
AD-A171 794 LEANING OBJEC-LEVEL AND MET-LEVEL KNOULEDGE IN /
EXPERT SYSTEMS(U) STANFORD UNIV CA DEPT OF COMPUTER

JE SCIENCE L Fl NOV 85 STAN-CS-86-i@9i N88839-83-C-6
UNCLASSIFIED F/G 9/2 NL

17lllf.....lmhhhhhhhhhhhhE
EhhhhhhhhhhhhE
EhhhhhhhhmhhhE
EhhhhhhhhhhhhE
EhhhhhmhmhhhhE

1 .0'p 1.

NAIINAL ilI I
%N **

N~

%N..I

- L~ 1%

November 1985 liReport No. STAN-CS-86-1091
Also numbered KSL-85-44

Learning Object-Level and Meta-Level
Knowledge in Expert Systems

by

li-Min Fu

Contract N00039-83-C-0136 D T IC
S ELECTE

Department of Computer Science

Stanford University
Stanford, CA 94305

4N174

0" 10 La

"" " ' "~ V I- . .j 0 , :", , 2
i , , ,

i I&

I ~ [

-. i b)' ;.S

November 1985 Rep~ort No. STAN-CS-86-1091
Also numbered KSL-85-44

. Learning Object-Level and Meta-Level
Knowledge in Expert Systems

by

li-Min Fu

Contract N00039-83-C-0136

Department of Computer Science

Stan ford University
Stanflord, CA 94305

ILA

S.-

..16 . 0. ..

.51'

Knowledge Systems Laboratory November 1985
Report No. KSL-85-44

LEARNING OBJECT-LEVEL AND META-LEVEL

KNOWLEDGE IN EXPERT SYSTEMS

A Dissertation

Submitted to the Department of Electrical Engineering
And the Committee on Graduate Studies

Of Stanford University

LI-MIN FU

Department of Computer Science
Stanford University
Stanford, CA 94305

S
i. - *. .

Abstract

A high performance expert system can be built by exploiting machine learning

techniques. A learning model has been designed and implemented that is capable of

constructing a knowledge base. in the for" of rules, from a case library and continuously
updating it to accommodate new facts. This model is designed primarily for EMYCIN-

like systems in which there is uncertainty about data as well as about the strength of

inference and in which the rules chain together to infer complex hypothese.s. I~lese

features greatly complicate the learning problem.

In machine learning, two issues that cannot be overlooked practically are efficiency and

noise. A subprogram. called "CONDENSER", is designed to remove irrelevant features

during learning and improve the efficiency. The noise can be handled by optimizing the

result to achieve minimal prediction errors.

- Another subprogram has been developed to learn meta-level rules which guide the

invocation of object-level rules and thus enhance the performance of the expert system

using the object-level rules.

Using the ideas developed in this work. an expert program called JAUNDICE has been

built, which can diagnose the likely disease and mechanisms of a patient with jaundice.

Experiments with JAUNDICE show the developed theory and method of learning are

effective in a complex and noisy environment where data may be inconsistent, incomplete.

and erroneous.
Acce-,ionr For

KTIS CRAMIDliC 7AB 0

U j -c). ;ced fJ
iv J . o!-lC tu

L) tib :tI,),l/
Ave:llihity Codes

Disbt Ii!l &A I or

"•,- % -- , Ae

Acknowledgments

I am fortunate to get acquainted with Bruce G. Buchanan. who is such a great

philosopher, teacher, and master in both expert systems and knowledge acquisition. Many

*p" ideas in this thesis are, consciously or subconsciously, spawned and matured by constant

inspiring from him: I can't even remember exactly when those ideas emerge. He also

- provides me strong psychological support for my devoting to this work. No doubt my first

thank goes to him, Bruce G. Buchanan. a judicious and respectable man. I thank Susan

S. Owicki for her feedback from another angle and her enthusiasm for my work. In

addition, I thank Oscar Buneman, Richard H. Pantell, and Edison T. S. Tse, the other

members of my reading or oral committee, for their commitment to my work. I would like

thank Robert L. White who is the first man I can consult in Stanford University. I also

appreciate the help from Gabriel Garcia and Peter B. Gregory for providing us with liver

biopsy cases and the help from John Haggerty for providing information of the

REFEREE system; both of their help is valuable to validate our program. I thank my

family particularly Minyuen, my wife, who seldom complains about my being

monopolized by computer and gives me encouragement and advice when I need them. I

thank as well SUMEX-AIM, Heuristic Programming Project. Electrical Engineering

department, Stanford University, and Scribe facilities for generating this text. This work is

-. in part supported by the Advanced Research Project Agency under the contract DARPA

"-. N00039-83-C-0136 and National Institute Health under the grant NIH RR-00785-11.

•'o

Table of Contents
,1*

* 1. Introduction 1

1.1. Two Main Problems 3
1.1.1. Accuracy of Performance 3
1.1.2. Efficiency of Performance 4

1.2. Learning in Expert Systems 5
1.2.1. Learning from Examples 5
1.2.2. Efficiency Consideration 8
1.2.3. Noisy Learning Environments 9

1.3. Learning as an Approach to Debugging the Knowledge Base 9
1.4. Meta-Level Knowledge 10

1.4.1. The Role of Meta-Rules 10
1.4.2. Rule Model and Function Template in Learning 11

-,.. 1.4.3. Machine Learning of Meta-Level Knowledge 12
1.5. JAUNDICE as a Set of Experimental Programs 12

1.5.1. The Performance Program 14
1.5.2. Knowledge Base 15
1.5.3. Database 16
1.5.4. The RL Program 17
1.5.5. The Debugging Program 18
1.5.6. Meta-RULEGEN 18

1.6. Contribution of the Thesis 18
1.7. Outline of the Thesis 19

2. Knowledge Acquisition via Machine Learning 21

2.1. Introduction 21

2.1.1. Learning in JAUNDICE 25
2.2. Learning via Search from the Most General Hypothesis 29

4 2.2.1. Procedure 31
2.2.1.1. One Example 35

2.2.2. Areas of Application 37
2.2.3. Comparison and Discussion 39

Vi

2.2.3.1. Comparison with Related Works 39
2.2.3.2. Model-Driven vs. Data-Driven Learning 42

2.2.4. Focusing Mode of Learning 44
2.2.4.1. Procedures 45

2.3. Learning Intermediate Knowledge 48
2.3.1. Intermediate Concepts in the Initial Vocabulary 50

2.3.1.1. Bottom-Up Learning 51
2.3.1.2. Top-Down Learning 55
2.3.1.3. Bidirectional Extension Strategy 56

2.3.2. Intermediate Concepts not in the Initial Vocabulary 58
2.3.2.1. Technique of Symbolizing Taxonomy Point 58
2.3.2.2. Technique of Symbolizing Switchover Point 62

2.3.3. Comparison and Discussion 65
2.4. Learning Disconfirming Rules 66
2.5. Constructing a Hierarchical Knowledge Base 69

3. Feature Condensation 71

3.1. Introduction 71
3.2. The Learning System 74

3.2.1. Structure and Behavior 74
3.2.2. CONDENSER 76

3.3. The Rule of Condensation 77
3.4. Techniques of Condensation 79

3.4.1. Ordered Scanning Algorithm 81
3.5. Why Does CONDENSER Work? 85

3.6. Application 90
3.6.1. Applicable Domains 90
3.6.2. Compatible Learning Systems 92

3.7. Comparison and Discussion 93
3.8. Summary 95

4. Learning in Noisy Environments 96

4.1. Introduction 96
4.2. Imperfect Training Instances 99

4- 4.2.1. Inconsistency of Training Instances 99

4.2.1.1. Spontaneous Inconsistency 99
4.2.1.2. Incorrectly Classified Training Instances 101

4.2.2. Inadequacy of Training Instances 103
4.2.2.1. Incompleteness of Data 103

Vii

'4-A
4.4

4.2.2.2. Sampling Insufficiency 104

4.2.2.3. Unreliability and Inconsistency of Data 106
4.3. Imperfect Learning Systems 106

4.3.1. Insufficiency of the Descriptive Language 106

4.3.2. Insufficiency of Rules of Generalizaton or Specialization 108

4.3.3. Procedural Bias 108
4.3.4. Representational Bias 110

4.4. Error Measurement 111
4.4.1. Calibration Error 112

4.4.2. Prediction Error 113
4.5. Error Handling 115

4.5.1. Pre-Filter 117
4.5.2. Mid-Filter 118
4.5.3. Post-Filter: Optimizer 119

4.5.3.1. Minimal Error Principle 119
4.5.3.2. Procedures 121

4.6. One Example 123
4.7. Comparison and Discussion 124
4.8. Summary 127

5. Automated Knowledge Base Updating 128

5.1. Introduction 128
5.2. Faults in the Knowledge Base 131

5.2.1. In Domains without Uncertainty 132
5.2.1.1. Overly Generalized Rules 132
5.2.1.2. Overly Specialized Rules 132
5.2.1.3. Erroneous Rules 133
5.2.1.4. Missing Rules 134
5.2.1.5. Subsumption 134
5.2.1.6. Redundancy 134

5.2.2. In Domains with Uncertainty 134
5.2.2.1. Overly Generalized Rules 134
5.2.2.2. Overly Specialized Rules 135

5.2.2.3. Erroneous Rules (or Erroneous Degree of Certainty) 135
5.2.2.4. Missing Rules 136
5.2.2.5. Subsumption 136
5.2.2.6. Redundancy 137

5.3. Fault Corrections 137

viii

-I...

.%

.. 5

5.4. Automated Debugging 140
5.4.1. Fault Analysis 142
5.4.2. Application of Machine Learning 145
5.4.3. Retrospective Inspection after Learning 146

5.4.3.1. Experimentations 147
5.4.3.2. Verifications 149

5.4.4. One Example 150
5.5. Comparison and Discussion 151
5.6. Summary 154

6. Discovery of Meta-Rules 156

6.1. Introduction 156
6.2. Learning Meta-Rules: Design Considerations 157

6.2.1. Format of Meta-Rules 157
6.2.2. Utility Consideration of Meta-Rules 159

6.2.2.1. Utility Value for Meta-Rules 159

6.2.2.2. Selecting Useful Meta-Rules 163
6.2.3. Overview of Two Approaches to Learning Meta-Rules 164

6.2.3.1. From Object Rules 164
6.2.3.2. From Attributes 164

6.3. Implementation 165
6.3.1. Overview of META-RULEGEN 165
6.3.2. Algorithm 167

6.3.2.1. Approach from Object Rules 168
6.3.2.2. Approach from Attributes 171

6.4. Results 172
6.5. Conclusion 175

7. Results and Conclusions 178
7.1. Results of Learning in JAUNDICE 179
7.2. A Sample Dialogue of Interactive Mode in JAUNDICE 183

7.2.1. Gathering Information 185
7.2.2. Providing Interpretations 188
7.2.3. Explanation 190
7.2.4. Asking for the Expert's Diagnosis 191
7.2.5. Debugging the Knowledge Base 192

7.3. Validation 195
7.3.1. Rediscovery of Well-Known Concepts 196
7.3.2. Testing Generality in the Same Domain 196

ix

.4,

q

, -p. , ,* v , . ,- - " - .•. - " ". .-.. ' ' ' -"- -" _ ," ," "-" " " ' ' , ' ''
%
€ " "

7.3.3. Testing Generality in Other Domains 196

7.4. Assumptions and Discussions 198
7.4.1. Basic Assumptions 199
7.4.2. Requirement of Domain-dependent Knowledge and Heuristics 199

7.4.3. Case Selection 200
7.4.4. Domain-Dependent Rules of Generalization or Specialization 200

7.4.5. Representational Adequacy 201
7.4.6. Rule Redundancy 202

7.5. Comparison with Related Work 202
7.6. Future Extensions 203

7.6.1. An Expert System with the Ability of Discussion 203
7.6.2. Unsupervised Learning 204
7.6.3. Training Instances with Multiple Classifications 205

7.7. Conclusion 205

Appendix A. Degree of Certainty 206

ix

- .

Introduction

Chapter 1

Introduction

Artificial Intelligence (AI) techniques have been employed in designing expert systems1

which solve problems in specific domains by means of expertise encoded in knowledge

bases. Automated consultation programs (expert systems) have been built in the area of

inferring chemical molecular structure from mass spectra [Buchanan 69] mathematics

[Martin 71], mineral exploration [Duda 78], diagnosing medical disease and giving

therapy (e.g., [Shortliffe 76]. [Kulikowski 82], [Miller, Pople, and Meyers 82]), and so forth.

Why do we need expert systems? Solving complex problems (which may even daunt

experts) and saving human resources are major motivations. For instance, in medicine,

because of the uneven distribution of medical personnel, expert systems can raise the

average quality of medical care, particularly in rural areas. And medical expert systems

have demonstrated better diagnostic accuracy than junior physicians [Buchanan and

Shortliffe 84]. Moreover. the medical cost can be reduced by. for instance, allowing nurse

practitioners to prescribe under the guidance of expert systems. In another stream, Al

researchers have begun to investigate "machine learning" for the purposes of economizing

the time and energy of knowledge acquisition, discovery of new concepts, and

understanding of human cognitive mechanisms.

Expert systems differ from classical decisional analysis in several aspects: first, the expertise is encoded into
many symbolic rules which simulate the experts* thought: second, the representation is emphasized on its
understandability; third, the system should have intelligent features, such as the ability of explanation.

.......4.... . . .

L.

Introduction 2

This thesis. de eloped under the confluence of the impact of "expert system" and the

recent enthusiasm about "machine learning",2 is motivated by the following

considerations:

The acquisition, representation, and use of knowledge are the key issues in

building expert systems [Hayes-Roth 83]. Among these, the most difficult
issue is knowledge acquisition. Even expert knowledge may often be ill-

defined or imprecise, and disagreement may exist among experts. Moreover.
in a relatively unexplored domain, expert knowledge is incomplete. Machine
learning can lend itself to these situations: 3 however, it is still in its incipient

stage, and any work in this area suffers from weaknesses or limitations in some
aspect.4 Finding a more general and better solution to knowledge acquisition

by machine learning is the first motivation of this work.

" * In inductive concept learning. there are still so many issues remaining to be
solved: for example, how to learn if uncertainty is involved, how to learn new
concept descriptors, how to learn efficiently, how to handle noisy data, and so
on. Finding some solutions to these issues is the second motivation.

e An expert system will be more intelligent in solving problems if endowed with
the ability to learn meta-rules that control and guide the invocation of object-
Slevel (domain) rules. This is the third motivation of this thesis.

In this work. we develop theories and methods of building an intelligent and robust

. expert system that can perform efficiently and accurately, and can improve its

2"Learnina" here denotes active learning rather than passive learning (e.g.. learming by being told) For
-U example. IEIRESIAS [Daxis 791 is a passi.e learning program: the SEEK program [Politakis 821 is more than

a passive program hut still cannot find missing rule,: Meta-DENDRAL [Buchanan 78a] is an active program.

3lnductie cirncent lermine techniques have been applied to construct a knoledge base for exper sx,tems.
e g., Mela-Df.NDRAL[Buchanan ,8a1, and RULEMASI ER (Michie 841.

-hi, , 1d he .in i ;ed in Chapter 2.

S. .

- -.. -

Introduction 3

performance through learning. We primarily focus on EMYCIN-like 5 systems where the

learning task is complicated by the facts that reasoning involves complex interactions

among rules, and involves uncertainty about the data and the strength of inference.

1.1. Two Main Problems

The recognition of expert systems as substitutes for or complements to human experts

requires that expert systems should perform accurately and efficiently. Therefore, we

focus on these two issues: accuracy and efficiency.

1.1.1. Accuracy of Performance

*By "accuracy", we mean the advice given by the system should be able to solve the

problems concerned. For example, the therapy recommended by a medical expert system

can relieve the patient's discomfort. Practically, we often use a comparison between a

program's advice and an expert's to evaluate the accuracy of the system [Buchanan and

Shortliffe 841.

The problem considered here comprises two stages:

* The first stage problem is defined as "constructing an accurate knowledge base
(KB) from a given case library".

Given: A case library.

Find: A set of rules that can diagnose
each case correctly.

5 EMYCIN [Van Melle 801 is a domain-independent expert system building tool, based on the core of
MYCIN.

}4'

'" I'." -. "."- '" " " ' "- . " - -"." -" " ."' -"- " " " .", " ' ." " ,," "-"." - -," , - -'

Introduction 4

.Since the KB may not be perfect once constructed, the second stage ensues:

Given: A faulty conclusion (or misdiagnosis)
from the performance program.

Find: Improvements to the KB in order to achieve a
correct conclusion (or diagnosis).

In an expert system, because the reasoning often involves multiple (hundreds
-of) rules (structured in multiple levels) which may be chained together. or

either positively or negatively interact with one another, tracking down the
faults in the KB is generally a difficult task. Even more difficultly, in a domain
with uncertainty, there are few exact solutions. There are two approaches to
debugging the KB: human-oriented and machine-oriented approaches. As

S." mentioned earlier, expert knowledge may be unorganized. inconsistent.
incomplete, or redundant. Thus it is worthwhile to explore machine-oriented
learning. which is one of the major topics in this thesis.

1.1.2. Efficiency of Performance

By "efficiency", we mean the system can generate advice in a "reasonable" time without
.,.

loss of quality. Though this may be a trivial issue in a small KB, it can't be ignored in a

large KB where exhaustive invocation of all rules may make the system impractical owing

to a great deal time consumed. Thus, this is also one of the important criteria for

evaluating an expert system.

Dynamic mobilization of appropriate knowledge under a certain circumstance is a

matter of "control". As discussed in some works, such as [Davis 801, [Aiello 83], control

. Istrategies are crucial in expert systems for the reason of efficiency. Thus we focus on

learning good control knowledge. in the form of meta-rules. as follows:

'Z

',p

m~ ', .d ," ' . o % ' l ' l ' ' , , . 4' " ' ' . ' " ' ' " .¢ , . ., ~ " ". . , ' ' • , , •, i .

Introduction 5

Given: A set of object-rules.

Find: Meta-rules that can guide effectively
the invocation of object-rules.

Again. this problem can be solved by human-oriented or machine-oriented approaches.

Though human experts are good at the domain specific knowledge, it may be awkward for

them to write down good control knowledge. "Good" control knowledge is able to

enhance efficiency in a given organization of the KB. In this thesis. a theoretical basis and

methods are developed to generate a set of useful meta-rules.

1.2. Learning in Expert Systems

In this work, we use the technique known as "learning from examples" or "inductive

concept learning" as the primary strategy, though we also augment its capability such that

it can learn new concepts (newly defined symbols) which are not embedded in the initial

given language (see Section 2.3).

1.2.1. Learning from Examples

This learning task is formulated as follows:

Given: A set of training instances.

Find: Concept descriptions that are consistent
with the training instances.

Training instances are classified 6 into positike instances (examples of the concept) and

negative instances (counter-examples of the concept). The objective of learning is to find

6We assume that instances are pre-classified with a high degree of accuracy. As discussed in Chapter 4.
however, complete accuracy is not necessary.

S%-

Introduction 6

concept descriptions that satisfy' the positive instances but exclude the negative instances.

We may view this learning problem from an instance diagram shown in figure 1.1.

a""
a'.--- i im

+: positive instance
-: negative instance

Figurel.l In this instance diagram, each boundary
represents a concept description or a rule that
includes positive instances and excludes negative
instances.

Thus, the objective of learning is to delineate the boundaries between the positive and

negative instances. Basically, there are two operators used in making induction from

instances: generalization and specialization. Generalization broadens the scope of

descriptions or enlarges the boundary to cover more instances. In contrast, specialization

narrows the scope of descriptions or contracts the boundary to cover a less number of

instances. If we see two different positive instances with different descriptions, we can

abstract a description which covers both instances by finding a common generalization of

these two instances. For example, from two positive instances "2" and "4" for the concept

even". we may abstract a more general description "2n, n is an integer". By properly
,,V"

Introduction 7

applying these two operators. descriptions that are general enough (by generalization

operator) to cover positive instances while specific enough (by specialization operator) to

exclude negative instances can be found.

Works dealing with inductive concept learning include. [Winston 701. [Vere 751.

[Hayes-roth 76], [Buchanan 78a). [Mitchell 781. and [Michalski 83aJ. The learning method

described in this thesis is designed in a way such that it can.

1. Construct a knowledge base in an expert system, and the knowledge base will
incrementally be updated to accommodate cases with faulty conclusions made

by the system.

* 2. Discover intermediate knowledge. Intermediate knowledge denotes the deep-
level instead of superficial-level reasoning knowledge. For example, in
medicine, the analysis or diagnosis of a disease often involves the reasoning
along the dimensions of pathophysiology, anatomy, and etiology (deep-level
reasoning), rather than simply associates the clinical picture with a disease
(superficial-level reasoning). In a reasoning network, intermediate concepts
denote those intermediate nodes in reasoning chains.

3. Handle uncertainty.

4. Handle noisy data.

5. Learn fast.

In medicine, considering cost and risk. a rule should.

1. Have minimal features (avoid unnecessary features) to save cost and avoid
unnecessary risk.

2. Be maximally specific to avoid false positive diagnoses.

hr In Chapter 2. a model-driven type learning method, which performs a heuristic search

from the most general hypothesis, is developed to learn multiple rules from a case library.

Introduction 8

It is an often encountered situation in an expert system that wrong advice or

misdiagnosis is provided by the system. The faulty advice may be traced back to faults in

the knowledge base. Since. for instance, in medicine, a variety of manifestations can occur

in one disease. different cases (patients) with the same disease may be diagnosed by

different rules: a misdiagnosis indicates the KB is inadequate to detect a certain

combination of clinical features. Hence. learning is useful to find the right rules.

"Focusing mode"(described in Section 2.2.4) is designed to discover rules covering a

specified case (usually a misdiagnosed one).

1.2.2. Efficiency Consideration

Learning becomes a complicated issue in a complex domain like medicine where there

may be hundreds (even thousands) of features (symptoms, signs, and laboratory tests). The

*: difficulty is reflected by the fact that medical experts abstract a limited number of medical

rules from decades of practice. Our ambitious goal is to build an expert system with fast

learning ability. The important idea of data compression in information theory can lend

itself admirably to handling a large volume of data in learning. 7 As long as the desired

information contenit is preserved, the representation can be as simple as possible. A

feature condensation technique, that removes unnecessary or irrelevant features

dynamically during learning, is implemented and described in Chapter 3. With this

technique, learning is much faster because of the reduction of the dimensions of the search

space while the quality of the output is preserved.

7 [Quinlan 791 discusses an alternative for learning with large data bases, but the emphasis there is on the
number of examples not on the number of features in each example.

.,. .z

Introduction 9

1.2.3. Noisy Learning Environments

With respect to learning, there are various types of error-sources, which may be

associated with the input (the set of training instances) or the learning system (the learner).

Inadequacy and bias of the learning environment are two major sources of errors. For

example, a small case library renders the learned rules limited or incorrect in predicting

the cases outside the case library: false positive or negative instances make the learned

rules inconsistent. Chapter 4 describes possible types of error-sources and the method of

their elimination.

1.3. Learning as an Approach to Debugging the Knowledge Base

As mentioned earlier, a misdiagnosis indicates faults in the KB, which may be incorrect

rules or missing rules. This problem is closely related to the so-called "credit and blame

assignment problem" (refer to [Dietterich and Buchanan 81]). Only those rules that are

determined to be "blamed" should be corrected.

Automated debugging of the KB in a complex rule-based expert system is generally

difficult because of the following reasons:

1. There are so many rules involved.

2. There are so many ways to correct a rule.

3. There may be more than one fault.

4. If uncertainty is involved, there may actually not exist any perfect solution.

TEIRESIAS [Davis 79] assists human experts in editing the KB by tracking down the

relevant rules and allowing them to correct the faulty rules or add missing rules on the

Introduction 10

basis of their knowledge and intuition. But, even experts may go astray if the faults are

multiple and the solutions are n'jt exact (i.e.. optimization is required). Moreover.

misdiagnosed cases are often due to missing rules. Therefore, we would rather view this

problem as a learning problem. A strategy called "retrospective inspection after learning"

is described in Chapter 5. With this strategy, rules that can make the misdiagnosed case

diagnosed correctly are first found; then the found rules are compared with the old rules

in the KB to detect missing rules or decide how rules should be generalized or specialized.

This approach is more advantageous than the one which tries to modify the KB in every

possible way, especially if the faults are due to missing rules.

1.4. Meta-Level Knowledge

Meta-level knowledge is the "knowledge about knowledge". So, meta-rules are rules

about rules. Three types of meta-level knowledge are briefly introduced in this section:

meta-rule, rule model, function template.8

1.4.1. The Role of Meta-Rules

Meta-rules guide the invocation of object-rules effectively by reordering or pruning

them [Davis 76]. The syntactical structure of a meta-rule is seen in Chapter 6. The main

reason for incorporating meta-rules is to increase the speed of performance without

degrading the quality of advice. Meta-rules are particularly important in a large KB where

exhaustive use of the KB will make the system awkwardly slow and. thus. impractical. In a

goal-oriented reasoning system. to pursue a different goal will trigger a different set of

meta-rules.

Refer to ['1w mid Buthanin 771

UoS

a , .4. .o t"'. ', ,2l? .,""''" .'".i.2" d "'''-.
.
', '.". ''i"'2 .r " " ":",''o" ' ,"" " "['"'[

' ' '

Introduction 1

1.4.2. Rule Model and Function Template in Learning

A rule model summarizes the premise from a set of rules with the same area of

conclusion in the KB[Davis and Buchanan 77]. The application of rule models in

machine learning has three advantages:

1. They provide the knowledge about parameters (attributes) used for a certain
context.

2. They provide the knowledge about the predicates commonly used for a certain

attribute.

3. They provide the knowledge about the ordering of attributes in the premise

and the knowledge of the necessary components for concluding a certain fact.

We may view the use of rule models in learning as "guiding future behavior by past

experience", which is a key factor to make learning more semantically meaningful and of

higher quality.

Function templates record the argument format for certain predicates [Davis and

Buchanan 77] and are important in generating code for new rules.

As described in Chapter 2. the knowledge embedded in rule models and function

templates can be formulated directly by experts as the initial knowledge for the learning

system to construct a KB from nil.

Introduction 12

1.4.3. Machine Learning of Meta-Level Knowledge

In a hierarchical knowledge structure, as object-level knowledge is derived from

observation of objects. so meta-level knowledge should be able to be derived from object-

level knowledge. This is one motivation of learning meta-rules from a set of object-rules.

- .'" which is described in Chapter 6. Hierarchical learning (learning is done level by level) is

significant in constructing a multi-level knowledge structure, in which the knowledge of a

higher level is abstracted from the lower levels. Learning of meta-rules from object-rules

is one example of hierarchical learning.

1.5. JAUNDICE as a Set of Experimental Programs

Medicine, because of its complexity, is a good area to build expert systems. In this

thesis, we use the diagnosis of jaundice as an experimental domain for the following

reasons. First- since the reasoning for jaundice cases involves several different dimensions.

such as pathophysiological. anatomical, and etiological reasoning, this domain is

sufficiently complex to test the capability of a learning system. Second, the knowledge in

'4, =,this domain can be easily codified because this domain is well-studied and relatively small

in contrast to the KB of INTERNIST [Miller. Pople. and Meyers 821. JAUNDICE 9 is an

expert program which provides diagnosis for jaundice cases and learns new rules:

however, this program is designed to screen the jaundice (adult) patients based on the

preliminary clinical data without resorting to invasive tests, such as liver biopsy. Several

features of this program are shown in figure 1.2. As seen in the above figure. the main

program JAUNDICE includes several subprograms: the performance program (the

9 it is implemented on SUMEX-AIM. TOPS-20 system and written in 1.NTFER1.SP.

'.,
-,..

Introduction 13

Perform

Provide Explain

ecei ye
feedback

LiteF Datu

2a Knowledge ases ued it onsultation

3: SoreBfcaeifratio fo aa Base

Meta-Rulegen.
5: Sources of learning new knowledge:

5a: From human (experts) feedback.
5b: From data base
5c: From meta-knowledge.

6a: Automatic knowledge base construction.
6b: Automatic knowledge base debugging.
7a 7b: Human-centered KB editor.

Finurer. Overview of the JA n tDICE programs. Arrows
indlcate knowledqe or data low. Dotted links (a. lb)
are not stressed in th s work.

.'.-.n.,. *.,"

""~ ~ ~ ~ ~ ~~ 5 Sources. of .lea"rning new, - ., .- " knowle.dge:","w ." % " '' " ","-" '

Introduction 14

performer), RL (a domain independent rule learning program), the debugging program

(the debugger), and Meta-RULEGEN (a domain independent program that generates

meta-rules). Each subprogram will be briefly described in the following subsections. The

KB stores both object-level and meta-level knowledge. The DB is a case library which

stores patient data. A feature base that has 81 clinical features (binary or multiple values)

is used to write rules in the KB and describe patient data in the DB. Feature values may

be numerical or non-numerical. Figure 1.3 shows some examples.

Feature: Exoected value:

* Malaise Yes, No
. GOT positive number
* Hepatomegaly Mild. Moderate, Marked

Figure l.3 Examples of feature values in JAUNDICE.

1.5.1. The Performance Program

This is mainly an interactive program,10 built from scratch but similar to MYCIN1t.

The user enters patient data: then the program provides an interpretation which includes

disease diagnosis, anatomical and pathological mechanisms. An explanation of the gi' en

interpretation, based on the patient data. will be given if requested. If the user is an

expert, he is allowed to give his view about the diagnosis. If the expert's conclusion is

. different from the system's conclusion, the expert may either edit the KB (as ir,

-to

Though. there is another version. hatch mode. which can run multiple cases in a tune and i desicnc d
pnmanl to tet the pertormance of the program A hen the KB is edited.

he1 L e nt. o f rules i the same: the mterpreter is Jl) goal -onented.

Introduction 15

TEIRESIAS [Davis 79])12 or simply give his diagnosis without editing the KB. In the

latter case, the system will debug the KB automatically (this is one of the main topics in

JAUNDICE).

The performance program uses the KB to solve problems by goal-oriented (Lackward-

chaining) reasoning. The main goal is to conclude the disease entity causir:g jau, fice,

which may be one or more of ten disease categories, including acute hepatitis, chronic

hepatitis. cirrhosis of liver, primary biliary cirrhosis, and so forth. 13 Subgoals are to

conclude disease mechanisms, such as pathological and anatomical mechanisms. The

4 program uses a measure of "degree of certainty" to handle uncertainty, which is extended

from MYCIN's CF model (Buchanan and Shortliffe 84]. (See more detail of "degree of

certainty" in appendix A.) The accumulation of uncertainty in JAUNDICE is the same as

in MYCIN. The performance program will not be discussed further since it is not the

main focus in this work, but it is used to measure the ability of the learning program to

learn useful new rules. An example of consultation is shown in Chapter 7.

1.5.2. Knowledge Base

There are 141 diagnostic rules, and 80 non-diagnostic rules reflecting causal and

taxonomic knowledge in the initial KB. The knowledge base was constructed by encoding

knowledge from medical textbooks and journals (e.g.. [Schiff 46], [Petersdorf 83]. [Krupp

821, [Winkelman 811. etc.) and talking with experts. After learning. the number of

1h-DTs is not implemented in JAUNDICE.

13For simplicity, diseases are generally assumed to he mutuall exclusive.

C--N-I--

- Introduction 16

diagnostic rules increases to 304. Each rule is put in EMYCIN [Van Melle 80] rule format.

Figure 1.4 shows one example.

Rule62: If 1. Serum total bilirubin is greater than 1.2 mg/dl.

2. Serum GOT is greater than 300 I.U./dl.

3. Serum GPT is greater than 300 I.U./dl.

4. Serum Alkaline-phosphatase is less than 10 B.U.

then it is probable (.8) that the mechanism is

hepatocellular injury.

(RULE62 ((SAND (GREATER SERUM TOTAL-BILIRUBIN 1.2)

(GREATER SERUM GOT 300)
(GREATER SERUM GPT 300)
(LESS SERUM ALKALINE-PHOSPHATASE 10))

(JAUNDICE MECHANISM PARENCHYMAL-DYSFUNCTION .8)))

- Figure L*4 One example of a rule in JAUNDICE .

1.5.3. Database

Here, the database is the collection of patient data. In our experimental model, we

carefully14 collected 72 jaundice cases from the literature (e.g., [Malchow-moller 81],

(Stem 75], [Winkelman 81]. etc.) to construct a case library as the starting point. Each case

is stored as a frame. Figure 1.5 shows an example. The data description is represented as

a feature set (or list), a set of feature value pairs.

14 We only select hose cases with rather compicte dat decnpnons and confirmed diagn,' s.

-. I.-~

Introduction 17

(CASEl (DATA ((AGE 56)

(SEX MALE)
(ONSET ABRUPT)
(TOTAL-BILIRUBIN 3)
(GOT 150)
(GPT 180)
(URINE-UROBILINOGEN ELEVATED)
(MALAISE YES)

..)))
(COMPLICATION NIL)
(FINAL-DX ACUTE-HEPATITIS))

Figure l.5 Frame representation of cases in JAUNDICE.

1.5.4. The RL Program

The RL program (standing for rule learning program) has three subprograms: the core.

CONDENSER, and the noise filter. The core of the RL program comprises three types of

learning methods: "search from the most general hypothesis" method, the method of

learning intermediate knowledge, and the method of learning disconfirming knowledge.

CONDENSER improves the efficiency of learning by removing irrelevant features

dynamically during learning. The noise filter makes the results of learning more precise

by minimizing errors caused by the undesirable perturbation factors associated with the

input or the system. The RL program receives input from database, expert diagnosis. and

meta-level knowledge (rule model and function template), The output of the RL program

(new rules) is sent to the KB directly if the purpose is to construct a new KB. or sent to the

debugging program for debugging the KB if there has already been a KB (constructed

some time ago).

I - - . . - . . .

Introduction 18

,' The RL program is designed to be domain independent: as will be shown in Chapter 7.

it is effective in JAUNDICE (a medical domain) as well as REFEREE (a non-medical

domain).

• ,1.5.5. The Debugging Program

Each time a misdiagnosis occurs, the learning system will be triggered to learn rules

(ignoring temporarily the old rules in the KB) such that a correct diagnosis can be reached.

Then. the debugging system compares the newly learned rules with the old rules to

pinpoint the possible faults in the old rules. For instance, an old rule may be indicated to

be too specific and should be generalized.

1.5.6. Meta-RULEGEN

Meta-RULEGEN is a second order learning program, which can generate useful meta-

rules from a set of object-rules and can control the invocation of the object-rules in order

to enhance the performance of expert systems.

1.6. Contribution of the Thesis

The major contributions of this thesis include the following:

1. It develops the first system which can learn new knowledge in EMYCIN-like

environments where uncertainty is involved and evidence can be combined

either positively or negatively. It confirms the value of the model-driven

learning strategy in constructing the knowledge base with multiple decision

rules in an expert system: and it differs from previous model-driven methods

in its ability to learn incrementally.

2. The idea of learning intermediate concepts from a set of training instances
which are not described by any intermediate concept is novel: the techniques.

such as bi-directional extension and symbolizing switchover points, are novel.

A :. . . .

Introduction 19

3. It is the first work which automatically learns meta-rules which car guide
effectively the invocation of object-level (domain) rules.

4. It is the first work in Al which develops the theory and the method of feature
condensation to enhance the efficienc, of inductive concept learning.
Previously, the efficiency is improved by adding heuristics.

5. It generalizes and amplifies previous approaches to handling errors in
inductive concept learning.

6. It is the first work which applies machine learning techniques to debugging the
knowledge base automatically in EMYCIN-like environments where.
previously, human experts are relied on to debug the knowledge base.

1.7. Outline of the Thesis

Chapter 2 describes three learning methods with illustrations. "Search from the most

general hypothesis" method learns multiple rules for each diagnosis class in a case library.

Learning intermediate knowledge is required to build a KB with good accuracy. Learning

disconfirming rules is important in an EMYCIN-like system where uncertainty is

involved.

Chapter 3 introduces the condensation principle, defines the role of CONDENSER.

and describes a useful feature condensation technique. A cost and benefit analysis and

some illustrations are made to demonstrate the value of feature condensation in learning

from examples.

, Chapter 4 provides solutions of noise problems in A(learning. The source.

measurement, and filtration of errors are described. "Minimizing errors" is the basic

principle to recover the desired information from a noisy learning environment.

_ '

Introduction 20

Chapter 5 describes automated debugging of the knowledge base for a misdiagnosed

case. It takes advantage of learning to achieve the purpose. Techniques of editing the KB

particularly in an EMYCIN-like framework are described with illustrations.

In Chapter 6. a theory and methods of formulating new meta-rules are developed. The

effect of introducing meta-rules is carefully analyzed by defining utility-value on the basis

M..; of the cost and benefit and by some experiments.

Chapter 7 shows results obtained from implementing all the ideas developed in the

previous Chapters. The validation of the the developed learning method is the central

issue. Then, discussions and conclusions are made.
W1A.. .

M..

" S

M..

*o "}

MM °o,- - ---

% % . M'M .V. * < M. .*M~*M~ M M M * - -. M..M- M ~ -4

Knowledge Acquisition via Machine Learning 21

Chapter 2

Knowledge Acquisition via Machine Learning

2.1. Introduction

In this chapter, an inductive learning program, named RL (standing for rule learning).

is developed for constructing and maintaining the knowledge base (KB) in expert systems.

This program differs from other inductive concept learning programs in that it can define

*: newly useful concepts which are not in the initial given language. in order to fill in the

possible missing links in a complex reasoning network. In addition, this program

possesses two other distinct features. First, each learned rule is assigned a number

representing "degree of certainty" (see appendix A): second. disconfirming rules are

learned as well. All the above features are intended to augment the capability of inductive

concept learning, and can be tailored to different domains. The learning methods

employed in this program are described in general terms, illustrated with its application to

the jaundice domain.

