AD-A171 794 LEANING OBJEC-LEVEL AND META-LEVEL KNOWLEDGE IN
EXPERT SYSTEMSCU) STANFORD UNIV CA DEPT OF COMPUTER
' SCIENCE L FI NOV 85 STAN-CS-86-1091 MDBOZS-S;-C;gi 6

UNCLASSIFIED

-n
o
Y]

N
| I
1
N A
1
1
1

173

I O -

SR
BN
¥ ﬂ}\i\ .
10 i B '-
““ = = W g
= L&
Ew

||
=" s

28 it e

MICROCOPY RESOLUTION TEST CHART N ";
NATIONAL BUKEAU 0F TANDARLS 1964 A :"“-.\:'.s
J - « :
h_' {“
St
»

I

'.
%)
k)

7)

A
S4
00N

AR LA iy g A A I A -
Aop e A A S S RIS IR A \ U
s .RH' *'r o "’\f‘;""\. .-\- (,‘\- .’ W ‘\v""\.l/}" s Seta ‘ ‘.‘&.(o RN
I X “~
s Pl M 3 oo }'}}‘} iRV 'r'\.}\. \{\ -{}:

T R PR AN N1

Noyember 1985 Report No. STAN-CS-86-1091
. ‘ . Also numbered KSI.-85-44

Learning Object-l.evel and Meta-Leve!
Knowledge in Expert Systems

AD-A171 794

by

{.i-Min Fu

Contract N00039-83-C-0136 DTI C

ELECTE
SEP 09 1386

D

Department of Computer Science

Stanford University
Stanford, CA 94305

ONC FiLE copy.

R ¢
A L
“ e
Ca
! g‘ :#.’\ % A
[;fgﬁ» L
: vlv’ el ~ I
- ~
. PR
)4.1
5 .
v

9 08 109
R R B e R e SR e S \ ’ 5! -‘ ﬂﬁm’xﬁfﬂﬁ?yiﬁjii

o

¢

IR0 * \if)
4 Mot ') L,
SRRIRIAR, * (b b

-

November 1985 . Report No. STAN-CS-86-1091
) ., Also numbered KS1-85-44

Learning Object-l.evel and Meta-Level
Knowledge in Expert Systems

by

Li-Min Fu

Contract NOO039-83-C-0136

Department of Computer Science

Stanford University
Stanford, CA 94305

PP VRN gU
J‘-I “1. S"’J" .

, L

«"" h

ohy
R

et e e

a3 . 8w -0 -
AR
‘,-'4' -,

..k
AL
M

' £y s e T
R

g
‘)

‘.
,lll ,l',' ~

8
¥
R
4 4 _2 4 8

Knowledge Systems Laboratory November 1985
Report No. KSL-85-44

LEARNING OBJECT-LEVEL AND META-LEVEL
KNOWLEDGE IN EXPERT SYSTEMS

A Dissertation
Submitted to the Department of Electrical Engineering
And the Committee on Graduate Studies
Of Stanford University

LI-MIN FU

Department of Computer Science
Stanford University
Stanford, CA 94305

Abstract

- A high performance expert system can be built by exploiting machine leaming

N techniques. A learmning model has been designed and implemented that is capable of
LGN .
f{?, constructing a knowledge base. in the for: of rules. from a case library and continuously
Lo

t . updating it to accommodate new facts. This model is designed primarily for EMYCIN-
e like systems in which there is uncertainty about data as well as about the strength of
S

:::: inference and in which the rules chain together to infer complex hypothescs. Tiiese
< .

o features greatly complicate the learning problem.

=

~'%‘

N In machine leaming, two issues that cannot be overlooked practically are efficiency and
R - o
N noise. A subprogram, called "CONDENSER"/. is designed to remove irrelevant features
» X
:;: during leamning and improve the efficiency. The noise can be handled by optimizing the
3

ﬁ«‘ result to achieve minimal prediction errors.
(3
Another subprogram has been developed to learn meta-level rules which guide the
..“"

" . 3 . 3

:j: invocation of object-level rules and thus enhance the performance of the expert system
NS

s) . :

: using the object-level rules.

J
e

\ __3 Using the ideas developed in this work, an expert program called JAUNDICE has been

(.\; . built, which can diagnose the likely disease and mechanisms of a patient with jaundice.
Experiments with JAUNDICE show the developed theory and method of leaming are
\f"
:,‘;:. - effective in a complex and noisy environment where data may be inconsistent. incomplete,
" s
)
e and erroneous. T =

euion ror

5% ‘qus CRA&I
_. z UHC TAB a
- 'U a1 0% ced 0
K- iv cd o hncaten
2 R a—
t S

A . Lotabstion]

o [
\ :- ‘ Availibity Codes

'y e

o Avait ardfor

Dist Special
4

w S SRR S VIR T O R I 4'_4‘ St -‘,...’ ‘i -,.....". PR ,_._-. ,.'._<'\' MR ‘-.‘,.-- . - .‘.h.“ ., --‘.
NN '.".,,".‘ .\, L fe P e e R e D I A L Rt WON
N A 11 I} k4 g o B

" ,-

Acknowledgments

[am fortunate to get acquainted with Bruce G. Buchanan, who is such a great
philosopher, teacher, and master in both expert systems and knowledge acquisition. Many
ideas in this thesis are, consciously or subconsciously, spawned and matured by constant
inspiring from him: [can’t even remember exactly when those ideas emerge. He also
provides me strong psychological support for my devoting to this work. No doubt my first
thank goes to him, Bruce G. Buchanan, a judicious and respectable man. [thank Susan
S. Owicki for her feedback from another angle and her enthusiasm for my work. In
addition, | thank Oscar Buneman, Richard H. Pantell. and Edison T.S. Tse, the other
members of my reading or oral committee, for their commitment to my work. I would like
thank Robert L. White who is the first man [can consult in Stanford University. [also
appreciate the help from Gabriel Garcia and Peter B. Gregory for providing us with liver
biopsy cases and the help from John Haggerty for providing information of the
REFEREE system; both of their help is valuable to validate our program. I thank my
family particularly Minyuen, my wife, who seldom complains about my being
monopolized by computer and gives me encouragement and advice when | need them. [
thank as well SUMEX-AIM, Heuristic Programming Project, Electrical Engineering
department, Stanford University, and Scribe facilities for generating this text. This work is

in part supported by the Advanced Research Project Agency under the contract DARPA

N00039-83-C-0136 and National Institute Health under the grant NIH RR-00785-11.

Table of Contents

1. Introduction

1.1. Two Main Problems
1.1.1. Accuracy of Performance
1.1.2. Efficiency of Performance
1.2. Learning in Expert Systems
1.2.1. Learning from Examples
1.2.2. Efficiency Consideration
1.2.3. Noisy Leaming Environments
1.3. Learning as an Approach to Debugging the Knowledge Base
1.4. Meta-Level Knowledge
1.4.1. The Role of Meta-Rules
1.4.2. Rule Model and Function Template in Learning
1.4.3. Machine Learning of Meta-Level Knowledge
1.5. JAUNDICE as a Set of Experimental Programs
1.5.1. The Performance Program
1.5.2. Knowledge Base
1.5.3. Database
1.5.4. The RL Program
1.5.5. The Debugging Program
1.5.6. Meta-RULEGEN
1.6. Contribution of the Thesis
1.7. OQutline of the Thesis

2. Knowledge Acquisition via Machine Learning

2.1. Introduction
2.1.1. Learning in JAUNDICE
2.2. Learning via Search from the Most General Hypothesis
2.2.1. Procedure
2.2.1.1. One Example
2.2.2. Areas of Application
2.2.3. Comparison and Discussion

vi

- S VS IR S AR A]
y’*,."'-..'\."u’-,’ . A R N A

O O 00 thh L B Wty 2~

[T I o S I
O 00 00 00 ~I ON tin o N N = O O

N
-

e e W N NN
O~ W = O W

q N N e . e y - -~ - . i " " o Ak < "' ¥ v 4) ° ol b * A= ol A ol il ol - i ol R el >

)
A
A}\. 2.2.3.1. Comparison with Related Works 39
L 2.2.3.2. Model-Driven vs. Data-Driven Leamning 42
d 2.2.4. Focusing Mode of Learning 44
: -‘ 2.2.4.1. Procedures 45
) ::: 2.3. Leamning Intermediate Knowledge 48
‘\::: 2.3.1. Intermediate Concepts in the [nitial Vocabulary 50
e 2.3.1.1. Bottom-Up Learning 51
-V) 2.3.1.2. Top-Down Leaming 55
5;' 2.3.1.3. Bidirectional Extension Strategy 56
N 2.3.2. Intermediate Concepts not in the Initial Vocabulary 58
it: 2.3.2.1. Technique of Symbolizing Taxonomy Point 58
2.3.2.2. Technique of Symbolizing Switchover Point 62
8N 2.3.3. Comparison and Discussion 65
-~ 2.4. Learning Disconfirming Rules 66
K :‘Q, 2.5. Constructing a Hierarchical Knowledge Base 69
3. Feature Condensation 71
3.1. Introduction 1
?'f 3.2. The Learning System 74
.q 3.2.1. Structure and Behavior 74
- 3.2.2. CONDENSER 76
3.3. The Rule of Condensation 77
- 3.4. Techniques of Condensation 79
:Zj 3.4.1. Ordered Scanning Algorithm 81
:ﬁj 3.5. Why Does CONDENSER Work? 85
" 3.6. Application 90
! 3.6.1. Applicable Domains 90
; ‘_:Z:' 3.6.2. Compatible Learning Systems 92
‘:::; 3.7. Comparison and Discussion .93
-2 3.8. Summary 95
e 4. Learning in Noisy Environments 96
:'.:_:: 4.1, Introduction 96
:f.._? 4.2. Imperfect Training Instances 99
f. 4.2.1. Inconsistency of Training Instances 99
4.2.1.1. Spontaneous Inconsistency 99
D 4.2.1.2. Incorrectly Classified Training [nstances : 101
’.;:-Z 4.2.2. Inadequacy of Training [nstances 103
"f- 4.2.2.1. Incompleteness of Data 103
Vs vii
s
o
-

Ay
:. 4.2.2.2. Sampling Insufficiency 104
'g y 4.2.2.3. Unreliability and Inconsistency of Data 106
4.3. Imperfect Learning Systems 105
‘_ 4.3.1. Insufficiency of the Descriptive Language 106
e 4.3.2. Insufficiency of Rules of Generalizat:on or Specialization 108
bl 4.3.3. Procedural Bias 108
B 4.3.4. Representational Bias 110
" 4.4, Error Measurement 111
) 4.4.1. Calibration Error 112
o 4.4.2. Prediction Error 113
o 4.5. Error Handling 115
‘ 4.5.1. Pre-Filter 117
oM 4.5.2. Mid-Filter 118
= 4.5.3. Post-Filter: Optimizer 119
o0 4.5.3.1. Minimal Error Principle 119
e 4.5.3.2. Procedures 121
L2 4.6. One Example 123
b 4.7. Comparison and Discussion 124
< 4.8. Summary 127
:4, 5. Automated Knowledge Base Updating 128
<_ 5.1. Introduction 128
:i.:jj 5.2. Faults in the Knowledge Base 131
e 5.2.1. In Domains without Uncertainty 132
S 5.2.1.1. Overly Generalized Rules 132
' ‘ 5.2.1.2. Overly Specialized Rules 132
o 5.2.1.3. Erroneous Rules 133
=N 5.2.1.4. Missing Rules 134
) 5.2.1.5. Subsumption 134
N 5.2.1.6. Redundancy 134
e 5.2.2. In Domains with Uncertainty 134
:-_:5 5.2.2.1. Overly Generalized Rules 134
w4 5.2.2.2. Overly Specialized Rules 135
::; 5.2.2.3. Erroneous Rules (or Erroneous Degree of Certainty) 135
R 5.2.2.4. Missing Rules 136
e 5.2.2.5. Subsumption _ 136
:j;:j 5.2.2.6. Redundancy 137
:‘,__ 5.3. Fault Corrections 137

o viit
=
N e L g e e

Sy
; “5}5‘_" b}

..:.
3}: 5.4. Automated Debugging 140
- 4

™ 5.4.1. Fault Analysis 142

o 5.4.2. Application of Machine Learning 145
:‘_: 5.4.3. Retrospective Inspection after Learning 146

Y 5.4.3.1. Experimentations 147

N 5.4.3.2. Verifications 149

) 5.4.4. One Example 150

i 5.5. Comparison and Discussion 151

e 5.6. Summary 154

\E ' 6. Discovery of Meta-Rules 156

h 6.1. Introduction 156

aa 6.2. Learning Meta-Rules: Design Considerations 157
T 6.2.1. Format of Meta-Rules 157

: 6.2.2. Utility Consideration of Meta-Rules 159

. 6.2.2.1. Utility Value for Meta-Rules 159

14 6.2.2.2. Selecting Useful Meta-Rules 163
N 6.2.3. Overview of Two Approaches to Learning Meta-Rules 164

& 6.2.3.1. From Object Rules 164
2 6.2.3.2. From Attributes 164

3 6.3. Implementation 165

e 6.3.1. Overview of META-RULEGEN 165
n 6.3.2. Algorithm 167

o 6.3.2.1. Approach from Object Rules 168

-1 6.3.2.2. Approach from Attributes 171

: 6.4. Results 172

'}' 6.5. Conclusion 175
,: 7. Results and Conclusions 178
i 7.1. Results of Learning in JAUNDICE 179

. 7.2. A Sample Dialogue of Interactive Mode in JAUNDICE 183

:_). 7.2.1. Gathering Information 185

5 7.2.2. Providing Interpretations 188

i.: 7.2.3. Explanation 190
W) 7.2.4. Asking for the Expert's Diagnosis 191
x- 7.2.5. Debugging the Knowledge Base 192

i 7.3. Validation 195
o 7.3.1. Rediscovery of Well-Known Concepts 196
f-" 7.3.2. Testing Generality in the Same Domain 196

.J- ix

RS

b :;.

.\- TR S T

PP
W e e S
W, e N
AT N

W S NF N WS, ‘.

<2

7.3.3. Testing Generality in Other Domains
7.4. Assumptions and Discussions
7.4.1. Basic Assumptions
7.4.2. Requirement of Domain-dependent Knowledge and Heuristics
7.4.3. Case Selection
7.4.4. Domain-Dependent Rules of Generalization or Specialization
7.4.5. Representational Adequacy
7.4.6. Rule Redundancy
7.5. Comparison with Related Work
7.6. Future Extensions
7.6.1. An Expert System with the Ability of Discussion
7.6.2. Unsupervised Learning
7.6.3. Training Instances with Multiple Classifications
1.7. Conclusion

Appendix A. Degree of Certainty

......

196
193
199
199
200
200
201
202
202
203
203
204
205
205

206

ey O 0 O) b 2ad el 8.4 Sh' et Sl A S 4 A S8 b e 4w e A dinabin Al ALAA LAY Gl Aad iavolin-a Navataaite gt A AR oY)

Introduction 1

Chapter 1

Introduction
Artificial Intelligence (Al) techniques have been employed in designing expert systems1
which solve problems in specific domains by means of expertise encoded in knowledge
bases. Automated consultation programs (expert systems) have been built in the area of
inferring chemical molecular structure from mass spectra [Buchanan 69] mathematics
[Martin 71), mineral exploration [Duda 78], diagnosing medical disease and giving
therapy (e.g., [Shortliffe 76]. [Kulikowski 82], [Miller, Pople, and Meyers 82]), and so forth.
Why do we need expert systems? Solving complex problems (which may even daunt
experts) and saving human resources are major motivations. For instance, in medicine,
because of the uneven distribution of medical personnel, expert systems can raise the
average quality of medical care, particularly in rural areas. And medical expert systems
have demonstrated better diagnostic accuracy than junior physicians [Buchanan and
Shortliffe 84]. Moreover. the medical cost can be reduced by. for instance, allowing nurse
practitioners to prescribe under the guidance of expert systems. In another stream, Al
researchers have begun to investigate "machine learning" for the purposes of economizing
the time and energy of knowledge acquisition, discovery of new concepts, and

understanding of human cognitive mechanisms.

1Expert systems differ from classical decisional analysis in several aspects; first, the expertise is encoded into
many symbolic rules which simulate the experts’ thought: second. the representation is emphasized on its
understandability; third. the system should have intelligent features, such as the ability of explanation.

‘*' 'l . P R N A A P T R P PO Lot RIS . I A S R S
P e P R R e T T e e e T e e e . PR AR L S
\ - ..~‘. ‘." ”J“‘ ‘- ., ,' - q’_‘-'.)‘f P B .4_‘__.‘1_., . . '_",. ‘ ‘,n . R IRIACI Y

.

crS S
4L NN

[Py " .
R i
NN]

TR
EAP Pl A

oYy r a2
.

Py

2 X
(i |

-
PP E o 4

XN

[L

4

e~ At /e e, i Bt i 6 A e Belh ettt et it thert Sl g "F'H"\'s"-”'.v".'\‘L-‘.."'."\:v("':v\.'v'.‘w.““w

Introduction 2

This thesis. developed under the confluence of the impact of "expert system™ and the
. . CwY . .
recent enthusiasm about "machine leaming”.” is motivated by the following

considerations:

o The acquisition, representation, and use of knowledge are the key issues in
building expert systems [Hayes-Roth 83]. Among these, the most difficult
issue is knowledge acquisition. Even expert knowledge may often be ill-
defined or imprecise, and disagreement may exist among experts. Moreover,
in a relatively unexplored domain, expert knowledge is incomplete. Machine
leamning can lend itself to these situations: however. it is still in its incipient
stage, and any work in this area suffers from weaknesses or limitations in some
aspect.’ Finding a more general and better solution to knowledge acquisition
by machine learning is the first motivation of this work.

e In inductive concept learning, there are still so many issues remaining to be
solved: for example, how to learn if uncertainty is involved. how to learn new
concept descriptors, how to learn efficiently, how to handle noisy data. and so
on. Finding some solutions to these issues is the second motivation.

® An expert system will be more intelligent in solving problems if endowed with
the ability to learn meta-ruies that control and guide the invocation of object-
level (domain) rules. This is the third motivation of this thesis.

[n this work. we develop theories and methods of building an intelligent and robust

expert system that can perform efficiently and accurately. and can improve its

2"Leurmng" here denotes active learning rather than passive learning (e.g.. learming by being told). For
example, TEIRESIAS [Davis 79] 1s a passive tearning program: the SEEK program [Politakis 82] is more than
a passtve program hut suil cannot find missing rules: Meta-DENDRAL {Buchanan 78a] is an active program.

3Inducmr: concept learming techniques have been applied to construct a knowledge hase for expert sysiems, ‘
e g.. Meta-DENDRAL [Buchanan 78a), and RULEMASTER [Michie 84].

3
This will be analvzed i Chaper 2.

o s T LAk el ey T W W W
)
i "!
v
B, Introduction 3
. performance through leaming. We primarily focus on EMYCIN-like’ systems where the
. learning task is complicated by the facts that reasoning involves complex interactions
b
: among rules, and involves uncertainty about the data and the strength of inference.
) 1.1. Two Main Problems
. The recognition of expert systems as substitutes for or complements to human experts
)
requires that expert systems should perform accurately and efficiently. Therefore, we
. focus on these two issues: accuracy and efficiency.
J
)
’ 1.1.1. Accuracy of Performance
N
N By "accuracy”. we mean the advice given by the system should be able to solve the
N
N
) problems concerned. For example, the therapy recommended by a medical expert system
. can relieve the patient’s discomfort. Practically, we often use a comparison between a
. program’s advice and an expert's to evaluate the accuracy of the system [Buchanan and
Shortliffe 84].
. The problem considered here comprises two stages:
-.
K e The first stage problem is defined as "constructing an accurate knowledge base
(KB) from a given case library".
- Given: A case library.
v Find: A set of rules that can diagnose
; each case correctly.
z
»
1]
Y
' 5EMYCIN [Van Melle 80] 1s a domain-independent expert system building tool. based on the core of
N MYCIN.
y

3 ™
a
’ .\
o Introduction 4
A o Since the KB may not be perfect once constructed. the second stage ensues:
*.
B Given: A faulty conclusion (or misdiagnosis)
3 from the performance program.
\
N Find: Improvements to the KB in order to achieve a
_ correct conclusion (or diagnosis).
o
.
2 In an expert system, because the reasoning often involves multiple (hundreds
:'_ of) rules (structured in multiple levels) which may be chained together, or
h either positively or negatively interact with one another, tracking down the
faults in the KB is generally a difficult task. Even more difficultly, in a domain
with uncertainty, there are few exact solutions. There are two approaches to
- debugging the KB: human-oriented and machine-oriented approaches. As
h mentioned earlier, expert knowledge may be unorganized. inconsistent,
. incomplete, or redundant. Thus it is worthwhile to explore machine-oriented
o learning. which is one of the major topics in this thesis.
i 1.1.2. Efficiency of Performance
‘-: By "efficiency”, we mean the system can generate advice in a "reasonable” time without
=
3 loss of quality. Though this may be a trivial issue in a small KB, it can’t be ignored in a
WS
large KB where exhaustive invocation of all rules may make the system impractical owing
[J'
4 . «
b to a great deal time consumed. Thus, this is also one of the important criteria for
&: evaluating an expert system.
':: Dynamic mobilization of appropriate knowledge under a certain circumstance is a
> matter of "control”. As discussed in some works. such as [Davis 80], [Aiello 83}, control
o strategies are crucial in expert systems for the reason of efficiency. Thus we focus on
,: learning good control knowledge. in the form of meta-rules, as foliows:
7
bA
r
-
A
s
e
s
N's
.'{
-
(4
Ll
i) o s
o ' ’. A'.\N',\'"ri

X,

Introduction 5

Given: A set of object-rules.

Find: Meta-rules that can guide effectively
the invocation of object-rules.

Again. this problem can be solved by human-oriented or machine-oriented approaches.
Though human experts are good at the domain specific knowledge. it may be awkward for
them to write down good control knowledge. "Good" control knowledge is able to
enhance efficiency in a given organization of the KB. In this thesis, a theoretical basis and

methods are developed to generate a set of useful meta-rules.

1.2. Learning in Expert Systems

In this work, we use the technique known as "learning from examples” or “inductive
concept learning” as the primary strategy, though we also augment its capability such that
it can learn new concepts (newly defined symbols) which are not embedded in the initial

given language (see Section 2.3).
1.2.1. Learning from Examples
This learning task is formulated as follows:

Given: A set of training instances.

Find: Concept descriptions that are consistent
with the training instances.

Training instances are classified® into positive instances (examples of the concept) and

negative instances (counter-examples of the concept). The objective of learning is to find

We assume that instances are pre-classified with a high degree ot accuracy. As discussed in Chapter 4.
however, complete accuracy 1s not necessary.

S N N A NG SN

e e '~ LA
N .'f"t'{'\.(e ML NN i
Lad M M g ¢ +

-

1

N4

- > \ . T e Ty N P o e VR ETTRINN cAlaA M ' Alha™ 0 " S SR PR

)
e Introduction 6
:':‘-’
e
e o
. concept descriptions that satisfy the positive instances but exclude the negative instances.
?Z-: We may view this leaming problem from an instance diagram shown in figure 1.1.
:" = - = - - .- - nd
4 '::'
XN - - - - -
oSN - a : @ :
't = = < - - -
~] .
"
Co)) } i
i
L
N +: positive instance
:,*- -: negative instance
:":*.'
S
. Figure 1.1 In this instance diagram, each boundary
AL represents a concept description or a rule that
o includes positive instances and excludes negative
N instances.
":\':
, . Thus, the objective of leamning is to delineate the boundaries between the positive and
L
A
S negative instances. Basically, there are two operators used in making induction from
‘ instances: generalization and specialization. Generalization broadens the scope of
\’ descriptions or enlarges the boundary to cover more instances. In contrast, specialization
-_Z;::'.; narrows the scope of descriptions or contracts the boundary to cover a less number of
' instances. [f we see two different positive instances with different descriptions. we can
"
‘
'-:z: abstract a description which covers both instances by finding a common generalization of
)
l~*:
'-'Q- these two instances. For example, from two positive instances "2" and "4" for the concept
W\
X “even”. we may abstract a more general description "2n, n is an integer”. By properly
5
:j::
K-
L oS
h) wﬂ;’g LS AT RSN S U, PH R R R AT S ST LU R TG Y APRAR Y LTSV S PR PR,

Introduction 7

applying these two operators, descriptions that are general enough (by generalization

operator) to cover positive instances while specific enough (by specialization operator) to

exclude negative instances can be found.

Works dealing with inductive concept learning include, [Winston 70]. [Vere 75].
[Hayes-roth 76), [Buchanan 78a), [Miichell 78), and [Michalski 83a). The learning method

described in this thesis is designed in a way such that it can,
1. Construct a knowledge base in an expert system, and the knowledge base will

incrementally be updated to accommodate cases with faulty conclusions made
by the system.

2. Discover intermediate knowledge. Intermediate knowledge denotes the deep-
level instead of superficial-level reasoning knowledge. For example, in
medicine. the analysis or diagnosis of a disease often involves the reasoning
along the dimensions of pathophysiology, anatomy. and etiology (deep-level
reasoning), rather than simply associates the clinical picture with a disease
(superficial-level reasoning). In a reasoning network, intermediate concepts
denote those intermediate nodes in reasoning chains.

3. Handle uncertainty.
4. Handle noisy data.
S. Leamn fast.

In medicine, considering cost and risk, a rule should,

1. Have minimal features (avoid unnecessary features) to save cost and avoid
unnecessary risk.

2. Be maximally specific to avoid false positive diagnoses.

In Chapter 2. a model-driven type leaming method. which performs a heuristic search

from the most general hypothesis, is developed to learn multiple rules from a case library.

J‘

:t&:'._ﬂ.‘. .

.""v'vvvv"l'v"'TT

LA d
L
o fa s 2

\

PR
s

[ntroduction 8

-

& o e
3 v .l‘
.
il Ay

{t is an often encountered situation in an expert system that wrong advice or

FE]
v e)y

misdiagnosis is provided by the system. The faulty advice may be traced back to faults in

: the knowledge base. Since. for instance. in medicine. a variety of manifestations can occur
b in one disease. different cases (patients) with the same disease may be diagnosed by
’ j.; different rules: a misdiagnosis indicates the KB is inadequate to detect a certain
:’ combination of clinical features. Hence. learning is useful to find the right rules.
D)

- "Focusing mode”(described in Section 2.2.4) is designed to discover rules covering a
specified case (usually a misdiagnosed one).

1.2.2. Efficiency Consideration
-,‘:-

r Learming becomes a complicated issue in a complex domain like medicine where there
): may be hundreds (even thousands) of features (symptoms, signs, and laboratory tests). The
difficulty is reflected by the fact that medical experts abstract a limited number of medical
rules from decades of practice. Our ambitious goal is to build an expert system with fast
:‘ learning ability. The important idea of data compression in information theory can lend
é" itself admirably to handling a large volume of data in leaming.7 As long as the desired
E: information content is preserved, the representation can be as simple as possible. A
1

' feature condensation technique, that removes unnecessary or irrelevant features
=Y

f. dynamically during learning, is implemented and described in Chapter 3. With this
; " technique, learning is much faster because of the reduction of the dimensions of the search
:.: space while the quality of the output is preserved.

-"f-

g

N

2
7 [Quinlan 79] discusses an alternative for learning with large data bases, but the emphasis there is on the
" number of examples not on the number of features in each example,

4

Kl e

Introduction 9

1.2.3. Noisy Learning Environments

With respect to learning, there are various types of error-sources., which may be
associated with the input (the set of training instances) or the leamning system (the learner).
Inadequacy and bias of the learning environment are two major sources of errors. For
example, a small case library renders the learned rules limited or incorrect in predicting
the cases outside the case library; false positive or negative instances make the leamed
rules inconsistent. Chapter 4 describes possible types of error-sources and the method of

their elimination.

1.3. Learning as an Approach to Debugging the Knowledge Base

As mentioned earlier, a misdiagnosis indicates faults in the KB, which may be incorrect
rules or missing rules. This problem is closely related to the so-called "credit and blame
assignment problem” (refer to [Dietterich and Buchanan 81]). Only those rules that are

determined to be "blamed" should be corrected.

Automated debugging of the KB in a complex rule-based expert system is generally

difficult because of the following reasons:

1. There are so many rules involved.
2. There are so many ways to correct a rule.
3. There may be more than one fault.

4. [f uncertainty is involved. there may actually not exist any perfect solution.

TEIRESIAS [Davis 79] assists human experts in editing the KB by tracking down the

relevant rules and allowing them to correct the faulty rules or add missing rules on the

Introduction 10

A basis of their knowledge and intuition. But, even experts may go astray if the faults are
& multiple and the solutions are not exact (i.e., optimization is required). Moreover.
| misdiagnosed cases are often due to missing rules. Therefore, we would rather view this

problem as a learning problem. A strategy called “retrospective inspection after learning"

is described in Chapter 5. With this strategy, rules that can make the misdiagnosed case

diagnosed correctly are first found; then the found rules are compared with the old rules

in the KB to detect missing rules or decide how rules should be generalized or specialized.

. This approach is more advantageous than the one which tries to modify the KB in every

possible way, especially if the faults are due to missing rules.

; 1.4. Meta-Level Knowledge

Meta-level knowledge is the "knowledge about knowledge”. So, meta-rules are rules
. about rules. Three types of meta-level knowledge are briefly introduced in this section:

meta-rule, rule model, function template.8

PP AR

1.4.1. The Role of Meta-Rules

Meta-rules guide the invocation of object-rules effectively by reordering or pruning

e

o

i them [Davis 76). The syntactical structure of a meta-rule is seen in Chapter 6. The main
. reason for incorporating meta-rules is to increase the speed of performance without
: degrading the quality of advice. Meta-rules are particularly important in a large KB where

exhaustive use of the KB will make the system awkwardly slow and. thus. impractical. In a

¥ goal-oriented reasoning system, to pursue a different goal will trigger a different set of
N

% meta-rules.
g 8 .

J Refer t [Davis and Buchanan 77}
L~

\

PR - L AT R e e R e et e e e s T e
A S *." e *-_"‘--v“-,,'(-w »J’-.’ .. ‘-.‘ R A el O R N R Rt
¥ MallaX Al

FPOld W WE RN N

Introduction 11

1.4.2. Rule Model and Function Template in Learning

A rule model summarizes the premise from a set of rules with the same area of
conclusion in the KB [Davis and Buchanan 77} The application of rule models in

machine learning has three advantages:

1. They provide the knowledge about parameters (attributes) used for a certain
context.

2. They provide the knowledge about the predicates commonly used for a certain
attribute.

3. They provide the knowledge about the ordering of attributes in the premise
and the knowledge of the necessary components for concluding a certain fact.

We may view the use of rule models in leaming as "guiding future behavior by past
experience”, which is a key factor to make learning more semantically meaningful and of

higher quality.

Function templates record the argument format for certain predicates [Davis and

Buchanan 77] and are important in generating code for new rules.

As described in Chapter 2, the knowledge embedded in rule models and function

templates can be formulated directly by experts as the initial knowledge for the leamning

system to construct a KB from nil.

»
s

|.:;n'-.-)
3,8, 0y 4 Yy K
S

B

'

Introduction 12

1.4.3. Machine Learning of Meta-Level Knowledge

In a hierarchical knowledge structure. as object-level knowledge is derived from
observation of objects. so meta-level knowledge should be able to be derived from object-
level knowledge. This is one motivation of learning meta-rules from a set of object-rules.
which is described in Chapter 6. Hierarchical learning (learing is done level by level) is
significant in constructing a multi-level knowledge structure, in which the knowledge of a
higher level is abstracted from the lower levels. Learning of meta-rules from object-rules

is one example of hierarchical learning.

1.5. JAUNDICE as a Set of Experimental Programs

Medicine, because of its complexity, is a good area to build expert systems. In this
thesis. we use the diagnosis of jaundice as an experimental domain for the following
reasons. First. since the reasoning for jaundice cases involves several different dimensions.
such as pathophysiological, anatomical. and etiological reasoning, this domain is
sufficiently complex to test the capability of a learning system. Second. the knowledge in
this domain can be easily codified because this domain is well-studied and relatively small
in contrast to the KB of INTERNIST [Miller, Pople, and Meyers 82]. JAUNDICE? isan
expert program which provides diagnosis for jaundice cases and leamns new rules:
however, this program is designed to screen the jaundice (adult) patients based on the
preliminary clinical data without resorting to invasive tests, such as liver biopsy. Several
features of this program are shown in figure 1.2. As seen in the above figure. the main

program JAUNDICE includes several subprograms: the performance program (the

9!(is implemented on SUMEX-AIM, TOPS-20 system and written in INTERLISP.

Debugger

WN -

4a

6a:
6b:

7a

Introduction

Performe

Knowledge
Base

Data
Base

Learne

Noise ondense

filter

Interaction between human and the performance system.

Knowledge base is used in consultation.

Sources of case information for data base:

3a: fFrom consultations.

3b: From literature.

4b: Meta-rules formed from object-rules by
Meta-Rulegen.

Sources of learning new knowledge:

5a: From human (experts) feedback.

5b: From data base

5c: From meta-knowledge.

Automatic knowledge base construction.

Automatic knowledge base debugging.

7b: Human-centered KB editor.

Figure 1.2 Overview of the JAUNDICE programs. Arrows
indicate knowledge or data low. Dotted links (7a., 7b)
are not stressed in this work.

’a¥ '-’-?’f-'._.'.,-r. St R T T O i s N
; ’ y W Vol fhe \ 2kl

2 .
v A,
4 o A N

13

Ry

o .l ‘..;’...-S. -

el
td .'l‘.l

N

2.7,

.
»

» 0
o os

P, "
e,
e
o,

Introduction 14

performer), RL (a domain independent rule learning program), the debugging program
(the debugger). and Meta-RULEGEN (a domain independent program that generates
meta-rules). Each subprogram will he briefly described in the following subsections. The
KB stores both object-level and meta-level knowledge. The DB is a case library which
stores patient data. A feature base that has 81 clinical features (binary or multiple values)
is used to write rules in the KB and describe patient data in the DB. Feature values may

be numerical or non-numerical. Figure 1.3 shows some examples.

Fe re: X val
* Malaise Yes, No
* GOT positive number

* Hepatomegaly Mild, Moderate, Marked

Figure 1.3 Examples of feature values in JAUNDICE.

1.5.1. The Performance Program

This is mainly an interactive program.m built from scratch but similar to MYCIN!L,
The user enters patient data: then the program provides an interpretation which includes
disease diagnosis, anatomical and pathological mechanisms. An explanation of the given
interpretation, based on the patient data. will be given if requested. [f the user is an
expert, he is allowed to give his view about the diagnosis. [f the expert's conclusion 1s

different from the system’s conclusion. the expert may either edit the KB (a

10 ,
Though. there 1s another veraion. batch mode. which can run multiple cases 1n a ume and s designed
primanly to test the pertormance of the program when the KB is edited.

1 .
The svatax of rules 1> the same; the mterpreteris also goal-onented.

Introduction 15

TEIRESIAS [Davis 79])12 or simply give his diagnosis without editing the KB. In the
latter case, the system will debug the KB automatically (this is one of the main topics in

JAUNDICE).

The performance program uses the KB to solve problems by goal-oriented (-ackward-
chaining) reasoning. The main goal is to conclude the disease entity causir:g jau. lice,
which may be one or more of ten disease categories, including acute hepatitis, chronic
hepatitis, cirrhosis of liver. primary biliary cirrhosis, and so forth.!3 Subgoals are to
conclude disease mechanisms, such as pathological and anatomical mechanisms. The
program uses a measure of "degree of certainty” to handle uncertainty, which is extended
from MYCIN's CF model {Buchanan and Shortliffe 84]. (See more detail of "degree of
certainty” in appendix A.) The accumulation of uncertainty in JAUNDICE is the same as
in MYCIN. The performance program will not be discussed further since it is not the
main focus in this work, but it is used to measure the ability of the learning program to

learn useful new rules. An example of consultation is shown in Chapter 7.

1.5.2. Knowledge Base

There are 141 diagnostic rules. and 80 non-diagnostic rules reflecting causal and
taxonomic knowledge in the initial KB. The knowledge base was constructed by encoding
knowledge from medical textbooks and journals (e.g.. [Schiff 46]. [Petersdorf 83]. [Krupp

82]. [Winkelman 81]. etc.) and talking with experts. After leaming. the number of

12Thxs 1s not implemented 1n JAUNDICE.

13 - .
For simplicity. diseases are generally assumed to be mutuaily exclusive.

4 TRV TP OO : MRt R RNt e e ot . Aok Aah gt it bl b Mgk Ah &b Bav a0y |

AR

o
' :::__‘T' Introduction 16

o
| S diagnostic rules increases to 304. Each rule is put in EMYCIN [Van Melle 80] rule format

- Figure 1.4 shows one example. 3
J
& |
& |
o Ruled2: If 1. Serum tota) bilirubin is greater than 1.2 mg/dl. |
. 2. Serum GOT is greater than 300 I.U./dt.

S 3. Serum GPT is greater than 300 I.U./d1.

:;lj 4., Serum Alkaline-phosphatase is less than 10 B.U.

o then it is probable (.8) that the mechanism is

hepatocellular injury,

(RULEB2 ((SAND (GREATER SERUM TOTAL-BILIRUBIN 1.2)

e (GREATER SERUM GOT 300)

R (GREATER SERUM GPT 300)

(LESS SERUM ALKALINE-PHOSPHATASE 10))

(JAUNDICE MECHANISM PARENCHYMAL-DYSFUNCTION .8)))

-

g Figure 1.4 One example of a rule in JAUNDICE.

. ‘l:: 1.5.3. Database

J Here, the database is the collection of patient data. In our experimental model, we

-~ carefully!® collected 72 jaundice cases from the literature (e.g.. [Malchow-moller 81],

5 : {Stern 75], [Winkelman 81], etc.) to construct a case library as the starting point. Each case

is stored as a frame. Figure 1.5 shows an example. The data description is represented as

o a feature set (or list), a set of feature value pairs.

NS

NI

14, . N
ROAR We only select those cases with rather complete data ¢esenpuions and contirmed diagnoses.

e

LIPOOT G S ST I N AT)

Introduction 17

(CASE1 (DATA ((AGE 56)
(SEX MALE)
(ONSET ABRUPT)
(TOTAL-BILIRUBIN 3)
(GOT 150)
(GPT 180)
(URINE-UROBILINOGEN ELEVATED)
(MALAISE YES)

cee 1))
(COMPLICATION NIL)
(FINAL-DX ACUTE-HEPATITIS))

Figure 1.5 Frame representation of cases in JAUNDICE.

