

fault occurs. Similarly. 1if the time between successive faults is shorter than CS. a process is likely

10 lese control of CPU before its context time runs out.

The average litetime of a process 1s inversely proportional to the fault rate. The average v r-

tual litetime. G . of a process is defined as G =T /F where T is the lengyth of the address reference

Ll
'
o

£

y 'f'/'/')‘ﬂ

>

[3% S R
IABALIR A

. v
PR
"o % o I8
L)

yty
XN

’n‘l.;',

w

[A

-

''''''

100 |
50 I\ /
[N
o AL NN
0 50 100 150 200
0
4-3a: MAIN. MPL=5
100

50

106

0 N —_ e,
0 50 100 150 200
0
4-3b: INIT, MPL=5
1
100 ﬁ J‘
U \!
| —
] !
sof R ‘ / a
|
| |
1 po
0 50 1()()9 150 200

4-3c: HWSCRT. MPL=5

Figure 4-3: Partial swapping rate .ersus 9

| |

&‘)‘J

d

CA
2«

|

A
'4"

"
.

.

-4 A
LN

3 |

w_
| BTN

v

107

string. and F is the number of page faults. The average virtual lifetime is maximum if F is
minimum. The minimal number of faults in a2 demand paging system is equal to the number of
pages in the virtual space of a process. The maxin um value of G for the programs used in our
experiments is given in Table 4-1. Averaging over all of the programs. the maximum average life-
time is 365. In reality the lifetime of each- process is lower than the values given in Table 4-1

because the actual number of faults is much higher than the absolute minimum.

All of the results reported in this thesis use CS=1000. This value is large enough 10 exclude
the impact of CS on the results. Mainly we are interested in paging related characteristics of pro-

gram behavior. However, we report in this section more results using smaller values of CS. The

fault rate characteristics are observed under different values of CS.

In Figure 4-4 we plot the fault rate versus 0 for each program (MPL=5). Two values of CS
are used. CS=100 (solid line) and CS=1000 (dotted). From the curves in Figure 4-4 we note that
most of the programs favor larger values of CS. Program MAIN, with G ;,,=1017. generates
significantly less faults. with CS=1000. than with CS=100. especially with 0 in the range 75—-100
pages. For example. F(6=80.CS =100)=5524 and F (6=80.CS =1000)=852, a difference of 4872
faults. For large 8 values. the difference page faults for different CS values disappear since, for
large 6 values. the number of faults is considerably low. and a process is allowed to use all of its
time slice. Moreover, the swapping rate is considerably lower with large values of 8. and therefore.
a process is likely to retain its resident sel pages when it regains control of CPU during the next

context switch.

Table 4-1
Maximum lifetimes of programs

! Program I Ref. Length (7)) | Virtual Size | G pax

1
|
|

MAIN 79325 ! 78 11017
FIELD ; 10523 60 181 |
CONIT . 10.745 174 62
" CONDUCT | 52,452 29] 83

-

1 HWSCRT 22.721 76 bo299

- - >

v

hr‘-.f.w

l ...:..:..‘_‘

£ e

v
&

a0, N Ty

-+

M TR
o

OV T,
.

BN R Y
DMLY

v
Y

'-'

Y
s

AR

x

IR/

e e AR

D)

t 4

4

s

',/
A Ay

-

I

R

: I
|

108
*:;

B

Py, |

P' 5
: 10 .
l. h"
0 oz,
‘: [

Li

11
 §

, . O ‘-ﬂ.‘ /\\.___. ‘:‘.
9)) \/.] .\--—---__._. """ L) b :'.':
10~ b N PTDR DTS DU PIPTOY DUWOY FOUTE PUUTY P NI DU PUUUE DU NI PO N O TN
0 20 40 60 80 100 120 140 160 180 200 ..
x ‘._.

4-4a: INIT, MPL=5, CS=100 ---. 1000 ...

10000

.
P g
-

@R AR

-
PPy
= [}

100 1) v rvwwe Tenwr voud

4-4b: FIELD, MPL=5. CS= 100 ---, 1020 ...

10000

f:";' .a"

{77

Ot i
R l

i

% %%
oA

100 L i i i N [1 el 1 1 i [P |

i
0 20 40 60 80 100 120 140 160 180 200

=2

4-d¢: INIT. MPL=5, CS=100 ---. 1000 ...

~
~
]

L)
- D‘ [

~

. ’*.

-

»

SN M RNTR RN RN

109

10° -
\ v g
L5 oS!
N U S
§ ¥,
- M‘\\L)
10 La WUTS TUTON 1 : N Il DY DU P i ho NN PN FOTUN PN ~::::
0 20 40 60 80 100 120 140 160 180 200 L

0

4-4d: CONDUCT, MPL=5, CS=100 ---, 1000 ...

% b
1

Te
I

ol L . S IORT SRR D - — - e 1 :.
0 20 40 60 80 100 120 140 160 180 200 2
0 o

4-4e: HWSCRT. MPL=5, CS=100 -, 1000 ... o~

Figure 4-4: Effect of context switch on page faults

System fault's curves for three values of CS (100 solid. 1000 dotted. 2000 dashed) are shown 3
in Figures 4-5a and 4-5b for MPL=5 and 10. respectively. The curves are almost identical for ;_
6> 100 and 6> 300 for MPL=5 and MPL=10, respectively. For smaller 8 values. smaller CS values e
generate a larger number of faults. For small 6 values. the swapping activity is considerable and.
therefore. it is possible that a process be swapped out before its next time slot. Using a relatively ;::'
large CS allows a process to benefit from those pages it has paged inlo its resident set. ._j

However, using a large CS value affects the response time because a process his to wait tco ':.E
iong in the process queue before its next scheduling time. Small CS values. as discussed above. have 2

the tendency to generate more faults and consequently increase the turn around time of a process.

There is a tradeofl between response time and turn around time. Response time, howeer. has 10 be

L - e Ta e e DT S P e
y ';‘9’.;-' -!'-‘f\!‘.'f ol -"\" o N A ey

Y "-*'-¢'1 v

M

110

10°

10%

ay)
T Ty
o

]

109 \

7
A

103 - .

(=]
(¥
(=)
—
8
—

h

o
N
8

4-5a: SYSTEM. MPL=5, CS=100 ---, 1000 ..., 2000 - - -

106
10°
F X
VoA
10*
e
‘l 0j 1 1 - 1 1
0 100 200 300 400
T

4-5b: SYSTEM. MPL=10. CS=100 ---, 1000 ..., 2000 - - -
Figure 4-5: Effect of context switch on page faults

acceptable to human norms. And therefore. a maximum response time can bhe enforced by using a
global context switch, g. The distribution of g among the processes depends on the lifetime of a
process and the number of processes in the system. The general criterion is that a process should he
allewed 1o continue using CPU as long as it does not generate a reference 1o a norn-resident page.

re.. rage fauit. However. the smooth behuvior of a process sheuld not be a reason to keep other

processes waaiting in the queue: after all. these processes mayv have a smooth hehavior as well

A g
‘i
A

8 DAL |

F]
L]

;.'l 5

N

L i and el i aov ardc i S g Sk PO

111

i Therefore. a process should be pre-empted from CPU if it exceeds a threshold value. Following is a
dynamic strategy for allocatling time quantums 10 running processes.
- Let g be a global context switch; g is set to a maximum value m. Also, let N be the number E~\‘.
ﬁE of processes which have not been scheduled yet to run during one scheduling cycle: a scheduling o
cvcle is completed when all the processes in the system have used CPU once for some time. Define a
I:.
:5 threshold. 2. as / =-§/—: g is always evenly distributed among the remaining processes in the sys- .
fé tem. Every time a process leaves CPU after some time r. g is updated as g =g —t. and N is
- updated as N =N —1. The lime a process spent using CPU is determined by an interrupt due to a
:: page fault or a time out interrupt after £ time units. whichever occurs first. We further illustrate
's this strategy using an example.
Example 4-1:) '
:‘:: Assume that there are 4 processes in the system. Let m =1000 time units: i.e., the maximum
. response time for any process is 1000. Initially. g =1000 and h =1000/4=200. Let process P, run - .
) until a fault occurs after 100 time units. ¢ =100 i.e.. P; does not use all of the time it is entitled to _‘:‘..:
e
-" (h=200). At this point g is updated as g =1000—100 =900: and g is distributed among three ;.:i
- processes since V =4-~1 =3 (2 =900/3 =300). Note at tnis point that the remaining processes in the s
' svstem have a higher threshold than did P, when it controlled CPU. Next 2, runs and uses up all "
< of its time quantum (300 units) before it generates a fault. All parameters are updated as ;_
e 2 =900—-300 =600: N =3—1 =2; and h =600/2 =300. Assume that P, executes until a page fault
: occurs after 150 1ime units. The value of g now becomes g =600—150 =450; .V =2-1 =1. and
. 71 =450, Process i’ can use CPU for 450 time units uniess it generates a page fault ; assume that a __\.E.
- fault occurs after 400 time units. Now g is reset to 1000 and a new cycle begins. Note that no pro-
E: cess in the svstem mayv wait in the queue more than SO0 time units. and each process is allocated at :;-
< A
least 250 time units \f“\

The ahove scneme allows smoothly behaving processes - with low tault rate) 1~ take adhan-

N taye of the shert lifetime of heavily faulting processes. At the same time heavily faulting processes

112

are not punished for bad behavior; a heavily faulting process is scheduled to run after at most m
time units. In the above example. P, could use CPU for 300 time units because P; did not use all
of its time. Similarly, P, could use CPU for 400 time units because P; was pre-empted before its
time had expired. However, P, is rescheduled after 1000 time units from the time it first controlled
CPU. Using static CS distribution. P, could have been scheduled after 650 time units. Of course
this is a shorter response lime. but it makes little difference if m is chosen within the range of
human acceptable reaction (few milliseconds for example) for interactive systems. Moreover, Lwo

processes could be interrupted (P, and P,) although they could have used CPU for useful work.