The problems we concern here. as described in Chapter 1. are as follows:

* The first stage problem is.

Given: A case library.

Find: A set of rules that can diagnose
each case correctly.

..................................,.,......--.-.-...'..,......,.,-..,.,. .
' d ' 2' A.2,.

Knowledge Acquisition via Machine Learning 22

" The second stage problem is.

Given: A faulty conclusion from the

performance program.

find: Improvement to the KB in order to

achieve a correct conclusion.

In the case library, each case (training instance) is represented by a frame with two basic

slots: a feature set (i.e.. a set of feature value pairs), and a correct classification. The goal

of the first problem is to construct a KB which can diagnose all (or most) cases correctly:

the second problem is to update the KB as a new case with faulty diagnosis appears. A

- - KB, after constructed, will constantly be updated when more and more cases appear.

Here, one important issue may arise: if the original KB is poor because of the poor initial

case library, inadequate language, or whatever (see error-source considerations in learning

in Chapter 4), then the KB may not converge to its ideal state (no longer with faulty

conclusions) even with drastic updating (editing). Therefore, careful selection of training

instances and other noise-elimination measures are mandatory to construct a good KB and

minimize the future editing. But can we assure a KB will converge to its ideal state if we

have a good learning environment? Here, it should be stressed that a KB may continue to

grow even if it is in the ideal state because as more features are added, more rules can be

created: we do not mind adding more pieces of knowledge if they are true. Thus the

above question actually indicates whether each individual piece of knowledge will

converge to the truth. Since a piece of knowledge will be more accurate if it is based on a

large amount of accumulated data. the answer to the above question is positive if the

d',

Knowledge Acquisition via Machine Learning 23

learning system can incrementally update the knowledge created. This worry may further

be diminished when we notice that a KB is constructed by human experts and edited after

some tests, then it is in good shape. Perhaps. unless well-established theories are

overthrown or the statistics of instances in a community is altered by some intruded de-

stabilizing factors, we may generally assume that a KB will converge to a desirable state.

though a limited amount of editing (e.g.. adding new knowledge) is still required.

In order to solve the first problem, a method which performs a heuristic search from the

most general hypothesis is developed: this model-driven and batch-processing (i.e.. process

all data at once) learning method is described in Section 2.2. The second problem deals

with the KB debugging. In this chapter. a "focusing mode" of learning, described in

Section 2.2.4, is developed to cope with the situation when a new case with faulty

conclusion made by the performance program appears; rules which can achieve a correct

conclusion are first learned with this mode. then the KB is edited by comparing the

learned rules with the old rules (the part of the subsequent editing of the KB after learning

is described in Chapter 5).

Section 2.3 describes learnin, intermediate knowledge. which is important to construct

a KB with good accuracy and understandability. Section 2.4 describes learning

-".. disconfirming rules. Section 2.5 describes how to combine all the methods developed to

construct a KB with both confirming and disconfirming knowledge. including

intermediate knowledge.

As mentioned in Chapter 1. rule models and function templates are important for rule

learning because what they provide, which we call rule-forming knowledge. is essential to

LP J

Knowledge Acquisition via Machine Learning 24

make the machine-learned rules more uniformly encoded and more semantically

meaningful. We recapitulate the advantages brought about by this "rule-forming"

knowledge as follows:

It indicates the required components to add such that rules learned will
conform to the rules written by human experts. For example, a rule learned is:

"if P. then C"

but a rule written by human experts is:

"if (1) C is unknown.
(2) P

then C."

Though the two rules above do not make much difference, the second rule will
be more realistic because it also states unless "C" is unknown, it is unnecessary

to conclude "C".

It tells about the commonly used predicates for a certain attribute.
%"

" It guides generating code for newly learned rules in compliance with the old
coding in the KB. Therefore. the new rules can be used by the inference
engine once they are learned and can thereby be evaluated immediately to see
their effects on the system performance (upgrading or degrading).

" It provides other common sense: e.g.. mutual exclusiveness and relative
priority among attributes. In the LHS of a rule, it allows no two conjuncts that
are mutually exclusive with each other: also, the conjuncts should be ordered
according to the sequence of occurrence or priority. If the failure of one
conjunct will make other conjuncts meaningless, then this conjunct should be
placed as the first one. For instance, it is logical to place the conjunct "LFT is
known" before "SGOT is elevated" and "SGPT is elevated" because if "LFT
is not known", then no data are available for "SGOT" and "SGPT".

This rule-forming knowledge. which is collected from observing rules written by experts.

can actually be formulated directly by experts as the initial knowledge for the learning

- system to construct a K B from nil.

:..-

-',,, "',,-."..,z?..,.' " "".', - .". " .". """.2' .""'," ' " ... ,." . ." ., '"'a,. 'a.... ", . '. '% ,w

Knowledge Acquisition via Machine Learning 25

2.1.1. Learning in JAUNDICE

Though the methods we developed are general, we use JAUNDICE as the main

experimental domain. There are 72 cases in the initial case library: a feature base with 81

i medical features (some have binary values, others have multiple values) is used for

describing cases: every case in the case library has been assigned a correct diagnosis given

by human experts. A KB with 141 diagnostic rules and 80 nondiagnostic rules encoding

causal and taxonomical knowledge was used as it's starting point. The learning program in

JAUNDICE, is involved in learning of diagnostic rules. Descriptions about cases or

concepts or hypotheses in the search space are represented by feature sets, sets of feature

and value pairs: e.g., { (SGOT 250) (SGPT 200) (Alk-P 25) }. The temporal

characteristics are also encoded into features: e.g., (disease-course rapid-downhill).

The rules of generalization used are listed as follows:15 (notation "GY" means

"replaced by a more general form")

1. Dropping conditions:

{(Ai Vi) (Aj Vj)} G> ((Ai Vi))

Based on this rule. generalization is done by removing some feature value pairs

from the feature set.

2. Climbing up the value hierarchy tree:

If Vi implies Vk, and Vj implies Vk,

then,
((Ai Vi)) G> ((Ai Vk)}

((Ai Vj))

15Rules of generahiation used in learning from examples can he seen in [Michalski 83h]. But. in
JAUNDICE. we also add some domain specfick rules.

[K.ZZ,.4" -.-.- ,-, , , -. . ..- : --..- ,., ---. -''.,. '-",,: ' -.- ';,. '"".- -- ,.. ,".".", -", , '.-" . . ."' - .,-,""' 7." ,

Knowledge Acquisition via Machine Learning 26

This rule states that a value can be replaced by a more general value in order to

cover more instances in the same class.

3. Creating new symbols: In Section 2.3. we will describe how to define new

symbols for a higher level abstraction when indicated by some heuristics.

4. Taking minimum or maximum:

{(Ai a)) G> f(Ai >min(a b))
((Ai b)} or, ((Ai _max(a b)}

This rule is designed for medical numerical parameters and can be understood

by the following example. For two patients with the disease "hepatitis", one
patient's data show "SGOT = 200", another's show "SGOT = 400": then it
may be hypothesized that "SGOT >_ 200" implies "hepatitis". Depending on
the distribution of values among the normal and diseased populations. "taking
minimum" or "taking maximum" rule is chosen. In JAUNDICE, this rule is
made domain-specific by adding the following heuristic: if the high range of
values suggests disease. then use the "taking minimum" rule: if the low range

of values suggests disease, then use the "taking maximum" rule.

5. Allowing disjunction:

"(Al Vi) (Aj Vj)) G> ((Ai Vi) (Aj Vj-or-Vk))
((Ai Vi) (Aj Vk))

To avoid trivial disjunction, this rule is invoked only under certain
circumstances. For example, the important features of two instances in the
same class are matched: then the less important features which are not
matched and there are no other ways to generalize can be generalized by this

rule.

Rules of specialization are logically opposite to those of generalization. There are three

rules listed in the following: (notation "SY' means "specialization" of concept descriptions

or the LHS of rules)

A* Pe -A

...-.--- ' "".,'*

-- -- -- -- -- --- -----r w- - 7 - Y-" - - - - - . W 'W r W

Knowledge Acquisition via Machine Learning 27

1. Adding conditions:

2. Climbing down the value hierarchy tree: In the tree. the highest level nodes
are the most general values or descriptions; the lowest level nodes are the most

specific values or descriptions. For example. a value "2" is more specific than
a value "even", and the value "even" has infinite successors: -2. 0, 2, 4....

3. Closing interval: If the value is numerical and the interval is too open. then it

can be specialized by closing the interval as follows.

((Ai >a)) S> ((Ai [a b])}

or ((Ai >b))

"b" is the next higher marking level of "a".

For example, a description {(SGOT _50)} is too general for the disease
"Cholangitis" and can be specialized into {(SGOT [50 3001)1 or {(SGOT

300)}: however the latter is not proper.

The specialization operator of "changing disjunction to conjunction" is not applied

because, as described in next section, the learning employs search from the most general

hypothesis: "NIL".

The main features of learning in JAUNDICE are summarized in table 2.1.

Knowledge Acquisition via Machine Learning 28

.".1

Table2.1 Learning in JAUNDICE

* - Paradigm: Learning from example paradigm.

Representation: Feature set.
(of training instances)

Rules of generalization: 1. Dropping conditions
2. Climbing up the value

hierarchy tree.
3. Creating new symbols.
4. Taking minimum or

taking maximum.
5. Allowing disjunction.

Rules of specialization: 1. Adding conditions.
2. Climbing down the value

hierarchy tree.
3. Closing interval.

Control rules: Learning meta-rules (see Chapter 6).

Intended applications: Expert systems in general.

Applications: JAUNDICE
(REFEREE)

-" Efficiency enhancement: CONDENSER (see Chapter 3).
Heuristics

Noise elimination: Noise filter (see Chapter 4).

As described in Chapter 1. in order to avoid unnecessary risk and cost. the RL program.

which is adopted as the learner of JAUNDICE, is designed to keep the learned rules small

(i.e., mention no unnecessary features), and keep them maximally specific while

sufficiently general (may be viewed as the most specific rules in the version space) for

minimizing false positive errors (incorrect diagnoses). The subprogram CONDENSER

(described in Chapter 3). by removing unnecessary features, can not only enhance the

efficiency of learning, but also save cost and risk in a given domain. In medicine, a

.71-

II%

Knowledge Acquisition via Machine Learning 29

diagnostic rule is valuable if it can arrive at a conclusion by using cheap and safe clinical

features. Error-sources (noise) associated with the learning system will be considered in

Chapter 4.

2.2. Learning via Search from the Most General Hypothesis

This learning method, performing a heuristic search from the most general hypothesis,

is model-driven and is designed to learn multiple disjunctive concepts (i.e.. there are

multiple concepts and there are multiple rules for each concept). This method is intended

to abstract rules from a case library: the learning task is formulated as follows:

Given: A case library.

Find: A set of rules that can diagnose each
case in the case library correctly.

Note that the ultimate goal is that the learned rules should also provide correct diagnoses

for cases that are not in the case library used for training: therefore, the learned rules

should be sufficiently general and specific.

Since we use a set of training instances to estimate the "true" boundaries (i.e., rules)

between positive and negative instances, the learned rules will be associated with some

degree of error. The errors concerned here are false prediction errors, i.e.. rules make

wrong predictions. We particularly desire to minimize false positive predictions because

of reasons described in Section 2.2.2. Therefore, this learning method is intended to

discover rules that describe a group of positive trL~ning instances in maximally specific

fashion. They thereby minimize false positive predictions (i.e.. predict negative instances

• " - '" ' '; '' ° .V.- . . - ' . "i '. -' i ') . . - .- - . - i . . ' ' " " - - - ." " . ' - . '' . " - "" .i - " - .

I ' 'q ,Y
"

" ',' " ' *" " 't :
"

. . ,k - " : " ' " " ,' "- -" "- " - ,

Knoiledge Acquisition 'ia Machine Learning 30

as positive insLnces). Moreover, a learned rule will tend to be overly generalized

(overgeneralization implies false positive predictions) if there are not adequate negative

training instances to constrain or guide generalization properly [Carbonell 83]. Hence. this

method will be even more useful if negative training instances are only limitedly available.

Refer to Section 4.2.2.2 for the philosophy of handling sampling insufficiency.

There are domain dependent constraints for rules. The !earning method searches for

rules which are maximally specific without breaking the constraints. The constraints, just

like the half-order theory in Meta-DENDRAL, are based on the domain knowledge. In

JAUNDICE, the constraints are defined as follows:

1. The LHS of a rule should have less than seven conjuncts.16

2. A rule should cover (be matched by) at least 20% of positive training instances
(the class of instances for which we want to learn classification or diagnostic

rules).17

3. The "degree of certainty" of a rule should be at least ".4". That is, the
prediction should be reasonably certain.

4. A rule should not cover more than 10% of all negative training instances.18

-- This constraint is based on the observation that a rule in rule-based medicaJ expert systems usually has

less than se'en components in it's LHS.

1-/,is is domain dependent. If there should be only one rule that covers all the positive instances, then the
rate of coserawe should he 10() ideall. But %e assume there are multiple disjunctive concepts to be learned

*.'-" (as in Meta-DENDRAL : so it is unlikely that a single rule mll cover all intances As another example. in

diagnosing acute appendtciis. the rules should be more general to cover more positive instances because the
" mortlit. of thts disease is high Ahereas the surgical nsk is smal: therefore the threshold should be set higher.

18Though. ideall,. a rule should not coser even a single negative instance, this is. however. not probable
because ,.f 3nceraim. It is also noted that. in he [M'YCIN system for instance, a case in class A. which is
cosered b a rule nih. B. interng class B. will sull be clsified correctls if'a rule. nile A. which infers class A
and co',Cr, uhos cse overides rule B: recall the pheno;menon of hvpothes-es coMpetitiui in such a sstem.

Ir-. %,-,:,,-~~~..,,.............- ,..-....-.....-... ,.-.....-, -' , . "< - -. • -. . . -, . ., < .P.- . . . - . i

Knowledge Acquisition via Machine Learning 31

The first two constraints define the minimal generality whereas the last two constraints

define minimal specificity,

2.2.1. Procedure

In a case library, if we want to learn rules for a certain class, then label all cases in that

class as positive instances and label other cases as negative instances. Inasmuch as the goal

is to construct a KB from the case library, each class will be labelled as positive instances at

a certain stage during the whole learning process.

During learning. CONDENSER condenses the feature base dynamically with respect to

the class labelled as positive instances to determine the set of required features, which is a

subset of the feature base (see Chapter 3). The learning procedure includes four main

steps described as follows:

*step 1. Starting from the most general version, "NIL", search for the
maximally specific hypotheses that does not break two following constraints:

the number of conjuncts should be less than seven (adjustable). and the
hypotheses should cover at least 20% (adjustable) of positive instances. The
hypotheses, thus found, are formed as raw rules. Since the constraints merely
involve positive instances, only positive instances are considered in this step.

* Step 2. Prune those rules which are assigned a degree of certainty smaller than
".4" (adjustable). or which cover more than 10% (adjustable) of negative
instances. Negative instances are considered in this step for calculating degree

of certainty (refer to Appendix A).

." step 3. Optimize each raw rule by iteratively applying generalization operators
(generalization rule #1. #2. and #4 in Section 2.1.1) until a local optimum is

reached (perform a hill-climbing search, so to speak). The local optimum is
the state with minimal weighted prediction error (as defined in Section 4.5.3.1)
under the following constraints: the local optimum should not cover more

than 10% of negative instances as mentioned in step 2. and the difference of

b7*'
•.4 °,. ' '-b . ' ''% . .L

°
' . °° " %

Knowledge Acquisition via Machine Learning 32

degree of certainty between the local optimum and the initial state (a raw rule)
should be within ".15": the latter constraint stems from the argument that, in

EMYCIN-based systems. it is hard to compare two rules with different ranges

of degree of certainty.
.,

step 4. If all positive instances are covered or the rate of uncovered positive
instances is below a certain threshold or the number of iterations has reached a

certain threshold, then exit. Otherwise. go to step 1 and reset the constraints in
step 1 as follows:

1. Reduce the rate of coverage for positive instances: for example, the first

iteration uses 20%. the second iteration uses 10%, and so on.

2. The hypotheses should cover at least one of the uncovered positive

instances.

3. The number ofconjuncts is still kept under seven.

if the constraints used in the procedure are properly chosen, then only a few iterations

are required, provided that the training instances selected are not too noisy.

The search in step 1 proceeds as follows:

- substep 1. Initialize the hypothesis space H with. the most general version as
*" "-" follows: setH := { NIL [

* substep 2. Generate new hypotheses by specializing each hypothesis in H in all

possible ways. But, the specialization for generating new hypotheses should be
maximally general (i.e.. specialize as little as possible). Each parent hypothesis

may have more than one successor hypothesis. The specialization may be

done by either adding a new feature with the most general value, or replacing a
feature value by a more specific value. Figure 2.1 shows part of the search
tree.

Since the number of conjuncts is limited below seven, the depth of the search

tree is mainly affected by (but not the same as) the depth of the value
hierarchy tree, and it's breadth is affected by the breadth of the value

,.-.,,.....
,, .',, r ',

"
, ,";;'[.F , ',", ,

'.
./ ,-' <: '.,,-,, ''-,.--" . .. - -.- -, ',,) .'""' S -"'*':';"-' - ,

Knowledge Acquisition via Machine Learning 33

NIL

*((Al Vi) ((A2 V2)) ((A3 V3))

((Al V11)) (Al V1) t(Al VI)

(2 V2) (A3 V3)

~(Ai V1i) 1
(A2 V2)

Suppose the system is learning classification rules for "class A" instances. then the hypothesis generation in

the above diagram can be formulated as:

instances = > class it instances

instances with (Al Vl) = > class A instances

instances with (Al V1 1) => class A instances

instances with (Al, V1 I) and (,%2 V'2) => class A instances

Note: For the feature "Al". "Vi1" is more specific than "VI"
in the value hierarchy tree.

Figure 2.1 Part of the search tree in the
"search from the most general" mode.

Knowledge Acquisition via Machine Learning 34

hierarchy tree and the number of the available features. Inasmuch as the
search space may be huge, heuristic search is necessary. The heuristics used
will be described next.

substep 3. If a successor hypothesis is justified (i.e.. does not violate the

constraints defined by the minimal generality, as described in step 1), then
retain it in H and prune the parent hypothesis. If a successor hypothesis is not
justified, then prune it. If no any successor hypothesis is justified. then output

the parent hypothesis as a raw new rule and remove the parent hypothesis
from H. Also, remove redundant hypotheses during the search.

" Repeat substep 2 and substep 3 until H is empty.

If a hypothesis is pruned, it indicates that the number of conjuncts is greater than six or

the positive instances covered is less than 20% of all positive instances; successors

(specializations) of this hypothesis will also be unjustified, because specialization never

causes more instances to be covered or causes the number of conjuncts to drop.

Therefore, pruning of unjustified hypotheses will not hurt the completeness of the search

for desirable rules.

-" Step 4 is designed for handling more special cases (or exceptional cases) which are not

covered by rules learned in the first iteration. As more iterations go. the learned rules

become more and more specific and cover a smaller number of positive instances.

The search space is reduced to reasonable dimensions by:

1. The features are condensed by CONDENSER before learning.

2. Heuristics are used to prune the search space.

Notice that the system parameters, such as "the minimal coverage of positive instances"

(defined to be 20% in JA UND ICE) can be aduted to different domains.

.. .-.. .-

Knowledge Acquisition via Machine Learning 35

2.2.1.1. One Example

Here, an example taken from JAUNDICE is used to demonstrate the search process in

the above described procedure. For simplicity, we assume only four cases in the case

library and only two features are used to describe the cases.

Casel: Hepatitis, ((GPT 1200) (Alk-P 8))
Case2: Hepatitis, ((GPT 450) (Alk-P 6))
Case3:.Calculous-jaundice, ((GPT 200) (Alk-P 20))
Case4: Calculous-jaundice, ((GPT 60) (Alk-P 8))

The value hierarchy tree rests with the domain knowledge. In JAUNDICE. the

specialization of a numerical feature is done by specialization rule #3:

((A >a)) S> or ((A [a b]))
((A 1b)}

where, "b" is the next higher marking level of "a".

Now, the search tree of learning rules for "Hepatitis" is diagramed in figure 2.2. Assume

the values of "GPIT" are marked off by the following two levels: 50 and 300, and the most

general value is assumed to be " 50": the values of "Alk-P" are marked off by the

following two levels: 4 and 10. and the most general value is assumed to be ">4 19 . In

the figure 2.2. the output raw rule is as follows:

RI: ((GPT >300) (Alk-P [4 10])) => Hepatitis

This raw rule then goes through step 2 and step 3 described in the above procedure.

19In the real expenment. the rnost general value for any numerical feature is >0.

- I9

Knowledge Acquisition ia Machine Learning 36

NIL

((GPT >_50)) ((Alk-P >4)

0 0
* ((GPT [50 300))} ((GPT >300) ((GPT >50) } ((Alk-P [4 10])) ((Alk-P >10))

(Alk-P >4)

-lj
-(GPT >300)
(Alk-P 14)

0
(GPT >300) } ((GPT k300)

:(AlkP [4-0]) f(Aek-P >10)

0: Justified node
"2 O: Unjustified node

GPT= Glutamate Pyruvate Transaminase

Alk-P= Alkaline Phosphatase

1o.

Figure2.2 The search tree of applying the "search from
the most general" mode to one example.

,=A2,

-S*

.5

55- . . . -5* - * .*.. S.w _r .' • .. ' .' ," w. ,.' - . , . , .r. , . ,' . -. . """ ."""" " "" ". . . " """" - '

Knowledge Acquisition via Machine Learning 37

2.2.2. Areas of Application

Inasmuch as this learning method is initially focused on systems with EMYCIN-like

frameworks, its applicability is expected in domains where EMYCIN can apply. e.g..

medical examples, such as MYCIN. PUFF. HEADMED. CLOT. and nonmedical

examples, such as SACON [Van Melle 80]. However, from the methodological viewpoint,

this developed method can be applied in a domain where there are multiple disjunctive

concepts20. This method is particularly useful when the following features exist:

* Uncertainty is involved, or.

* False positive predictions are to be minimized, or,

& Negative training instances are of limited availability.

The medical domain, bearing all the features above, is expected to be uniquely well

applied by this described method.

Determinism (or exactness) of a domain will not preclude the use of this described

method, since such a domain is merely an extreme case of an imprecise domain, where

"degree of certainty" is quantized into two levels: "yes" and "no".

With respect to the accuracy of performance, false negative predictions (cases which are

not predicted to be any pre-defined category) are more advantageous than false positive

predictions (incorrect predictions) since the system will continue to request desired (or

missing) information which helps to attain a prediction. For example, assume there is only

one rule in the KB as follows: "AI & A2 => Class C"; then an instance in class C will be

A dijunctive con.ept dcnt)(e- a concept incorporates multiple rules.?-1

Knowledge Acquisition via Machine Learning 38

falsely negatively concluded if it is known to have only the attribute Al: and the system

may continue to gather information about the attribute A2. In medicine, a physician

might argue that, sometimes, a false negative diagnosis will be hazardous owing to delayed

therapy: however, even without a (specific) diagnosis. a therapy can still be instituted

immediately under the worst assumption (default therapeutic decision) while more

information is being gathered for arriving at a diagnosis. On the other hand, as Al people

working on expert systems have been aware the system's performance is often more

. stringently evaluated by the public than an expert's performance: that is, there is a double-

"* standard. Thus a false positive prediction (an incorrect prediction) will jeopardize the

image of the system more than a false negative prediction (a case which is not predicted to

be any pre-defined category) with a list recommending missing information.

Consequently, minimizing primarily false positive predictions is justified if false positive

predictions and false negative predictions can not be minimized simultaneously (i.e., if

"K- there is a tradeoff between false positives and false negatives).

The next issue is. why and when are negative instances of limited availability?

According to [Carbonell 83], training instances are obtained from three sources: the

learning system (if the system can generate and verify instances), the teacher (so called

"supervised learning"), and the environment (by observation). In medicine, training

-" instances that can be generated hypothetically by human experts are limited to more

typical or simpler cases: more complex cases usually can only be obtained by clinical

observation. Also, in a relatively unexplored domain, the better (or more reliable) way to

obtain instances is by observation.

"°'.

,. --.

Knowledge Acquisition via Machine Learning 39

Then, what areas are not suitably applied with this method? For single concept learning

(only a single or a few rules for a given concept). though this described method can still be

applied in a somewhat awkward way (because of inefficiency), we would rather adopt

other learning algorithms, such as the version space approach [Mitchell 78]. The version

space approach, assuming there is only one single description (one single rule) for a given

concept and performing a bidirectional search by maintaining two boundary sets ("G" set

and "S" set), will render the desired concept description more rapidly converged upon

than our method, as described, which performs an unidirectional search. On the contrary,

if there are multiple different descriptions (rules) for a given concept, the version space

approach has to be modified (e.g., Aq algorithm [Michalski 75]): the learning system has to

determine which group of positive instances belong to the same description (or are

included by the same rule) before attempting to generalize. More discussion of model-

driven vs. data-driven type learning follows in the next subsection.

2.2.3. Comparison and Discussion

2.2.3.1. Comparison with Related Works

For comparison, we pick up, among the machine learning work in AL some important

prototypes which also deal with learning multiple concepts or multiple rules: they include

the following works: Meta-DENDRAL [Buchanan 78a], AQ1l [Michalski 78], and ID3

[Quinlan 83].

Meta-DENDRAL is similar to the above developed method in the following aspects:

1. They both are model-driven learning systems, performing a heuristic search

from the most general hypothesis.

. ., . . .-
id " " - ." " "" "- ' " ' "" " " "" " "--- ". '*." " """.. .'' -,r ' ' "

' " "

J' " ' '"". l

Knowledge Acquisition via Machine Learning 40

2. They both are intended to discover rules that are sufficiently general and
specific.

3. They both consider positive training instances first, and then negative training
instances.

However, the output of the two programs will differ because of different heuristics used in

- ,. the search. The RULEGEN program in Meta-DENDRAL assumes that the

"improvement criterion", which compares one hypothesis with its successors with respect

to plausibility, increases monotonically: therefore a cleavage rule will be formed from the

hypothesis space if the improvement criterion reaches a local maximum [Buchanan 78a].

In contrast, the above developed method doesn't assume so. and a rule will be formed only

if it is maximally specific without breaking the constraint defined by minimal generality:

in other words, the method seeks boundary conditions of a region bounded by the pre-

defined constraints instead of seeking a local optimum. The rationale behind this is

twofold:

1. Unless the heuristic function used increases monotonically. the local maximum
(or minimum) is not necessarily the most desirable result.

2. As described earlier, it is desirable to minimize false positive predictions.
-.. , Finding the most specific rules in the version space is the most important

solution if negative training instances are not easily available.

AQ11 uses A algorithm [Michalski 75] and differs from the above developed method

in the following aspects. AQ1l uses the version space approach, a data-driven learning. in

terms of the version space defined by [Mitchell 78]. AQll discovers rules in the G set (the

most general rules in the version space) while the above developed method discovers rules

in or near the S set (the most specific rules in the version space). If the version space

A. °_!ZZ

Knowledge Acquisition via Machine Learning 41

converges such that G = S. both methods will achieve the same result. There are two

possible weak points for AQi algorithm in EMYCIN-like frameworks:

1. If there are no adequate negative training instances to update the G set, the
rules in it will be overly general and cause more false positive predictions.

However, if we can ascertain that we have adequate negative training instances
to guide the generalization, finding the most general rules is more

advantageous in the aspect of reducing the cost of using rules because these
rules tend to have a smaller number of features.

2. With Aq algorithm, the set of rules found is incomplete. This is due to that Aq

algorithm repeatedly applies the candidate elimination algorithm with a
portion of positive training instances removed during each iteration, and the
procedure is terminated when all positive training instances are covered by a

set of rules, rather than when all desired rules are found (refer to [Michalski

75] and [Michalski 78]).

The difference between the above developed method and the ID3 algorithm is derived

from different representation schemes. The ID3 algorithm uses decision trees instead of

production rules to represent knowledge. The weakness of ID3 algorithm in EMYCIN-

like frameworks includes the following aspects:

1. A decision tree representation is more restrictive than a production rule

representation. For example. if we transform the decision tree. which is

constructed by the algorithm, into a set of rules, then each rule will rigidly
share at least one common feature that occupies the first decision node. The

distinction would be less, however, if the algorithm were intended to discover
a set of decision trees.

2. Search is incomplete because, to construct the desired decision tree, features
are selected on the basis of their discriminating ability with respect to some

criterion. However, note that conjunction of two trivial features may be
significant.

3. 1D3 will fail if uncertainty is involved: for instance, some positive instances

and negative instances share an identical set of feature-values.

", ... ' ' . " ., -. . . . "" - . .

Knowledge Acquisition via Machine Learning 42

2.2.3.2. Model- Driven vs. Data-Driven Learning

By "model-driven", we mean the hypotheses are generated by a model (and then tested

by data): e.g., Meta-DENDRAL [Buchanan 78a]. By "data-driven", we mean the

hypotheses are generated on the basis of data (training instances); e.g., the version space

-: approach [Mitchell 781. In the following discussion, we compare model-driven and data-

driven learning systems along several different dimensions to justify why model-driven

learning is selected to be the approach in EMYCIN-like rule based systems.

*Completeness: The heuristics used in pruning the search space in the above
developed method still preserve the completeness of the search for the
desirable rules (see Section 2.2.1). In contrast, AQll, the most important
example of a data-driven learning system designed to discover multiple
disjunctive concepts, performs an incomplete search, as described in last
subsection Intuitively, since our goal is to discover all desirable rules, a model-
driven search in the rule space (a space equivalent to the power set of the set of
all descriptors used to describe rules) will tend to be more complete than a
data-driven search in a subspace of the rule space by interpreting the instance
space.

* Noise immunity: Model-driven learning systems are more immune to noise
than data-driven learning systems [Dietterich 83]. Because model-driven
techniques are intended to find rules that are good in a global sense (i.e., there
is a global criterion to evaluate rules), the effect of noise associated with the
individual data (e.g.. false positive or negative training instances) can be
relieved under the assumption that the imperfect training instances are the
minority.21 In contrast, data-driven techniques handle the instances on the
individual basis, and thus is harder to escape the noise associated with the data.
One false positive instance will force a rule to be overly generalized while one
false negative instance will force a rule to be overly specialized (see Chapter 4
for noise considerations).

- EMYCIN-rules: In EMYCIN-based systems, a case is concluded by

2 1ThiN assumpuon often holds: if not. then actually no method can learn good rules.

4"

Knowledge Acquisition via Machine Learning 43

combining several different rules that are described by different sets of
features and reason from different angles. Likewise. a case is often analyzed.
based on several simple rules rather than a single long rule. For example, in
JAUNDICE. the number of conjuncts in the LHS of a rule is restricted below

seven. This fact makes data-driven techniques difficult to learn in EMYCIN-
based systems because the learning system has to determine how to decompose
one generalization (which may have many features) drawn from instances into

a set of proper rules.

* Efficiency. In a domain with multiple disjunctive concepts. if a model-driven
method is used, the search space will be roughly the power set of the set of all
descriptors involved: if a data-driven method is used. the search space can be
roughly estimated from the power set of the set of all positive instances since
the system has to determine which group of instances should be hypothesized
together. If the number of descriptors is greater than the number of positive
instances, it may be more efficient to use a data-driven approach (if we ignore
the disadvantages described above). Nonetheless, in real practice, the number
of positive instances is often greater than the number of the descriptors (unless
we carefully select instances as we did during constructing the initial case
library in JAUNDICE), it will be more efficient to use a model-driven
method. Furthermore, the CONDENSER program controls the number of
features during learning in order to enhance the efficiency of learning:
therefore, we don't think efficiency will be the bottleneck for applying the
method we develop.

*'Incremental learning: In version space approach, it is claimed that learning is
incremental by constantly updating the boundary sets without re-examining
the old instances as new instances emerge. However, this claim assumes that
the learning environment is perfect initially, e.g., there are adequate rules of
generalization or specialization. etc.: otherwise, the maintained boundary sets
may not necessarily reflect the genuine information stored in the instances.
Our strategy for incremental learning is by applying "focusing mode" of
learning (described in Section 2.2.4) to update the KB each time when a faulty
conclusion occurs.

In conclusion, we determine to use a model-driven strategy because of the following

advantages:

iqop

Knowledge Acquisition via Nlachine Learning 44

1. It provides a complete search for the desired rules.

2. It has better noise immunity.

3. It can accommodate EMYCIN-like rule based systems.

4. The efficiency can be reasonably controlled.

5. The learning can still be incremental.

2.2.4. Focusing Mode of Learning

Focusing mode of learning is a learning strategy which focuses on a specified instance.

The task is formulated as follows:

Given: 1. A specified instance.
2. A set of training instances.

Find: Concept descriptions which are consistent with the
specified instance and most of the other instances.

If the specified instance is a positive instance, then the learned concept descriptions should

cover it as a positive instance: if the specified instance is a negative instance, then the

learned concept descriptions should reject it as a negative instance.

The main purpose of this mode is twofold:

1. In a domain like medicine, inconsistency often occurs. Though we don't
expect a rule will be consistent with all instances, however. sometimes. we dohope the rule will be consistent with an interesting, valuable instance.

2. In an expert system. if the system comes up with a wrong conclusion about a
new case. then the system might be able to learn by focusing on that new case.

In this section. howe'er. we describe how to learn multiple rules, based on a misdiagnosed

case. The task of focusing mode of learning is defined as follows:

".

Knowledge Acquisition via Machine Learning 45

Given: i. A misdiagnosed case* by the performance system.
2. A case library.

Find: Rules which can make the misdiagnosed case
diagnosed correctly.

" "Misdiagnosis" may include "underdiagnosis",
i.e., no diagnosis is made.

There are two solutions for this problem: finding confirming rules to support the expert's

diagnosis, and finding disconfirming rules to reject the system's misdiagnosis: described

".-. here is the former solution: the latter solution is described in Section 2.4. Notice, however.

the rules found should be relevant, i.e., they should satisfy (be matched with) the specified

case.

2.2.4.1. Procedures

For reasons given in Section 2.2.3, we also select model-driven strategy for focusing

mode of learning. The efficiency of learning can be much improved by CONDENSER,

which picks up the relevant features from the feature base on the basis of the specified

* instance.

Focusing mode of learning uses the method described in Section 2.2.1 except that there

is one additional constraint, which is that the rules should satisfy (be matched with) the

a' specified instance.

First, label the misdiagnosed case as "positive instance", and the case library (or

instance space) is classified into positive and negative instances, based on the expert's

diagnosis for the misdiagnosed case as the following example. If a case. CaseO1. is
V misdiagnosed as disease B whereas the expert diagnoses it as disease A, then all cases

Knowledge Acquisition via Machine Learning 46

diagnosed as disease A in the given case library are labelled as "positive instance", so is the

.p. misdiagnosed case: and all other cases are labelled as "negative instance". (Note that each

case in the case library has already been assigned a correct diagnosis.) Then. the learning

is based on this dichotomy, focusing on the misdiagnosed case. The learning task in the

above example is to learn LHS of the confirming rules with RHS. which is "disease A".

The procedure includes the same four main steps procedure as th,. search from the most

general hypothesis with minor changes noted in italics:

*step 1. Starting from the most general version, "NIL". search for the
maximally specific hypotheses that does not break three following constraints:
the hypotheses should satisfy (be matched with) the specified instance, the
number of conjuncts should be less than seven, and the hypotheses should
cover at least 20% of positive instances. The hypotheses, thus found, are
formed as raw rules. Since the constraints merely involve positive instances.
only positive instances are considered in this step.

o step 2. Prune those rules which are assigned a degree of certainty smaller than
".4", or which cover more than 10% of negative instances. Negative instances
are considered in this step for calculating degree of certainty (refer to

- • Appendix A).

-step 3. Optimize each raw rule by iteratively applying generalization operator
until a local optimum is reached (perform a hill-climbing search, so to speak).
The local optimum is the state with minimal weighted prediction error (as
defined in Section 4.5.3.1) under the following constraints: the local optimum
should not cover more than 10% of negative instances as mentioned in step 2.
and the difference of degree of certainty between the local optimum and the
initial state (a raw rule) should be within ". 15". the latter constraint stems from
the argument that, in EMYCIN-based systems, it is hard to compare two rules
with different ranges of degree of certainty.

o step 4. If there are rules learned or the number of iterations has reached a
certain threshold. go to exit. Otherwise, go to step I and reset the constraints
in step I as follows:

.

b

°

% ":::::: :::::::::::::::::::: : :.::: , -::: ::- . :.

Knowledge Acquisition via Machine Learning 47

1. The hypotheses should satisfy (be matched with) the specified instance

2. Reduce the rate of coverage for positive instances: for example, the first
iteration uses 20%, the second iteration uses 10%, and so on.

3. The number ofconjuncts is still kept under seven.

The detailed search procedure is described in Section 2.2.1. and is neglected here.

There are two outcomes of this learning: success and failure. If there are rules learned.

, then one might ask why the learning system didn't find them when the KB is initially

constructed by using the batch-processing learning (described in Section 2.2.1). In the first

place, the specified case may be an exceptional one and the rules that are consistent with it

can cover only a small number of other positive instances: thus those rules dealing with

this exception may not be found during the initial KB construction. Secondly, as the case

library grows, the statistics may shift; hence a relatively bad rule may become a good one.

However, as the case library grows, the statistics will converge (i.e.. the sample statistics

will approach the true population statistics), this second possibility will be less. (We have

briefly touched on the issue of convergence of a KB in Section 2.1.) On the contrary, if

there are no rules learned, what does this mean? Since the objective of this learning is to

find rules that are consistent with the specified instance and most of other instances, no

rules being found implies the inconsistency between it and other instances or the

incompleteness of its data. And this may indicate the wrong diagnosis given by the expert.