1.5.4. The RL Program

The RL program (standing for rule learning program) has three subprograms: the core,
CONDENSER, and the noise filter. The core of the RL program comprises three types of
learning methods: "search from the most general hypothesis” method, the method of
learning intermediate knowledge. and the method of learning disconfirming knowledge.
CONDENSER improves the efficiency of learning by removing irrelevant features
dynamically during learning. The noise filter makes the results of learning more precise
by minimizing errors caused by the undesirable perturbation factors associated with the
input or the system. The RL program receives input from database, expert diagnosis. and
meta-level knowledge (rule model and function template). The output of the RL program
(new rules) is sent to the KB directly if the purpose is to construct a new KB, or sent to the

debugging program for debugging the KB if there has already been a KB (constructed

some time ago).

|

P

L™

Introduction 18

The RL program is designed to be domain independent; as will be shown in Chapter 7.
it is effective in JAUNDICE (a medical domain) as well as REFEREE (a non-medical

domain).

1.5.5. The Debugging Program

Each time a misdiagnosis occurs, the learning system will be triggered to learn rules
(ignoring temporarily the old rules in the KB) such that a correct diagnosis can be reached.
Then. the debugging system compares the newly learned rules with the old rules to
pinpoint the possible faults in the old rules. For instance. an old rule may be indicated to

be too specific and should be generalized.

1.5.6. Meta-RULEGEN

Meta-RULEGEN is a second order learning program, which can generate useful meta-
rules from a set of object-rules and can control the invocation of the object-rules in order

to enhance the performance of expert systems.

1.6. Contribution of the Thesis

The major contributions of this thesis include the following:

1. It develops the first system which can learn new knowledge in EMYCIN-like
environments where uncertainty is involved and evidence can be combined
either positively or negatively. It confirms the value of the model-driven
learning strategy in constructing the knowledge base with multiple decision
rules in an expert system: and it ditfers from previous model-driven methods
in its ability to learn incrementally.

2. The idea of leaming intermediale concepts from a set of training instances
which are not descnibed by any intermediate concept is novel: the techniques.
such as bi-directional extension and symbolizing switchover points. are novel.

., o

Lo 4.

\ Introduction 19
M)

<¢
&

0! . .
X 3. It is the first work which automatically learns meta-rules which car guide

P effectively the invocation of object-level (domain) rules.

. 4. It is the first work in Al which develops the theory and the method of feature

: condensation to enhance the efficienc, of inductive concept leaming.

. Previously, the efficiency is improved by adding heuristics.

X 5.1t generalizes and amplifies previous approaches to handling errors in

" inductive concept learning.
Al

) 6. It is the first work which applies machine learning techniques to debugging the

- knowledge base automatically in EMYCIN-like environments where.

; previously, human experts are relied on to debug the knowledge base.

” 1.7. Outline of the Thesis

- Chapter 2 describes three learning methods with illustrations. "Search from the most

general hypothesis” method learns multiple rules for each diagnosis class in a case library.

N Leaming intermediate knowledge is required to build a KB with good accuracy. Learning
. disconfirming rules is important in an EMYCIN-like system where uncertainty is
- involved.

']

Y Chapter 3 introduces the condensation principle. defines the role of CONDENSER.

and describes a useful feature condensation technique. A cost and benefit analysis and

p. some illustrations are made to demonstrate the value of feature condensation in learning
\ L]

R

. from examples.

J 3 .

. Chapter 4 provides solutions of noise problems in Al leaming. The source.
' measurement, and filtration of errors are described. "Minimizing errors” is the basic
4

principle to recover the desired information from a noisy learning environment.

5

:

3

:

Ui

s ; .. .
e o e N e e T L T RN et

oph it o . AR DA A mie ara o " A ghacang: et ir pa it Kot .-..r".'.'..'.r:'.a-.'.'.'."’"'.."'.T

WY
1, ‘.'q\
K \:_-\
“
] Introduction 20
o
Y'I-;-:: Chapter 5 describes automated debugging of the knowledge base for a misdiagnosed
: case. [t takes advantage of learning to achieve the purpose. Techniques of editing the KB
.';::::j particularly in an EMYCIN-like framework are described with illustrations.
LIS
o
e
" In Chapter 6, a theory and methods of formulating new meta-rules are developed. The
A
(”"-‘; effect of introducing meta-rules is carefully analyzed by defining utility-value on the basis
. ’.\"-
-_:tj_; of the cost and benefit and by some experiments.
¥ -A_.
K- Chapter 7 shows results obtained from implementing all the ideas developed in the
~Tf-'.:, previous Chapters. The validation of the the developed learning method is the central
e issue. Then, discussions and conclusions are made.
S
K-
[L "
R
e
I

E R g

ko %y -l"l '

Knowledge Acquisition via Machine Learning 21

Chapter 2

Knowledge Acquisition via Machine Learning

2.1. Introduction

In this chapter, an inductive leaming program, named RL (standing for rule learning).
is developed for constructing and maintaining the knowledge base (KB) in expert systems.
This program differs from other inductive concept learning programs in that it can define
newly useful concepts which are not in the initial given language. in order to fill in the
possible missing links in a complex reasoning network. [n addition, this program
possesses two other distinct features. First, each learned rule is assigned a number
representing "degree of certainty” (see appendix A). second. disconfirming rules are
learned as well. All the above features are intended to augment the capability of inductive
concept learning, and can be tailored to different domains. The learning methods
employed in this program are described in general terms. illustrated with its application to

the jaundice domain.

The problems we concern here. as described in Chapter 1. are as follows:

o The first stage problem is.

Given: A case library.

Find: A set of rules that can diagnose
each case correctly.

- vy ~ W AL okl W e gt e el Siolh A d Sk ~Aalh Adb NS b SN Do A uas AR U - S N -“"

RS -
*.:_\
)\
e
oo Knowledge Acquisition via Machine Learning 22
A
o
g5
‘ \. .l
o « The second stage problem is,
5
N
-
L Given: A faulty conclusion from the
oy performance program.
NG
O - .
":._\ Find: Improvement to the KB in order to
NN achieve a correct conclusion.
T
A
:::'{ In the case library, each case (training instance) is represented by a frame with two basic
N
-‘-h‘. - . . 3
N slots: a feature set (i.e.. a set of feature value pairs), and a correct classification. The goal
N
L of the first problem is to construct a KB which can diagnose all (or most) cases correctly:
::‘,; the second problem is to update the KB as a new case with faulty diagnosis appears. A
KB, after constructed, will constantly be updated when more and more cases appear.
Here, one important issue may arise: if the original KB is poor because of the poor initial
-~
! ;Cf:j case library, inadequate language, or whatever (see error-source considerations in learning
T in Chapter 4), then the KB may not converge to its ideal state (no longer with faulty
J
= conclusions) even with drastic updating (editing). Therefore, careful selection of training
",
A instances and other noise-elimination measures are mandatory to construct a good KB and
W minimize the future editing. But can we assure a KB will converge to its ideal state if we
o have a good learning environment? Here. it should be stressed that a KB may continue to
P
:-':': grow even if it is in the ideal state because as more features are added. more rules can be
CAC
o created: we do not mind adding more pieces of knowledge if they are true. Thus the
>~
S8
R above question actually indicates whether each individual piece of knowledge will
LS
j converge to the truth. Since a piece of knowledge will be more accurate if it is based on a
<t o . . NP
_ large amount of accumulated data. the answer to the above question is positive if the
~'
o
’.-.
L~
-
-.f;--' iy n" .I'l."h' "‘*'; -'\.‘*:
X .“-..‘V 'w '&,"\‘v "m e

Section 2.2.4, is developed to cope with the situation when a new case with faulty

}\-‘ Knowledge Acquisition via Machine Learning 23

W\ -\.'

;\\.\.j

Y
%"

b learning system can incrementally update the knowledge created. This worry may further
\.::: be diminished when we notice that a KB is constructed by human experts and edited after
::l:j some tests, then it is in good shape. Perhaps. unless well-established theories are

’ overthrown or the statistics of instances in a community is altered by some intruded de-

':_:::: stabilizing factors. we may generally assume that a KB will converge to a dcsirable state,
. ." though a limited amount of editing (e.g.. adding new knowledge) is still required.

-::Z:_: In order to solve the first problem, a method which performs a heuristic search from the
BoteN

YhY most general hypothesis is developed: this model-driven and batch-processing (i.e.. process
'ER)

)

4 all data at once) learning method is described in Section 2.2. The second problem deals
"_Z-'_‘-Z with the KB debugging. In this chapter, a "focusing mode" of learning, described in
7

conclusion made by the performance program appears; rules which can achieve a correct

o
L)
g

.

conclusion are first learned with this mode, then the KB is edited by comparing the

Sl
PP
Ay -ty Gy Ky Ay
s 3

1

learned rules with the old rules (the part of the subsequent editing of the KB after learning

j
o is described in Chapter 5).
:-:jl
'::Ij Section 2.3 describes learnin3 intermediate knowledge. which is important to construct
A a KB with good accuracy and understandability. Section 2.4 describes learning
:::Z. disconfirming rules. Section 2.5 describes how to combine all the methods developed to
o construct a KB with both confirming and disconfirming knowledge. including
o intermediate knowledge.
N

o)
k) ..
o As mentioned in Chapter 1. rule models and function templates are important for rule
C learning because what they provide. which we call rule-forming knowledge. is essential to
e
-'y‘
w

PRI ..‘ <. T \ - \, '~ LR, < -_"I--ﬂ‘- ‘_ \ \)\ _~ \ u, ,\.. . -" o \.“::". _.}\‘.\,‘: -" \4"‘.-" 53_{?. -~ Y \
- 4 A - ¢l e, N - N N 3 R

<5,

>’y
.

Knowledge Acquisition via Machine Learning 24

K. make the machine-leammed rules more uniformly encoded and more semantically
N meaningful. We recapitulate the advantages brought about by this "rule-forming”
o)

¢ knowledge as follows:

e It indicates the required components to add such that rules learned will
conform to the rules written by human experts. For example. a rule learned is:

% “if P, then C"
o but a rule written by human experts is:

"if (1) C is unknown,

"
»
P

o (2) p
then C."
EE Though the two rules above do not make much difference. the second rule will
"ﬁ be more realistic because it also states unless "C" is unknown, it is unnecessary
to conclude "C".
o it tells about the commonly used predicates for a certain attribute.
i ::
:- o It guides generating code for newly learned rules in compliance with the old
coding in the KB. Therefore, the new rules can be used by the inference
::I engine once they are learned and can thereby be evaluated immediately to see
,;,' their effects on the system performance (upgrading or degrading).
;

o It provides other common sense. e.g.. mutual exclusiveness and relative
> priority among attributes. In the LHS of a rule, it allows no two conjuncts that

7 are mutually exclusive with each other; also, the conjuncts should be ordered
A . . .

] ? according to the sequence of occurrence or priority. [f the failure of one
.': conjunct will make other conjuncts meaningless, then this conjunct should be

v placed as the first one. For instance. it is logical to place the conjunct "LFT is
- known" before "SGOT is elevated” and "SGPT is elevated” because if "LFT
N is not known''. then no data are available for "SGOT" and "SGPT".

This rule-forming knowledge. which is collected from observing rules written by bexperts.
can actually be formulated directly by experts as the initial knowledge for the learning

system to construct a KB from nil.

AP I '-'.".'-‘. ARy A A A A I TRV A T A AT A T T e
K N L% LI T -'_ i '.I".“'/.".‘. e ,—:‘." .. e) .M - -*;\v'.&-.:v\ '?_- "

WTE N OCRENTE 8 VE "W 0 Gt "R S A A e B R Y “ A “ I “adh S S ot Y
.' v
J‘,:-:
2
A Knowledge Acquisition via Machine Learning 25
X
d
J,‘:«
]
Pl R R
"N 2.1.1. Learning in JAUNDICE
Lot}
::-‘.: Though the methods we developed are general, we use JAUNDICE as the main
&,
‘:-:I experimental domain. There are 72 cases in the initial case library: a feature base with 81
on
. medical features (some have binary values. others have multiple values) is used for
describing cases: every case in the case library has been assigned a correct diagnosis given
by human experts. A KB with 141 diagnostic rules and 80 nondiagnostic rules encoding
- causal and taxonomical knowledge was used as it's starting point. The learning program in
~1lj: JAUNDICE, is involved in leaming of diagnostic rules. Descriptions about cases or
" concepts or hypotheses in the search space are represented by feature sets, sets of feature
S and value pairs: e.g.. {.....(SGOT 250) (SGPT 200) (Alk-P 25)....}. The temporal
- characteristics are also encoded into features; e.g., (disease-course rapid-downhill).
= The rules of generalization used are listed as follows:"> (notation "G>" means
. “replaced by a more general form™)
' 1. Dropping conditions:
o {(Ai Vi) (Aj Vj)} G> {(Ai Vi)})
P
Based on this rule. generalization is done by removing some feature value pairs
. from the feature set.
o 2. Climbing up the value hierarchy tree:
- If Vi implies Vk, and Vj implies Vk,
AR then,
e ((Ai Vi)} 6> A Vk
o {(Ai Vi) (v
L- lSRu|cs of generalization used in learming from examples can be seen in [Michalski 83b]. But. in
= JAUNDICE. we also add some domasn specific rules.
i
vy

pd
-

Sel

y Knowledge Acquisition via Machine Learning 26

This rule states that a value can be replaced by a more general value in order to
oo cover more instances in the same class.

Lo 3. Creating new symbols: [n Section 2.3. we will describe how to define new
e symbols for a higher level abstraction when indicated by some heuristics.
\ 4. Taking minimum or maximum:

{(Ai a)} G> {(Ai 2min(a b)}

{(Ai b)} or, {(Ai {max(a b)}

2]
B
M)

<l"l [y

This rule is designed for medical numerical parameters and can be understood
by the following example. For two patients with the disease "hepatitis", one
_ patient’s data show "SGOT = 200", another’s show "SGOT = 400" then it

e may be hypothesized that "SGOT 2 200" implies “hepatitis”. Depending on
the distribution of values among the normal and diseased populations, "taking

ata'als
'Y SR
'..‘.."- o

Sl

B v a

'-'—',Z;'- minimum” or "taking maximum” rule is chosen. In JAUNDICE. this rule is
made domain-specific by adding the following heuristic: if the high range of
.:t:tfr'. values suggests disease. then use the "taking minimum" rule: if the low range
"’.:3_'.’ of values suggests disease, then use the “taking maximum" rule,
e
’ ' 5. Allowing disjunction:
A
- {(A1 Vi) (Aj Vj)) , A1 VI) (A1 Vi-or-Vk
oo ((ai vi) (a3 vigy @ LATED (AT Ererva)
e To avoid trivial disjunction, this rule is invoked only under certain
-\' -.‘ . .« . .
circumstances. For example, the important features of two instances in the
o same class are matched: then the less important features which are not
T matched and there are no other ways to generalize can be generalized by this
- f tL
9 rule.
Y
A
‘Y
| \.l\'
.:j.:-j Rules of specialization are logically opposite to those of generalization. There are three
ugh

=
b &

rules listed in the following: (notation "S> means "specialization” of concept descriptions

or the LHS of rulcs)

Lo g ava aie aee acs ach s sl acd ail AR afd add addh abd-odietnad oAy RAsSe T o sl Rt e Satidhhn ot bat hat Bat Gt J "'«'""‘»"'"J"-"!""'""'T

Knowledge Acquisition via Machine Learning 27

1. Adding conditions:

2. Climbing down the value hierarchy tree: In the tree. the highest level nodes
are the most general values or descriptions; the lowest level nodes are the most
specific values or descriptions. For example, a value "2" is more specific than
a value "even”, and the value "even" has infinite successors: -2, 0, 2, 4....

3. Closing interval: If the value is numerical and the interval is too open. then it
can be specialized by closing the interval as follows.

{(Ai 2a)} 5> {(Ai [a b])}
or {(Ai 2b)}

"b" is the next higher marking level of "a".

For example, a description {(SGOT 250)} is too general for the disease
"Cholangitis” and can be specialized into {(SGOT [50 300])} or {(SGOT
2300)}: however the latter is not proper.

The specialization operator of "changing disjunction to conjunction” is not applied
because. as described in next section, the learning employs search from the most general

hypothesis: "NIL".

The main features of learning in JAUNDICE are summarized in table 2.1.

.«

Sa i) "
Ay h e,
» P
LA R R

4

4, i b £, "'
‘ ".":'l‘-‘l

2
1)

[N Tl T}
L A

Pl i)
PR
R N
VLRI
e

»

0

i

NN e

Knowledge Acquisition via Machine Learning 28

Table 2.1 Learning in JAUNDICE

Paradigm:

Representation:
(of training instances)

Rules of generalization:

Rules of specialization:

Control rules:
Intended applications:

Applications:

Efficiency enhancement:

Noise elimination:

As described in Chapter 1. in order to avoid unnecessary risk and cost. the RL program.
which is adopted as the leamer of JAUNDICE, is designed to keep the learned rules small
(i.e.. mention no unnecessary features), and keep them maximally specific while
sufficiently general (may be viewed as the most specific rules in the version space) for
minimizing false positive errors (incorrect diagnoses). The subprogram CONDENSER

(described in Chapter 3). by removing unnecessary features. can not only enhance the

efficiency of learning, but also save cost and risk in a given domain. In medicine. a

Learning from example paradigm.

Feature set.

—

Dropping conditions
2. Climbing up the value
hierarchy tree.
Creating new symbols.
Taking minimum or
taking maximum.

5. Allowing disjunction,

o~ w

1. Adding conditions.

2. Climbing down the value
hierarchy tree.

3. Closing interval.

Learning meta-rules (see Chapter 6).
Expert systems in general.

JAUNDICE
(REFEREE)

CONDENSER (see Chapter 3).
Heuristics

Noise filter (see Chapter 4).

Knowledge Acquisition via Machine Learning 29

=
L :: diagnostic rule is valuable if it can arrive at a conclusion by using cheap and safe clinical
I ;:: features. Error-sources (noise) associated with the learning system will be considered in
Chapter 4.

._::. ‘ 2.2. Learning via Search from the Most General Hypothesis
-
:'_: This learning method. performing a heuristic search from the most general hypothesis,
- is model-driven and is designed to learn multiple disjunctive concepts (i.e.. there are
N T‘_?' multiple concepts and there are multiple rules for each concept). This method is intended
_} to abstract rules from a case library: the learning task is formulated as follows:

Y]

Given: A case library.

.- Find: A set of rules that can diagnose each
S case in the case library correctly.

Note that the ultimate goal is that the learned rules should also provide correct diagnoses

for cases that are not in the case library used for training; therefore, the learned rules

J
- should be sufficiently general and specific.

Since we use a set of training instances to estimate the "true” boundaries (i.e.. rules)
= between positive and negative instances, the leammed rules will be associated with some
- degree of error. The errors concerned here are false prediction errors, i.e.. rules make

Y wrong predictions. We particularly desire to minimize false positive predictions because
:::j of reasons described in Section 2.2.2. Therefore, this learning method is intended to
Cant]

~
o discover rules that describe a group of positive triining instances in maximally specific
"

fashion. They thereby minimize false positive predictions (i.e.. predict negative instances

.

',

had St it e g M AN AN BAR A A MM A a¢ B Dt aild il iCalliC Al sl hiaii it a iU lnta it i AN i Rt Al e R Badh 4 .'".","“.NW"{"Y""T

Rnowledge Acquisition via Machine Learning 30

as positive instances). Moreover, a leamed rule will tend to be overly generalized
(overgeneralization implies false positive predictions) if there are not adequate negative
training instances to constrain or guide generalization properly [Carbonell 83]. Hence. this
method will be even more useful if negative training instances are only limitedly available.

Refer to Section 4.2.2.2 for the philosophy of handling sampling insufficiency.

There are domatn dependent constraints for rules. The learning method searches for
rules which are maximally specific without breaking the constraints. The constraints, just
like the half-order theory in Meta-DENDRAL., are based on the domain knowledge. In
JAUNDICE. the constraints are defined as follows:

1. The LHS of a rule should have less than seven conjuncts.16

2. A rule should cover (be matched by) at least 20% of positive training instances
(the class of instances for which we want to learn classification or diagnostic
l’ules).17

3. The "degree of certainty” of a rule should be at least ".4". That is, the
prediction should be reasonably certain.

4. A rule should not cover more than 10% of all negative training instances. '8

lé'This constraint 1s based on the observation that a rule in rule-based medical expert systems usually has
less than seven components in it's LHS.
17. .)

This 15 domain dependent. [f there should be only one rule that covers all the posiuve 1nstances. then the
rate of coverage should he 100% 1deally. But we assume there are multiple disjunctive concepts o be learned
(as 1t Meta-DENDRAL): so it 1s unitkely that a single rule will cover all instances. As another example. in
diagnosing gcute appendicitis. the rules should be more general o cover more positive instances because the
morwlity of this disease 15 high whereas the surgical nsk 1y small: theretore the threshold should be set higher.

Though. idealy. a rule should not cover even a single negative instance. this is. however. not probable
because of uncertainty [U1s also noted that, mn the EMYCIN system. for instance. a case 1n class A. which is
covered by 4 rule. nule B inferming class B will sull be classified correcty if a rule. rule A. which infers class A
and ¢overs this case overndes rule Br recdll the phenamenon of hypotheses compeution in such a system,

',_" "._‘ - - U T .‘_‘. - "' T -_'-'_ .“"_-_'- . -‘_'- PR . . _-- : . v_’_' . .‘. e .. -’.A-'_ -'.-‘-", ‘-."h e
e s -&i~ R AT) ’ . x‘&. N ol el e e el
e A e A S A s DR PR PR O PO R L (S S W Ak SR LA A T, N Ty

1R e a2 il e d R Sy Bl RN A 4 aR ik a4 s a-f aes ot g-d aid aea aud sty ash obi- aii-alAranitakd abh’ siA okh" ol i’ sCRICHMCHAA MRS SRE LS AR S sl sl ol

Knowledge Acquisition via Machine Learning 3]

The first two constraints define the minimal generality whereas the last two constraints

;' define minimal specificity.

o e o N

2.2.1. Procedure

In a case library, if we want to leamn rules for a certain class, then label all cases in that

"

class as positive instances and label other cases as negative instances. [nasmuch as the goal

»

is to construct a KB from the case library, each class will be labelled as positive instances at

- a certain stage during the whole learming process.

N During learning, CONDENSER condenses the feature base dynamically with respect to
the class labelled as positive instances to determine the set of required features, which is a
subset of the feature base (see Chapter 3). The leamning procedure includes four main

steps described as follows:

- estep 1. Starting from the most general version, "NIL", search for the
L maximally specific hypotheses that does not break two following constraints:
) the number of conjuncts should be less than seven (adjustable). and the
hypotheses should cover at least 20% (adjustable) of positive instances. The
hypotheses, thus found, are formed as raw rules. Since the constraints merely
a involve positive instances, only positive instances are considered in this step.

e step 2. Prune those rules which are assigned a degree of certainty smaller than

. ".4" (adjustable), or which cover more than 10% (adjustable) of negative

- instances. Negative instances are considered in this step for calculating degree
- of certainty (refer to Appendix A).

- o step 3. Optimize each raw rule by iteratively applying generalization operators
. (generalization rule #1. #2. and #4 in Section 2.1.1) until a local optimum is
reached (perform a hill-climbing search. so to speak). The local optimum is
the state with minimal weighted prediction error (as defined in Section 4.5.3.1)
under the following constraints: the local optimum should not cover more
than 10% of negative instances as mentioned in step 2. and the difference of :

Knowledge Acquisition via Machine Learning

degree of certainty between the local optimum and the initial state (a raw rule)
should be within ".15": the latter constraint stems from the argument that, in
EMYCIN-based systems. it is hard to compare two rules with different ranges
of degree of certainty.

o step 4. If all positive instances are covered or the rate of uncovered positive
instances is below a certain threshold or the number of iterations has reached a
certain threshold. then exit. Otherwise. go to step 1 and reset the constraints in
step 1 as follows:

1. Reduce the rate of coverage for positive instances: for example, the first
iteration uses 20%. the second iteration uses 10%, and so on.

2. The hypotheses should cover at least one of the uncovered positive
instances.

3. The number of conjuncts is still kept under seven.

Lf the constraints used in the procedure are properly chosen, then only a few iterations

are required, provided that the training instances selected are not too noisy.

The search in step 1 proceeds as follows:

e substep 1. Initialize the hypothesis space H with the most general version as
follows: set H:= { NIL }.

e substep 2. Generate new hypotheses by specializing each hypothesis in H in all
possible ways. But. the specialization for generating new hypotheses should be
maximally general (i.e.. specialize as little as possible). Each parent hypothesis
may have more than one successor hypothesis. The specialization may be
done by either adding a new feature with the most general value,. or replacing a
feature value by a more specific value. Figure 2.1 shows part of the search
tree.

Since the number of conjuncts is limited below seven. the depth of the search
tree is mainly affected by (but not the same as) the depth of the value
hierarchy tree, and it's breadth is affected by the breadth of the value

.._ - .-‘.-»‘_.‘.'.' - ‘.".’.', PO A Tm et
- . PR LA I
...........

'_.' .'_.'_ - .'.' ,_". S e

e T N

32

. R el
‘ LA {sw:x. _s. J.. fata _a_.hh -LZ_QA Lz-..s. .A.tmm A Mmm‘hh&*mxw_“;h_u_ma“LAwm L*um_;_;._m

PN IL A AR
5 Wi

Knowledge Acquisition via Vlachine Learning 33

NIL

LN

{(A1 V1)) ((A2 V2)} {(A3 V3))

~

((A1V11)} (A1 V1), (AL V1),

/ (A2 v2) (A3 V3)

(A1 V11)
Caz va2)!

Suppose the system is learning classification rules for "class A" instances. then the hypothesis generation in

the above diagram can be formulated as:

instances =) class A instances

instances with (A1 V1) => class A instances

instances with (A1 VI1) and (A2 ¥2) =D class A instances

Note: For the feature "Al1l", "V11"” is more specific than "V1~
in the value hierarchy tree.

Ficure 2.1 Part of the search tree in the
"search from the most general” moade.

l-— -' ..‘ !.‘ Q‘ LY - Q-
‘ R P .-‘_. ,‘. . .(\ ,(_ . ,..r__. \. o
Lia A e, ¢ -,

)l e ke’ ot At s A - aAch - A tdr aatii b et A gt~ ik s i Al ar i el i e i i el = A~ R o R i

.

o ar RV AN

Knowledge Acquisition via Machine Learning 34
o
o
hierarchy tree and the number of the available features. Inasmuch as the
. search space may be huge, heuristic search is necessary. The heuristics used
R will be described next.
o o .
[e substep 3. If a successor hypothesis is justified (i.e., does not violate the
constraints defined by the minimal generality. as described in step 1), then
1o retain it in H and prune the parent hypothesis. [f a successor hypothesis is not
y justified. then prune it. [f no any successor hypothesis is justified. then output
'E}_'j' the parent hypothesis as a raw new rule and remove the parent hypothesis
4 from H. Also, remove redundant hypotheses during the search.
.-j:I' e Repeat substep 2 and substep 3 until H is empty.
o~
N
i [f a hypothesis is pruned, it indicates that the number of conjuncts is greater than six or
:'_.:-' the positive instances covered is less than 20% of all positive instances: successors
A"
S e . o _— e
v:,’.:: (specializations) of this hypothesis will also be unjustified, because specialization never
1P I
R L
_ causes more instances to be covered or causes the number of conjuncts to drop.
B .\.ll
__?.:j Therefore, pruning of unjustified hypotheses will not hurt the completeness of the search
\ -
:Z: for desirable rules.
-
‘ I"..
- Step 4 is designed for handling more special cases (or exceptional cases) which are not
,-’;.- covered by rules learned in the first iteration. As more iterations go. the learned rules
l'.’
S become more and more specific and cover a smaller number of positive instances.
o . o
The search space is reduced to reasonable dimensions by:
™ .
"i.‘l
i) 1. The features are condensed by CONDENSER before learning.
;-'ff 2. Heuristics are used to prune the search space.
e Notice that the system parameters, such as "the minimal coverage of positive instances”
:::; N (defined to be 20% in JAUNDICE). can be adjusted to different domains.
o
\'_

-ig Te Vx o VY

PEYS S AT

P

Knowledge Acquisition via Machine Learning 35

2.2.1.1. One Example

Here, an example taken from JAUNDICE is used to demonstrate the search process in
the above described procedure. For simplicity, we assume only four cases in the case

library and only two features are used to describe the cases.

Casel: Hepatitis, {(GPT 1200) (Alk-P 8)}

Case2: Hepatitis, {(GPT 450) (Alk-P 6)}
Case3d:.Calculous-jaundice, {(GPT 200) (Al1k-P 20)}
Cased4: Calculous-jaundice, {(GPT 60) (Alk-P 8))}

The value hierarchy tree rests with the domain knowledge. In JAUNDICE. the

specialization of a numerical feature is done by specialization rule #3:

{(A [a b])}
{(A 2a)} s> or (A 3}

where, "b" 1is the next higher marking level of "a".

Now, the search tree of learning rules for "Hepatitis” is diagramed in figure 2.2. Assume
the values of "GPT" are marked off by the following two levels: 50 and 300. and the most
general value is assumed to be "250"; the values of "Alk-P" are marked off by the

«19

following two levels: 4 and 10. and the most general value is assumed to be "4 In

the figure 2.2, the output raw rule is as follows:

R1: {(GPT 2300) (Alk-P [4 10])} => Hepatitis

This raw rule then goes through step 2 and step 3 described in the above procedure.

19

In the real expenment, the most general value for any numerical feature is 0.

St A
v e

s

s

Fod s

-

Pl P I

- -

B A A

Knowledge Acquisition via Machine Learning

N

((GPT >50)} {(A1k- P 24}

SN N

((GPT [50 300})} {(GPT 2300} ((GPT 250)) {(A1k-P [4 10])} {(Alk-
(A1k-P >4) \
¢
((GPT 2300)
(A1k-P >4)
((GPT 2300) y ((6PT 2300)
(Alk-P [4-10]) ' Y(Alk-P 210)

9. Justified node

0: Unjustified node

GPT= Glutamate Pyruvate Transaminase
Alk-P= Alkaline Phosphatase

Figure2.2 The search tree of applying the "search from
the most general” mode to one example.

36

P 210)}

}

= e
fl:"t'a'v'd

&
S

Knowledge Acquisition via Machine Learning 37

2.2.2. Areas of Application

Inasmuch as this learning method is initially focused on systems with EMYCIN-like
frameworks, its applicability is expected in domains where EMYCIN can apply. e.g..
medical examples, such as MYCIN, PUFF, HEADMED. CLOT. and nonmedical
examples, such as SACON [Van Melle 80). However, from the methodological viewpoint,
this developed method can be applied in a domain where there are multiple disjunctive

ts20

concepts“”. This method is particularly useful when the following features exist:

¢ Uncertainty is involved, or,
o False positive predictions are to be minimized, or,

o Negative training instances are of limited availability.

The medical domain, bearing all the features above, is expected to be uniquely well

applied by this described method.

Determinism (or exactness) of a domain will not preclude the use of this described
method, since such a domain is merely an extreme case of an imprecise domain, where

"degree of certainty"” is quantized into two levels: “yes" and "no".

With respect to the accuracy of performance, false negative predictions (cases which are
not predicted to be any pre-defined category) are more advantageous than false positive
predictions (incorrect predictions) since the system will continue to request desired (or
missing) information which helps to attain a prediction. For example, assume there is only

one rule in the KB as follows: "Al & A2 => Class C"; then an instance in class C will be

20
““A disjuncuve concept denotes a concept incorporates multiple rules.

o 'e
+° 4
. .

20

.
.

.
ey

e
2,04

LA

S AR

EXNNN,

N A TP | ‘\’
¢« 2 F 2@
[R 4
f
‘. ‘l

.
(R]

¥
U st N
'. ", .- *

.Jr, 1.‘ l} r" \

P

Knowledge Acquisition via Machine Learning 38

falsely negatively concluded if it is known to have only the attribute Al; and the system
may continue to gather information about the attribute A2. [n medicine, a physician
might argue that, sometimes, a false negative diagnosis will be hazardous owing to delayed
therapy: however. even without a (specific) diagnosis. a therapy can still be instituted
immediately under the worst assumption (default therapeutic decision) while more
information is being gathered for arriving at a diagnosis. On the other hand. as Al people
working on expert systems have been aware the system's performance is often more
stringently evaluated by the public than an expert’s performance: that is, there is a double-
standard. Thus a false positive prediction (an incorrect prediction) will jeopardize the
image of the system more than a false negative prediction (a case which is not predicted to
be any pre-defined category) with a list recommending missing information.
Consequently, minimizing primarily false positive predictions is justified if false positive
predictions and false negative predictions can not be minimized simultaneously (i.e., if

there is a tradeoff between false positives and false negatives).

The next issue is, why and when are negative instances of limited availability?
According to [Carbonell 83], training instances are obtained from three sources: the
learning system (if the system can generate and verify instances). the teacher (so called
"supervised learmning”), and the environment (by observation). In medicine. training
instances that can be generated hypothetically by human experts are limited to more
typical or simpler cases: more complex cases usually can only be obtained by clinical
observation. Also. in a relatively unexplored domain. the better (or more reliable) way to

obtain instances is by observation.

Knowledge Acquisition via Machine Learning 39

Then, what areas are not suitably applied with this method? For single concept learning
(only a single or a few rules for a given concept), though this described method can still be
applied in a somewhat awkward way (because of inefficiency). we would rather adopt
other learning algorithms, such as the version space approach [Mitchell 78]. The vérsion
space approach, assuming there is only one single description (one single rule) for a given
concept and performing a bidirectional search by maintaining two boundary sets ("G" set
and "S" set), will render the desired concept description more rapidly converged upon
than our method, as described, which performs an unidirectional search. On the contrary,
if there are multiple different descriptions (rules) for a given concept, the version space
approach has to be modified (e.g., A9 algorithm [Michalski 75]): the iearning system has to
determine which group of positive instances belong to the same description (or are
included by the same rule) before attempting to generalize. More discussion of model-

driven vs. data-driven type learning follows in the next subsection.

2.2.3. Comparison and Discussion

2.23.1. Comparison with Related Works

For comparison, we pick up, among the machine learning work in Al, some important
prototypes which also deal with learning multiple concepts or multiple rules: thev include
the following works: Meta-DENDRAL [Buchanan 78a], AQ11 [Michalski 78], and ID3
[Quinlan 83].

Meta-DENDRAL is similar to the above developed method in the following aspects:

1. They both are model-driven learning systems, performing a heuristic search
from the most general hypothesis.

K "' Knowledge Acquisition via Machine Learning 40
i
o
NN
s 2. They both are intended to discover rules that are sufficiently general and
A specific.
Vi
;::I'::' 3. They both consider positive training instances first, and then negative training
o instances.
v However, the output of the two programs will differ because of different heuristics used in
hes
‘_.'f-:-i the search. The RULEGEN program in Meta-DENDRAL assumes that the
{ \': .
' "improvement criterion”, which compares one hypothesis with its successors with respect
NN to plausibility. increases monotonically: therefore a cleavage rule will be formed from the
N
o
ST hypothesis space if the improvement criterion reaches a local maximum [Buchanan 78a.
b In contrast, the above developed method doesn't assume so, and a rule will be formed only
if it is maximally specific without breaking the constraint defined by minimal generality;
et in other words. the method seeks boundary conditions of a region bounded by the pre-
_ defined constraints instead of seeking a local optimum. The rationale behind this is
T twofold:
M 1. Unless the heuristic function used increases monotonically, the local maximum
2 (or minimum) is not necessarily the most desirable result.
--_fj-":., 2. As described earlier. it is desirable to minimize false positive predictions.
IR Finding the most specific rules in the version space is the most important
e solution if negative training instances are not easily available.
-;'-Zi:'-lz_ AQI1 uses A9 algorithm [Michalski 75] and differs from the above developed method
'_'-;:::j in the following aspects. AQI11 uses the version space approach. a data-driven leaming. In
- ‘
b terms of the version space defined by [Mitchell 78]. AQ11 discovers rules in the G set (the
¥
-\
N : . . .
'\'j" most general rules in the version space) while the above developed method discovers rules
o
L in or near the S set (the most specific rules in the version space). [f the version space
"-::‘-
\._-:‘
N

Knowledge Acquisition via Machine Learning 41

& converges such that G = S, both methods will achieve the same result. There are two

possible weak points for AQ11 algorithm in EMYCIN-like frameworks:

1. If there are no adequate negative training instances to update the G set, the

rules in it will be overly general and cause more false positive predictions.
I However, if we can ascertain that we have adequate negative training instances
. to guide the generalization, finding the most general rules is more
advantageous in the aspect of reducing the cost of using rules because these
b, rules tend to have a smaller number of features.

2. With A9 algorithm, the set of rules found is incomplete. This is due to that A9
algorithm repeatedly applies the candidate elimination algorithm with a
portion of positive training instances removed during each iteration, and the
procedure is terminated when all positive training instances are covered by a
set of rules, rather than when all desired rules are found (refer to [Michalski
75] and [Michalski 78]).

b The difference between the above developed method and the ID3 algorithm is derived
- from different representation schemes. The ID3 algorithm uses decision trees instead of
- production rules to represent knowledge. The weakness of [D3 algorithm in EMYCIN-

like frameworks includes the following aspects:

1. A decision tree representation is more restrictive than a production rule
representation. For example. if we transform the decision tree. which is
constructed by the algorithm, into a set of rules. then each rule will rigidly
share at least one common feature that occupies the first decision node. The
distinction would be less, however, if the algorithm were intended to discover
a set of decision trees.

".- ;- A

2. Search is incomplete because. to construct the desired decision tree. features
0 are selected on the basis of their discriminating ability with respect to some
- criterion. However, note that conjunction of two trivial features may be
significant.

3. ID3 will fail if uncertainty is involved: for instance. some positive instances
and negative instances share an identical set of feature-values.

s
£ A' l'
.