The notion of response time is. mostly. applicable to interactive systems. In batch processing
svstems. response time has little significance. Therefore, for batched scheduled jobs. it is more

effective if a process is allowed to execute until it generates a page fault.

Dvnamic time allocation is still to be further investigated. One way to pursue this issue is to
look irto the possibility of using memory directives introduced in this thesis, or possibly some time

directives. 1o guide a dvnamic time allocation strategy. In this thesis we investigated only static

time allocation.

4.4. CD Versus WS

Simulation is performed for several values of 8 ranging from 6 = 6 10 200 pages. Small values
of 8 represent the case of high memory contention characterized by a relatively high rate of swap-
ring. Larger values of 8 are used to evaluate the performance of CD and WS when there is enough
memory o allocate the resident sets of programs as requested by CD or defined by 7. the WS§
rarameter Four leveis of muluiprogramming (MPL) are used: MPL=3. 4, § and 10. MPL=10 is
achrered by running two copies of each prograra simultaneously. For MPL=3 high memory conten-
ton results for 8 < 30 pages. For MPL=10. memory contention is observed for 8 < 150 pages.
Next D is compared with WS in terms of the page faults. the spuce Lime cost, the svsiem

shretghrut and controllanidit,

h]
P

£
i 113

“l
N 4.4.1. Page faults ,
<
]
a Minimizing the turn around time of a job is a primary performance objective from the user’s B
k point of view. In a virtual memory system. this objective can be achieved by minimizing the page
@ faults of a user’s process. However, minimizing the faults of a process in the system may adversely
affect other running processes’ page faults and worsen the overall system performance. In the next
|}
g subsection we study the page fault characteristics when the objective is to minimize the faults of {
ht
5 individual processes. v
&
h
o~ 4.4.1.1. Page faults of individual processes v
l.‘:

In a uniprogrammed system., WS can be easily tuned to achieve the absolute minimum

v, l
i‘ number of page faults by choosing a relatively large value for 7. Earlier experiments [20], {3] have
- always assumed a uniprogrammed system with infinite memory where 7 value is not restricted by
\)
,.‘ .
r. the memory size. However. in practice 7 is restricted by the finite memory capacity available on R
i the system. In a multiprogramming system the page faults of a process is affected by other
processes running in the system: therefore, large 7 values may not always generate a low number K
;::j of faults. In Chapter 2. 1 was shown that increasing 7 may result in increasing the number of .
m faults. i.e.. anomalous behavior. Also. larger T values yvield large working set sizes which lead t0 a b
(N »
* memory contention problem among processes in the system. r
r
o '
N . X
r Table 4-2a (MAIN)
CD compared with the minimal achievable page faults under WS ,
-::j with corresponding space time costs .
. 5 Page Faults ST Cost(10°¢) T }'
3- 0 | CD | WS [A;,% | CD | WS | Ay% | WS .
-
) I 6] 923 | 1743 89% | 3.84 9.07 | 136% 196
& 10] 923 | 978 | 06% | 3.84 | 5.97 | 50% , 6
o f :
2018721 921 | 06% | 3.79 | 570} S1% | 6]
25 18551 921 | os% | 433 571, 32% | 6| g
i | SO [855 | 350 | -44% | 4.33 1 22.7 T 4247 [6500 |
1100 1169 | 302 | 79% | 522 1247 373% | 9900 -
..
3
“
\;
[_] .
e .
B L Gt n 6 LRy o/) G U T iy S S o e e e i T I e TN
AV, AR FTEATTL AN N M - 3 p . o . S o 3

o i
114 =
:
o Y
S
R oy
Table 4-2b (FIELD) A
CD compared with minimal achievable page faults under WS§] _
with corresponding space time costs R
3
Page Faults ST Cosw(10°) u 23 ,
6 |CD | WS | Ar% | CD WS | Ag% ws .
. :=: . -
6 | 173 [7903 | 4468 | 2.858 | 31.6 | 1005 1 =
7 1173 [3795 | 2094 | 2.858 | 33.1 | 1058 6 A
8 {173 | 3172 | 1733 | 2.858 | 27.2 862 386-436 . ;
9 | 173 | 2892 | 1572 | 2.858 | 26.2 816 441-c0 LA
10 | 173 | 3357 | 1840 | 2.858 | 34.1 1093 6 ~
11 | 173 | 2784 | 1509 | 2.858 | 30.8 978 381 R
12 | 136 | 1307 | 861 | 2.899 | 11.9 310 261 ~ Q
13 | 136 | 1217 795 | 2.899 | 123 324 396-436 .t
14 | 136 | 1153 748 | 2.899 | 12.1 317 771-1101 0N
15 | 136 | 1163 755 | 2.899 | 123 324 221-226 []
451-511 R
16 | 136 | 1146 | 743 | 2.899 | 13.1 352 386 SR
17 { 136 | 1101 710 | 2.899 | 13.5 366 581-761 S
18 | 136 | 341 | 151 | 2.899 | 3.91 35 261 e A
20 | 136 219 61 | 2.899 3.1 7 381-396 i
25 | 143 | 149 412768 | 298 8 | 1301-1501 o %
30 | 136 134 00 | 2.899 2.62 -9 1601- ‘A '.t
35 | 136 104 -23 | 2.399 3.03 5 | 1801-2301 :f; "
40 1 136 | 113 | -17 | 2.899 | 2.92 1 | 4201-5401 he
45 | 136 107 -21 | 2.899 3.04 S 921-961 | =
50 | 136 106 -22 | 2.899 3.2 10 6501- > ;:
100 | 136 | 69] -49] 2.899 | 3.68 27 | 4701-6001 -
‘b K
oo
For CD. the number of faults is a function of 8 only (Fp(6)), although 8 is not a control -
parameter. In this study we use a wide range of 8 values to demonstrate the ability of each policy \‘ :::
t\:
o function in small and large memories. For each 8 value CD generates one set of results including “ '
'n:“ D
the number of faults for each process and for the system. -
~ S
The WS policy is controlled by 7. the window size. Each performance index is a function of E N
7. For each 8 and each 7. W' generates one set of results. Since we use several values of 7, several “ :‘
sets of results are obtained. The minimum 7 value used is 7=1. An increment of 5 is used up to a L oy
K
value of 7=1000. A small increment is necessary to capture the behavior of WS in transitional -

115

periods. In numerical programs, changes in locality structures occur in abrupt fashion; this is obvi-
ous from the lifetime of individual numerical programs (see reference [8]). A larger increment i
used for 7>1000. The WS window size is increased until the working set size of any process
exceeds the amount of physical memory, 8, where an overload condition is raised: in this case the
results are generated for all preceding 7 values and the simulation is terminated. Simulation may

be continued only with larger 6 values.

Each 7 value is used by all processes in the system (fully detuned policy [20]). Alternatively.
one can use for each process in the system a separate 7 which optimizes the performance of the par-

ticular process (fully tuned policy [20]). The high overhead associated with fully tuned policy res-

Table 4-2¢ (INIT)
CD compared with the minimal achievable page faults under W§
with corresponding space time costs

Page Faults ST Cost(10°) T
9 CD | WS [A;% | CD | WS | A% WS
6 | 2520 | 3686 | 46 | 13.83 | 24.5 78 | 196-376
712520 | 3150 | 25 | 13.8 | 243 | 765 256
8 | 2520 | 3038 | 21 | 13.8 | 3171 130 6
9 | 2520 [2610 | 04 | 13.8 | 284 | 106 6
10 | 2520 | 2556 | 02 | 13.8 | 28.7 | 108 6
11 | 2520 | 2525 | 00 | 13.8 | 289 | 109 6
12 | 2457 12525 | 03 | 13.19 | 29.0 | 120 6
13 | 2457 | 2519 | 03 | 13.19 | 43.2 | 228 11
14 [2457 12515 | 02 | 13.19 | 443 | 236 11
15 | 2457 | 2511 02 | 1319 | 456 | 246 11
16 | 2457 | 2513 | 02 | 13.19 | 46.0 | 249 11
17 | 2457 | 2514 ' 02 | 13.19 | 50.0 | 279 11-16
18 | 2457) 2514 | 02 113.19 | 602 | 356 16
20 | 2457 | 2509 1 02 | 13.19 | 46.5 | 253 11
25 1 945 | 2509 | 164 5.16 | 50.0 | 8695 11-16
30 945 | 978 | 03 | 516|356 ! 590 81
350 945 1 960 | 02 | 13.41 | 332 ¢ 148 66-86
40 | 945 | 947 | 00 | 13.41 | 48.7 . 263 121
450 945 | 947 00 | 1341 | 472 | 252 116
SO 369 1 947 1 157 [1122 T61.0 1 444 ! 156-l61 | X
100 | 273 | 175 | -36 1547 | 142 . -8 | 516-1101 0L
5
A
.
.
\-
‘..‘\'\
....... RN TS TR

...........

116

tricts its use. To achieve a performance close to that of fully tuned WS with relatively low over-
head we find for each process 7r_,, Wwhich produces the minimal number of page faults
(F min(8.7)); recall that our objective is 1o minimize the turn around time of individual processes.

The side effects of operating with 7_,,;,, are measured by evaluating the corresponding space time

costs ST (7r_,,;,) and the average working set size W (7p_,...).