N

i-p

' d

,-9 Knowledge Acquisition via Machine Learning 48

2.3. Learning Intermediate Knowledge

In expert systems, hierarchical reasoning can provide better accuracy and

understandability. Here, we develop a method of learning hierarchical knowledge from a

case library, in which each training instance is described by low level features and high

level concepts but not by intermediate concepts. This reasoning hierarchy is shown in

figure 2.3.

HN: high level node
n (high level concepts)

IN: intermediate level node
(intermediate concepts or

- high level descriptors)

LN: low level node
(low level descriptors)

Figure2.3 Multi-level reasoning network. Note that there
may be several intermediate levels.

Intermediate concepts can be high level descriptors or intermediate classifications or

mechanisms: in medicine, they are clinical syndromes or nosological categories or

*pathophysiological mechanisms.

Learning intermediate knowledge (intermediate concepts and links) is motivated by the

following facts:

Intermediate knowledge increases the accuracy of reasoning particularly if the
data are incomplete. For instance, sometimes we are unable to tell whether an
animal is a dog, but we may still be able to tell it is a mammal from the limited
intbrmation.

.4.

Knowledge Acquisition via Machine Learning 49

Intermediate knowledge provides better explanation capability of the system

and thereby increases the understandability for the users [Clancey 831. For

example, the analysis of the underlying pathophysiological mechanisms is

important for explaining a disease diagnosis.

In learning from examples, each training instance is described by features or descriptors

(i.e.. LN) and assigned a class name or diagnosis (i.e.. HN). Thus, we may define the task

of learning intermediate knowledge as:

Given: A set of training instances
(or a set of LN -> HN).

Find: Rules of the form LN => IN => HN.

consistent with the training instances.

In the above formulation, "->" represents a specific link in a training instance: "=>"

represents general inferential knowledge (a rule). In other words, in learning from

examples, we intend to learn general knowledge from a set of very specific descriptions.

Practically, this is an important issue and worthwhile to explore, because, for instance,

medical records are often described only by clinical manifestations and disease diagnoses

4 ,(there is no or limited discussion of the involved intermediate mechanisms).

So far as learning is concerned. we distinguish two situations:

1. Intermediate nodes exist in the initial vocabulary.

2. Intermediate nodes are not in the initial vocabulary.

In the first situation, the learning task involkes exploiting the old partial (incomplete)

intermediate knowledge to learn new intermediate knowledge: the partial knowledge may

exist between ILN and IN, or between IN and HN, or both. But the task in the second

- '- " . " , " -.- .- - - - - -.- -.-- -" " " -' ' ,. .~ -

Knowledge Acquisition via Machine Learning 50

situation is more abstract and constructive, because it involves creating and defining new

"* intermediate nodes which are not provided in the original vocabulary. Automatically

adding new symbols is one way to relieve the bias induced by the fixed language in

inductive concept learning [Utgoff 821. Since, in both situations, the existing knowledge

may be only partial or missing, search is indispensable. In fact, there is a tradeoff between
".~.N

,

knowledge and search. A search procedure involves primarily two steps which are

hypothesis formation and verification. In learning from examples, the hypotheses may be

verified in a case library. The main difficulty of this learning problem is that training

instances in a case library are described only by LN and HN. but we want to learn IN.

11

In medicine, LN names a medical manifestation, such as a symptom, a sign. and HN

*names a disease category. The link from manifestations to a disease is called an inference

(or diagnostic) rule, the opposite is called a descriptive rule. We focus on learning

diagnostic rules and their intermediate concepts (i.e., LN = > IN => HN).

This section describes the learning techniques when the intermediate concepts are in the

initial language and then when the intermediate concepts are not in the language.

2.3.1. Intermediate Concepts in the Initial Vocabulary

In this subsection, we assume there is some knowledge about the intermediate nodes

(IN) including partial knowledge about their relationship with other level nodes (LN or

HN). However, if each training instance is characterized with low, intermediate, and high

level descriptors, we can apply machine learning algorithms level by level and discover

new knowledge in different levels. (Some work, such as [Blum 82] can discover causal

links by statistical analysis of temporal associations.) Nonetheless. in this work. we assume

"'A

PM ;- W - - W-0- -0- - _ jT z, = -- - - ; ". . , .i., .. _ TVM . , L ,L w ,

Knowledge Acquisition via Machine Learning 51

each training instance is characterized only by LN and HN, and not by any intermediate

description, thus the task becomes more abstract and difficult and the existing partial

knowledge has to be exploited.

Basically, two methods are used to tackle the problem: bottom-up and top-down. The

bottom-up method relies on the existing knowledge of "LN <=> IN"; the top-down

method relies on the existing knowledge of "IN <=> HN". Therefore, if only the

knowledge of"LN <=> IN" is available, only bottom-up method can be used; if only the

knowledge of "IN <=> HN" is available, only top-down method can be used. If both

types of knowledge are available (but incomplete), 22 both methods can be applied and the

results will be the union of results from each method. A third method called

"bidirectional extension" employs these two basic methods bidirectionally and

sequentially in order to construct more complex hierarchical concepts.

2.3.1.1. Bottom-Up Learning

If the knowledge about "LN = > IN" is available, this strategy can be adopted. The task

of learning under this situation is described as:

Given: 1. A set of training instances

(or a set of LN -> HN).

2. LN <=> IN
(i.e., rules linking LN and IN)

Find: Rules of the form LN > IN => HN.

consistent with the training instances.

Since "LN => IN" is known, the main task is to find "IN => HN". Each instance is

2f both types of knowledge are complete. there is nothing to he learned.

V' -

Knowledge Acquisition sia Machine Learning 52

represented by a direct link. LN -> HN. The training instances are classified on the basis

of HN. Remember that HN is a class name (or a disease in medicine). The basic idea

behind this strategy is to generalize from instances of the same HN: it is analogous to

generalizing from positive instances. In the JAUNDICE experiments, a set of rules in the

form of "LN = > HN" are first learned by the method described in Section 2.2 from the

given set of training instances, then we treat this set of rules as another set of training

instances (more general, of course) and apply the following procedure to learn

intermediate rules.

Suppose there are n classes of HN in the instance space: Hi, H2 Hi Hn. The

algorithm proceeds as follows:

For i=1 to n. Do:

* steg . Label all instances in the class of Hi as positive instances and label other
instances as negative instances.

* p Generalize from positive instances by using the concept hierarchical
tree (one example of the concept hierarchy is the animal tree seen in Section
2.3.1.2). The generalization should:

o be maximally specific to avoid over-generalization.

o test against negative instances.

Intermediate nodes are involved and intermediate links (IN => HN) are
discovered during the process of generalization via hierarchy (see
generalization rule #2 in Section 2.1.1).

The step 2 proceeds as follows:

e substep 1. Initialize the hypothesis space H with the set of all positive
instances: i.e.. each positive instance represents one hypothesis in H.

Knowledge Acquisition via Machine Learning 53

* substep 2. For each hypothesis hi in H (starting from the head of H). do the
following:

o Form set H' by finding all hypotheses in H with the same range of
degree of certainty (± .15) as hi (h* excludes hi).

o For each element hj in H*, find the common maximally specific
generalization (called hk) of hi and hj. If hk is plausible. i.e., if it does
not break the following constraints: its associated degree of certainty is at

"* least ".4" and in the same range as hi's and it should not cover more than
10% of all negative instances,23 then retain it (hk) , put it in the end of H.
and prune hi from H. If no element in H* can form a plausible
generalization (without breaking the constraints above) with hi or H* is
an empty set, then output hi as a new rule and prune it from H.

Also, remove redundant hypotheses from H.

e substep 3. Repeat substep 2 until H is empty.

This data-driven algorithm differs from the version space approach [Mitchell 78] in that

this algorithm considers not only that there is disjunction (i.e.. there are multiple rules for

each concept) but also that an instance may be covered by several rules instead of a single

* rule.

'p

In the following simplified example, we assume no uncertainty is involved and that two

hypotheses are mutually exclusive. (Both assumptions can actually be remcved.)

Example I. Suppose 3 instances in the instance space:
XI: Li & HI
X2: L2 & Hi
X3: L3 & H2

2 3We do not consider the minimal generality here because, as ,tated earlier, this method is ,pphed to the set
of rules learned by the method descobed in Section 2.2; therefore thev are alread, sulfi iend, general.

J.4.

il"2

Knowledge Acquisition via Machine Learning 54
"-q

A simple hierarchy is given by five rules,
shown schematically as:

M N

LI L2 L3

The following are two possible generalizations

from Xl and X2:

Gi: M > Hi

G2: N > Hi

G2 is not justified because if it is true, then:

L3 => N > Hi, contradicting X3.

Thus, the found link is:

Pi: M => HI

In the JAUNDICE domain, for example, the two instances. "esophageal varices =>
..

hepatic cirrhosis", and "ascites = > hepatic cirrhosis" may be generalized into "portal

hypertension = > hepatic cirrhosis" by using the existing knowledge, "esophageal varices

=> portal hypertension" and "ascites = > portal hypertension".

This technique is extended from climbing a generalization tree, used in other works.

such as [Winston 70] and [Michalski 83a]. However, we emphasize a concept hierarchy

instead of a value hierarchy. Moreover. uncertainty may be involved in the hierarchy.

"a%

4.

'.

L .. 1

Knowledge Acquisition via Machine Learning 55

2.3.1.2. Top-Down Learning

If knowledge exists between IN and HN. this technique can be applied. The task is

formulated as:

Given: 1. A set of training instances.
(or a set of LN -> HN)

2. HN <=> IN

Find: Rules of the form LN => IN => HN,
consistent with the training instances.

Since the knowledge about "IN <=> HN" is known, the main task is to find "LN => IN".

In order to learn "LN => IN". we may first, based on the available knowledge of "HN

=> IN", re-label training instances such that they have new class names which are IN

instead of HN. After this transformation, the algorithm used in learning "LN = > HN"

can be applied, and the results will be "LN => IN" which is consistent with the training

instances. One example is seen as follows.

HN: Dog Cat horse ...

-- / \/ \
" / Mammal Fish Amphibian Reptile Bird

IN:, Invertebrate Vertebrate

Animal

LN: Animal features. such as size. weight, color.
hairy, feathery, breast-feeding

Ihe set of instances:

. .
..................................

---- . -. -: .. -. i."i':' -- '. ": . . -. : :: .-.... '--. :: :--- -% 'i '.T. .-.- '.". ..- ".. .".' " -L . L:. :L . -.-. T .: . -. -T" : ':.' °' "''

Knowledge Acquisition via Machine Learning 56

Xl: ((white small) dog)
X2: ((black big) dog)

X3: ((white big) cat)
X4: ((gray small) cat)

%-" Now. if we want to learr, an intermediate concept "mammal"
then based on the taxonomy tree, we re-label instances as
follows:

*, The transformed space:
XI: ((white small) mammal)

X2: ((black big) mammal)
X3: ((white big) mammal)
X4: ((gray small) mammal)

After this transformation, we may learn classification rules for "mammals" by the same

learning method with which we learn rules for dogs or cats.

In the JAUNDICE domain, for example, three diseases "acute hepatitis", "chronic

hepatitis", and "hepatic cirrhosis", can be transformed into a common inte.,nediate

pathological category, "hepatocellular injury", and the inference rules for "hepatocellular

injury" are learned from the same case library by the same learning method (learning

confirming rules is described in Section 2.2: learning disconfirming rules is described in

Section 2.4) we use to learn the inference rules for each disease.

2.3.1.3. Bidirectional Extension Strategy

This strategy combines the bottom-up and top-down methods to learn more complex

hierarchical concepts. Consider a four-level hierarchy as follows:

" '" ~LN => INev1 >) INlvl = H

Suppose we have the knowledge of"LN (> INevelj and "(Nlei2 (=> HN" (see Figure

2.4) and each training instance is dcscribed by "LN -> H N".

A& ,

Knowledge Acquisition via Machine Learning 57

HN 0 0 0

IN2 0 0 0 0 0 0 0
-,e - / \ - I --

IN1 0 0 > 0 <

L N 0 0 0 0 0

Figure2.4 Diagram of bidirectional extension strategy-
solid links represent existing knowledge, dotted links
represent knowledge to be explored.

We can first learn "INeveii => HN" by bottom-up method which exploits the existing

knowledge of"LN < = > INlevell"' Then we treat all links of lNevel1 = > HN" as another

set of training instances, and we can learn the knowledge of "INlevell => INlevel2" by

top-down method which exploits the existing knowledge of "INleve 2 < = > HN". Thus, we

obtain all inferential knowledge "LN => INlevell => INleve12 => HN" from a set of

training instances by extending the knowledge of only "LN <=> INlevell" and "INleve2

< = > HN". If we view this learning task as a search, it actually proceeds bidirectionally.

Whether the procedure starts bottom-up or top-down does not matter if we assume the

training instances are correct and complete. In a domain without uncertainty, consider

when inconsistency occurs in the following three instances (HI and H2 are mutually

exclusive): (LI & HI). (Li & H2). and (L2 & HI). and assume we hae existing

knowledge as follows: LI => II, L2=> II. HI => I1i, and H2 => 112: then starting with

the top-down method, we can first find the following consistent (i.e., no inconsistency)

intermediate knowledge: 1.2 => Ill. whereas starting with the bottom-up method, we find

-, _7----d 7..

Knowledge Acquisition via Machine Learning 58

no consistent intermediate knowledge. In the current implementation. we ignore such

inconsistency.

In the example of four-level hierarchy, we can still obtain the knowledge of all levels by

using the bottom-up method alone if only the knowledge of "LN <=> INlevel" and

"INievell <=> Nlevel2" is available, or by using the top-down method alone if only the

knowledge of"lNieveI2 <=> HN" and "INieveli <=> "N~eve2 is available.

Hence, it is possible to obtain even more complex hierarchical concepts by applying

these two methods sequentially, depending on the available knowledge.

2.3.2. Intermediate Concepts not in the Initial Vocabulary

Sometimes intermediate nodes are not known at all, so it is necessary to create and

define new intermediate nodes. The key issue is when and how to create new intermediate

nodes. Two techniques are introduced: the technique of svmbolizing taxonomy point and

svmbolizing switchover point.

2.3.2.1. Technique of Symbolizing Taxonomy Point

We assume there are n classes of objects or concepts in the instance space. The

algorithm proceeds as follows:

e -gpLj Construct a taxonomy tree 24 on the basis of a similarity or dissimilarity
measurement. One way of measuring dissimilarity is based on the of "sum of

the differences of weighted individual features". First, based on the domain
* .knowledge. select some important features and assign them weighting factors.

* - 24

24Taxonoms is "class]fication- or 'clustenring": one example ofa t.xonomv tree is the animal tree seen in
. -- Section 23 1.2. Two different classes of objects will he put under the same category if they are similar with

respect to a certain criterion.

P-......

. -.

Knowledge Acquisition via Machine Learning 59

Second, calculate the difference between the average value of an individual
feature for the given two classes. If the feature values are not numerical.
transform them into numerical values on the basis of domain knowledge. In
medicine, this is a feasible approach because the clinical feature values can be
quantized according to the clinical severity. (However. in some domains.
symbolic measurements may be necessary.) For example. in JAUNDICE, the
elevation of the serum enzyme is quantized into 0. 1, 2. 3 representing normal,
mildly-elevated, moderately-elevated, highly-elevated. Third, calculate the
sum of the differences of weighted individual features. Using different
dissimilarity functions (i.e.. using different features or different weighting
factors) may yield different results. So, it is possible to build more than one
taxonomy tree.

Example2. Computation of dissimilarity between two diseases
in a library of four cases. The weights of the two
features used are assumed equal here for simplicity.

Instancel: ((GOT 2) (Alk-P 0) Disease A)
Instance2: ((GOT 3) (Alk-P 1) Disease Al
Instance3: ((GOT 1) (Alk-P 2) Disease B)
Instance4: ((GOT 2) (Alk-P 2) Disease 8)

(where 0: normal
1: mildly abnormal
2: moderately abnormal
3: severely abnormal)

Compute as follows:

Average value for GOT:
Disease A: 2+3/2=2.5
Disease B: 1+2/2=1.5

Average value for Alk-P:
Disease A: 0+1/2=.5
Disease B: 2+2/2=2

Dissimilarity(A & B)=(2.5-1.5) + (2-.5)
=2.5

",.

Then. we set up a criterion to group different classes of objects in a common
category if their mutual dissimilarity is smaller than a certain threshold. The
criterion should be set in a way such that one class will not be grouped in two

4let

Knowledge Acquisition ia Machine Learning 60

different categories. In a taxonomy tree. the tip nodes are n classes of objects
(or concepts) which are HN in our terminology., and each non-tip node
(excluding the root node) represents an IN.

steDp2. Assign a symbol to every intermediate node in taxonomy tree, and thus
create new intermediate nodes (IN) (see figure 2.5).

HN: Classl Class2 Class3 Class4 Class5 Class6

GOOOA GOOOB
IN:

LN: Object attributes, such as size, shape, texture

Figure2.5 Suppose a simple taxonomy tree is built
for objects, the intermediate taxonomy points are

. named as GOOOA and GOOOB.

9 _ The taxonomy tree gives us the knowledge about "HN => IN". For
example, in figure 2.5. "if X is a member of class 1 then X is in category
GOOOA". Therefore, we can apply the top-down method (described
previously) and learn the knowledge of the form "LN = > IN".

'--- 4 Learn knowledge of"IN => HN" which is the links from IN (or mixed
IN and LN) to HN by the following procedures:

o First. Learn discrimination rules for different classes (HN) under the
same intermediate node (i.e.. under a higher taxonomical category). For
example. in figure 2.5, we may learn classification rules for class 1 and

. class 2 in the category GOOOA by removing all objects (instances) that are
not in the category GOOOA. Suppose we obtain a classification rule for
class 1 in the category GOOOA as:

,% * V

-'it%

Knowledge Acquisition via Machine Learning 61

"If an object has attribute Al
then it belongs to class 1."

o Second, we actually can write a more specific rule as:

"If an object is in category GOOOA
and has the attribute Al

then it is class I."

The algorithm may be applied level by level, and the results will become hierarchical: i.e..

LN => [Nlevell => 1Nlevel2 => => HN.

In the JAUNDICE domain, by applying this technique to 72 cases, we found five

concepts (see table 2.2). Four symbols, after medical interpretation, were found to

correspond to "hepatocellular injury", "cholestasis", "intrahepatic jaundice", and

"extrahepatic jaundice". These four symbols had been pai of JAUNDICE at one point

but had actually been removed from the old vocabulary for the purpose of this tesL A

fifth term. "hemo-gilb", was found because two diseases, "hemolysis" and "Congenital

conjugation defect (e.g., Gilbert's disease)" are similar and under the same taxonomy

point. Though clinically meaningful (negative bilirubinuria). the symbol "heino-gilb"

bears little pathophysiological meaning.

4

j

Knowledge Acquisition via Machine Learning 62

TableZ.2 New symbols created by the technique of

symbolizing taxonomy point and their interpretations.

Symbols Medical Interoretation

Neosymi Hepatocellular injury
Neosym2 Cholestasis
Neosym3 Intrahepatic jaundice
Neosym4 Extrahepatic jaundice
Neosym5 ? Hemo-gilb

0: The interpretation depends on the diseases
included by the symbol.

Note that this technique is intended to discover new intermediate concepts, but the

concepts may have already been in the vocabulary. Hence. after new symbols are created,

they should be checked whether they are equivalent to the old symbols semantically. For

instance, if both a new symbol "NSOOOA" and a old symbol "OS000A" include disease A

and disease B and cover all the same cases, they are equivalent. Of course, this depends on

the size of the case library, so we may want to keep redundant concepts around for a while.

2.3.2.2. Technique of Symbolizing Switchover Point

The development of this technique is motivated by the observation that intermediate

concepts often serve as switchover points in a reasoning network. One heuristic rule

behind this technique is:

HR: If i) There are n LNs and m HNs,

ii) All n LNs have (confirming) links to all m HNs.

iii) n>1 and m>1 and mn>4.

then it is worthwhile to define a common intermediate node.

This heuristic rule is also represented in figure 2.6.

-% .%
6l ,,,

Knowledge Acquisition via Machine Learning 63

HN 0 HI 0 H2 HN O HI 0 H2

V' I //\
I Y--> IN 0 1

LN 0 Li 0 L2 0 L3 LN 0 Li 0 L2 0 L3

V.

Figure2.6 Creating new intermediate node at
switchover point.

Since if one set of LNs (call it set L) and one set of HNs (call it set H) satisfy this rule, then

any subset of set L and any subset of set H can also satisfy this rule, we determine that the

intermediate node be defined on the basis of the largest sets (subsets or supersets of set L

and set H) of LNs and HNs which satisfy this rule. The third condition of this heuristic

rule is. in fact. the threshold of the complexity of the relationship between LN and HN for

defining new symbols. We deliberately choose this threshold because of the fact that, for a

given situation which satisfies this rule. descriptions of the inference behavior are

simplified by adding a common intermediate node while all links from LNs to HNs are

maintained via the intermediate node (i.e.. no links from LN to HN are added or

removed). For example, in figure 2.6. there are 6 links (LN => HN) initially and 5 links

(LN => IN and IN => HN) after introducing an intermediate node. Consider the case

when there are 10 LNs and 10 HNs and 10xl0- 100 links initially: only 20 links are

needed after introducing a common intermediate node. But if n = 1 or m I or nm = 4

(e.g.. n=2 and m=2), the descriptions of inference behavior will not be simplified by

S..

Knowledge Acquisition via Machine Learning 64

adding a common intermediate node. However, the descriptions of inference behavior

may become complicated rather than simplified when so many intermediate nodes are

introduced and there are overlaps of the associated sets of LNs and HNs among them

(note that each newly defined intermediate node has one set of LNs and one set of HNs

associated with it). Though complication is worthwhile if more understandability and

better accuracy are gained, we might attempt to control the number of the newly defined

intermediate nodes (concepts) by adjusting the threshold of complexity for defining them

(the third condition of the described heuristic rule).

Creating a new intermediate node will face another problem if uncertainty is involved.

For the example shown in figure 2.6, the final degree of certainty of H1 and H2 should

remain approximately the same before and after introduction of intermediate concepts.

The degrees of certainty (or CF's) are assigned to new links in such a way as to preserve

these final degrees of certainty.

In learning from examples, this heuristic rule is applied to a set of rules (LN = > HN)

which are learned from training instances (LN -> HN), and can be applied recursively, as

long as there are plausible switchover points, to form a multi-level network. By applying

". this technique to the jaundice domain, totally there are 9 symbols created, which are

-- shown in table 2.3.

.d.. ."

.

S h - -- - . - : . - . . - - r.
1

U flUY rnr: 9. : r ' -, '. I rr

Knowledge Acquisition via Machine Learning 65

iTible2.3 New symbols created by the technique of
-
,. symbolizing switchover point and their interpretations.

Symbols Medical Tnterpretation"

Neosyml Benign hepatic pathology*

Neosym2 Cholestasis
' - Neosym3 Chronic liver failure

Neosym4 Complete biliary obstruction*
S.1.. Neosym5 Extrahepatic jaundice

Neosym6 Hepatobiliary pathology
Neosym7 ? Liver cachexia
Neosym8 Inflammation*
Neosymg Hepatocellular injury

0: The interpretation is made by observing the
involved features (LN) and diseases (HN).

+: These symbols are outside the initial vocabulary.

1.'

Among these 9 created symbols, 4 symbols are outside the initial (old) vocabulary and 5

' symbols are semantically equivalent to some old symbols. It is also noticed that there is

-'F some overlapping of the results from the technique of symbolizing taxonomy point and

from the technique of symbolizing switchover point. The fact that most of the created

symbols are medically meaningful is expected because an intermediate symbol is created

when there is a complex but regular relationship between LN and HN (represented by the

heuristic rule).

2.3.3. Comparison and Discussion

.4,,.. From the angle of creating new descriptors or concepts, the related work includes

EURISKO [Lenat 83], BACON [Langley 831, and [Utgoff 82]. But the difference is our

explicit attempt to discover the new intermediate concepts to construct a reasoning
",.4

hierarchy. However, from the viewpoint of establishing a conceptual hierarchy, the most

representative related work in At is [Michalski 83b1. But it differs from our work in at

Ik-.-

Knowledge Acquisition via lachine Learning 66

6least two aspects. First, our work deals with not only conceptual clustering but finding the

-. intermediate links. Because each training instance is also characterized by a high level

concept besides low level descriptions, the search for the meaningful intermediate

concepts is constrained bidirectionally (from LN and from HN) while this is not true for

(Michalski 83b1. Second. though the technique of symbolizing taxonomy points

(described previously) intends to discover conceptual clusters, the technique of

symbolizing switchover point intends to find important reasoning islands which are more

complex than what we call "clusters"; one LN or HN may link to more than one IN and

-•vice versa.

We expect the methods described here can be easily extended to other non-medical

domains. In learning intermediate knowledge, we use a general concept hierarchy: and

the heuristics we use to discover intermediate knowledge are not specific to medicine. The

major contribution of this idea is its capability of learning intermediate-level concepts

from a set of training instances that are described only by low level featres and high level

concepts, and not by any intermediate concept.

2.4. Learning Disconfirming Rules

Disconfirming rules are rules which deny some facts. They can be traced back to

MYCIN [Shortliffe 761, in which rules with negative CF are called disconfirming rules in

contrast to confirming rules with positive CF. In our scheme, we use degree of certainty

(extension from CF) to represent uncertainty. An example of a disconfirming rule is as

follows:

',"

• "-...-.......-...-.-.................-..-.........-.....-....

A . .

Knowledge Acquisition via Machine Learning 67

"" -. 7 .7
"P => A" or P => -A"

This rule says if"P" exists then "A" is denied with the degree of certainty ".7".

There are two basic approaches to form disconfirming rules:

*, 1. From high frequency evidence: If some piece of evidence (clinical
manifestations in medicine) frequently appears in a hypothesis (clinical
diagnosis in medicine), then the absence of that evidence tends to deny the
mentioned hypothesis [Miller. Pople. and Meyers 82].

N-%* 2. From mutual exclusiveness or incomatibility among facts: If some evidence

supports a hypothesis X which is mutually exclusive with another hypothesis
Y. then the mentioned evidence tends to disconfirm the hypothesis Y.

-" For the first approach, in an extreme case, if some evidence appears in a hypothesis under

all circumstances, then the absence of that evidence definitely denies the mentioned

hypothesis. These are called pathognomonic findings in medicine. This statement may be

- rephrased as:

"P(e/h) <1 P(-h/-e) ="

But. if P(e/h) is not "1". then it is not necessary that "P(e/h) = P(-h/-e)": and each

conditional probability depends on the distribution of the evidence among the population

of "h" and the population of "-h". It is dangerous to use only P(e/h) to estimate P(-h/-e)

unless we know the distribution. It is noteworthy that in MYCIN. the CF, though related

to probability, is. however, different from probability in some aspects [Buchanan and

Shortliffe 841. And. it is misleading to use probability to measure directly the degree of

belief or disbelief. It is interesting to note that if we use high frequency evidence to brnm

discontirming rules, the assigned degree of certainty of denying a hypothesis. "-h". by
9.,'

Knowledge Acquisition via Machine Learning 68

giving "-e" is parallel to "P(e/h)" rather than "P(-h/-e)". In clinical practice, it is often

believed to be true that if a clinical manifestation frequently appears in one disease, then

the absence of that manifestation tends to disconfirm that disease. As an example.

"SGPT" is always elevated in the disease: "acute hepatitis". and the absence of "SGPT

elevation" makes "acute hepatitis" unlikely. In JAUNDICE, another example of a

disconfirming rule formed by the first approach is as follows:

"If there is no history of gall b'adder disease,
then it is unlikely (-.5) that the disease is
cal culous-jaundice"

.. This rule is derived from the observation that history of gall bladder disease always exists

if the jaundice is caused by gall stone.

4.7 The issue of overdisconfirmation can be solved by assigning a lower degree of certainty

to a disconfirming rule (unless P(e/h) = 1). For instance, in JAUNDICE, we use a simple

mapping, such as this: if attribute A always (corresponding to the degree of certainty in

the range: [.8 1)) appears in disease X, then the absence of attribute A often

(corresponding to the degree of certainty around ".5") rules out disease X. By so doing,

confirming rules usually override (to some extent) disconfirming rules to make

conclusions if both succeed.

The second approach may be represented as a rule:

"If e => hl and hl => -h2.
then e =) -h2"

,n

.....

_ -.", **.

Knowledge Acquisition via Machine Learning 69

JP Sometimes, a disconfirming property can propagate along a relational chain (e.g.. causal

links), thus:

"If el => e2. e2 => -e3. and -e3 => -h.
then el => -h"

The uncertainty may also propagate: the degree of certainty of a path is the product of the

involved links.

Learning disconfirming rules can also focus on a specified case (focus mode). For

example, if a case is misdiagnosed as disease B while it should be diagnosed as disease A,

then, with the approach from high frequency evidence, disconfirming rules can be formed

to disfavor disease B by using feature-values that are absent in the specified case but

frequently present in the cases correctly diagnosed as disease B.

2.5. Constructing a Hierarchical Knowledge Base

As mentioned earlier, intermediate knowledge is important for accuracy and

understandability in an expert system. This section describes the application of the RL

program to constructing a hierarchical knowledge base.

The procedures are as follows:

* step 1. Learn the direct inference rules (LN => HN) from the given set of
training instances. (learning confirming rules is described in Section 2.2:
learning disconfirming rules is described in Section 2.4)

* step 2. Starting from partial or no intermediate knowledge, explore the
intermediate knowledge by all methods that include bottom-up, top-down,
bidirectional extension. symbolizing taxonomy point, and symbolizing

knowledge Acquisition via Machine Learning 70

switchover point, as much as possible (described in Section 2.3). Two things
that are expected are: first some methods may not work because of incomplete
knowledge. e.g., bottom-up can't be adopted when knowledge of the form
"LN <=> IN" is missing; second, the results from different methods may be
redundant. The first problem is handled simply by abandoning the methods
that can't apply. The second problem can be solved by removing redundancy.
The symbols created by the techniques. such as symbolizing taxonomy point
and symbolizing switchover point, must be interpreted first before checking
redundancy with other old symbols and new symbols already created. The
interpretation can be made automatically by observing the involved LN and
HN (see tables 2.2 and 2.3). At this stage. the knowledge base under
construction has the knowledge of three types: LN => IN, IN => HN, and
LN => HN.

step 3. Replace direct rules (LN = > HN) by intermediate rules (LN = > IN,
and IN = > HN) if they are equivalent. By "equivalent", we mean the same
conclusion (HN) with the same strength (degree of certainty, allowing an error
of ".15") can be reached, given a set of low-level features (LN). For instance,
in the jaundice domain, a direct rule "negative bilirubinuria and elevated
urobilinogen => hemolysis" can be replaced by the rule "negative
bilirubinuria and elevated urobilinogen = > overproduction of bilirubin" and
the rule "overproduction of bilirubin => hemolysis". Note that one direct
rule may be replaced by several intermediate rules.

V.l

After these procedures. the knowledge base contains hierarchical concepts, but will also

contain some simple associations of the form "LN => HN" which can't be explained by
the intermediate concepts.

"

-- 1,

Feature Condensation 71

ty.

Chapter 3

Feature Condensation

3.1. Introduction

Attempting to build an efficient learning program, as implied by Simon when he

pointed out the tediousness of human learning [Simon 831. is justified not only because we

want to save time, space, and cost, as desired in all kinds of science, but also because we

want to make computers smart enough to learn quickly. In a survey conducted

in [Dietterich 83]. efficiency is also listed as an important factor for comparing different

learning methods. Notice, however, the choice of learning methods can't simply be based

on efficiency since this concern may often sacrifice benefit in other aspects. In current Al

research on machine learning, the only solution for improving efficiency seems to be

employing appropriate heuristics to prune the search space. such as heuristics used in

Meta-DENDRAL [Buchanan 78a], "beam width" used to prune hypotheses in INDUCE

1.2 [Dietterich 81], and "window" heuristics used to limit the amount of data to be

processed [Quinlan 79].

The work described in this chapter is motivated by finding an efficiency-enhancing

algorithm, which is independent of learning methods (i.e.. it can be concatenated to any

learning system). A program called "CONDENSER" is built to remove irrelevant

features (red-herrings) or unrequired features dynamically during learning: this process is

K
I

Feature Condensation 72

called "feature condensation". By this technique. only the set of required features needs

to be considered in learning, thus the dimensions of the search space. which is expanded

by the features involved, can be reduced, and the efficiency is improved consequently.

Deciding on which features are relevant or required is a bias, which may have already

been assumed to exist (provided by the designers) in some learning works. However, as

the bias or ignorance of human designers may negatively influence machine learning, we

*, would rather formulate this issue as a new problem: it may also provide us an

understanding of determining the relevant features in learning a new concept.

Furthermore. this is a pragmatic issue since we may have already observed that the

features involved in certain concept descriptions or certain decision making are often a

small subset of all features possibly used in the domain: that is, there do exist some

features that are "relevant" in a certain context. Here, by "relevant features", we mean the

features can adequately characterize one concept and discriminate it from other concepts.

In a domain particularly dealing with decision making, in order to minimize the cost of

making decisions, "relevant features" also imply the minimal features required and this

implication is maintained in this chapter. Thus, so far as the learning is concerned, it is

important to make distinction between "relevant descriptions" and "most general

descriptions" since both terms seem to indicate features involved in the descriptions are

minimal:25 however, the difference is that "relevant descriptions" can still be as

specialized as possible within the given set of relevant features by, for instance, choosing

* .more specific values and not necessarily "most general".

Recall the generalization rule #1 i e dropping conditions) in Section 2 1.1. the most general descrption
tends to ha~e minimal features.

*.. .-..

Feature Condensation 73

The task of CONDENSER may be defined as follows:

Given: 1. A set of training instances
(positive and negative instances).

2. Features or descriptors
which describe instances.

Find: Features required to describe the training
instances without causing ambiguity.

In other words. CONDENSER intends to remove unnecessary (or irrelevant) features

without reducing the power of the learner to make distinctions between positive and

negative instances. However, two basic assumptions (or conditions) are necessary to

justify this task:

1. There exist adequate training instances, particularly negative instances,26 to
guide the condensation process.

2. The set of features required to describe an individual concept should be
smaller than (of course, a subset of) the set of features used in the given
domain.

Since we discern the relevant or required features by contrasting positive instances with

negative instances, the first assumption is necessary. For instance, if a feature F is

required to distinguish a positive instance P from a negative instance N. then the necessity

of feature F wouldn't be recognized but for the negative instance N. One might ask what

level of adequacy for negative instances is necessary to justify this technique. Since there

are an infinite number of negative instances, we might only want to focus on those related

negative instances. Thus. for example. in the JAUNDICE experiment, the case library

26LI 2Since inducuon can also he done by usinlg only posi mve instances [Diettenich 831. here we emphasize the

adequacy of negative instances order to avoid improper use (f condensation.

a1,

4,%

A51

Feature Condensation 74

only contains the cases with jaundice as the main manifestation: if one class of cases are

labelled as positive instances, other classes of cases are labelled as negative instances: and

we think we have adequate negative instances even though we don't have negative

instances in other domains. Practically, "adequacy" can be assumed if there is a way to

generate all (or most) possible instances and verify them or if there is knowledge (which

may be transferred from other similar domains) to tell so.27 Otherwise, it is safer not to

assume "adequacy" and thus not to use condensation. The second assumption is to

prevent the futile effort of this technique: under this assumption. CONDENSER is

expected to remove at least some features. (Refer to Section 3.6.1 for further discussion.)

In this chapter. we will describe how, analyze why, and discuss when the

CONDENSER program will work. In the terminology of this chapter, "feature base"

- means a collection of features in a given domain: "feature set" is a set of feature and value

pairs representing each instance.

3.2. The Learning System

3.2.1. Structure and Behavior

A learning system is a problem solving system with its own input and output. The

system can be either an open loop or a closed loop, depending on whether there is

feedback pathway from the output to the learner (see figure 3.1. 3.2.).

27 For example. in medicine, we may consider 30-40 cases as a reasonable sample size for studing a certain

medical parameter.

0N

%.. ,...

Feature Condensation 75

Input: Positive and Negative training instances
Output:Learned concept which is consistent with

* training instances.

Figure3. A simple open loop learning system.

input Learner Output

il_
Tes

Figure3.2 A simple closed loop learning system.

In the leaning from example paradigm. the input is a set of training instances. which is

constructed by some elaboration. including selecting good data and representing them

properly. The learner can be model-driven or data-driven. and it seeks concept

descriptions which are consistent with the training instances and human background

knowledge. The output are the learned concept descriptions, which have becn

S.....:....-..-........ .. -

¢..: '_, -.. ". ,,-'-" -. '' -r.'':'.' -" ':'-"""""' " ... '..'" " " -",".' - - '-"," ' -"" -'-" - ," -" '
" " """"""'. "" . d p . "

Feature Condensation 76

transformed into human understandable forms. In a closed loop learning system, the

learned concept descriptions undergo repeated tests to determine if most of the positive

instances are covered and negative instances are rejected. A closed loop system because of

these tests, which are part of the error-adjusting process (described in Chapter 4), will

yield better results.

3.2.2. CONDENSER

We propose a more sophisticated learning system, diagramed in figure 3.3. which

incorporates CONDENSER and the noise-filter: the former is described in this chapter:

• the latter will be explored in Chapter 4.

LEARNER

INPUT Condenser Core Noise-filter OUTPUT

Figure3.3 Diagram of an efficient and noise-resistant learning
system with the condenser and the noise-filter.

In brief, the function of CONDENSER is to remove unnecessary descriptions. For

instance, to distinguish dogs from cats. it is not necessary to mention that both are animals:

however, to tell dogs from trees. it is useful to mention the former are animals and the

latter are plants.

Feature Condensation 77

CONDENSER, a part of the learner, fulfills its role dynamically, depending on what

class of concept to learn. One might wonder why the data have to be manipulated

dynamically. The main justification is that the case library is a dynamic (time varying)

structure: the statistics might shift with time: therefore determination on the set of

required features for a certain class of concept on the basis of the case library at a specific

point on time axis may deprive the learner of learning new knowledge and detecting the

faults of old knowledge. Thus, from a long term perspective, it is warranted to do it

dynamically.