;_‘. HShte

'y

* '.' ". "n*‘ ' ;-‘

)
Shhnh]

L
Ny

- - i ChArd RN A0 LAt A 0" S A U AR AR AN AR

Knowledge Acquisition via Machine Learning 42

2.2.3.2. Model-Driven vs. Data-Driven Learning

By "model-driven”, we mean the hypotheses are generated by a model (and then tested
by data); e.g.. Meta-DENDRAL [Buchanan 78a). By "data-driven”, we mean the
hypotheses are generated on the basis of data (training instances); e.g., the version space
approach [Mitchell 78]. In the following discussion, we compare model-driven and data-
driven learning systems along several different dimensions to justify why model-driven

learning is selected to be the approach in EMYCIN-like rule based systems.

e Completeness: The heuristics used in pruning the search space in the above
developed method still preserve the completeness of the search for the
desirable rules (see Section 2.2.1). In contrast, AQll, the most important
example of a data-driven learning system designed to discover multiple
disjunctive concepts, performs an incomplete search, as described in last
subsection Intuitively, since our goal is to discover all desirable rules, a model-
driven search in the rule space (a space equivalent to the power set of the set of
all descriptors used to describe rules) will tend to be more complete than a
data-driven search in a subspace of the rule space by interpreting the instance
space.

o Noise immunity: Model-driven leamning systems are more immune to noise
than data-driven learning systems [Dietterich 83]. Because model-driven
techniques are intended to find rules that are good in a global sense (i.e., there
is a global criterion to evaluate rules), the effect of noise associated with the
individual data (e.g.. false positive or negative training instances) can be
relieved under the assumption that the imperfect training instances are the
minon’ty.21 In contrast, data-driven techniques handle the instances on the
individual basis. and thus is harder to escape the noise associated with the data.
One false positive instance will force a rule to be overly generalized while one
false negative instance will force a rule to be overly specialized (see Chapter 4
for noise considerations).

e EMYCIN-rules: In EMYCIN-based systems, a case is concluded by

This assumpuon often holds; if not. then actually no method can leam good rules.

''''''
RN Y

e

AL LR Y

AR d

[,
PR

"o "- ¢ -

Knowledge Acquisition via Machine Learning

combining several different rules that are described by different sets of
features and reason from different angles. Likewise. a case is often analyzed.
based on several simple rules rather than a single long rule. For example, in
JAUNDICE. the number of conjuncts in the LHS of a rule is restricted below
seven. This fact makes data-driven techniques difficult to tearn in EMYCIN-
based systems because the learning system has to determine how to decompose
one generalization (which may have many features) drawn from instances into
a set of proper rules.

Efficiency: In a domain with multiple disjunctive concepts. if a model-driven
method is used, the search space will be roughly the power set of the set of all
descriptors involved: if a data-driven method is used. the search space can be
roughly estimated from the power set of the set of all positive instances since
the system has to determine which group of instances should be hypothesized
together. If the number of descriptors is greater than the number of positive
instances, it may be more efficient to use a data-driven approach (if we ignore
the disadvantages described above). Nonetheless. in real practice, the number
of positive instances is often greater than the number of the descriptors (unless
we carefully select instances as we did during constructing the initial case
library in JAUNDICE), it will be more efficient to use a model-driven
method. Furthermore, the CONDENSER program controls the number of
features during learning in order to enhance the efficiency of learning:
therefore, we don't think efficiency will be the bottleneck for applying the
method we develop.

Incremental learning: In version space approach, it is claimed that leamning is
incremental by constantly updating the boundary sets without re-examining
the old instances as new instances emerge. However, this claim assumes that
the learning environment is perfect initially, e.g.. there are adequate rules of
generalization or specialization, etc.. otherwise, the maintained boundary sets
may not necessarily reflect the genuine information stored in the instances.
Our strategy for incremental leaming is by applying "focusing mode"” of
learning (described in Section 2.2.4) to update the KB each time when a faulty
conclusion oceurs,

advantages:

43

In conclusion, we determine to use a model-driven strategy because of the following

Knowledge Acquisition via Machine Learning 44
SN 1. It provides a complete search for the desired rules.
S, 2. It has better noise immunity.
L 3. It can accommodate EMYCIN-like rule based systems.
v
:'.ja_ﬁj 4. The efficiency can be reasonably controlled.
- 5. The learning can siill be incremental.
2.2.4. Focusing Mode of Learning
Focusing mode of learning is a learning strategy which focuses on a specified instance.
!] The task is formulated as follows:
-:.j:-_;' Given: 1. A specified instance.
" 2. A set of training instances.
. . . .
Find: Concept descriptions which are cansistent with the
- specified instance and most of the other instances.
J [f the specified instance is a positive instance, then the learned concept descriptions should
ol cover it as a positive instance: if the specified instance is a negative instance, then the
:.j::'j learned concept descriptions should reject it as a negative instance.
"__
SN The main purpose of this mode is twofold:
1. In a domain like medicine. inconsistency often occurs. Though we don't
e expect a rule will be consistent with all instances. however. sometimes. we do
&N hope the rule will be consistent with an interesting, valuable instance.
SR 2. In an expert system. if the system comes up with a wrong conclusion about a
g new case, then the system might be able to learn by focusing on that new case.
THEN
:Q: In this section, however, we describe how to learn multiple rules. based on a misdiagnosed
Y
' . . .
[20 case. The task of focusing mode of leaming is defined as follows:
LR
208

st}
s,

.
4y a4,

Knowledge Acquisition via Machine Learning 45

Given: 1. A misdiagnosed case’ by the performance system.
2. A case library.

PN S

. Find: Rules which can make the misdiagnosed case
A diagnosed correctly.
. - *: "Misdiagnosis" may include "underdiagnosis”,
[~ i.e., no diagnosis is made.
L
L™
- There are two solutions for this problem: finding confirming rules to support the expert’s
2 diagnosis, and finding disconfirming rules to reject the system's misdiagnosis; described
L here is the former solution: the latter solution is described in Section 2.4. Notice, however,
“-
‘ the rules found should be refevant, i.e., they should satisfy (be matched with) the specified
fj case.
.
o 2.2.4.1. Procedures
XX For reasons given in Section 2.2.3, we also select madel-driven strategy for focusing
[\
‘ - mode of leaming. The efficiency of learning can be much improved by CONDENSER,
3 .\‘
N which picks up the relevant features from the feature base on the basis of the specified
- instance.
i
o Focusing mode of learning uses the method described in Section 2.2.1 except that there
L is one additional constraint, which is that the rules should satisfy (be matched with) the
l
< . .
o specified instance.
::J
P
'_; First. label the misdiagnosed case as "positive instance”, and the case library (or
::j instance space) is classified into positive and negative instances, based on the expert's
-
N diagnosis for the misdiagnosed case as the following example. 1f a case. CaseOl. is
o misdiagnosed as discase B whercas the expert diagnoses it as disease A, then all cases
3
3
=,
()"
e e e - e . . - y B T T e U A A SO L P R AL UYL T LN T
-}_ ;. AT IRV I P SR RS B A IR O - S N PO o .—__'.»_.,___. __.-\..__1.‘..4">}\~ o ._-h ._-

o

el ol i Bt s st A A Br v A g el At e atde aed e A Sk AR gt I ST AR AR -.T

Ay Knowledge Acquisition via Machine Learning 46

x diagnosed as disease A in the given case library are labelled as “positive instance”, so is the
*'.-';_I- misdiagnosed case; and all other cases are labelled as "negative instance”. (Note that each

case in the case library has already been assigned a correct diagnosis.) Then. the learning

is based on this dichotomy, focusing on the misdiagnosed case. The learning task in the

My -
A P

above example is to learn LHS of the confirming rules with RHS. which is "disease A™.

I

o

e The procedure includes the same four main steps procedure as th. search from the most
-,::fj-: general hypothesis with minor changes noted in italics:

'-j:;:j. estep 1. Starting from the most general version, "NIL", search for the

o maximally specific hypotheses that does not break three following constraints:

b the hypotheses should satisfy (be maiched with) the specified instance, the
jt"‘_’,' number of conjuncts should be less than seven, and the hypotheses should

"Z:'-'-' cover at least 20% of positive instances. The hypotheses, thus found, are

formed as raw rules. Since the constraints merely involve positive instances,
only positive instances are considered in this step.

Z:’:ﬁ:j e step 2. Prune those rules which are assigned a degree of certainty smaller than
- ".4", or which cover more than 10% of negative instances. Negative instances
. are considered in this step for calculating degree of certainty (refer to
Appendix A).

e step 3. Optimize each raw rule by iteratively applying generalization operator
until a local optimum is reached (perform a hill-climbing search, so to speak).

e The local optimum is the state with minimal weighted prediction error (as
}.Z:‘;_. defined in Section 4.5.3.1) under the following constraints: the local optimum
o should not cover more than 10% of negative instances as mentioned in step 2.

and the difference of degree of certainty between the local optimum and the
initial state (a raw rule) should be within "“.15", the latter constraint stems from

T the argument that, in EMYCIN-based systems, it is hard to compare two rules

L with different ranges of degree of certainty. |
- e step 4. If there are rules learned or the number of iterations has reached a

R certain threshold. go to exit. Otherwise. go to step 1 and reset the constraints

,::-:? instep 1 as follows:

e

e

.',:f,

o et at e

. - " 3 = R - . P . - ISR R AL PR
4‘-/'-,-‘- R o .'.*- s . s « . - - T S R S S A OIS
A S A S R R A AJ\-.}'J_.A.C‘.A.P_._.:J_._.{ AR AT S S T IR S A Rt e . ¥ “A-J

Do P S AP R SV X
LY o, T Ay Ry
AT A

Knowledge Acquisition via Machine Learning 47

1. The hypotheses should satisfy (be matched with) the specified instance.

2. Reduce the rate of coverage for positive instances: for example, the first
iteration uses 20%, the second iteration uses 10%. and so on.

3. The number of conjuncts is still kept under seven.
The detailed search procedure is described in Section 2.2.1. and is neglected here.

There are two outcomes of this learning: success and failure. If there are rules learned.
then one might ask why the learning system didn’t find them when the KB is initially
constructed by using the batch-processing learning (described in Section 2.2.1). In the first
place, the specified case may be an exceptional one and the rules that are consistent with it
can cover only a small number of other positive instances: thus those rules dealing with
this exception may not be found during the initial KB construction. Secondly, as the case
library grows, the statistics may shift; hence a relatively bad rule may become a good one.
However, as the case library grows, the statistics will converge (i.e.. the sample statistics
will approach the true population statistics), this second possibility will be less. (We have
briefly touched on the issue of convergence of a KB in Section 2.1.) On the contrary, if
there are no rules learned, what does this mean? Since the objective of this learning is to
find rules that are consistent with the specified instance and most of other instances. no
rules being found implies the inconsistency between it and other instances or the

incompleteness of its data. And this may indicate the wrong diagnosis given by the expert.

N 'n_'f\\' 1'-._!".;~',_-:.;-.‘.\ o <'_~ e
A S

I el and- Ll e gt h Ml stk sads SiLh ahd LA alh-adit aba- ha v gias et el e e Sl 1.11

p Knowledge Acquisition via Mlachine Learning 48
D 2.3. Learning Intermediate Knowledge
~ In expert systems, hierarchical reasoning can provide better accuracy and
understandability. Here, we develop a method of learning hierarchical knowledge from a
» case library, in which each training instance is described by low level features and high
"._‘ level concepts but not by intermediate concepts. This reasoning hierarchy is shown in
)Q
>,
n figure 2.3.
- HN: high level node
- (high level concepts)
3 fl
.
-
L IN: intermediate level node
- (intermediate concepts or
- ﬂ high level descriptors)
- LN: low level node
(low level descriptors)
::: Figure 2.3 Multi-level reasoning network. Note that there
- may be several intermediate levels.
.
e Intermediate concepts can be high level descriptors or intermediate classifications or
28
- mechanisms: in medicine, they are clinical syndromes or nosological categories or
>, pathophysiological mechanisms.
v L}
"n
< Learing intermediate knowledge (intermediate concepts and links) is motivated by the
“w
oy following facts:
~f ¢ Intermediate knowledge increases the accuracy of reasoning particularly if the
" data are incomplete. For instance. sometimes we are unable to tell whether an
- animal is a dog. but we may still be able to tell it is a mammal from the limited
o) information.
4
N
~
2
o I
‘4"
v.. . . - - - - . --' L ..A . . --- e e et .-‘ > -._ ;_ .\..' A RS ~,.»
’ SN YRS S -."'.."-‘7'.‘_-. R o ar T ':-.:,“1“ ‘

m'v he B AR A Ak Aa e mie Aun e She fier g den A pe v SN ARG ATl A A A il iRl e
50 "F
L
~
&'
K. Knowledge Acquisition via Machine Learning 49
Ny
N
o
N
X o Intermediate knowledge provides better explanation capability of the system
: and thereby increases the understandability for the users [Clancey 83). For
3:: example, the analysis of the underlying pathophysiological mechanisms is
N important for explaining a disease diagnosis.
3"
X
oy . In learning from examples, each training instance is described by features or descriptors
&N : : . g
:: (i.e.. LN) and assigned a class name or diagnosis (i.e.. HN). Thus, we may define the task
)
»
>, of learning intermediate knowledge as:
o Given: A set of training instances
- (or a set of LM -> HN).
N Find: Rules of the form LN => IN => HN,
S consistent with the training instances.
B,
1S
7
b In the above formulation, "->" represents a specific link in a training instance; " =>"
\4
represents general inferential knowledge (a rule). In other words, in learning from
; % - . . .
- examples, we intend to learn general knowledge from a set of very specific descriptions.
-
\: Practically, this is an important issue and worthwhile to explore, because, for instance,
</ medical records are often described only by clinical manifestations and disease diagnoses
"‘J
::;: (there is no or limited discussion of the involved intermediate mechanisms).
-
.. So far as learning is concerned. we distinguish two situations:
- 1. Intermediate nodes exist in the initial vocabulary.
1 :-':
e 2. Intermediate nodes are not in the initial vocabulary.
-:Z'_i In the first situation, the learning task involves exploiting the old partial (incomplete)
o
T intermediate knowledge to learn new intermediate knowledge: the partial knowledge may
.
exist between LN and IN. or between IN and HN. or both. But the task in the second
>
~
e
o
o
h X B S AT R T AT T “u L
R e Nt S AP R o -

TR AT N TR SEARNI AP IS SR RPN

T PP _ e - } it Aaietal et lec i aat YAn JAae A an Stn Ak i ieb-atell ek Au Siab Jet AaboAa~ i’ Jhirestec i ol sbd o' SRALASA o/
o, -)

Y

S

ol

Nt
S "
_-.:: Knowledge Acquisition via Machine Learning 50
: *\-'
N
%
M
s 2 situation is more abstract and constructive, because it involves creating and defining new
NN intermediate nodes which are not provided in the original vocabulary. Automatically
g.:_‘;'
"l adding new symbols is one way to relieve the bias induced by the fixed language in
s . o .

: inductive concept learning [Utgoff 82]. Since. in both situations. the existing knowledge

R .
-:':-} may be only partial or missing, search is indispensable. In fact. there is a tradeoff between

o
o . .

N knowledge and search. A search procedure involves primarily two steps which are
By~

hypothesis formation and verification. In learning from examples, the hypotheses may be
verified in a case library. The main difficulty of this learning problem is that training

instances in a case library are described only by LN and HN. but we want to learn IN.

In medicine, LN names a medical manifestation, such as a symptom, a sign. and HN

names a disease category. The link from manifestations to a disease is called an inference

(or diagnostic) rule, the opposite is called a descriptive rule. We focus on leaming

diagnostic rules and their intermediate concepts (i.e., LN => IN => HN).

This section describes the learning techniques when the intermediate concepts are in the

I‘
a,‘,","."- <,

‘s

PRl
NI

initial language and then when the intermediate concepts are not in the language.

L

el 2.3.1. Intermediate Concepts in the Initial Vocabulary
':;I'_'-: [n this subsection, we assume there is some knowledge about the intermediate nodes
:;lf:ji (IN) including partial knowledge about their relationship with other level nodes (LN or
'~.';.' HN). However, if each training instance is characterized with low. intermediate. and high
e
:::f:f' level descriptors. we can apply machine learning algorithms level by level and discover
new knowledge in different levels. (Some work, such as [Blum 82] can discover causal
o links by statistical analysis of temporal associations.) Nonetheless. in this work. we assume
| \;«.
P
o
it

e b sam -ala < Ly Wy " Bl - Sl * vquqv-‘-vmj

. 8, 0,2, 1

Knowledge Acquisition via Machine Learning 51

each training instance is characterized only by LN and HN, and not by any intermediate
description: thus the task becomes more abstract and difficult and the existing partial

knowledge has to be exploited.

Basically, two methods are used to tackle the problem: bottom-up and top-down. The
bottom-up method relies on the existing knowledge of "LN <(=> [IN"; the top-down
method relies on the existing knowledge of "IN <=> HN". Therefore, if only the
knowledge of "LLN <=> IN" is available, only bottom-up method can be used; if only the
knowledge of "IN <=> HN" is available, only top-down method can be used. If both
types of knowledge are available (but incomplete),22 both methods can be applied and the
results will be the union of results from each method. A third method called
"“bidirectional extension” employs these two basic methods bidirectionally and

sequentially in order to construct more complex hierarchical concepts.
2.3.1.1. Bottom-Up Learning

If the knowledge about "LN => IN" is available, this strategy can be adopted. The task

) of learning under this situation is described as:

Given: 1. A set of training instances
(or a set of LN -> HN).

S 2. LN <=> IN

(i.e., rules linking LN and IN)

2,

o

(Find: Rules of the form LN => IN => HN,

. consistent with the training instances.

. Since "LN => IN" is known, the main task is to find "IN => HN". Each instance is
_'.‘ 22lfbolh types of knowledge are complete. there is nothing to be learned.

AB A B e B o aie aon s o _-v".‘-wq-,_-,,-i-.-,-,-’

S Knowledge Acquisition via Vachine Learning 52
(20
e
>
- represented by a direct link. LN -> HN. The training instances are classified on the basis
: v of HN. Remember that HN is a class name (or a disease in medicine). The basic idea
»°
-." . . - . . .
b behind this strategy is to generalize from instances of the same HN: it is analogous to
$
' generalizing from positive instances. In the JAUNDICE experiments, a set of rules in the
.: form of "LN => HN" are first learned by the method described in Section 2.2 from the
o
f-: given set of training instances, then we treat this set of rules as another set of training
) instances (more general. of course) and apply the following procedure to leam
a3 intermediate rules.
4 Suppose there are n classes of HN in the instance space: H1, H2,Hi,Hn. The
Y
N algorithm proceeds as follows:
&
}I
Fori=1ton, Do:
o o step 1, Label all instances in the class of Hi as positive instances and label other
= instances as negative instances.

‘ o step 2, Generalize from positive instances by using the concept hierarchical
- tree (one example of the concept hierarchy is the animal tree seen in Section
‘ 2.3.1.2). The generalization should:

> o be maximally specific to avoid over-generalization.

A
- o test against negative instances.
‘5;:
- Intermediate nodes are involved and intermediate links (IN => HN) are
' discovered during the process of generalization via hierarchy (see
- generalization rule #2 in Section 2.1.1).
A4
: The step 2 proceeds as follows:
e substep 1. Initialize the hypothesis space H with the set of all positive
instances: i.e.. each positive instance represents one hypothesis in H.
®

.
>
",

N
~
a Knowledge Acquisition via Machine Learning 53
:::
e substep 2. For each hypothesis hi in H (starting from the head of H), do the
following:
\':
NG .
oo o Form set H by finding all hypotheses in H with the same range of
:Z: degree of certainty (+.15) as hi (h" excludes hi).
o For each element hj in H', find the common maximally specific
;:j generalization (called hk) of hi and hj. If hk is plausible, i.e.. if it does
- not break the following constraints: its associated degree of certainty is at
least ".4" and in the same range as hi's and it should not cover more than
. 10% of all negative instances,?> then retain it (hk) . putitin the end of H,
:.\ and prune hi from H.If ao element in H can form a plausible
' generalization (without breaking the constraints above) with hi or H is
) .
ﬁ an empty set, then output hi as a new rule and prune it from H.
ag Also, remove redundant hypotheses from H.
EZ‘_ i o substep 3. Repeat substep 2 until H is empty.
A This data-driven algorithm differs from the version space approach [Mitchell 78] in that
7
" “ this algorithm considers not only that there is disjunction (i.e.. there are multiple rules for
. each concept) but also that an instance may be covered by several rules instead of a single
.
T rule.
o o o
In the following simplified example, we assume no uncertainty is involved and that two
'_f-j hypotheses are mutually exclusive. (Both assumptions can actually be remcved.)
- Example 1. Suppose 3 instances in the instance space:
y X1: L1 & H1
R X2: L2 & H1
N X3: L3 & H2
N
NS
- 23We do not consider the mimimal generality here because. as stated earlier, this method s applied 10 the set
p j of rules leamed by the method described in Section 2.2 therefore they are already sufficienty general.
2
!‘-J
. v

i
T
Oy

A

L'I"l
L e &,

e

e e 7,8,
LN

a0, 4

PPTTRE———
3 A ."./Lf.«.

A AN

Knowledge Acquisition via Machine Learning 54

A simple hierarchy is given by five rules,
shown schematically as:

M N
L1 L2 L3

The following are two possible generalizations
from X1 and X2:

G1: M => H1
G2: N => H1

G2 is not justified because if it is true, then:
L3 => N => H1, contradicting X3.
Thus, the found link is:

Pi: M => H1

In the JAUNDICE domain, for example, the two instances, "esophageal varices =>
hepatic cirrhosis”, and "ascites => hepatic cirrhosis” may be generalized into "portal
hypertension => hepatic cirrhosis” by using the existing knowledge, "esophageal varices

=) portal hypertension"” and "ascites = > portal hypertension”.

This technique is extended from climbing a generalization tree, used in other works.

such as [Winston 70] and [Michalski 83a]. However, we emphasize a concept hierarchy

instead of a value hierarchy. Moreover, uncertainty may be involved in the hierarchy.

S G

DN

s 8 8 8 - ek

P

Knowledge Acquisition via Machine Learning 55

2.3.1.2. Top-Down Learning

If knowledge exists between IN and HN, this technique can be applied. The task is

formulated as:

Given: 1. A set of training instances.
(or a set of LN -> HN)
2. HN <=> IN

Find: Rules of the form LN => IN => HN,
consistent with the training instances.

Since the knowledge about "IN <=> HN" is known, the main task is to find "LN => [N".
[n order to leamn "LN => IN", we may first, based on the available knowledge of "HN
=) IN", re-label training instances such that they have new class names which are IN
instead of HN. After this transformation, the algorithm used in learning "LN => HN"
can be applied, and the results will be "LN => IN" which is consistent with the training

instances. One example is seen as follows.

HN: Dog Cat horse

\\!/.\“/ N\ NS NS

Mammal Fish Amphibian Reptile Bird

NV 7/ ~ =

IN: Invertebrate Vertebrate
Animal
LN: Animal features., such as size, weight, color,

hairy, feathery, breast-feeding,

The set of instances:

s i
s " ‘0 ly

A
s

ERCRELIR T

e

Knowledge Acquisition via Machine Learning 56
X1: {(white small) dog}
X2: {(black big) dog}
X3: {(white big) cat}
X4: {(gray small) cat}

Now. if we want to learr an intermediate concept "mammal"”,
then based on the taxonomy tree, we re-label instances as
follows:

The transformed space:

X1: {(white small) mammal}
X2: {(black big) mammal}
X3: {(white big) mammal}
X4: {(gray small) mammal}

.......

After this transformation, we may leamn classification rules for "mammals” by the same

learning method with which we learn rules for dogs or cats.

In the JAUNDICE domain, for example, three diseases "acute hepatitis”, "chronic
hepatitis”, and "hepatic cirrhosis”, can be transformed into a common inte..nediate
pathological category. "hepatocellular injury”, and the inference rules for “hepatocellular
injury” are learned from the same case library by the same leaming method (learning
confirming rules is described in Section 2.2: learning disconfirming rules is described in

Section 2.4) we use to learn the inference rules for each disease.

2.3.1.3. Bidirectional Extension Strategy

This strategy combines the bottom-up and top-down methods to learn more complex

hierarchical concepts. Consider a four-level hierarchy as follows:

LN => INlevell => INyqver2 => HN

Suppose we have the knowledge of "LN <=5 IN). e and “INeyer2 <=2 HN" (see figure

2.4) and each training instance is described by "LN -> HN".

]

LA

Knowledge Acquisition via Machine Learning 57

HN 0\ 0 o
) .0 o o o 0
\\o' a” /’ :(N e’
~, .7 ’/ g \\ N Pt
I‘,l’\\\ 7.° \ ,r‘\ “
LN 0 0 0 0] 0] 0 0 0 0 0

Figure 2.4 Diagram of bidirectional extension strategy;
solid links represent existing knowledge. dotted links
represent knowledge to be explored.

We can first learn "IN, ,, => HN" by bottom-up method which exploits the existing

knowledge of "LN <=> [N ". Then we treat all links of "IN

levell ° => HN" as another

levell

set of training instances, and we can learn the knowledge of "IN =>IN " by

level2

{=>HN". Thus. we

levell

top-down method which exploits the existing knowledge of "lNleVCIZ

obtain all inferential knowledge "LN => IN =>IN => HN" from a set of

levell level2

training instances by extending the knowledge of only "LN <=> lNleve”" and “INjeven
<{=> HN". If we view this learning task as a search. it actually proceeds bidirectionally.
Whether the procedure starts bottom-up or top-down does not matter if we assume the
training instances are correct and complete. In a domain without uncertainty, consider
when inconsistency occurs in the following three instances (H1 and H2 are mutually
exclusive): (L1 & HI) (L1 & H2). and (L2 & HI). and assume we have existing
knowledge as follows: L1 => 1, L2=>[1. H1 => [I1, and H2 =) [12; then starting with

the top-down method. we can first find the following consistent (i.e.. no inconsistency)

intermediate knowledge: 1.2 => I11. whereas starting with the bottom-up method. we tind

Knowledge Acquisition via Viachine Learning 58

no consistent intermediate knowledge. In the current implementation, we ignore such

inconsistency.

In the example of four-level hierarchy, we can still obtain the knowledge of all levels by

levell and

using the bottom-up method alone if only the knowledge of "LN <=> IN

"IN <=> 1IN Is available, or by using the top-down method alone if only the

levell evel2

knowledge of "IN, ., <=>HN"and "IN, <=>IN,_ " isavailable.

evel2 evel2

Hence, it is possible to obtain even more complex hierarchical concepts by applying

these two methods sequentially, depending on the available knowledge.

2.3.2. Intermediate Concepts not in the Initial Vocabulary

Sometimes intermediate nodes are not known at all, so it is necessary to create and
define new intermediate nodes. The key issue is when and how to create new intermediate
nodes. Two techniques are introduced: the technique of symbolizing taxonomy point and

bolizing switchov "
2.3.2.1. Technique of Symbolizing Taxonomy Point

We assume there are n classes of objects or concepts in the instance space. The
algorithm proceeds as follows:

e step 1, Construct a taxonomy tree?* on the basis of a similarity or dissimilarity

measurement. One way of measuring dissimilarity is based on the of "sum of

the differences of weighted individual features”. First. based on the domain
knowledge. select some important features and assign them weighting factors.

Taxonomy 1s “classification™ or "clustenng™: one example of a taxonomy tree is the animal tree seen in
Section 2312, Two different classes of objects will be put under the same category 1if they are similar with

respect o a certan critenton.

e a

“g
Pd

“‘ Knowledge Acquisition via Machine Learning 59
o
o
B I*
K 5 Second, calculate the difference between the average value of an individual
5 feature for the given two classes. If the feature values are not numerical.
. transform them into numerical values on the basis of domain knowledge. In
N . . - . ..
medicine, this is a feasible approach because the clinical feature values can be
- quantized according to the clinical severity. (However, in some domains,
- symbolic measurements may be necessary.) For example, in JAUNDICE. the
_f-j elevation of the serum enzyme is quantized into 0, 1, 2, 3 representing normal,
:‘.—‘, mildly-elevated. moderately-elevated. highly-elevated. Third, calculate the
‘;:. sum of the differences of weighted individual features. Using different
! dissimilarity functions (i.e.. using different features or different weighting
- factors) may yield different results. So. it is possible to build more than one
o taxonomy tree.
N,
N
o

Example 2. Computation of dissimilarity between two diseases
in a library of four cases. The weights of the two
features used are assumed equal here for simplicity.

o Instancel: {(GOT 2) (Alk-P 0) Disease A}
K. ! Instance2: {(GOT 3) (Alk-P 1) Disease A}

Instanced: {(GOT 1) (Alk-P 2) Disease B}
: Instance4: {(GOT 2) (Alk-P 2) Disease 8B}

(where 0: normal

. 1: mildly abnormal
;' 2: moderately abnormal
\ 3: severely abnormal)
S ol
o~ Compute as follows:
X Average value for GOT:
X : Disease A: 2+3/2=2.5

=" Disease B: 1+2/2=1.5
‘:2 Average value for Alk-P:

‘:¢ Disease A: 0+1/2=.5

-0 Oisease B: 2+2/2=2
s
b Dissimilarity(A & B)=(2.5-1.5) + (2-.5)
=2.5
[

B ’.

'..E; Then. we set up a criterion to group different classes of objects in a common
" ' category if their mutual dissimilarity is smaller than a certain thresheld. The
i criterion should be set in a way such that one class will not be grouped in two
K-

23

'hn
493

e e _ AR, AR eV L L - R AT T I A N N A AT TR A W R T A P S A O D
I M Y PR LT] e) S e b W VAN L AR T A S R T L LAY
N . a & A - T, 4TI Do R w ‘Y '\v N » ¢ & \ =M T N I
. Lo (W VSN Ny S at (b Y W m}' \F‘. mm‘h“_‘.imhh

Y B
.
'ill"'f
L rr s

YLl

P

Knowledge Acquisition via Machine Learning

different categories. In a taxonomy tree. the tip nodes are n classes of objects
(or concepts) which are HN in our terminology.. and each non-tip node
(excluding the root node) represents an IN.

e step 2. Assign a symbol to every intermediate node in taxonomy tree, and thus
create new intermediate nodes (IN) (see figure 2.5).

HN: Classl Class? Class3 Class4 Classh Class6
GOO0A 60008

IN: \\\\\\ /////

LN: Object attributes, such as size, shape, texture,.

Figure 2.5 Suppose a simple taxonomy tree is built
for objects, the intermediate taxonomy points are
named as GOOOA and GOOQOB.

e step 3. The taxonomy tree gives us the knowledge about "HN => IN". For
example, in figure 2.5, "if X is a member of class 1 then X is in category
GO00A". Therefore, we can apply the top-down method (described
previously) and learn the knowledge of the form "LN => IN".

e step 4 Learn knowledge of "IN => HN" which is the links from IN (or mixed
IN and LN) to HN by the following procedures:

o First, Learn discrimination rules for different classes (HN) under the
same intermediate node (i.e.. under a higher taxonomical category). For
example. in figure 2.5, we may leamn classification rules for class 1 and
class 2 in the category GOOOA by removing all objects (instances) that are
not in the category GOOOA. Suppose we obtain a classification rule for
class 1 in the category GOOOA as:

60

Knowledge Acquisition via Machine Learning 61

s "If an object has attribute Al
then it belongs to class 1."

o Second, we actually can write a more specific rule as:

g "If an object is in category GOOOA
and has the attribute Al
then it is class t."

The algorithm may be applied level by level. and the results will become hierarchical: i.e..

- LN =>IN >IN, . =>..=>HN.

levell — level2

[n the JAUNDICE domain, by applying this technique to 72 cases, we found five
. concepts (see table 2.2). Four symbols, after medical interpretation, were found to
correspond to “hepatocellular injury”, “cholestasis”, “intrahepatic jaundice”, and
“extrahepatic jaundice”. These four symbols had beexn paii vi JAUNDICE at one point
but had actually been removed from the old vocabulary for the purpcse of this test. A
fifth term. "hemo-gilb", was found because two diseases, "hemolysis" and “congenital
conjugation defect (e.g., Gilbert's disease)” are similar and under the same taxonomy
point. Though clinically meaningful (negative bilirubinuria), the symbol "heino-gilb"

bears little pathophysiological meaning.

s a a & LN

AN LK s

]

AT SO LR R Ol
TS LY AN VLSRR RS
: A 2\ A

*

L .
AR AN S A S
" e e
A

..1 .l
Ay

PR
&

'.-_1’ = A i AN MR®ouatoma A it ave it o ogiadia ohd ada aad SAR & Art Al A Bk sk Ank Aah ",""a"Jw.—vT
w. s
e}
. v
" Knowledge Acquisition via Machine Learning 62
'\
e
RS
N>
:. a
N
o Table 2.2 New symbols created by the technigue of
symbolizing taxonomy point and their interpretations.
" Symbols Medical Interpr ign”
.'_::: Neosyml Hepatocellular injury
D Neosym2 Cholestasis - '
o Neosym3 Intrahepatic jaundice
ey Neosym4 Extrahepatic jaundice
Neosym5 ? Hemo-gilb
A
::-: s: The interpretation depends on the diseases
oo included by the symbol.
K~
\..
h. 7 Note that this technique is intended to discover new intermediate concepts, but the
:::.2 concepts may have already been in the vocabulary. Hence. after new symbols are created,
e they should be checked whether they are equivalent to the old symbols semantically. For
£ instance, if both a new symbol "NS000A" and a old symbol "OS000A™ include disease A
n‘.:A
- and disease B and cover all the same cases, they are equivalent. Of course, this depends on
£ the size of the case library, so we may want to keep redundant concepts around for a while.
J
::f:: 2.3.2.2. Technique of Symbolizing Switchover Point
.:\1
Z:::Z The development of this technique is motivated by the observation that intermediate
concepts often serve as switchover points in a reasoning network. One heuristic rule
.- behind this technique is:
o
‘ -_‘--
" HR: If i) Therearen LNsand m HNs,
(<. ii) All n LNs have (confirming) links to all m HNs.
\
\'r'.
N iii) n>1 and m>1 and mn>4.
o
A%
' then it is worthwhile to define a common intermediate node.
e This heuristic rule is also represented in figure 2.6.
7
,I
‘ ‘.'

%S

“

1
; -
A 2y % ' Y

N Knowledge Acquisition via Machine Learning 63
et
'Q
s
200
o HN 0 HL 0 H2 HN 0 H1 0 H2
2 .
o \ /
R =) IN 01
o 4
o /
e LN 0Ll 0 L2 0 L3 LN oLl 0 L2 0 L3
k-
{ l,:_
=~
;_.:_:. Figure 2.6 Creating new intermediate node at
' switchover point.
{
Since if one set of LNs (call it set L) and one set of HNs (call it set H) satisfy this rule, then
any subset of set L and any subset of set H can also satisfy this rule, we determine that the
intermediate node be defined on the basis of the largest sets (subsets or supersets of set L
'.:-EZ; and set H) of LNs and HNs which satisfy this rule. The third condition of this heuristic
W, rule is. in fact. the threshold of the complexity of the relationship between LN and HN for
a~ s
iy defining new symbols. We deliberately choose this threshold because of the fact that. for a
L
." . . . - . . -
";. given situation which satisfies this rule. descriptions of the inference behavior are
‘|]
o simplified by adding a common intermediate node while all links from LNs to HNs are
e
v maintained via the intermediate node (i.e.. no links from LN to HN are added or
s
ARl
.!: removed). For example, in figure 2.6, there are 6 links (LN => HN) initially and 5 links
(LN => [N and IN => HN) after introducing an intermediate node. Consider the case
o when there are 10 LNs and 10 HNs and 10x10=100 links initially: only 20 links are
Cala
-
‘L- needed after introducing a common intermediate node. Butif n=1orm=1 or nm=4
(c.g.. n=2 and m=2), the descriptions of inference behavior will not be simplificd by
o

.......

VL SN . .
i e . Lo) :
~ VNIV IVIN IS T O N OB T S P PR I N .

'l ,. " .D ’l t
4t
1) L
'

Py

Y e T
{ 'l " 'l ‘A ’ R
S h Nttt
0 . s s a0

‘I
u / (‘l. Jl.

alay
ICUION

«
A Ay

.« 8
)

Ay

-~
x
i
'O
-
.
"
-
AR

W \u'.'l‘ At

b

A
l/

T T T S S e e e e
L AR A U T S Y ‘. " -, RN TREY ERRIR

N
o

Knowledge Acquisition via Vachine Learning 64

adding a common intermediate node. However, the descriptions of inference behavior
may become complicated rather than simplified when so many intermediate nodes are
introduced and there are overlaps of the associated sets of LNs and HNs among them
(note that each newly defined intermediate node has one set of LNs and one set of HNs
associated with it). Though complication is worthwhile if more understandability and
better accuracy are gained. we might attempt to control the number of the newly defined
intermediate nodes (concepts) by adjusting the threshold of complexity for defining them

(the third condition of the described heuristic rule).

Creating a new intermediate node will face another problem if uncertainty is involved.
For the example shown in figure 2.6, the final degree of certainty of H1 and H2 should
remain approximately the same before and after introduction of intermediate concepts.
The degrees of certainty (or CF's) are assigned to new links in such a way as to preserve

these final degrees of certainty.

In learning from examples, this heuristic rule is applied to a set of rules (LN => HN)
which are learned from training instances (LN -> HN), and can be applied recursively, as
long as there are plausible switchover points. to form a multi-level network. By applying
this technique to the jaundice domain, totally there are 9 symbols created. which are

shown in table 2.3.

- R Ry g '.~'-"./-'~‘ \, P, el _:__:-.-_.'_-‘.:-_ RPN

.r".r..‘.e_&r .r.\.a_.r_.e.;j‘m:'n:.aﬁ.h.m.'r.r S S T ST S Lo Ut e

TR ARV IRE S U ¥ "W w T e W W
) !'- .
D

Knowledge Acquisition via Vlachine Learning 65

Table 2.3 New symbols created by the technique of

N{; symbolizing switchover point and their interpretations.
raras

i: Symbols Medical Interpretation”

A

o Neosyml Benign hepatic pathology”

Neosym2 Cholestasis
o = Neosym3 Chronic liver failure
j'dg Neosym4 Complete biliary obstruction®
8 jv Neosym5 Extrahepatic jaundice
‘nd Neosym6 Hepatobiliary pathology
bl Neosym? ? Liver cachexia®
Neosym8 Inflammation”

0N Neosym9 Hepatocellular injury
R
téif *: The interpretation is made by observing the

ey involved features (LN) and diseases (HN).

A +: These symbols are outside the initial vocabulary.
{H»

o o
-0 Among these 9 created symbols, 4 symbols are outside the initial (old) vocabulary and 5
symbols are semantically equivalent to some old symbols. It is also noticed that there is
‘ o some overlapping of the results from the technique of symbolizing taxonomy point and
S
18
_;f-: from the technique of symbolizing switchover point. The fact that most of the created
)
! .'l\ 3 . - .

' ; symbols are medically meaningful is expected because an intermediate symbol is created
_.-."E when there is a complex but regular relationship between LN and HN (represented by the
Lo

- heuristic rule).
b,

AN 2.3.3. Comparison and Discussion

-
,:';'::j From the angie of creating new descriptors or concepts. the related work includes
X]

)

O EURISKO [Lenat 83]. BACON [Langley 33]. and [Utgoff 82]. But the difference is our
o
-:;'.j explicit attempt to discover the new intermediate concepts to construct a reasoning
)

.",‘J'
b, hierarchy. However. from the viewpoint of establishing a conceptual hierarchy. the most
£, representative related work in Al is [Michalski 83b}. But it differs from our work in at
g

YR

Knowledge Acquisition via Machine Learning 66

least two aspects. First, our work deals with not only conceptual clustering but finding the
intermediate links. Because each training instance is also characterized by a high level
concept besides low level descriptions. the search for the meaningful intermediate
concepts is constrained bidirectionally (from LN and from HN) while this is not true for
[Michalski 83b]. Second. though the technique of symbolizing taxonomy points
(described previously) intends to discover conceptual clusters. the technique of
symbolizing switchover point intends to find important reasoning islands which are more
complex than what we call "clusters”; one LN or HN may link to more than one IN and

vice versa.