For MPL=3, the results are shown in Tables 4-2a, 2b, 2<, for programs MAIN, FIELD. and
INIT, respectively. In the first column of each table is the memory size, 8. The number of page

faults generated under CD and WS are given in the next columns; for WS the number of faults is

the minimal value selected from several values generated under different 7 values. The relative

difference between F.p and Fy is given by

Fys—F
Ap =~ %" %100% . (4-1)
FC‘D

Positive Ar values indicate that the number of faults under WS is larger than that under CD. For
the same 8, the space lime costs under CD and WS are given in the next two columns. For CD this

is the only value. For WS this is the space time cost achieved using 7r_,.;, - The relative difference

between STys and ST is given by

_ STys =STcp
STep

The last column shows the optimal 7 for each process.

Ay xX100% . (4-2)

The analysis of Tables 4-2 shows that CD performs better than WS in high memory conten-
tion cases (small § values): high memory contention is characterized bv high swapping activity.
Consider. for example. 8 = 8. The minimal faults under WS for programs MAIN. FIELD. and INIT
are lugher than those ichieved under CD by 53%. 1733%, and 21%, respectively. Under CD. 4
swapping operations are performed to pre-empt 18 pages of memory. whereas under WS, more
than 40 ~wapping operations are initiated. The performance of WS improves when the memory
available on the svstem 15 relatively large. For example. WS produces 367 and 49% less faults than

CD for 8=100 for INIT and FIELD. respectively. CD still outperforms WS for program MAIN by

w

AR S v 36 h

(5.9

SR

B

=
h)

B

Ly

»

~

A

’

it

s’

YN

[]
-

Table 4-3a (MAIN)
CD compared with the minimal achievable page faults under WS
with corresponding space time costs (MPL=4.5.10)

Page Faults ST Cost(10°) T
MPL | @ |CD | WS |4;% | CD | WS |Ag% | WS

4 10 | 923 | 1469 59% | 3.841 7.59 98% 9
20 | 923 947 3% | 3.841 5.87 53 10

25 | 923 921 00 3.841 5.71 49% 6

30 | 889 921 04% | 4.367 5.81 33% 10

40 | 855 921 08% | 4.331 5.83 35% . 26

50 [855 921 08% | 4.331 5.83 35% 50

100 | 169 919 | 444% | 5.221 | 15.6 199% 415

150 | 152 258 70% | 7.117 | 23.4 229% 6600
200 | 152 79 | -48% | 7.117 | 10.8 52% | 16.500-

5 30 | 855 | 1157 35% | 4.331 | 11.9 175% 51
100 | 237 921 | 288% | 4.72 9.92 | 110% | 50-250
150 | 169 310 83% | 5.21 22.9 340% 6000
200 | 152 139 -9% | 7.117 | 14.4 102% | 20.000-

710 | 50 | 895 | 1029 | 20% | 4.334 | 6.11 | 41% 11
100 | 237 | 956 | 303% | 4.72 5.96 | 26% s1
150 | 245 | 564 | 130% | 8.113 | 222 | 174% | 6900
200 | 152 | 474 | 212% | 7.017 | 231 | 225% | 7900

79%. For §=100. the swapping rate is O under both CD and WS.

The improvement of WS with a relatively large memory size (=100 for MPL=3) is expected
since the working set size of a program can grow with less restriction. Using large values of 8 may
result in a situation similar to a uniprogramming system with infinite memory. where WS can
achieve the absolute minimal number of faults by using a relatively large 7. In a multiprogram-
ming system il is alwayvs possible 10 transter the system into high memory contention state by
increasing the number of processes competing for memory space and CPU time, i.e.. increasing
MPL. Comparing CD and WS for small 8 values can he a useful measure of the optimal MPL sup-
ported by both pelicies. Consider. for example, tne performance of CD and WS for 8=50. For

MPL=3. WS generates less faults than CD does for programs MAIN and FIELD by 44% and 22%.

!

respectivelv. When the multirrogramming level is increased to MPL=d4. WS generates more faults

i Y

PRl N]

-

Vs s o d?d

Mt

b NN AT

118

Table 4-3b (FIELD)
CD compared with minimal achievable page faults under WS
with corresponding space time costs (MPL=4.5,10)

Page Faults ST Cost(10°) 7
MPL | 8 | CD | WS | 4,% | CD | WS | 4y % | WS
—————
4 10 | 2501 | 3909 56% | 8.946 | 35.5 275% 9
20 173 | 1806 944% | 2.858 | 21.7 659% 15
25 136 241 77% | 2.899 3.14 08% 21
30 136 193 42% | 2.751 2.81 02% 30
40 136 161 18% | 2.899 3.33 15% 31
50 136 161 18% | 2.899 3.55 22% 45

100 136 133 00 2.899 3.76 30% 415
150 136 64 -53% | 2.899 4.25 47% 6600
200 136 61 -55% | 2.899 4.09 41% | 10.500-

e ==
5 | 50 136 | 2762 | 1931% | 2.899 [38.1 | 1214% | 101
100 | 136 | 109 | -20% | 2.899 | 3.67 | 27% | 951
150 | 136 | 68 | -50% | 2.899 | 3.8 31% | 5500
200 | 136 | 61| -55% | 2.899 | 4.09 | 41% | 15.000-
10 | 50 | 135 | 405 | 200% | 2.762 | 482 | 43% 21

100 165 164 00 2.352 3.07 08% | 701
150 128 114 -11% | 2.893 3.58 24% 7000-
200 128 83 -35% i 2.893 3.03 05% 1800

than CD by 8% and 18% for MAIN and FIELD. respectively. Increasing MPL further to MPL=5
and 10, the number of faults under WS exceeds that under CD by 35% and 20% for MAIN, and by

1931% and 200% for FIELD. respectively. The results for MPL=4. 5. and 10 are reported in Tables

4-3. one table for each program.

From Tables 3 we note that CD benefits from increasing MPL for the same € value. whereas
the performance of WS degrades with increasing MPL. Consider. for example, program HWSCRT
(Table 4-3-¢). Doubling MPL has almost no effect on the performance of CD. whereas the page

faults under WS increased more than 12, 3, and 2 times for 8=100. 150. and 200, respectivel.

The low number of page faults under WS. generatad with larger 8 values. s aimost always
associated aith a space time cost (ST) larger than CD's. in other words, WS generates less fauits

on the sxpense of occupving more memory space for a longer time. Consider. for example. Tabie

oy

R 12

[

v v .

<8

-
P

e |

a4

v
e

&

2o 1R

1

A8

R T '-,"'A\“‘-" .

ez WEE

7 YA 22 AR

v

L
'l

oy BR%

R

N

119

4-3a for program MAIN, MPL=3, and 0=50. The WS policy generates 44% less faults than does CD
(Ar=—44%) . However, the space time cost under WS is 4.24 times more than that under CD
(Asr =424%). For program CONDUCT in Table 4-3d, WS's improvement over CD in terms of page
faults for MPL=5 and 6=100.150.200 is accompanied by excess space time cost of 25%. 186%. and
247%, respectively. On the other hand. ST¢p is lower for most of the time than STy even when
CD generates fewer faults than WS. For 6 = 9. in Tables 4-3a. 3b. 3c. CD generates less faults than
WS by 16%, 1572% and 4% for MAIN, FIELD and INIT, respectively. For the same 8. CD outper-

forms WS in terms of ST by 59%. 816% and 106% for the same programs.

The analysis of Tables 2 and 3 show that CD achieves better performance than WS in a small
memory environment. The WS is a better policy when using a large memory size. However, for the
same memory size, CD can support higher multiprogramming levels. CD is designed to respond to

Table 4-3¢ (INIT)

CD compared with the minimal achievable page faults under WS
with corresponding space time costs (MPL=4, 5, 10)

Page Faults ST Cost(10°) T

MPL | 6 | CD | WS | A% | CD WS | Ay % | WS
1 10 | 2520 | 3298 | 31% | 13.8 22.5 63% 9
20 | 2525 | 2544 | 00 | 13.04 | 423 | 224% 10

25 12525 {2521 | 00 | 13.04 [290 | 123% 6

30 [2535 | 1113 | -55% | 14.05 | 18.9 35% 30

40 | 2525 | 997 | -61% | 14.05 | 15.5 11% 26

50 { 729 | 977] 34% [1405 | 26.9 92% 60

100 | 297 | 274 | -07% | 146 14.5 00 415

150 1 273 | 175 | -36% | 1547 | 19.0 23% | 2400

! 200 1 273 | 175 | -36% | 1547 [28.7 86% | 6500
5 1 S0 729] 2818 | 287% | 5.045 | 388 | 669% | 101 |
100 © 273 | 187 | -32% | 928 | 969 | 04% | 551

[150 ¢ 273 | 175 1 -36% | 9.28 | 13.8 | 49% | 1000
| 200 1 273 0 175 | -36% | 928 | 134 | 44% | 950
C 101 S0 1 S35 [1500 | 180% | 11.7 228 [190% | 201
; [100 0 273 0 833 5 92% [107 {159 | S52% | 600
' L1500 2730 NS 1% D315 126 0 302% | 2000
! L2000 273 0 175 -36% 1 93 112y 1 31% | 1600

:
)
d

v

o
v

(4
.
LR

PN

CAAS
L)