3.3. The Rule of Condensation

Generally, the rule is the following: "while preserving the desired information, simplify

the representation as much as possible". Specifically, the condensation rule can be stated

in the following two aspects:

The descriptions of a given concept can be condensed by removing some
features (or descriptors) as long as the number of negative instances included
because of this operation is less than the pre-set threshold. In this formulation,
it implicitly assumes the given concept divides the instance space into positive
and negative instances.

*Suppose the learner intends -to learn about a new concept from already

classified instances, then the descriptions about instances can be condensed by
removing some features (or descriptors) as long as the number of negative
instances made indistinguishable from positive instances by this operation is

-> less than the pre-set threshold. In this formulation, condensation will proceed
under the assumption of a given dichotomy (positive and negative instances).
Note that an instance space might contain more than two mutually exclusive
categories: if one category is treated as positive instances, then the other
categories will be treated as negative instances. A different dichotomy will

result in different condensation.

%,

iZ

Feature Condensation 78

We can also represent concept descriptions by a feature set, a set of feature and value pairs

.. that characterize the concept. For example. we may represent a red big round object by

{(color red) (size big) (shape round)}. Then, the objective of condensation can again be

formulated in two aspects:

* For a given concept description. find the required or relevant descriptions

about the concept.

For learning concept descriptions, find the set of features that adequately but

not redundantly describe the training instances.

Example 1. Consider there are only three instances in an instance
space.

pos.1: ((color red) (size big) (shape round))
neg.1: {(color red) (size small) (shape cubic))
neg.2: ((color black) (size small) (shape round))

(Note: pos.= positive instance,
neg.= negative instance.)

1. Now, if the threshold is set to zero. i.e.. no negative
instances should be included or confused with positive
instances by condensation, then.

Justified condensation:

pos.1: ((size big))
neg.1: ((size small))
neg.2: ((size small))

Condensation is justified because positive instances
are still distinguished from negative instances.

. - Uniustified condensation:

pos.1: ((color red))
neg.l: ((color red)}
neg.2: ((color blacK)}

Condensation is unjustified because distinction is lost
between pos.1 and neg.t.

In example 1. suppose we know the concept description is {(color red) (size big)}. then

it can be condensed into {(size big)I by the condensation rule.
.p4

Feature Condensation 79

Now, we define the term "incompressible" as follows:

" An "incompressible concept description" is such that removal of any feature
(descriptor) from it will cause more than allowed number of negative instances
included: in other words, the condensation rule is violated.

" An "incompressible feature base" is such that removal of any feature from it
will cause inadequacy in describing positive instances. Again, it depends on

*. what we include as positive instances.

To what extent features can be removed depends on the presence and nature of negative

instances. In the extreme case, there exist no negative instances, then all features can be

removed, and the description become "null", i.e., all instances are positive instances.

Therefore, one implicit assumption behind the "condensation rule" is that there should be

adequate negative instances tojustify "condensation".

Assertion .: The concept descriptions learned from the instances
described by condensed features are still consistent with original
instances.

(argument>: Adding more features is a kind of specialization. If concept descriptions can

distinguish positive instances from negative instances with condensed features, it still car, if

U" all features are preserved. In Example 1, the concept description "{(size big)}" is
.

consistent with instances after justified condensation: so it is still consistent with the

original instances (before condensation).

3.4. Techniques of Condensation

Condensation can proceed by three strategies:

1. Exhaustive search: Test every possibility. So. if there are "Im" features, the
number of possibilities is "2 m". Because the search space is huge, it will not be
used practically.

'*w -. W:

Feature Condensation 80

2. Search by Tree: Starting from the collection of all features, the tree is

expanded by removing one feature at a time in all possible ways. In figure 3.4.

assume there are 4 features to describe instances: the tree is expanded
sequentially as described.

feature base=(AI A2 A3 A4)

o 2 3 4) *Al A3 A4) At AZ A4) o(AI AZ A3)

A3 A4) *(lA} oA 4 (ZA) o(Al AZ)

0CA1) o(A3)

e: Justified condensation
0: Unjustified condensation, and pruned

Figure3.4 Condensation by search tree. In this illustration.
there are four features in the original feature base.

Once the generated condensation is not justified, it is pruned. because
subsequent condensations will also be unjustified, based on the consideration
that dropping more features will cause negative instances even more

. undistinguished from positive instances. This strategy is a heuristic one in the

sense that it can avoid exhaustive search. Nonetheless, it is still expensive. A
somewhat similar strategy was applied to some works of pattern recognition

-, [Becker 78].

3. Ordered Scanning Al orithm: See next section.

The program CONDENSER uses only "ordered scanning algorithm" for the reason of

" x efficiency, as will be analyzed in Section 3.5.

%%

'4

Feature Condensation 81

3.4.1. Ordered Scanning Algorithm

Features are first ordered according to their priority (significance), which may be

evaluated along different dimensions. In a domain like medicine, the cost of feature

measurement (e.g., laboratory examination) is an important factor besides discriminating

ability to determine the prority. The most desirable feature (with the highest priority) is

the one with the highest discriminating ability (pathognomonic features in medicine) and

with the lowest cost of it's measurement. Then, features are scanned one by one to detect

which features can be removed on the basis of the condensation rule. The priority of a

feature can be determined by background knowledge or past experience or statistical

techniques. If statistical techniques are used. instances are randomly sampled, and then.

based on the distribution of feature values, we will be able to determine the discriminating

ability of the feature. For a numerical feature, it is often true that the further apart the

mean value (also the value with peak frequency in Gaussian distribution) of a feature

between positive and negative instances, the better its discriminating ability.

The algorithm proceeds as follows.

* step 1. Order features according to increasing priority (significance) described
above by placing a feature with higher priority behind a feature with lower
priority, and thus build a list of features.

' step 2. Scan the ordered list, starting from the head. and proceeding down the
list. Try to delete one feature at a time.

o substep 1. If the deletion violates the condensation rule. then put the
feature back on the list without breaking the ordering.

o s'ibstep 2. Otherwise, delete it from the list.

In substep 1. in order to decide whether the condensation rule is violated, we set four

Feature Condensation 82

thresholds as follows: GATP (global ambiguity threshold for positive instances). LATP

"..' (local ambiguity threshold for positive instances). GATN (global ambiguity threshold for

negative instances). LATN (local ambiguity threshold for negative instances). If one

positive instance is indistinguishable from one negative instance (i.e.. they share common

or equivalent descriptions), they are "ambiguous". GATP is the maximal number of total

-'-- positive instances made ambiguous because of this condensation operation. LATP is the

maximal number of positive instances made ambiguous by deleting one individual feature.

GATN and LATN are counterparts of GATP and LATP for negative instances. Therefore

the operation is constrained both globally and locally in order to condense the feature base

properly. Though ideally we may set all these four thresholds to be zero, practically this

- may not be the case owing to the imperfectness associated with the instances, e.g., false

positive or negative training instances. Notice, however, GATP and LATP are somehow

related to false negative predictions, so are GATN and LATN to false positive predictions:

the extent depends on how the learner handles the ambiguity.

The program CONDENSER. which is our implementation of the ordered scanning

program, receives (from the learner) input, which comprises a feature base to be

'" condensed and a set of instances that have been labelled either positive or negative
,'..

instances by the learner according to the class of concept tw be learned: and the output is

the condensed feature base. Then the learner will consider only features in the condensed

feature base when it expands the search space (also refer to Section 2.2.1) and when the

concept descriptions (or hypotheses) are matched to the training instances. Thus, during

the learning cycle, training instances look as if they are represented only by the condensed

features.

, :..-. . .

Feature Condensation 83

Example2. Consider 3 instances in the instance space,
and there are 4 features to describe them.
Assume the four thresholds described are all set to zero.

pos.1: ((color red) (size big) (shape round) (weight heavy))
neg.l: ((color red) (size small) (shape round) (weight heavy))
neg.2: ((color red) (size big) (shape cubic) (weight heavy)}

If we consider the discriminating strength, feature
"size" and "shape" have higher priority than others.
So, we build a features list as the following:

(color weight size shape)

Then, the algorithm proceeds as follows:

removing "color" -> succeed! the condensation rule
is not violated.

removing "weight" -> succeed!
removing "size" -> fail! pos.i and neg.1 are

indistinguishable. So, put
it back on the list.

removing "shape" -> fail! pos.1 and neg.2 are
indistinguishable. So. put
it back on the list.

As a result, the condensed feature base is as follows:

(size shape)

Assertion 2.: A feature base condensed by "ordered scanning algorithm"
A. is incompressible.

<argument>: Since, during the scanning procedure, all removable features (the removal

of which does not violate the condensation rule) are removed, further removal will cause

"4 violation. Thus, the result is incompressible.

The results may or may not depend on the ordering; in the above example. the result is

independent of the ordering. Since there may be several different ways of ordering the

features, we might maintain several versions of the results: each version bears a specific

!%
It.I

Feature Condensation 84

meaning. Thus. for instance, in medicine, one set of rules might involve safe but less

accurate clinical features: another set might involve invasive but more accurate features:
"p

and so forth. However, in general, there are limited criteria based on the background

knowledge to determine the ordering.

Another issue is "overcondensation". which results from inadequacy of negative

training instances for constraining the condensation. Asking whether the training

," instances are adequate in learning is somewhat similar to asking whether the samples are

-, adequate in statistics. Nevertheless, in learning, the training instances should be adequate

not only in quantity but also in quality. Near-miss28 negative instances are crucial to

identify important features and thus are important for condensation. Near-miss instances

can be generated by replacing values in a small number of features of the positive

instances and then verified by experts or by visiting an instance library or by other

methods. However, it is impossible to generate any near-miss instance we want unless it

" can be verified. Adding some background knowledge is another solution to relieve

overcondensation. Though it is possible to create another program which can add more

features in to remedy this problem, this is however not a desirable approach because the

system may be trapped in the dilemma, deciding whether to delete or to add features.

, "Rather. we would make sure whether we have already had adequate training instances in

advance of applying CONDENSER: as a matter of fact. we have made this an assumption

underlying this operation.

,%%

28Nea mid. :-- aermis s defined by [Winston 701. is a negative instance which differs from positive instances in only
'-" a mall number of features.

!%. - .

! %°

Feature Condensation 85

3.5. Why Does CONDENSER Work?

The effect of introducing CONDENSER in a learning system is investigated on the

4.-. basis of the cost and benefit as follows:

, The cost is linear with the size of the feature base. The ordered scanning
algorithm performs one dimensional search instead of multiple dimensional
search (e.g., tree search). For instance, if there are m features in the original
features base, then, by means of "ordered scanning algorithm". m scans are
required. In each scan, positives instances are matched against negative

-- .instances. So. if there are "p" positive instances and "n" negative instances.

then in total "mxnxp" times of matching are done. The time required for
matching may be increased with the number of features. but the increment will
be less than first order because of the following considerations. First, if two
instnces are not matched, the mismatch will be detected once one feature is
not matched, and the matching process is terminated, Second. the matching
will get simpler as more features are removed. Third. the sequence of features

S., in the matching process is based on priority too (match more important
features first): therefore mismatch is earlier to be detected. If condensation is
based on an individual positive instance and it's near-miss, and take the union

as the result, then it will be even more economical, and the cost is reduced to
"mxn" < cost << mxnxp'. From this simple analysis. we know the cost spent in

CONDENSER roughly increases linearly (though may be slightly higher than
first order) with the number of features in the original features base. To
demonstrate the computational near-linearity of CONDENSER, we labelled
11 acute hepatitis cases as positive instances and other cases as negative
instances, and measured the time required for CONDENSER by means of
ordered scanning algorithm to condense feature bases with different size as
follows: 10. 20. 25. 30, 35 .40, 45. 50, 55. 60: despite their size, they all contain
required features to describe positive instances (acute hepatitis). The result is
shown in figure 3.5.

*_The benefit is nonlinear with the size of the feature base. Before we analyze the
benefit, we first estimate the size of the search space in learning. The search
space is in fact the power set of the set formed by collecting all features (or
their values) which are used to describe training instances. So, if the number
of total feature \alues is "ni". the size of the search space is ,-m,. To reduce

U %

.9. W, -%r--K ., .- '- .*- Ik 11 - .. '-I'- -K- K - -Z'--..-

Feaure Condensation 86

the number of features can thus reduce the search efforts greatly. But thanks
to heuristics applied, the difficulty of learning will not grow exponentially with
the number of features involved: still nonlinearity (beyond first order) is

S.. observed in general. To demonstrate computational nonlinearity of the

...- learner. we measure the learning time by applying the learning method
described in Section 2.2 to learn rules for diagnosing the disease of acute
hepatitis from the case library with feature bases of different size. The result is

shown in figure 3.6.

- 3.0

• 2.5

2.0

" 1.5

.1.0

WI .5

0 10 20 30 40 50 60

No. of features in
the feature base

Figure3.5 Linear effect of the size of the feature oase
on the time used in COEINJESER.

AD-Rl7i 794 LEARNING OBJECT-LEEL AND ETA-LEEL KNONLEDE IN 2A
EXPERT SYSTENS(U) STANFORD UNIV CA DEPT OF COMPUTER

UNCLSSIIEDSCIENCE L Fl NOV 85 STAN-CS-86-0i69 N88839-83-C-913g

mNLSSFE F/G 9/2 N

smhhhMonsonhsoE
EhhhhhhhhhhhhE
smhhhhohhhhhh
EhhhhhhhhhhhhE
EhhhhhhhhhhhhI

1025

__l_____ IIIIr
,

~$4

11.25 1.A 1.4 11.6 .

MICROCOPY RESOLUTION TEST CHARI

NAIIUNAL Al W IM NAP' I J
V..

V t i

Feature Condensation 87

0,200.

C -

O." 160.

140.

120.

100.

80.
'.

"'-

60.

40.

20.

0 10 20 30 40 50 60
No. of features in
the feature base

Figure3.6 Nonlinear effect of the size of the feature
p.., base on the time used in the learner.

With respect to the number of training instances, the computation time spent in one single

(non-disjunctive) concept learning task. according to Mitchell [Mitchell 78]. is proportional

to "(p + n)2' in depth-first search. "pxn" in breadth-first search. and "p + n" in candidate

elimination technique (where "p" is the number of positive instances. "n" is the number of

negative instances). However. in multiple disjunctive concepts learning (a typical situation

,--<,

Feature Condensation 88
%

in EMYCIN-based systems), another nonlinear factor because of combinatorics should be

"8 considered: for example, a factor related to maintaining multiple version spaces in

[Mitchell 78]. In contrast, the time required for CONDENSER is proportional to. as

described earlier in this section, somewhere between "n" and "pxn" in both single and

multiple concept learning tasks.

Thus, the cost spent by CONDENSER is linear with the size of the feature base and

comparatively small with the size of instance space while the benefit gained with respect to

the size of feature base is nonlinear. It follows that incorporating CONDENSER can

enhance the efficiency of learning. To demonstrate this analysis. we again applied the

. "same learning method to learn rules for diagnosing the disease of acute hepatitis from one

half of the case library with 72 cases, then we used another half of the case library to test

the KB constructed by replacing the old rules associated with the diagnosis of acute

hepatitis by the learned rules in the old KB with 141 rules. The result is shown in table 3.1

Without CONDENSER, constructing a new KB in JAUNDICE by learning all concepts

(there are ten concepts in JAUNDICE) from the same 72 cases takes about 14 hours

a., whereas, with CONDENSER, it takes only 45 minutes: and the qualities measured by the

diagnostic accuracy over 42 clinically diagnosable cases (unrelated to the above 72 cases)

which received liver biopsy in Stanford Medical Center in 1978 are the same (83.3%) (also

refer to Table 7.2).

a,.

Feature Condensation 89

Tahle3.1 Comparison of the performance of two learning
networks with and without Condenser.

No. of Diagnostic
time rules accuracy

(min.) learned (36 cases)

condensation 2.5

with Condenser learning 5.4 29 31/36

total 7.9

learning 192.2
without Condenser 30 31/36

total 192.2

0: Rules learned from one half of the case library
with 72 cases are tested against the other half.

The result indicates CONDENSER can save a significant amount of learning time while

preserving both quality and quantity of learned information. It also implies that a learning

process can be decomposed into two parts: discovering the set of required or relevant

features, and the process of generalization and specialization. Great efforts can be saved if

we solve them separately (divide and conquer, so to speak). This result is compatible with

the above analysis.

_ ,r
.5

Feature Condensation 90

3.6. Application

3.6.1. Applicable Domains

We recapitulate the benefit gained from incorporating CONDENSER in learning

systems as follows:

. 1. Efficiency of learning can be greatly improved.

2. Decision rules learned in such systems can be precluded from carrying
unnecessary risk and cost since unnecessary features are removed.

, ",,From this perspective, any domain is a good candidate to be applied. However.

CONDENSER might act adversely in the following circumstances:

" If the features used to describe the training instances are all relevant or
required, CONDENSER will have no effect.

" If no adequate (see Section 3.1 for the discussion of "adequacy") negative
training instances exist, then overcondensation will occur and make the
learned concept descriptions too general and tending to cause false positive
predictions which may also carry undesired risk and cost.

Considering the second circumstance, we seem to face a tradeoff between simplicity and

fidelity, a issue which is also emphasized in data compression in engineering science (e.g..
[Gray 74], and [Blasbalg 621). Fortunately. the tradeoff will exist only under this

imperfect condition: if we have adequate negative instances to monitor condensation, we

may actually achieve both simplicity and fidelity. In the introductory remarks, we set

forth two assumptions which are required to establish the practical value of

CONDENSER: the assumptions are merely the opposite of the above adverse conditions.

Despite these, there is still room for arguments: for example, how to verify whether the

,,assumptions hol. However, we can still tell simply based on background knowledge or

"'.-M.asu pin ,.

Feature Condensation 91

intuition. For instance, in medicine, many routine examinations, which may not be

necessary except possibly for legal reasons, create a large amount of data in patients'

records, but the clinical features related to diagnosing a certain disease are often a very

small set of all clinical features. Therefore we may expect the usefulness of

CONDENSER in medicine.

Herein, we define CONDENSER Utility Index (abbreviated as CUI) as follows:
.-

No. of features in the feature base
CUI =

No. of features in target concepts

The higher the index, the better indicated the CONDENSER. The threshold of CUI such

that CONDENSER will be beneficial is "11", since the objective of CONDENSER is to

remove some irrelevant features: the exact value needs to be calibrated in different

domains.

In summary, the applicable domains are domains where the two assumptions hold:

" practically. we might anticipate such domains to bear the following features:

1. Each case or instance in the domain is rather complicatedly described. Even if
we don't know whether the new concept is simple, it may still be worthwhile to
try condensation. Remember that scientific rules or principles are often

.-. simple.

2. Training instances can be generated and verified: if not, then somehow there is
knowledge to judge whether the instances are adequate.

.4.,

,V~

Feature Condensation 92

3.6.2. Compatible Learning Systems

-'. What types of learners are required for CONDENSER to work? Generally speaking.

CONDENSER can be effective for any learner if the time used in the learner increases

nonlinearly (higher than first order) with the number of features in the feature base. The

rationale is again based on the fact that CONDENSER performs one dimensional

scanning and it's cost is about linear, as indicated in figure 3.5. In figure 3.6, it is

demonstrated that the time used in the learner with the learning method described in

Section 2.2 is about quadratic. and significant improvement is acquired by incorporating

CONDENSER. as seen in table 3.1. In version space approach [Mitchell 781, reduction of

the number of features will accelerate convergence upon the desired concept description.

With such an approach, in a perfect learning environment, the learning time .ay not

increase rapidly with the size of the feature base while, in imperfect situations (where

inconsistency occurs), the time will become nonlinear owing to maintaining large

boundary sets. In INDUCE 1.2 [Dietterich 81], the algorithm restrains the hypothesis

space under a constant width ("beam width") during each expansion of the search space

and results in an incomplete search. CONDENSER, by removing unnecessary features,

can thus relatively broaden the "beam width" because of reduction of the search space and

render the search more complete in such a system. ID3 [Quinlan 83] is similar to ordered

scanning algorithm in that they both order features based on some criteria. The difference

is that ID3 does not remove features. and each time a decision node is constructed, the

system. performing best-first search. examines all remaining features to determine which

feature can provide maximal information for classification, based on the decision tree so

far constructed. So, CONDENSER has two possible applications in such a system: first.
-imp

ep .o, -. -m • .. I'l"• , ° . - , 1 " d r w I- •*. . .

Feature Condensation 93

it may condense the decision tree into a more compact form, secondly, since

CONDENSER may discover more than one set of required features based on different

criteria of priority, more than one decision tree associated with different meaning may be

built.

In particular, the learner designed to learn multiple disjunctive concepts (e.g.. in

EMYCIN-based systems) will be greatly benefited from CONDENSER because of the

horrendous combinatorics of features and instances.

3.7. Comparison and Discussion

From the idea of improving efficiency of learning, as described before, some learning

programs employ heuristics to prune the search space. For example, in

Meta-DENDRAL [Buchanan 78a]. an "improvement criterion" is used to determine the

relative plausibility between a parent chemical environment and its successors and thus

guide pruning the search space. In INDUCE 1.2 [Diettench 811. "beam width" is used to

prune hypotheses. and search becomes incomplete. However. inasmuch as the feature

condensation technique is intended to represent dynamically the training instances (a set

of data) as simple as possible so long as not much information is lost, this work can

actually be applied by the term "data compression". Thus, if we view from data

compression. two learning programs may be related. The first one is again Meta-

DENDRAI. in which the INTSUM program compresses data by the aid of "half order

thco r" dunng constructing the instance library: or. in other words, the half order theory

is exploited to make the data interpretation more efficient and accurate. The second work

is IQuinlan 791. in which a "window" is used to handle a large volume of data: only the

......... ,..... ,.............. ...-..... .. -.... -...:..., -.

Feature Condensation 94

training instances in the window are processed. But no work has ever mentioned how to

remove irrelevant features during learning, perhaps. because all other learning works

. assume either the provided features for the learning system are all relevant or the process

of determining the relevant features is actually done during the process of generalization

or specialization. Whatever assumptions are made. it is worthwhile to separate this process

out and do it efficiently, as demonstrated in CONDENSER. Another point is that the

condensation will generally not affect the completeness of the search in learning, as

implicated in table 3.1. since the objective is to remove only the irrelevant features.

. Furthermore, the idea of feature condensation is one example of generating automatically

.- the proper bias on the descriptive language, instead of being provided by human

designers. to enhance the performance; this perspective also includes how to create a new

language to relieve the bias imposed by a fixed language (as suggested in [Utgoff 82]).

In systems. such as communication, image processing, pattern recognition, and so on,

there are works (e.g.. [Gray 74]. [Blasbalg 621. [Becker 78]) which, though related in the

idea of data compression. bear little similarity to the herein developed method from a

methodological viewpoint. First, instead of using mathematical techniques. the developed

method employs a symbolic technique to match positive instances against negative

instances to determine dynamically the relevant features with respect to the learning task.

(Note that it is possible that all features are relevant if we consider all learning tasks:

however, for a specific task. only some may be relevant.) Secondly, the one dimensional

scan based on heuristics- or knowledge-based priority in the ordered scanning algorithm

Finds no counterparts in these areas.

k"

V.

V . V-.- "."V- . " "" .'- "," -. "-" . '" - . , ".. . . -" -" . ."-"- -"- " , . - , -" , -' . . ."-"."- .*

Feature Condensation 95

3.8. Summary

The main goal of this chapter is to build an efficient learner. We solve this problem by

developing a symbolic technique of feature condensation.

The role of the CONDENSER program is validated by some analysis and simple

demonstrations. CONDENSER is designed for general domains, and should be able to be

connected to any learning system. Though domain specific modifications are required, the

principle will hold. The reason why CONDENSER will work may be boiled down to

some simple facts that CONDENSER performs one dimensional search (by means of

ordered scanning algorithm) while the learner performs multi-dimensional search.

,1

.9..

'9,

4,. -W P- .9 VI

Learning in Noisy Environments 96

Chapter 4

Learning in Noisy Environments

4.1. Introduction

In inductive concept learning (learning from examples), one might ask "what if the

training instances are incorrect?" In this chapter, we will investigate possible error-causing

factors (called "error-sources") and provide solutions to handling them.

The objective of learning is to find concept descriptions or rules that are consistent with

all (or most) instances in a given domain. However. practically, instead of exhaustively

using all instances (impossible anyway), we use a set of training instances and anticipate

the results learned from this training set can be applied to all other instances as well. It

N%, seems logical to ascribe the errors associated with the results to either the tef:ining instances

or the learning system, or both. In current Al research on learning, the error-sources

which have been addressed include the following:

1. Incorrect training instances, including false positive or false negative instances
([Buchanan 78a], [Mitchell 78]. and [Diettench 83]).

2. Inappropriate bias embedded in the learning algorithm or the descriptive
language ([Mitchell 781 and [Utgoff 821).

It seems justifiable to stick to the division of error-sources into two main categories: input

and the system, as diagramed in figure 4.1.

N~.€

Learning in Noisy Environments 97

Errors Errors

INPUT -- 4 Learning System 0OUTPUT

(Learner)

Figure4.1 Diagram of learning with sources of
errors shown.

All possible error-causing factors that are enumerated here are based on A[researchers'

concern (as mentioned above), general background knowledge (e.g.. sampling

insufficiency may provide incorrect statistics), and the experience during our experiments.

Some trivial factors, such as bookkeeping errors, however, are not considered.

The motivations of this chapter comprises the following two aspects:

" Error handling in Al learning is seldom addressed [Dietterich 83]. Though
researcher have already begun to solve this issue, e.g., maintaining multiple
version spaces(Mitchell 78], RULEMOD in Meta-DENDRALfBuchanan
78a] (as will be described in more detail in Section 4.7), the solutions are
discrete. This chapter is intended to establish an unified framework for
handling errors in a noisy learning environment, the framework which not
only generalizes but also amplifies the old approaches.

" We also intend to provide people a notion of "learning is a mixture of search
and optimization under an imperfect learning environment". "Optimization"
denotes "achieving the best resuit"; in Al learning we are concerned about, it
means the learning results are maximallv consistent with the instances in a
given domain.

. ,. ..

- '..- - - ' ' '

Learning in Noisy Environments 98

In order to achieve the best result, we further divide the task into two successive stages.

The first stage is to find concept descriptions that are maximally consistent with the

training instances: the second stage is to update the descriptions so that they can be

maximally consistent with all new instances other than the training instances. However.

we only aim at the first stage problem here, and leave the second stage problem in other

areas of this thesis (refer to section 2.2.4 for "focusing" mode of learning and Chapter 5 for

automated debugging). Notice, however, unless the result of the first stage learning

problem is desirable, we might not even intend to solve the second stage problem. In this

chapter we first declare two basic assumptions which we think are necessary in some sense

as follows:

- The basic framework in the learning system is maintained: i.e.. we assume
there is a proper representation and proper descriptive language because, at
this stage of development of machine learning. it has not yet been possible to
build or reorganize this basic framework by machine: though some work has
begun to explore this issue, e.g., [Lenat 83].

e There is a set of training instances and most of them are correct and complete.
With this assumption. the concept descriptions that are maximally consistent
with the training instances are anticipated to be consistent with most of

instances in the given domain, though a limited amount of editing is still
required.

The maximally consistent state can be achieved by an optimization technique. which, in

AI. is "hill-climbing search" under the assumption that we start from a plausible point.

In this chapter. we begin with descriptions about all possible error-causing factors in a

reasonable depth to pros ide a 'eneral and adequate understanding of this issue. Then. a

general method is developed to maximize the consistency of the learned concept

descriptions or rules aimong the training in,,iances. In terrninohwv. "error ourcc" dCTIOICS

k7,
-. .o

..

Learning in Noisy Environments 99

any imperfectness (not necessarily errors) which is associated with either the input (the set

of training instances) or the learning system and may cause "error" in the output (the

learned concept descriptions or rules).

4.2. Imperfect Training Instances

We classify the causes of imperfect training instances into two main categories:

inconsistency and incompleteness. Since "incompleteness" may also lead to

"inconsistency", to avoid redundancy or confusion, "inconsistency" denoted here excludes

"incompleteness".

4.2.1. Inconsistency of Training Instances

Inconsistency can be further divided into "spontaneous" and "non-spontaneous (or

artifactual)" inconsistency; the former connotes the inherent overlapping between positive

and negative instances with respect to certain features: the latter denotes those human-

responsible factors, and we only describe the most important one in induction: false

positive and false negative training instances.

4.2.1.1. Spontaneous Inconsistency

Figure 4.2 shows the frequency distribution of positive and negative instances with

respect to a certain numerical feature.

N. 2' -- j-7

,... ,,.,, ,, ,' '- ,, .,. ' ,.,, , .". .-..-......,.-- -..--...........

Learning in Noisy Environments 100

Frequency
" A

A

- I- -

__ _ _ _ _ _-> Value

positive Vinstances

negative Vinstances

Figure4.2 Overlapping of positive and negative instances.

Though the values with peak frequency of two distributions are separate. there is always

some degree of overlapping. The wider the spread (owing to larger variance or standard

deviation), the greater the overlapping. Because of this noise, uncertainty is involved in

. reasoning. Historically, ways of handling uncertainty include as follows: probabilistic

reasoning, fuzzy sets theory [Zadeh 65]. certainty factors [Shortliffe 76], etc. For instance.

in medicine, the statement "95% of upper respiratory tract infection is caused by virus"

includes a probabilistic factor "95%". As stated by [Hahn 29]. "all knowledge originating

in experience comes with a coefficient of uncertainty affixed to it". In electrical

engineering. "stochastic" means "involvement of uncertainty".

In learning from examples. even if we have a perfect set of training instances and a

perfect learning algorithm. we may still not find an ideal concept which is consistent with

all instances because of this natural uncertainty involved in the domain. Consequently.

the objective is to find concept descriptions which are consistent with as many instances as

-21A,

Learning in Noisy Environments 101

possible. In figure 4.2. obviously there is no clear-cut boundary between positive and

negative instances: if the chosen cut-off point shifts rightward, there will be more negative

- instances falsely believed to be positive instances (called false positive predictions):

similarly, shifting the cut-off point leftward will cause more false negative predictions. In

fact, there is a trade-off.

4.2.1.2. Incorrectly Classified Training Instances

False positive training instances are negative instances falsely classified as positive

instances: false negative training instances are positive instances falsely classified as

negative instances. Data-driven learning methods (e.g. Version space algorithm [Mitchell

781) are particularly susceptible to this type of noise. One false positive instance will cause

excessive generalization of the concept, as seen in figure 4.3. And one false negative

instance will cause excessive specialization of the concept, as seen in figure 4.4.

Model-driven learning methods (e.g. Meta-DENDRAL [Buchanan 78a]) are superior in

escaping this type of noise because there exist global criteria (which measure the

consistency over the instances) for selecting hypotheses generated by the models, and the

instances are not considered individually. Since the methods intend to find the most

consistent concept descriptions or rules, falsely classified instances will somehow be

, .'ignored if they are the minority.

-.-

Learning in Noisy Environments 102

+: positive instance

- negative instance

-: false positive instance

Figure4.3 Excessive generalization caused by a false
positive instance.

J~

-J - - -

4.: positive instance
-: negative instance

4.: false negative instance

Figure4,4 Excessive specialization caused by a false
negative instance.

%

Learning in Noisy Environments 103

4.2.2. Inadequacy of Training Instances

4.2.2.1. Incompleteness of Data

Sometimes, ambiguity between a positive and a negative instances arises because of

incomplete descriptions about the two instances. In medicine, incomplete data about a

patient will cause confusion, and more data obtained may switch the disease diagnosis to a

totally different one.

Learning under the condition of incomplete data, though not desirable, may sometimes

be unavoidable because of the difficulties encountered in obtaining the missing part of the

* data. For example, there is no way to obtain some desirable laboratory data from an

expired patient.

Learning based on incomplete data will also yield an inconsistent result. This is due to

the fact that the incompleteness of data may cause inconsistency or ambiguity between

positive and negative training instances. Once this happens, it is impossible to find

*consistent concept descriptions which are true for all positive training instances and false

for all negative training instances.

Though the best way to solve this problem is to make the data complete after some

considerations of cost and effectiveness of doing it, this may not often be possible. We

may simply ignore the missing data if they are not important. The other alternative is

filling the missing part of the data on the basis of constraints procured from common sense

or domain-specific knowledge or heuristics (may be encoded into "half order theory" as in

Meta-DENDRAL [Buchanan 78a1) with respect to the existing data. "Default rules" may

,S..

• . r, , -... ,.. .,,.- .. • . .. -,.. . .,... .-... ,. , ,,

Learning in Noisy Environments 104

serve this purpose as well: they will be triggered if no other rules are available. The

conclusions made by default rules will be accepted unless inconsistency is detected.

Filling incomplete or missing data can thus be done by considering constraints and/or

employing default knowledge. Filling missing data is also done in statistics (refer to

[Madow, Nisselson. and Olkin 83]). Some important message may be lost by filling the

data: it may even cause misleading results [Dempster 83]. It demands caution indeed.

One paradox here is that suppose the deduction theory is strong enough to fill any missing

datum, nothing can be leamed. However, note that "deduction and induction are not

antagonistic, but complementary" [Croxton, Cowden, and Klein 67]. Deduction based on

some old knowledge can help to discover new knowledge by induction.

Practically, we might not want to fill anything unless there is no other alternative or it is

quite straightforward. As an example. if we want to investigate the association between a

disease and sex, then it is fully justified to take a pregnant pcrson as "woman" even though

this fact is not included in the existing data.

4.2.2.2. Sampling Insufficiency

This indicates the following conditions:

1. The number of instances is too small.

2. The instances are atypical.

The objective of leaming from examples is to find concept descriptions that are consistent

not only with the training instances but also with all instances in the domain. Since the

learning is strongly biased by the given set of training instances, a good result demands an

adequate sampling.

Learning in Noisy Environments 105

A small set of training instances may not reflect the real distribution: this is particularly

deleterious in domains where decisions rely on statistical knowledge. In multiple

(disjunctive) concept learning, only a limited number of concept descriptions or rules can

be learned from a small number of training instances. In single concept learning, the

version space [Mitchell 78] won't converge upon the desired description if no sufficient

instances are available.

To overcome this problem, more instances are required. and the atypical instances will

be diluted. Careful selection of instances can make the result more precise (e.g., near-

misses proposed by [Winston 701) and make the desired concept description more rapidly

converged upon [Mitchell 78]. However. on the other hand, if uncertainty is involved or

there should be multiple disjunctive concepts, the selection should be random to average

out those invisible factors underlying the instances or to avoid losing generality.

Incomplete sampling is also an important topic in sample surveys, one solution is seen in

*2 [Sirken 83].

But what if more instances are not available? One philosophy of science, as stated by

[Brillouin 62], is: "if we cannot observe them. let us admit that they have no reality ."

he added "we must candidly admit that we do not know". That is, we should avoid over-

interpreting what we observe. Two strategies have been adopted by researchers to cope

with this issue. First, all consistent descriptions in the version space should be preserved

until forced to be eliminated by new instances: this strategy is called "least commitment"

- and is adopted in candidate-elimination algorithm [Mitchell 78]. Secondly, if only positive

*1 instances are available, the generalization should be maximally specific (refer to

[Dietterich 831).

"'

,.. ,.,:,.:.,:,...,..,.,,,,, -.-..,.-..... ,............,...........L. .. * 9-* ..- , .. ,...,.

Learning in Noisy Environments 106

4.2.2.3. Unreliability and Inconsistency of Data

Since unreliability implies errors, learning based on unreliable data will be erroneous at

least to some extent. It is hard to tackle this problem. If available, it is always desirable to

replace the unreliable data with reliable ones. Otherwise, the data may be revised, based

on domain-specific knowledge and common sense (encoded into half order theory). Not

only inconsistency should be detected, but also it should be resolved. The complexity may

demand an expert program: RULECRITIC [Haggerty 84] may be such an example.

Practically, if we do not want to distort the data, then what can be reasonably done is to

determine how reliable the data are by checking the consistency among data and asking

the source of the data and to assign a reliability index to the result. Again, this may

require an expert program; REFEREE [Haggerty 84] may be such an example.

4.3. Imperfect Learning Systems
-A
-A

4.3.1. Insufficiency of the Descriptive Language

Inconsistency may be due to the incapability of the language fed to the learner. The

cause of this problem is often ignorance rather than bias. That is to say even human

experts don't know what features or descriptors are missing in the provided language,

rather than they improperly choose features or descriptors because of their bias. Thus, it

becomes a hard issue: though more useful features or descriptors may be discovered and

exploited, as knowledge evolves.

To classify instances, we might start with one feature and add more features until proper

classification is achieved. Suppose there are "n" features, the space of classification is

•.....

Learning in Noisy Environments 107

* n-dimensional, and the decision boundary will be a hypersurface of less than n-

dimensions. To seek a good feature is worthwhile because it may replace several features

and reduce the dimensions of the classification space: a d thereby the complexity of the

problem can be greatly reduced. (Note that the complexity usually increases with the

number of features nonlinearly or. in the worst case, exponentially. There are more

discussions on this issue in Chapter 3.) Consider an example in medicine, CT

(computerized tomography) may provide more information than several old examinations

in the diagnosis of brain tumors.

This problem, however, can be solved at least partially by the following strategies:

1. Extend the initial language.

2. Change the representation (the style of the descriptive language) or add
another representation (refer to Section 4.3.4).

Extending the initial language by either syntactically combining different features or

analytically defining new features can relieve the bias imposed by the fixed language, as

proposed by [Utgoff 82]. In Section 2.3. we develop some techniques which can define

-. new useful intermediate symbols and thus augment the initial language. However, this

issue is still largely unexplored.

It is always desirable that the system can interact with human experts and negotiate for

new features or descriptors.

J'd.