We expect the methods described here can be easily extended to other non-medical
domains. [n learning intermediate knowledge, we use a general concept hierarchy: and
the heuristics we use to discover intermediate knowledge are not specific to medicine. The
major contribution of this idea is its capability of leamming intermediate-level concepts
from a set of training instances that are described only by low level features and high level

concepts, and not by any intermediate concept.

2.4. Learning Disconfirming Rules

Disconfirming rules are rules which deny some facts. They can be traced back to
MYCIN [Shortliffe 76], in which rules with negative CF are called disconfirming rules in
contrast to confirming rules with positive CF. In our scheme. we use degree of certainty

(extension from CF) to represent uncerwinty. An example of a disconfirming rule is as

follows:

'l.’.’l{' 4

NN
s A A& L & S

20 DPLI LI

,.,.‘
Pored st

Knowledge Acquisition via Machine Learning 67
-.7 .
"P =) A" or P => -A"

This rule says if “P" exists then "A" is denied with the degree of certainty ".7".

There are two basic approaches to form disconfirming rules:

1. From high frequency evidence: If some piece of evidence (clinical
manifestations in medicine) frequently appears in a hypothesis (clinical
diagnosis in medicine), then the absence of that evidence tends to deny the
mentioned hypothesis [Miller, Pople, and Meyers 82].

m_mutual exclusiven ri ibili ng facts: If some evidence
supports a hypothesis X which is mutually exclusive with another hypothesis
Y. then the mentioned evidence tends to disconfirm the hypothesis Y.

For the first approach, in an extreme case, if some evidence appears in a hypothesis under
all circumstances, then the absence of that evidence definitely denies the mentioned
hypothesis. These are called pathognomonic findings in medicine. This statement may be

rephrased as:

"P(e/h) = 1 <=> P(-h/-e) = 1"

But. if P(e/h) is not 1", then it is not necessary that "P(e/h) = P(-h/-e)"; and each
conditional probability depends on the distribution of the evidence among the population
of "h" and the population of “-h". [t is dangerous to use only P(e/h) to estimate P(-h/-e)
unless we know the distribution. [t is noteworthy that in MYCIN. the CF ., though related
to probability. is. however, different from probability in some aspects [Buchanan and
Shortliffe 84]. And. it is misleading to use probability to measure directly the degree of

belief or disbelief. [t is interesting to note that if we use high frequency evidence to form

disconfirming rules. the assigned degree of certainty of denying a hypothesis, "-h". by

P
A Y S

)
b}

_‘. ‘l .I ‘]

'..:." L ;

™
N N
.t .
';':‘:J.’.‘

e
.
” " A

.]
LA Ay Sy N 1"’

»
-

PN T
RAR RN I -

s

Knowledge Acquisition via Machine Learning 68

giving "-e" is parallel to "P(e/h)” rather than "P(-h/-e)". In clinical practice. it is often
believed to be true that if a clinical manifestation frequently appears in one disease, then
the absence of that manifestation tends to disconfirm that disease. As an example,
"SGPT" is always elevated in the disease: "acute hepatitis”. and the absence of "SGPT
elevation” makes "acute hepatitis” unlikely. In JAUNDICE, another example of a

disconfirming rule formed by the first approach is as follows:

"If there is no history of gall b’adder disease,
then it is unlikely (-.5) that the disease is
calculous-jaundice"”

This rule is derived from the observation that history of gall bladder disease always exists

if the jaundice is caused by gall stone,

The issue of overdisconfirmation can be solved by assigning a lower degree of certainty
to a disconfirming rule (unless P(e/h) = 1). For instance. in JAUNDICE, we use a simple
mapping, such as this: if attribute A a/ways (corresponding to the degree of certainty in
the range: [.8 1)) appears in disease X, then the absence of attribute A often
(corresponding to the degree of certainty around ".5") rules out disease X. By so doing,
confirming rules usually override (to some extent) disconfirming rules to make

conclusions if both succeed.

The second approach may be represented as a rule:

“If e => hl and hl => -h2,
then e => -h2"

i e e g e e o) s A £ us ool m e nh B Aed i M ted el b e g hanc A Au b 4 e S e die Are aie aas 4]

Knowledge Acquisition via Machine Learning 69

Sometimes, a disconfirming property can propagate along a relational chain (e.g.. causal

links), thus:

“If el => e2, e2 => -~e3, and -e3 => -h,
then el => -h"

The uncertainty may also propagate; the degree of certainty of a path is the product of the

involved links.

Leamning disconfirming rules can also focus on a specified case (focus mode). For
example, if a case is misdiagnosed as disease B while it should be diagnosed as disease A,
then, with the approach from high frequency evidence, disconfirming rules can be formed
to disfavor disease B by using feature-values that are absent in the specified case but

frequently present in the cases correctly diagnosed as disease B.

2.5. Constructing a Hierarchical Knowledge Base

As mentioned earlier, intermediate knowledge is important for accuracy and
understandability in an expert system. This section describes the application of the RL

program to constructing a hierarchical knowledge base.

The procedures are as follows:

estep 1. Learn the direct inference rules (LN => HN) from the given set of
training instances. (learning confirming rules is described in Section 2.2:
leamning discontirming rules is described in Section 2.4)

estep 2. Starting from partial or no intermediate knowledge, explore the
intermediate knowledge by all methods that include bottom-up, top-down,
bidirectional extension. symbolizing taxonomy point. and symbolizing

I e PR e
At At Vet ataa Nt

a
Ro
T Knowledge Acquisition via Machine Learning 70
;Z:i'.
~ ey switchover point. as much as possible (described in Section 2.3). Two things
o that are expected are: first. some methods may not work because of incomplete
:‘i-'j knowledge. e.g., bottom-up can't be adopted when knowledge of the form
" "LN <=>IN" is missing; second, the results from different methods may be
':: :; redundant. The first problem is handled simply by abandoning the methods
that can’t apply. The second problem can be solved by removing redundancy.
R The symbols created by the techniques. such as symbolizing taxonomy point
:f'.:‘,f. and symbolizing switchover point. must be interpreted first before checking
- redundancy with other old symbols and new symbols already created. The
. interpretation can be made automatically by observing the involved LN and
HN (see tables 2.2 and 2.3). At this stage, the knowledge base under
:j.’-_';_I construction has the knowledge of three types: LN => IN, IN => HN, and
'},‘ LN =>HN.
o ()
! o step 3. Replace direct rules (LN => HN) by intermediate rules (LN => IN,

e and IN => HN) if they are equivalent. By "equivalent”, we mean the same
conclusion (HN) with the same strength (degree of certainty, allowing an error
of ".15") can be reached. given a set of low-level features (LN). For instance,
in the jaundice domain, a direct rule "negative bilirubinuria and elevated
urobilinogen => hemolysis” can be replaced by the rule "negative
bilirubinuria and elevated urobilinogen => overproduction of bilirubin" and
the rule "overproduction of bilirubin => hemolysis". Note that one direct
rule may be replaced by several intermediate rules.

.

After these procedures. the knowledge base contains hierarchical concepts, but will also

R I
SR

contain some simple associations of the form "LN => HN" which can't be explained by

the intermediate conceplts.

Feature Condensation 71

Chapter 3

Feature Condensation

3.1. Introduction

Attempting to build an efficient learmning program, as implied by Simon when he
pointed out the tediousness of human learning [Simon 83), is justified not only because we
want to save time, space, and cost, as desired in all kinds of science, but also because we
want to make computers smart enough to learn quickly. In a survey conducted
in [Dietterich 83]. efficiency is also listed as an important factor for comparing different
learning methods. Notice, however, the choice of leaming methods can't simply be based
on efficiency since this concern may often sacrifice benefit in other aspects. [n current Al
research on machine leamming, the only solution for improving efficiency seems to be
employing appropriate heuristics to prune the search space. such as heuristics used in
Meta-DENDRAL [Buchanan 78a]. "beam width" used to prune hypotheses in INDUCE
1.2 [Dietterich 81], and "window" heuristics used to limit the amount of data to be

processed [Quinlan 79).

The work described in this chapter is motivated by finding an efficiency-enhancing
algorithm, which is independent of leaming methods (i.e.. it can be concatenated to any
learning system). A program called "CONDENSER" is built to remove irrelevant

features (red-herrings) or unrequired features dynamicaily during leaming: this process is

o y .r.‘.'*‘.«'.r'."‘:'.'."-".""'i’fﬂr\'vx'-'\‘.-.a-:-.-':*-v:vuvxiv:"T

2o Feature Condensation 72
T e

-“‘.
0
‘ -;’-\:' .
Kaca called “"feature condensation”. By this technique. only the set of required features needs
.f-:_ﬁ::- to be considered in leaming, thus the dimensions of the search space. which is expanded
;‘:Z-;: by the features involved. can be reduced. and the efficiency is improved consequently.

\ Y
Deciding on which features are relevant or required is a bias, which may have already
::}:: been assumed to exist (provided by the designers) in some leamning works. However, as
s the bias or ignorance of human designers may negatively influence machine learning, we
~ would rather formulate this issue as a new problem; it may also provide us an
L0 understanding of determining the relevant features in leaming a new concept.
A - '_’.

Furthermore, this is a pragmatic issue since we may have already observed that the

features involved in certain concept descriptions or certain decision making are often a
X "-i: small subset of all features possibly used in the domain; that is, there do exist some
features that are "relevant” in a certain context. Here, by "relevant features”, we mean the
features can adequately characterize one concept and discriminate it from other concepts.

In a domain particularly dealing with decision making, in order to minimize the cost of

making decisions, "relevant features” also imply the minimal features required and this
implication is maintained in this chapter. Thus, so far as the learning is concerned. it is
important to make distinction between "relevant descriptions” and "“most general
-ﬁ:j-'. descriptions” since both terms seem to indicate features involved in the descriptions are

minimal:®> however, the difference is that “relevant descriptions” can still be as

S specialized as possible within the given set of relevant features by, for instance. choosing
S3KN
:.:_::' more specific values and not necessanly “most general”.
‘ ‘-::_‘:::
L

- 25 . .
VT ““Recall the generaltzation rule #1 (re . dropping conditions) in Section 2 1.1, the most general descnption
tends to have minimal teatures.

LA

« ® 8 _ 8 v
PRIr RS Wy Suy M N

-
2

- e
v SR

." .A' l.‘ l“ II.AII._"'_' ’~v5.

v
Ch i

»
a .:‘
sl

Feature Condensation 73

The task of CONDENSER may be defined as follows:

Given: 1. A set of training instances
(positive and negative instances).
2. Features or descriptors
which describe instances.

Find: Features required to describe the training
instances without causing ambiguity.

In other words, CONDENSER intends to remove unnecessary (or irrelevant) features
without reducing the power of the learner to make distinctions between positive and
negative instances. However, two basic assumptions (or conditions) are necessary to
justify this task:

1. There exist adequate training instances, particularly negative instances.? to
guide the condensation process.

2. The set of features required to describe an individual concept should be

smaller than (of course, a subset of) the set of features used in the given
domain.

Since we discern the relevani or required features by contrasting positive instances with
negative instances, the first assumption is necessary. For instance. if a feature F is
required to distinguish a positive instanice P from a negative instance N. then the necessity
of feature F wouldn't be recognized but for the negative instance N. One might ask what
level of adequacy for negative instances is necessary to justify this technique. Since there
are an infinite number of negative instances, we might only want to focus on those related

negative instances. Thus. for example. in the JAUNDICE experiment. the case library

26 ‘ o : , :
Since induction can also he done by using only positive instances [Dietterich 83). here we emphasize the
adequacy of negative instances in order o avord improper use of condensation.

5 o -a - e o TP ’ - o - 1a ats - alha “Aat aai b aae toe Mol mae Bub s o '*
.

Feature Condensation 74
~2
.-_:(
:::‘f
~\',
R only contains the cases with jaundice as the main manifestation: if one class of cases are
o fabelled as positive instances, other classes of cases are labelled as negative instances: and
KN
&
' ‘ . N . » . -
::: we think we have adequate negative instances even though we don't have negative
O
‘ instances in other domains. Practically, "adequacy"” can be assumed if there is a way to
-j‘_l- generate all (or most) possible instances and verify them or if there is knowledge (which
_3.}; may be transferred from other similar domains) to teil s0.2” Otherwise, it is safer not to
, assume “adequacy” and thus not to use condensation. The second assumption is to
.:;_f prevent the futile effort of this technique: under this assumption, CONDENSER is
) ;': expected to remove at least some features. (Refer to Section 3.6.1 for further discussion.)
A '*.:
:fl'- In this chapter. we will describe how, analyze why, and discuss when the
h\.
.hxl . » M ” "
: CONDENSER program will work. In the terminology of this chapter, "feature base
- means a collection of features in a given domain; “feature set” is a set of feature and value
'-'_::: pairs representing each instance.
b
) 3.2. The Learning System
, \::
< 3.2.1. Structure and Behavior
.!_'_
N A learning system is a problem solving system with its own input and output. The
3
ol . . .
- system can be either an open loop or a closed loop. depending on whether there is
a9
‘;:: feedback pathway from the output to the learner (see figure 3.1. 3.2.).
Lk~
e
‘
-
R 27For example. in medicine, we may consider 30-40 cases as a reasonable sample size for studying a certann
' .;-5. medical parameter.
‘a
-7
b\
L}
q

T Y T T T T
‘w~._h AR 'r\;."_.\'\,\ -{‘ (_(Y

w Sl il

Feature Condensation 75

Input »| Learner Output

Input: Positive and Negative training instances
Output:Learned concept which is consistent with
training instances.

Figure3.1 A simple open loop learning system.

input »| Learner »| Output

Test

Figure 3.2 A simple closed loop learning system.

In the leaming from example paradigm. the input is a set of training instances, which is
constructed by some elaboration. including selecting good data and representing them
properly. The leamer can be model-driven or data-driven. and it seeks concept
descriptions which are consistent with the training instances and human background

knowledge. The output are the learned concept descriptions, which have been

Feature Condensation 76

transformed into human understandable forms. In a closed loop leaming system. the
learned concept descriptions undergo repeated tosts to determine if most of the positive
instances are covered and negative instances are rejected. A closed loop system because of
these tests. which are part of the error-adjusting process (described in Chapter 4), will

yield better results.

3.2.2. CONDENSER

We propose a more sophisticated learning system. diagramed in figure 3.3, which
incorporates CONDENSER and the noise-filter: the former is described in this chapter:

the latter will be explored in Chapter 4.

[LEARNER

INPUT L, | Condenser | Core ,[Noise-filter » OUTPUT

Figure 3.3 Diagram of an efficient and noise-resistant learning
system with the condenser and the noise-filter,

In brief. the function of CONDENSER is to remove unnecessary descriptions. For
instance. to distinguish dogs from cats. it is not necessary to mention that both are animals:
however. to tell dogs from trees. it is useful to mention the former are animals and the

latter arc plants.

A B ER e ot ala a- B Rt ale aie St abd abi i abhlales ki bt abh v B Ri e Sa0 4oy aat Sae Eav Badt aaw Bok 8o dob Bab End fa® Sah Aol Bat sb Al foh S8 Sk 2ok Sk Sk Sed Aok Aod Aok Bk Ao

A Feature Condensation 71
30
CONDENSER, a part of the learner, fulfills its role dynamically, depending on what
class of concept to leartn. One might wonder why the data have to be manipulated
:jl: dynamically. The main justification is that the case library is a dynamic (time varying)

-

" structure; the statistics might shift with time; therefore determination on the set of
::? required features for a certain class of concept on the basis of the case library at a specific
:Z:'- point on time axis may deprive the learner of learning new knowledge and detecting the

faults of old knowledge. Thus, from a long term perspective, it is warranted to do it

i dynamically.

' 3.3. The Rule of Condensation
.:';j Generally, the rule is the following: "while preserving the desired information. simplify
» the representation as much as possible”. Specifically, the condensation rule can be stated
Ny in the following two aspects:

‘;f: ¢ The descriptions of a given concept can be condensed by removing some
2 features (or descriptors) as long as the number of negative instances included

because of this operation is less than the pre-set threshold. In this formulation,
- it implicitly assumes the given concept divides the instance space into positive

- and negative instances.

S
- o Suppose the leammer intends to leamm about a new concept from already
e classified instances, then the descriptions about instances can be condensed by
::j' removing some features (or descriptors) as long as the number of negative
:'\‘:) instances made indistinguishable from positive instances by this operation is
- less than the pre-set threshold. In this formulation, condensation will proceed

- under the assumption of a given dichotomy (positive and negative instances).

Z-'.:L Note that an instance space might contain more than two mutually exclusive
o categories: if one category is treated as positive instances, then the other
{l . . . -
s categories will be treated as negative instances. A different dichotomy will

- result in different condensation.

s
..’
~

“»
>
-

f g
)

NG
I\

1

Feature Condensation 78

We can also represent concept descriptions by a feature set, a set of feature and value pairs
that characterize the concept. For example. we may represent a red big round object by
{(color red) (size big) (shape round)}. Then, the objective of condensation can again be
formulated in two aspects: |

e For a given concept description. find the required or relevant descriptions
about the concept.

o For learning concept descriptions, find the set of features that adequately but
not redundantly describe the training instances.

Example 1. Consider there are only three instances in an instance
space.

pos.1: {(color red) (size big) (shape round)}
neg.1: {(color red) (size small) (shape cubic)}
neg.2: {(color black) (size small) (shape round)}

(Note: pos.= positive instance,
neg.= negative instance.)

Now. if the threshold is set to zero, i.e.. no negative
instances should be included or confused with positive
instances by condensation, then,

ifi nden ion:
pos.1: {(size big)}
neg.1: {(size small)}
neg.2: {(size small))

Condensation is justified because positive instances
are still distinguished from negative instances.

Unjustified I ion:
pos.1: {{color red))
neg.1: {(color red)}
neg.2: {(color blacx))}

Condensation is unjustified because distinction is lost
between pos.1 and neg.1.

In example 1. suppose we know the concept description is {(color red) (size big)}. then

it can be condensed into {(size big)} by the condensation rule.

ss&'zf

™
»

P 4

R HEAM

Ty

a
¥

X

. ,
PO -
'.’-';':":'

-

RN

: P

“".".“.".'.. 1

-

"o
MESS

'l
P Jl »

o

;.- p o> ,
PR AN A

ALY

B Y HA4S

A e

Feature Condensation 79

Now, we define the term "incompressible” as follows:

e An "incompressible concept description” is such that removal of any feature
(descriptor) from it will cause more than allowed number of negative instances
included: in other words. the condensation rule is violated.

¢ An "incompressible feature base” is such that removal of any feature from it
will cause inadequacy in describing positive instances. Again, it depends on
what we include as positive instances.

To what extent features can be removed depends on the presence and nature of negative
instances. In the extreme case, there exist no negative instances, then all features can be
removed, and the description become "null”, i.e., all instances are positive instances.
Therefore, one implicit assumption behind the "condensation rule” is that there should be

adequate negative instances to justify “condensation”.

Assertion 1.: The concept descriptions learned from the instances
described by condensed features are still consistent with original
instances.

<argument>: Adding more features is a kind of specialization. If concept descriptions can
distinguish positive instances from negative instances with condensed features, it still car. if
all features are preserved. In Example 1, the concept description "{(size big)}" is
consistent with instances after justified condensation: so it is still consistent with the

original instances (before condensation).

3.4. Techniques of Cohdensation

Condensation can proceed by three strategies:

1. Exhaustive search; Test every possibility. So. if there are "m" features. the
number of possibilities is
used practically.

"2™". Because the search space is huge. it will not be

La e a4 e B a-alae ate acm ava oim mte ate hta-aiS-ayl and abicabhoahiabicaratabhoad TR WWWWW r g

Feature Condensation 80

2. Search by Tree: Starting from the collection of all features. the tree is
expanded by removing one feature at a time in all possible ways. In figure 3.4,
assume there are 4 features to describe instances: the tree is expanded
sequentially as described.

o feature base={Al A2 AJ A4}

7 \\
om o{A1 A3 A4} DefA1l A2 AGT0(Al A2 A3}

0 Ay'{uho

6fa1) 0(A3)

e: Justified condensation
0: Unjustified condensation, and pruned

Figure 3.4 Condensation by search tree. In this illustration,
there are four features in the original feature base.

Once the generated condensation is not justified, it is pruned. because
subsequent condensations will also be unjustified. based on the consideration
that dropping more features will cause negative instances even more
undistinguished from positive instances. This strategy is a heuristic one in the
sense that it can avoid exhaustive search. Nonetheless, it is still expensive. A
somewhat similar strategy was applied to some works of pattern recognition

[Becker 78].

~
-"\

b\ N
- 3. Qrdered Scanning Algorithm: See next section.

N
S The program CONDENSER uses only "ordered scanning algorithm™ for the reason of
-:\
N efficiency. as will be analyzed in Section 3.5.

Kt At Ol sy R

o o o - — b Maie A e et s Bad iy e et it st 4 -w‘v‘w

I Y

Feature Condensation 81

‘S A s

3.4.1. Ordered Scanning Algorithm

Features are first ordered according to their priority (significance), which may be

R R

evaluated along different dimensions. In a domain like medicine. the cost of feature
measurement (e.g., laboratory examination) is an important factor besides discrimiﬁaling
ability to determine the priority. The most desirable feature (with the highest priority) is
the one with the highest discriminating ability (pathognomonic features in medicine) and

with the lowest cost of it's measurement. Then, features are scanned one by one to detect

-
‘

¥
)

which features can be removed on the basis of the condensation rule. The priority of a

feature can be determined by background knowledge or past experience or statistical

1"1"1

techniques. I[f statistical techniques are used. instances are randomly sampled, and then,
based on the distribution of feature values, we will be able to determine the discriminating
ability of the feature. For a numerical feature, it is often true that the further apart the
S mean value (also the value with peak frequency in Gaussian distribution) of a feature

between positive and negative instances. the better its discriminating ability.

The algorithm proceeds as follows.

[l

o step 1. Order features according to increasing priority (significance) described
above by placing a feature with higher priority behind a feature with lower
priority, aind thus build a list of features.

."'l x

L]

e step 2. Scan the ordered list. starting from the head. and proceeding down the
list. Try to delete one feature at a time.

- ;S L

o substep 1. If the deletion violates the condensation rule. then put the
feature back on the list without breaking the ordering.

ALK R_A_A &

o substep 2. Otherwise, delete it from the list.

[n substep 1. in order to decide whether the condensation rule is violated. we set four

RN RS N

’

T L I LT PP Y RS
RS o _'.,‘x‘.,-w ;\. N
o 3

l..'-...n
.
] n

- e
PRI
[

AP
Ko ibh 2

'.‘nvt_ [

iy
» e LI
.

LA ’
R T T

*]
v]

¥

T

’l ’l

-
LY

A .r~
A ﬁ"ﬁlxlls.lﬁ‘lsll& s I‘JI. T s
SHANSS SRS,

5

id
b

LY PAeAna:

-

" -
-‘ l. -. l’

E S YS™

.'(..' Plls

ki

Feature Condensation 82

thresholds as follows: GATP (global ambiguity threshold for positive instances), LATP
(local ambiguity threshold for positive instances). GATN (global ambiguity threshold for
negative instances), LATN (local ambiguity threshold for negative instances). If one
positive instance is indistinguishable from one negative instance (i.e.. they share common
or equivalent descriptions), they are "ambiguous”. GATP is the maximal number of total
positive instances made ambiguous because of this condensation operation. LATP is the
maximal number of positive instances made ambiguous by deleting one individual feature.
GATN and LATN are counterparts of GATP and LATP for negative instances. Therefore
the operation is constrained both globally and locally in order to condense the feature base
properly. Though ideally we may set all these four thresholds to be zero. practically this
may not be the case owing to the imperfectness associated with the instances, e.g., false
positive or negative training instances. Notice, however, GATP and LATP are somehow
related to false negative predictions, so are GATN and LATN to false positive predictions:

the extent depends on how the learner handles the ambiguity.

The program CONDENSER, which is our implementation of the ordered scanning
program, receives (from the leamer) input. which comprises a feature base to be
condensed and a set of instances that have been labelled either positive or negative
instances by the learner according to the class of concept to be learned: and the output is
the condensed feature base. Then the learner will consider only features in the condensed
feature base when it expands the search space (also refer to Section 2.2.1) and when the
concept descriptions (or hypotheses) are matched to the training instances. Thus, during

the learning cycle. training instances look as if they are represented only by the condensed

features.

AAAAY

- Feature Condensation 83

Example 2. Consider 3 instances in the instance space,
B and there are 4 features to describe them.
;i Assume the four thresholds described are all set to zero.

o pos.1: {(color red) (size big) (shape round) (weight heavy)}

D - neg.1: {(color red) (size small) (shape round) (weight heavy)}
. neg.2: {(color red) (size big) (shape cubic) (weight heavy)}
"
': If we consider the discriminating strength, feature
- "size" and "shape" have higher priority than others.
N So, we build a features list as the following:

(color weight size shape)

:) Then, the algorithm proceeds as follows:

Y

o removing "color” -> succeed! the condensation rule
- is not violated.

removing "weight” -> succeed!
removing "size" -> fail! pos.l and neg.l1 are

‘ indistinguishable. So, put
¥, it back on the list.

y removing "shape” -> fail! pos.l and neg.2 are
N indistinguishable. So, put

it back on the list.

j As a result, the condensed feature base is as follows:
- (size shape)
1 ,‘:’
~r_. Assertion 2.: A feature base condensed by "ordered scanning algorithm"
o is incompressible.
W,
L~
<argument>: Since, during the scanning procedure, all removable features (the removal

::I of which does not violate the condensation rule) are removed. further removal will cause
-
2 violation. Thus, the result is incompressible.
» The results may or may not depend on the ordering; in the above example. the result is
=
:: independent of the ordering. Since there may be several different ways of ordering the
hY

features. we might maintain several versions of the results: each version bears a specific
IR -
.
1+ A
.
L)
4
J RS

_"""vr.*r _., 7
. .

. LIRS T P
J.,.((.IIIJ'I-J‘.“.I
".."“ ”n / '- " N

. ca e re ATt
« .1 -. RIERE L)
! N ' \-“w‘\-‘\. {'\.-, - gt .

Feature Condensation 84

meaning. Thus. for instance, in medicine. one set of rules might involve safe but less
accurate clinical features: another set might involve invasive but more accurate features:
and so forth. However. in general, there are limited criteria based on the background

knowledge to determine the ordering.

Another issue is "overcondensation”, which results from inadequacy of negative
training instances for constraining the condensation. Asking whether the training
instances are adequate in learning is somewhat similar to asking whether the samples are
adequate in statistics. Nevertheless, in learning, the training instances should be adequate
not only in quantity but also in quality. Near-miss®® negative instances are crucial to
identify important features and thus are important for condensation. Near-miss instances
can be generated by replacing values in a small number of features of the positive
instances and then verified by experts or by visiting an instance library or by other
methods. However, it is impossible to generate any near-miss instance we want unless it
can be verified. Adding some background knowledge is another solution to relieve
overcondensation. Though it is possible to create another program which can add more
features in to remedy this problem. this is however not a desirable approach because the
system may be trapped in the dilemma, deciding whether to delete or to add features.
Rather. we would make sure whether we have already had adequate training instances in
advance of applying CONDENSER: as a matter of fact, we have made this an assumption

underlying this operation.

28
““Near-muss. as defined by [Wrnston 70). 1s a negauve instance which differs from positive instances in only

a small number of features.

- S ..

» - TPt e PR I
_- ._f;_w \—-.' ,\n .’~ - -.‘1:.“'.* R A .,

A a A K B

'_‘,' Feature Condensation 85
e 3.5. Why Does CONDENSER Work?
Y
- o The effect of introducing CONDENSER in a learning system is investigated on the
o
n‘.-l .
s basis of the cost and benefit as follows:
W)
v o The cost is linear with the size of the feature base. The ordered scanning
"n !
.: algorithm performs one dimensional search instead of multiple dimensional
:"_:{. search (e.g.. tree search). For instance, if there are m features in the original
o features base. then. by means of "ordered scanning algorithm”, m scans are
required. In each scan, positives instances are matched against negative
-2 instances. So. if there are "p" positive instances and "n" negative instances.
o then in total "mxnxp” times of matching are done. The time required for

[matching may be increased with the number of features. but the increment will
bt be less than first order because of the following considerations. First, if two
. inste nces are not matched. the mismatch will be detected once one feature is
not matched. and the matching process is terminated. Second. the matching
will get simpler as more features are removed. Third, the sequence of features
, in the matching process is based on priority too (match more important
features first); therefore mismatch is earlier to be detected. If condensation is
based on an individual positive instance and it's near-miss, and take the union
- as the result. then it will be even more economical, and the cost is reduced to
NS "mxn" € cost << mxnxp"”. From this simple analysis. we know the cost spent in
. CONDENSER roughly increases linearly (though may be slightly higher than
first order) with the number of features in the original features base. To
demonstrate the computational near-linearity of CONDENSER, we labelled
AN 11 acute hepatitis cases as positive instances and other cases as negative
- instances. and measured the time required for CONDENSER by means of
be = ordered scanning algorithm to condense feature bases with different size as
:1‘.; follows: 10, 20, 25. 30, 35 .40, 45, 50, 55. 60: despite their size, they all contain
- required features to describe positive instances (acute hepatitis). The result is
- shown in figure 3.5.

N o The benefit is nonlinear with the size of the feature base. Before we analyze the
f ?::-.j benefit, we first estimate the size of the scarch space in learning. The search
-‘-:l‘ space is in fact the power set of the set formed by collecting all features (or
their values) which are used to describe training instances. So. if the number
Wiy of total feature values is "m", the size of the search space is "2™". To reduce

: :;. {.__.:-. ST 'r

A‘_.!l AAA‘_‘;.AA:A-‘A ARJLH'

2
A
3
(2
o aa

48
‘l

5

S

PRLS
ll..

. .

B A
a a & s

(.

[
hI)
£ a »

Feature Condensation

the number of features can thus reduce the search efforts greatly. But thanks
to heuristics applied, the difficulty of leaming will not grow exponentially with
the number of features involved; still nonlineanity (beyond first order) is
observed in general. To demonstrate computational nonlinearity of the
learner. we measure the leaming time by applying the leaming method
described in Section 2.2 to learn rules for diagnosing the disease of acute
hepatitis from the case library with feature bases of different size. The result is
shown in figure 3.6.

{minutes)
@
n

s |

“
o

2.5}

Condensation time

2.0*

o 10 20 30 40 SLO 60
No. of features in
the feature base

Figure 3.5 Linear effect of the size of the feature pase
on the time used in CCNDENSER.

86

VD WIWINENIN

AD-R171 794

UNCLASSIFIED

LERRNING OBJECT-LEVEL AND META-LEVEL KNONLEDGE IN
XPERT SYSTEMS(U) STRNFORD UNIV CR DEPT OF COMPUTER
SCIENCE L FI NOV 85 STAN-CS-86-1091 N89@39- 83-650136

hY
o
~N

i

A A1 T TR O I I U T TR T O TOR TR R

r‘" — e B - Rl TR

xv-)?'\‘..,..', e e e
SRR I
R . IS

o £u i

L

- =

““\:'_%_ \\\\\Z:__?.
23 flid s

rer

v
re

MICROCOPY RESOLUTION TEST CHARY
LTANDARLE, 19B 4 A

NATIONAL HUKEAL G

."" .‘\

":--\

s My

LAE R

’V'\J-'

FRTERIRR

S

1562 Feature Condensation 87

{minutes)
- N
[++] [e]
c o

Learning time
o
o

140.}

5 120.} 7AN
-~ .

On n 100.}

A 80.¢

'\'\\ 60.}

40.¢

JON 20.F

sl o 10 20 30 40 50 60
it No. of features in
the feature base

Y Figure 3.6 Nonlinear effect of the size of the feature
W base on the time used in the learner.

SAD With respect to the number of training instances. the computation time spent in one single
o (non-disjunctive) concept learning task. according to Mitchell [Mitchell 78]. is proportional
to "(p +n)2" in depth-first search. “pxn" in breadth-first search. and "p+n" in candidate

[Tl

I3y elimination technique (where “p” is the number of positive instances. "n" is the number of

negative instances). However, in multiple disjunctive concepts leaming (a typical situation

5

any %
.

L -
P R

Y

| 5%

X

o

v o e tm
PRI
AR
i B he N

.
B
AR ' .

P

ORI R AN PES RN

C e X)

5% Rl

f I
'.' {
s

"-:' .
("

2s
vy

=
Pl

Feature Condensation 88

in EMYCIiN-based systems), another nonlinear factor because of combinatorics should be
considered: for example. a factor related to maintaining multiple version spaces in
[Mitchell 78]. In contrast, the time required for CONDENSER is proportional to. as
described earlier in this section, somewhere between "n" and "pxn" in both single and

multiple concept learning tasks.

Thus, the cost spent by CONDENSER is linear with the size of the feature base and
comparatively small with the size of instance space while the benefit gained with respect to
the size of feature base is nonlinear. It follows that incorporating CONDENSER can
enhance the efficiency of learning. To demonstrate this analysis. we again applied the
same learning method to learn rules for diagnosing the disease of acute hepatitis from one
half of the case library with 72 cases, then we used another half of the case library to test
the KB constructed by replacing the old rules associated with the diagnosis of acute
hepatitis by the learned rules in the old KB with 141 rules. The result is shown in table 3.1
Without CONDENSER, constructing a new KB in JAUNDICE by leaming all concepts
(there are ten concepts in JAUNDICE) from the same 72 cases takes about 14 hours
whereas, with CONDENSER, it takes only 45 minutes: and the qualities measured by the
diagnostic accuracy over 42 clinically diagnosable cases (unrelated to the above 72 cases)

which received liver biopsy in Stanford Medical Center in 1978 are the same (83.3%) (also

refer to Table 7.2).

" Feature Condensation 89

Table 3.1 Comparison of the performance of two learning

N networks with and without Condenser.
'l
4 No. of 01agnost1c
3 time rules accuracy
J (min.) learned| (36 cases)
! condensation 2.5
k.
N with Condenser learning 5.4 29 31/36
_i total 7.9
learning 192.2
y without Condenser 30 31736
. total 192.2

*: Rules learned from one half of the case library
with 72 cases are tested against the other haif,

.. The result indicates CONDENSER can save a significant amount of learning time while
. preserving both quality and quantity of leamned information. [t also implies that a learning

process can be decomposed into two parts: discovering the set of required or relevant

(% L g

features. and the process of generalization and specialization. Great efforts can be saved if

we solve them separately (divide and conquer, so to speak). This result is compatible with

the above analysis.

” @
Patetstets '

G AN -._...r-‘.
'\l \\u
o'l." J‘

AR R " WAt e S T e e e

- ~ ! R
S '.--.-.._\.-
W%) "

)"\ A

o meue

»

N
: Feature Condensation 90
0%
‘ ‘.‘. . -
.* v 3.6. Application
e
N 3.6.1. Applicable Domains
LN
-(‘.‘,f_.
Ve We recapitulate the benefit gained from incorporating CONDENSER in leaming
N systems as follows:
-,:‘::
:‘:.\ 1. Efficiency of learning can be greatly improved.
R A
¥ 2. Decision rules learned in such systems can be precluded from carrying
f{'_:: unnecessary risk and cost since unnecessary features are removed.
S
) From this perspective, any domain is a good candidate to be applied. However.
.l .
¥ CONDENSER might act adversely in the following circumstances:
54
R
B o If the features used to describe the training instances are all relevant or
e required, CONDENSER will have no effect.
L)
S o If no adequate (see Section 3.1 for the discussion of "adequacy”) negative
‘. -‘
;:,.:: training instances exist, then overcondensation will occur and make the
3'-:-_1 learned concept descriptions too general and tending to cause false positive
Zy predictions which may also carry undesired risk and cost.
-
[‘rs':- Considering the second circumstance, we seem to face a tradeoff between simplicity and
AN
:f‘x:;: fidelity, a issue which is also emphasized in data compression in 2ngineering science (e.g..
3
* [Gray 74], and [Blasbalg 62]). Fortunately, the tradeoff will exist only under this
545
';:f imperfect condition: if we have adequate negative instances to monitor condensation. we
Wy .
N . N . .
.'_ﬁ?_- may actually achieve both simplicity and fidelity. In the introductory remarks., we set
- forth two assumptions which are required to establish the practical value of
! jf:."_l' CONDENSER: the assumptions are merely the opposite of the above adverse conditions.
! :Z_':_‘; Despite these. there is still room for arguments; for example. how to verify whether the
R assumptions hold. However, we can still tell simply based on background knowledge or
| _'f__‘.
::::-'.:
| .:-:

T T P N S s
)‘1.(\ #b:*-.‘ ---

P I SRR :
L e
Kn Liel A i , &

LAy

v Feature Condensation 91
- intuition. For instance, in medicine, many routine examinations, which may not be
) . . .
_" necessary except possibly for legal reasons, create a large amount of data in patients
N i
o records, but the clinical features related to diagnosing a certain disease are often a very
>
n small set of all clinical features. Therefore we may expect the usefulness of
- CONDENSER in medicine.
ea
b
Herein, we define CONDENSER Utility Index (abbreviated as CUI) as follows:
:'.: No. of features in the feature base
= cul =
" No. of features in target concepts
N
N The higher the index, the better indicated the CONDENSER. The threshold of CUI such
‘ that CONDENSER will be beneficial is "21", since the objective of CONDENSER s to
‘:; remove some irrelevant features: the exact value needs to be calibrated in different
e '
R domains.
3
o In summary, the applicable domains are domains where the two assumptions hold:
- practically, we might anticipate such domains to bear the following features:
o
4
: 1. Each case or instance in the domain is rather complicatedly described. Even if
' we don’t know whether the new concept is simple. it may still be worthwhile to
N try condensation. Remember that scientific rules or principles are often
. simple.
;‘,'- 2. Training instances can be generated and verified: if not, then somehow there is
.- knowledge to judge whether the instances are adequate.
5
A} ‘..
<.
E:
X
\.:
)
:.
Ly

AU CR R S N ._\' - " d I TR I I S “. .. I AU S T L _--‘ e A NOSEE
:3::‘.?}}:'2':{: A e e A, o SRS RR . A S R LI L G P

Feature Condensation

3.6.2. Compatible Learning Systems

[

Ef What types of learners are required for CONDENSER to work? Generally speaking,
E CONDENSER can be effective for any learner if the time used in the learner increases
_ nonlinearly (higher than first order) with the number of features in the feature base. The
:_{.‘E rationale is again based on the fact that CONDENSER performs one dimensional
::M scanning and it's cost is about linear. as indicated in figure 3.5. In figure 3.6, it is
R demonstrated that the time used in the learner with the learning method described in
’;'_ Section 2.2 is about quadratic, and significant improvement is acquired by incorporating
e
CONDENSER. as seen in table 3.1. In version space approach [Mitchell 78], reduction of
':; the number of features will accelerate convergence upon the desired concept description.