-y~
R)
*

-
»
&
e

L FCANG LS
q.;\.',\;;,{,

f X

NI
LS \‘ -

Mt
120
R
b changes in the memory status in a multiprogramming system. Both the hierarchical structure of
¥ memory directives and the partial swapping mechanism enhance the performance of CD.
-.: In the above analysis we have assumed that each process can use its own optimal 7 (fully
4
é:'. tuned policy). The high overhead associated with this policy restricts its usage in real systems.
5
A
Choosing one T among the optimal ones (p% detuned policy [20]) may degrade the overall sysiem
! 3 performance. Moreover, an optimal 7 for one process may not be usable by other processes. For
L4
-:_ example. the optimal 7 for program MAIN (8=45) is 6200. This 7 cannot be used by INIT since the
N
- working set size (a function of 7) exceeds the available memory on the system; V(7=6200.8=45) =
?'.' 69 pages > 0=45. In the next subsection we consider optimizing the overall system page fault per-
’
;: formance.
N Table 4-3d (CONDUCT)
3 CD compared with the minimal achievable page faults under WS
. . with corresponding space time costs (MPL=4, 5. 10)
s Page Faults [ST Cost(10°) T
Y MPL | @ CD WS | A% CD WS | Ag% | WS
'\’.
4 10 | 5043 | 23005 | 356% | 96.96 | 268.0 | 176% 9
20 [4788 [5507 | 15% [173.9 [92.8 | -47% 15
! 25 | 1634 5148 11% | 207.2 106.0 -9% 21
) 30 | 4456 | 4952 11% | 236.0 | 185.0 | -22% ! 60
» 40 | 4125 | 4876 | 18% | 284.9 | 2030 -29% 66
' 50 | 3873 4637 20% | 328.4 278.0 | -15% 116
; 100 789 2903 | 268% | 301.7 421.0 I 40% 415
N ;’ 150 | 748 572 | -24% | 2222 | 70.6 © 218% | 6600 R
. : P200 | 748 406 | -46% | 2222 1 79.7 | 259% | 20,000
- E E o
N 3 50 | 4562 | 5979 | 31% | 96.9 160.0 ' 65% | 101 ~
| 100 | 789 754 | -04% | 30.17 | 37.7 | 25% 601 -
] : 150 | 748 | 582 | -22% | 2222) 63.5 | 186% | 6500 _
~; | 200 | 745 | 403 | 6% | 2222 1 771 1 247% | 50.000 =
N T10 | 50 | 3873 | 5864 | S1% . 380 1050 ' 176% | 21
o _ | 100 | 789 | 4875 1 S15% | 3017 1 202.0 : S70% | 451 "2
' 150 748 0 1241 1 66% 0 2222 | S48 1 282% 1 24,500 n

200 1 48 - 677 -09% . 2222 353 . 59% 1000

-

.
-

BRE .

¢ >R

y v
U
LA

3

AR

e e et aTaa
.............. TR0 i R R TS

LA Lo - A - . .

' Ua e, 0l a7 .

Table 4-3e (HWSCRT)
CD compared with minimal achievable page faults under WS
with corresponding space time costs (MPL=5, 10)

Page Faults ST Cost(10°) T

MPL| 6 | CD | WS | 4;% | CD WS | 2% | WS
S | S0 | 649 | 4744 | 631% | 11.33 | 854.4 | 645% 101
100 | 646 | 378 | -42% | 11.33 | 19.5 72% 401

150 | 646 | 155 | -76% | 1133 | 133 17% | 6500

[[200 | 646 | 123 | -81% [11.33 | 9.43 | -16% | 10.000
10 | 50 | 4680 | 4684 | 00 | 11.33 | 820 | 632% 71
100 | 649 | 4580 | 606% | 11.33 | 188.0 | 1559% 651

150 | 646 | 474 | -27% | 11.33 | 232 105% 551

200 | 646 | 340 | -47% | 11.33 | 172 52% 551

4.4.1.2. Overall system page faults

For WS we find one global 7 which minimizes the overall system page faults. We then use
this 7 to find the corresponding page faults and space time costs of the individual processes. The
results for MPL=3 are reported in Table 4-4. In Table 4-4 we compare the minimal overall system
and the corresponding individual processes’ page faults under WS with page faults achieved under
CD. The space time costs of generating the given fault rate performance are also compared. From
Table 4-4 it is easy to see that CD produces less faults than WS, irrespective of the maximum
memory available on the system. However, the performance of CD is much better than that of WS
wh 'n the memory contention is very high. For 8 = 6. WS generates 1647 more {aults than CD does.
For 8 = 25 CD still outperforms WS by 85%. CD also outperforms WS on the individual processes
level. For 8 = 50. WS gene-ates 5%. 21%, 157% and 50% more faults than CD does for programs

MAIN. FIELD., INIT and the overall system. respectively.

The results for MPL=4.5 and 10 are reported in Table 4-5. For MPL=4, CD outperforms WS
for 6 <150. The improvement :is higher for smaller 8 values. e.g.. 1887 for 6=10. Similarly. for
MPL=5. CD cutpertorms WS tor <150: M- =8% for 8=50 and 100. For MPL=10. WS yenerates

73%. 333%. and 387 more faults than CD for 8=50. 100. and 150, respectively. Note that when

o 2t e e

ia A% 10 b A0 A A IR AN

<5
122 |
:
[N
Table 4-4
Optimizing system performance. MPL=3]
i)
Ar% Agq % i
8 |MAIN|FIELD|INIT[System |MAIN [FIELD|INIT [System .
6] 85 [2464 | 35] 164 | 113 | 733 | 136] 215
7] 65 12094 23] 133 | 96 | 1058 | 123] 248 =
8| 45 | 1956 | 21| 119 | 83 | 1048 | 130] 248 ty
9] 16 | 1864 | 4| 95 59 | 1072 | 106] 232 .
10] 6 | 1840 1| 91 50 | 1093 | 108] 235 5
11] 5 |183 | 00| 89 48 | 1090 | 109 235 |.
12 24 [2016] 3| 89 66 | 1356 | 120 362 o
13] 28 (2110} 3] 91 72 | 1345 | 228 361 %
14 17 [2041| 2| 85 60 | 1363 | 236 367
1s| s 1930 2| 77 53 | 1407 | 246] 328
16] 4 | 1921] 21 77 | 52 | 1407 | 249] 380 a
17] 20 | 1163 | 2| 52 64 | 869 | 340 365
18 6 | 1151 2 48 54 | 1114 | 356 408 -
20 711136 2| 47 54 [1176 | 363 384 W
25 9 [1076 [166 | 85 33 | 1269 |1111] 762 .
30] 8 15| 6 7 | 35 11 | 200] 98]
35{ 8 18] 6 7 35 4] 18] 31 ‘
0] 9 29| 1 6 53 20 { 138] 104
151 8 18] 2 5 52 24 | 124] 95
so|] 8 21 [157] 50 54 19 | 288] 191
100f 131 | -48[-27] 15 | 377 18 | 31| 106)

MPL is doubled (from 5 to 10) the improvement of CD over WS increases. The CD policy outper-
forms WS for MPL=5 and 8=50 by only 8%: however. a 73% improvement is achiev: ' or MPL=10, w
as well as for MPL=5 and 8=150. WS generates less faults than CD by 36%: for tue same 8 value
(150) and MPL=10 th: number of faults under CD is increased from 2048 to 4515, while the page
faults under WS increased from 1303 to 6241, i.e.. CD’s faults increased by 2.2 times and WS's ;-».

faults by 4.8 times. The outcome is a CD improvement of 38% over WS. For 8=200, the WS's

improsement over CD decreased from 49% for MPL=3 to less than 2% for MPL=10. A
. Y uf'
As has been concluded from the analyvsis of individual processes, CD is more capable than WS i

for supperting higher MPL for the same memory sive. Recall that CD torces every process in the

4
- s

svstem to run with minimal memory allocation in high memory contention cases. A frocess

i
2

x5

¥

=3

-
¥

r €

123

running with a priority index P >1 for some MPL, could be forced to run with P =1 (less alloca-

tion) for a higher MPL.

The second major column in Table 4-5 shows the excess space time cost that WS produces
over CD for the overall system and the individual processes. The very large ST exhibited by WS
does not reduce the fault rate of WS below that of CD. For 6 = 25 WS produces 85% more faults
than CD. and STy is higher than ST¢p by 762%. Together with the results in the previous subsec-

tion. this observation suggests that CD make better use of the allocated memory over execution

time.

4.4.2. Space time cost

Minimizing the fault rate under WS by using large values of 7 may produce high space time
costs. Therefore, a more realistic cost measure of WS policy is the space time cost. In fact, WS is
advocated as a near optimal policy in terms of minimizing space time costs. Moreover. ST has been
used 1o control the system throughput. A maximum throughput is claimed to be achieved when the

Table 4-5 (SYSTEM: MPL=4, 5, 10)

CD compared with the minimal achievable page faults under WS
with corresponding space time costs

ST Cost(107) Page Faults
MPL |6 CD WS | Ap% | WS CD | Ax% T
| F
4 10 | 12.34 1332 [170% | 31681 | 10987 | 188% | 9]
50 | 477 1316 | 562% | 6858 | 5643 | 22% 116
100 | 529 [455 | 760% | 4268 | 1391 | 207% | 6200 |
150 | 4.77 [11.0 1 131% | 1117 | 1309 | -19% 6200
200 | 477 1 117 | 145% 725 | 1309 | -45% | 20,000
S | 50} 1205 | 304 | 152% | 11875 | 6931 72% 31

20% 601

{ | 100 | 584 1 944 1 62% | 2489 | 2081
i

} 150 | 5.09 | 11.8 132% 1303 | 1972 | -34% 6500 |

200 | 528 1 12.8 142 991 1955 | -50% | 25.000

10 50 | 13.62 ' 491 2605 1 29332 ! 12174 | 141% 101
: I 100 | 13.54 © 88.1 S31% | 22870 1 4226 4419 | 51
D150 | 1113 1275 147% . 6241 | dos0 | 53% . 551