"pm

£' - . ' -. "..-. -. " -"" ,- . ., -- . - .' . - ; , " -c ,..- -•,g :g r

Learning in Noisy Environments 108

4.3.2. Insufficiency of Rules of Generalization or Specialization

In learning from examples, we generalize to cover positive instances and specialize to

exclude negative instances. For example, rules of generalization include as follows:

dropping conditions, variable replacement, climbing generalization tree. etc. Learning is a

search in the space of all possible hypotheses. The search tree is expanded by the leaining

operators (rules of generalization or specialization) available. Inadequate operators will

narrow the search space. and improper operators may mislead the expansion of the search

tree. This issue can be illustrated by the following example. If we want to make induction

* from three positive instances: (2 5), (4 7), (8 11), unless we have the operator

"subtraction" or "difference", it is hard to observe the regularity among these three

instances.

Modifying or even creating new operators requires higher level knowledge and

*. heuristics. in the EURISKO program [Lenat 83], a heuristic rule can be changed by meta-

heuristic rules. Before we develop this far, the better way to cope with this problem is

asking human experts for new operators.

4.3.3. Procedural Bias

In learning, heuristics are often used to avoid exhaustive search. In fact, if the

hypothesis space (rule space) is huge. heuristic search (e.g.. in Meta-DENDRAL

(Buchanan 78a]) is the only way to make the learning feasible. Since the heuristics are not

100% correct, some important rules might be missed because of the incompleteness of the

search. If the results of learning are not satisfactory, the heuristics or knowledge guiding

the learning should be modified or altered.

I
°

°p

5" ,
"

i : b - rrw 4 S ,; - r . . SW-v S - . - . -, -,. . r' 'r- I .- ,r-. m . ° . - - - -. -- . - • - _ -. .P

Learning in Noisy Environments 109

Figure 4.5 shows the error caused by the generalization from disjunctive concepts.

Data-driven learning algorithms are more susceptible to this type of error. However. this

error can be avoided by testing the generalization against more negative instances: i.e.. if

many negative instances are included by the generalization, then disjunction is possible

(other possibilities include "false positive instances" and "exceptional positive instances").

-a-

m ,%.

F.ZI.

". o - - -

+: positive instance
-: negative instance

Figure4.5 EAcessive generalization caused by

generalizing from disjunctive concepts.

Sometimes. because of an inappropriate bias, the learner may fail to generalize from

non-disjunctive concepts. This is illustrated in igure 4.6. This type of error is suspected if

.,._ , the numher of the learned concept descriptions or rules is more than expected or if strong

similarity i.3 obsened among them.

:,,,'. ."--- "-'' .'- .'- - - ,." -"- - "---.."-'-F" " : ' .. ".-" . .'' . '..'...-,.;

Learning in Noisy En ironmenlts 110

: positive instance
- negative instance

Figure4.6 Failure to generalize from non-disjunctive
concepts.

4.3.4. Representational Bias

Representation is a key issue in artificial intelligence: a good representation will

facilitate the discovery of new and useful concepts or rules. The criteria for choosing

representation include the following: representational adequacy and efficiency.

"Representational adequacy" says: the representation should be able to characterize the

instances or concepts and be flexible enough to be adapted to learning operators. For

example. semantic net is superior in representing intricate relationship: and if we want to

represent a statement "object A is on the top of the object B". then "(on-top A B)" is more

flexible than "(on-top-of-A B)". "Representational efficiency" says: the rcprcscntation

should achie'e operational advantages which include the computational and spatial

Learning in Noisy Environments11

economy. However, there is sometimes a trade-off: an adequate representation may incur

more computational efforts, and vice versa.

Inappropriate representation may render the training instances inadequately described

and thus lessen or distort the learning results. Changing representation or adding another

representation is the possible solution. This is because of the reason that insufficiency in

one representation does not necessarily mean insufficiency in others. For a given domain,

S-" we often choose a representation scheme which can more adequately capture domain

- features. For example, in chemistry, the chemical bond language (analogical

representation) is more natural and incorporates more semantics. However, to add

another representation may sometimes be useful: for example, in chemistry, we may place

some frames to describe the properties of atoms or molecules. Though, in current Al

learning, the representation is always pre-determined by human designers, it is preferable

that the system has the ability to modify or change the representation, as suggested by

[Lenat 83].

4.4. Error Measurement

There are two criteria for measuring the quality of learning results: calibration and

prediction error.

, o

Learning in Noisy Environments 11?

4.4.1. Calibration Error

Human experts may select proper instances for a given concept or may conclude a

concept for a given set of instances: if these instances are fed to the system and the output

from the system is compared with the known output (i.e.. the given concept or the expert-

concluded concept): the difference thus measured is called calibraiion error. I he objective

of this measurement is to tune the system to an ideal state (or best plausible state) in terms

of the capability of generating some well-known facts before learning unknown facts.

The differences between the observed and the known output are determined by t!lc

following factors:

1. The ratio of the intersection of the known and the observed output to the
observed output.

2. Whether there exist contradictions.

Ideally. the observed output should be exactly the same as the known output. The first

factor is the measurement of thL percentage of good qualit) results. If the percentage is

low. the performance is not efficient (nor accurate). Contradictions to the known output

will jeopardiie the results: one bad rule may sometimes be worse than one hundred good

rule in a risky domain. When the observed output is not syntactically the same but bears

the same meaning (construed by experts) as the known output, they should be regarded

equivalent.

I he f fllh; ing Lspects should he considered as well:

1. Since the ohjectai\e of calibration is with respect to the system, the training

instances houtld he as perfect as possible.

."..

.I. .

Learning in Noisy Environments 113

2. The calibration should be carried out in the same domain because the system
usually incorporates domain-specific knowledge and heuristics. For instance.
if the system is designed to learn medical rules, it is inappropriate to use
chemical molecules for testing.

4.4.2. Prediction Error

The learned concepts or rules are used to predict instances which are already classified

correctly. The predictions are then verified. The number of incorrect predictions is

defined as prediction error. There are two types of prediction errors: "false positive

predictions" and "false negative predictions". False positive predictions mean predicting

negative instances as positive instances: false negative predictions mean predicting positive

instances as negative instances. However, in an expert system with more than one

" . diagnostic category, false positive predictions mean incorrect conclusions. and false

negative predictions are defined as "cases which are not predicted to be any pre-defined

category" in our scheme. If the predictions are very accurate. then both types of errors

should be zero. Now. the magnitude of prediction error is defined as follows:

ei = mispredictions
= FP + FN

where lei: magnitude of error
FP: false positive predictions
FN: false negative predictions

With respect to the prediction error. there are somewhat different interpretations between

single concept learning and multiple concepts learning. If the output is a single concept

description (rule). then the false positive prediction indicates the learned rule is overly

general, and the false negative prediction indicatcs the learned rule is not sufficiently

Learning in Noisy Environments 114

general. If the output is multiple rules, then the false positive predictions indicate some of

the rules are overly general. and the false negative predictions indicate some of the rules

J-, are not sufficiently general or some rules are missing. If the system has been calibrated to

zero calibration error, then the prediction error will reflect mainly the noise associated

with the inpuL

In EMYCIN-based systems [Van Melle 80], since the rules may either positively or

negatively interact with one another and certainty factors can be combined, the conclusion

is made by a set of rules rather than an individual rule. Since the assumption of

independence underlying the combination of certainty factors is not always true, the

conclusion made by the set of rules may still be incorrect even if all individual rules seem

correct. In such systems, it seems indicated to make a distinction between global and local

(or individual) errors; the former denotes the error with respect to the set of rules, and the

latter denotes the error with respect to individual rules. The global error is defined as

before as follows: false positive predictions denote incorrect predictions: false negative

predictions denote cases which are not predicted to be any pre-defined category. The local

error for an individual rule is defined as follows: false positive predictions denote cases

are predicted by the rule to be the class indicated by the RHS of the rule whereas they are

not in this class; false negative predictions denote cases in the class indicated by the RHS

of the rule are not predicted by the rule to be in this class. It is quite straightforward to

compute false positive and negative predictions for global error, based on the predictions

made by the set of rules. On the contrary. it is somewhat obscure to compute the false

predictions based on an individual rule, because of the following facts: first, for

disjunctive concepts. a rule does not necessarily cover all positive instances: secondly, if

%'

'.:

Learning in Noisy Environments 115
.'..'

'p-

uncertainty is involved, a rule does not necessarily exclude all negative instances.

However, if we take an ideal assumption that a rule should cover all positive instances (the

instances indicated by the RHS) and exclude all negative instances, then the prediction

error computed under this assumption. though maybe overly idealized, can reflect the

performance or quality of a rule, the lower the error. the better the quality, and vice versa.

We may also define the minimal generality as the minimal coverage of the positive

instances and define minimal specificity as the maximal coverage of the negative instances.

Then if a rule breaks either of the constraints, its error is defined to be "infinity".

So far as a learning system is concerned, we also distinguish between between intrinsic

and extrinsic errors: the former denotes the error with respect to the training instances in

the input, and the latter denotes the error with respect to the instances other than the

input. The concept descriptions or rules learned from the input instances will tend to be

more consistent with them than with other instances. Thus, in general, the intrinsic error

is smaller than the extrinsic error. As described in the introductory remarks in this

chapter. the method developed here is intended to minimize the intrinsic error and we

leave the task of minimizing extrinsic error to other chapters (see focusir.g mode of

learning in Section 2.2.4, and automated debugging in Chapter 5).

4.5. Error Handling

Figure 4.7 shows an efficient and noise resistant learning network. The role of
.-r--

CONDENSER is discussed in chapter 3. Here. we focus on the noise filters. Depending

on the stage of intervention, we name the following: pre-filter. mid-filter, and post-filter.

As will be described in more detail. pre-filter and mid-filter deal with detecting and

Learning in Noisy Ensironments 116

removing the error-causing factors directly while post-filter deals with optimiiing the

result by minimizing its error while disregarding the error-causing factors during

optimization.

LEARNER

Condenser -D Core

't I
INPUT . Pre-filter Mid-filter Post-filter OUTPUT

Figure4.7 Diagram of an efficient and noise-resistant learning
system.

9
.9

9
S.- . -

~;.ju;~:>~L&bc1 :2 ,~ >~-.1

..- .'%..'.. %

Learning in Noisy Environments 117

4.5.1. Pre-Filter

The role of the pre-filter is to choose a proper language and learning algorithm, and to

.4 remove imperfect instances. Imperfect instances include: falsely classified instances.

ambiguous instances, instances with incomplete or unreliable data. The choice of a proper

-language or algorithm is often domain-dependent: for example, chemical bond language is

chosen in Meta-DENDRAL [Buchanan -78a]. and the learning method described in

Chapter 2 is designed for multiple concept learning. It is a difficult task to detect false

- positive or false negative instances. One way is to measure similarity or dissimilarity. If a

*, positive instance is found to be dissimilar (refer to Section 2.3.2.1 for measuring

dissimilarity) to all other positive instances, it is labelled as a potentially false positive

instance (thought it may be an exceptional instance) (see also figure 4.3). If a negative

instance is found to be very close to positive instances and dissimilar to other negative

instances, it is labelled as a potentially false-negative instance (see also figure 4.4). The

potentially falsely classified instances are considered in the last resort. Ambiguous

instances are simply removed. The current implementation of pre-filter is only limited to

the above descriptions.

The INTSUM program in Meta-DENDRAL [Buchanan 78a], which is able to remove

inconsistent or erroneous data by the aid of a half-order theory, is one example of the

pre-filter.

°h J

Learning in Noisy Environments 118

4.5.2. Mid-Filter

This filter is designed for data-driven learning methods. with which the current

maintained hypotheses will be modified to accommodate new instances in the following

manner. If the new instance is a positive instance, minimally generalize the current

' hypothesis to cover it: if the new instance is a negative instance, specialize the hypothesis

'' to exclude it or abandon some hypotheses which become inconsistent. depending on the

.. search strategy.

The mid-filter monitors the learning process. It detects and removes the noise by the

following rules:
'-

"If a positive instance causes excessive generalization,
then it may be a false positive instance."
(see figure 4.3)

"If a negative instance causes excessive specialization,
then it may be a false negative instance."
(see figure 4.4)

The suspected instances are stored in the list of the last resort. Unless the learning result is

not satisfactory, they will not be reconsidered. Some thresholds are required to determine

excessive generalization or specialization. If they are not properly chosen, more than one

iteration may be required to achieve a good result. Moreover, the initiation of the current

hypotheses is critical" if this is based on a false instance, the result will diverge rather than

converge, and the learning has to be reinstituted. This filter finds no value in model-

driven learning methods since instances will not be considered individually with them.
a -

-a

r'd

Learning in Noisy Environments 119

4.5.3. Post-Filter: Optimizer

., 4.5-3.1. Minimal Error Principle

.4 A "minimal error principle" is used in the post-filter. It is that the desired information

content can be more accurately estimated by minimizing the error, a principle widely

applied in signal processing (refer to [Papoulis 65] and [Balakrishnan 84]). 29 In inductive

concept learning, we have described two techniques for measuring the error associated

with the output of a learning system (see Section 4.4). Here, we particularly focus on

minimizing the prediction error since this is the ultimate goal.

False positive predictions (also called over-predictions) and false negative predictions

iT (also called under-predictions) may carry different levels of risk. This is particularly true

in medicine. For example, over-prediction (over-decision) of a patient's requirement for

chemotherapy is dangerous while under-prediction of acute appendicitis will delay the

operation and incur mortality. Hence, it is justified to assign a weighting factor for each

type of error. And weighted prediction error is defined as follows.

wpe = w pFP + wnFN

where. wpe: weighted prediction error
w : weighting factor for FP
w weighting factor for FN
FR: false positive predictions
FN: false negative predictions

The weighting factors. standing for the domain attitude toward two types of errors, will

vary with different concepts to be learned. Practically, the weighting factors can be

29 For filters. such as Wiener's filter, the mean square error is minimized.

/ .i

Learning in Noisy Environments 120
4.1

acquired by asking the expert the costs incurred by these two types of false predictions.

The default is wp = wn =1. Since there may be a trade-off between FP and FN. as implied

in figure 4.2, the only alternative is to minimize the weighted sum if they cannot be

minimized independently. Sometimes, people may define a function to evaluate the

performance, but it is noted that, with respect to the prediction power, "minimizing the

error" is the dual of "maximizing the performance". In EMYCIN-based systems, as

described before, we should make a distinction between global and local prediction errors.

If the local prediction errors for all individual rules are zero, then the global error is also

zero (i.e.. if every rule can cover all positive instances without including any negative

instance, then the global conclusion based on the combination of all individual

conclusions is also impeccable), but not vice versa (i.e., zero global error does not

necessarily mean every individual rule can cover all positive instances and exclude all

negative instances). As discussed previously, the local prediction error is not necessarily

the "error" (e.g., if disjunction occurs); however it can measure the performance of an

individual rule: that is. we tend to believe a rule will be more powerful if it can cover more

positive instances and exclude more negative instances (in other words, if it is associated

with a lower prediction error, as defined). Our main goal is to achieve minimal global

errors rather than minimal local errors. Therefore. global tuning comes before local

tuning. The system parameters are first adjusted, then the output is subjected to local

optimization. The systems will be tuned until the global error is minimized. The

procedures %ill he described next.

%

Learning in Noisy Environments 121

4.53.2. Procedures

As described in Section 2.2, there are several constraints which define either the

minimal generality or minimal specificity: all these constraints are called "system

parameters" here. The parameters defining the minimal generality are somehow more

related to false negative predictions, so are those defining the minimal specificity to false

positive predictions. Because of the minimal generality, rules cannot be too specialized

and are expected to predict more positive instances: thus the possibility of false negative

prediction can be reduced. Similarly, setting a threshold for minimal specificity can

prevent a rule becoming overly generalized and thus the possibility of false positive

prediction can be reduced. Note that we implicitly assume the threshold for minimal

generality is more specific than the threshold for minimal specificity (assume partial

ordering in the version space): otherwise the above argument will not hold. Based on this

analysis. tuning these thresholds can have impact on the global prediction error. Though

the best way to determine these parameters is based on domain-specific knowledge or

heuristics, sometimes they are not available. If there are four parameters, the search space

is huge. Our strategy to cope with this issue is as follows:

-.. . step 1. Initialize the parameters with ideal numbers; i.e., we may first assume

the minimal generality is 100% (a rule should cover all positive instances), and
the minimal specificity is "0" (i.e.. a rule should not include any negative

instance).

step 2. If available, calibrate the system with some typical rules (well-
established knowledge in textbooks): i.e.. adjust the system parameters such
that these typical rules will come out. In comparison with the typical known

rules, if the output is overly general. reset the threshold for minimal
specificity: if the output is overly specific. reset the threshold for minimal

generality.

.. .o.

m .'..'. :.).; ~~~.--.... -....-.-.--.- ,...- ,,-:. . . - ,-:: -.. , '_, :,- ,":_,- ,,_,

Learning in Noisy Environments 122

* step 3. Minor adjustments of system parameters based on the adjustments in

step 2 (i.e.. try several finite states around the state determined in step 2) are

done until the optimum (i.e.. minimal global weighted prediction error) is

achieved.

In our experiments, we found that calibrations in step 2 are crucial for an efficient

optimization. As seen in figure 4.7. the learner core receives feedback from the post-filter

(optimizer).

The local optimization for individual rules proceeds as follows:

* step 1. Set the variable OUTPUT : - input rule.

* step 2. Make one step transformation of OUTPUT by either one step

generalization or one step specialization of OUTPUT. But the transformation

should not be repeated. If the weighted prediction error of OUTPUT is
smaller than that of all transformations derived from it. then do nothing, go to

exit, and the output is the value of OUTPUT; otherwise, reset the variable
OUTPUT : = transformation with minimal weighted prediction error. The
number of possible transformations is controlled by heuristics. For example.

one step specialization is done by adding one feature value that appears in

positive instances with relatively high frequency. One step generalization is

done by removal of one conjunct frora the LHS of OUTPUT or replacing one
feature value in the LHS with minimally more general value.

* step 3. Go to step 2.

Therefore. if the variable OUTPUT reaches a local minimum with respect to the v ited

prediction error. i.e.. all possible minor changes (transformations) could not be better, then

the procedure is terminated, and the final value of the variable OUTPUT is the output.

Thus. the local optimilation is done by performing a hill-climbing search with respect to

the local prediction error. In EMYCIN-based systems, since there is unccrtaint involed.

one additional constraint during optimi/ation is that the certainty factor or degree of

-7__~~ ~~ ~ ~ ~ ~ - , . ..- C.*' -

Learning in Noisy Environments 123

certainty should be reasonably maintained (in JAUNDICE, the difference should be less

than ".15"): this comes from the argument that different ranges of certainty factors bear

different meaning. In the JAUNDICE experiment, we use the learning method developed

in Section 2.2. which searches for maximally specific rules first and optimizes the results

by generalization operators.

4.6. One Example

The following illustration shows how the post-filter optimizes a rule. Recall that there

are four main steps in the learning method described in Section 2.2.1: the post-filter

corresponds to step 3.

Example. Assume the weighting factors in the "wpe"
(weighted prediction error) is as follows:

wp=2, wn=1

There are 20 cases diagnosed as "cancer" in the
case library.

One rule, before optimization, is as follows:

"If 1. Serum bilirubin is elevated.
2. Body weight loss is greater than 15 lb.
3. Disease course is progressive.
4. Ascites is present.
5. Liver is enlarged.
6. Liver is hard.

Then probably (.7) cancer."

Because it covers two negative instances (non-cancer)

and covers only four positive instances (cancer),

wpe = 2x2 + lx(20-4) 20

After optimization:

"If 1. Serum bilirubin is elevated.
2. Body weight loss is greater than 15 lb.
3. Liver is enlarged.
4. Liver is hard.

Then likely (.65) cancer."

A'-.'-. - -

Learning in Noisy Environments 124

Now, it still covers two negative instances but covers
nine positive instances, so,

wpe =2x2 + lx(20-9) =15

4.7. Comparison and Discussion

In model-driven learning systems, because there exists a certain criterion to test the

model-generated hypotheses, the result of learning will tend to be more noise-resistant

[Dietterich 831. Basically, the criterion is to maximize the covered positive instances and

minimize the included negative instances. For example, in Meta-DENDRAL [Buchanan

78a1, the criterion to rank rules is defined in an ad hoc fashion as "I x (P + U - 2N)"

(where I is average intensity of positively predicted peaks, P is the number of correctly

predicted peaks, U is the number of uniquely predicted peaks, and N is the number of

incorrectly predicted peaks), and the RULEMOD program is to optimize with respect to

this score by specialization and generalization on the basis of the "seeds" generated by the

RULEGEN program. However, the herein developed method bears the following distinct

features:

1. We generalize the criterion by defining a "prediction error", and the objective

is to minimize the weighted prediction error.

2. Both global and local optimizations are considered because the method is
designed in EMYCIN-like frameworks where strength of a conclusion from

different rules can be combined. In contrast, other learning systems only

consider local optimization.

In data-driven learning systems, because individual cases are considered equally and

there exist no global criteria to constrain the process of generalization or specialization, the

',%

Learning in Noisy Environments 125

systems are more susceptible to noise associated with the data. In single concept learning,

one solution. proposed by [Mitchell 78], is to maintain multiple version spaces: if the

current most desirable version space is collapsed. the algorithm backtracks to the next less

desirable version space. The weakness of this solution is the potentially huge storage space

for the multiple boundary sets (assuming there are no heuristics to prune the boundary

sets), the storage for which becomes nonlinear with the number of instances under

inconsistency. In contrast, the method developed here sets up a global criterion to test the

hypotheses generated by data (e.g., generalization from two positive instances, or

specialization to reject negative instances) and thereby to detect the possible incorrect or

incomplete instances, which are deleted or considered last. The result is further optimized.

As the degree of inconsistency grows. this approach, as an alternative to maintaining

multiple version spaces, becomes more economical because the storage space for instances

will not expand as that for boundary sets, Notice that an unified optimization technique is

actually developed here to handle the noise in learning. whether the learning system is

model-driven or data-driven Howe,"%r, this optimization technique calls for an initial set

of training instances: recall as Aell that our learning model starts from a set of training

instances rather than a single instance.

Issues. such as small sample size. incomplete data. and bias, also occur in statistics.

"Confidence interval" is used to measure the quality of a statistical result: the larger the

sample size, the narrower the interval, and thus the better the estimate (refer to [Croxton.

Co~den. and Klein 67]). Special modifications to statistical techniques are required to

deal with small sample size, e.g.. Yate's correction [Croxton. Cowden. and Klein 671. In

sample surveys, the methods used to tackle incomplete data include the following:

?:: : , : "i:: : :":i-.."" . .:: : .. .-., . . .:--,... ,..- .,-,..-

Learning in Noisy Environments 126

network sampling (i.e., the information about one node can be obtained from its neighbors

through the network if the information cannot be obtained directly) [Sirken 831 and

imputation (i.e.. "replacing the missing data by estimates of the missing items") [Madow,

Nisselson. and Olkin 83]. Bias in a statistical test can be minimized by "randomization"

and "blindness" of the test. Although the knowledge of data handling in statistics can be

transferred to inductive concept learning, it is still hard to apply the ideas, such as

"confidence interval", to learning: for example, it is hard to tell how far a learned rule

from the truth is by simply looking at the size and variance of the sample. The fact that

statistics is "the collection, presentation. analysis. and interpretation of numerical data", as

defined by [Croxton. Cowden. and Klein 67]. makes statistical techniques fall short in Al.

where symbolic reasoning dominates.

Errors may occur in all kinds of empirical science. A scientific discovery relies on

careful and patient observations, as suggested by [Hahn 301. As the new technology

emerges, a scientific theory, which is once true. may be subjected to modifications to

accommodate exceptions or even be overthrown. That is why we think incremental

learning is essential. In physics. as said by [Brillouin 62], "with Heisenberg uncertainty

principle, the fundamental role of experimental errors becomes a basic feature of physics":

he thought, despite the classical ideal view that the error can be made as small as possible

and ultimately negligible by careful instrumentation. "errors are an essential part of the

world s picture and must be included in the theory". In electrical engineering, filters, such

as Wiener's and Kalman's (refer to [Papoulis 65] and [Balakrishnan 84]), are designed to

remove noise (e.g.. white noise). Mathematically. there are many analytical or numerical

techniques for optimization, some of which are widely applied in economics. engineering

.o

,'.'' . 2 .:, ,.'- :' - '- . . .: -• : ,'-'.' '. ' '- .:- -. v Z F ,' -

Learning in Noisy Environments 127

science. etc. However. the optimization in A! is more or less a search and relies on

symbolic techniques, such as generalization or specialization. Regardless of

methodological differences, the common underlying principle of error handling in all

kinds of science is to minimize the error or cost.

4.8. Summary

Considered in this chapter is learning in an imperfect environmenL Human efforts will

be involved to make the environment as perfect as possible: however, because of human

bias or some factors beyond human consideration, errors will remain. Seeking a state

which is maximally consistent with the training instances is the strategy used in this work.

We define "weighted prediction error", which is a general criterion in inductive concept

learning. By careful applying the available operators and adjusting the system parameters

to minimize the weighted prediction error, the desirable result can be achieved: and the

perturbation in the data or the system will largely be ignored during optimization under

*, the assumption that the perturbation is a relatively small fraction. Better accuracy is thus

purchased at the cost of optimization.

I-7-
• -'~~~~~~~~.--....'....-".........:.- .-.. -. ,

Automated Knowledge Base Updating 128

Chapter 5

Automated Knowledge Base Updating

5.1. Introduction

Our realistic goal is to build a complete model of inductive concept learning in expert

systems. In the previous chapters, we have solved the first stage problem: constructing a

knowledge base (KB) from a set of training instances. The subsequent use of this KB in

concluding new cases may face another issue when an incorrect conclusion occurs: an issue

related to tracking down the faults and correcting them, which is formulated as follows:

Given: 1. A knowledge base (KB).
2. An incorrect conclusion based on the KB.

Find: Corrections to the KB such that the conclusion
can be rectified.

Recall that, in Section 4.4.2. we define "intrinsic error" (with respect to the training set

4. used to construct the initial KB) and "extrinsic error" (with respect to instances other than

the training set), and we have developed a solution to minimizing the intrinsic error: this

chapter, as a continuation, is devoted to improving the KB by minimizing extrinsic errors.

The task defined above resembles the focusing mode of learning described in Section 2.2.4

In fact, we apply the learning technique to debugging the knowledge base: and the

descriptions in this chapter primarily deal with how to integrate those learned rules based

on the incorrectly concluded case into the old KB. which was constructed previously.

¢ " ,,-%~~~~~~~~~~........ .. ,.,,.,... ,-.-...'.....................,.-..-,...-... . -.-. .

Automated Knowledge Base Updating 129

This problem. knowledge base debugging. 3° is explored in other Al work, such as

TEIRESIAS[Davis 791, EMYCIN editor[Van Melle 80], SEEK[Politakis 82], and

[Waterman 68]. In a generalized model proposed by [Buchanan 78bJ. the "critic" deals

with the so-called "credit and blame assignments" 31 and recommending changes to the

performance element via a source which can provide new knowledge.

The motivations of this chapter are the following considerations:

A simplified view of knowledge base debugging is as follows: generalize
overly specialized rules, specialize overly generalized rules, add missing rules.
delete erroneous rules, and resolve conflicting rules. But this view is somewhat
oversimplified in EMYCIN-like systems where evidence can be combined and
uncertainty is involved; these facts render the debugging inexact. This work is
intended to embody the expert's thought which is relied on in programs, such
as TEIRESIAS, to debug the KB. The automation demands some
considerations which are raised mainly because of lacking empirical
knowledge which experts use to debug the KB. The credibility of automated
debugging is also a related concern.

, As mentioned, our ultimate goal is to establish a complete model of inductive
concept learning, a model which starts from a set of training instances and
incrementally updates the KB. Again, we emphasize the notion of

1"optimization" in inexact domains. We try to minimize the errors in a period
from "t=0" when the KB is initially constructed to now.

30 But. within the framework developed in this thesis. we think updating is a better term than debugging
since our learning model is initially based on a set of training instances, which may provide only partial
statistics. and as the database accrues, statistics shift to better closeness to the real distribution of the
population. and the old knowledge. which may be right in one time and wrong in another, is updated or
obsoleted. The difference between these two terms, if any, perhaps is a more constructive connotation
aSsociated with the former (updating) than the latter (debugging). However. we still preserve the term
"debugging" because it is often used in other works. and the debugging program described in this chapter can
be detached from our learning model and applied to another KB which may be constructed by human experts.

31The credit assignment problem is First raised by Minsky (Minsky 631.

.e"''-'.'. -""-"",'." ,.-'. '. ".-. -, .-. " .. "- ." ,- .." , '.' . '-.-'.. .• -. .): " -'-"'"" ." ". ".Lnskr '"-iz,.

Automated Knowledge Base Updating 130

The assumption made in this chapter is that there exists a database, based on whose

initial form. a KB is constructed as its starting point.3 2 This database serves as an

important reference (and actually imposes a considerable constraint) for updating the KB

because we don't want to purchase the accuracy with respect to a single new case at the

cost of the accuracy over the old reference cases. Furthermore, to achieve a rapid

convergence of the KB, the initial set of training instances should be adequate for

providing a good starting basis (i.e., representative of the whole population). Otherwise.

the learning may proceed back and forth.

In our scheme, we take advantage of a strategy we call "retrospective inspection after

learning". This strategy is also employed in other work, such as [Waterman 68]; the

difference will be analyzed in Section 5.5. The "knowledge base updating" in this work

* comprises the following steps: learning, proposing experiments, and verifications; the last

two steps are required because the source that indicates the faults in the system conclusion

is not always reliable, and even if it is reliable, the KB will remain in its old version if the

modifications proposed to accommodate the new case are not favored by the old reference

cases.

We first describe the possible faults in the KB and their ordinary rectifying operators.

Then we explore the issue of updating the KB when a faulty conclusion emerges.

emphasizing learning in EMYCIN-like systems.

°-

Though it is not necessary that the KB is built automatically, we assume so in this thesis. The database
can be controlled to a reasonable size by constantly removing the overflow without disturbing its statistics, but
the original training set used to build the KB and the cases which are incorrectly concluded are maintained.

d 7.

Automated Knowledge Base Updating 131

5.2. Faults in the Knowledge Base

In expert systems. the errors of performance can be traced back to errors in the KB or

sometimes to errors of the inference engine. But, because of the nature of inconsistency in

the domain (or say uncertainty) and the incompleteness of data, some degree of errors can

be allowed. A standard must exist for evaluating the performance of the system. The

debugger will be triggered to debug the KB only if the performance is judged as "bad".

The basic assumption is that the chosen standard is right: otherwise it will be nonsense to

debug the KB. For example, in TEIRESIAS [Davis 79], the standard comes from the

expert. In this chapter, we use weighted prediction error(defined in Section 4.5.3.1) as an

additional performance standard to guide debugging the KB.

The "faults" described in this section designate either true error or improperness which

impairs the system performance with respect to a certain standard. "True error" means

the associated semantics conflicts with real observations; for example. the statement "all

mammals are plants". "Improperness" means the associated semantics is right but not

optimal: for example, the statement "men at the age of 50 are mammals". In an expert

system. improperness of rules, such as overly generalized or specialized rules. may cause

false predictions. For example, the rule "men at the age of 50 are mammals" will make

men at the age of 20 unconcluded (false negative prediction) if there is only one such rule

dealing with "men" in the KB of an expert system designed to conclude whether an

animal is a mammal. And a misconclusion made by the system may reflect "true error" or

"improperness" of individual rules. In EMYCIN-based systems, the assumption of

independence for combining certainty factors doesn't always hold: therefore even if all

individual rules seem right. the global conclusion may still be wrong. Although it is easy

Automated Knowledge Base Updating 132

to define "true error", it is hard to delineate "improperness" particularly if uncertainty is

involved.

5.2.1. In Domains without Uncertainty

5.2.1.1. Overly Generalized Rules

An overly generalized rule is a rule which causes false positive predictions because the

conditions (or descriptions) in the LHS (left hand side) of the rule are too general. For

example,

instancel with attributes Al. A2. classified as class A
instance2 with attributes Al, A3, classified as class B

Then, the rule "Al -> class A" is overly generalized, because
instance2 is falsely classified as class A by this rule.

5.2.1.2. Overly Specialized Rules

An overly specialized rule is a rule which rarely succeeds because the LHS of the rule is

too specific (overly constrained).

instancel with attributes Al, A2, classified as class A
instance3 with attributes At, A4, classified as class A

Then, the rule "Al & A2 & A4 -> class A" will be too specific
for both instancel and instance3. If only few instances in
class A can satisfy this rule, it is overly specialized.

In a domain with disjunctive concepts, instances in a given class may be covered by

different rules, and we can't expect a rule can cover all instances. But, if a rule can cover

no or few instances only, it is regarded overly specialized. False negative predictions may

be ascribed to the overly specialized rules (or missing rules) in the knowledge base.

'S.

.1

Automated Knowledge Base Updating 133

5.2.1.3. Erroneous Rules

An erroneous rule is a rule which contradicts the truth (or the currently recognized

knowledge). Even if the KB is built by a group of experts, there is no guarantee

whatsoever that all the rules in the KB will be 100% consistent and accurate Factors

causing erroneous rules include the incorrect knowledge of the KB builders and the

knowledge shift (today's knowledge may not be tomorrow's knowledge). Subsequent tests

after building the KB are important to detect errors.

The following two rules contradict each other (ifA and B are mutually exclusive):

"Al -> class A"
and,

"Al -> class B"

Thus, if one rule represents the truth, the other will be erroneous. However, if uncertainty

is involved (see also Section 5.2.2.3), two rules with the same LHS but with mutually

exclusive RHS may be compatible unless at least one of them is assigned a degree of

certainty "1". For example. the following two rules are compatible:

.6

"Al -> class A"
and. .4

"Al -> class B"

-'. . 7w. .7•.7

Automated Knowledge Base Updating 134

5.2.1.4. Missing Rules

For a given instance, if no rules can correctly classify it. then it is possible that some rule

is missing (or some rule is overly specialized, or the data are incomplete).

5.2.1.5. Subsumption

Subsumption occurs if two rules have the same conclusion but the premise of one rule

subsumes that of another. If both are true, keep the more general one. In the following

example. the premise of rule R1 subsumes that of rule R2:

RI: Al & A2 -> class A
R2: Al -> class A

5.2.1.6. Redundancy

Redundancy occurs if two rules share a common premise and conclusion. Only one

rule should be kept.

5.2.2. In Domains with Uncertainty

5.2.2.1. Overly Generalized Rules

By an overly generalized rule, we mean a rule whose degree of certainty is below some

threshold or which covers more than a threshold number of negative instances. A rule

with low degree of certainty implies its LHS is not very specific for concluding its RHS. In

JAUNDICE. we choose ".4" as the threshold. Thus. a rule with degree of certainty below

.4 is treated as an overly generalized rule. Also we define that a rule. whatever the degree

of certainty is. should not cover more than 10% of negative instances (in JAUNDICE):

o)therwise it is overly generalized. Though it seems reasonable to obtain a piece of certain

•nrt rrmation by accumulating several pieces of uncertain information, we are still reluctant

,. .? ,. .-. ,. ..- -. ,. -, . ., . . . , ,, , ., .,.. . . .,5

Automated Knowledge Base Updating 135

to accept a piece of very uncertain information. Moreover, the accumulation is under the

assumption of independency: since this assumption is not always proper, the accumulation

may lead to an erroneous result. Therefore, it is justified to remove the rules with low

degree of certainty.

5.2.2.2. Overly Specialized Rules

By an overly specialized rule, we mean a rule rarely succeeds because there are too

many conditions (or too many constraints) in the LHS of the rule. In JAUNDICE, if the

number of conditions in the LHS of a rule exceeds 6, the rule will generally be considered

as an overly specialized rule. An overly specialized rule may be right individually, but it is

. globally improper (from the viewpoint of the global system performance) since it may

cause false negative predictions.

5.2.23. Erroneous Rules (or Erroneous Degree of Certainty)

It makes little difference whether we say a rule is erroneous or the degree of certainty

assigned to it is erroneous. The rationale behind this is briefly analyzed as follows.

Consider a rule:

d
RI: P -> C

If "RI" is to confirm "C" (i.e., "P" is positive evidence for "C"), then the degree of

certainty "d" should be a positive number: if "d" is not a positive number, then "RI" is

wrong. On the contrary, if "RI" is to disconfirm "C" (i.e.. "P" is negative evidence for

"C"), then "d" should be a negative number: if"d" is not a negative number. then "RI" is

wrong. If"P" has nothing to do with "C". then "d" should be zero: if"d" is not zero, then

"RI" is wrong or "Ri" should not exist.

4'.. "',f

Automated Knowledge Base Updating 136

Incorrect degrees of certainty may be due to a small or an atypical case library which is

used to construct the KB or the bias of the KB builders. In our experience, degree of

certainty allows an error of about ".15" (also refer to [Buchanan and Shortliffe 84]).

Therefore, the following two rules are in accord:

-- .7
4.'- "Al -> class A"

"Al -> class A"

The following two rules contradict each other:

.7
"Al -> class A"

-. 5

"Al -> class A"

If one rule represents the truth, the other is erroneous. As described before, that two rules
4.

differ in their conclusions but overlap in their premises is not a real conflict

5.2.2.4. Missing Rules

Either no conclusions or incorrect conclusions may imply some rules are missing. Had

these missing rules been applied, errors would not have occurred.

5.2.2.5. Subsumption

One solution is to write rules in a mutually exclusive way so that they won't succeed

simultaneously (Shortliffe 76]. In the following example, rule R1 subsumes rule R2:

fl
RI: Al & A2 -> class A

f2
R2: Al -> class A

The solution is modifying R2 into R3 as follows:

-.

'.

*.

Automated Knowledge Base Updating 137

f3
R3: Al & -A2 -> class A

5.2.2.6. Redundancy

Redundancy occurs if two rules are identical in their premises and conclusions, and the

difference of degree of certainty is trivial (< .15).