-

:\ With such an approach, in a perfect leaming environment, the learning time .ay not
o
e increase rapidly with the size of the feature base while, in imperfect situations (where
3, inconsistency occurs), the time will become nonlinear owing to maintaining large
l‘ boundary sets. In INDUCE 1.2 [Dietterich 81], the algorithm restrains the hypothesis
_ o space under a constant width ("beam width") during each expansion of the search space
Ej and results in an incomplete search. CONDENSER., by removing unnecessary features,
: can thus relatively broaden the "beam width" because of reduction of the search space and
(. render the search more complete in such a system. ID3 [Quinlan 83] is similar to ordered
| scanning algorithm in that they both order features based on some criteria. The difference
~ is that ID3J does not remove features. and each time a decision node is constructed. the
VS system. performing best-first search. examines all remaining features to determine which
:.‘ ;:E feature can provide maximal information for classification. based on the decision tree so
b far constructed. So, CONDENSER has two possible applications in such a system: first.
o
23
, i" z
’:‘3
Lol)

l'
P d
2.
A
o
A
e
‘-

.
r
0
;l
E)
[N
¥,
T,
4’5
LS
gl
x
S
Py
‘l
i]
A
X
"
o,
-J
N
‘X
A
4
.
.
l'
Y
’
A
."‘-
;

‘r b

ale e

'“l
[BV R ¥ L K

LA

Feature Condensation 93

it may condense the decision tree into a more compact form, secondly, since
CONDENSER may discover more than one set of required features based on different
criteria of priority. more than one decision tree associated with different meaning may be

built

In particular, the learner designed to leam multiple disjunctive concepts (e.g.. in
EMYCIN-based systems) will be greatly benefited from CONDENSER because of the

horrendous combinatorics of features and instances.

3.7. Comparison and Discussion

From the idea of improving efficiency of learning, as described before, some leaming
programs employ heuristics to prune the search space. For example, in
Meta-DENDRAL {Buchanan 78a]. an "improvement criterion” is used to determine the
relative plausibility between a parent chemical environment and its successors and thus
guide pruning the search space. In INDUCE 1.2 [Dietterich 81}, "beam width" is used to
prune hypotheses, and search becomes incomplete. However. inasmuch as the feature
condensation technique is intended to represent dynamically the training instances (a set
of data) as simple as possible so long as not much information is lost, this work can
actually be applied by the term "data compression”. Thus, if we view from data
compression, two learning programs may be related. The first one is again Meta-
DENDRAL . in which the INTSUM program compresses data by the aid of "half order
theony” during constructing the instance library: or, in other words. the half order theory
15 exploited to make the data interpretation more efficient and accurate. The second work

is [Quinlan 79]. in which a "window" is used to handle a large volume of data: only the

s g P - -~ . - - - . .
LN S, .
P e gt e T, gt a e e

s Feature Condensation 94
3

training instances in the window are processed. But no work has ever mentioned how to

f:: remove irrelevant features during leaming, perhaps. because all other learning works
\ assume either the provided features for the learning system are all relevant or the process
v of determining the relevant features is actually done during the process of generaliiation
'- or specialization. Whatever assumptions are made. it is worthwhile to separate this process
?(out and do it efficiently, as demonstrated in CONDENSER. Another point is that the
\
condensation will generally not affect the completeness of the search in learning, as
‘ implicated in table 3.1, since the objective is to remove only the irrelevant features.
Furthermore, the idea of feature condensation is one example of generating automatically
, the proper bias on the descriptive language, instead of being provided by human
designers. to enhance the performance; this perspective also includes how to create a new
= language to relieve the bias imposed by a fixed language (as suggested in [Utgoff 82)).
>
_\‘_Z In systems. such as communication, image processing, pattern recognition, and so on,
E':: there are works (e.g.. [Gray 74]. [Blasbalg 62]. [Becker 78]) which, though related in the
. idea of data compression. bear little similarity to the herein developed method from a
: methodological viewpoint. First, instead of using mathematical techniques. the developed
Ca
" method employs a symbolic technique to match positive instances against negative
instances to determine dynamically the relevant features with respect to the learming task.
L, :\:

- -

(Note that it is possible that all features are relevant if we consider all learning tasks:

however. for a specific task. only some may be relevant.) Secondly. the one dimensional

Y
a & 8 O

scan based on heuristics- or knowledge-based priority in the ordered scanning algorithm

>
s

finds no counterparts in these areas.

s
EA A A

»
‘1

2 NS i el & v \v.v,",i’-?’_"’_c,’

y Feature Condensation 95
-
bt
3.8. Summary
" The main goal of this chapter is to build an efficient learner. We solve this problem by
%
- developing a symbolic technique of feature condensation.
:;: The role of the CONDENSER program is validated by some analysis and simple
:’_: demonstrations. CONDENSER is designed for general domains, and should be able 10 be
b
A connected to any learning system. Though domain specific modifications are required, the
principle will hold. The reason why CONDENSER will work may be boiled down to
::: some simple facts that CONDENSER performs one dimensional search (by means of
P ordered scanning algorithm) while the learner performs multi-dimensional search.
-
._-:
o
fi
) "¢
) :"
b
®
B ‘-j
1 .'J

BRI

S - e 3 =8 0 v W A I R IR v 'Y"J'T

) Learning in Noisy Environments 96

e Chapter 4

o Learning in Noisy Environments

4.1. Introduction

In inductive concept learning (learning from examples). one might ask "what if the
3 training instances are incorrect?” In this chapter, we will investigate possible error-causing

i factors (called "error-sources”) and provide solutions to handling them.

- :'_f The objective of learning is to find concept descriptions or rules that are consistent with
. all (or most) instances in a given domain. However, practically, instead of exhaustively
T using all instances (impossible anyway), we use a set of training instances and anticipate

the results learned from this training set can be applied to all other instances as well. [t

-G, seems logical to ascribe the errors associated with the results to either the ti:ining instances
:::Ij or the learning system, or both. In current Al research on learning. the error-sources
o which have been addressed include the following:

_Z::jf 1. Incorrect training instances. including false positive or false negative instances
SO ([Buchanan 78a]. [Mitchell 78]. and [Dietterich 83)).
5N

. 2. Inappropriate bias embedded in the learning algorithm or the descriptive

a2 language ([Mitchell 78] and [Utgof¥ 82)).

{.j- It seems justifiable to stick to the division of error-sources into two main categories: input
-'.:- ‘

-] and the system. as diagramed in figure 4.1

~
B

”,

N

'*.ﬁ ‘
e

PP T N
e N

. Learning in Noisy Environments 97

A
bl
.r','
.'_j Errors Errors
B \
&
o
g
INPUT Learning System ____youtepur
(Learner)
T
RS
Y
~ Figure 4.1 Diagram of learning with sources of
O errors shown.
q All possible error-causing factors that are enumerated here are based on Al researchers’
- concern (as mentioned above). general background knowledge (e.g.. sampling
-
. insufficiency may provide incorrect statistics), and the experience during our experiments.
Some trivial factors. such as bookkeeping errors, however, are not considered.
-
= The motivations of this chapter comprises the following two aspects:
o Error handling in Al learning is seldom addressed [Dietterich 83]. Though
'.: researcher have already begun to solve this issue, e.g., maintaining multiple
- version spaces [Mitchell 78], RULEMOD in Meta-DENDRAL [Buchanan
s 78a] (as will be described in more detail in Section 4.7), the solutions are
discrete. This chapter is intended to establish an unified framework for
handling errors in a noisy learming environment, the framework which not
. only generalizes but also amplifies the old approaches.
- e We also intend to provide people a notion of "leamning is a mixture of search
3 and optimization under an imperfect leaming environment”. "Optimization”
- denotes “achieving the best resuit”; in Al leaming we are concermned about. it
A means the fearning results are maximally consistent with the instances in a
B given domain.

Learning in Noisy Environments 98

In order to achieve the best result, we further divide the task into two successive stages.
The first stage is to find concept descriptions that are maximally consistent with the
training instances: the second stage is to update the descriptions so that they can be
maximally consistent with all new instances other than the training instances. However.
we only aim at the first stage problem here, and leave the second stage problem in other
areas of this thesis (refer to section 2.2.4 for "focusing” mode of leaming and Chapter 5 for
automated debugging). Notice. however, unless the result of the first stage learning
problem is desirable, we might not even intend to solve the second stage problem. In this
chapter. we first declare two basic assumptions which we think are necessary in some sense

as follows:

e The basic framework in the leamning system is maintained: i.e.. we assume
there is a proper representation and proper descriptive language because, at
this stage of development of machine learning, it has not yet been possible to
build or reorganize this basic framework by machine: though some work has
begun to explore this issue. e.g., [Lenat 83].

e There is a set of training instances and most of them are correct and complete.
With this assumption, the concept descriptions that are maximally consistent
with the training instances are anticipated to be consistent with most of
instances in the given domain, though a limited amount of editing is still
required.

The maximally consistent state can be achieved by an optimization technique. which. in

Al.is "hill-climbing search™ under the assumption that we start from a plausible point.

In this chapter. we begin with descriptions about all possible error-causing factors in a
reasonable depth to provide a general and adequate understanding of this issue. Then. a

general method is developed to maximize the consistency of the leamed concept

descriptions or rules among the training instances. In terminology. "errorsource”™ denotes

NR
Wy Learning in Noisy Environments 99
T
g
:::]
P any imperfectness (not necessarily errors) which is associated with either the input (the set
ix of training instances) or the leaming system and may cause “error” in the output (the
b \'
A
h*.- .
\-‘,:_ learned concept descriptions or rules).
: ‘::._-
oS 4.2. Imperfect Training Instances
N
Z:j-I We classify the causes of imperfect training instances into two main categories:
inconsistency and incompleteness. Since “incompleteness” may also lead (o
NS
o0 "inconsistency”, to avoid redundancy or confusion, "inconsistency” denoted here excludes

"incompleteness”.

4.2.1.Inconsistency of Training Instances

o Inconsistency can be further divided into “spontaneous” and “non-spontaneous (or
M ~
S artifactual)” inconsistency; the former connotes the inherent overlapping between positive
N and negative instances with respect to certain features: the latter denotes those human-
_-.:\,\
()"
o, responsible factors, and we only describe the most important one in induction: false
4
o positive and false negative training instances.
o 4.2.1.1. Spontaneous Inconsistency
oo
Figure 4.2 shows the frequency distribution of positive and negative instances with
% respect to a certain numerical feature.
'.::\
| 'M \
v
\
AN
1SS
'\-:_\
Z;»I
o
\ “
!

R .'..‘i\\ < '!'-._'.:. S

AT
W W R
A WAL

~

-
L

p e W B N W (T L
¢ o \ IR S Y - |
} !"' vy % ; 'y \ by

R -, - . [y r 0 .- WIS E
'

'
=
N
:;-. Learning in Noisy Environments 100
T
>
'
N
0
i'
) N:
o Frequency
-w.: A
. [
&N
‘_j‘.
f::
SO
o — , -> Value
positive Yinstances
(3 negative 'instances
o
z Figure 4.2 Overlapping of positive and negative instances.
Though the values with peak frequency of two distributions are separate. there is always
some degree of overlapping. The wider the spread (owing to larger variance or standard
-I:jj deviation), the greater the overlapping. Because of this noise. uncertainty is involved in
o reasoning. Historically, ways of handling uncertainty include as follows: probabilistic
reasoning, fuzzy sets theory [Zadeh 65). certainty factors [Shortliffe 76). etc. For instance.
*..‘_'
:{ in medicine, the statement "95% of upper respiratory tract infection is caused by virus”
B .
;{ includes a probabilistic factor "95%". As stated by [Hahn 29]. “all knowledge originating
i .
in experience comes with a coefficient of uncertainty affixed to it". In electrical
A/
:3 . engineering. “stochastic” means "involvement of uncertainty”.
4
0
~
2 In leaming from examples. even if we have a perfect set of training instances and a
o
 Jl . . :] H . M
-7 perfect leamning algorithm. we may still not find an ideal concept which is consistent with
-‘f
o all instances because of this natural uncertainty involved in the domain. Consequently.
.- the objective is to find concept descriptions which are consistent with as many instances as
‘e
o
»
d.(-
-"l

o Learning in Noisy Environments 101
_'4"::}
\l

W

S possible. In figure 4.2, obviously there is no clear-cut boundary between positive and
- negative instances: if the chosen cut-off point shifts rightward. there will be more negative
::j:I instances falsely believed to be positive instances (called false positive predictions);

similarly. shifting the cut-off point leftward will cause more false negative predicliohs. In
e
N fact. there is a trade-off.
o

4.2.1.2. Incorrectly Classified Training Instances
- False positive training instances are negative instances falsely classified as positive
h-'?\.

:;-:Ij instances: false negative training instances are positive instances falsely classified as
L KN
y \

“& 3 negative instances. Data-driven learning methods (e.g. Version space algorithm [Mitchell
':;I: 78)) are particularly susceptible to this type of noise. One false positive instance will cause
A excessive generalization of the concept, as seen in figure 4.3. And one false negative

instance will cause excessive specialization of the concept, as seen in figure 4.4.

S

=",) » » a -
Xy Model-driven [eaming methods (e.g. Meta-DENDRAL [Buchanan 78a]) are superior in

2
o escaping this type of noise because there exist global criteria (which measure the
. consistency over the instances) for selecting hypotheses generated by the models, and the

o

SN instances are not considered individually. Since the methods intend to find the most
s
™

N consistent concept descriptions or rules, falsely classified instances will somehow be

o ignored if they are the minority.

%

A

A

".,

Learning in Noisy Environments 102

+: positive instance
-: negative instance

-°: false positive instance

Figure 4.3 Excessive generalization caused by a faise
positive instance.

I‘-:\

- - 5, + + \" -
! R

PR | r - - - -
\ ’

- - N / . - -« @ =
- -

+: positive instance
-: negative instance

+°: false negative instance

Figure 4.4 Excessive specialization caused by a false
negative instance.

‘.l
2.
-5 Learning in Noisy Environments 103
>
'\-_.
Es
Al 4.2.2.Inadequacy of Training Instances
NN
s 4.2.2.1. Incompleteness of Data
i
-\" . . .« . . .
b2 Sometimes, ambiguity between a positive and a negative instances arises because of
o incomplete descriptions about the two instances. In medicine. incomplete data about a
w‘ patient will cause confusion, and more data obtained may switch the disease diagnosis to a
fu totally different one.
Leamning under the condition of incomplete data, though not desirable, may sometimes
& ne
o be unavoidable because of the difficuities encountered in obtaining the missing part of the
b
data. For example, there is no way to obtain some desirable laboratory data from an
. expired patient.
2 Learning based on incomplete data will also yield an inconsistent result. This is due to
QI_ the fact that the incompleteness of data may cause inconsistency or ambiguity between
L positive and negative trainihg instances. Once this happens, it is impossible to find
oS consistent concept descriptions which are true for all positive training instances and false
Y
-2
‘.::j for all negative training instances.
o
’ Though the best way to solve this problem is to make the data complete after some
< considerations of cost and effectiveness of doing it, this may not often be possible. We
b g p
J‘..
b may simply ignore the missing data if they are not important. The other alternative is
e filling the missing part of the data on the basis of constraints procured from common sense
N or domain-specific knowledge or heuristics (may be encoded into "half order theory" as in
)
.'N.

»

Meta-DENDRAL [Buchanan 78a]) with respect to the existing data. "Default rules” may

Lot
R N
LINCR)

.
-
(3

s A

5.

P - y . O . Dl alinibral Sal Sl A Snd jul

Learning in Noisy Environments 104
*.

i serve this purpose as well; they will be triggered if no other rules are available. The
' conclusions made by default rules will be accepted unless inconsistency is detected.
i Filling incomplete or missing data can thus be done by considering constraints and/or

- employing default knowledge. Filling missing data is also done in statistics (refer to
s [Madow, Nisselson. and Olkin 83]). Some important message may be lost by filling the
data; it may even cause misleading results [Dempster 83]. [t demands caution indeed.
One paradox here is that suppose the deduction theory is strong enough to fill any missing
datum, nothing can be leammed. However, note that "deduction and induction are not
antagonistic, but complementary” [Croxton, Cowden, and Klein 67]. Deduction based on

some old knowledge can help to discover new knowledge by induction.

oy

PR R Y

Practically, we might not want to fill anything unless there is no other alternative or it is
quite straightforward. As an example, if we want to investigate the association between a

disease and sex, then it is fully justified to take a pregnant person as "woman” even though

[Tt Sk ey)

this fact is not included in the existing data.

4.2.2.2. Sampling Insufficiency

This indicates the following conditions:

1. The number of instances is too small.

2. The instances are atypical.

The objective of leaming from examples is to find concept descriptions that are consistent
e not only with the training instances but also with all instances in the domain. Since the
leaming is strongly biased by the given set of training instances. a good result demands an

b adequate sampling.

-

Attt

¥

r

N
~.
~
s

e g

(X}

.

: l"?ltit[:

1, ‘of o
s ¥ 2 s o

-

1
LR

P

PR N
x
.

e
<+
<« .
"<
<

N

il

- ::‘1 s
e

»
-
4

PR L A S
. . .
VT A AEIEAE AT A S

Learning in Noisy Environments 105

A small set of training instances may not reflect the real distribution: this is particularly
deleterious in domains where decisions rely on statistical knowledge. In multiple
(disjunctive) concept learning, only a limited number of concept descriptions or rules can
be leamed from a small number of training instances. In single concept learning, the
version space [Mitchell 78] won't converge upon the desired description if no sufficient

instances are available.

To overcome this problem, more instances are required. and the atypical instances will
be diluted. Careful selection of instances can make the result more precise (e.g., near-
misses proposed by [Winston 70]) and make the desired concept description more rapidly
converged upon [Mitchell 78]). However, on the other hand. if uncertainty is involved or
there should be multiple disjunctive concepts, the selection should be random to average
out those invisible factors underlying the instances or to avoid losing generality.
Incomplete sampling is also an important topic in sample surveys, one solution is seen in

[Sirken 83].

But what if more instances are not available? One philosophy of science, as stated by
[Brillouin 62}, is: "if we cannot observe them. let us admit that they have no reality":
he added "we must candidly admit that we do not know". That is, we should avoid over-
interpreting what we observe. Two strategies have been adopted by researchers to cope
with this issue. First, all consistent descriptions in the version space should be preserved
until forced to be eliminated by new instances: this strategy is called "least commitment”
and is adopted in candidate-elimination algornithm {Mitchell 78]. Secondly. if only positive
instances are available, the generalization should be maximally specific (refer to

[Dietterich 33)).

= e " el atheey & W Kl atac s it shet el e Flr i AR R A S e i L™ i

a e 8"

Learning in Noisy Environments 106

sl a4, A

4.2.2.3. Unreliability and Inconsistency of Data

Vi

Since unreliability implies errors, learning based on unreliable data will be erroneous at
least to some extent. It is hard to tackle this problem. If available, it is always desirable to
. replace the unreliable data with reliable ones. Otherwise, the data may be revised, based

on domain-specific knowledge and common sense (encoded into half order theory). Not

s

only inconsistency should be detected, but also it should be resolved. The complexity may

demand an expert program: RULECRITIC [Haggerty 84] may be such an example.

. .
P

Practically. if we do not want to distort the data, then what can be reasonably done is to
determine how reliable the data are by checking the consistency among data and asking

the source of the data and to assign a reliability index to the result. Again, this may

Pl et)
St

require an expert program; REFEREE [Haggerty 84] may be such an example.

4.3. Imperfect Learning Systems

SO o0y

4.3.1. Insufficiency of the Descriptive Language

Inconsistency may be due to the incapability of the language fed to the learner. The
o cause of this problem is often ignorance rather than bias. That is to say even human
experts don't know what features or descriptors are missing in the provided language,
rather than they improperly choose features or descriptors because of their bias. Thus, it
becomes a hard issue: though more useful features or descriptors may be discovered and

exploited. as knowledge evolves.

‘o To classify instances, we might start with one feature and add more features until proper

classification is achieved. Suppose there are "n" features. the space of classification is

.;-.4-.'. A o

AR T 1-"»'-'&"'-4“»" 'ﬁ-"

. Learning in Noisy Environments 107

K n-dimensional. and the decision boundary will be a hypersurface of less than n-
q-‘_: dimensions. To seek a good feature is worthwhile because it may replace several features
Ij:: and reduce the dimensions of the classitication space: w d thereby the complexity of the
N
problem can be greatly reduced. (Note that the complexity usually increases with the
,_'.j number of features nonlinearly or. in the worst case, exponentially. There are more
’; discussions on this issue in Thapter 3.) Consider an example in medicine, CT
¥
(computerized tomography) may provide more information than several old examinations

»

!)

2 in the diagnosis of brain tumors.

g

o

§. This problem, however, can be solved at least partially by the following strategies:
SY

< 1. Extend the initial language.

3

s 2. Change the representation (the style of the descriptive language) or add

y another representation (refer to Section 4.3.4).

<

::; Extending the initial language by either syntactically combining different features or
~

2 analytically defining new features can relieve the bias imposed by the fixed language, as
- proposed by [Utgoff 82]. In Section 2.3. we develop some techniques which can define
::j new useful intermediate symbols and thus augment the initial language. However, this
N
A issue is still largely unexplored.

\"

Co

3a)

" [t is always desirable that the system can interact with human experts and negotiate for
b .

o new features or descriptors.
Y
o
o8
)_‘

2’

LN

N Learning in Noisy Environments 108
N
.
R
i~
e 4.3.2. Insufficiency of Rules of Generalization or Specialization
- [n learning from examples, we generalize to cover positive instances and specialize to
exclude negative instances. For example, rules of generalization include as follows:
N dropping conditions, variable replacement, climbing generalization tree. etc. Learningisa
S search in the space of all possible hypotheses. The search tree is expanded by the leaining
3 ~
- operators (rules of generalization or specialization) available. Inadequate operators will
: narrow the search space. and improper operators may mislead the expansion of the search
’\"
- tree. This issue can be illustrated by the following example. If we want to make induction
! from three positive instances: (2 5), (4 7). (8 11), unless we have the operator
: "subtraction” or "difference”, it is hard to observe the regularity among these three
instances.
Modifying or even creating new operators requires higher level knowledge and
N heuristics. In the EURISKO program [Lenat 83], a heuristic rule can be changed by meta-
. heuristic rules. Before we develop this far, the better way to cope with this problem is
:j asking human experts for new operators.
&
b 4.3.3. Procedural Bias
Y
. .
. In leaming, heuristics are often used to avoid exhaustive search. In fact. if the
: hypothesis space (rule space) is huge. heuristic search (e.g.. in Meta-DENDRAL
{Buchanan 78a]) is the only way to make the learning feasible. Since the heuristics are not
': 100% correct. some important rules might be missed because of the incompleteness of the
- search. If the results of learning are not satistactory, the heuristics or knowledge guiding
d the learning shouid be modified or altered.
-
o

TNe « LRy
-"«\-r\rﬁv\ur “-r...«.\ o 5‘“\ -

I N R O N E T T T Ty T N Ty gy "~ f %

-‘.h

‘.\-

-
P Learning in Noisy Environments 109
n':'-".

|-h .I..
oo
N Figure 4.5 shows the error caused by the generalization from disjunctive concepts.

Data-driven learning algorithms are more susceptible to this type of error. However. this

error can be avoided by testing the generalization against more negative instances; i.e., if

. many negative instances are included by the generalization. then disjunction is possible
\ (other possibilities include "false positive instances” and "exceptional positive instances™).
b
i
K »

L%
LGN
,_\: ~ - -

+: positive instance
ny -: negative instance

Figure 4.3 Excessive generalization caused by
generalizing from disjunctive concepts.

Sometimes. because of an inappropriate bias, the leamer may fail to generalize from
non-disjunctive concepts. This is illustrated in figure 4.6. This type of error is suspected if
the number of the learned concept descriptions or rules is more than expected or if strong

similanty is observed among them.

[

A
L4
o, 4

\.‘v'- v 5

[

X
. 3

. 5

e ol - M anh B AL oo a<h 4sE Brab Al Yk ubf nil A Asi Ao N Sl made’ i

Learning in Noisy Environments 110

+: positive instance
o -: negative instance

9 Figure 4.6 Failure to generalize from naon-disjunctive
: concepts.

4.3.4. Representational Bias

Representation is a key issue in artificial intelligence: a good representation will

facilitate the discovery of new and useful concepts or rules. The criteria for choosing

i . representation include the following: representational adequacy and efficiency.
X "Representational adequacy” says: the representation should be able to characterize the

instances or concepts and be flexible enough to be adapted to learning operators. For

example. semantic net is superior in representing intricate relationship: and if we want to
N represent a statement "object A is on the top ot the object B”. then “(on-top A B)" is more
(" 1 . ¥ " " 2] S an . ¥ N " .

L flexible than "(on-top-of-A B)™. Representational efficiency” says: the representation

should achicve operational advantages which include the computational and spatial

T

N Learning in Noisy Environments 111
o economy. However, there is sometimes a trade-off; an adequate representation may incur

, more computational efforts. and vice versa.
Inappropriate representation may render the training instances inadequately described

)

-~ and thus lessen or distort the learning results. Changing representation or adding another
Z:::.j" representation is the possible solution. This is because of the reason that insufficiency in
) one representation does not necessarily mean insufficiency in others. For a given domain,
o we often choose a representation scheme which can more adequately capture domain
i features. For example, in chemistry, the chemical bond language (analogical

representation) is more natural and incorporates more semantics. However, to add

another representation may sometimes be useful; for example, in chemistry, we may place

some frames to describe the properties of atoms or molecules. Though, in current Al
i learning, the representation is always pre-determined by human designers, it is preferable

that the system has the ability to modify or change the representation, as suggested by

S [Lenat 83).

4.4.Error Measurement

There are two criteria for measuring the quality of learning results: calibration and

prediction error.

l..'
-‘~'\
LR
S
N
ALY
.J
T
rs,v3
»._:_.
...' -
\ - -
T
E]
)l." - - ~, - B . - - ~ o« - - - . ! o -
. . ., A S RO
e AR A

Sl

& it
B

v

IENENE

iy A B A AR

b

INERNEM NS

Learning in Noisy Environments 112

4.4.1. Calibration Error

Human cxperts may select proper instances for a given concept or may conciude a
concept for a given set of instances: if these instances are fed to the system and the output
from the system is compared with the known output (i.e.. the given concept or the expert-
concluded concept): the difference thus measured is called calibration error. 1 he objective
of this measurement is to tune the system to an ideal state (or best plausible state) in terms

of the capability of generating some well-known facts before learning unknown facts.

The differences between the observed and the known output are determined by thc

following factors:

1. The ratio of the intersection of the known and the observed output to the
observed output.

2. Whether there exist contradictions.

[deally. the observed output should be exactly the same as the known output. The first
factor is the measurement of the percentage of good quality results. {f the percentage is
low. the performance is not efficient (nor accurate). Contradictions to the known output
will jeopardize the results: one bad rule may sometimes be worse than one hundred good
rule in a risky domain. When the observed output is not syntactically the same but bears

the same meaning (construed by experts) as the known output. they should be regarded

equivalent.

The tollowing aspects should be considered as well:

1. Since the objective of calibration is with respect to the system. the training

instances should be as perfect as possible.

A e
“-" -" -.' :" L

Sl ey

Py
-
wfste s

2

>y
LI

.

-

b
v e

¥ A e
L]

-
S
w's'a’s

-
-

.ll.

.-
>
.
P

.h
o

»™

(o

Learning in Noisy Environments 113

2. The calibration shouid be carried out in the same domain because the system
usually incorporates domain-specific knowledge and heuristics. For instance.
if the system is designed to learn medical rules, it is inappropriate to use
chemical molecules for testing.

4.4.2. Prediction Error

The learned concepts or rules are used to predict instances which are already classified
correctly. The predictions are then verified. The number of incorrect predictions is
defined as prediction error. There are two types of prediction errors: "false positive
predictions™ and "false negative predictions”. False positive predictions mean predicting
negative instances as positive instances: false negative predictions mean predicting positive
instances as negative instances. However, in an expert system with more than one
diagnostic category, false positive predictions mean incorrect conclusions, and false
negative predictions are defined as "cases which are not predicted to be any pre-defined
category” in our scheme. I[f the predictions are very accurate. then both types of errors

should be zero. Now, the magnitude of prediction error is defined as follows:

le]

mispredictions
FP + FN

where |e/: magnitude of error
FP: false positive predictions
FN: false negative predictions

With respect to the prediction error. there are somewhat different interpretations between
single concept learning and muitiple concepts learning. [f the output is a single concept
description (rule), then the false positive prediction indicates the learned rule is overly

general. and the false negative prediction indicates the learned rule is not sufficiently

e er

SES S
WY

)
L.

4
oy

Learning in Noisy Environments 114

general. [f the output is multiple rules, then the false positive predictions indicate some of
the rules are overly general. and the false negative predictions indicate some of the rules
are not sufficiently general or some rules are missing. If the system has been calibrated to
zero calibration error, then the prediction error will reflect mainly the noise assoéia[ed

with the input.

In EMYCIN-based systems [Van Melle 80], since the rules may either positively or
negatively interact with one another and certainty factors can be combined. the conclusion
is made by a set of rules rather than an individual rule. Since the assumption of
independence underlying the combination of certainty factors is not always true, the
conclusion made by the set of rules may still be incorrect even if all individual rules seem
correct. In such systems, it seems indicated to make a distinction between global and local
(or individual) errors; the former denotes the error with respect to the set of rules, and the
latter denotes the error with respect to individual rules. The global error is defined as
before as follows: false positive predictions denote incorrect predictions: false negative
predictions denote cases which are not predicted to be any pre-defined category. The local
error for an individual rule is defined as follows: false positive predictions denote cases
are predicted by the rule to be the class indicated by the RHS of the rule whereas they are
not in this class; false negative predictions denote cases in the class indicated by the RHS
of the rule are not predicted by the rule to be in this class. It is quite straightforward to
compute false positive and negative predictions for global error, based on the predictions
made by the set of rules. On the contrary. it is somewhat obscure to compute the false
predictions based on an individual rule. because of the following facts: first. for

disjunctive concepts. a rule does not necessarily cover all positive instances; secondly. if

G *

Voo,

LN AT AN
PP
PRI .
WteteT 4T

AN

Learning in Noisy Environments 115

uncertainty is involved, a rule does not necessarily exclude all negative instances.
However, if we take an ideal assumption that a rule should cover all positive instances (the
instances indicated by the RHS) and exclude all negative instances. then the prediction
error computed under this assumption. though maybe overly idealized, can reflect the
performance or quality of a rule: the lower the error. the better the quality, and vice versa.
We may also define the minimal generality as the minimal coverage of the positive
instances and define minimal specificity as the maximal coverage of the negative instances.

Then if a rule breaks either of the constraints, its error is defined to be "infinity”.

So far as a learning system is concerned. we also distinguish between between intrinsic
and extrinsic errors; the former denotes the error with respect to the training instances in
the input, and the latter denotes the error with respect to the instances other than the
input. The concept descriptions or rules learned from the input instances will tend to be
more consistent with them than with other instances. Thus, in general, the intrinsic error
is smaller than the extrinsic error. As described in the introductory remarks in this
chapter, the method developed here is intended to minimize the intrinsic error; and we
leave the task of minimizing extrinsic error to other chapters (see focusirg mode of

learning in Section 2.2.4, and automated debugging in Chapter 5).

4.5.Error Handling

Figure 4.7 shows an efficient and noise resistant learning network. The role of
CONDENSER is discussed in chapter 3. Here. we focus on the noise filters. Depending

on the stage of intervention, we name the following: pre-filter, mid-filter. and post-filter.

As will be described in more detail. pre-filter and mid-filter deal with detecting and

Learning in Noisy Environments 116

removing the error-causing factors directly while post-filter deals with optimizing the

) result by minimizing its error while disregarding the error-causing factors during
\
| optimization.
1\
t LEARNER
. Condenser [Core
1,
&

3 I v v

INPUT > Pre-filter Mid-filter Post-filter » OUTPUT

Figure4.7 Diagram of an efficient and noise-resistant learning
system.

A ST e

;> -

......4.
G & 4ty

AR AP
',"..

‘- (- 'l ‘l

i-

2 "t
N l. " -
ST ta

.
L

[3
e B T2 L
. s
. '. r a
2 aals
v %e ‘e
P '}

‘Q
~ O
A

L]
.

.
L O R

B P
EARYCACSONENES

Learning in Noisy Environments 117

4.5.1. Pre-Filter

The role of the pre-filter is to choose a proper language and leaming algorithm, and to
remove imperfect instances. Imperfect instances include: falsely classified instances,
ambiguous instances, instances with incomplete or unreliable data. The choice of a p-roper
language or algorithm is often domain-dependent; for example, chemical bond language is
chosen in Meta-DENDRAL [Buchanan -78a). and the learning method described in
Chapter 2 is designed for multiple concept learning. It is a difficult task to detect false
positive or false negative instances. One way is t0 measure similarity or dissimilarity. If a
positive instance is found to be dissimilar (refer to Section 2.3.2.1 for measuring
dissimilarity) to all other positive instances, ‘it is labelled as a potentially false positive
instance (thought it may be an exceptional instance) (see also figure 4.3). If a negative
instance is found to be very close to positive instances and dissimilar to other negative
instances, it is labelled as a potentially false-negative instance (see also figure 4.4). The
potentially falsely classified instances are considered in the last resort. Ambiguous
instances are simply removed. The current implementation of pre-filter is only limited to

the above descriptions.

The INTSUM program in Meta-DENDRAL [Buchanan 78a], which is able to remove

inconsistent or erroneous data by the aid of a half-order theory, is one example of the

pre-filter.

Learning in Noisy Environments

4.5.2. Mid-Filter

This filter is designed for data-driven leaming methods. with which the current

maintained hypotheses will be modified to accommodate new instances in the following

manner. If the new instance is a positive instance. minimally generalize the current

s hypothesis to cover it; if the new instance is a negative instance, specialize the hypothesis

to exclude it or abandon some hypotheses which become inconsistent. depending on the

search strategy.

The mid-filter monitors the learming process. [t detects and removes the noise by the

following rules:

- "If a positive instance causes excessive generalization,
then it may be a false positive instance."
(see figure 4.3)

* "If a negative instance causes excessive specialization,
- then it may be a false negative instance.”
(see figure 4.4)

The suspected instances are stored in the list of the last resort. Unless the learning result is

not satisfactory. they will not be reconsidered. Some thresholds are required to determine
excessive generalization or specialization. [f they are not properly chosen, more than one
) iteration may be required to achieve a good result. Moreover, the initiation of the current
hypotheses is critical: if this is based on a false instance. the result will diverge rather than
converge. and the learning has to be reinstituted. This filter finds no value in model-

driven learning methods since instances will not be considered individually with them.

A Ay A, & 4y 0 Y

. A
Nt ey Way gy Ny Sy

KL% & 5 o

= - > Ja

e

Learning in Noisy Environments 119

4.5.3. Post-Filter: Optimizer

4.5.3.1. Minimal Error Principle

A “minimal error principle” is used in the post-filter. It is that the desired information
content can be more accurately estimated by minimizing the error, a principle widely
applied in signal processing (refer to [Papoulis 65] and [Balakrishnan 84].2 In inductive
concept learning, we have described two techniques for measuring the error associated
with the output of a learning system (see Section 4.4). Here, we particularly focus on

minimizing the prediction error since this is the ultimate goal.

False positive predictions (also called over-predictions) and false negative predictions
(also called under-predictions) may carry different levels of risk. This is particularly true
in medicine. For example, over-prediction (over-decision) of a patient's requirement for
chemotherapy is dangerous while under-prediction of acute appendicitis will delay the
operation and incur mortality. Hence, it is justified to assign a weighting factor for each

type of error. And weighted prediction error is defined as follows.

wpe = prP + wnFN

where, wpe: weighted prediction error
w_: weighting factor for FP
w_: weighting factor for FN
FB: false positive predictions
FN: false negative predictions

The weighting factors. standing for the domain attitude toward two types of errors. will

vary with different concepts to be learned. Practically, the weighting factors can be

29

For filters. such as Wiener's filter. the mean squadre error 1s minimized.

e i th A 7 v T T

~ Learning in Noisy Environments 120
v
Y.
-
A acquired by asking the expert the costs incurred by these two types of false predictions.
5 The default is Wy =W, = 1. Since there may be a trade-off between FP and FN, as implied
in figure 4.2, the only alternative is to minimize the weighted sum if they cannot be
. minimized independently. Sometimes, people may define a function to evaluate the
:‘"_‘ performance, but it is noted that. with respect to the prediction power. "minimizing the
I],
g oo 1} - . 1}
-, error” is the dual of "maximizing the performance”. In EMYCIN-based systems, as
ey
i described before, we should make a distinction between global and local prediction errors.
- If the local prediction errors for all individual rules are zero, then the global error is also
w2 zero (i.e.. if every rule can cover all positive instances without including any negative
instance, then the global conclusion based on the combination of all individual
Al
= conclusions is also impeccable), but not vice versa (i.e., zero global error does not
necessarily mean every individual rule can cover all positive instances and exclude all
:-j negative instances). As discussed previously, the local prediction error is not necessarily
= the "error” (e.g.. if disjunction occurs); however it can measure the performance of an
individual rule: that is. we tend to believe a rule will be more powerful if it can cover more
:jf positive instances and exclude more negative instances (in other words, if it is associated
K
; ‘J . «
K~ with a lower prediction error. as defined). Our main goal is to achieve minimal global
K-
errors rather than minimal local errors. Therefore. global tuning comes before local
- tuning. The system parameters are first adjusted. then the output is subjected to local
. optimization. The systems will be tuned until the global error is minimized. The
o procedures will be described next.
-3
)
'y}
"o
!
)
:Z:;:'.*:}‘:"{ :'.-"‘I-':Z-;"-"":._‘:' ""jﬁ:‘,&‘ e L T N S

AR A Al A A At i adan s e an ak ol ki et aal tad dd ted el de Rt Rt Al e AR A A R A A AR A

~
O Learning in Noisy Environments 121
o
L 4.5.3.2. Procedures
e As described in Section 2.2, there are several constraints which define either the
U
'::-Zj minimal generality or minimal specificity; all these constraints are called “system
Y
~'\‘...'
parameters” here. The parameters defining the minimal generality are somehow more
N ‘. - . . -
:pﬁ: related to false negative predictions, so are those defining the minimal specificity to false
Py
N positive predictions. Because of the minimal generality, rules cannot be too specialized
e
- and are expected to predict more positive instances: thus the possibility of false negative
'j:::f prediction can be reduced. Similarly, setting a threshold for minimal specificity can
-r" prevent a rule becoming overly generalized and thus the possibility of false positive
’.{ prediction can be reduced. Note that we implicitly assume the threshold for minimal
e
Iy generality is more specific than the threshold for minimal specificity (assume partial
b."‘—;‘
" ordering in the version space); otherwise the above argument will not hold. Based on this
-‘_:i: analysis. tuning these thresholds can have impact on the global prediction error. Though
:ff::j: the best way to determine these parameters is based on domain-specific knowledge or
heuristics, sometimes they are not available. If there are four parameters. the search space
e is huge. Our strategy to cope with this issue is as follows:
-..‘
-?_:{ e step 1. Initialize the parameters with ideal numbers; i.e., we may first assume
- the minimal generality is 100% (a rule should cover all positive instances), and
o the minimal specificity is "0" (i.e.. a rule should not include any negative
s instance).
e
.I'_'_.
v estep 2. If available. calibrate the system with some typical rules (well-
= established knowledge in textbooks): i.e.. adjust the system parameters such
-:j:':' that these typical rules will come out. In comparison with the typical known
L) i . L.
rules. if the output is overly general. reset the threshold for minimal
j:'.'»"_- specificity: if the output is overly specific. reset the threshold for minimal
generality.