200 ;1217 227 $7% 4055 ¢ 395 02% . 3000

L ana a0k s miic il avh gii A LB g

Al i s b B ghd

.
. "‘l‘:-l
Sl

*
P
A

ny

124

': space time cost is minimized [12]. [20]. In this subsection we compare minimal space time costs 'i:

: achieved under WS with those achieved under CD for different values of 6. i
(43 !
The results for individual processes are reported in Tables 4-6a-e for MPL=4. 5 and 10. For . !
N €

each process we find 74r_,,, Which minimizes the space time cost of that process. The space time :.22

costs and the number of page faults generated using 747 _,.., are compared with the space time costs ".""
and number of page faults generated under CD. The relative difference between STy and ST¢p is)

X given by Ay in Equation (4-2): Af is given in Equation (4-1). Positive A;; and Ay mean that WS _ﬂ
has a higher space time cost and generates more faults than CD. The value A is used to study the o
time cost due to running each process at its minimal space time cost. A low space time cost may i

result from using relatively small memory at the expense of generating many faults. 3_‘

s

. v
.]
s s

N Table 4-6a (MAIN) .
. CD compared with the minimal achievable space time cost under WS
X with corresponding page faults (MPL=4, 5, 10)

' ST Cost(10°) Page Faults ~
' MPL| 6 | CD | WS | 4% | CD | WS | ;% | 1 N
4 10 | 384 [759 | 98% [923 [1469 | S9% | 9
) 20 [384 [587] 53% [923] 947] 03% | 10 ol
: 25 [384 1571 | 49% | 923 | 921 | 00 6 oo
- 30 1 437 1581 | 33% (889 921 | 04% | 10| ce o
I 30 1433 1571 32% [855 921 | 08% | 6| N
| S0 | 433 | 581 | 34% [855 | 921 1 08% | 10
1100 1521 [5811 11% [169] 921 [445% | 10]

[150 | 7.12 1582 | -18% [152 | 921 | 506% | 15 Do
X | 200 | 712 1987 [39% [152 [920 i 506% | 201 :

| 5 1 50433 {581, 34% | 855 0 921 ' 08% | 11 .

L 100 1472 1586 | 24% [237] 921 1 289% | SI | -

T 1s0 I'sar [586 { -28% | 245] 921 : 276% | 51|
} 200 1 702 | 586 ! -18% | 152 1 921 | S06% | 51| S
1o P50 433 601 b 419 895 [1029 0 15% 11 X
100 13824 596 | S6% | 906 | 936 06% , 51 . —

150 .11 ! S86 . -28% [245 [921 2765 . 51| =

‘ 00 0TI 586 0 -18% | 152 w21 S0eS . 51 .
DI

.

= - "y ~ . - - . 3 - - v
. . T e L BT T S Y ST SR O L Tt O 1 S A I P SO I U s O L TP L I TR S NP T
O ot et L T e e L e e T e T e e e e L 2 e e T e U e

<c B

. |

Table 4-6b (FIELD)
CD compared with minimal achievable space time costs under WS
with corresponding page faults (MPL=4, 5. 10)

ST Cost(10°) Page Faults
CD | WS | 4,% | CD | WS | ag %

8.95 | 323 261% | 2501 | 4546 | 261%
285 | 21.7 660% 173 | 1806 | 944%
2.90 3.14 08% 136 241 77%
2.75 2.51 03% 136 193 42%
2.90 3.11 08% 136 161 18%
2.90 3.03 05% 136 166 22%
2.90 3.07 06% 136 161 18%
2.90 3.19 10% 136 72 | -47%
2.90 3.53 22% 136 97 | -29%

2.90 3.01 04% 136 57%
2.90 3.14 09% 136 24%
2.90 3.42 18% 136 -47%
2.90 3.52 22% 136 -29%

2.76 4.82 75% 135 200% 21
100 | 2.85 3.07 08% 165 00 700
150 | 2.59 3.25 12% 128 30% 201
200 | 2.89 3.03 05% 128 8§83 | -35% 1300

Tables 4-6a-e show that CD has considerably lower space time than WS. Consider program
MAIN. For MPL=4. ST is larger than ST, for all 8 values except 8=150. However. for 8=150
WS gererates 5 times more page faults than CD in order o achieve 18 less space time cost. Simi-
larly. for MPL=5. $Ty is larger than ST-p for 6=50 and 100. Note that the low space time cost
uader CD s not achieved at the expense of a large number of page faults: for 8=100 5T, is 24%
less than 574y and Fn is almost 3 times less than 4. . A low ST cost under CD is due to a rela-
tively lower page fault number and a relatively lower memory consumption. In Table 4-6b. the

sesuils are shown for program FIELD. The space time cost under CD, 87 -, . is lower than ST for

4l @ and MPL +alues. For =150 and 200, WS achieves a lower number of page faults than CD. For

such large ~alues of 8. WS can uve a large 7 vaiue lo generate 2 minimum number of faults. CD.

deraener. achieves a minimum number of faults for mucn smaller 8 values. e.g.. =25 tor MPL=4

Table 4-6¢ (INIT)
CD compared with minimal achievable space time costs under WS
with corresponding page faults (MPL=4, 5, 10)

ST Cost(10°%) Page Faulis
NPL| 8 | CD | WS | ag% | CD | WS | A7% | 7

5 50 504 | 178 253% | 729 | 1016 39% 31
100 9.28 | 10.7 15% | 273 282 03% | 601
150 9.28 9.44 02% | 273 178 | -35% | 501
200 9.28 9.44 02% | 273 178 | -35% | 501 |

10 50 | 11.74 | 44.0 | 275% | 535 | 2634 | 392% | 11
100 | 10.7 | 16.7 56% | 273 | 523 | 92% | 551
150 | 3.15 | 9.43 | 199% | 273 | 215 | -21% | 601
200 | 933 | 933 | 00 |[273 | 184 | -33% | 551

and 6=50 for MPL=5 and 10. Similarly for program INIT. WS achieves lower fault number than

CD when CD achieves lower space time cost for =150, and 200 for MPL=5 and 10. Again this is

because WS can generate a close to the minimal page fault number by using a relatively large 7. i:
The virtual size of INIT is 175 pages: WS generates 178 pages for 2 500. The CD policy achieves)
<)
273 faults at its best. However, CD still has a lower space time cost than the minimal achievable :‘}
Y
under WS,
-
Tables 4-6 show that the space tirie cost of WS. when WS is properly tuned. is considerably
larger than the space time cost of CD tor most of the time. Even when WS has a lower space time 1
cost. its page faults number is higher than CD’'s and the low ST is mainly due 10 small memory
consumption. Our results show that WS is not optimal in terms of minimizing fault rate as s
claimed 1n [20]. However. CD remains to be compared with DMIN to show how close to optimal it o
e
. -
can generate 4 space time cost.
In a multiprogramming svstem. minim:izing the space time cost of individual processes may
not ~erve the purpose of optimizing the system performance. It would have been very helpful it the .
provesses in the system utilized one 7 te achieve their minimai space time cost. Graham. and Den-) .
3
- —\ i)
aing (26] Claim that ail processes in the svsiem can use one 7 1o achieve a ~pace Lime cost aithn - 3'
T
i
=i

-

- . e e Tt tat T . N e T
.7, n e . . - P -« e . T atw e e A
A, o

A D I RN R UL R LA B VAT TS YA S S U Sl W Sl St

i 127
g

Table 4-6d (CONDUCT)
CD compared with the minimal achievable space time cost under WS
with corresponding page faults (MPL=5, 10)

‘B

‘ ST Cos1(10°) Page Faults
g MPL| 8 | CD WS |Ag% | CD | WS | Ar% | 7
5 50 | 96.9 | 106.0 09% | 4562 | 5144 | 13% | 21
¥ 100 [3017 | 37.7 | 25% | 789 | 754 | -04% | 601
* 150 [2222 | 3017 | 36% | 748 | 611 | -18% | 601
. 200 | 2222 | 30.17 | 36% | 748 | 611 | -18% | 601
-.j.: ———— ET ——
o 10 50 | 38.0 | 106.0 | 179% | 3873 | 5144 | 33% | 21
100 | 30.17 | 37.7 25% | 789 | 754 [-04% | 601
L 150 | 22.22 | 30.17 | 36% | 748 | 611 | -18% | 601
200 | 2222 | 3370 | 52% | 748 | 679 | -09% | 801
s Table 4-6e (HWSCRT)
. CD compared with the minimal achievable space time cost under WS
with corresponding page faults (MPL=5, 10)
“ B
N | ST Cost(10°) Page Faults
MPL | 6 CD WS | Aq% | CD [WS | A7 % T
i 5 50 | 11.33 | 23.10 | 104% | 649 | 5766 | 788% 1
100 | 11.33 | 19.50 | 72% | 646 | 378 | -41% 401
% 150 | 11.33 | 13.3 18% | 646 | 155 | -76% 6500
. 200 | 11.33 | 13.5 19% | 646 | 188 | -70% | 30.000-
. 10 | 50 | 11.33 [231 | 104% | 649 | 5766 | 138% 1
- 100 | 19.23 | 23.1 20% | 649 | 5766 | 788% 1
150 | 19.28 | 20.8 08% | 646 | 486 | -25% 401
200 | 19.28 | 15.1 | -22% | 646 | 347 | -46% 451

10% of the minimal space time cost (10% detuned policv). The goal is. therefore. to minimize the
overall system space time cost. assuming that individual processes are within P of their minimai
ST values. In Table 4-7 the minimal system space time cost, 87|, . under WS is compared with