5.3. Fault Corrections

There are several operators to correct faults in the knowledge base. The types of faults

and their corresponding correction operators are summarized as follows:

Faults: Correction operators

1. Overly generalized * Adding conditions
rules * Replacing conditions

* Closing interval
(in JAUNDICE)

N 2. Overly specialized * Replacing conditions
rules * Deleting conditions

* Splitting rules
* Taking minimum or maximum
(in JAUNDICE)

3. Erroneous rules * Deleting rules
• Changing degree of certainty

4. Missing rules * Adding rules

In this section, we only describe how these operators generally work- the actual

implementation in JAUNDICE is described in Section 5.4.

"Adding conditions" operator, one of specialization operators, searches for the most

appropriate conditions to add in the LHS of the rule. By increasing the number of

constraints, the rule becomes more specialized (i.e., harder to be satisfied). The conditions

,... ...' .: , -' , . .- - -- - ." ..-- ." - .- - - - .. - ." . . . - . - ." "- -.- .- , .- -" . . - ' " '; .- . - -

Automated Knowledge Base Updating 138

chosen to add should be consistent with some positive instances and inconsistent with

(most) negative instances. For example,

instancel with attributes Al, A2, classified as class A
instance2 with attributes Al, A3, classified as class B

Then, the rule "Al -> class A" is overly generalized, and causes
false prediction of instance2.

And. this rule may be specialized into "Al & A2 -> class A".

"Maximally general specialization" can prevent specialization operators from excessive

specialization.

"Deleting conditions" operator, one of generalization operators, searches for the most

appropriate conditions to delete in the LHS of the rule. By deleting conditions, the rule

becomes more general (i.e., easier to be satisfied). The LHS of the rule after applying this

operator should be more consistent with the positive instances (namely, more positive

instances can satisfy), and still be inconsistent with (most) negative instances. For

example,

instancel with attributes Al, A2, classified as class A
instance2 with attributes Al, A3. classified as class 8

Then, a rule "Al & A2 & A3 -> class A" will be too specific for
instancel.

And, the rule may be generalized into "Al & A2 -> class A".

"Maximally specific generalization" can avoid excessive generalization by generalization

operators.

"Replacing conditions" operator replaces some conditions in the LHS of the rule by

more specific or more general conditions in order to make the rule more specific or more

£.- "- -.. --. . , " . - .. . ,-,'' ; "". ... ,-. - -' .- ".. - .. -.. , .. '. '

Automated Knowledge Base Updating 139

general. This can be conducted by climbing down or up the generalization hierarchical

tree.

"Splitting rules" operator is a special case of generalization operators. For instance, a

rule "Al & A2 -) class A" can be split (or say generalized) into "Al -> class A" and "A2 ->

class A".

"Turning conjunction into disjunction" is equivalent to "splitting rules". "Turning

disjunction into conjunction" is equivalent to "adding conditions". "Closing interval" and

"taking minimum or maximum" are described in Section 2.1.1.

The general procedure for correcting a misconclusion is summarized as follows (as will

be described in more detail in next section):

1. Find the relevant rules in the knowledge base.

2. Correct the faults in the KB by the following steps:

o Generalize those rules which should succeed but fail by "deleting
conditions" or "replacing conditions" operator.

o Specialize those rules which should fail but succeed by "adding

conditions" or "replacing conditions" operator.

o Delete or change the degree of certainty of erroneous rules.

* Add rules if they are missing in the knowledge base.

In fact, each fault correction operator is a search operator, searching for the most

plausible solutions. Consideration of the potential huge search space created by applying

all possible operators to all possible rules motivates the development of the strategy of

. * .

Automated Knowledge Base Lpdating 140

"retrospective inspection after learning". With this strategy, the rules which can rectify the

misconclusion are first found, and the comparison of the learned rules with the old rules

will provide hints of knowledge base modifications. Since the goal is to correct the

misconclusion. learning rules on the basis of the misconcluded case can be viewed as a

goal-oriented approach. If we apply the learning method of "search from the most general

hypothesis", which actually successively applies specialization operators (described in

Section 2.2). there will be only one search space. In contrast, if we start from many old

rules and try to modify them by expanding a search space for each rule. the cost is

expected to be much higher unless there are only a small number of rules involved.

Furthermore, missing rules can be found only by learning. Thus, this approach becomes

even more useful in the incipient stage of knowledge base construction, when there are

lots of missing rules.

5.4. Automated Debugging

Figure 5.1 shows the data and knowledge flow in the process of automated debugging.

A -
. ,

.

Automated Know ledge Base Updating 141

's'

""'"(Data base)

Consultation Learn ing
system system

Human experts Debugger

FigureS.1 Overview of the automated debugging mechanism
in the JAUNDICE program.

When a misconclusion occurs, as indicated by a knowledge source (e.g.. experts), the

learner will first be triggered to learn rules with respect to the misconcluded case, then the

debugger proposes experiments for modifying the KB, based on the comparison between

the learned rules and the old rules, and the proposal will be accepted or rejected.

depending on the result of verification over the old reference cases and on whether the

misconclusion can be rectified. There may be more than one iteration if the first proposal

is rejected. In each iteration. the learning system may adjust its selection criteria and thus

change the quality of learned rules: however, the debugger only inflexibly applies some

,.., rules (described later) to propose modifications.

.- - * . . * ".... - ... ,, ,._,', , .. , , ..- .,. ,', ,

Automated Knowledge Base Updating 142

There are two sources of reference: the knowledge source which indicates the

misconclusion and provides a correct answer, and the old cases in the DB. The acceptable

result is the consistency between these sources: i.e., the modified KB can rectify the

misconclusion without degrading the performance with respect to the old reference cases.

This double-check can make the debugging result more reliable. Sometimes, if the data of

" the misconcluded case are incomplete or the expert instead of the system gives a wrong

conclusion, the learner may find no good rules to send the debugger.

5.4.1. Fault Analysis

The diagnosis given by the consultation system is called "system's diagnosis", and that

given by the expert (assume the user is an expert: otherwise the user will be forbidden to

give his diagnosis) is called "expert's diagnosis". Since uncertainty is involved, the system

%ill actually return a list of disease diagnoses which are ranked according to the

corresponding degree of certainty: and only those diagnoses with significant degree of

certainty are returned to the user (the expert). The expert often gives one disease

diagnosis that he believes most. Though, sometimes, the expert may give more than one

diagnosis if he can not make further distinctions: however, this is not a good case from the

learner's point of view: in learning from examples. each training instance is labelled as

either positive or negative instance, but not both. If the expert doesn't agree to the

system's conclusion, the automated debugging process will be initiated. The system's

diagnosis is said to match the expert's diagnosis if and only if both of the following are true

(issume the expert gives only one disease diagnosis):

1. The system's top diagnosis is the same as the expert's diagnosis.

2. -The system's top diagnosis is as certain as the expert's belief.

Automated Knowledge Base Updating 143

Example L. The system's diagnosis:

Disease A .6 (degree of certainty)
Disease B .3
Disease C .1

The expert's diagnosis:

Disease A .9

<comment:>
In this case, the system's top diagnosis,

though the same as the expert's diagnosis,
is less certain than expert's belief

(the difference is greater than ".15", the
precisional error).

<possible remedy:>
Raise the degree of certainty of Disease A

by the means described later.

Example 2. The system's diagnosis:

Disease A .6
Disease B .3
Disease C .1

The expert's diagnosis:

Disease 8

<comment:>
In this case, Disease B is the most certain

diagnosis given by the expert, though he
didn't give his belief about it. And the
system top diagnosis does not match the
expert's diagnosis.

<possible remedy:>
Raise the degree of certainty of Disease B,
Reduce the degree of certainty of Disease A.
such that Disease B can override Disease A,
by the means described later.

In a given case. for a given diagnosis. the degree of certainty can be raised by the

following ways:

,~ * . '' 4 . '' ~W~. . _.,'..... ., ..'._ , . . . -

Automated Knowledge Base Updating 144

1. Generalize the partially satisfied confirming rules which conclude the
diagnosis so that the rules can be satisfied and the diagnosis can be more
confirmed.

2. Specialize the satisfied disconfirming rules which deny the diagnosis so that
the rules won't be satisfied and the diagnosis can be less disconfirmed.

',/

3. Raise the degree of certainty of the satisfied confirming rules so that the
diagnosis can be more confirmed.

4. Reduce the degree of certainty of the satisfied disconfirming rules so that the
diagnosis can be less discon firmed.

5. Add new rules (or missing rules) which conclude the diagnosis and can be
satisfied by the given case so that the diagnosis can be more confirmed.

6. Delete the satisfied erroneous disconfirming rules which deny the diagnosis so
that the diagnosis can be less disconfirmed.

On the contrary, the degree of certainty can be reduced by the following ways (opposite to

those ways for raising degree of certainty):

1. Generalize the partially satisfied disconfirming rules wb;,h deny the diagnosis
so that the rules can be satisfied and the diagnosis can be more disconfirmed.

2. Specialize the satisfied confirming rules which conclude the diagnosis so that
the rules won't be satisfied and the diagnosis can be less confirmed.

3. Raise the degree of certainty of the satisfied disconfirming rules so that the
diagnosis can be more disconfirmed.

4. Reduce the degree of certainty of the satisfied confirming rules so that the
diagnosis can be less confirmed.

5. Add new rules (or missing rules) which deny the diagnosis and can be satisfied
by the given case so that the diagnosis can be more disconfirmed.

6. Delete the satisfied erroneous confirming rules which conclude the diagnosis
so that the diagnosis can be less confirmed.

'p • . . . ° j

Automated Knowledge Base Updating 145

However, as will be described next- the method developed here will not exhaustively

exploit the above operators.

5.4.2. Application of Machine Learning

The combinations of possible fault corrections described in last section can be great.

However, the complexity can be reduced if we handle those invoked and non-invoked

rules separately. Since the invoked rules are often a small subset of the KB. we may

examine them exhaustively. In contrast. exhaustively examining the non-invoked rules is

inefficient because they are often so many and there is no way to examine missing rules.

Instead, we apply the learning technique (focusing mode of learning, described in Section

2.2.4) to learn rules, based on the misconcluded case, and compare the learned rules with

the old rules to determine the modifications of the KB.

The procedure is described as follows:

" step 1. Examine the invoked rules: check the degree of certainty and check
whether they break the pre-defined constraints for minimal generality and

specificity.

o If they are sound, do nothing.

o Otherwise. optimize the potentially erroneous rules according to the
procedure described in Section 4.5.3.2. Note that. after optimization, the

rules which are initially satisfied by the misconcluded case may become

unsatisfied. Sometimes, an activated rule is desired to be inactivated

(usually by specialization) in order to remedy the misconclusion. but this

is allowed only if favored by the old reference cases: consequently, we
use optimization instead of simply specialization to tackle this problem.

, step 2. Apply focusing mode of learning. based on the misconcluded case.

o Learn confirming rules to support the expert conclusion (see Section

h'7

Automated Knowledge Base Updating 146
A

2.2.4). and learn disconfirming rules to disfavor the system
misconclusion (see Section 2.4).

Compare the learned rules with old rules, propose experiments for
modifying the KB. and verify them (see next section).

In our model, the KB is constructed initially on the basis of a set of training instances: as

the database accrue, the statistics may shift, and a rule, sound in one time, may become ill

in another. The step 1 is intended to adapt the KB to this temporal change. However, as

the statistics converges, this possibility will decline.

5.4.3. Retrospective Inspection after Learning

After learning rules based on the misconcluded case, the subsequent stage is to

determine how to integrate those rules into the KB. In our model, the newly learned rules

are based on the current case library: they may not necessarily be consistent with the old

rules, which are learned based on the initial case library. Therefore, it is necessary to

check the consistency between the newly learned rules and the old rules. If one newly

found rule is incompatible with one old rule. it is plausible to replace the old rule by the

new one because the new rule is consistent with more cases than the old one. The

experimentations and verifications described in the following sections are designed to

assure the replacement of old rules by new rules or adding new rules if they are missing is

.% proper. The experiments are proposed on the basis of the comparison between the new

and the old rules. One newly learned rule will be compared with one old rule if and only

if they share a common RHS.

'.

'p.

'p

Automated Knowledge Base Updating 147

5.4.3.1. Experimentations

There are four experimental rules. The first experimental rule is used for correcting

overly specialized rules in the knowledge base:

ERI: If 1. One learned rule is more general than one rule in the
knowledge base.
2. The difference of degree of certainty is trivial (i.e., <.15).

Propose: Replace the rule in the KB by the learned rule.

Since a learned rule has been "optimized" within the same range of degree of certainty

-with respect to some criterion (i.e., weighted prediction error) in the current database, the

old rule should be updated if indicated. If the degree of certainty differs, it is

,- *4" incomparable; in EMYCIN-based systems, more specialized rules are often associated

with higher degree of certainty. That "rule R1 is more general than or as general as rule

1R2" means "whenever the LHS of R2 is true (or satisfied), the LHS of Ri will also be true

'- (or satisfied)". This is detected when the following two conditions exist:
.5-. 1. The features in the LHS of R1 are a subset of features in the LHS of R2.

2. For each feature in the LHS of RI. its value is the same as or more general
than the value of the same feature in R2.

R1 will be more general than R2 if the above conditions are satisfied and R1 is not the

same as R2. One example of applying the rule ER1 is as follows:

'v..; .7

One learned rule, LRI: Al -> class A

One rule in the KB. RI: Al & A2 -> class A

Then. R1 might be replaced by LRI.

The second experimental rule is used for correcting overly generalized rules:

5.° .t

-...

Automated Knowledge Base Updating 148

ER2: If 1. One learned rule is more specific than one rule in the
knowledge base.
2. The difference of degree of certainty is trivial (i.e.. < .15).

Propose: Replace the rule in the KB by the learned rule.

Again, because a learned rule has been optimized, it is plausible to update the old rule

according to the learned rule. "More specific" is the opposite of "more general". "R I is

more general than R2" is equivalent to "R2 is more specific than RI": therefore, we can

detect "more specific" by the same means we detect "more general" as above. One

example of applying ER2 is as follows:

.7
One learned rule, LR2: Al & A4 -> class A

.6

One rule in the KB, R2: A4 -> class A

Then, R2 might be replaced by LR2.

The third experimental rule is used to delete erroneous rules:

ER3: If 1. One learned rule is contradictory to one rule in the
knowledge base.

Propose: Replace the rule in the KB by the learned rule.

As mentioned earlier the newly learned rule is consistent with more cases than the old

rule, it is plausible to apply this rule. For two given rules whose LHS and RHS are both

the same, if the difference of their degree of certainty is trivial (less than .15). then they are

"redundant" with respect to the other: otherwise they are "contradictory". If two rules

share a common LHS. their RHS are mutually exclusive, and the degree of certainty of at

least one of them is "1", then they are contradictory. This rule is exemplified as follows:

.7
One learned rule, LRI: Al -> class A

'...

?:..

C N ,% % % 4
.

" *. " .". " " ".*". . " - -'- - .'- - --. .. - - '- '- - - -*- ' . .

Automated Knowledge Base Updating 149

-. 3
One rule in the KB, R3: Al -) class A

Then. R3 might be replaced by LR1.

The last experimental rule is used to treat missing rule:

ER4: If 1. One learned rule can't be applied by ER1, ER2, or ER3.

2. The learned rule is not redundant with respect to any rule in

the KB.

Propose: Add the learned rule in the KB

If the learned rule is redundant, do nothing to the KB. Finally, if subsumption occurs, it

can be handled in a way suggested by tShortliffe 76]. This is illustrated in Section 5.2.2.5.

5.4.3.2. Verifications

The proposed experiments are then verified to see whether the performance is still

maintained (or even improved) when applied to the old reference cases and whether the

misconclusion is rectified. The reliability of the knowledge source which indicates the

misconclusion and provides the correct conclusion is an important concern. In medicine,

the source can be regarded reliable if it is based on a pathognomonic study or the advice of

senior experts.

The experiments are verified as follows:

- If the source is definitely reliable.

o If the modifications to the KB can rectify the misconclusion and

maintain or improve the performance reflected by the weighted

S'prediction error (defined in Section 4.5.3.1) with respect to the old

reference cases, accept the modifications.

" Otherwise. reject the modifications.

'p

b---

Automated Knowledge Base Updating 150

If the source is not definitely reliable or there is no knowledge of this.

o If the modifications to the KB can rectify the misconclusion and

maintain or improve the performance reflected by the weighted
prediction error with respect to the old reference cases, suspend the
modifications until confirmed by experts or advanced studies.

o Otherwise. reject the modifications.

5.4.4. One Example

Here, we demonstrate the procedure of automated debugging with a real case in the

database of JAUNDICE.

I.

Case3l: system's diagnosis: Acute hepatitis .4
Calculous Jaundice .2

* Expert's diagnosis: Calculous jaundice

Debugger:
main goal: Make Calculous jaundice the top diagnosis.
subgoal : I. Raise the degree of certainty of

Calculous jaundice.
2. Reduce the degree of certainty of

Acute hepatitis.

Procedures:

step 1 Check the soundness (see text) of those
activated rules: R1, R23, R25, R26, R33, R66

(Since all rules are all right, the debugger moves to
next step.)

step 2. The learner is triggered to learn rules by
focusing on CASE31, with focusing mode.

One rule is obtained:
NRI: If 1. serum bilirubin is elevated.

2. Colicky rt. upper abd. pain

is present.
then likely (.6) Calculous jaundice.

::;...:..;:~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~. :. .;:.........:::::::::::-..... -- ,,---

Automated Knowledge Base Updating 151

(Then, the debugger moves to the next step.)

ste 3. The debugger finds NR1 is more general than
rule "R114" in the KB:

R114: If 1. Serum bilirubin is elevated.

2. Colicky rt. upper abd. pain

is present.
3. Course is recurrent.

then likely (.7) Calculous jaundice

First experimental rule "ERI" is triggered, the
result is as follows:

"R114 might be generalized into NR1"

(Then the debugger returns the experimentally

modified KB to the performer.)

step 4. The performer (the consultation system)
reruns the case.

system's diagnosis: Calculous jaundice .68
Acute hepatitis .4

. step 5. Check the weighted prediction error of
the old reference cases.

(Assume wp=2, wn=l)

Before changes: wpe= 2x2 + ixO =4
(i.e., there are two incorrectly concluded

cases and one unconcluded case.)
After changes: wpe= 2x2 + IxO =4

Succeed!

(The changes in the KB are accepted.)

U,

5.5. Comparison and Discussion

The main features of the work developed here are summarized as follows:

1. Because the updating is completely automated (except that another knowledge

source is required to point out the incorrect conclusion made by the expert
system), experimentations and verifications are necessary.

..
I' _ _ .- .- .- -- .- - .- .- .- . . .- .- .- -- -- -2 -.. 7 -*-. ..--.:. " - " '

'V,.

Automated Knowledge Base Updating 152

2. It is a part of the complete learning model we develop.

3. It is intended to achieve an optimum with respect to both old reference cases

and the new case with incorrect conclusion.

4. It can cope with uncertainty and is designed primarily for EMYCIN-based
systems where evidence can be combined.

Based on these features, we choose several related Al programs for comparison in order to

reveal the underlying significance.

TEIRESIAS [Davis 791 is the most related work in the sense that it is also designed in

MYCIN-like systems and includes a similar bug tracking strategy by examining the

relevant rules with respect to a certain case is used. However, because of different

assumptions made, the approaches to modifying the KB are quite different. TEIRESIAS

debugs the KB, based on the empirical knowledge from a knowledge source (i.e., the

human expert) which is assumed to be reliable while in the herein developed method, we

don't assume there is a knowledge source which can debug the KB (but we assume there is

a knowledge source which can detect the incorrect conclusion made by the system), and

.-,. the debugging requires some experimentations and verifications to increase its credibility.

EMYCIN [Van Melle 801. including a TEIRESIAS-like environment, also provides a

similar verification mechanism as our program does. However. the fundamental

difference is man- vs. machine-oriented approach. For example, TEIRESIAS relies on

expert knowledge to specialize a rule so that it will not succeed, while the automated

technique relies on an optimization search to decide whether to specialize, and, if so. how

to specialize. If one rule should be generalized so that it can succeed. TEIRESIAS again

,S relies expert knowledge while the automated approach takes advantage of the inductive

"o-o.° K

* - .-

-r f n --- ' --- w- r-

Automated Knowledge Base Updating 153

concept learning technique to learn rules first and compare them with the old rules to

decide which rules should be generalized. If new rules should be added, TEIRESIAS

assists the expert to transfer his knowledge while the automated approach again exploits

machine learning technique. Moreover, in an inexact domain, automated debugging may

achieve a better result than expert-oriented approach in dealing with compromise among

correcting multiple faults.

The SEEK program [Politakis 82] is designed to refine the KB by generating

experiments and asking the expert's advice. Instead of machine learning employed in our

work. the SEEK program generates experiments based on domain-dependent heuristics.

Its great limitation is the incapability of finding missing rules. Our approach is

comparatively more general and powerful.

The rule checker program [Suwa 841 conducts a systematic and exhaustive checking,

which is certainly not the case in our work, in the KB. The apparent limitations of this

approach include the following: the search space can't be too large, and most of the

possible combinations should be meaningful; otherwise it is very inefficient. The program

also doesn't mention handling of uncertainty.

The poker player [Waterman 68] also uses the strategy of "retrospective inspection after

learning" as our method does. Perhaps because he assumes there is no inconsistency and

uncertainty, his program is intended to maximize the performance of each individual play

without re-examining the old plays. In contrast, our method is intended to maximize the

performance under considering both old reference cases and the new case. In addition.

the analytical technique used by Waterman (neglect the advice taking technique here since

r~ 'j"

Automated Knowledge Base Updating 154

our approach doesn't rely on it) to acquire training rules rests with the proof by backward-

chaining via an axiom system. In contrast, we use forward-chaining to handle those

activated rules (i.e.. try to optimize those activated rules if they are found ill) and

backward-chaining (or goal-oriented) to learn rules for the misconcluded case for reasons

of efficiency. In more detail, when we apply focusing mode of learning, we treat the

misconcluded case as "positive instance" (indicated by the correct conclusion) and the

learner is intended to learn rules for iL However, instead of labelling the misconcluded

case as "negative instance" to learn rules for classes other than the class indicated by the

correct conclusion of the misconcluded case, we simply focus on those activated rules to

see whether they accidentally cover the misconcluded case as classes other than the class

indicated by the correct conclusion of the misconcluded case. For example, if the

misconcluded case should be "Disease A" but it is falsely concluded by "rule R" as

"Disease B". then we don't learn rules for diagnosing Disease B by treating the

misconcluded case as a negative instance: instead, we simply check whether the rule R is

optimal, and, if not. decide how to optimize it, based on the consideration that the falsely

activated rules are very limited (often no more than a few).

5.6. Summary

From a long term perspective, the necessity of updating a KB is clear. However.

incremental updating should not degrade the performance standard maintained by the old

reference cases. Consider various sources of errors and the imprecise nature of reasoning

in EMYCIN-applicable domains: it is often hard to add new knowledge monotonically

without e~amining its impact on the old truth %alue reflected by the weighted prediction

error o er the old reference cases. Uhus. we decl(up a method which optimizes the KB at

-'I - A __ _% - -A-

Automated Knowledge Base Updating 155

"t=t" by minimizing the error in the period from "t=O" when the KB is initially

constructed to "t= to" when a new case with incorrect conclusion appears: the method will

repeatedly be applied every time a misconclusion occurs. The task is accomplished by

learning, proposing experiments based on the four experimental rules described, and

verifications.

-AV

--° .,

-. 'Jf

4" .°

-.....

"- .

Discovery of .Ieta-Rules 156

Chapter 6

Discovery of Meta-Rules

6.1. Introduction

The value of meta-level knowledge for guiding the invocation, construction, and

explanation of object-level rules in an expert system has been demonstrated by Davis

[Davis 76]. In this chapter. we explore the use of machine learning methods for

formulating new meta-level knowledge. extending Davis' ideas about learning rule

models. The research reported here aims at learning meta-rules that will guide the rule-

based diagnostic system by pruning and reordering the diagnostic rules, as in MYCIN

[Davis and Buchanan 77).

We are strongly motivated by the fact that meta-rules are important in systems with

large knowledge bases to avoid exhaustive search. Yet. human experts should not be

concerned with control issues as much as with domain knowledge, so it is desirable to

automate the formulation of control rules.

This is a second-order learning problem (and not a first-order problem of learning new

object-level rules) which is defined as:

33 Thi chapter is basied on the article of(Fu 841.

4.'

' " ' " ,-, "" ' r"-'r ;
"
T, "t" "r r

"
"" ""-' ""

"
" ",-' '%"","..,.,. ,.,, r .

Discovery of Meta-Rules 157

. Given:
A set of object-level rules including:
inferential. causal, and taxonomic knowledge of

tne domain.

Find:
Useful meta-rules that improve system efficiency
by guiding the invocation of object-level rules.

This chapter first discusses design considerations and then presents implementation

details of the second-order learning system with demonstrations in JAUNDICE with 141

diagnostic rules that diagnoses likely causes of jaundice, and 80 non-diagnostic rules that

are linked in a network reflecting a taxonomy among diseases and causal links among

events as suggested in [Patil 82], [Wallis 82] and [Clancey and Letsinger 81].

6.2. Learning Meta-Rules: Design Considerations

6.2.1. Format of Meta-Rules

As in [Davis 76], we use two syntactic forms of meta-rules: pruning and reordering

forms (see Figures 6.1 and 6.2). In fact, the distinction between these two forms is often

blurred semantically. For instance, if we say "Do Rule-Setl before Rule-Set2", and we

succeed in our goal by invoking only Rule-Setl. then Rule-Set2 is pruned anyway. As

seen in figure 6.1 or 6.2. the premise of a meta-rule has three parts:

1. The first part is the goal description which can be global or local. and. in our

system. the global goal is disease-entity, and local goals include: syndrome.

pathophysiological mechanism, etiology, etc.

2. The sccnd art is a coniunction in which each conjunct is a predicate with a

tnplet of attribute. object. value.

3. The t i is the description of concluded ridk sets.

I' •.

Discoery of Xleta-Rules 158

Meta-ruleGO0
If 1. The goal is to conclude the disease of

*Jaundice.

2. The indirect type bilirubin is not
dominant.

3. There are rules which mention in their
premise "overproduction of bilirubin".

Then it is definite(I.) that each of these rules
is not going to be useful.

Premise:
(SAND (SAME JAUNDICE GOAL DISEASE-ENTITY)

(DIFFER LFT DOMINANT-BILIRUBIN INDIRECT)
(THEREARE OBRULES (SAND (MENTIONS PREMISE

OVERPRODUCTION-OF-BILIRUBIN)) SETI))
Action:
(CONCLUDE SETI UTILITY NO 1.)

Figure6.1 Example of a meta-rule in pruning form
created by META-RULEGEN. Upper part is it's English
translation: lower half is it's code in INTERLISP.

Meta-rule079
If 1. The goal is to conclude the disease

mechanism of Jaundice.
2. The Alkaline Phosphatase level in serum

is greater than 15 B.U.
3. There are rules which mention in their

action "Cholestasis".
4. There are rules which mention in their

action "Parenchymal-dysfunction".
Then it is probable(.8) that the former should

be invoked before the latter.

Premise:
(SAND (SAME JAUNDICE GOAL DISEASE-MECHANISM)

(SAME LFT ALKALINE-PHOSPHATASE >15B.U.)
(THEREARE OBRULES (SAND (MENTIONS ACTION

CHOLESTASIS)) SETI)
(THEREARE O2RULES (SAND (MENTIONS ACTION

PARE NCHYMAL-DYSFUJCTION)) SET2))
Action:
(CONCLUDE SETI DOBEFORE SET2 .8)

Figure6.2 Example of a meta-rule in reordering form
created by META-RULEGEN.

'Ia

Discosery of Nleta-Rules 159

The descnption of the rule sets in the third parts of meta-rules may be by content or by

name. Indirect referencing (by content) is important to maintain flexibility and

understandability. The learning program also expands indirect references into a so-called

name-referred form with an explicit list of rule names, as seen in figure 6.7.

6.2.2. Utility Consideration of Meta-Rules

The main reason for incorporating meta-rules in a performance system is efficiency. 4

Theoretically, it is difficult to say how to measure the efficacy of meta-rules unless we

delineate the concept of Utility Value for the meta-rules. which is also important in

generating them.

6.2.2.1. Utility Value for Meta-Rules

The Utility Value of meta-rules is based on an analysis of costs and benefits. Intuitively,

" high Utility Value is associated with high benefit and low cost. We define an absolute

utility value based on estimated savings in CPU time and then a relative value to

normalize absolute values over object rule sets of different sizes.

Abslute~ Utily Value Qf Meta-Rules

The cost of a meta-rule is the estimated CPU time to evaluate its premise. If the

premise is true. then its benefit is how much CPU time might be saved by pruning or

.. -.. 34W
We are not concerned here with the use of meu-rules to guide a dialogue. although human eneineering

issues are also important. If the meta-rules are effecu.e in pruning unnecessary questions. however. 'he
dialogue will also appear to be better ftcused Note .dS thdt the term "utility" has different technical
metnings in different technical areas. We are concerned here %ith a measure of importance haed on
esuimated costs and benefits.

Discovery of Meta-Rules 160

reordering object level rules under the guidance of the meta-rule. For simplicity, we first

define unit cost to be "average CPU time to evaluate one conjunct (clause) in the

premise." Suppose there are "n" conjuncts in the premise of the meta-rule, we define the

cost of the meta-rule to be "n" units. (The performance program may cease evaluation

once one conjunct appears to be false,but our estimate will assume the worst case.) The

benefit will be how many object level rules are pruned out. if the meta-rule succeeds (i.e.,

if it's premise is true). The cost of using one object level rule will include CPU time for

evaluating its premise. and, if the premise is true, making a conclusion and doing the

bookkeeping. But, considering the least condition (i.e., first conjunct is found to be false.

and evaluation is stopped). if there are "m" object level rules which are pruned away by

the meta-rule, then the least benefit will be "m" units. Again, our estimate assumes the

worst case (i.e., least benefit). Thus, if a meta-rule makes a successful and accurate

prediction. then the gain (the ratio of benefit to cost) will be "m/n". Now. the Absolute

Utility Value (abbreviated as AUV) is defined for a meta-rule as follows:

AUV = b/c0 x Freq.(prem.) x CmR,

where,

b = Number of object rules pruned.
co = Number of conjuncts in the premise.
Freq.(prem.) = the estimated frequency with

3which the premise is true.

CmR35 degree of certainty of meta-rule.

This definition of AUV takes into account not only the cost and benefit, but also the

frequency with which the premise is true over reference cases in a case library (see figure

6.6) and the degree of certainty of the meta-rule. If the meta-rule rarely succeeds, it will

35C R ranges from 0 to 1. "Zero" means "unknown". while "one" means detinitelv ves. It is Obtined
frohuman experts. or can be computed as dscnbed in Section 6.3.2.

4o

Discovery of Meta-Rules 161

haxe low utility. And. even if it succeeds (i.e.. the premise is true). the prediction

(conclusion) will be very uncertain if the degree of certainty of the conclusion is very low.

When the frequency information is incomplete, it can be estimated from a Frequency

table. that stores the number of cases (in the case library) for which each single premise

clause is true. For instance, if a premise mentions the presence of Attributel and Attribute

2. then we can estimate the frequency of the conjunction by multiplying the frequency of

Attributel and Attribute2 in the reference cases under the assumption (default) of

independence. An example of calculating AUV is shown in Section 6.4.

Theorem The threshold value for AUV such that
the expected benefit under the worst assumption 36

" will be greater than zero is:

AUVthshid = 1 + cpf(1 - CmR)/Co

c p: Penalty owing to the incorre
prediction by the meta-rule.

Co: Number of conjuncts in the premise.
This is the required cost to evaluate

-. a meta-rule.
b: Number of object rules pruned.

This is the benefit when a meta-rule
succeeds.

f: Freq. (prem.)
bexp: Expected benefit of the meta-rule.

(proof): CmR can be viewed as the estimated rate of correct predictions out of all

predictions. Therefore, if the meta-rule succeeds (i .e.. the premise is true) and the

prediction is correct, then the net benefit will be "(b -co)". and if the meta-rule succeeds

and the prediction is wrong, then the net benefit will be "(-c. - c p)". Otherwise, the net

benefit is "-c " Hence, the expected benefit is:

36A discu,sed abose, the estimate is under the worst assumption, a conservative estimate, so to speak.

37 Ct nlot I. then the meta-rule may predict wrong sometimes. And. the wrong predictions may cause
penl:, .ih depends on the extent the svstem undoes and re-executes, or the extent of improper reordenng.

d%

• °%

°L ! A i01 '

Discovery of Meta-Rules 162

bexp 2 [(b-CO)CmR - (CO+Cp)(1-CmR)]f Co(1-f)

%"Let bex p = 0. we get AUV = bfCmR/ o =I + Cp(1 -CmR)/co. and this is the

threshold value AUVthreshold.

Corollary I The minimal threshold. min. (AUVthreshold)=l.

Corollary2 AUVthreshold=1 when CmR=l or CpsO.

Corollary3 If AUV >> AUVthre h ld' then AUV can estimate
the lower bound of expected oenefit.

, .-(proof): from proof of the above Theorem.

bexp/co = AUV - AUVthreshold

[f AUV)>>AUV hd..."' (fUV > A Uthreshold'

then bx,/co - AUV.

or bexp - AUV x co.

Since co 1. AUV can estimate the lower bound ofbexp.

Reltiv ILUi Value O..f Meta-Rules

We also define Relative Utility Value (abbreviated as RUV) as follows.

AUV
RUV= x 100

Number of total object rules
under the global goal

Three important aspects of RUV are:

1. If AUV >> AUVthrehold , RUV can estimate the relative improvement (in
, r-.%ld

Discovery of Meta-Rules 163

percentage) of the overall system performance. Because the overall cost for

system execution is parallel to the number of total object rules, and . from
corollary 3 . AUV can estimate the expected benefit of a meta-rule , the ratio

of the two can estimate the relative improvement of performance by a meta-
rule.

2. RUV is good for comparison of meta-rules from different systems, which have
different numbers of object rules.

3. Because the object rule set usually expands quickly as a performance program
is being constructed, RUV is a more important index to maintain useful meta-
rules. For instance, if we assume the utility value can estimate the system
performance, we might say "keep those meta-rules with RUV more than 10"
rather than "keep those meta-rules with AUV more than 10" since "AUV
more than 10" may not be significant if there are, say. 1000 object rules.

6.2.2.2. Selecting Useful Meta-Rules

Our heuristics for selecting useful meta-rules are as follows.

.. step 1. we use AUVthrehold = 1. That is, we first retain those meta-rules with
AUV greater than "1". From corollary 1, we know if a meta-rule with its AUV
less than or equal to "1", it will be useless (i.e., its be, 0); however, if its
AUV is greater than "1". it may be useful but not necessarily since
AUVthrehoid is not necessarily "1". Therefore, step 2 is required.

* step 2. We useRUV as a reference and experimental simulations to do further
pruning.

Finally, we select a useful set of meta-rules by removing redundant meta-rules38 and from

experimental simulations.

38 If t.o met-rules often succeed simultaneously and their conclusions severely overlap. then the are

N redundant with each other. Both the frequency threshold and the extent of overlapping are defined

. heunsticafh.

",.-:. .

.,1% ,... . .. ' " - " J' - -, ' d ,.o . - . - ., , ' . . ' . " .. - - ." .' . " . - . " .. - . - .

Discovery of Nieta-Rules 164

6.2.3. Overview of Two Approaches to Learning Meta-Rules

6.23.1. From Object Rules

Starting from each object rule, the program uses information about three well-known

medical strategies [Miller, Pople, and Meyers 821 to determine if there could be useful

meta-rules covering this object rule and related ones.

1) Rule-out mechanism: If there exists enough evidence contradicting a fact. then we don't
* bother trying to confirm it or deduce other facts from it. If some evidence is against a

fact- then we attempt to form a hypothesis: "That fact and all possibly associated facts
with it may be ruled out based on that evidence", and if this hypothesis is justified by
some evaluation criteria (e.g., Utility Value), then we succeed in our attempt.

2) Rule-in mechanism: This is the inverse of the Rule-out mechanism, It says we should
consider certain facts first if some evidence implies doing so and this consideration is
valuable with respect to some evaluation criteria.

3) Differential mechanism: Physicians are often involved with the issue of differential
diagnosis, which is basically confirming one diagnosis from a set of possibilities to the
exclusion of the others. In part, this is the consideration that when there is more
evidence suggesting Diseasel than Disease2. it will be reasonable to confirm Diseasel
before Disease2.

6.23.2. From Attributes

If one conjunct appears many times in the premise of object level rules. then it might be

worthwhile to evaluate this conjunct first. If this consideration proves valuable, then we

" keep it. A similar syntactic approach can be found in [Davis 76] and [Van Melle 80]:

however, the difference is our explicit consideration of utilitv. as described in Section 6.3.
..-

- i.

Discovery of Meta-Rules 165

6.3. Implementation

6.31. Overview of META-RULEGEN

META-RULEGEN is a second order learning program. The learning of meta-rules is

based on:

1. 141 object level diagnostic rules, which are the inferential knowledge base of
JAUNDICE. a Mycin-like consultation system that aids in the diagnosis of

causes of jaundice.

2. Pathophysiological Taxonomy and causal links coded into 80 non-diagnostic
rules. from these three semantic structures are built up:

a. Denying-tree (see figure 6.3): a network of disconfirming associations.
If one node is denied, then, propagating along this tree, we know the

degree of denial of relevant nodes. The denying tree is constructed by
recording pairs of individual facts that are negatively linked in the
object-level rules. For example, no overproduction of bilirubin (-P1)
disconfirms (1.0) hemolysis (D1).

.-D1 .-02 .-D3 .-D4 .-D5 .-D6
~1 T-,A2tl ,*7211,3%

-J.-Pt 4P 2.