Learning in Noisy Environments 122

. e step 3. Minor adjustments of system parameters based on the adjustments in

step 2 (i.e.. try several finite states around the state determined in step 2) are
N done until the optimum (i.e.. minimal global weighted prediction error) is
N achieved.

. In our experiments. we found that calibrations in step 2 are crucial for an efficient
) optimization. As seen in figure 4.7, the learner core receives feedback from the post-filter

(optimizer).

- The local optimization for incividual rules proceeds as follows:

e step 1. Set the variable OUTPUT : = input rule.

b 4 s b s !

estep 2. Make one step transformation of OUTPUT by either one step
generalization or one step specialization of OUTPUT. But the transformation
should not be repeated. If the weighted prediction error of OUTPUT is
smaller than that of all transformations derived from it then do nothing, go to
exit, and the output is the value of OUTPUT,; otherwise, reset the variable
OUTPUT : = transformation with minimal weighted prediction error. The
number of possible transformations is controlled by heuristics. For example,
one step specialization is done by adding one feature value that appears in
positive instances with relatively high frequency. One step generalization is
done by removal of one conjunct fror.a the LHS of OUTPUT or replacing one
feature value in the LHS with minimally more general value.

2l YN i atie”

e step 3. Go tostep 2.

Therefore. if the variable OUTPUT reaches a local minimum with respect to the v ited

prediction error. i.e.. all possible minor changes (transformations) could not be better. then

A0 N N) R

the procedure is terminated. and the final value of the variable OUTPUT is the output.
» Thus. the local optumization is done by performing a hill-climbing search with respect to

the local prediction error. In EMYCIN-based systems. since there is uncertainty involved.

R one additional constraint during optimization is that the certainty factor or degree of

o Learning in Noisy Environments 123
'
.
N certainty should be reasonably maintained (in JAUNDICE, the difference should be less
,:jf."' than ".15"): this comes from the argument that different ranges of certainty factors bear
by different meaning. In the JAUNDICE experiment. we use the learning method developed
in Section 2.2, which searches for maximally specific rules first and optimizes the results

-.'-

< N

by generalization operators,
[.

e

’ 4.6. One Example

:_'Zj- The following illustration shows how the post-filter optimizes a rule. Recall that there
‘:'.;; are four main steps in the learning method described in Section 2.2.1: the post-filter
.

corresponds to step 3.

T Example. Assume the weighting factors in the "wpe"

.- (weighted prediction error) is as follows:

- wp=2. w.=1

- ’-
0 There are 20 cases diagnosed as "cancer” in the
. case library.
.
' One rule, before optimization, is as follows:

}i: "If 1. Serum bilirubin is elevated.

2. Body weight loss is greater than 15 1b.

o 3. Disease course is progressive.

e 4. Ascites is present.

S 5. Liver is enlarged.

6. Liver is hard.
Then probably (.7) cancer."
O Because it covers two negative instances (non-cancer)
o and covers only four positive instances (cancer),
‘ wpe = 2x2 + 1x(20-4) = 20
i?i After optimization:
:fj “If 1. Serum bilirubin is elevated.
- 2. Body weight loss is greater than 15 1b.
3. Liver 1s enlarged.

:\f 4, Liver is hard.
' }‘ Then likely (.65) cancer."

-f-"n

a’s

MY AN,

* NN

FAp
s e e at e et p] M

S I A [}
A AR AR "

Learning in Noisy Environments 124

Now, it still covers two negative instances but covers
nine positive instances, so,

wpe = 2x2 + 1x(20-9) =15

4.7. Comparison and Discussion

In model-driven learning systems, because there exists a certain criterion to test the
model-generated hypotheses, the result of learning will tend to be more noise-resistant
[Dietterich 83]. Basically, the criterion is to maximize the covered positive instances and
minimize the included negative instances. For example, in Meta-DENDRAL [Buchanan
78a], the criterion to rank rules is defined in an ad Aoc fashion as "[x (P + U - 2N)"
(where 1 is average intensity of positively predicted peaks, P is the number of correctly
predicted peaks, U is the number of uniquely predicted peaks, and N is the number of
incorrectly predicted peaks), and the RULEMOD program is to optimize with respect to
this score by specialization and generalization on the basis of the "seeds” generated by the
RULEGEN program. However, the herein developed method bears the following distinct

features:

1. We generalize the criterion by defining a "prediction error”, and the objective
is to minimize the weighted prediction error.

2. Both global and local optimizations are considered because the method is
designed in EMYCIN-like frameworks where strength of a conclusion from
different rules can be combined. In contrast, other leaming systems only
consider local optimization.

In data-driven learning systems, because individual cases are considered equally and

there exist no global criteria to constrain the process of generalization or specialization. the

- S B et i - VW ~ 8 aiidie . e SRR AL A A A el et iy Lol S e N et R

e -
Ll
Lo
4, s

Learning in Noisy Environments 125

z
(I]

b systems are more susceptible to noise associated with the data. [n single concept ieaming,
one solution. proposed by [Mitchell 78), is to maintain multiple version spaces: if the
current most desirable version space is collapsed. the algorithm backtracks to the next less
L desirable version space. The weakness of this solution is the potentially huge storage space
for the multiple boundary sets (assuming there are no heuristics to prune the boundary
-~ sets). the storage for which becomes nonlinear with the number of instances under

inconsistency. [n contrast, the method developed here sets up a global criterion to test the
hypotheses generated by data (e.g.. generalization from two positive instances, or
specialization to reject negative instances) and thereby to detect the possible incorrect or
incomplete instances. which are deleted or considered last. The result is further optimized.
X As the degree of inconsistency grows. this approach, as an alternative to maintaining
multiple version spaces, becomes more economical because the storage space for instances
will not expand as that for boundary sets. Notice that an unified optimization technique is
actually developed here to handle the noise in leamming. whether the learning system is
J model-driven or data-driven. Howev-r, this optimization technique calls for an initial set
_-'.-. of training instances: recall as well that our leaming model starts from a set of training

instances rather than a single instance.

Issues. such as small sample size. incomplete data. and bias, also occur in statistics.
"Confidence interval” is used to measure the quality of a statistical result: the larger the
- sample size, the narrower the interval. and thus the better the estimate (refer to [Croxton.
Cowden. and Klein 67]). Special modifications to statistical techniques are required to
deal with small sample size, e.g.. Yate's correction [Croxton, Cowden. and Klein 67]. [n

v sample surveys. the methods used to tackle incomplete data include the following:

AT SIS
R B I T R

R TR . -
W W W Ve S ST W Y oY

. Learning in Noisy Environments 126

L2 network sampling (i.e., the information about one node can be obtained from its neighbors
through the network if the information cannot be obtained directly) [Sirken 83] and
imputation (i.e.. “replacing the missing data by estimates of the missing items”) [Madow,

. Nisselson, and Olkin 83]. Bias in a statistical test can be minimized by "randomization™
and "blindness” of the test. Although the knowledge of data handling in statistics can be
transferred to inductive concept leaming, it is still hard to apply the ideas, such as
"confidence interval”, to learing; for example, it is hard to tell how far a learned rule
from the truth is by simply looking at the size and variance of the sample. The fact that

- statistics is “the collection. presentation. analysis. and interpretation of numerical data”, as

defined by [Croxton, Cowden, and Klein 67}, makes statistical techniques fall short in Al.

where symbolic reasoning dominates.

Errors may occur in all kinds of empirical science. A scientific discovery relies on
. careful and patient observations, as suggested by [Hahn 30]. As the new technology
emerges, a scientific theory, which is once true, may be subjected to modifications to
- accommodate exceptions or even be overthrown. That is why we think incremental
learning is essential. In physics. as said by [Brillouin 62], "with Heisenberg uncertainty
principle, the fundamental role of experimental errors becomes a basic feature of physics":
he thought, despite the classical ideal view that the error can be made as small as possible
and ultimately negligible by careful instrumentation. “errors are an essential part of the
world’s picture and must be included in the theory”. In electrical engineering, filters. such
as Wiener's and Kalman's (refer to [Papoulis 65] and [Balakrishnan 84)), are designed to
remove noise (e.g.. white noise). Mathematically. there are many analytical or numerical

techniques for optimization, some of which are widely applied in economics, engineering

P P A RO R AP N S PR Y. N PR, PR IS,

25N Learning in Noisy Environments 127
D
1 ‘.:,\
A
o .
AN science, etc. However, the optimization in Al is more or less a search and relies on
v:fi-;:l symbolic techniques, such as generalization or specialization. Regardless of
Z:::Z:j methodological differences, the common underlying principle of error handling in all
kinds of science is to minimize the error or cost.
¢ 4.8. Summary
L~
«.__‘-
A v . . » . . - . 3 .
Considered in this chapter is learning in an imperfect environment. Human efforts will
:I-.'f} be involved to make the environment as perfect as possible: however, because of human
R, . S
At
OB bias or some factors beyond human consideration, errors will remain. Seeking a state
(which is maximally consistent with the training instances is the strategy used in this work.
e We define "weighted prediction error”, which is a general criterion in inductive concept

learning. By careful applying the available operators and adjusting the system parameters

to minimize the weighted prediction error, the desirable result can be achieved: and the

perturbation in the data or the system will largely be ignored during optimization under
the assumption that the perturbation is a relatively small fraction. Better accuracy is thus

N purchased at the cost of optimization.

OORLENE
SN

\‘ l.. -

i’
'l“ .l'
.y

rarzs

2R
]

Vs

| NV RO }

ARERR

.
A
g
.
‘I. [

5:',‘-.‘:: :. Y

Automated Knowledge Base Updating 128

'."1.’1.-‘1"’./ ‘D .i

) Chapter 5
5 Automated Knowledge Base Updating

5.1. Introduction

.

EE Our realistic goal is to build a complete model of inductive concept learning in expert

-

ﬁ_j systems. In the previous chapters, we have solved the first stage problem: constructing a

! knowledge base (KB) from a set of training instances. The subsequent use of this KB in
concluding new cases may face another issue when an incorrect conclusion occurs: an issue

related to tracking down the faults and correcting them, which is formulated as follows:

Given: 1. A knowledge base (KB).
2. An incorrect conclusion based on the KB.

t@)
' Find: Corrections to the KB such that the conclusion
2 can be rectified.
) :.
v
W
o
'5 Recall that. in Section 4.4.2, we define "intrinsic error” (with respect to the training set
- used to construct the initial KB) and "extrinsic error” (with respect to instances other than
e
- the training set), and we have developed a solution to minimizing the intrinsic error; this
- chapter, as a continuation, is devoted to improving the KB by minimizing extrinsic errors.
¥ The task defined above resembles the focusing mode of learning described in Section 2.2.4
- . . .
. In fact, we apply the learning technique to debugging the knowledge base: and the

descriptions in this chapter primarily deal with how to integrate those leamed rules based

:Z: on the incorrectly concluded case into the old KB. which was constructed previously.

1

SN
‘v"l"l." %

e

1)
WS

y

DNCI A LA
‘. A'L..

Automated Knowledge Base Updating 129

This problem. knowledge base debugging.30 is explored in other Al work. such as
TEIRESIAS [Davis 79], EMYCIN editor {Van Melle 80], SEEK [Politakis 82}, and

[Waterman 68]. In a generalized model proposed by [Buchanan 78b). the “critic” deals

»3l

with the so-called "credit and blame assignments”~" and recommending changes to the

performance element via a source which can provide new knowledge.

The motivations of this chapter are the following considerations:

¢ A simplified view of knowledge base debugging is as follows: generalize
overly specialized rules, specialize overly generalized rules, add missing rules,
delete erroneous rules, and resolve conflicting rules. But this view is somewhat
oversimplified in EMYCIN-like systems where evidence can be combined and
uncertainty is involved; these facts render the debugging inexact. This work is
intended to embody the expert’s thought which is relied on in programs, such
as TEIRESIAS, to debug the KB. The automation demands some
considerations which are raised mainly because of lacking empirical
knowledge which experts use to debug the KB. The credibility of automated
debugging is also a related concern.

o As mentioned. our ultimate goal is to establish a complete model of inductive
concept learning, a model which starts from a set of training instances and
incrementally updates the KB. Again, we emphasize the notion of
"optimization” in inexact domains. We try to minimize the errors in a period
from "t=0" when the KB is initially constructed to now.

30Bul. within the framework developed in this thesis, we think updating is a better term than debugging
since our learning model is initially based on a set of training instances, which may provide only partial
statistics. and as the database accrues. statstics shift to better closeness to the real distribution of the
population. and the old knowledge. which may be right in one time and wrong in another. is updated or
obsoleted. The difference between these (wo terms, if any, perhaps is a more constructive connotation
associated with the former (updating) than the latter (debugging). However, we still preserve the term
“debugging” because it is often used in other works. and the debugging program described in this chapter can
be detached from our learning model and applied to another KB which may be constructed by human experts.

31T‘hc: credit assignment problem is first raised by Minsky [Minsky 63).

Automated Knowledge Base Updating 130

The assumption made in this chapter is that there exists a database, based on whose
initial form, a KB is constructed as its starting point,32 This database serves as an
important reference (and actually imposes a considerable constraint) for updating the KB
because we don’t want to purchase the accuracy with respect to a single new case at the
cost of the accuracy over the old reference cases. Furthermore, to achieve a rapid
convergence of the KB, the initial set of training instances should be adequate for
providing a good starting basis (i.e., representative of the whole population). Otherwise.

the learning may proceed back and forth.

In our scheme, we take advantage of a strategy we call "retrospective inspection after
leaming”. This strategy is also employed in other work, such as[Waterman 68]; the
difference will be analyzed in Section 5.5. The "knowledge base updating” in this work
comprises the following steps: leaming, proposing experiments, and verifications; the last
two steps are required because the source that indicates the faults in the system conclusion
is not always reliable, and even if it is reliable, the KB will remain in its old version if the
modifications proposed to accommodate the new case are not favored by the old reference

cases.

We first describe the possible faults in the KB and their ordinary rectifying operators.
Then we explore the issue of updating the KB when a faulty conclusion emerges.

emphasizing learning in EMYCIN-like systems.

3 Though it is not necessary that the KB is built automatically. we assume so in this thesis. The database

can be controlled to a reasonable size by constantly removing the overflow without disturbing its statistics. but
the original training set used to build the KB and the cases which are incorrectly concluded are maintaned.

hliC Sl ihd .'1

Automated Knowledge Base Updating 131

Tae Al

5.2. Faults in the Knowledge Base

In expert systems, the errors of performance can be traced back to errors in the KB or
sometimes to errors of the inference engine. But, because of the nature of inconsistency in
the domain (or say uncertainty) and the incompleteness of data, sorne degree of erroﬁ can
be allowed. A standard must exist for evaluating the performance of the system. The
debugger will be triggered to debug the KB only if the performance is judged as "bad".
The basic assumption is that the chosen standard is right; otherwise it will be nonsense to
debug the KB. For example, in TEIRESIAS [Davis 79), the standard comes from the
expert. In this chapter, we use weighted prediction error (defined in Section 4.5.3.1) as an

additional performance standard to guide debugging the KB.

The "faults” described in this section designate either true error or improperness which
impairs the system performance with respect to a certain standard. "True error” means
the associated semantics conflicts with real observations; for example, the statement "all
mammals are plants”. "Impropemess” means the associated semantics is right but not
optimal; for example, the statement "men at the age of 50 are mammals”. In an expert
system, improperness of rules, such as overly generalized or specialized rules. may cause
false predictions. For example, the rule "men at the age of 50 are mammals" will make
men at the age of 20 unconcluded (false negative prediction) if there is only one such rule
. dealing with "men" in the KB of an expert system designed to conclude whether an
animal is a mammal. And a misconclusion made by the system may reflect "true error” or
"impropemess” of individual rules. In EMYCIN-based systems. the assumption of
independence for combining certainty factors doesn’t always hold; therefore even if all

individual rules seem right. the global conclusion may still be wrong. Although it is easy

- "\ . - - -
T TS T e st e et e R e < s e
A SRR RO AV RVAT LT AT W W A AT AT RNy WY ey GV G VRN

Aa iten Aaa il " Sda R 4 el 'k aalh aal Sl aed 4

Automated Knowledge Base Updating 132

to define "true error”, it is hard to delineate "impropemess” particularly if uncertainty is

involved.

B 5.2.1. In Domains without Uncertainty

L S.2.L.1. Overly Generalized Rules

- An overly generalized rule is a rule which causes false positive predictions because the
conditions (or descriptions) in the LHS (left hand side) of the rule are too general. For

example,

instancel with attributes A1, A2, classified as class A
instance2 with attributes Al, A3, classified as class B

Then, the rule "Al -> class A" is overly generalized, because
instance2 is falsely classified as class A by this rule.

$.2.1.2. Overly Specialized Rules

An overly specialized rule is a rule which rarely succeeds because the LHS of the rule is

o
- PR

too specific (overly constrained).

> instancel with attributes A1, A2, classified as class A
instanced with attributes A1, A4, classified as class A

Then, the rule "Al & A2 & A4 -> class A" will be too specific
for both instancel and instance3. If only few instances in
class A can satisfy this rule, it is overly specialized.

& in a domain with disjunctive concepts, instances in a given class may be covered by

b different rules. and we can’t expect a rule can cover all instances. But. if a rule can cover

no or few instances only, it is regarded overly specialized. False negative predictions may

be ascribed to the overly specialized rules (or missing rules) in the knowledge base.

CAMAALYS

........
.....

Frrdr?

X -;:r_' Automated Knowledge Base Updating 133
A
L
P
vl_‘_'.:
Rain 5.2.1.3. Erroneous Rules
j:;:jlj An erroneous rule is a rule which contradicts the truth (or the currently recognized
SROK
'-:1{ knowledge). Even if the KB is built by a group of experts, there is no guarantee
‘ whatsoever that all the rules in the KB will be 100% consistent and accurate . Factors
s,
sod
“4_-;4 causing erroneous rules include the incorrect knowledge of the KB builders and the
R
knowledge shift (today’s knowledge may not be tomorrow’s knowledge). Subsequent tests
Ny
— after building the KB are important to detect errors.
::I::' The following two rules contradict each other (if A and B are mutually exclusive):
.-x-' N
N "A1l -> class A"
and,
. " "
o Al -> class B
09
o
) Thus, if one rule represents the truth, the other will be erroneous. However, if uncertainty
LYY
..':} is involved (see also Section 5.2.2.3), two rules with the same LHS but with mutually
w3
D . . L
K- exclusive RHS may be compatible unless at least one of them is assigned a degree of
.J - certainty "1”. For example,. the following two rules are compatible:
o
:;':-:;f .6
e "Al -> class A"
s and, .4
= "Al -> c¢lass 8"
ol
LN
A __?
.r:'.:’-
Ry
jl::::'
',..‘-.
o

Automated Knowledge Base Updating 134

5.2.1.4. Missing Rules

For a given instance, if no rules can correctly classify it, then it is possible that some rule

is missing (or some rule is overly specialized. or the data are incomplete).
5.2.1.5. Subsumption

Subsumption occurs if two rules have the same conclusion but the premise of one rule
subsumes that of another. If both are true, keep the more general one. In the following

example, the premise of rule R1 subsumes that of rule R2:

R1: A1 & A2 -> class A
R2: Al -> class A

5.2.1.6. Redundancy

Redundancy occurs if two rules share a common premise and conclusion. Only one

rule should be kept.

5.2.2. In Domains with Uncertainty

5.2.2.1. Overly Generalized Rules

By an overly generalized rule, we mean a rule whose degree of certainty is below some
threshold or which covers more than a threshold number of negative instances. A rule
with low degree of certainty implies its LHS is not very specific for concluding its RHS. In
JAUNDICE. we choose ".4" as the threshold. Thus. a rule with degree of certainty below
4 is treated as an overly generalized rule. Also we define that a rule. whatever the degree
of certainty is. should not cover more than 10% of negative instances (in JAUNDICE):

otherwise it is overly generalized. Though it seems reasonable to obtain a piece of certain

information by accumulating several pieces of uncertain information. we are still reluctant

A Automated Knowledge Base Updating 135

to accept a piece of very uncertain information. Moreover, the accumulation is under the

o assumption of independency: since this assumption is not always proper, the accumulation
o1
:'-::::j may lead to an erroneous result. Therefore, it is justified to remove the rules with low
B degree of certainty.
s
e 5.2.2.2. Overly Specialized Rules
e N
Lo
o By an overly specialized rule, we mean a rule rarely succeeds because there are too
- many conditions (or too many constraints) in the LHS of the rule. In JAUNDICE, if the
et number of conditions in the LHS of a rule exceeds 6, the rule will generally be considered
> as an overly specialized rule. An overly specialized rule may be right individually, but it is
: globally improper (from the viewpoint of the global system performance) since it may
e cause false negative predictions.
. 5.2.2.3. Erroneous Rules (or Erroneous Degree of Certainty)
L
Z;f:Z_ It makes little difference whether we say a rule is erroneous or the degree of certainty
i -.:_:
'~ assigned to it is erroneous. The rationale behind this is briefly analyzed as follows.
;-::'- Consider a rule:
'-.'.::
L
.-.':\ d
KA R1: P -> C
-Z:::Z: If "R1" is to confirm "C" (i.e.. "P" is positive evidence for "C"), then the degree of
j-’.'-j'ji certainty "d" should be a positive number: if "d" is not a positive number, then "R1" is
‘ . " "o M e " . ”"” " o M :
Lo wrong. On the contrary, if "R1" is to disconfirm "C" (i.e.. "P" is negative evidence for
e . .
AN "C"). then "d" should be a negative number: if "d" is not a negative number. then "R1" is
RSk}
'_\ nwee . . 1P alll [T} IV i
b wrong. If"P" has nothing to do with "C", then "d" should be zero: if "d" is not zero. then i
.‘. i
B "R1" is wrong or "R1" should not exist.
N
Lo
.r":r-'

Automated Knowledge Base Updating 136

K Incorrect degrees of certainty may be due to a small or an atypical case library which is
used to construct the KB or the bias of the KB builders. In our experience, degree of
certainty allows an error of about ".15" (also refer to [Buchanan and Shortliffe 84]).

- Therefore, the following two rules are in accord:

s .7
o "Al -> class A"
- .6
"Al -> c¢lass A"
v.
- The following two rules contradict each other:
-
. ,
' "Al -> class A"
"R
';' -.5
MY "Al -> class A"
.
-
- If one rule represents the truth, the other is erroneous. As described before, that two rules
o differ in their conclusions but overlap in their premises is not a real conflict.
b 5.2.2.4. Missing Rules
‘ "“ . 3 . . .
- Either no conclusions or incorrect conclusions may imply some rules are missing. Had
1 - these missing rules been applied, errors would not have occurred.
5.2.2.5. Subsumption
::I‘ One solution is to write rules in a mutually exclusive way so that they won't succeed
- simultaneously [Shortliffe 76). In the following example. rule R1 subsumes rule R2:
K by fi
“ R1: Al & A2 -> class A
f2
v R2: Al -> class A
k. The solution is modifying R2 into R3 as follows:
L
.
L
w
-."‘

L R T PN PR
-':\J‘_-J'_-.'_.-“ t. -.'_'.'. - .4‘_ R -’_'-'_.c'. Pl e S

o O I NP P NN I IR P

A
4

2 M A

[

f
'l‘l

AT
ittt
a8,

.
.L' a_ s_

v
i
A

pIr R R

"y

R
¢

N
e

o

PO RNTALN

N

N hdare Ak Sas e d

Automated Knowledge Base Updating 137

f3
R3: Al & -A2 -> class A

5.2.2.6. Redundancy

Redundancy occurs if two rules are identical in their premises and conclusions, and the
difference of degree of certainty is trivial (< .15).
5.3. Fault Corrections

There are several operators to correct faults in the knowledge base. The types of faults

and their corresponding correction operators are summarized as follows:

Faults: rrection r r

1. Overly generalized
rules

Adding conditions
Replacing conditions
Closing interval

(in JAUNDICE)

* &

2. Overly specialized
rules

Replacing conditions
Deleting conditions
Splitting rules

Taking minimum or maximum
(in JAUNDICE)

® % & @

L]

3. Erroneous rules Deleting rules

Changing degree of certainty

4, Missing rules Adding rules

In this section, we only describe how these operators generally work; the actual

implementation in JAUNDICE is described in Section 5.4.

"Adding conditions” operator, one of specialization operators, searches for the most
appropriate conditions to add in the LHS of the rule. By increasing the number of

constraints, the rule becomes more specialized (i.e., harder to be satisfied). The conditions

Automated Knowledge Base Updating 138

chosen to add should be consistent with some positive instances and inconsistent with

(most) negative instances. For example,

instancel with attributes Al, A2, classified as class A
instance2 with attributes Al, A3, classified as class B

Then, the rule "Al -> class A" is overly generalized, and causes
false prediction of instance2.

And, this rule may be specialized into "Al & A2 -> class A".

"Maximally general specialization” can prevent specialization operators from excessive

specialization.

"Deleting conditions” operator, one of generalization operators, searches for the most
appropriate conditions to delete in the LHS of the rule. By deleting conditions, the rule
becomes more general (i.e., easier to be satisfied). The LHS of the rule after applying this
operator should be more consistent with the positive instances (namely, more positive
instances can satisfy), and still be inconsistent with (most) negative instances. For

example,

instancel with attributes A1, A2, classified as class A
instance?2 with attributes Al, A3, classified as class B

Then, a rule "At & A2 & A3 -> class A" will be too specific for
instancel.

And, the rule may be generalized into "Al & A2 -> class A".

“Maximally specific generalization” can avoid excessive generalization by generalization

operators.

"Replacing conditions” operator replaces some conditions in the LHS of the rule by

more specific or more general conditions in order to make the rule more specific or more

ek)
i

A

-

AP
Rl b B S

DN
£ s a0 4

Automated Knowledge Base Updating 139

general. This can be conducted by climbing down or up the generalization hierarchical

tree.

"Splitting rules” operator is a special case of generalization operators. For instance, a
rule "Al & A2 -> class A" can be split (or say generalized) into "Al -> class A" and "A2 ->

class A"

"Turning conjunction into disjunction” is equivalent to "splitting rules”. "Turing
disjunction into conjunction” is equivalent to "adding conditions". "Closing interval" and

"taking minimum or maximum™ are described in Section Z.1.1.

The general procedure for correcting a misconclusion is summarized as follows (as will

be described in more detail in next section):

1. Find the relevant rules in the knowledge base.

2. Correct the faults in the KB by the following steps:

o Generalize those rules which should succeed but fail by "deleting
conditions” or "replacing conditions” operator.

e Specialize those rules which should fail but succeed by "adding
conditions” or "replacing conditions” operator.

¢ Delete or change the degree of certainty of erroneous rules.

o Add rules if they are missing in the knowledge base.

In fact, each fault correction operator is a search operator, searching for the most

plausible solutions. Consideration of the potential huge search space created by applying

all possible operators to all possible rules motivates the development of the strategy of

T P D T T T Y T Ty T ey varery g o=

n

|7 13RI

) v' l‘ . L
IR Ce
[

v

PR

Lot el

o

< ~
¢,‘,

Automated Knowledge Base Updating 140

“retrospective inspection after learning”. With this strategy. the rules which can rectify the
misconclusion are first found. and the comparison of the learned rules with the old rules
will provide hints of knowledge base modifications. Since the goal is to correct the
misconclusion. learning rules on the basis of the misconcluded case can be viewed as a
goal-oriented approach. [f we apply the leaming method of “search from the most general
hypothesis”, which actually successively applies specialization operators (described in
Section 2.2), there will be only one search space. In contrast. if we start from many old
rules and try to modify them by expanding a search space for each rule. the cost is
expected to be much higher unless there are only a small number of rules involved.
Furthermore. missing rules can be found only by learning. Thus, this approach becomes
even more useful in the incipient stage of knowledge base construction. when there are

lots of missing rules.

5.4. Automated Debuggina

Figure 5.1 shows the data and knowledge flow in the process of automated debugging.

2 2, ¢, 8"
DNNAD

o ". ,J

LRI
P Y T

'r
.

AN

>

-~
‘r\.
P

Automated Knowledge Base Updating

DB
(Data base)

Consultation

system
[y
KB
(Knowledge
base)
v

Human experts

141

Learning
system

Debugger

Figure 3.1 Overview of the automated debugging mechanism

in the JAUNDICE program.

When a misconclusion occurs, as indicated by a knowledge source (e.g.. experts), the

learner will first be triggered to learn rules with respect to the misconcluded case, then the

debugger proposes experiments for modifying the KB, based on the comparison between

the learned rules and the old rules. and the proposal will be accepted or rejected.

depending on the result of verification over the old reference cases and on whether the

misconclusion can be rectified. There may be more than one iteration if the first proposal

is rejected. [n each iteration. the leaming system may adjust its selection criteria and thus

change the quality of learned rules: however, the debugger only inflexibly applics some

rules (described later) to propose modifications.

v e

Kl iy # p_l]
NN QXA

)
o

t.' ‘. l. '.‘ .l’

Automated Knowledge Base Updating 142

There are two sources of reference: the knowledge source which indicates the
misconclusion and provides a correct answer, and the old cases in the DB. The acceptable
result is the consistency between these sources: i.e.. the modified KB can rectify the
misconclusion without degrading the performance with respect to the old reference cases.
This double-check can make the debugging result more reliable. Sometimes, if the data of
the misconcluded case are incomplete or the expert instead of the system gives a wrong

conclusion. the leamer may find no good rules to send the debugger.

5.4.1. Fault Analysis

The diagnosis given by the consultation system is called "system’s diagnosis"”, and that
given by the expert (assume the user is an expert: otherwise the user will be forbidden to
give his diagnosis) is called "expert's diagnosis”. Since uncertainty is involved., the system
will actually return a list of disease diagnoses which are ranked according to the
corresponding degree of certainty: and only those diagnoses with significant degree of
certainty are returned to the user (the expert). The expert often gives one disease
diagnosis that he believes most. Though, sometimes, the expert may give more than one
diagnosis if he can not make further distinctions: however, this is not a good case from the
learner’s point of view: in learning from examples. each training instance is labelled as
either positive or negative instance. but not both. [f the expert doesn’t agree to the
system's conclusion, the automated debugging process will be initiated. The system’s
diagnosis is said to match the expert’'s diagnosis if and only if both of the following are true

(assume the expert gives only one disease diagnosis):

1. The system’s top diagnosis is the same as the expert’s diagnosis.

2. The system’s top diagnosis is as certain as the expert’s belief.

3 Automated Knowledge Base Updating 143

Example 1. The system's diagnosis:

o
14N

- Disease A .6 (degree of certainty)
‘N Disease B .3
| Disease C .1
- The expert's diagnosis:

N Disease A .9

S

v

<comment:>
3 In this case, the system's top diagnosis,
- though the same as the expert's diagnosis,
(. is less certain than expert's belief
o (the difference is greater than ".15", the
) precisional error),
{possible remedy:>
Raise the degree of certainty of Disease A
by the means described later.
Example 2. The system's diagnosis:

LY

3 Disease A .6

" Disease B .3

- Disease C .1

b The expert's diagnosis:

N Disease 8

>

N

~ <comment:>

A In this case, Disease B is the most certain
pe diagnosis given by the expert, though he
P didn't give his belief about it. And the
- system top diagnosis does not match the

- expert's diagnosis.
- {possible remedy:>

b Raise the degree of certainty of Disease B,
> Reduce the degree of certainty of Disease A,
. such that Disease B can override Disease A,
' by the means described later.

. In a given case. for a given diagnosis. the degree of certainty can be raised by the
) ‘

! following ways:

S Automated Knowledge Base Updating 144

[
™ 1. Generalize the partially satisfied confirming rules which conclude the
&l diagnosis so that the rules can be satisfied and the diagnosis can be more
N confirmed.

2. Specialize the satisfied disconfirming rules which deny the diagnosis so that
A the rules won't be satisfied and the diagnosis can be less disconfirmed.
o,
<.
b~ 3. Raise the degree of certainty of the satisfied confirming rules so that the
bl diagnosis can be more confirmed.
- 4. Reduce the degree of certainty of the satisfied disconfirming rules so that the
- diagnosis can be less disconfirmed.
": 5. Add new rules (or missing rules) which conclude the diagnosis and can be
[& satisfied by the given case so that the diagnosis can be more confirmed.
.
k < 6. Delete the satisfied erroneous disconfirming rules which deny the diagnosis so
K that the diagnosis can be less disconfirmed.
K- On the contrary, the degree of certainty can be reduced by the following ways (opposite to
‘ those ways for raising degree of certainty):
1. Generalize the partially satisfied disconfirming rules whi-h deny the diagnosis
so that the rules can be satisfied and the diagnosis can be more disconfirmed.
2
:- 2. Specialize the satisfied confirming rules which conclude the diagnosis so that
b the rules won't be satisfied and the diagnosis can be less confirmed.
N 3. Raise the degree of certainty of the satisfied disconfirming rules so that the
» . . .

‘" diagnosis can be more disconfirmed.

I

::

. 4. Reduce the degree of certainty of the satisfied confirming rules so that the

diagnosis can be less confirmed.

‘ 5. Add new rules (or missing rules) which deny the diagnosis and can be satisfied
by the given case so that the diagnosis can be more disconfirmed.

-“

..;:; 6. Delete the satisfied erroneous confirming rules which conclude the diagnosis
o so that the diagnosis can be less confirmed.

o
~

“

3;_:‘ ...

o Sud

AR I

e se

X

a'a

SN

Automated Knowledge Base Updating 145

However, as will be described next, the method developed here will not exhaustively

exploit the above operators.

5.4.2. Application of Machine Learning

The combinations of possible fault corrections described in last section can be great.
However, the complexity can be reduced if we handle those invoked and non-invoked
rules separately. Since the invoked rules are often a small subset of the KB. we may
examine them exhaustively. In contrast, exhaustively examining the non-invoked rules is
inefficient because they are often so many and there is no way to examine missing rules.
Instead, we apply the learning technique (focusing mode of leamning, described in Section
2.2.4) to leamn rules, based on the misconcluded case. and compare the leamed rules with

the old rules to determine the modifications of the KB.

The procedure is described as follows:

e step 1. Examine the invoked rules: check the degree of certainty and check
whether they break the pre-defined constraints for minimal generality and
specificity.

o If they are sound, do nothing.

o Otherwise, optimize the potentially erroneous rules according to the
procedure described in Section 4.5.3.2. Note that, after optimization, the
rules which are initially satisfied by the misconcluded case may become
unsatisfied. Sometimes, an activated rule is desired to be inactivated
(usually by specialization) in order to remedy the misconclusion, but this
is allowed only if favored by the old reference cases: consequently, we
use optimization instead of simply specialization to tackle this problem.

e step 2. Apply focusing mode of learning. based on the misconcluded case.

o Learn confirming rules to support the expert conclusion (see Section

L5009

L]
1
LA

. a ?
R)

e ;.'.J o

»

s e
s a a2

G NAS S S

Automated Knowledge Base Updating 146

224), and learn disconfirming rules to disfavor the system
misconclusion (see Section 2.4).

o Compare the learned rules with old rules, propose experiments for
modifying the KB, and verify them (see next section).

In our model, the KB is constructed initially on the basis of a set of training instances; as
the database accrue, the statistics may shift. and a rule, sound in one time, may become ill
in another. The step 1 is intended to adapt the KB to this temporal change. However, as

the statistics converges. this possibility will decline.

5.4 3. Retrospective Inspection after Learning

After learning rules based on the misconcluded case, the subsequent stage is to
determine how to integrate those rules into the KB. In our model. the newly learned rules
are based on the current case library; they may not necessarily be consistent with the old
rules. which are leamned based on the initial case library. Therefore, it is necessary to
check the consistency between the newly learned rules and the old rules. If one newly
found rule is incompatible with one old rule. it is plausible to replace the old rule by the
new one because the new rule is consistent with more cases than the old one. The
experimentations and verifications described in the following sections are designed to
assure the replacement of old rules by new rules or adding new rules if they are missing is
proper. The experiments are proposed on the basis of the comparison between the new

and the old rules. One newly learned rule will be compared with one old rule if and only

if they share a common RHS.

i

..... Lt b it S _af Sal ek Anb Sl il Sl Tk el gk Sd Skl el B Al A Bl g

Automated Knowledge Base Updating 147

ke 5.43.1. Experimentations
.
.:".:I There are four experimental rules. The first experimental rule is used for correcting
3‘,:':::: overly specialized rules in the knowledge base:
ERL: If 1. One learned rule is more general than one rule in the
.;.:I:: , knowledge base.
-.:::: 2. The difference of degree of certainty is trivial (i.e., <.15).
o
L) ™ ". .
! Propose: Replace the rule in the KB by the learned rule.
n it
NOY Since a learned rule has been "optimized” within the same range of degree of certainty
-.‘:-.‘
o with respect to some criterion (i.e., weighted prediction error) in the current database, the
R~ s
Lo}
L2 old rule should be updated if indicated. If the degree of certainty differs, it is
: ,\":«
).‘.J_f incomparable; in EMYCIN-based systems, more specialized rules are often associated
I\ -.
YN . . . " .
:I\;N; with higher degree of certainty. That "rule R1 is more general than or as general as rule
SESY R2" means "whenever the LHS of R2 is true (or satisfied), the LHS of R1 will also be true
::‘-;: (or satisfied)". This is detected when the following two conditions exist:
I
S
-‘ 1. The features in the LHS of R1 are a subset of features in the LHS of R2.
U]
-':::_Z 2. For each feature in the LHS of R1. its value is the same as or more general
Py N
W than the value of the same feature in R2.
o
SOy
R1 will be more general than R2 if the above conditions are satisfied and R1 is not the
"
] .\j same as R2. One example of applying the rule ER1 is as follows:
o,
_:..-:.
f- -7
. One learned rule, LR1: Al -> class A
>~ .6
R, One rule in the KB, R1: A1 & A2 -> class A
“ Then, R1 might be replaced by LR1.
% '.\'_
- The second experimental rule is used for correcting overly generalized rules:
- _'-..,

Automated Knowledge Base Lpdating 148

ER2: If 1. One leamed ruile is more specific than one rule in the
knowledge base.
2. The difference of degree of certainty is trivial (i.e.. < .15).