STen -

For WS. we find a window size. T —sr —mm - Which minimizes the overall svstem space time

cost. STy -y - Which is compared with ST7:,. The number of page faults generated using

Ty s—sr— . s also fornd and compared with F-5. Table 4-7 shows that CD outperforms WS by a

Table 4-7 (SYSTEM) n
CD compared with minimal achievable space time costs under WS hd
with corresponding page faults (MPL=4, 5, 10)

ST Cost(107) page faults 3
MPL 0 CD WS Ar % A CD Ag% | 7
X
4 | 101234332 [170% | 31681 [10987 | 188% | 9 ~
50 4.77 | 13.7 187% 7186 5643 27% 25 -
100 | 529 [13.7 [159% | 7186 | 1391 | 417% | 25 -
150 4.77 6.25 31% 1830 1309 40% | 590
200 4.77 6.33 32% 1830 1309 40% | 601 .
! .
Fzm = == ta
5 50 | 12.05 | 28.1 133% | 19313 6931 | 178% 11
100 5.84 9.44 62% 2489 2081 20% | 601 7
150 5.09 8.06 58% 2149 1972 10% | 601 ﬁ
200 5.28 8.06 53% 2149 1955 10% | 601
e
10 50 | 13.62 | 49.1 260% | 29332 | 12174 | 141% 21 -
100 | 13.54 | 84.6 | 525% | 23885 | 4226 | 465% | S5i R
150 | 11.13 | 27.5 147% 6241 4080 53% | 551
200 1 12.17 | 17.8 46% 4710 3984 21% | 601 i
great margin. especially for 9=10, 50. and 100. Note that the improvement of CD over WS e
)
increases with increasing MPL for the same 0 values. For instance. for 8=150. CD outpertorms WS
by 31%. 58%. and 147% for MPL=4. 5. and 10, respectively. The CD policy achieves lower faults g
numbers than WS for all 8 and MPL values exclusively. The negative A;; and A values in Tables
4-6 disappear in Table 4-7, indicating that a process may have a lower space time cost under WS ::j:
than ST under CD at the expense of some other process in the system. N
-~
The corresponding ST's and page faults for individual programs are found when the overall
system ST is minimized. using Ty« —sr -, - These values are compared with ST, and F¢p for the ;

individual processes. The results are reported in Table 4-8 for MPL=3. Tabie 4-8 shows that CD

s v

cutperforms WS at the individual process level when the overall svstem performance is heng

optimized.

...................................
TS ST SR R I A . . - - R I S A N LIRS I TR £ G I R
'e 3 %e

B U LWL WL WG W

129

Table 4-8
Optimizing system performance, MPL=3

H Ar% A %
s 9 | MAIN | FIELD | INIT | System | MAIN | FIELD | INIT | System
R
” 6 85 | 2464 35 164 113 733 | 136 | 215
- 7| 65 | 2094 23 133 96 | 1058 | 123 | 248
2 8 | 45 | 1956 | 21 | 119 83 | 1048 | 130 | 248
9 16 | 1864 4 95 9 | 1072 | 106 | 232
10 6 | 1840 1 91 50 | 1093 | 108 | 235
11 S | 1836 | 00 89 48 | 1090 | 109 | 235
12 24 | 2016 3 89 66 | 1356 | 120 | 362
13 28 | 2110 3 91 72 | 1345 | 228 | 361
14 17 | 2041 2 85 60 | 1363 | 236 | 367
15 s | 1930 2 77 53 | 1407 | 246 | 328
16 4 | 1921 2 77 s2 | 1407 | 249 | 380
17 20 | 1163 2 52 64 869 | 340 | 365
18 6 | 1151 2 18 s4a | 1114 | 356 | 408
20 7 1 1136 2 47 s+ | 1176 | 363 | 384
25 9 | 1076 | 166 85 33 | 1269 | 1111 | 762
30 8 18 6 7 35 11 200 98 .
35 8 18 6 7 3s 14 16 31
40 9 29 1 6 s3 20 | 138 | 104
45 8 18 2 5 52 24 | 124 95
50 8 21 | 157 50 54 19 | 288 | 191
100 | 131 a8 | 27 15 377 18 31 | 106

4.4.3. System throughput

A major design goal in a multiprogramming system is to maXximize the number of jobs completed
per unit time,. i.e.. the system throughput (®). In Table 4-9, the maximum throughput achieved
under WS (&) is compared with the throughput under CD (&5) for MPL=3.5.10. The relative

difference (d4) between the WS’'s maximum throughput and CD’s throughput is given by

- (D("D _'1)‘\(

Ay = b X 16O% . (4-3
® Oy ‘)

Table 4-9 shows that CD outperforms WS by a large margin, especially for smaller values of 6.

Consider. for example. MPL=3. For 8 = 6, CD has a higher throughput than WS by a factor of ~

1
i

L

For 8 = 100, CD achieves a 137 higher throughput than WS. For MPL=10. CD achieves higher

e
|
130)
a ~
: throughput than WS by 87% and 27% for 0=100 and 150, respectively. The results suggest that
. CD outperforms WS when the memory is highly utilized. w
i
-
N
Table 4-9
' CD compared with the maximum achievable throughput under WS§ &
Throughput ¢ (1077)
MPL | @ CD WS Ay v
) L")
3 6 4.09 0.26 | 1497%
7 4.09 1.77 | 131%
8 4.09 1.88 | 118%
9 4.09 2.11 94%]
10 4.09 2.16 89%
11 4.09 2.18 88% . .
' 12 4.21 2.23 89% L
. 13 421 222 | 90% I
’ 14 4.21 2.29 84% ~
15 4.21 2.39 76% :
16 4.21 2.39 76% : !
17 421 2.79 51%
18 4.21 2.86 47% i
20 427 2.89 48)
25 7.53 4.11 83%
30 7.55 7.05 7% e
35 7.55 7.09 6% o
40 7.55 7.12 6% o
45 7.55 7.17 5% S
50 10.6 720 | 47% '
| 100 23.9 21.1 13% i
4 | 10 1.81 0.63 | 187% | SR,
20 2.35 215 | 09% '
25 2.41 223 08% A
50 2.67 2.88 -7% -
100 13.5 463 | 192% P
150 14.3 16.7 -14% 2 A
| 200 14.3 245 | -42% *
e == ..
10 50 1.83 1.69 09% .
| 100 4.05 217 | N7% = 5
1 L1350 $.59 P7.76 0 287
| 200 | 11.5 1.7 00 | 2
a
o

*

L
PR . . .« gt . .t A owt - - . S e e el Y]
-.."-.‘_-‘..._.';'....._...‘._ .’- RORAA TS CCRCATAREN AR P“I-,Ql‘.\'...-“.k‘" \ -.' SN YR .\'. . N

4.4.4. Controllability

In a multiprogramming system it is necessary to tune WS policy in order to find a suitable 7
to achieve a desired goal. For CD this problem does not exist since the directives are inserted at
vompile time and executed as part of the code at run time. Memory allocation is performed dynam-

ically as the directives are received by the operating system. Finding the appropriate 7 in the WS

case can be a tedious problem for several reasons.

The first reason is the anomalous behavior of WS's fault rate function discussed in Chapter 2.
With the the existence of anomalies. fault rate reduction is not always achievable by increasing 7-
Instead. the fault rate may increase. Moreover. the fault rate anomalies distort the shape of fault
rate function curves and. hence, the lifetime curves. Life time curves because of the anomalies do
not exhibit well defined knees: knees in a lifetime curve are essential for the primary knee criterion
[20]. The primary knee criterion suggests that the primary knee of a lifetime curve is approxi-
mately associated with the minimum space time cost point; i.e., by using 7 where the primary knee
occurs a process would be running with minimal space time cost. For this reason. Denning rejects
lifetime models of program behavior if they do not exhibit knees [20]. With the existence of T-F

anomalies. it is not obvious how ore would locate the knees of a lifetime curve. The primary knee

criterion. therefore. may not be useful! for controlling WS.

The second reason is the difficulty of controlling the policy o produce the maximum possible
throughput. It has been assumed [12] that the maximum throughput is achieved by minimizing the
space time cost. The average ST of a process in the system is gi'en by

sT=9xT (4-4)
N
where N is the number of jobs in the system and T is the total elapsed time of all the jobs in the
svstem. The throughput, &. is given by

<D=-';,— and so ST=3>>;?;_ . 4-5)

Equation 4-5 implies that a maximum throughput can be achieved if each process in Lhe system

E
'v"v..‘_
Ay

'y
"
PN

2

S
+

-
v, v,

P

=TIy

;

xR
¢

I"I

;\\’

132

operates at its minimal space time point, or, equivalently, minimizing the overall system space time
cost. This argument is not realistic for two reasons. First. the above formula assumes that the

memory space, 6. is completely utilized. This assumption is not always true, especially for large

values of 6.