.-cI 1

J: Jaundice D: Hemolysis
Cl: Indirect bilirubin dominant 02: Acute hepatitis
C2: Direct bilirubin dominant D3: Chronic hepatitis
P1: Overproduction of bilirubin 04: Neoplasm
P2: Hepatocellular dysfunction D5: Calculous jaundice
P3: Cholestasis D6: Primary biliary cirrhosis

Figurc6.3 Part of Denying-tree in META-RULEGEN.
S=.

b. Affirming-tree (see figure 6.4): a network of confirming associations. If
one node is suggested. ther. by following the links in the affirming tree
we know the degree of implication of other nodes. The affirming tree is

%...

.-

! -".,-.''-,, , ,..- . ,Q . '.,.," ,.-. ' -' -.- ,-. ',- ,-'.',.-.- - . ,. - .. -", " , ." . ."., . .., . " . '.., ',. "- .- ,.,

Discovery of Meta-Rules 166

',A

constructed by recording pairs of individual facts that are positively
linked in the object-level rules. For example, overproduction of

-': bilirubin confirms (.95) hemolysis.

.01 .02 .03 .04 .05 .06
.95 .4 a . 5 .4 05

-. 95

Figure6.4 Part of AFFIRMING-tree in META-RULGEN,
same notations as in Figure 6.3.

c. List of differential pairs (or groups) and mutually exclusive pairs (or
groups) (see figure 6.5): lists of incompatible diagnoses and findings.
This list is constructed by recording pairs of individual facts that are
incompatible (and often easily confused) with each other as reflected by
the object-level rules. For example. hemolysis should be differentiated
from Gilbert's disease (congenital conjugation defect), because they are
similar in the aspect that urine bilirubin is negative.

((Hemolysis Congenital-conjugation-defect)
(Hepatitis Calculous-jaundice)
(Primary-bil iary-cirrhosis Calculous-jaundice)

Figure6.5 List of differential or mutually
exclusive pairs (or groups).

In these three structures. the current implementation allows no conjunction or
disjunction in each node, i.e.. each node represents a single fact.

3. Heuristics. which underlies the whole procedure for learning meta-rules (see
Section 6.2.3). The frequency table which is constructed by recording
frequencies of attnbutes over the cases in the case library (see figure 6.6) is also
used to guide the program.

. .". .

"_,L .' - ..'-.N - .- 3) I. - ,i' . - - .. -., ? , . .-... - - , , . , . . . ,. . , , ., . . , .
' t '-- -'. 'T ,' -. Z__._ ' . . ,' ° " ," " " " ", , " . .- " " - - " -- . ' . - . . " - ," , ." , . - " . " - '. " . " -, " , •. . - -,, ' " - , . '-. ,'.

• arm n, - " -" " . A "" - "" " " " " '" " ' " A - '""" ,""" ,

Discovery of Meta-Rules 167

(Acute-course .5)
(Malaise 7)
(Chills .08)
(Marked-body-weight-loss .1)

Figure6.6 Frequency Table. Each sublist contains
an attribute with its frequency in the case

library.

6.3.2. Algorithm

The search space of all possible meta-rules is roughly equal to the number of

combinations of legal attribute-value pairs in the existing set of object rules. If all

attributes were binary, this is the power set over n attributes. In the JAUNDICE program.

n is 56 attributes in the 141 diagnostic rules (some attributes have binary values, and others

* . have multiple values). The search is greatly constrained from the start by setting up the

affirming tree and denying tree, which represent positively and negatively confirming links

among attributes (and values) already noticed in the set of object rules.

There are two different parts of the algorithm, both of which are exercised. In our

experiments we have taken the union of the two sets of meta-rules as the result. The

.- algorithm is described for the separate approaches. Refer to Section 6.2.1 for descriptions

of the three parts of a meta-rule.

- °. . .

Discovery of Meta-Rules 168

6.3.2.1. Approach from Object Rules

Form meta-rules on the basis of each individual object rule (of 141 diagnostic rules) as

follows. Collect all object rules and form a set S. Take out the first element from S and do

the following procedures: also delete this element from S.

e Step 1. Form the second part of the premise (conjunction of predicate with

attribute- object- value triplet) on the basis of the premise part of the object

rule. From the discussion in Section 6.2.3, we note that a piece of evidence

(premise in the object rule) is a plausible starting point to generate meta-rules.

* Step 2. For different conditions:

* a) Formation of pruning form meta-rules

i) If the object rule confirms some factby climbing the affirming tree, we

know what other facts also are implied, with degrees of certainty

calculated by propagating the uncertainty along the tree. 39 Thus, the

third part of the premise will be those rule sets mentioning "presence of

these facts", and these rule sets will be concluded to be useful in the

action part of the meta-rule with degree of certainty calculated as

described (see "Rule-in mechanism" in Section 6.2.3.1).

o ii) If the object rule disconfirms some fact. by climbing the denying tree,
we know what other facts are also denied. with degrees of certainty

calculated by propagating the uncertainty along the tree. Thus the third

part of the premise will be those rule sets mentioning these facts.and

these rule sets will be concluded to be useless with degree of certainty

calculated as described. (see "Rule-out mechanism" in Section 6.2.3.1)

o Note that in both (i) and (ii). more than one meta-rule will be formed.

There is a merging process in step 5.

* b) Formation of reordering forBm looking at the list of differential pairs, we

39 For example. ifA implies with degree of ceruint, .4 arnd B impliesC with degree of ceruinty 6. then A
implies C with degree olt erunt.> 4 x 6 24

iEr

Discovery of.Meta-Rules 169

know. for instance. Factl should be differentiated from Fact2. If the object
rule confirms Factl. then under the premise of this object rule, Factl should
be pursued before Fact2. Thus. the third part of the premise will be rule sets
mentioning Facti. called Setl. or Fact2. called Set2. and it is concluded in the
action part that Set1 should be invoked before Set2 with degree of certainty
approximately equal to the degree of certainty of the object rule. Similarly. we
can figure out the process if the object rule disconfirms Factl (see
"Differential mechanism" in Section 6.2.3.1).

Step 3. Form the first part of the premise (the goal description) on the basis of
the mentioned facts in the third part of the premise (the description of rule
sets). For example, in Meta-rule079 (figure 6.2), the reordering of two facts:
"cholestasis" and "parenchymal dysfunction" has to do with the conclusion of
the subgoal "disease mechanism".

- Step 4. Calculate the Utility Value for each newly formed meta-rule, and filter
*-,.,out those with AUV being less than 1.

o Repeat the whole procedure until the set S is empty.

- Step 5. Meta-rules are further selected, based on RUV and experimental
simulation results. That is, we first set a cut-off point with respect to RUV to
select meta-rules: those selected rules are then tested by experiments (see
Section 6.4). Then. merge the meta-rules. If two meta-rules have the same
first and second parts of the premise and their conclusions have no (or little)
overlapping with respect to the concluded rule sets, then (a). add their
descriptions of concluded rule sets to form a description of a new rule set and
(b). add their conclusions (actions) to form a new conclusion (action). The
Utility Value of the merged meta-rules is defined as the sum of the Utility
Value of the individual rules before merging. Also, the redundant meta-rules
are removed.

Example 1.

In the following descriptions, the notation

W"-" means "absent" or "denied".

A set of object-rules:

,....................................

n. : , •wr r.r , - 7"- - ' , .r r -, -' ~~ , _ - -z- -' r, ' --- rr-r-r r. , " 4- C," -

Discovery of Meta-Rules 170

.7

Ri: Al -> -Sl
.6

R2: A2 -> S2

A part of denying tree:
1.

-$I -> -Ml
1.

-Sl -> -M2

Form potential meta-rules on the basis of RI:
By propagating implications,

.7

Al -> -Ml
.7

MRl: Al -> Rules mentioning Ml are useless
Similarly,

.7

MR2: Al -> Rules mentioning M2 are useless

(Note that "MRl" can be interpreted as:
"If attribute Al is present,
then any rule mentioning presence
of MI will be useless,
with degree of certainty .7",
since MI is denied by Al.)

Calculate the AUV as shown in Section 6.4.

If both MR1 and MR2 are determined to
be retained after selections and their
conclusions are little overlapped,
then they are merged as:

.7

"Al -> Rules mentioning Ml are useless
.7

-> Rules mentioning M2 are useless."

<Note:>
If a part of the differential list is:

"((Ml M3)
then a potential reordering meta-rule can be
formed:

,- .7
MR3: Al -> Rules mentioning M3 DOBEFORE

Rules mrntioning Ml.

U.,3'

Discovery of Meta-Rules 171

since Ml is denied by Al.

6-3.2.2. Approach from Attributes

Collect all parameters (attributes) to form a set S. Take out the first element and do the

following procedures; also delete this element from S.

9 Step 1. Form the first part of the premise This is usually the main goal of the
system, if there is only one main goal.

* Step 2. Form the second part of the premise by "presence of the parameter",

and collect all object rules whose premise fails immediately because of

"presence of the parameter". Thus, the third part will be those rules
mentioning the presence of the parameter in their premise. and it is concluded
in the action part that these rules will be useless with degree of certainty 1.

*-Step 2'. Form the second part of the premise by "absence of the parameter ".

and do the similar procedure as in Step 2. (Note: we try to form two meta-
rules for each attribute with this approach.)

* Step 3. Calculate the Utility Value of each newly formed meta-rule, and filter
out those with AUV being less than 1.

- Repeat the whole procedures until the set S is empty.

- Step 4. Meta-rules are further selected by RUV and verified by experimental
simulations.

.9,.

Example 2.

A set of object-rules:

RI: Al & A2 -> Si

R2: Al & A3 -S $2

... . = , -, . r-~ = . , -' r - r w' r , ~ = i- s-v vr. -',c .r; , , ° _ ,

Discovery of Meta-Rules 172

Form potential meta-rules on the basis Al

MRI: -Al -> R1. R2, useless.

Calculate AUV

6.4. Results

Sixty-three rules were created by META-RULEGEN. About ten were formed by the

approach from attributes and the remainder by the approach from the 141 rules in a

preliminary version of the JAUNDICE system. About fifteen rules were reordering rules

(all formed by the approach from object rules) and the remainder were pruning rules.

(Figures 6.1 and 6.2 show one pruning rule and one reordering rule produced by the

program.) We expand the rule sets into explicit lists of rules (figure 6.7) to compute

Utility Values of MRO1 in figure 6.1 as follows.

AUV as: x .97 x 1 = 19.4 and

RUV = 19.4x 1I = 13.76
141

V.

'.
--

- . , - - . . .

-.. w~~i .. 4**. .

77 -

Discovery of Meta-Rules 173

Premise:
(SAND (DIFFER LFT DOMINANT-BILIRUBIN INDIRECT))
Action:
(CONCLUDE (R79 R78 R61 R20 R19 RI8 R17 R16 R13

R12 R11 RIO R9 R8 R7 R6 R3 R109
R117 R118)

UTILITY NO 1.)

Figure6.7 Name-referred form of meta-rule in

Figure 6.1. in which the intensive definition
of the concluded rule set is replaced by an
extensive definition.

Table 6.1 shows the distribution of Utility Values among the 63 meta-rules. We

informally confirmed that Utility Values are a reasonable standard. by looking at the

medical significance of meta-rules (as found in the literature). We found that meta-rules

with high Utility Values usually have high medical significance and conversely.

Table6.l Distribution of R.U.V. of 63 meta-rules
created by META-RULEGEN.

RUV Total

< 5 5-10 > 10

Number of
meta-rules 48 8 7 63

in addition. we performed a simple experiment to determine the effect of using some of

these meta-rules in the JAUNDICE program. We selected 20 representative cases (non-

randomly, but preserving the relative frequencies of diagnoses) among 72 cases collected

from the literature, and ran them in batch mode in the JAUNDICE program. We

measured the efficicncy before and after incorporating different meta-rules. Table 6.2

shows selected portions of the outcome from which we see that the predicted Utility Value

generally parallels the observed enhancement.

Discovery of Meta-Rules 174

"9,8

Table6.2 Relationship between Utility Value and
enhancement of system efficiency as determined
from 20 cases run in JAUNDICE program (batch
mode) with selected meta-rules.
(Lisp time: Lisp interpretation time, not compiled)

A.U.V. R.U.V. LISP enhancement
time (percentage)

(sec.

with MR01 19.4 13.76 271 15.3%

with MR34 13.07 9.27 293 8.4%
=-V=

with MR40 11.5 8.1 298 6.9%

with MR07 1.94 1.36 330 -3.1%

with MRO1 & MR34 256 20%

with MR01 & MR26 & MR37 &
MR40 & MR45 & MR46 121 62%

without metarules 320 NA

The most important result suggested in table 6.2 isthe addifiviOU3 of two non-

overlapping (non-overlapping of their pruned rule sets) meta-rules (e.g., MR01 & MR34).

This important property can be proved-formally (yet. we neglect the proof here), and it

indicates that, by carefully selecting a set of useful meta-rules. overall system performance

can be improved greatly (e.g., MR0l & MR26 & MR37 & MR40 & MR45 & MR46).

However, there seems to be a limitation of the enhancement by combining several meta-

rules.

40That is. the benefit of using two meta-rules A and B is (approximately) equal to the benefit of using A
plus that of usig B.

%%9 %

-" e 4 .",* " ._,, r
. , -

,- " , .- a - -. ".w . -'.- '.-,''"-...........-..........-..........-....-'.- -,.-.-....%,,,-.,%.-.-'.,'..

Discovery of Meta-Rules 175

Improved efficiency is only desirable in our system if there is no significant loss in

S,"" performance. Thus, we compared the quality of the performance with and without meta-

rules by asking whether the top disease diagnosis given by the system was the same as the

expert's diagnosis and whether the associated degree of certainty was "close" (i.e.. within

.15) to the expert's confidence if the top diagnoses given by the system and the expert are
matched.41 The results show nearly complete coincidence: the only one imperfect match

exists in an ambiguous case, in which two top diagnoses are given without meta-rules and

only one top diagnosis is given with meta-rules. These results are expected because the

meta-rules simply reorder the invocation of object-rules. If no certain conclusions are

made. all object-rules will be activated anyway.

6.5. Conclusion

Intelligent control of inferences is important in knowledge-based systems for reasons of

efficiency and human engineering, especially when knowledge bases become very large.

In both cases, focusing the attention of the performance program can be accomplished by

reordering and pruning elements of the knowledge base before invocation.

We have presented a general method for discovering meta-level knowledge that can be

used to control inferences of an underlying performance program. The demonstration of

the method is in terms of a rule-based representation of both object-level and meta-level

knowledge, but we believe there is nothing specific to a rule-based representation in the

method itself. The method depends only on representing the elements of the knowledge

4 1In the SEEK program [Pohtukis 821, the top model conlusion wb compared with the expert's conclusion:
however. the experts' conlidence is not considered in cofipknson.

I -7LA

Discovery of Meta-Rules 176

base in a network, with each node representing a fact and each link representing an

inferential (or evidential) relationship between facts. In the case of a MYCIN-like rule

base this means constructing three additional knowledge structures from the rules

themselves: an affirming tree. a denying tree and a table of differentials. These are explicit

networks derived from the object-level rules showing facts that are positive evidence for

other facts. negative evidence for other facts, or means of discriminating between two

facts.

These three knowledge structures are analyzed in order to determine sets of nodes and

links in the whole inference network that can be safely ignored in some contexts because

they are seen to be irrelevant (i.e., false in those contexts). Similarly, the analysis can show

parts of the network (sets of rules) that should be examined before other parts because that

will increase efficiency.

From another viewpoint, the analysis mechanisms (Rule-in, Rule-out and Differential)

are conditional search strategies because they help to select from a large stored knowledge
?%. .

source the best knowledge to apply. Meta-rules are just heuristics to select good and

useful object rules, and Utility Value is one criterion for weeding out heuristics. Although

we have designed our system to use degrees of certainty, an exact system without

uncertainty can also be handled. It is an extreme case of a system with uncertainty in

which uncertainty is quantized into two levels: True and False.

-" - In summar', the concepts descnbed in this chapter can be casil\ extendcd to other Al

systems because:

" Mechanisms such as, Rule-in and Rule-out partition the re&oning nct.ork

- -, _'-

&.. - - - - . . .

. Discovery of Meta-Rules 177
-,

into smaller sets of knowledge and remove the useless ones. They can serve as
the basis of forming both control and search strategy.

* Additional knowledge structures separate confirming and disconfirming links
in the inference network. The nodes in these structures can be any fact in the
world.

* The rules are not necessarily written in a MYCIN-like format. Moreover.
knowledge can be represented in other ways, for instance, in a semantic neL.

* The method can be extended to domains without uncertainty by using only
two levels "Yes" and "No" to measure the certainty.

'%4..

" 'S

• "-

" Results and Conclusions 178

Chapter 7

Results and Conclusions

A learning model has been developed that is capable of constructing a knowledge base

of rules from a case library and continuously updating it to accommodate new facts. This

model is particularly designed for a domain with considerable complexity, reflected by the

necessity of expertise for solving problems. Reasoning in such a domain often involves

uncertainty and complex evidential resolutions: or in rule-based systems, it implies

multiple interacting rules assigned with different levels of uncertainty (or partial certainty).

Some practical considerations, such as efficiency and error handling, are also explored as

much as possible.

We further develop a method of learning meta-rules from object-rules: this is what we
call "hierarchical learning". The learning model thus implicates completeness not only

along the time axis (i.e.. the KB can continuously be updated) but also along the

knowledge hierarchy.

The experiments with the system called JAUNDICE. which embodied all the

developed ideas, can serve as a good demonstration of the significance behind this model.

This chapter describes the experimental results, the issue of validation, some lessons

learned during the experiments, and the implicated future work.

...

Results and Conclusions 179

7.1. Results of Learning in JAUNDICE

In the jaundice experiment, we constructed a hierarchical knowledge base by the RL

program described in Chapter 2 from a training set of 72 jaundice cases collected from the

medical literature. The automatically constructed knowledge base has 232 rules including

112 intermediate rules (rules involved with intermediate concepts). We then compared

this new knowledge base with an old knowledge base of 141 rules, that was built by

encoding medical knowledge from textbooks and journals and is also hierarchically

structured. The comparison is done by using part of the program of automated debugging

described in Chapter 5. The result is shown in table 7.1.

Table7.1 Classification of 232 new rules learned
from a case library of 72 Jaundice cases with
the learning method developed in Chapter 2.

No. of
Rules

worth keeping 163

conflicting with old rules 1

more general than old rules 5

more specific than old rules 2

exactly same as old rules 33

not acceptable for
medical reasons 28

T ota 232

,%K

Results and Conclusions 180

From the abo~e table, it is seen that 33 rules in the original knowledge base are exactly

rediscovered by learning. It should be stressed here that it is not necessary to rediscover

all expert-generated rules by machine learning in medicine because even two experts may

write down different sets of rules with equally diagnostic power. The determination of

which rules should be retained is not a simple issue. It is not only a matter of looking up

the textbook or literature but a matter of human judgement. It is often difficult to find a

piece of textbook description that is identical with a rule learned by machine- the rule can

still be true after integrating all the related knowledge.

We then conduct a comparison with respect to the prediction power. which we think is a

much better quality measurement. First, we tested each knowledge base by the original 72

-ises: the diagnostic accuracy of the new vs. the old knowledge base is 97.2% vs. 84.7%.

But since the new knowledge base is based on these 72 cases, its better performance is

somewhat expected. Therefore, we further tested the knowledge base by 68 other cases

obtained from Stanford Medical Center; these cases received liver biopsy in 1978 and

were not all diagnosable from clinical parameters alone. The diagnostic accuracy of the

new vs. old knowledge base is 72.1% vs. 76.5%. If we remove all non-diagnosable cases

among these 68 cases, we get 42 diagnosable cases (by "diagnosable". we mean the pre-

biopsy diagnosis made by the physician who sent the biopsy coincides with the biopsy

diagnosis. Note that not every clinical case is clinically diagnosable because a disease may

be in its incipient stage without full manifestation): and the diagnostic accuracy is 83.3%

'.1t

.6

Results and Conclusions 181

vs. 8S.1% 4 (see table 7.2). The results indicate the new KB is comparable with the old

KB. The discrepancy may be ascribed to the fact that many more cases than 72 are needed

to learn rules for even a well-circumscribed domain. Textbooks. after all. encode

summaries of considerably more expenence.

Table7.2 Diagnostic accuracy of automatically learned
rules.

Old KB New KB
(141 rules-manually (232 rules-automatically
encoded from textbooks) learned)

Training set
for automatic
learning 84.7% 97.2%
(72 cases)

Test set 76.5. 72.1%
(68 cases)

Test set with
clinically
diagnosable* 88.1% 83.3%
cases only
(42 cases)

: Among the 68 test cases. 42 cases are diagnosable clinically
(refer to text descriptions).

If we turn off the intermediate knowledge learner and learn only direct rules (i.e.. only

I42f e assign a correct concluion a 4ujntit, , and an incorrect conclusion or non-conclusion a quanutv
"0" for each test case and he use a scaustic.l technique caLled "patied t Lest" (refer to (Croxton. Cowden. and

Klein 671) to determine ,khether there is a significant difference between the old and the new KB for making
conclusions, the result is "t = 1 434". -,hich indicates the null hypoihesis is accepted, or there is no significant
difference.

..

Results and Conclusions 182

step I described in Section 2.5 is turned on). we obtain a knowledge base of 185 (direct)

-- rules: this knowledge base without intermediate knowledge can save execution time43 to

some extent if compared with the know ledgc base of 232 rules (recall that the average

system execution time is roughly proportional to the number of rules in the knowledge

base), but the diagnostic accuracy tested by the 42 diagnosable liver biopsy cases drops to

61.9% (vs. 83.3% if intermediate knowledge is added). Here, we may notice there is a

tradeoff between execution time and quality of performance. We further notice that cases

which can be diagnosed correctly by the knowledge base with intermediate knowledge and

cannot be diagnosed correctly without intermediate knowledge are cases with incomplete

data. It seems clear that intermediate knowledge can improve the system prediction power

particularly if only partial information is available. Moreover, intermediate knowledge

provides much better understandability and explanation capability. For instance, in our

experimental domain, the incorporation of intermediate knowledge can explain the

underlying pathological and anatomical mechanisms of jaundice and make the diagnosis

more convincing. Based on the above considerations and discussions, learning

''... ,intermediate knowledge is justified and desirable in expert systems.

ShoAn in figure 7.1 are Swo well-known medical riles related to jaundice actually

rediscovered by the program.

Uh e uxcc ut)m time is closel related to h C LAC IpI Iit, ct x cpcrt stem In medi inc. ph sitcuns, are
-°P .1e tient tP cet answer,,: in real-ne ,ituanion,, *e det isiin niknt must he qiuiAk

%'. o

" ""' -"- , --' --'...':,,.', , a" d e , , • ,- ., , . . , ..,. -. . , . ,. ,

A-A171 794 LEARNING OBJECT-LEVEL AND NETA-LEVEL KNOWLEDGE IN 2/2
EXPERT SVSTEMS(U) STAFORD UNIV CA DEPT OF COMPUTER
SCIENCE L Fil NOV 85 STAN-CS-86-i9i Na8839-83-C-9t36

UNCLASSIFIED F/G 9/2

lllllmllllll

ISO Nip., N*

"il

4

I1? ..

11111 ~ 3 2

140 2.00
1 1 2 1 1 1 4 0 l 1 1 1 1 0

. -

BBII

MICROCOPy SO[S ION rIST CHARI

.J.
-p!

-o

K2-.

-S4

Results and Conclusions 183

Charcot's triad:
"If 1. serum bilirubin is elevated.

2. one of symptoms is shaking-chill.
3. one of symptoms is rt. upper colicky abd. pain.

then it is probable (.9) that the disease is
Calculous-Jaund ice.

Courvoisier's law:
"If 1. one of signs is palpable-gall-bladder.

2. Gall-bladder is not tender.

* then it is probable (.8) that the disease is
Neoplasm.

Figure7.1 Rediscovery of two well-known medical rules
by machine learning.

7.2. A Sample Dialogue of Interactive Mode in JAUNDICE

As described in Chapter 1 (also refer to figure 1.2), there are four main subprograms.

each written in INTERLISP and running on a DEC 2060: the performance program, RL

(the object-level rule learning program). the debugging program, and META-RULEGEN

V (the meta-rules learning program). Programs occupy a memory space of about 125

disk-pages44; the knowledge base and the database occupy about 135 pages.

._ ., The performance program has two modes: interactive and batch modes. Interactive

mode receives the user's input interactively, handles cases one at a time. and is designed to

be a consultant. In contrast. batch mode handles multiple cases at one time: it's purpose in

44 A disk-page has 512 computer words.

Results and Conclusions 184

JAUNDICE is to test the system performance by running multiple cases stored in the

database under the following situations:

1. The knowledge base is edited. The modifications to the knowledge base
should be tested by the old reference cases. Refer to Chapter 5.

2. The effect of meta-rules is to be tested. The meta-rules selected by utility
value are further verified by running cases. Refer to Chapter 6.

Running interactive program for a consultation, exploiting all available facilities in the

program (e.g.. explanation, debugging the KB, etc.). takes about 10-20 minutes (clock

time) under ordinary conditions45 , depending on the complexity of the case entered. The

A main portion of time is used for input/output and machine learning. If invoked, learning

may become the bottleneck in such a program. Although learning and debugging may be

carried out after the consultation, our ambitious goal is to develop a program which can

learn fast enough to exchange ideas with the expert "on-line". In order to improve it's

practical value. CONDENSER (described in chapter 3) is invented: and it proves to be

useful in conducting a consultation involved with learning and debugging at a reasonably

good speed.

The following subsections show an annotated sample dialogue which is organized stage

by stage. The demonstrated case is initially misdiagnosed (mismatch between the expert

diagnosis and the system top diagnosis). The system finally manages to make a correct

diagnosis after automatically debugging the knowledge base. This demonstration is not

for showing how the user can communicate with the computer through manipulations of

the built-in commands, but rather, it intends to show the ability of learning in such an

. 45 Me computer facility is ordin,,lv loaded.

eV

..5'. .'' -'.'-, -- . , . ." : ",: ' . .' "" "'" , ',',, ,''." ,: ;., 'w ''', - '''.',,: "''"
". , . .

Results and Conclusions 185

expert system. Notice. however, the learning and debugging with respect to a certain case.

as demonstrated here, can also be done non-interactively.

{In the following annotated sample dialogue, the user input appears only after the

arrow head ">'.}

7.2.1. Gathering Information

The program starts with collecting information by interacting with the user who enters

an answer for each question given by the program. The answer can be of YES-NO type or

numerical. The user can enter "?" if he doesn't know, or he may enter a real number from

-i to 1 to indicate the degree of certainty (confidence) for YES-NO type questions. Since

-every new case for consultation will be recorded in the database, the program intends to

collect all possible information that it thinks is worthwhile. For example. if the patient for

"K: consultation has hepatomegaly. the program will continue to ask the degree of

hepatomegaly. The JAUNDICE program is designed to scan jaundice patients

preliminarily before invasive or advanced laboratory tests have been done. And the data

entered are assumed to be the most significant data so far as the recent episode of jaundice

is concerned.

Pt . 1. What's the patient's name?
>FREO-SMITH

2. What's the sex?
*" - >M

3. What's the age?

>65

4. What is the serum level of TOTAL-HILIRUBItJ (mg!dl) ?
>3.2

.2-

Results and Conclusions 186

5. What is the serum level of GOT (I.U.) ?
>210

6. What is the serum level of GPT (I.U.) ?
>280

7. What is the serum level of ALKALINE-PHOSPHATASE (B.U.) ?

>37

8. Is the COURSE of disease STATIONARY ?
>YES

9. Is the ONSET of disease ABRUPT ?

>NO

10. Is one of SYMPTOMS HEMATEMESIS ?

>NO

11. Is one of SIGNS SPLENOMEGALY ?
>NO

12. Is one of SIGNS ASCITES ?

>NO

13. Is serum ALBUMIN DECREASED ?
>NO

14. Is serum GLOBULIN ELEVATED ?
>NO

15. Is one of SYMPTOMS MALAISE ?
>NO

16. Is one of SYMPTOMS ANOREXIA ?

>NO

17. Is URINE-UROBILINOGEN ELEVATED ?
>NO

18. Is one of SIGNS HEMOGLOBINURIA ?
>NO

19. Is BILIRUBINURIA PRESENT ?
>YES

20. Is RETICULOCYTOSIS PRESENT ?

>NO

21. Is ANEMIA PRESENT ?
>NO

22. Is RATIO-OF-INOIRECT-OVER-DIRECI-BILIRUBIN >3 ?
>NO

4* 1s i ./ ' 2/ ->.,->... i''-,-,', ' ''i i--''i .- ,-...L' "I,'-' ;''' ,, , . .. ;

Results and Conclusions 187

23. Is one of SYMPTOMS INTENSE-PRURITUS ?
>NO

24. Is one of SYMPTOMS COLICKY-RT.-UPPER-ABDOMINAL-PAIN ?
>YES

25. Is one of SYMPTOMS FEVER ?
>NO

26. Is one of SYMPTOMS SHAKING-CHILL ?
>NO

27. Is one of SYMPTOMS CLAY-COLORED-STOOL ?
M>NO

28. Is one of HISTORIES DAILY-FLUCTUATION-OF-JAUNDICE ?
>NO

29. Is the COURSE of disease RECURRENT ?
>NO

30. Is one of SIGNS PALPABLE-GALL-BLADDER ?
>YES

31. Is GALL-BLADDER TENDER ?
>NO

32. Is GALL-BLADDER NODULAR ?
>NO

33. Is one of SIGNS HEPATOMEGALY ?
>YES

34. What is the degree of HEPATOMEGALY ?
1). MILD 2). MODERATE 3). MARKED

>1

35. Is LIVER COARSELY-NODULAR ?
>NO

p 36. Is OCCULT-BLOOD of STOOL PRESENT ?
>NO

37. Is one of SIGNS LOWER-ABDOMINAL-MASS ?
>NO

38. Is one of SIGNS EPIGASTRIC-MASS ?
>NO

"p

-- '

. -. .. - .. . rr r r r ' rVr ' -. - -. r . yr . rsrL W , - - -- -. . :, ' : ---

Results and Conclusions 188

39. Is one of SYMPTOMS B.W.LOSS ?
>YES

* %40. What is the degree of B.W.LOSS ?
1). MILD 2). -MODERATE 3). MARKED

>1

-> 41. Is one of HISTORIES RECENT-TRAUMA ?
>NO

42. Is one of HISTORIES RECENT-SURGERY ?
>NO

43. Is. serum ANTI-MITOCHONDRIAL-ANTIBODY ELEVATED ?
>NO

44. Is one of SYMPTOMS ABD.-PAIN-RADIATING-TO-RT.-SHOULDER ?
>NO

45. Is one of SYMPTOMS VOMITTING ?
>NO

46. Is the ONSET of disease SINCE-CHILDHOOD ?
>NO

47. Is one of HISTORIES RECENT-EXPOSURE-TO-HEPATOTOXIC-AGENT ?
>NO

48. Are there any associated diseases or complications?
>NO

- 7.2.2. Providing Interpretations

From the gathered information (that was also recorded into the database), the

performance program draws inferences about the likely diseases and underlying

mechanisms, based on the knowledge base. During processing, a dynamic database is

constructed which records all deduced facts (intermediate and final conclusions), which

are then printed out.

1ll"

Results and Conclusions 189

'INTERPRETATION:*

The Mechanism of Jaundice: Cholestasis. decreased bile flow due to
obstruction of biliary tract.

Pathological conditions: Cholestasis, Inflammation.

Si' Anatomical diagnosis: Gall-bladder disease

Disease diagnosis:

CALCULOUS-JAUNDICE with degree of certainty .58
'V NEOPLASM with degree of certainty .41

(The performance program of JAUNDICE provides interpretation for the currently entered

case, which includes: disease, mechanism of jaundice, pathological and anatomical conditions.

Performer (the performance program) is goal-oriented type Reasoner. Concluding disease entity

that causes jaundice is the main goal: concluding mechanism and pathological states of jaundice is

the subgoal. The conclusions arc made by invoking rules stored in the knowledge base. Because of

"T the sophisticated nature of medicine, the interpretation will be more credible only if it incorporates

•-, the underlying pathological mechanisms besides the disease entity. In this scheme, the disease

diagnosis will fall in a ten disease category. Diseases are generally assumed to be mutually

exclusive. So, if one disease is definitely concluded, other diseases will be denied. However. there

might be several diseases concluded if they all are not definitely concluded. In the final returned

list of disease diagnoses. it only contains the diseases whose degree of certainty is greater than ".2".

. Though the general assumption is "mutually exclsive" among diseases, the implication of

coexistence of diseases may he mide if more than one disease reach the top degree of certainty

simultaneousy.}

o...

Results and Conclusions 190

7.2.3. Explanation

JAUNDICE onl) provides an overall explanation for the conclusions made. ,That is, the

program summarizes all the knowledge used for making conclusions. This is quite similar

to the way an expert analyzes a case. Because of explanation. the user gains a better

understanding about the reasoning basis of the system. Therefore. we may view

explanation as an error-checking mechanism with respect to both the system and the user.

Do you want an explanation for above diagnoses? (Please enter Y or N)

Bilirubinuria, elevated ALKALINE-PHOSPHATASE more than 15 B.U. and
absence of URINE UROBILINOGEN ELEVATION are evidences suggesting the
mechanism of jaundice is "Cholestasis". Elevation of both GOT and
GPT indicates pathology of "Inflammation". The sign of PALPABLE-GALL-
BLADDER and the symptom of COLICKY-RT.-UPPER-ABDOMINAL-PAIN indicate
anatomy of disease is: "Gall-bladder". Thus, "CALCULOUS-JAUNDICE" is
the most likely diagnosis. However, in this case, this diagnosis
should be differentiated from "NEOPLASM". Though it can't be ruled
out. the evidence tending to deny "NLOPLASM" includes the fact that
the course is STATIONARY.

{Since JAUNDICE is a rule-based expert program. the proided explanation is based on the

involked rules. If a fact is concluded, by tracing down the rules for conclusion, the program can
4-

collect all the relevant evidences that support this conclusion. Similarly. the program is able to

e, her disconfirming evidence if a fact is denied. A good explanation can be arrived at by this

,* means if the knowledge base is constructed hierarchically. Because of the complexity of medicine, a

logical explanauon should be gi.en level by level. starting from discussing pathological and

-anatomical mechanisms or states and ending up with concludin2 the disease entity. In order to

a .. agrent the explanation capabdILy, more knowledge about causal links and taxonoTmy is required,

-hich is coded into ,(0 non-diagnostic rules in the knowlcdae hase}

,

-w
N4

4Ai

,v

Results and Conclusions 191

7.2.4. Asking for the Expert's Diagnosis

The program may receive the feedback from the user if he is an expert. If the system

conclusion matches the expert's, the consultation will move to the next case: otherwise the

knowledge base will be debugged.

Are you satisfied with the result? (please enter Y or N)
,.. >N

Why are you not satisfied?

1 Because the top diagnosis is not your diagnosis!
2 Because the top diagnosis is not certain enough as expected!

(please enter number.)
->

What is your diagnosis?

I Acute hepatocellular hepatitis
2 Chronic non-cirrhotic hepatitis
3 Hepatocellular cirrhosis
4 Primary biliary cirrhosis

5 Calculous jaundice

6 Neoplasm
7 Cholestatic heoatitis
8 Hemolysis
9 Congenital conjugation defect
10 Congenital excretion defect

(please enter number)

>6

(The program allows the user to enter his opinion about the diagnosis. Though not indicated

here. only when the user is an expert. he is allowed to do so. The expert may hold a different % lew

either because he thinks the diagnosis should he a different disease or because the top ,.stem
Io

" ' ~diai-nois I., not is ceruin is he exp:cts. In the tourmer cisc. chc pro~gram wll[continue to ask the

'.

Results and Conclusions 192

expert diagnosis ind then the learning program will be tnggered to find missing rules or correct

rules in the knowledge base so that the expert diagnosis will become the top diagnosis- in the latter

case, the learning program will also be be triggered in order to make the diagnosis more certain. In

the example here. the expert diagnosis is NEOPLASNI, and the top system diagnosis

CALCULOUS-JAUNDICE. The objective of the program at this point is to make the diagnosis

NEOPLASM become the top system diagnosis. For more detail. please refer to chapter 5.}

7.2.5. Debugging the Knowledge Base

In this example. since the expert disagrees with the system on the diagnosis. it is likely

that something is wrong in the knowledge base. The program may first ask the expert to

edit the knowledge base if he can. Suppose the expert doesn't know how to do it either

because he is not familiar with the procedures or because he can only tell the diagnosis

- from the overall clinical picture but cannot abstract some medical rules from it, the

program will take over the debugging task. The following computer output shows how the

knowledge base is debugged automatically.

-.

Would you like to create new rules or edit old rules?

{f the answer is YES. a program like TEIRESIAS [[)avis. 19791 or Emycin KI, editor [Van

melle. 19801 will step in. which allows the expert to enter new knowledge or edit old knoledge.

oluwe~er. in JAUNDICE. this part is not implemented mainly because it is not the tixus of this

% k

Results and Conclusions 193

Based on your diagnosis. let me figure out if there are missing rules

or bugs in old rules.

<Please wait!>

I have scanned the conditions of rules for making conclusion, which
include: R38, R45. R93. R113, R135. R153. Since they are sound and

compatible with the case library, I suspect there might be some rules
missing or some rules which should be corrected if your diagnosis is
right. Now, I will first create new rules to support the diagnosis

"NEOPLASM" and disfavor "CALCULOUS-JAUNDICE" on the basis of the data
you entered: then I will inspect old rules to see where the bugs are.

<Please wait!>
.%

The following are newly learned rules:

p
q
..