Propose: Replace the rule in the KB by the learned rule.

Again, because a leamed rule has been optimized, it is plausible to update the old rule
according to the learned rule. "More specific” is the opposite of “more general”. "R1 is
more general than R2" is equivalent to "R2 is more specific than R1"; therefore, we can
detect "more specific” by the same means we detect "more general” as above. One

example of applying ER2 is as follows:

.7
One learned rule, LR2: A1 & A4 -)> class A
.6
One rule in the KB, R2: A4 -> class A

Then, R2 might be replaced by LR2.

The third experimental rule is used to delete erroneous rules:

ER3: If 1. One learned rule is contradictory to one rule in the
knowledge base.

Propose: Replace the rule in the KB by the learned rule.

As mentioned earlier. the newly learned rule is consistent with more cases than the old
rule. it is plausible to apply this rule. For two given rules whose LHS and RHS are both
the same, if the difference of their degree of certainty is trivial (less than .15). then they are
“redundant” with respect to the other: otherwise they are “contradictory”. If two rules
share a common LHS. their RHS are mutually exclusive. and the degree of certainty of at

least one of them is 1", then they are contradictory. This rule is exemplified as follows:

.7
One learned rule, tR1: Al -> class A

ey

- b - . o » 4 ~ - S S - - By - - - - < - 4 ik . TR TR T AT N R T
-
.

ChaC)
e o

et Automated Knowledge Base Updating 149
u’*.‘s

~'.~~"
e -.3

- One rule in the KB, R3: Al -> class A

> .

- Then, R3 might be replaced by LR1.

\::'.:

The last experimental rule is used to treat missing rule:

\J __-P

_:j-:- ER4: [f 1. One learned rule can’t be applied by ER1, ER2, or ER3.

I:‘;I: 2. The leamed rule is not redundant with respect to any rule in
)

=) the KB.

P Propose: Add the learned rule in the KB

o [f the leamned rule is redundant, do nothing to the KB. Finally, if subsumption occurs, it
t . can be handled in a way suggested by [Shortliffe 76]. This is illustrated in Section 5.2.2.5.
l-j:'.ij 5.4.3.2. Verifications
K-,
- . . o
S The proposed experiments are then verified to see whether the performance is still
‘ - . . »

D maintained (or even improved) when applied to the old reference cases and whether the
. misconclusion is rectified. The reliability of the knowledge source which indicates the
{0

a ; misconclusion and provides the correct conclusion is an important concemn. [n medicine,
the source can be regarded reliable if it is based on a pathognomonic study or the advice of
_:::j senior experts.

-

o The experiments are verified as follows:

o . :

e o If the source is definitely reliable.

L

! o If the modifications to the KB can rectify the misconclusion and

s maintain or improve the performance reflected by the weighted

>

o prediction error (defined in Section 4.5.3.1) with respect to the old

e reference cases. accept the modifications.

", o
W o Otherwise. reject the modifications.

.)‘:.v

F,J

*I l

V.l

u

e A NN e N PN T T T D e e T

L I 2 S

o
]
. Automated Knowledge Base Updating 150
4
t
h o If the source is not definitely reliable or there is no knowledge of this,
o o If the modifications to the KB can rectify the misconclusion and
e maintain or improve the performance reflected by the weighted
-_‘t: prediction error with respect to the old reference cases. suspend the
. modifications until confirmed by experts or advanced studies.
.. o Otherwise, reject the modifications.
N
+&Y
hy 5.4.4. One Example
- Here. we demonstrate the procedure of automated debugging with a real case in the
. database of JAUNDICE.
v,
f} Case31: system's diagnosis: Acute hepatitis .4
< Calculous Jaundice .2
. Expert's diagnosis: Calculous jaundice
o Debugger:
. main goal: Make Calculous jaundice the top diagnosis.
o subgoal : 1. Raise the degree of certainty of
- Calculous jaundice.
- 2. Reduce the degree of certainty of
N Acute hepatitis.
:2 Procedures:
:} step 1. Check the soundness (see text) of those
< activated rules: R1, R23, R25, R26, R33, R66
LS
d {Since all rules are all right, the debugger moves to
s next step.}
~
G
o step 2. The learner is triggered to learn rules by
— focusing on CASE31, with focusing mode.
ii One rule is obtained:
.. NR1: If 1. serum bilirubin is elevated.
:? 2. Colicky rt. upper abd. pain

is present.
then likely (.6) Calculous jaundice.

'

.

At T e
PR

T S N)
} DRIV G EUI RS P B T I P e

o Automated Knowledge Base Updating 151

{Then, the debugger moves to the next step.}

-

171" .
Jot

Ay bt

step 3. The debugger finds NR1 is more general than

= rule "R114" in the KB:
[}, -
R114: If 1. Serum bilirubin is elevated.
N 2. Colicky rt. upper abd. pain
\:. is present.
. 3. Course is recurrent.
\ﬁ then likely (.7) Calculous jaundice
First experimental rule "ER1" is triggered, the
2 result is as follows:
o "R114 might be generalized into NR1"
ffj {Then the debugger returns the experimentally
oy modified KB to the performer.}
) .,
o step 4. The performer (the consultation system)
{ﬂ reruns the case.
'-; system's diagnosis: Calculous jaundice .68
Acute hepatitis .4
-
-
- step 5, Check the weighted prediction error of
j{ the old reference cases.
Y (Assume wp=2. wn=1)
Before changes: wpe= 2x2 + 1x0 =4
K- (i.e., there are two incorrectly concluded
~ cases and one unconcluded case.)
oy After changes: wpe= 2x2 + 1x0 =4
'y Succeed!
.
_ {The changes in the KB are accepted.)
o8
- 5.5. Comparison and Discussion
.
-‘{-
_ :-,'.. The main features of the work developed here are summarized as follows:
.~
P 1. Because the updating is completely automated (except that another knowledge
. source is required to point out the incorrect conclusion made by the expert
o system). experimentations and verifications are necessary. ‘
::-‘ ‘
:,,:.

Automated Knowledge Base Updating 152

2. Itis a part of the complete learning model we develop.

3. It is intended to achieve an optimum with respect to both old reference cases
and the new case with incorrect conclusion.

4. It can cope with uncertainty and is designed primarily for EMYCIN-based
systems where evidence can be combined.

Based on these features, we choose several related Al programs for comparison in order to

reveal the underlying significance.

TEIRESIAS [Davis 79] is the most related work in the sense that it is also designed in
MYCIN-like systems and includes a similar bug tracking strategy by examining the
relevant rules with respect to a certain case is used. However, because of different
assumptions made, the approaches to modifying the KB are quite different. TEIRESIAS
debugs the KB, based on the empirical knowledge from a knowledge source (i.e.. the
human expert) which is assumed to be reliable while in the herein developed method. we
don’t assume there is a knowledge source which can debug the KB (but we assume there is
a knowledge source which can detect the incorrect conclusion made by the system). and
the debugging requires some experimentations and verifications to increase its credibility.
EMYCIN [Van Melle 80]. including a TEIRESIAS-like environment. also provides a
similar verification mechanism as our program does. However. the fundamental
difference is man- vs. machine-oriented approach. For example, TEIRESIAS relies on
expert knowledge to specialize a rule so that it will not succeed. while the automated
technique relies on an optimization search to decide whether to specialize. and. if so. how
to specialize. If one rule should be generalized so that it can succeed. TEIRESIAS again

relies expert knowledge while the automated approach takes advantage of the inductive

Automated Knowledge Base Updating 153

concept leaming technique to learn rules first and compare them with the old rules to
decide which rules should be generalized. [f new rules should be added, TEIRESIAS
assists the expert to transfer his knowledge while the automated approach again exploits
machine learning technique. Moreover, in an inexact domain, automated debugging may
achieve a better result than expert-oriented approach in dealing with compromise among

correcting multiple faults.

The SEEK program [Politakis 82] is designed to refine the KB by generating
experiments and asking the expert's advice. Instead of machine learning employed in our
work. the SEEK program generates experiments based on domain-dependent heuristics.
Its great limitation is the incapability of finding missing rules. OQur approach is

comparatively more general and powerful.

The rule checker program [Suwa 84] conducts a systematic and exhaustive checking,
which is certainly not the case in our work, in the KB. The apparent limitations of this
approach include the following: the search space can't be too large, and most of the
possible combinations should be meaningful; otherwise it is very inefficient. The program

also doesn’t mention handling of uncertainty.

The poker player [Waterman 68] also uses the strategy of "retrospective inspection after
learning” as our method does. Perhaps because he assumes there is no inconsistency and
uncertainty. his program is intended to maximize the performance of each individual play
without re-examining the old plays. [n contrast. our method is intended to maximize the
performance under considering both old reference cases and the new case. In addition.

the analytical technique used by Waterman (neglect the advice taking technique here since

Sk Bk B Sl Sl fhed Jhud - Badh Sadh Aok el e TSl o = A - Sl Jhad ™ § 3

. £ e
R

P O]

Automated Knuwledge Base Updating 154

our approach doesn’t rely on it) to acquire training rules rests with the proof by backward-
chaining via an axiom system. [n contrast, we use forward-chaining to handle those
activated rules (i.e.. try to optimize those activated rules if they are found ill) and
backward-chaining (or goal-oriented) to leamn rules for the misconcluded case for réasons
of efficiency. [n more detail. when we apply focusing mode of learning, we treat the
misconcluded case as "positive instance” (indicated by the correct conclusion) and the
learner is intended to leamn rules for it. However, instead of labelling the misconcluded
case as "negative instance” to learn rules for classes other than the class indicated by the
correct conclusion of the misconcluded case. we simply focus on those activated rules to
see whether they accidentally cover the misconcluded case as classes other than the class
indicated by the correct conclusion of the misconcluded case. For example, if the
misconcluded case should be "Disease A" but it is falsely concluded by "rule R" as
"Disease B". then we don’t learmn rules for diagnosing Disease B by treating the
misconcluded case as a negative instance; instead. we simply check whether the rule R is
optimal, and, if not. decide how to optimize it, based on the consideration that the falsely

activated rules are very limited (often no more than a few).

5.6. Summary

From a long term perspective. the necessity of updating a KB is clear. However,
incremental updating should not degrade the performance standard maintained by the old
reference cases. Consider various sources of errors and the imprecise nature of reasoning
in EMYCIN-applicable domains: it is often hard to add new knowledge monotonically

without examining its impact on the old truth value reflected by the weighted prediction

error over the old reference cases. Thus. we develop a method which optimizes the KB at

Sl Ral A LA COahith At At ol ol i ar e ati AN . el A S e fa® Bt Aol Seb Aod Sai Sob Aol Bek A4 B

Automated Knowledge Base Updating 155

b "t=t0" by minimizing the error in the period from "t=0" when the KB is initially
R0 constructed to "t= tﬂ" when a new case with incorrect conclusion appears; the method will
) repeatedly be applied every time a misconclusion occurs. The task is accomplished by
learning, proposing experiments based on the four experimental rules described, and

<. verifications.

L)
P AR]

%

]

b

o -
.
..
.

. N
2%

&

. L
/.‘A" Tt T T
. A AT e, -
RN PR V4O DL YW U e

Discovery of Meta-Rules 156

Chapter 6

Discovery of Meta-Rules

- 6.1. Introduction

The value of meta-level knowledge for guiding the invocation, construction, and
explanation of object-level rules in an expert system has been demonstrated by Davis
".:' [Davis 76]. In this chapter. we explore the use of machine learning methods for

formulating new meta-level knowledge. extending Davis’ ideas about leaming rule

models. The research reported here aims at learning meta-rules that will guide the rule-

._7 based diagnostic system by pruning and reordering the diagnostic rules. as in MYCIN
[Davis and Buchanan 77

%

We are strongly motivated by the fact that meta-rules are important in systems with
- large knowledge bases to avoid exhaustive search. Yet. human experts should not be

-E) concermed with control issues as much as with domain knowledge. so it is desirable to

: automate the formulation of control rules.

.__ This is a second-order learning problem (and not a first-order problem of leaming new

g

N object-level rules) which is defined as:

~5 33Thus chapter is bused on the article of [Fu 84).

>

“x'.‘-'h‘.

- Discovery of Meta-Rules 157
v
’
,.:: Given:
X A set of object-level rules including:
inferential, causal, and taxonomic knowledge of
- the domain.
A
Find:
_i: Useful meta-rules that improve system efficiency
by gquiding the invocation of object-level rules.
-_\.:
jl; This chapter first discusses design considerations and then presents implementation
:til details of the second-order learning system with demonstrations in JAUNDICE with 141
N
Y diagnostic rules that diagnoses likely causes of jaundice, and 80 non-diagnostic rules that
- are linked in a network reflecting a taxonomy among diseases and causal links among
- events as suggested in [Patil 82}, [Wallis 82] and [Clancey and Letsinger 81}.
 }
" 6.2. Learning Meta-Rules: Design Considerations
N 6.2.1. Format of Meta-Rules
., As in [Davis 76), we use two syntactic forms of meta-rules: pruning and reordering
~3 forms (see Figures 6.1 and 6.2). In fact, the distinction between these two forms is often
2
- blurred semantically. For instance, if we say "Do Rule-Setl before Rule-Set2", and we
e
"' . . .
7‘{; succeed in our goal by invoking only Rule-Setl, then Rule-Set2 is pruned anyway. As
5
-7 seen in figure 6.1 or 6.2, the premise of a meta-rule has three parts:
- . . : .
" 1. The first part is the goal description which can be global or local, and. in our
::-: system. the global goal is disease-entity, and local goals include: syndrome.
';:: pathophysiological mechanism. etiology, etc.
4 2. The second part is a conjunction in which cach conjunct is a predicate with a
triplet of attribute. object. value.
.:.;
-:-'C 3. The third part is the description of concluded rule sets.

- - - .« e ‘. T B . . - Y o . - . - -
i - - - - . » - . . - » . - LR g
PRI ERP AP A

‘... ' . . - Te “. . . T . u N 4"4 c .
PR SIS RS I VSR INE DRI PP PP S NP SN D NP I)

— Cohae diat aah el el dhait Bul AL/ S A Ak " dh Y N MM A e M har Sl B Sa 3 St letua i v R Nk et man o S odt dndh gl Bl o n @ 4

0. Discovery of Meta-Rules 158

.

I,

° Meta-ruleQ01l

A If 1. The goal is to conclude the disease of

e Jaundice.

] 2. The indirect type bilirubin is not

< dominant.

b 3. There are rules which mention in their

. premise "overproduction of bilirubin”,

.. Then it is definite(1.) that each of these rules

> is not going to be useful,

N

. Premise:

\ (SAND (SAME JAUNDICE GOAL DISEASE-ENTITY)
(DIFFER LFT DOMINANT-BILIRUBIN INDIRECT)
(THEREARE OBRULES (SAND (MENTIONS PREMISE

! OVERPRODUCTION-OF-BILIRUBIN)) SET1))

Action:
S (CONCLUDE SET1 UTILITY NO 1.)

Figure 6.! Example of a meta-rule in pruning form
3 created by META-RULEGEN. Upper part is it's English
translation; lower half is it's code in INTERLISP.

Meta-~-rule79

j If 1. The goal is to conclude the disesase

. mechanism of Jaundice.

. 2. The Alkaline Phosphatase level in serum
b is greater than 15 B.U.

- 3. There are rules which mention in their

action "Cholestasis".

& 4. There are rules which mention in their
k- action "Parenchymal-dysfunction”,

2 Then it is probable(.8) that the former should
N be invoked before the latter.

. Premise:

. (SAND (SAME JAUNDICE GOAL DISEASE-MECHANISM)

X« (SAME LFT ALKALINE-PHOSPHATASE >158.U.)
:: . (THEREARE OBRULES (SAND (MENTIONS ACTION
K~ CHOLESTASIS)) SETY)
' (THEREARE QZ2RULES (SAND (MENTIONS ACTION
9 PARENCHYMAL-DYSFUNCTIONY)) SET2))

N Action:

- (CONCLUDE SET1 DOBEFORE SET2 .8)

.

“ Figure 6.2 Example of a meta-rule in reordering form
" Created by META-RULEGEN.

d

. -

o‘,\-’ o

o - .
ro R P AL PRy
J“r ‘.'-':'- %:‘f— o] .‘-’)

Discovery of Vleta-Rules 159

The description of the rule sets in the third parts of meta-rules may be by content or by
name. Indirect referencing (by content) is important to maintain flexibility and
understandability. The leaming program also expands indirect references into a so-called

name-referred form with an explicit list of rule names, as seen in figure 6.7.

6.2.2. Utility Consideration of Meta-Rules

The main reason for incorporating meta-rules in a performance system is efficiency.’*
Theoretically, it is difficult to say how to measure the efficacy of meta-rules unless we
delineate the concept of Utility Value for the meta-rules, which is also important in

generating them.

6.2.2.1. Utility Value for Meta-Rules

The Utility Value of meta-rules is based on an analysis of costs and benefits. Intuitively,
high Utility Value is associated with high benefit and low cost. We define an absolute
utility value based on estimated savings in CPU time and then a relative value to

normalize absolute values over object rule sets of different sizes.
Absolute Utility Value of Meta-Rules

The cost of a meta-rule is the estimated CPU time to evaluate its premise. If the

premise is true. then its benefit is how much CPU time might be saved by pruning or

4Wc are not concerned here with the use of meta-rules 1o guide a dialogue. aithough human engineenng
issues are also important. [f the meta-rules are effecuve 1 pruning unnecessary questions, however, m::
dialogue will also appear to be better focused. Note wlso that the term “uulity” has ditferent technicul
meanings in different techmical areus. We are concerned here with a measure of impontance based on
estimated costs and benetits.

.
.

v
N s % & e

L

r .l J
A B

INMOEADY

5

l" ‘I %‘l""
L. hELEN

W (

* ‘x

”~ [
S AN,

O

* .
. '- ‘v ‘l .t

._'/

Discovery of Veta-Rules 160

reordering object level rules under the guidance of the meta-rule. For simplicity, we first
define unit cost to be "average CPU time to evaluate one conjunct (clause) in the

premise.” Suppose there are "n" conjuncts in the premise of the meta-rule, we define the

cost of the meta-rule to be units. (The performance program may cease evalﬁation
once one conjunct appears to be false.but our estimate will assume the worst case.) The
benefit will be how many object level rules are pruned out, if the meta-rule succeeds (i.e..
if it's premise is true). The cost of using one object level rule will include CPU time for
evaluating its premise. and, if the premise is true, making a conclusion and doing the
bookkeeping. But, considering the least condition (i.e., first conjunct is found to be false.
and evaluation is stopped), if there are "m" object level rules which are pruned away by
the meta-rule, then the least benefit will be “m" units. Again, our estimate assumes the
worst case (i.e.. least benefit). Thus, if a meta-rule makes a successful and accurate

prediction. then the gain (the ratio of benefit to cost) will be "m/n". Now. the Absolute

Utility Value (abbreviated as AUV) is defined for a meta-rule as follows:

AUV = b/co x Freq.(prem.) x CmR

where,
b = Number of object rules pruned.
¢ = Number of conjuncts in the premise.

0 : .
Freq.(prem.) = the estimated frequency with
which the premise is true.

35 . degree of certainty of meta-rule.

cmR

This definition of AUV takes into account not only the cost and benefit, but also the
frequency with which the premise is true over reference cases in a case library (see figure

6.6) and the degree of certainty of the meta-rule. If the meta-rule rarely succeeds. it will

35

CmR ranges from 0 1o 1. “Zero” means “unknown”, while “one" means “definnely ves”. It is obuuned
from human experts. or can be computed as described in Section 6.3.2.

/

o
L g

~
o
»

<
LA R A)

]
’

]

ﬂ
‘s
b »

.
.
)

f
.

AT AT

.
]
I
1,0,

X0
[ay

s . ot At r ~, o dhate g Bkt St Al Sad A At A b S NS AR S At et B “A e Mt a2

Discovery of Meta-Rules 161

have low utility. And. even if it succeeds (i.e.. the premise is true). the prediction
(conclusion) will be very uncenain if the degree of certainty of the conclusion is very low.
When the frequency information is incomplete. it can be estimated from a Frequency
table. that stores the number of cases (in the case library) for which each single premise
clause is true. For instance, if a premise mentions the presence of Attributel and Attribute
2. then we can estimate the frequency of the conjunction by multiplying the frequency of
Attributel and Attribute2 in the reference cases under the assumption (default) of

independence. An example of calculating AUV is shown in Section 6.4.

Theorem The threshold value for AUV such that
the expected benefit under the worst assumption
will be greater than zero is:

AUV

threshold - 1 * cpf(1 - Carl/cq

c.: Penalty owing to the incorreg;
prediction by the meta-rule.

c.: Number of conjuncts in the premise.
This is the required cost to evaluvate
a meta-rule.

b: Number of object rules pruned.

This is the benefit when a meta-rule

succeeds.
f: Freq.(prem.)
bexp: Expected benefit of the meta-rule.

(proof): C mR €an be viewed as the estimated rate of correct predictions out of all
predictions. Therefore, if the meta-rule succeeds (i .e.. the premise is true) and the
prediction is correct, then the net benefit will be "(b - co) and if the meta-rule succeeds
and the prediction is wrong, then the net benefit will be "(-c, - cp)". Otherwise, the net

benefitis "-c " Hence. the expected benefit is:

6 . . .) .
3 As discussed above, the estimate is under the worst assumption, a conservative estimate, so Lo speak.

S N . v
o 1» not 1. then the meta-rule may predict wrong sometimes. And. the wrong predictions may cause

“mR .
penalts -.»%uch depends on the extent the system undoes and re-execulcs. or the extent of improper reordenng.

e ryryrerye

i T
7
o Discovery of Meta-Rules 162
N
\l
o
“
. bayp = [(0-C5)Chp = (Co*€p)(1-Coa)IF = co(1-1)
:;:- Let bexp = 0. we get AUV = bfC o/c =1 +c f(l C.r)¢, and this is the
a0 .
threshold value AUV, old’
Py~ :
;';: Corollary | The minimal threshold, min.(AUV,,.ocnorq)=1-
o~ _ -
N Corollary 2 AUV, .ocno14=1 When Cop=1 or c,®0.
Corollary 3 If Auv >> Auv, then AUV can estimate
S the lower bound of expecteé Beneht
".;:2 (proof): from proof of the above Theorem.
"' bexp/ co = AUV- AUVLhreshold
2 IFAUV> AUV, .
4'_'_.
then bexp/cc ~ AUV,
h'\v’
l\"'n
at
::. or bcxp ~ AUV x C
-"\l
wal
", Since ¢, 2 1. AUV can estimate the lower bound ofbm(p
y
- We also define Relative Utility Value (abbreviated as RUV) as follows.
! < AUV
s RUV = x 100
SRR Number of total object rules
bt under the global goal

Three important aspects of RUV are:

& 1 If AUV » AUeresho]d, RUV can estimate the relative improvement (in

Discovery of Meta-Rules 163

WY percentage) of the overall system performance. Because the overall cost for
system execution is parallel to the number of total object rules, and . from

o corollary 3. AUV can estimate the expected benefit of a meta-rule , the ratio
"Z. of the two can estimate the relative improvement of performance by a meta-
{7 rule.

N 2. RUV is good for comparison of meta-rules from different systems, which have
e different numbers of object rules.

3. Because the object rule set usually expands quickly as a performance program
S is being constructed, RUYV is a more important index to maintain useful meta-
rules. For instance, if we assume the utility value can estimate the system
e performance, we might say "keep those meta-rules with RUV more than 10"
. rather than "keep those meta-rules with AUV more than 10" since "AUV
L . more than 10" may not be significant if there are, say, 1000 object rules.

- 6.2.2.2. Selecting Useful Meta-Rules

Our heuristics for selecting useful meta-rules are as follows.

ff_:: estep L weuse AUV, . . = 1. Thatis, we first retain those meta-rules with

‘}f:j AUV greater than "1". From corollary 1, we know if a meta-rule with its AUV
[less than or equal to "1", it will be useless (i.e.. its bexp € 0); however, if its

J AUYV is greater than "1", it may be useful but not necessarily since

B : . "y . .

Y AUV eholg 1S NOL necessarily “1". Therefore, step 2 is required.
aar
-_Z:Z-Z: “e step 2. we use RUV as a reference and experimental simulations to do further

\\ .

Y pruning.

R Finally. we select a useful set of meta-rules by removing redundant meta-rules*® and from
.\,:‘-,

e experimental simulations.

~ N .

Ii Z'

- }Slf two meta-rules often succeed simultaneously and their conclusions severely overlap. then they are
7 redundant with each other. Both the frequency Uhreshold and the extent of overlapping are defined
:;}\.': heunsucally.

»\.,.

30

Ca
0

o a o wt - -
OO RS -

DI

N .. .1._-_'.. - . .‘ . ,.
e e \‘\.‘\'\ - s'-' "'\‘“\. ~"-.‘-' '\'-" "'\. N LT

- LN ‘ A .
PR A N s PP

& -

WA g

(]

4

¢ e

.‘l
ATV

.

il
. ..' ". '.a /. ’. /. . "n "L"- "- /- R "‘

[

Discovery of Meta-Rules 164

6.2.3. Overview of Two Approaches to Learning Meta-Rules

6.2.3.1. From Object Rules

Starting from each object rule. the program uses information about three well-known
medical strategies [Miller, Pople, and Meyers 82] to determine if there could be useful

meta-rules covering this object rule and related ones.

1) Rule-out mechanism: If there exists enough evidence contradicting a fact, then we don't
bother trying to confirm it or deduce other facts from it. [f some evidence is against a
fact, then we attempt to form a hypothesis: "That fact and all possibly associated facts
with it may be ruled out based on that evidence", and if this hypothesis is justified by
some evaluation criteria (e.g.. Utility Value), then we succeed in our attempt.

2) Rule-in mechanism: This is the inverse of the Rule-out mechanism. [t says we should
consider certain facts first if some evidence implies doing so and this consideration is
valuable with respect to some evaluation criteria.

3) Differential mechanism: Physicians are often involved with the issue of differential
diagnosis, which is basically confirming one diagnosis from a set of possibilities to the
exclusion of the others. In part, this is the consideration that when there is more
evidence suggesting Diseasel than Disease2, it will be reasonable to confirm Diseasel
before Disease2.

6.2.3.2. From Attributes

[f one conjunct appears many times in the premise of object level rules. then it might be
worthwhile to evaluate this conjunct first. [f this consideration proves valuable. then we

keep it A similar syntactic approach can be found in {Davis 76] and [Van Melle 80];

however, the difference is our explicit consideration of utilitv, as described in Section 6.3.

j Discovery of Meta-Rules 165
::j
\-
\l
e 6.3. Implementation
o
b 6.3.1. Overview of META-RULEGEN
.
Lo META-RULEGEN is a second order learning program. The leaming of meta-rules is
- based on:
N
" 1. 141 object level diagnostic rules, which are the inferential knowledge base of
JAUNDICE. a Mycin-like consultation system that aids in the diagnosis of
o causes of jaundice.
:‘;Z 2. Pathophysiological Taxonomy and causal links coded into 80 non-diagnostic
o rules; from these three semantic structures are built up:
a. Denying-tree (see figure 6.3): a network of disconfirming associations.
If one node is denied, then, propagating along this tree, we know the
i degree of denial of relevant nodes. The denying tree is constructed by
recording pairs of individual facts that are negatively linked in the
» object-level rules. For example, no overproduction of bilirubin (-P1)
::: disconfirms (1.0) hemolysis (D1).
-
w2 01 .=D2 -03 .-D4 .-D5
Y2%_3 /f
- p1 \ P2 \T
1 /Y
N K '\ €2
k< .3
L J: Jaundice D1: Hemolysis
D Cl: Indirect bilirubin dominant D2: Acute hepatitis
T C2: Direct bilirubin dominant D3: Chronic hepatitis
- Pl: Overproduction of bilirubin D4: Neoplasm
P2: Hepatocellular dysfunction D5: Calculous jaundice
\ P3: Cholestasis D6: Primary biliary cirrhosis
:'j Figurc 6.3 Part of Denying-tree in META-RULEGEN.
3
:';: b. Affirming-tree (see figure 6.4): a network of confirming associations. [f
i one node is suggested. ther. by following the links in the affirming tree

we know the degree of implication of other nodes. The affirming tree is i

F hnthaiienii i ol aht il aid it AN aul e ao8 a08 28 o4 oo o rw-u-u“v""’\]‘!]r‘t'wrwivv-r"y-u’V""'I-E’V“‘F‘?I‘""(WKW]('WWT""""l'"'"I"‘I"

Discovery of Veta-Rules 166

constructed by recording pairs of individual facts that are positively
linked in the object-level rules. For example, overproduction of
bilirubin confirms (.95) hemolysis.

.01 .02 .03 .04 .05 .06
.95
S LN g
Ve N\
‘\%«/ss

Figure 6.4 Part of AFFIRMING-tree in META-RULGEN,
same notations as in Figure 6.3.

c. List of differential pairs (or groups) and mutually exclusive pairs (or
groups) (see figure 6.5): lists of incompatible diagnoses and findings.
This list is constructed by recording pairs of individual facts that are
incompatible (and often easily confused) with each other as reflected by
the object-level rules. For example. hemolysis should be differentiated
from Gilbert's disease (congenital conjugation defect), because they are
similar in the aspect that urine bilirubin is negative.

((Hemolysis Congenital-conjugation-defect)
(Hepatitis Calculous-jaundice)
(Primary-biliary-cirrhosis Calculous-jaundice)

Figure6.5 List of differential or mutually
exclusive pairs (or groups).

In these three structures. the current implementation allows no conjunction or
disjunction in each node. i.e.. each node represents a single fact.

3. Heuristics. which underlies the whole procedure for learning meta-rules (see
Section 6.2.3). The frequency table which is constructed by recording
frequencies of attnbutes over the cases in the case library (see figure 6.6) is also
used to guide the program.

TS A e e T B I y - = A
- - » 3 - . . e . . - - - - . - . -, - = . A . h ~ h “ - - - " h " "~ LN " 3 X 3 : 3
‘.‘_‘ L' A - A .A_'A.' .' . - - - - - .o ® . T TP A ~ B v Y - S T o N . st AN AN | e . ‘ * . N *
Tl At o P AV GV RN L T L VP P T A I S P T I P T Tl S A P R R S
— Y VRN R TSRS YN DLV . PR S R O S S W A i P S AP

Discovery of Veta-Rules

({Acute-course .5)
(Malaise .7)
(Chills .08)
(Marked-body-weight-loss .1)

......

Figure 6.6 Frequency Table. fach sublist contains
an attribute with its frequency in the case
library.

6.3.2. Algorithm

The search space of all possible meta-rules is roughly equal to the number of
combinations of legal attribute-value pairs in the existing set of object rules. If all
attributes were binary, this is the power set over n attributes. In the JAUNDICE program,
n is 56 attributes in the 141 diagnostic rules (some attributes have binary values. and others
have multiple values). The search is greatly constrained from the start by setting up the
affirming tree and denying tree, which represent positively and negatively confirming links

among attributes (and values) already noticed in the set of object rules.

There are two different parts of the algorithm, both of which are exercised. In our
experiments we have taken the union of the two sets of meta-rules as the result. The
algorithm is described for the separate approaches. Refer to Section 6.2.1 for descriptions

- of the three parts of a meta-rule.

ML AN AR ARACRMA s SN e Rt ol g atnh SRk aidcallh” g aiic aliitadiis ot -,]

Discovery of Meta-Rules 168

6.3.2.1. Approach from Object Rules

Form meta-rules on the basis of each individual object rule (of 141 diagnostic rules) as
follows. Collect all object rules and form a set S. Take out the first element from S and do

the following procedures; also delete this element from S.

e Step 1. Form the second part of the premise (conjunction of predicate with
attribute- object- value triplet) on the basis of the premise part of the object
rule. From the discussion in Section 6.2.3, we note that a piece of evidence
(premise in the object rule) is a plausible starting point to generate meta-rules.

o Step 2. For different conditions:

¢ a) Formation of pruning form meta-rules

o 1) If the object rule confirms some fact,by climbing the affirming tree, we
know what other facts also are implied. with degrees of certainty
calculated by propagating the uncertainty along the tree.’® Thus, the
third part of the premise will be those rufe sets mentioning "presence of
these facts”, and these rule sets will be concluded to be useful in the
action part of the meta-rule with degree of certainty calculated as
described (see "Rule-in mechanism" in Section 6.2.3.1).

o ii) If the object rule disconfirms some fact. by climbing the denying tree,
we know what other facts are also denied. with degrees of certainty
calculated by propagating the uncertainty along the tree. Thus the third
part of the premise will be those rule sets mentioning these facts.and
these rule sets will be concluded to be useless with degree of certainty
calculated as described. (see "Rule-out mechanism" in Section 6.2.3.1)

o Note that in both (i) and (ii). more than one meta-rule will be formed.
There is a merging process in step 5.

e b) Formation of reordering form By looking at the list of differential pairs, we

3()For example. 1f A implies B with degree of certainty .4 and B implies C with degree of certainty 6. then A

implies C with degree of certunty 4 ¢ 6 = 24

.
g’

=y

f
1

; LALLM
AR

Py o (AT P
',&. PR

WA
JEA

P
Y

Discovery of Meta-Rules 169

know, for instance. Factl should be differentiated from Fact2. If the object
rule confirms Factl. then under the premise of this object rule, Factl should
be pursued before Fact2. Thus. the third part of the premise will be rule sets
mentioning Factl, called Setl, or Fact2, called Set2. and it is concluded in the
action part that Setl should be invoked before Setr2 with degree of certainty
approximately equal to the degree of certainty of the object rule. Similarly, we
can figure out the process if the object rule disconfirms Factl (see
"Differential mechanism” in Section 6.2.3.1).

o Step 3. Form the first part of the premise (the goal description) on the basis of
the mentioned facts in the third part of the premise (the description of rule
sets). For example, in Meta-rule079 (figure 6.2), the reordering of two facts:
“cholestasis” and "parenchymal dysfunction” has to do with the conclusion of
the subgoal "disease mechanism".

¢ Step 4. Caiculate the Utility Value for each newly formed meta-rule, and filter
out those with AUV being less than 1.

e Repeat the whole procedure until the set S is empty.

e Step 5. Meta-rules are further seiected, based on RUV and experimental
simulation results. That is, we first set a cut-off point with respect to RUV to
select meta-rules; those selected rules are then tested by experiments (see
Section 6.4). Then, merge the meta-rules. [f two meta-rules have the same
first and second parts of the premise and their conclusions have no (or little)
overlapping with respect to the concluded rule sets, then (a). add their
descriptions of concluded rule sets to form a description of a new rule set and
(b). add their conclusions (actions) to form a new conclusion (action). The
Utility Value of the merged meta-rules is defined as the sum of the Utility
Value of the individual rules before merging. Also, the redundant meta-rules
are removed.

Example I.

In the following descriptions, the notation

-" means "absent” or "denied”.

A set of object-rules:

L% . qvgwy > ' " v L T .""_'v"v'."r'.*"r”r”.-'rw
o
/ ::j: Discovery of Meta-Rules 170
'xf
‘\‘.'
AV
N
o .7
Ri: A1l -> -S1
-7, .6
:.::: R2: A2 -> S2
"\.J .
% j A part of denying tree:
::‘q 1.
<3 -S1 -> -M1
LaE]
1.
-S1 -> -M2
5};: Form potential meta-rules on the basis of R1:
3OS By propagating implications,
.-‘:.: .7
.ii Al ~; -M1
) ' L
R MR1: A1 -> Rules mentioning M1 are useless
o Similarly,
. 7
b MR2: A1 ~-> Rules mentioning M2 are useless
ub (Note that "MR1" can be interpreted as:
o "If attribute Al is present,
e then any rule mentioning presence
of M1 will be useless,
. with degree of certainty .7",
- since M1 is denied by Al.)
:)J Calculate the AUV as shown in Section 6.4.
o If both MR1 and MR2 are determined to
'O be retained after selections and their
Sy conclusions are little overlapped,
X then they are merged as:
.7
"Al -> Rules mentioning M1l are useless
7
~> Rules mentioning M2 are useless.”
o (Note:>
o If a part of the differential list is:
20 "((M1 M3))"
“ then a potential reordering meta-rule can be
3D formed:
A .1
MR3: A1 -> Rules mentioning M3 DOBEFORE
ey Rules mentioning M1,
o
4538
B
e
»
Bt
:::.'

? 'hﬂ'fiﬁ"'\’n "B-f !@ A "n‘ e -.' N KR

eX 4" w’ .'-’. N ."- o s -r A r"-J - .z .r, e
%.1... ..;{- y S ey
AAJ'M.\J.{A' _..JJ.L.._\ uA.AA_‘A..ur.A,.& PR

Discovery of Meta-Rules 171

K1

4! \.- B

LS

3 :.'_‘_.

YR

) since M1 is denied by Al.

__J‘
3ASN
‘_-?:.
o 6.3.2.2. Approach from Attributes
.‘$~I .
. Collect all parameters (attributes) to form a set S. Take out the first element and do the
o
.'j::: following procedures; also delete this element from S.
Yl
T e Step 1. Form the first part of the premise. This is usually the main goal of the
system, if there is only one main goal.

N

‘ :::::: e Step 2. Form the second part of the premise by "presence of the parameter”,

N and collect all object rules whose premise fails immediately because of

o . .

(: "presence of the parameter”. Thus, the third part will be those rules

£ mentioning the presence of the parameter in their premise, and it is concluded
“_-_Ij in the action part that these rules will be useless with degree of certainty 1.

YOI

o .

T ¢ Step 2". Form the second part of the premise by "absence of the parameter ",
o and do the similar procedure as in Step 2. (Note: we try to form two meta-
- rules for each attribute with this approach.)