The second reason is that minimizing the space time cost of each process does not necessarily
minimize the overall system ST. Each process may have its own optimal 7 which differs from those
used by other processes in the system. The assumption that the space time cost has a flat minimal
region. meaning that a wide range of 7 can minimize the space time cost. has been shown lo be

optimistic for individual programs running in a single programming machine [3]. [6]. [8)

Our resulis also show that each program may use a different optimal 7. For example, for
MPL=3 and 6 = 50. three values of 7 (7 = 6. 316, 7000) are needed 10 minimize the ST of MAIN.
FIELD and INIT, respectively. Tables 4-6 further illustrate this fact. For example, for MPL=5 and
6=150. five values of 7 (51, 501, 601, 3500, 6500) are used by programs MAIN, INIT. CONDUCT.
FIELD. HWSCRT. respectively. Similarly. for 8=200 and MPL=200. five values of 7 are used (51,
451. 551, 601, 1800). Furthermore. a process using an optimal 7, Tows—pr [rom the system’s stand
point. may run with a relatively large space time cost compared to its local minimum space time
cost with 7,,,. In Table 4-10 we show for each program both space time cost values ST (T —p)
and ST (7,,,,,). The relative difference between these values is given by
_ ST (T yg oy)=ST (T i)

ST

In Table 4-10 the optimal 7 for which the system space time cost is min:mized is 601 for MPL=10

A x100% .

and 8=200. For the moment we assume that it is possible to find an optimal 7 value which minim-
1zes the space time cost of each process or the space time cost of all the processes in the svstem. The
question is whether using this 7 achieves a maximum throughput; i.e., is this an optimal 72. Equa-
tioni4-5)[12], [20] gives a positive answer 1o this question. We have argued that this is true only if

the memory is completely utilized. Our results show that for underutilized memory the real max-

imum throughput can deviate from the throughput achieved by using 7 which minimizes the ~pace

L
n

[N
va

»

v B

EA‘ »

e
'r‘-.l

!

[

~y=
ol

&

v
-

A -

e

Table 4-10
Relative difference between global ST and local ST for each process
MPL=10; 6=200; 7,,,, =601
Program Toin | ST min(10°) | ST, (109 A
MAIN 51 5.86 19.5 233%
FIELD 1800 3.03 3.42 13%
INIT 551 9.33 9.71 04%
HWSCRT 801 | 33.7 40.1 20%
CONDUCT | 451 | 151 18.9 25%

133

time cost by almost a factor of 2. In Table 4-11 we show the relation between the maximum
throughput @, and the throughput achieved at the minimum space time cost point ®sr .. The

relative difference between these two values is given by

d’max-d’.\‘rm,"
A= X100% .
srmin
Table 4-11 shows that for relatively small memory sizes the minimum space time cost and the
maximum throughput are achieved by using the same 7. See in Table 4-11 the entries for 8=6, 10
for MPL=3; 0=10. 20. 30. 40 for MPL=4; 6=100 for MPL=5; and 8=150 for MPL=10. However, for
larger values of 8. ®,,,, deviates from ®yr_,,, by a large percentage. For example, & =167% for
6=100 and MPL=3: For 0=200. A=136%, 106%, 15% for MPL=4, 5. and 10. respectively. It is

worthwhile to mention. however, that WS has a poor performance compared to CD when the

memory is highly utilized: small values of 8 in Tables 4-2. 4-3, 4-4.

4.5. Summary and Conclusions

We have presented in this chapter performance measurements on program behavior in mul-
tiprogramming systems. Program traces are simulated in a multiprogramming system under CD. a
compiler directed memory management policy. and WS, a dvnamic policy. We have ccmpared the
performance of CD with that of WS since the latter has been claimed [20] 1o outperform other
existing policies. Four characteristics of multiprogramming virtual memory svstems have been

investigated: page faults. space time cost. svstem throughput, ard controllamity.

*
A 47

v X
A
AalTa

S

PR AL bt
LGN

L
-

(3

PN N
Y L e

eemas
] L]

YA
e g

o
3
3
-'
AWy
’

Ay
*

e e v]

AL P
Y -

A
AN

. S O S SIS T PRI SNt A
u' O PR LR TR TSR TR LR "'." ‘\"\. '.-'.'$" N OOy " Wy L)"' -“!' of oo o s f\' S

Table 4-11
Maximum throughput versus throughput at ST ;, under WS

Throughput ® (10~7)
(bmax q’v

<4 min

Ao

0.26 0.26 00
2.16 2.16 00
2.79 2.2 27
2.86 2.2 30
2.89 2.2 31
4.11 2.2 87
7.05 7.05
7.12 7.05
7.20 7.05
21.1 7.05
28.6

.63
1.77
2.23
2.70
2.76
2.88
4.63

16.7
24.5

50 2.09
100 9.65
17.8
200 | 229

50 1.69
100 2.17
150 7.76
200 | 11.7 10.2

The results reported in this chapter show that CD outperforms WS by a fairly large margin.

especially when the memory is highly utilized. CD is able to dvnamically allocate memory space
accarding to the need of a running program. the available memory space. and the need of other
processes 1n the system. The outcome of this facility is a relatively low fault rate at a relatively

low memory space cost and. hence. a low space time cost. More importantly. CI) is shown to have a

“%h

"%
7]

-
-
i
P-
~

. s

135
higher throughput than WS,

We have also illustrated that WS lacks controllability while CD does not exhibit controllabil-
ity problems at all. CD is a parameterless policy while WS has a parameter, 7. which needs to be
tuned in order to achieve a desired goal. It is necessary. for instance. to find 7 that minimizes the
space lime cost in order 10 maximize system throughput [20]. However. it is not obvious how one
would choose the right 7 to minimize ST, even using the primary knee criterion [1]. [12]. The pri-
mary knee criterion is difficult to apply due to 7-F anomalies exhibited by WS. See Chapter 2. In
any case. we showed that using an optimal 7 which minimizes the space time cost does not. neces-
sarily. maximize the throughput. ST ;, maximizes the throughput only when the memory is com-

pletely utilized. but then WS has a poor performance compared to CD.

136

CHAPTER 5§

CONCLUSIONS

5.1. Summary of Results

A new approach to the management of numerical programs in virtual memory systems is
presented in this study. We have presented a compiler directed policy (CD) which incorporates two
memory directives: 1) ALLOCATE and 2) LOCK and UNLOCK. ALLOCATE estimates the
memory requirements of a process at compile time. Memory requirements are passed to the operat-
ing system at run time through two primitives: the amount of memory requested and the priority
of the request. The CD plicy is designed to dynamically adjust a program’s memory allocation
according to the status of the available free memory on the system which dynamically changes as
processes acquire and release memory space. For Lhis purpose, CD incorporates a swapping mechan-
ism. Subprogram control structures are handled dvnamically at run time. thus enabling the prepro-

cessor at compile time to consider each subroutine as a whole unit.

The performance of CD is evaluated using a trace driven simulator of a multiprogramming
system. Traces of numerical programs are used in the experiments. The performance of CD is com-
pared to the performance of WS policy. The results reported in Chapter 4 show that CD is superior
to WS in high memory contention cases. The CD policy produces lower fault rates and lower space
time costs than WS. and therefore. achieves higher throughput. As a result. CD is able to support
higher multiprogramming levels for a given size of physical memory.

We have presented evidence in this study. that WS has a controllability drawback. In Chapter
2. we reported empirical results on the WS anomalies. The anomaly types exhibited by WS ure
related directl to the WS control parameter, the window sive 7. Thus, tuning WS o achieve a

desired performance 1s not always attainable because of the anomalous behavior. The anomalv

t.res reported in this thesis are not exhibited by WS when tested in a unmiprogrammin

P
.
]

v
AL

|
o) Y,
f e —— a & e e ow W RN

"
’ 4

i

»
)

&5

environment. The results suggest that conclusions based on experiments with individual single pro-
grams should not be used in a simplistic manner in multiprogramming systems. It has also been

observed that it is not possible to find a single value for the control parameter which can be used

by every process in the system.

On the other hand. CD exhibits no controllability problems and has no control parameter.

Memory requests issued upon executing a directive are processed by the operating system, granted

or rejected. according to the available free memory.

In conclusion, this thesis has

(1) presented CD. a compiler directed memory management policy for numerical programs,
(2) shown that WS exhibits anomalies in multiprogramming systems. otherwise unpredicted {rom
experiments with uniprogramming systems,

(3) shown that CD outperforms WS by a relatively large margin.

5.2. Suggestions for Future Research

The compiler directed policy presented in this Lhesis applies only to numerical programs. The
extension of CD to other program categories is essential before such an approach to the memory
management problem can be adopted. The locality characteristics of different aprlication programs
have to be understood thoroughly before memory directives can be desigred. Typical applications
are data base systems, system programs. and Al application programs. The compiler directed policy

is designed for single processor machines. However, the ideas used in this thesis can be useful in

pursuing similar techniques in multiprocessing systems.

The performance of CD compared to WS. although the latter is claimed to be the best nonloo-
kahead policv [20]. is not sufficient to evaluate the performance of CD,which should be compared
to other dvnamic policies such as PFF. global .RU. and global CLOCK. Moreover. it is essential to
evaluate the rerformance of CD when comparing it with the optimal policies. For instance. €D

should he compared with DMIN [10]. which generates the absolute minimum space time cost.

- P s R T T e R " ‘~_'j'.. T e A T
L5 ¢ SO CAORE R REERE S 0 3E R a r o oth® Wy

P> rrr s F RV IZ /.

e h LA

o
-
«
.
)

138

Also. we feel that performance evaluation techniques for virtual memory systems should be
upgraded 1o include multiprogramming specific characteristics. For instance. one should be able to
measure the influence of one program on the rest of the programs in the system. This is necessary
for scheduling strategies. The techniques developed in this study can also be used to enhance

scheduling strategies, especially in allocating time slots to running processes.

Finally. the main issue which remains to be pursued is the issue of implementation. The com-
plexity of such a problem lies in the fact that CD has to be incorporated into both the compiler and
the operating system. Furthermore. some architectural features are necessary to implement CD.
particularly at the processing stage of a directive. Therefore, an integrated approach to the design of

computer systems is necessary for CD to be implemented in real systems.

kM S S S S

|t

M

v

Al

~.

’

[o
K
-

- o
'I‘l'.

o |

ll

“e
)
tfa .