NRI: If

1 COURSE of DISEASE is not RECURRENT
Then

It is possible (.4) that DISEASE-ENTITY of PATIENT-JAUNDICE is not

CALCULOUS-JAUNDICE

NR2: If
I ONE of SIGNS is PALPABLE-GALL-BLADDER
2 GALL-BLADDER is not TENDER

Then
It is probable (.8) that DISEASE-ENTITY of PATIENT-JAUNDICE is

NEOPLASM

Now. I try to debug the old rules by comparing them with new rules

created.

<Please wait,>

I found NR1 is redundant with R135, so NRI is not necessary. From a
definition rule R45. LHS of NR2 is "COURVOISIER-LAW". then NR2 becomes
a generalization of R93. Conclusively, there are no missing rules;

the only bug is: R93 should be generalized into NR2.

S.*

..1

Results and Conclusions 194

%{\ chis p in. <mce the expert doesn't know how to edit the knowledge base (though he knows

what the correct diaonos shculd be). the task is Liken omer by the so called automatic knowledge

base debuger w hich essentiall,, has two main components: the learner (the learning program and

thlk' LC'uCcr ithe ehug.n program). First, the program checks all invoked rules to make sure

""hether the, are righ,. If those used rules are not right, then they are corrected and the case is

re-run to see whether a correct diagnosis can be reached. In this example. however, the invoked

rules are a!l rih,: thus the :ault ma.y be attributed to some missing rules or some rules that should

be inoked but %ere not. If each rule in the knowledge base has been checked constantly with

respect to the current case librarv, then it is not necessar to recheck them when a misdiagnosis

occurs. In our scheme, we assume there is a database, from which a knowledge base is constructed:

the know ledee base is then constantO. updated on the basis of the continuously grow ing database:

though the database may be pruned to a reasonable size without disturbing its statistics. Suppose

the nitial kino ledge base is built bs human experts, the knowledge base needs to be tested by the

"-' database. and somehow there should be compatibility between the know ledge base and database.

i Hcrc. a strategy called "retrospective inspection after learning" is employ ed. Ignore temporarily the

old rules in the knowled.e base: all rules related to this case are found by learning. Then, by

-. comparing old rules with new rules, bugs are found. In this example. R93 is found to be too

-.. spec:tf.c and causes the misdiacnosis. For more detail, please see chapter 5.}

After knowledge base has been edited, interpretation becomes:

The Mechanisrn of Jaundice: Cholestasis, decreased bile flow due to
obstruction of biliary tract.

Patnological conditions: Cholestasis, Inflammation.

Anatomical diagnosis: Extrahepatic biliary obstruction

0 1 s e . I s ,1, ar n i s:

, E' -. lM with deqree of certainty .6

CAL.CULGUS-JAIJNDICE w1th degree of certainty .39

%,' S.'

,-.f.'..*..'*.-, , , ,

Results and Conclusions 195

(After the know ledge base has been edited. the pertbrmance program re-runs the case and prints

out the result which may give a feedback to the expert. If the expert diagnosis is correct and the

* knowledge base is defective, then a correct diagnosis can be obtained after this debugging. If the

diagnosis is the same after changing the knowledge base as before or no bugs are found, it might

imply that the expert diagnosis is wrong or the data are incomplete. Not indicated here is that the

* modified knowledge base should be tested against the old reference cases to see whether the old

* . performances are still maintained.}

Do you think NR2 is a right rule?
>Y

(Even though the expert may not know how to edit the knowledge base. he might know whether

the new rules are correct or not. To criticize is easier than to create.I

The knowledge base has been debugged. but I still have to confirm it by
*" consulting my advisory experts.

(This message indicates that the changes of the knowledge base in an expert system should be very

cautious! I

Do you have more cases for consultation?
, >N

THANK-YOU!
-4

7.3. Validation

The main focus of the JAUNDICE program is its learning ability. In this section. we

only describe how to evaluate a learning system. (Refer to [Buchanan and Shortliffe 84]

for the methods of evaluation of a performance program.)

€%

'&A

.4 -.. ~ '" ' ,- • ."."'..-, .,... '.- - -?'-. '""" ""; . <; ". "-" " "" .",. . .' '' " " ". " - .'l

Results and Conclusions 196

7.3.1. Rediscovery of Well-Known Concepts

Rediscovery of some well-known concepts has been used by researchers as a way to

validate the learning methods; for example, rediscovery of prime numbers by AM [Lenat

83], and rediscovery of Ohm's law by BACON [Langley 831. Perhaps, this is one way to

build confidence in machine learning. As seen in figure 7.1, our learning model is also

capable of rediscovering some well-known medical rules for diagnosing jaundice.

7.3.2. Testing Generality in the Same Domain

i. In inductive concept learning, we desire to find concept desciptions (or rules) that are

consistent not only with the given set of training instances but also with all instances in the

given domain. Accordingly, the soundness of a learning method can be reflected from the

generality of the result it produces. For this reason, we apply the learning result not only

to the original training set but also to another set of test cases collected from the Stanford

Medical Center. The result, as shown in table 7.2. indicates sufficient generality in the

jaundice domain and this in turn implies the soundness of the learning method. Notice.

however, if the training set is poor, the result will be poor. despite a perfect learning

system.

7.3.3. Testing Generality in Other Domains

*Domain-independence or generality has been emphasized in designing Al programs.

The development of our learning model is partially in response to this consideration.

Here, the generality of the developed RL program, which has been employed in

JAUNDICE. is assessed by applying it to another domain named REFEREE.

Z A-1'. -

Results and Conclusions 197

REFEREE is an expert program written in EMYCIN for evaluating the quality of

medical papers (refer to [Haggerty 84] for REFEREE). The conclusion is based on the

parameters which deal with the reputation of author, journal, and institution, and the

execution scheme, and the statistical analysis. For example, the parameter "Placebo-used"

denotes a placebo was used in the experiment. Figure 7.2 shows an example of a rule in

REFEREE.

RuleO6l: If 1. The quality of planning is unknown.
2. A biostatistician was sufficiently involved.

then it is possible (.3) that planning is good.

(RULE061 ((SAND (SAME CNTXT PLANNING-UNKNOWN)
(SAME CNTXT BIOSTAT))

(CONCLUDE CNTXT PLANNING-GOOD YES TALLY 300))

Figure7.2 One example of a rule in REFEREE.

We first construct a set of training instances as follows. Each training instance is

generated by a heuristics-based case generator and then concluded by the REFEREE

program: 4 the heuristics used are based on the KB in REFEREE: e.g., the relative

weighting for each parameter in making conclusions. Thus. each training instance has data

descriptions and a correct classification. Since we believe the cross-prediction experiment

(i.e.. the result learned from one case library is applied to another) is the best

demonstration of the validity of a learning method in a given domain, as illustrated by

JAUNDICE. we apply this strategy to testing the generality in REFEREE. Sixty cases are

46We didn't collect the real cases because the team working on this system has only a limited number of
.,-' cases in storage: and another difficulty is that the parameters used by the program, such us the repuLauon of

the authors. are often hard to (hrain by the people outside 'he field.

r -,...--.,. \ % .%.

, Results and Conclusions 198
'Sq

'.4

generated and then divided into two parts; the rules learned from one part are tested by

another, and vice versa. The results, as shown in table 7.3. support our assertion of

domain-independence: i.e.. we have demonstrated the value of the developed learning

model in a medical domain (JAUNDICE) and a non-medical domain (REFEREE).

Table7.3 Experiments of learning in REFEREE expert system.
Rules learned from one case library are tested by itself
and another case library, and vice versa. The diagnostic
accuracy of every test is shown here.

Library A Library 8
(30 cases) (30 cases)

New rules (A) 96.7%. 93.3/,

New rules (8) 80.0% 90.0%

New rules (A): Rules learned from library A.
New rules (8): Rules learned from library B.

. .5

•)k

4o

S::.

5.9'q

• v* " . .'.' ..,.-.-.-0 .::, -: . .-. ..,.,, - , - - - ., ,. - .:--.. .-., .-. ,-. ,.- -

Results and Conclusions 199

7.4.1. Basic Assumptions

The assumptions are the following: most of the training instances should be correct and

the descriptive language should be adequate (i.e.. without causing inconsistency) to

describe the concepts to be learned. Although we use optimization techniques described

in Chapter 4 to make the learned rules consistent with most of the training instances.

unless most of them are correct, no good results will yield. Inadequate descriptive

language will cause inconsistent learning problems (i.e., no perfect solutions) (Mitchell 781.

Some work has begun to explore the problem of creating new language. e.g., [Utgoff 82];

however, this is still a difficult issue.

7.4.2. Requirement of Domain-dependent Knowledge and Heuristics

The success of Meta-DENDRAL [Buchanan 78a] is a demonstration that the initial

domain-dependent knowledge (coded into a "half order theory") is crucial for learning.

However, our experiment proves that it is possible to build a new KB with adequate

performance without initial domain-dependent knowledge. 47 This seeming improvement.

perhaps, can be explicated by the relative adequacy of the selected training instances and

tractableness in the domain we choose. Even so. the success of our learning model still

relies on some domain-dependent heuristics; i.e., we define minimal generality and
p.."

specificity. Then. what's the difference between the initial knowledge (or half order

theory) and heuristics? In fact. they both represent "constraints". In our view, learning is

-* '"a heuristic search, the more constraints, the narrower the search space: if the constraints

are accurate, the learning is made efficient: otherwise the result may be distorted or

47 However. correct classification of cases by outside experts requires a lot of domain knowledge: Meta-
DENDRAL did not require this.

Results and Conclusions 200

incomplete. Accordingly, we often choose the constraints that represent high level

abstraction and are well-established and thus bear broader and more meaningful

implications. The program CONDENSER (see Chapter 3) also demonstrates that

machine can generate a proper bias and displace in part the requirement of the initial

domain-dependent knowledge.

7.4.3. Case Selection

In learning from examples. the importance of this issue is never overemphasized. Near-
...

miss negative instances [Winston 70] are important to discover the discriminant features

and are also important in the theory of condensation (described in Chapter 3). Careful

selection of instances can expedite the convergence of a concept [Mitchell 781. It is

desirable that machine can generate any instance that it thinks can help learning: the

restrictions often come from the want of a technique for verifying the generated instances.

7.4.4. Domain-Dependent Rules of Generalization or Specialization

The rules of generalization used in the learner should be tailored to domain

characteristics. Were it not for those domain-specific rules of generalization. the results of

learning may be of poor quality. For example, the "take minimum" rule is designed for

medical domains (see Section 2.1.1): so. a common generalization of "(GOT 200)" and

"(GOT 400)" is "(GOT 200)". On the contrary, if we use the "changing constant to

variable" rule (not used in JAUNDICE) for the above example. the result is "(GOT x)".

which means "GOT can be any value" and is. in fact. less medically meaningful.

e_ d'.

Results and Conclusions 201

7.4.5. Representational Adequacy

Here, instead of discussing general representational schemes, we focus on how to

represent appropriately a given fact within a given representational framework. A good

representation denotes a representation that is "simple" but "meaningful". The

CONDENSER program (described in Chapter 3) is an example of dynamically

representing the instances during learning in order to achieve operational efficiency. Still.

the representation of feature values is important. For example, we use values: "mild",

"moderate", and "marked" for a clinical feature "HEPATOMEGALY", instead of the

real measurement of the liver size. Here, we illustrate how an improper representation can

hurt learning. Consider two different representations for two positive instances: "posl"

and "pos2", and one negative instance: "negl", with only one clinical parameter "GOT"

as follows:

16 Representation I:
posl: (GOT 200)

pos2: (GOT 400)

negi: (GOT 100)

Representation II:

posl: (GOT mildly-elevated)
pos2: (GOT moderately-elevated)
negl: (GOT mildly-elevated)

it is straightforward that representation II causes inconsistency while with representation i.

we can find a description "(GOT >200)" which is consistent with the three instances.

-

Results and Conclusions 202

7.4.6. Rule Redundancy

Since. in EMYCIN-based systems. evidence can be combined, redundancy will cause

the same piece of evidence to be reconsidered more than once and make the conclusion

imprecise. Too many redundant rules may also jeopardize the efficiency. Syntactic

redundancy is easier to detect than semantic redundancy. by which we mean two different

rules look different but imply each other. We may further make a distinction between the

following conditions: redundancy between rules and redundancy between rule sets: by

the latter, we mean two sets of rules make the same prediction for every case. The RL

program is able to remove syntactical redundancy: however, it is often hard to determine

semantical redundancy particularly between two sets of rules except definitional

redundancy. In our experiment, we found the influence of semantical redundancy is

negligible: moreover this redundancy is useful when data are incomplete and only one of

the redundant rules is fired [Buchanan and Shortliffe 84].

7.5. Comparison with Related Work

Among the related work.48 Meta-DENDRAL [Buchanan 78a] may be the most closely

related work since it also employs a heuristic search from the most general hypothesis and

can discover multiple disjunctive rules. The sophistication of Meta-DENDRAL may be

due to its task-oriented approach: it also implies some critical issues in learning, such as

efficiency and noisy data. Meta-DENDRAL. successful as it is. however, lacks the ability

i48In the aspect of acquirng new knowledge by machine learning, particularly learning from examples.
related work-, include: (Haves-roh 761, [Hayes-roth 781.[1Hunt 661.[Hunt 751.[Smith 771.[(Laro)n 771.
(Michalski 771. [Michalski 781. (Michalski 83a1. (Quinlan 791. (Quinlan 831. (Samuel 671. (Vere 751. [Pawlak 811.
(Holland XO. (Anderberg 731. [Buchanan 78a1. See [Cohen and Feigenbaum 821 and [Buchanan 78b] for more
disussai ns of these ,stems and other references.

%" •

Results and Conclusions 203

of incremental learning. As the evolution based on the previous works on inductive

concept learning. the learning model developed in this thesis is intended to theorize on

several issues, some of which may ha~e already been noticed in other works, and provide

unified solutions for them: for example, feature condensation to improve efficiency.

-.. optimization to handle noisy data, and incremental updating the knowledge base to make

it complete. Indeed, all these considerations contribute to the significance behind this

model. Here, we neglect all detailed comparisons. which can be referred to in the previous

chapters.

7.6. Future Extensions

We propose four possible future extensions as the long term goals.

7.6.1. An Expert System with the Ability of Discussion

The current implementation of JAUNDICE can receive simple feedback from the user

but it lacks the ability of engaging in a sophisticated discussion 49 with the user. The

requirements (or difficulties) of developing such an intelligent system that can discuss with

the user and even make comment on his thought include as follows:
p.:

1. Understanding natural language.

-' 2. A huge knowledge base that comprises common sense and domain specific
knowledge.

The system can understand the user's thought well only if the system can accept natural

49 Here. we mean the discussion involves active learning rather than learning by being told. That is. the
machine can learn or discover something instantly by taking the feedback from the human, This ability is
lacking in some programs. such asl [Clancey 791. which Also have the ability olfdiscussion.

..:- ? .i? " '2" .22' i;? . .;:2- .:-?.-- ??,.'- - ----- ' .=..:? - -."2. .2. ,? ." - '.? " .-''"'"-"%. 2' ---'-"

-

Results and Conclusions 204

language as a way of communication. And only if the system has a rather complete

knowledge bacKground, the system is capable of discussing and commenting.

A part of the man-machine dialogue may look like the following:

(H: human, M: machine)

M: My diagnosis is X, what is yours?

H: But my diagnosis is Y! Could you give me your explanation?

M: My explanation is how about yours?

H: My explanation is.......

M: I think something is not right in your explanation,

which is
Would you like to reconsider your diagnosis?

H:......
4.

7.6.2. Unsupervised Learning

In our scheme, we assume there is a teacher to classify the training instances correctly.

and the learning is based on this classification. The task will become more difficult if there

is no teacher: this is called "unsupervised learning". Under this situation. the system has

to discover the classification by some observation and experiment and select instances by

-." itself. Some work has begun to explore this issue, e.g.. [Buchanan 78a]. [Lenat 831 and

(Michalski 83b].

4V

,.
°

,
%

' -p. " " . " ".. ". . ' ." . ." ' " - " '
4,'.- ••.-..."-.....°.....----... °..... ,

Results and Conclusions 205

7.6.3. Training Instances with Multiple Classifications

In our scheme. we generally assume the classifications are mutually exclusive and we

select those cases with a single classification as the training instances. The task will be

harder if one case may have more than one classification, which may be due to the fact

that the expert cannot further distinguish or. in medicine, it may be due to the coexistence

of more than one disease.

7.7. Conclusion

The theories and methods developed in this thesis can serve as a framework for

inductive concept learning. The model can not only become a general knowledge

acquisition tool, because of our consideration of generality, efficiency, noise tolerance, and

incremental learning ability, but can also lend itself to constructing a high performance

expert system which can continuously grow and adjust its own knowledge base.

.5.

,.-,

p,

5b

Degree of Certainty 206

Appendix A
Degree of Certainty

Approaches to inexact reasoning (reasoning under uncertainty) include probabilistic

methods (e.g.. Bayesian statistical approach used in [Warner 641). fuzzy set theory [Zadeh

-" 65]. CF model [Shortliffe 761, Dempster-Shafer theory ([Shafer 761 and [Barnett 81]).

Most of them have been applied to medical decision making. Another approach

introduced here, called "degree of certainty", stems from CF model used in MYCIN

[Shornliffe 761.

Degree of certainty is used to represent uncertainty in this thesis. It is a real number.

ranging from -1 to 1. Each statement is assigned a degree of certainty: "1" means

"definitely yes"; "-1" means "definitely no": "0" means "not knowing at all"; any number

between 0 and 1 denotes that we tend to believe it and the number represents the

estimated chance of "yes": and any number between -l and 0 denotes that we tend not to

believe it and the number represents the estimated chance of "no". For example, the

"* " statement: "if the dark cloud appears. it rains with degree of certainty .5". means "if the

dark cloud appears. the estimated chance of raining is 50% and we tend to believe it will
".1

In an eNpert system, the assignment ot a degree of certainty to a rule in the knowledge

base is based on the expert estimate, which is the integration of many factors. including

.

l t.'._ -- ".-.,,"',.. ... :,._,.,............... ,,...... . .., ,.... ,-,,,............,......

a.. -207

probabilistic knowledge and attitude (bias). Miathematically. degree of certainty Is defined

as follows:

degree of certainty (h. e) P(hle)S(h. e)

where,
h: hypothesis
e: evidence or pattern
P(h/e): probability of h. given e
S(h. e): strength of e for h

S(h. e) is a strength factor and may be viewed as a weighting factor assigned to an evidence

"e" for a given hypothesis "h".

An evidence is in fact a pattern composed of one or more than one feature (or

attribute). We assign a predictive value, ranging from 0 to 6 and reflecting statistical

knowledge. to each feature for a given hypothesis. Then the predictive value of an

evidence (or a pattern) is defined as the sum of the predictive values of all features in that

evidence (or pattern). 0 Then, the "predictive value(h. e)" is mapped to the strength factor

"S(h. e)" in an ad hoc fashion as follows:

For a confirming evidence,

Mapping: Predictive value(h. e) ~ .e

(2 .4
[2 3).6
[3 4) .8
[4 5) .9
[5 6) .95

5The assignment of a predicuve value tor a pattern, based on tite predictive Values of individual features. is
sunrdaj' to the decision making in Rheumacoiog"- %4here combinanions of different number at major and minor
cntena (each criterion is a svmptom or sign or laboratory test) may yield different concluhions. For instance.
rheumatic fever can be diagnosed with a pattern Of t.WO major criteria or a pattern of one major pius two minor

- cintena.

'a-7

U -.'.
" "208

There is another (ad hoc) mapping for disconfirming evidence. Assume the disconfirming

.--" rules are formed from high frequency evidence (refer to Section 2.4): the mapping is as

follows:

P(e/h) dearee of certaintv(-h. -e)

[81).5
[.6 .8) .3
<.6 0

Degree of certainty of different pieces of evidence can be combined according to CF

.- combining function in MYCIN [Buchanan and Shortliffe 84] or Dempster-Shafer theory

*.-. (as in [Gordon 84]. Moreover. degree of certainty and CF are related in the following ways.

For a confirming evidence "e", if P(h)--O and we assign S(h. e)= 1. then:

P(h/e) CF(h. e) degree of certainty(h. e)

If P(h) 'r-0, by properly choosing S(h. e). degree of certainty can still approximate CF. The

main feature of "degree of certainty" is the incorporation of a strength factor which can

reflect expert attitude toward evidence (e.g., conservative or aggressive) in a specific

domain.

- Practically. using CF will face one problem. which is as tbllows: for a confirming

evidence "e". because there often exist many hypotheses. the prior probability for each

hypothesis P(h) is close to zero. and the CF becomes simply conditional probability P(h/e)

as follows:

'V
-.........................

I U~ -- ~- -- y -

209

CF(h. e) - (P(h/e)-P(h))/(1-P(h)) - P(h/e)

V

Therefore. to overcome this problem. we define "degree of certainty" by separating out

the strength factor which should be considered in AI.

Il

.

"4

4m,

210

References

(Aiello 831 Aiello. N.
A comparative study of control strategies for expert systems:AGE

implementation of three variations of PUFF.
In Proceedings of the third National Conference on Artificial Intelligence.

Washington. D.C.. 1983.

(Anderberg 731 Anderberg, M. R.
Cluster Analysis for Applications.
Academic Press. New York, 1973.

[Balakrishnan 841 Balakrishnan. A. V.
Kalman Filtering Theory.
Optimization Software. Inc.. New York. 1984.

" [Barnett 811 Barnett. J. A.

Computational methods for a mathematical theory of evidence.
In Proceedings of 7th International Joint Conference on Artificial

Intelligence. Vancouver. 1981.

[Becker 78] Becker. P. W.

Recognition of Patterns Using the Frequencier of Occurrence of Binary
Words

Springer-Verg, New York, 1978.

[Blasbalg 621 Blasbalg. H. and Blerkom. R. V.
Message compression.
In Davisson. L. D. and Gray. R. M. (editor), Data Compression..

Dowden. Hutchinson & Ross. Inc., New York. 1962.

[Blum 821 Blum, R. L.

Disco very and representation of causal relationships from a large time-
oriented clinical database: the RX project.

PhD thesis. Stanford University. 1982.

.,

211

[Brillouin 621 Brillouin. L.
Science and Information Theory.
Academic Press Inc.. New York, NY, 1962.

[Buchanan 69] Buchanan. B. G. and Sutherland. G. L. and Feigenbaum. E. A.
Heuristic DENDRAL: A program for generating explanatory

hypotheses in organic chemistry.
In B. Meltzer and D. Michie (editor). Machine intelligence. voL 4,.

Edinburgh University Press. Edinburgh. 1969.

[Buchanan 78a] Buchanan. B. G. et al.
Model-directed learning of production rules.
In Waterman, D. and Hayes-Roth, F. (editor), Pattern-Directed

Inference systems.. Academic Press. New York. 1978.

[Buchanan 78b] Buchanan. B. G.. Mitchell. T. M., Smith. R. G.. Johnson. C. R. Jr.
Models of Learning Systems.

In Belzer. J., Holzman. A. G.. and Kent. A. (editor). Encyclopedia of
Computer Science and Technology.. M. Dekker. New York. 1978.

[Buchanan and Shortliffe 841
Buchanan. B. G. and Shortliffe. E. H.
Rule- Based Expert Systems.
Addison-Wesley Publishing Company, Inc.. Reading, Massachusetts.

*1 1984.

[Carbonell 83] Carbonell. J. G.. Michalski. R. S.. Mitchell. T. M.
An Overview of Machine Learning.
In Machine Learning, chapter 1.. Tioga. Palo Alto. CA. 1983.

[Clancey 791 Clancey. W. J.

Transfer of rule-based expertise through aitutorial dialogue.

PhD thesis. Computer Science Department. Stanford University. 1979.

[Clancey 831 Clancey. W. J.
The epistemology o a rule-based expert system: A framework for

explanation.
A rtificial Intelligence 20. 1983.

- -"A. - . . , ,. , .-. . .- . . '. . - .4, ' ,a,~d ' . '",- - - . - . - . - .. - . - . ..

212

[Clancey and Letsinger 811
Clancey, W. J., and Letsinger. R.
NEOMYCIN: Reconfiguring a rule-based expert system for application

to teaching.
In Proceedings of the 7th International Joint Conference on Artificial

Intelligence. Vancouver, 1981.

(Cohen and Feigenbaum 82]
Cohen, P. R. and Feigenbaum. E. A. (editor).
The Handbook of Artificial Intelligence Volume I1.
Kaufmann, Los Altos. CA. 1982.

[Croxton. Cowden. and Klein 671
Croxton. F. E.. Cowden, D. J.. and Klein, S.
Applied GeneralStatistics.
Prentice-Hall Inc.. Englewood Cliffs. NJ. 1967.

[Davis 76] Davis, R.
Applications of meta-level knowledge to the construction. maintenance.

and use of large knowledge bases.
PhD thesis, Computer Science Department. Stanford University, June.

1976.

[Davis 791 Davis. R.
Interactive transfer of expertise: Acquisition of new inference rules.
Artificial Intelligence 12, 1979.

[Davis 801 Davis, R.
Meta-rules: Reasoning about control.
Artificial Intelligence 15. 1980.

[Davis and Buchanan 77]

Davis, R.. and Buchanan. B. G.
Meta-level knowledge: Overview and applications.
In Proceedings of the 5th International Joint Conference on Artificial

Intelligence. Cambridge. Mass.. August. 1977.

p.,Z

5

S

S."% "% """% " ,.", "% ."% %.,, +"",' "'" ,X+ + . + ,"- .- , . *"- -"" . -""- +.',s .+" "- . -"""

213

[Dempster 831 Dempster. A. P. and Rubin. D. B.
Introduction.

In Madow. W. G.. Olkin. I.. and Rubin. D. B. (editor). Incomplete Data
in Sample Surveys. Volume 2. chapter 1.. Academic Press Inc.. New
York, 1983.

(Dietterich 81) Dietterich, T. G. and Michalski. R. S.
Inductive learning of structural descriptions.
Artificial Intelligence 16, 1981.

[Dietterich 831 Dietterich, T. G., Michalski. R. S.
A Comparative Review of Selected Methods for Learning from

Examples.
In Machine learning, chapter 3. Tioga Publishing Company. Palo Alto.

CA, 1983.

[Dietterich and Buchanan 811
Dietterich. T. G. and Buchanan. B. G.
The Role of Critic in Learning Systems.
Technical Report STA N-CS-81-891. Computer science department.

Stanford University. 1981.

[Duda 78] Duda. R. 0. et al.
Development of the PROSPECTOR consultant system for mineral

exploration.
Technical Report. Artificial Intelligence. SRI International. 1978.

[Fu 841 Fu. Li-Min and Buchanan. B. G.
Enhancing Performance of Expert Systems by Automated Discovery of

Meta-rules.
In Proceedings of the Ist conference on Artificial Intelligence

Applications. IEEE. Denver. Colorado. December. 1984.

[Gordon 84) Gordon. J. and Shortliffe. E. H.
The Dempster-Shater Theory of Evidence.
In Buchanan. B. G.. Shortliffe. E. H. (editor). Rule-8a;ed Expert

Systems. chapter 13.. Addison-Wesley Publishing Company. Inc..
Reading. Massachusetts. 1984.

, , ,-..-..

214

(Gray 741 Gray. R. M. and Davisson. L. D.
A mathematical theory of data compression?
In Davisson. L. D. and Gray, R. M. (editor). Data Compression..

Dowden. Hutchinson & Ross, Inc.. New York. 1974.

[Haggerty 84] Haggerty, J.
Referee and Rulecritic: Two Prototypes for Assessing the Quality of

Medical Paper.
Technical Report, Computer Science Department. Stanford University.

Master Thesis. 1984.

[Hahn 291 Hahn. H.
Empiricism. Mathematics. and Logic.
In McGuinness, B. (editor). Hans Hahn: Empiricism. Logic. and

Mathematics.. D. Reidel Publishing Company, Boston.
Massachusetts. 1929.

[Hahn 301 Hahn, H.

The Significance of the Scientific World View. Especially for
Mathematics and Physics.

*,-V In McGuinness. B. (editor). Hans Hahn: Empiricism. Logic. and

Mathematics. D. Reidel Publishing Company. Boston,
,- Massachusetts, 1930.

[Hayes-roth 761 Hayes-Roth, F.

Patterns of Induction and Associated Knowledge Acquisition
Algorithms.

in Chen. C (editor). Pattern Recognition and Artificial Intelligence..

Academic Press. New York. 1976.

(Hayes-roth 781 Hayes-roth. F. et al.
'" Machine Methods for Acquiring Learning and Applving Knowledge.

Technical Report R-6241 The RAN D Corporation. 1978.

[Hayes-Roth 831 Hayes-Rorh. F.. Waterman. D.. and Lenat. D.

An Overview of Expert Systems.
In Building Expert Systems. chapter L.. Addison-Wesley Publishing

Company. Inc.. Reading. Massachusetts. 1983.

215

[Holland 80] Holland. i. H.
Adaptive Algorithms for Discovering and Using General Patterns in

Growing Knowledge bases.
Policy Analysis and Information Systems 4. 1980.

[Hunt 661 Hunt. E. B.
Experiments in Induction.
Academic Press, New York. 1966.

AA (Hunt 751 Hunt. E. B.

A rtificial Intelligence.
'- Academic Press, New York. 1975.

[Krupp 821 Krupp, M. A. et a].
Current Medical Diagnosis and Treatment.
Lange Medical Publications. Los Altos. CA. 1982.

[Kulikowski 821 Kulikowski. C. and Weiss. S.
Representation of expert knowledge for consultation: The CASN ET and

EXPERT projects.

In P. Szolovits (editor). Artificial Intelligencein Medicine.. Westview
Press. Boulder. Colorado. 1982.

[Langley 83] Langley, P.. Bradshaw. G. L., and Simon. H. A.
Rediscovering chemistry with the BACON system.
In Machine learning, chapter 10.. Tioga Publishing Company, Palo

Alto. CA. 1983.

[Larson 771 Larson, J.
Inductive Inference in the Variable- Valued Predicate Logic System VL21:

Methodology and Computer Implementation.

PhD thesis. University of Illinois. May. 1977.

[Lenat 831 Lenat. D. B.
Theory formation by heuristic search. The nature of heuristics I:

Background and examples.
Artificial Intelligence 21. 1983.C

216

[Niadow, Nisselson. and Olkin 831
Madow. W. G.. Nisselson. H.. and Olkin. 1.
Review of Theory.
In Madow, W. G.. Nisselson. H.. and Olkin. 1. (editor). Incomplete Data

in Sample Surveys Volume 1.. Academic Press Inc.. New York.
1983.

(Malchow-moller 811
Malchow- Moller. A. et al.
Causes and Characteristics of 500 Consecutive cases of Jaundice.
Scandinavia Journal of Gastroenterology 16. 1981.

[Martin 71] Martin, W. A. and Fateman. R. J.
The MACSYMA system.
In Proceedings of the 2nd Symposium on Symbolic and Algebraic

Manipulation. 1971.

[Michalski 75] Michalski, R. S.
Variable-Valued Logic and its Applications to Pattern Recognition and

Machine Learning.
In Rine, D. C. (editor). Computer Science and Multiple- Valued Logic

Theory and Applications.. North-Holland. 1975.

[Michalski 77] Michalski. R. S.
A system of programs for computer-aided induction.
In Proceedings of 5th International Joint Conference on Artificial

Intelligence. Cambridge. Mass.. 1977.

[Michalski 78] Michalski. R. S. and Larson. J. B.
Selection of most representative training examples and incremental

generation of VLI hypotheses: The underlying methodology and
description of programs ESEL and A Q1 1.

Technical Report 867. University of Illinois. 1978.

[Michilski 83aj Michalski. R. S.
Theory and Methodology of Inductive Learning.
In Machine Learning. chapter 4.. Tioga. Palo Alto. CA. 1983.

q . 4 - r W w l- 1, 0 0V -:: - . :,< .,

217

[Michalski 83b] Michalski. R. S. and Stepp. R. E.
Learning from observations: Conceptual clustering.
In Machine learning, chapter 11.. Tioga Publishing Company. Palo

Alto. CA. 1983.

[Michie 84] Michie. D.. Muggleton. S.. Riese. C.. Zubrick. S.
RULEMASTER: A Second-Generation Knowledge- Engineering

a-". Facility.

In Proceedings of the Ist conference on Artificial Intelligence
Applications. IEEE. Denver. Colorado, December. 1984.

[Miller. Pople. and Meyers 82]
Miller. R A.. Pople, H.E.. Meyers. J D.
INTERNIST-1, an experimental computer-based diagnostic consultant

for general internal medicine.
J' The New England Journal of Medicine 307. 1982.

[Minsky 63] Minsky. M.
Steps toward Artificial Intelligence.

In Feigenbaum. E. A. and Feldman. J. (editor). Computers and Thought.

.McGraw-Hill. New York. 1963.

[Mitchell 781 Mitchell. T. M.
Version Spaces." An approach to concept learning.

PhD thesis, Stanford University. December, 1978.

[Papoulis 651 Papoulis. A.
Probability. Random Variable and Stochastic Processes.

McGraw-Hill. New York, 1965, chapter 11.

[Patil 82] Patil. R. S.. Szolovits. P.. and Schwartz. W. B.
Information acquisition in diagnosis.
In Proceedings of the National Conference on Artificial Intelligence.

Pittsburgh. PA. 1982.

[Pawlak 811 Pawlak. Z.
,, -. Classification of objects bv means of attributes.

Technical Report 423. Institute of Computer Science. Polish Academy of
Science. 1981.

N71W
W-

218

[Petersdorf 83] Petersdorf. R. G. et al.
Harrison 's Principles of Internal Medicine.
McGraw-Hill. New York. 1983.

[Politakis 821 Politakis. Peter G.
Using empirical analysis to refine expert system knowledge base.
PhD thesis. LCSR, Rutgers University. October. 1982.

N-1 [Quinlan 791 Quinlan. J. R.
Induction over large data bases.
Technical Report HPP-79-14. HPP. Stanford University. 1979.

(Quinlan 831 Quinlan. J. R.
Learning efficient classification procedures and their applications to

chess end-games.
In Michalski. R. S. et al (editor). Machine Learning. chapter 15.. Tioga.

Palo Alto. CA. 1983.

[Samuel 671 Samuel. A. L.
Some-studies in machine learning using the game of checkers II - Recent

progress.

IBM Journal of Research and Development 11. 1967.

[Schiff 46] Schiff. L.
The Differential Diagnosis of JAUNDICE.
The Year Book publishers. Inc.. Chicago. 1946.

.;

[Shafer 76] Shafer. G.

A Mathematical Theory of Evidence.
Princeton University Press. Princeton. NJ'. 1976.

- [Shortliffe 761 Shortliffe E.H.
Computer-based medical consultations.- M YCIN.
American Elsevier. New York. 1976.

[Simon 83] Simon. H. A.
S.: . Why Should Machine Learn?

In Machine learning. chapter 2. Tioga Publishing Company. Palo Alto.
CA. 1983.

.q ..0 .-* a'..."" - -. ,.-,' "; -. "-- - - , """ .-- . .-. : """ - - - ,' . .-" :," ." : ,.-,T_.'.. ,--.' %

219

[Sirken 831 Sirken. M. G.
Handling Missing Data by Network Sampling.
In Madow. W. G.. Okin. I.. and Rubin. D. B. (editor). Incomplete Data

in Sample Surveys. Volume 2. chapter 8.. Academic Press Inc.. New
York. 1983.

[Smith 77] Smith. R. G.. Mitchell. T. M.. Chestek. R. A.. and Buchanan. B. G.
A model for learning systems.
In Proceedings of 5th International Joint Conference on Artificial

Intelligence. Cambridge. Mass.. 1977.

[Stem 75] Stem. S. et al.
Use of Computer Program for Diagnosing Jaundice in District Hospitals

and Specialized Liver Unit.
British Medical Journal 2. 1975.

[Suwa 841 Suwa. M.. Scott. A. C.. and Shortliffe. E. H.
Completeness and Consistency in a Rule-Based Expert System.
In Buchanan. B. G. and Shortliffe. E. H. (editor). Rule-Based Expert

Systems. chapter 8.. Addison-Wesley Publishing Company. Inc..
Reading. Massachusetts. 1984.

[Utgoff 82] Utgoff P. E.
Acquisition of appropriate bias for inductive concept learning.
Technical Report. Thesis proposal. Department of Computer Science.

Rutgers University. 1982.

[Van Melle 801 van Melle. W.
System aids in constructing consultation programs.

UMI Research Press. Ann Arbor. Mi. 1980.

[Vere 75] Vere. S. A.

Induction of concepts in the predicate calculus.
In Proceedings of 4th International Joint Conference on Artificial

Intelligence. Tbilisi. USSR. 1975.

-"#" -t, ,€ 4, " '" €' ' "" "" " " : - ' "" - ." "" " "" " " " " " • -" - " " ' ",." ""L' ' ""
" "

" "" "'"

220

[Wallis 82] Wallis. J. W. and Shortliffe. E. H.
Explanation power for medical expert system: studies in representation

of causal relationships for clinical consultations.
Methods Info. Med 21. 1982.

[Warner 64] Warner. H. R. et al.
Experience with Bayes" Theorem for computer diagnosis of congenital

heart disease.
Ann. N. Y. Acad Sci. 115. 1964.

[Waterman 68] Waterman. D.

Machine Learning of Heuristics.
PhD thesis. Stanford University. 1968.
also report CS118. Al 74.

[Winkelman 811 Winkelman. E. i.
The Differential Diagnosis of Jaundice.
Primary Care 8, 1981.

[Winston 701 Winston. P. H.
Learning structural descriptions from examples.
Technical Report TR-76. Project MAC. MIT. 1970.

(Zadeh 651 Zadeh. L. A.

Fuzzy sets.
Information and Control 8. 1965.

d* .

•.5..

'SIa. "

- -" "

44

.4,.

~

4-

4-

/4,.

.4-,..

I

'U (....mmuuP~7

~44

*? J.

-. 4-

4~4~~ 4.
.4 4* *'*