-,

t
U

kg
2

(1]

[2]

(3]

[4]

(5]

(6]

7]

(8]

(9]

[10]

(11]

[12]

[13]

139

REFERENCES

M. Abaza. “On the Effectiveness of Memory Management System Calls In
VAX/VMS," M.S. Thesis. Yarmouk University, Deg. Elect. Eng., October 1984,

W. Abu-Sufah, D. Kuck, and D. H. Lawrie, "Automatic Transformations for Vir-

tual Memory Computers.” Proc. of the 1979 National Computer Conf., pp. 969-974,
June 1979.

W. Abu-Sufah. R. Lee and M. Malkawi. “Identifying Two Program Categories for

Memory Management Purposes.” Proc. of the 1984 IEEE 8th International
COPMSAC, pp. 492-503, November 1984.

W. Abu-Sufah and D. A. Padua, “Some Results on the Working Set Anomalies in

Numerical Programs,” IEEE Trans. on Software Engineering, vol. SE-8, no. 2. pp.
97-106, March 1982.

W. Abu-Sufah, “Identifying Program Localities at the Source Level.” University of
Illinois, Dep. Comp. Science, Rep. No. UTUCDCS-R-82-1108, October 1982.

T. O. Alanko. H. J. Haikala, and P. H. Kutvonen, “Methodology and Empirical
Results of Program Behavior Measurements,” Performance 80, ACM Sigmetrics Per-
formance Evaluation Review, vol. 9. no. 2, pp. 55-66, Summer 1980.

W. Abu-Sufah, R. Lee. M. Malkawi, and P-C. Yew, “Empirical Results on the
Bebavior of Numerical Programs in Virtual Memory Systems,” University of Illi-
nois, Dep. Comp. Science. Report No. UTUCDCS-R-81-1076, November 1981.

W. Abu-Sufah, R. Lee. M. Malkawi. and P-C. Yev, “Experimental Results on the
Paging Bebavior of Numerical Programs.” Proc. of the 6th International Conf. on
Software Engineering, pp. 110-117, September 1982.

A. P. Batson, D. W. E. Blatt, and J. P. Kearns, “Structure Within Locality Inter-
vals,” in Measuring, Modelling and Evaluating Computer Systems, H. Beilner and E.
Gelenbe, Eds., Amesterdam, The Netherlands: North-Holland, 1977.

R. Budzinski. E. Davidson, W. Mayeda. and H. Stone. "DMIN: An Algonthm for
Computing the Optimal Dynamic Allocation in a Virtual Memory Computer," JEEE
Trans. on Software Engineering, vol. SE-7, no. 1. pp. 113-121, January 1981.

R. Budzinski, E. Davidson ,"A Comparison of Synamic and Static Virtual Memory
Allocation Algorithms,” JEEE Trans. on Software Engineering vol. SE-7, no. 1, Pp-
122-131, January 1981.

J. P. Buzen ‘Optimizing the Degree of Multiprogramming in Demand Paging Sys-
tems,” Proc. JEEE COMPCON, pp. 139-140, September 1971.

R. W. Carr. "Virtual Memory Management”, Pa. D. Thesis, Computer Science
Department, Stanford University, August 1981.

LIRS

- ‘l~'-.' N
N

Ay h 'n‘T

b5 N

LY

O
L]

s
oo

o
%

-‘.\i
L]

S,
[

. :'(..

)
e

-

XXX RN
_"1,.{'.‘"/,. A

Ao At

e w e A,

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[2s]

[26]

[27]

[28]

(29]

ey e
P (i 4 MBI 2 e i Ay 2t
- o - . - . . L L . . . -

140

W. W. Chu and H. Opderbeck, “The Page Fault Frequency Replacement Algorithm,”
in 1972 AFIPS Conf. Proc., Fall Joint Comput. Conf., vol. 41, AFIPS Press, pp. 597-
609, 1972.

W. W. Chu and H. Opderbeck, “Program Behavior and the Page Fault Frequency
Replacement Algorithm,” Computer, vol. 9, no. 11, pp. 29-38, November 1976.

P. I. Denning and G. S. Graham, “Multiprogramming Memory Management," JEEE.
Proc., vol. 63, pp. 924-939, June 1975.

P. J. Denning and K. C. Kahn "A Study of Program Locality and Life-time Func-

tions,” Proc. 5th Symp. Operating Systems Principles, ACM SIGOPS, pp. 207-216.
November 1975.

P. J. Denning, “Working S:3 Model for Program Behavior,” Comm. of the ACM, vol.
11. no. 5, pp. 323-333, May 1958.

P. J. Denning. "On Modeling Program Behavior." Proc. AFIPS SJCC, pp. 937-945,
1972.

P. J. Denning, “Working Sets Past and Present,” JEEE Trans. on Software Eng. vol.
SE-6, no. 1, pp. 64-84, January 1980.

D. Ferrari, “Improving Locality by Critical Working Sets,” Comm. ACM vol. 17, pp.
614-620, November 1974.

D. Ferrari, "Considerations on the Insularity of Performance Evaluation," IEEE
Trans. on Software Engineering, vol. SE-12, no. 6, pp. 678-683, June 1986

D. Ferrari and Y-Y. Yih, “VSWS: The Variable-Interval Sampled Working Set Pol-
icy."” IEEE Trans. on Software Engineering, vol. SE-9, no. 3. May 1983.

M. A. Franklin. G. S. Graham, and R. K. Gupta, "Anomalies with Variable Partition
Paging Algorithms,” Comm. of the ACM, vol. 21, no. 3, pp. 232-236, March 1978.

G. S. Graham, “A Study of Program and Memory Policy Behavior,” Ph.D. thesis.
Purdue University, Dep. Comp. Science, December 1976.

G. S. Graham and P. J. Denning, “On the Relative Controllability of Memory Poli-
cies,” in Computer Performance, K. M. Chandy and M. Reiser. Eds., Amsterdam, The
Netherlands: North-Holland. pp. 411-428, Augast 1977.

R. B. Hagman and R. S. Fabry, “Program Page Reference Patterns,” Proc. of the 1982
ACM SIGMETRICS Conf. on Measurement and Modeling of Computer Systems, pp.
20-29, August 1982.

H. J. Haikala and H. Pohijanlahti, “On the BLI-Model of Program Behavior.” Proc.
of the 1983 ACM SIGMETRICS Conf. on Measurement and Modeling of Computer
Systerns, pp. 28-38, August 1983,

J. Kearns and S. DeFazio, ** Locality of Reference in Hierarchical Database Systems,"
IEEE Trans. on Software Eng., vol.SE-9, no. 2, March 1983.

adad 2l ated uie

.

R

-

Rt 1

o

i

[
-

b

L - ’
W v

(LAos |

‘I 5
.,

A

w5

s

£
' 4

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[371

[38]

[39]

[40]

141

A. W. Madison and A. P. Batson, ** Characteristics of Program Localities,” Comm. of
the ACM, vol. 19, no. 5, pp. 285-294, May 1976.

Mohammad Malkawi, “Some Aspects of Numerical Program Behavior In Virtual

Memory Systems,” M.S. Thesis, Dep. Elect. Eng., Yarmouk University, Jordan,
June 1983

J. B. Morris. “Demand Paging Through the Use of Working Sets on the MANIAC I1,”
Commun. Ass. Comput. Mach., vol. 15, pp. 867-872, October 1972.

B. G. Prieve and R. S. Fabry, “VMIN: An Optimal Variable Space Page Replacement
Algorithm,” Comm. of the ACM, vol. 19, no. 5, pp. 295-297, May 1976.

J. Rodriguez-Rosell and J. P. Dupuy, "The Design, Implementation and Evaluation

of a Working Set Dispatcher," Commun. of the ACM, vol. 16, pp. 556-560, Sep-
tember 1973.

R. Simon. "The Modeling of Virtual Memory Systems," Ph.D. Thesis, Purdue
University, Dep. Comp. Science, September 1979.

A. J. Smith, “A Modified Working Set Paging Algorithm," IEEE Trans. on Comput-
ers, vol. C-25, no. 9, pp. 907-914, September 1976.

S. S. Thakkar, and A. E. Knowles, "A High Performance Memory Management
Scheme,” JEEE, Computer, pp. 8-20, May 1986.

L. L. Traiger. "Virtual Memory Management for Database Systems," SIGOPS Symp.
on OS Review, pp. 26-48, October 1982.

K. S. Trivedi, “Prepaging and Application to Array Algorithms," IEEE Trans.
Compt., vol. 12, no. 4, pp. 39-56, 1978.

A. L Verkamo, "Empirical Results on Locality in Database Referencing,” Proceedings
of the 1985 ACM SIGMETRICS Conf. on Measurement and Modeling, pp. 49-38.
May 1985.

e

142

VITA

Mohammad Isam Malkawi was born on September 15, 1957 in Jordan. He was an American
Field Service foreign exchange student in 1972-1973 and graduated from Arcola High School.
Arcola, Illinois. In 1974 he received the Jordanian general secondary school certificate from Irbid
Secondary School, Jordan. He then won a scholarship to study computer engineering in the Soviet
Union. In 1980, Malkawi graduated from Tashkent Polytechnical Institute with honors. From 1980
until 1983 he attended Yarmouk University in Jordan, where he received his master’s degree in

Electrical Engineering. During his stay at Yarmouk, he was a teaching and research assistant.

In 1983, Mohammad Malkawi joined the computer systems group at the Coordinated Science

Laboratory at the University of Illinois at Urbana-Champaign as a graduate student and research

assistant.

m

DARA

.

$

.

i

»

ot

o |

2

-

. . - », {(P 4 X 1))
v ' . e X e A AL R ML N M)
T e P - o R Sy o'} P b sN o
: S R By A P T Pk e &\
RO TR o NN