-:'-j-Zf o Step 3. Calculate the Utility Value of each newly formed meta-rule, and filter
J out those with AUV being less than 1.

"' ¢ Repeat the whole procedures until the set S is empty.

o o Step 4. Meta-rules are further selected by RUV and verified by experimental
. simulations.
- _---

>
_i-;;l; Example 2.

A set of object-rules:

N R1: A1 & A2 -> SI

oy

[R2: A1l & A3 -> S2

- ‘

']:'_

o

:::".‘

.',.'.:
e
L.

L Discovery of Meta-Rules 172
i Form potential meta-rules on the basis Al
R MR1: -Al -> R1, R2, .. useless.
E: Calculate AUV
N 4
e
S
- 6.4. Results
"::Z Sixty-three rules were created by META-RULEGEN. About ten were formed by the
_ approach from attributes and the remainder by the approach from the 141 rules in a
w preliminary version of the JAUNDICE system. About fifteen rules were reordering rules
- (all formed by the approach from object rules) and the remainder were pruning rules.
N (Figures 6.1 and 6.2 show one pruning rule and one reordering rule produced by the
‘o
o program.) We expand the rule sets into explicit lists of rules (figure 6.7) to compute
Utility Values of MRO1 in figure 6.1 as follows.
o
- AUV as: ¥x 97x1 = 19.4and
= 100 _
= RUV =194 x5 = 13.76
G,

L)
L} . »
a3 T

>
Sy
'Y

NN

':"::‘_: Discovery of Meta-Rules 173
f;
N\
“ .
_:; Premise:
- (SAND (DIFFER LFT DOMINANT-BILIRUBIN INDIRECT))
oy Action:
. (CONCLUDE (R79 R78 R61 R20 R19 R18 R17 R16 RI13
R12 R11 R10 R9 R8 R7 R6 R3 R109
. R117 R118)
- UTILITY NO 1.)
:f Figure 6.7 Name-referred form of meta-rule in
Figure 6.1, in which the intensive definition
o of the concluded rule set is replaced by an
o extensive definition.
1, ::
'.‘
> Table 6.1 shows the distribution of Utility Values among the 63 meta-rules. We
:'."‘_' informally confirmed that Utility Values are a reasonable standard. by looking at the
0
:;T medical significance of meta-rules (as found in the literature). We found that meta-rules
' with high Utility Values usually have high medical significance and conversely.
j; Table 6.1 Distribution of R.U.V. of 63 meta-rules
- created by META-RULEGEN.
=
A RUV Total
- <5 5-10 > 10
- Number of
_ meta-rules 48 8 7 63
:;
o In addition. we performed a simple experiment to determine the effect of using some of
N
these meta-rules in the JAUNDICE program. We selected 20 representative cases (non-
::1 randomly, but preserving the relative frequencies of diagnoses) among 72 cases collected
":: from the literature. and ran them in batch mode in the JAUNDICE program. We
measured the efficicncy before and after incorporating different meta-rules. Table 6.2
. []
L] . N oo
N shows selected portions of the outcome from which we see that the predicted Utility Value
o'
..‘ generally parallels the observed enhancement.

. e m", " KR o e AT
T AN TSP A

‘).r.-‘z.-f..'u_"
S - LTy , R
MLM‘A_\. .z.h._._mm-umnsz..‘._.. i ek et i

YA AR S

d

A X

f: Discovery of Meta-Rules 174

b
\ Table 6.2 Relationship between Utility Value and
= enhancement of system efficiency as determined
- from 20 cases run in JAUNDICE program (batch
= mode) with selected meta-rules.

i (Lisp time: Lisp interpretation time, not compiled)

S A.U.V. |R.U.V. | LISP [enhancement

N time |(percentage)

. (sec.)
> with MRO1 | 19.4 |13.76 | 271 | 15.3%

. with MR34 | 13.07 9.27 293 8.4%

:\

-2 with MR40 | 11.5 8.1 298 6.9%
=
- with MRO7 | 1.94 1.36 | 330 | -3.1%

1 6

b with MRO1 & MR34 256 | 20%

-
with MRO1 & MR26 & MR37 &
MR40 & MR45 & MR46 121 | 62%
without metarules 320 NA
The most important result suggested in_table 6.2 is the g_dcy;tggi_gf‘o of two non-
bt overlapping (non-overlapping of their pruned rule sets) meta-rules (e.g., MRO1 & MR34).

.3: This important property can be proved-formally (yet. we neglect the proof here), and it

)

3 indicates that. by carefully selecting a set of useful meta-rules. overall system performance
- can be improved greatly (e.g.. MROl & MR26 & MR37 & MR40 & MR45 & MR46).
:::Z However. there seems to be a limitation of the enhancement by combining several meta-
= rules.

-

A 40Tha(is. the benefit of using two meta-rules A and B is (approximately) equal to the benefit of using A

_" ' plus that of using B.

oo
e

AL I AT

-
"
»

- P S SN 2 e DR ol o a U o A S A
ol . . e o
A :.J,\, e TN A

e
CaiN N AN
A s 3

bl it 2 Sl ~ A" Sadh Bhadl el il S iad LA Y e A he St AR v E A Ll A Rt et b JAa® hr® SR ® shul’ ol

Discovery of Veta-Rules 175

Improved efficiency is only desirable in our system if there is no significant loss in
performance. Thus, we compared the quality of the performance with and without meta-
rules by asking whether the top disease diagnosis given by the system was the same as the
expert’s diagnosis and whether the associated degree of certainty was "close” (i.e.. within
.15) to the expert’s confidence if the top diagnoses given by the system and the expert are
matched.*! The results show nearly complete coincidence: the only one imperfect match
exists in an ambiguous case, in which two top diagnoses are given without meta-rules and
only one top diagnosis is given with meta-rules. These results are expected because the
meta-rules simply reorder the invocation of object-rules. If no certain conclusions are

made. all object-rules will be activated anyway.

6.5. Conclusion

Intelligent control of inferences is important in knowledge-based systems for reasons of
efficiency and human engineering, especially when knowledge bases become very large.
In both cases, focusing the attention of the performance program can be accomplished by

reordering and pruning elements of the knowledge base before invocation.

We have presented a general method for discovering meta-level knowledge that can be
used to control inferences of an underlying performance program. The demonstration of
the method is in terms of a rule-based representation of both object-level and meta-level
knowledge. but we believe there is nothing specific to a rule-based representation in the

method itself. The method depends only on representing the elements of the knowledge

4lln the SEEK program [Politakis 82], the top model conclusion was compared with the expert’s conclusion:

however, the expents’ confidence 15 not considered in companson.

'.\ . - - - vy e . e r v oy al s ‘(‘Y"Y“

Discovery of Meta-Rules 176

base in a network, with each node representing a fact and each link representing an
inferential (or evidential) relationship between facts. In the case of a MYCIN-like rule

base this means constructing three additional knowledge structures from the rules

. themselves: an affirming tree. a denying tree and a table of differentials. These are explicit
. networks derived from the object-level rules showing facts that are positive evidence for
other facts. negative evidence for other facts. or means of discriminating between two

i facts.

N
Y
R
R L
3 .

'
' .

These three knowledge structures are analyzed in order to determine sets of nodes and

PR
v

Pey

» 3

o'

links in the whole inference network that can be safely ignored in some contexts because

.
a f
H

P

{_) they are seen to be irrelevant (i.e., false in those contexts). Similarly, the analysis can show
'_;j‘ parts of the network (sets of rules) that should be examined before other parts because that
will increase efficiency.

o7

1 From another viewpoint. the analysis mechanisms (Rule-in, Rule-out and Differential)

. are conditional search strategies because they help to select from a large stored knowledge
L

:\-_::j:j: source the best knowledge to apply. Meta-rules are just heuristics to select good and
I_'l'

x,-’ ‘ useful object rules, and Utility Value is one criterion for weeding out heuristics. Although

we have designed our system to use degrees of certainty, an exact system without
uncertainty can also be handled. It is an extreme case of a system with uncertainty in

which uncertainty is quantized into two levels: True and False.

In summary. the concepts described in this chapter can be casily extended to other Al

systems because:

o Mcchanisms such as. Rule-in and Rule-out, partition the reasoning network

-

et e et okt e m e e en e -
N T e L e el
- f el L T TN

o
4"§
3

2oLy
™

':‘{ v.' -.' n" he
5 _"‘_':::.5 ," ;

4 '. [*
.‘. -'. .I " o q

v Ty Ty B Ty
' .
» »

R

- e,

.. '. I‘ l’

- SRNRRNRR ¢

. P
a1, &
() "é
PRas

<

f
e’ a®2",

)

Discovery of Meta-Rules 177

into smaller sets of knowledge and remove the useless ones. They can serve as
the basis of forming both control and search strategy.

¢ Additional knowledge structures separate confirming and disconfirming links
in the inference network. The nodes in these structures can be any fact in the
world.

e The rules are not necessarily written in a MYCIN-like format. Moreover.
knowledge can be represented in other ways, for instance, in 2 semantic net.

¢ The method can be extended to domains without uncertainty by using only
two levels "Yes” and "No" to measure the certainty.

LR I I R
K%Y - LN
LA f.‘!‘“l‘x '-'_'4'_:‘

-

'J‘_ e

b fl’l“"."’.la

1

Gk A kN L WY

‘- RSN .w

s
S Y S R N Y

by

e gt M s o~ e .

A AT N T e
(NN)'** 4"4'\# -

Results and Conclusions 178

Chapter 7

Results and Conclusions

A learmning model has been developed that is capable of constructing a knowledge base
of rules from a case library and continuously updating it to accommodate new facts. This
model is particularly designed for a domain with considerable complexity, reflected by the
necessity of expertise for solving problems. Reasoning in such a domain often involves
uncertainty and complex evidential resolutions: or in rule-based systems. it implies
multiple interacting rules assigned with different levels of uncertainty (or partial certainty).
Some practical considerations, such as efficiency and error handling, are also explored as

much as possible.

We further develop a method of learning meta-rules from object-rules: this is what we
call "hierarchical leaming”. The leaming model thus implicates compieteness not only
along the time axis (i.e.. the KB can continuously be updated) but also along the

knowledge hierarchy.

The experiments with the system called JAUNDICE. which embodied all the
developed ideas. can serve as a good demonstration of the significance behind this model.
This chapter describes the experimental results, the issue of validation. some lessons

learned during the experiments, and the implicated future work.

......................................
~~~~~




1. A |44 e Yy VW B thl tAR SRb Sl dud Sl B
\':'
~
~
> -t .
¢ Results and Conclusions 179
7.1. Results of Learning in JAUNDICE
~e
'.'_f- In the jaundice experiment. we constructed a hierarchical knowledge base by the RL
I
< program described 1n Chapter 2 from a training set of 72 jaundice cases collected from the
medical literature. The automatically constructed knowledge base has 232 rules including
- 112 intermediate rules (rules involved with intermediate concepts). We then compared
this new knowledge base with an old knowledge base of 141 rules, that was built by
o encoding medical knowledge from textbooks and joumals and is also hierarchically
- structured. The comparison is done by using part of the program of automated debugging
'S described in Chapter 5. The result is shown in table 7.1.
) Table7.1 Classification of 232 new rules learned
from a case library of 72 Jaundice cases with
- the learning method developed in Chapter 2.
e,
::
._:' No. of
, Rules
%
N worth keeping 163
“1
iy conflicting with old rules 1
sy more general than old rules 5
‘ix more specific than old rules 2
o
- exactly same as old rules 33
A
— not acceptabie for
e medical reasons 28
o Total 232 |
- ‘
=
:-J
) .:4
‘f‘-( s ~l I R T T A A N ".M“- R e ‘,. v “ o - AR PR I
.J-PI_.IJ' o N -' o PPN _‘A_ ‘”M . .z . e



il R R R R Il B

w

*
[

NN

Results and Conclusions 180

From the above table, it is seen that 33 rules in the original knowledge base are exactly
rediscovered by learning. It should be stressed here that it is not necessary to rediscover
all expert-generated rules by machine leaming in medicine because even two experts may
write down different sets of rules with equally diagnostic power. The determinatibn of
which rules should be retained is not a simple issue. It is not only a matter of looking up
the textbook or literature but a matter of human judgement. It is often difficult to find a
piece of textbook description that is identical with a rule learned by machine: the rule can

still be true after integrating all the related knowledge.

We then conduct a comparison with respect to the prediction power, which we think is a
much better quality measurement. First, we tested each knowledge base by the original 72
~1ses; the diagnostic accuracy of the new vs. the old knowledge base is 97.2% vs. 84.7%.
But since the new knowledge base is based on these 72 cases, its better performance is
somewhat expected. Therefore, we further tested the knowledge base by 68 other cases
obtained from Stanford Medical Center; these cases received liver biopsy in 1978 and
were not all diagnosable from clinical parameters alone. The diagnostic accuracy of the
new vs. old knowledge base is 72.1% vs. 76.5%. If we remove all non-diagnosable cases
among these 68 cases. we get 42 diagnosable cases (by "diagnosable”. we mean the pre-
biopsy diagnosis made by the physician who sent the biopsy coincides with the biopsy

diagnosis. Note that not every clinical case is clinically diagnosable because a disease may

be in its incipient stage without full manifestation); and the diagnostic accuracy is 83.3%




Results and Conclusions 181

vs. 88.1%* (see table 7.2). The results indicate the new KB is comparable with the old
0 K B. The discrepancy may be ascribed to the fact that many more cases than 72 are needed
to learn rules for even a well-circumscribed domain. Textbooks. after all. encode

summaries of considerably more expenence.

- Table 7.2 Diagnostic accuracy of automatically learned
rules.

01d xB New KB
(141 rules-manually (232 rules-automatically
encoded from textbooks) learned)

v
[
Lia e

Training set
for automatic

learning 84.7% 97.2%
(72 cases)
> Test set 76.5% 72.1%
" (68 cases)

Test set with
clinically

- diagnosable’ 88.1% 83.3%

- cases only

. (42 cases)
;. *: Among the 68 test cases, 42 cases are diagnosable clinically

- (refer to text descriptionsy}).

'Y If we tum off the intermediate knowledge leamer and leam only direct rules (i.e.. only

’
! 42lfwc assign a correct conclusian a quantty "1™ and an incorrect conclusion or non-conclusion a Quanuty
3 “0" for each test case and e use a staustical techmaque called “pawed t test” (refer to [Croxton. Cowden. and
- Klein 67]) to determine whether there 1s a signtticant difference between the old and the new KB for making
:: conclusions. the result 1s “t=1433" which tndicates the null hvpothesis is accepted. or there 15 no sigmificant
>, difference.

[ o




S R T N NN NV I N NN TR
ERRIPEREN Ha

Rlak
AP R N e N e LI
PR D A DAL S R

PRSI WA S S o b

< AR AR AIN i s e e e E M

Results and Conclusions 182

step 1 described in Section 2.5 is tumed on), we obtain a knowledge base of 185 (direct)
rules: this knowledge base without intermediate knowledge can save execution time® o
some extent if compared with the knowledge base of 232 rules (recall that the average
system execution time is roughly proportional to the number of rules in the knowledge
base). but the diagnostic accuracy tested by the 42 diagnosable liver biopsy cases drops to
61.9% (vs. 83.3% if intermediate knowledge is added). Here, we may notice there is a
tradeoft between execution time and quality of performance. We further notice that cases
which can be diagnosed correctly by the knowledge base with intermediate knowledge and
cannot be diagnosed correctly without intermediate knowledge are cases with incomplete
data. It seems clear that intermediate knowledge can improve the system prediction power
particularly if only partial information is available. Moreover. intermediate knowledge
provides much better understandability and explanation capability. For instance. in our
experimental domain, the incorporation of intermediate knowledge can explain the
underlying pathological and anatomical mechanisms of jaundice and make the diagnosis

more convincing.  Based on the above considerations and discussions, leamning

intermedtate knowledge is justified and desirable in expert systems.

Shown in figure 7.1 are two well-known medical rules related to jaundice actually

rediscoverad by the program.

l- l' . .
"“ L
F R

Al i
I R

Fs 43 |
;\-‘._ “The executon ume is closely related to the acceptability ot an expert syvstem. In medicine, physicans are

'.:-: . often impatient o get dnswers: in real-time situations, the decsion muking must be quick ‘
|
q."-" . .

NN
«"..*";
)

Pl

N
[ 2
S
~
.

-5

W v . P P R LI AN S PR S T . Nt e et e
R A WA . AN T o e
-‘ stailh ’ N . e AL 3 - . . . L B T ~




RD-R171 794

UNCLRSSIFIED

LEARNING OBJECT-LEVEL AND META-LEVEL KNOWLEDGE IN
EXPERT SYSTEMS(U) STAFORD UNIY CR DEPT OF COMPUTER
SCIENCE L FI NOV 85 STRN-CS-86-1891 N@8839- 83 C-0136

3/3




KL NS

LA o
G,
o« 0 S

SN

]

-

.
1%

.

L4

<

e w
o)
g
g

&Y
N4, K,

25
A
5

L 4
»
o)
A

5

k3

o

<
P

3

’
-

1
PR

\™

£ «
‘.;J" .

SANT S
v,
.'."_ll‘_i

h]

‘s
"

.’

:

b

_..
—
.

-

B S
Tg
@ (Wliro
s iz

=ik
TR

l

o |l

I e
Ii2s fhis e

MICROCOPY RESOLUTION {LST CHARI

NATIONAL HOIEALT 10 JANDAR(S e A

(W WY, AR S
" }. J' e TP
%-l J!L.‘[AL‘ ::\ -". {\-‘.. = )

-Jl.'.a\_,." )




-
G Results and Conclusions 183
LS
b
Q‘. .
h\ ..
4 \',.
s
LT harcot's triad:
TN "If 1. serum bilirubin is elevated.
. 2. one of symptoms is shaking-chill.
oy 3. one of symptoms is rt. upper colicky abd. pain.
!yﬁ then it is probable (.9) that the disease is
oy Calculous-Jaundice.
Ly ‘t
“.. N
Courvoisier's law:
v “If 1. one of signs is palpable-gall-bladder.
ot 2. Gall-bladder is not tender.
o
Ny ~ then it is probable (.8) that the disease is
' Neoplasm.
X
';2% Figure 7.1 Rediscovery of two well-known medical rules
o by machine learning.
o
v 7.2. A Sample Dialogue of Interactive Mode in JAUNDICE
%
90y As described in Chapter 1 (also refer to figure 1.2), there are four main subprograms,
- . . .
2 each written in INTERLISP and running on a DEC 2060: the performance program, RL
N
LA
’}_3 (the object-level rule learning program). the debugging program. and META-RULEGEN
T .
W (the meta-rules learning program). Programs occupy a memory space of about 12§
f_(;,’ disk-pages‘“: the knowledge base and the database occupy about 135 pages.
D) -)
;& :
f::-’; The performance program has two modes: interactive and batch modes. Interactive
__I_ mode receives the user’s input interactively, handles cases one at a time. and is designed to
v
! _f be a consuitant. In contrast. batch mode handles multipie cases at one time: it's purpose in
R
W
1
i “, .
:ﬁ A disk-page has 512 computer words.
-,
=]
"-.

Al
e ey o " e AT o W
~ ..’ '1 '~ ’ '# .‘ .4“ 4’ RV, <
RO h"".,'.. vy -.'.“‘\- w . * Aty “ .' 'C.\ o .“' » \I ~

N T O TR



Y e . - » Ty - . g - s O . U . , v . * v ~ YTT.'T\—*:"‘"vv‘V\"

o

N Results and Conclusions 184
.
B
“u
s
W . . .
- JAUNDICE is to test the system performance by running multiple cases stored in the
K) database under the following situations:
>
. 1. The knowledge base is edited. The modifications to the knowledge base
R should be tested by the old reference cases. Refer to Chapter $.
i 2. The effect of meta-rules is to be tested. The meta-rules selected by utility
- value are further verified by running cases. Refer to Chapter 6.
W)
Running interactive program for a consultation, exploiting all available facilities in the
: program (e.g.. explanation, debugging the KB, etc.). takes about 10-20 minutes (clock
5 time) under ordinary conditions® depending on the complexity of the case entered. The
4
et main portion of time is used for input/output and machine learning. If invoked, leaming
[} il
" may become the bottleneck in such a program. Although learming and debugging may be
s
w
s carried out after the consultation, our ambitious goal is to develop a program which can
% learn fast enough to exchange ideas with the expert "on-line". In order to improve it's
o
'.“_ practical value, CONDENSER (described in chapter 3) is invented: and it proves to be
1
N useful in conducting a consultation involved with leamning and debugging at a reasonably
x good speed.
&
o
- The following subsections show an annotated sample dialogue which is organized stage
. by stage. The demonstrated case is initially misdiagnosed (mismatch between the expert
Y
o diagnosis and the system top diagnosis). The system finally manages to make a correct
b
ba diagnosis after automatically debugging the knowledge base. This demonstration is not
N for showing how the user can communicate with the computer through manipulations of
:‘ the built-in commands. but rather, it intends to show the ability of leaming in such an
- |
o 45T‘he computer facility is ordinanily loaded.
-
)
-
.-I'
L
L4

_..-&5 iy

1} () o) L .

oS

SRSy

LR
’wr\,-('-l

v
-J'.'

\ -




s

-
.

"

ﬂﬂ.
RIOARA

L

S X X XX XX X
SV
L2

LA LA
et S .
LA "4,'1-_"\!«.

4

Results and Conclusions 185

expert system. Notice. however. the leaming and debugging with respect to a certain case.

as demonstrated here, can also be done non-interactively.

{In the following annotated sample dialogue. the user input appears only after the

arrow head ">".}

7.2.1. Gathering Information

The program starts with collecting information by interacting with the user who enters
an answer for each question given by the program. The answer can be of YES-NO type or
numerical. The user can enter "?" if he doesn’t know, or he may enter a real number from
-1 to 1 to indicate the degree of certainty (confidence) for YES-NO type questions. Since
every new case for consultation will be recorded in the database. the program intends to
collect all possible information that it thinks is worthwhile. For example. if the patient for
consultation has hepatomegaly., the program will continue to ask the degree of
hepatomegaly. The JAUNDICE program is designed to scan jaundice patients
preliminanly before invasive or advanced laboratory tests have been done. And the data
entered are assumed to be the most significant data so far as the recent episode of jaundice

is concemed.

1. What's the patient’'s name?
>FRED-SMITH

2. What's the sex?
>M

3. What's the age?
>65

4. What is the serum leve: of TOTAL-BILIRUBIN (mgrdt) ?
3.2




o
"
o Results and Conclusions 186
AN
n-\q
:
" A 5. What is the serum level of GOT (I.U.) ?
G >210
)
Y
-2 6. What is the serum level of GPT (I.U.) ?
v >280
1}
Wt 7. What is the serum level of ALKALINE-PHOSPHATASE (B.U.) ?
‘_'»‘1 >37
.',_l
. 8. Is the COURSE of disease STATIONARY ?
‘o >YES
N 9. Is the ONSET of disease ABRUPT ?
b ::-*. )NO
‘\..'0
A}
2 10. Is one of SYMPTOMS HEMATEMESIS ?
e >NO
i
" 11. Is one of SIGNS SPLENOMEGALY ?
9y >NO
Ry
Y
<3 12. Is one of SIGNS ASCITES ?
~ >NO
. 13. Is serum ALBUMIN DECREASED ?
o >NO
e
o 14. Is serum GLOBULIN ELEVATED ?
{7 >NO
P
- 15. Is one of SYMPTOMS MALAISE ?
P :\ >NO
W
ol 16. Is one of SYMPTOMS ANOREXIA 7
;Eﬁl >NO
. 17. Is URINE-UROBILINOGEN ELEVATED ?
:i >NO
<
AN 18. Is one of SIGNS HEMOGLOBINURIA ?
- >NO
L]
S 19. Is BILIRUBINURIA PRESENT ?
Wy SYES
s
Nt 20. Is RETICULOCYTOSIS PRESENT ?
‘ >NO
b
‘A
21. Is ANEMIA PRESENT ?
(7’ >NO
i,\{‘
o 22. Is RATIO-OF-[NOIRECT-OVER-DIRECT-BILIRUBIN >3 ?
o >NO
.I )

el
S IATRR P
‘Ml'gmf.‘.‘.(‘




r
4 At

NG

s

PR AN AE)
»
3, .'l [l

" s

o' 2"

X

U4

ol DRk #
4 ﬁ;k %

r

2]

"k

s ,‘.J
% ",

¥

(

5 st

I

11
SN

.
1 W

B » T
TSy

AN ‘e .i- ll- 'u' S

wAN

A

Results and Conclusions

23. Is one of SYMPTOMS INTENSE-PRURITLS ?
>NO

24. Is one of SYMPTOMS COLICKY-RT.-UPPER-ABDOMINAL-PAIN ?
>YES

25. Is one of SYMPTOMS FEVER ?
>NO

26. Is one of SYMPTOMS SHAKING-CHILL ?
>NO

27. Is one of SYMPTOMS CLAY-COLORED-STOOL ?
>NO

28. Is one of HISTORIES DAILY-FLUCTUATION-OF-JAUNDICE ?
>NO

29. Is the COURSE of disease RECURRENT ?
>NOQ

30. Is one of SIGNS PALPABLE-GALL-BLADDER ?
>YES

31. Is GALL-BLADDER TENDER 7
>NO

32. Is GALL-BLADDER NODULAR ?
>NO

33. Is one of SIGNS HEPATOMEGALY ?
>YES

34, What is the degree of HEPATOMEGALY ?
1). MILD 2). MODERATE 3). MARKED

>1

35. Is LIVER COARSELY-NODULAR ?

>NO

36. Is OCCULT-BLOOD of STOOL PRESENT ?
>NO

37. Is one of SIGNS LOWER-ABDOMINAL-MASS ?
>NO

38. Is one of SIGNS EPIGASTRIC-MASS ?
>NO

187




s Ty 1 age . et 2ot S Sah At Sod Mol 4

i Results and Conclusions 188
'§
.'-
AN
’-. 39. Is one of SYMPTOMS B.W.LOSS ?
> >YES
S .
¢ 40. What is the degree of B.W.LOSS ?
3 1). MILD 2). MODERATE 3). MARKED
1~ >1
o\
‘SO 41. Is one of HISTORIES RECENT-TRAUMA ?
P >NO
42. Is one of HISTORIES RECENT-SURGERY ?
>NO

43. Is.serum ANTI-MITOCHONDRIAL-ANTIBOOY ELEVATED ?

A Ay

v

@h >NC
}ﬁ 44. Is one of SYMPTOMS ABD.-PAIN-RADIATING-TO-RT.-SHOULDER ?
' >NO
- 45. Is one of SYMPTOMS VOMITTING ?
*: >NO
. 46. Is the ONSET of disease SINCE-CHILDHOOD ?
-, >NO
{¥ 47. Is one of HISTORIES RECENT-EXPOSURE-TO-HEPATOTOXIC-AGENT ?
> >NO
Lt
48. Are there any associated diseases or complications?
V: >NO
o ¢
R} ,.’
<
o
W
f:.': 7.2.2. Providing Interpretations
5
f::j From the gathered information (that was also recorded into the database). the
‘? performance program draws inferences about the likely diseases and underlying
t"
‘J . . . .
.:j mechanisms. based on the knowledge base. During processing, a dynamic database is
b
b \J . ] )
! constructed which records alt deduced facts (intermediate and final conclusions). which
— are then printed out.
o
N
$-J y S S T IR T i R RIS -.,a_ R T Y
5“"-\P" "-. -"'-"' " "' o oy s'~"-."'-.'-'. O '-""f' Ty '."' " '-'.'w Ay - \"‘\. ‘4. . \ '\. s'-'— """ "‘.'_ o




5 ’ ¢ -
e
e
v,"o.
! l'l
0k Results and Conclusions 189
wis
. \ i.
‘ \! .
) \‘h
3
.{:¢
v
3
K A \.:
‘30 ees [NTERPRETATION: ***
h N‘
>
LA
The Mechanism of Jaundice: Cholestasis, decreased bile flow due to
’ obstruction of biliary tract.
ot
‘ﬁ;{ Pathological conditions: Cholestasis, Inflammation,
L
"‘{ Anatomical diagnosis: Gall-bladder disease
L2 i : ,
= Disease diagnosis:
Yo CALCULOUS-JAUNDICE with degree of certainty .58
R NEOPLASM with degree of certainty .41
o
3 \ . .
o {The performance program of JAUNDICE provides interpretation for the currently entered
K. case. which includes: disease. mechanism of jaundice, pathological and anatomical conditions.
Performer (the performance program) is goal-oriented type Reasoncr. Concluding disease entity
e
::}f that causes jaundice is the main goal; concluding mechanism and pathological states of jaundice is
<.
' the subgoal. The conclusions arc made by invoking rules stored in the knowledge base. Because of
A
- the sophisticated nature of medicine, the interpretation will be more credible only if it incorporates
LN
oy the underlying pathological mechanisms besides the disease entity. In this scheme. the disease
MW
i diagnosis will fall in a ten disease category. Diseases are generally assumced to be mutually
(]
1S exclusive. So, if one diseasc is definitely concluded. other diseascs will be denied. However, there
aTs might be several discases concluded if they all are not definitely concluded. [n the final returned
A
A list of disease diagnoses. it only contains the discases whose degree of certainty is greater than ".2".
-0
! :j',: Though the general assumption is "mutually exclusive” among discases. the implication of
. cocxistence of discases may be made if more than one discase reach the top degree of certainty
”
X .tA' simultancously.}
) .:.i

‘3

£
4

e 2

.
o,

.. TR e e TR e T e e T T T e e e e e T T T e e e e ST oLt

e e e e e e e e e e e e R A AR AP SR P
.. . - T e e RPN - . Tty e e e e

L TP WP ST R RPN R S L DT AP S PN WS AR RSP T AP VST A P,

.I
w7

»

P

)
« N




C Y ’ < ag-ag. e - Py B
i : can- w ‘r'wrwvwwwam

Y
,'
& Results and Conclusions 190
1% .
N 7.2.3. Explanation
< JAUNDICE only provides an overall explanation for the conclusions made. That is, the
¥ program summarizes all the knowledge used for making conclusions. This is quite similar
L J
v, to the way an expert analyzes a case. Because of explanation. the user gains a better
w
:: understanding about the reasoning basis of the system. Therefore. we may view
; explanation as an error-checking mechanism with respect to both the system and the user.
!
1S
K - Do you want an explanation for above diagnoses? (Please enter Y or N)
19 Y
:- ?
; Bilirubinuria, elevated ALKALINE-PHOSPHATASE more than 15 B.U. and
- absence of URINE UROBILINOGEN ELEVATION are evidences suggesting the
mechanism of jaundice is "Cholestasis". Elevation of both GOT and
., GPT indicates pathology of "Inflammation". The sign of PALPABLE-GALL-
X - BLADDER and the symptom of COLICKY-RT.-UPPER-ABDOMINAL-PAIN indicate
- anatomy of disease is: "Gall-bladder”. Thus, "CALCULOUS-JAUNDICE" is
i the most likely diagnosis. However, in this case. this diagnosis
- should be differentiated from "NEOPLASM". Though it can't be ruled
out. the evidence tending to deny "NtOPLASM” includes the fact that
- the course is STATIONARY.
h:‘
. {Since JAUNDICE is a rule-based expert program. the provided explanation is based on the
N
> involved rules. [f a fact is concluded. by tracing down the rules for conclusion. the program can
B
collect alf the relevant cvidences that support this conclusion. Similarly, the program is able to
:_': gather discontirming evidence if a fact is denied. A good explanation can be arrived at by this
&-
N means 1f the knowledge base is constructed hicrarchically. Because of the complexity of medicine. a
. togical explanauon should be given level by level, starung from discussing pathological and
_";~ anatomical mechanisms or states and ending up with concluding the discase entity. In order to
',:: augment the explanation capabiluy, more knowledge about causal links and axonumy is required.
“u which s coded into $0 non-dagnostic rules in the knowledze hase.}
("
-
o
~
N
“
Y

.-

R i
S

WY e g amy e AL e
1"-’-.’-" W o (rq." [ --'~-

S SRR




o -y e PN ame e g - - ol aa v, - "t MY BT M. e bt i dies Jhae Gk fas Sef ghek b ek Zhed S-Sl el e 4

¥
)
1 Resuits and Conclusions 191
Pt

.
’ ,“
M 7.2.4. Asking for the Expert’s Diagnosis

':_-I The program may receive the feedback from the user if he is an expert. [f the system
jf conclusion matches the expert's, the consultation will move to the next case: otherwise the

knowledge base will be debugged.

4 s
3

"o
3§
| aeeeemsecseasaca o e —-—--
' -
- Are you satisfied with the result? (please enter Y or N)
-:,': >N
N Why are you not satisfied?
o 1 Because the top diagnosis is not your diagnosis!
% 2 Because the top diagnosis 1S not certain enough as expected!
2.

o~ (please enter number.)

g >1
[v What is your diagnosis?
o 1 Acute hepatocellular hepatitis
‘o 2 Chronic non-cirrhotic hepatitis
N 3 Hepatocellular cirrhosis

4 Primary biliary cirrhosis
- 5 Calculous jaundice
I 6 Neoplasm
7 Cholestatic heonatitis

. 8 Hemolysis
3 9 Congenital conjugation defect
e 10 Congenital excretion defect
(. (please enter number)
. >6

{The program allows the user to enter his opinion about the diagnosis. Though not indicated

0 |

here. only when the user is an expert. he is allowed to do so. The expert may hold a different vicw

cither hecause he thinks the diagnosis should be a ditferent discase or because the wp system

)
e

v.

diagnosts is not as certain Js he expects. In the furmer case. the program will continue 0 ash the

AR R




Results and Conclusions 192

expert diagnosis and then the learning program will be tnggered to find missing rules or correct
rulcs in the knowledge base so that the expert diagnosis will become the top diagnosis: in the latter
case. the learning program will also be be tniggered in order to make the diagnosis more certain. [n
the example here. the expert diagnosis is NEOPLASM. and the top system di:ignosis
CALCULOUS-JAUNDICE. The objective of the program at this point is to make the diagnosis

NEQPLASM become the top system diagnosis. For more detail. please refer to chapter 5.}

7.2.5. Debugging the Knowledge Base

In this example. since the expert disagrees with the system on the diagnosis. it is likely
that something is wrong in the knowledge base. The program may first ask the expert to
edit the knowledge base if he can. Suppose the expert doesn't know how to do it either
because he is not familiar with the procedures or because he can only teil the diagnosis
from the overall clinical picture but cannot abstract some medical rules from it, the

program will take over the debugging task. The following computer output shows how the

knowledge base is debugged automatically.

Would you like to create new rules or edit old rules?
>N

{If the answer is YES. a program like TEIRESIAS {Davis, 1979] or Emycin KB editor [Van

melle, 1980] will step in. which allows the expert to cnter new knowledge or edit old knowledge.

However. in JAUNDICE. this part s not implemented mainly because it is not the focus of this
thesis. }




l- f. " ‘l

P}
A

A
als

-

',
4 \
'

»-
_ a_4 £
LI § FYin |
AR I

F i o

L

A o
2t

s

R
. AR

X

Results and Conclusions 193

Based on your diagnosis, let me figure out if there are missing rules
or bugs in old rules.

{(Please wait!>

[ have scanned the conditions of rules for making conclusion, which
include: R38, R45, R93, R113, R135. R153. Since they are sound and
compatible with the case library, I suspect there might be some rules
missing or some rules which should be corrected if your diagnosis is
right. Now, I will first create new rules to support the diagnosis
"NEOPLASM" and disfavor "CALCULOUS-JAUNDICE” on the basis of the data
you entered: then I will inspect old rules to see where the bugs are.

{Please wait!>

The following are newly learned rules:

NR1: If
1 COURSE of DISEASE is not RECURRENT
Then
It is possible (.4) that DISEASE-ENTITY of PATIENT-JAUNDICE is not
CALCULOUS-JAUNDICE !

NR2: If
1 ONE of SIGNS is PALPABLE~GALL-BLADDER
2 GALL-BLADDER is not TENDER
Then
It is probable (.8) that DISEASE-ENTITY of PATIENT-JAUNDICE is
NEOPLASM !

Now, I try to debug the oid rules by comparing them with new rules
created.

(Please wait'>

I found NR1 is redundant with R135, so NR1l is not necessary. From a
definition rule R45, LHS of NRZ is "COURVOISIER-LAW", then NR2 becomes
a generalization of R93. Conclusively, there are no missing rules;
the only bug 1s: R33 should be generalized into NR2.




Resuits and Conclusions

{ A0 tius poine since the expert doesn't know how to edit the knowledge base (though he knows
what the correct diagnosis should be), the task is taken over by the so called automatic knowledge
basc debugeer which essentially has two main components: the learner (the learning programy and
the debuozer (the debugaing program). First, the program checks all invoked rules to make sure
whether they are right. [f those used rules are not right, then they arc corrected and the case 13
re-run to see whether a correct dragnosts can be reached. [n this example, however, the invoked
rules are all right; thus the fault may be atnbuted to some missing rules or some rules that should
be imvokad but were not. If cach rule in the knowledge base has been checked constantly with
respect to the current case library. then itis not necessary to recheck them when a musdiagnosis
occurs. [n our scheme, we assume there 1s a database. from which a knowledge base 1s constructed:
the knowicdge base is then constantly updated on the basis of the continuously growing database:
though the database may he pruned to a reasonable size without disturbing its staustics. Suppuse
the initial knowledge base s built by human experts, the knowledge base needs w be tested by the
database. and somchow there should be compatibility between the knowledge base and database.
Here, a strategy called “retrospective inspection after learning”™ is employed. lgnore temporarily the
old rules 1n the knowledge base: all rules related to this case are found by learning. Then, by
comparing old rules with new rules, bugs are found. In this cxample. R93 is found to be to

spec:tic and causes the misdiagnosis. For more detail. please see chapter 5.}

Aftar knowledge base has been edited, interpretation becomes:

The Machanism of Jaundice: Cholestasis, decreased bile flow due to
obstruction of biliary tract.

Patnnlogical conditions: Cholestasis, Inflammation.
Anatomical diagnosis: txtrahepatic biliary obstruction

Dis=2ase d1agnosis:

NEDPLASM with deqgree of certainty .6
CALCULOUS-JAUNDICE with degree of certainty .39

194




I

Al

®,

727"

il

T T
¥

.
arial
‘s

et e? Y,

- —~
atatala

X 2 e

o~

22" "%,

3

v
&
)

Results and Conclusions 195

{After the knowledge base has been edited. the pertormance program re-runs the case and prints
out the result which may give a feedback to the expert. [f the expert diagnosis ts correct and the
knowledge base is defective, then a correct diagnosis can be obtained after this debugging. [f the
diagnosis is the same after changing the knowledge base as before or no bugs are found. it might
imply that the expert diagnosis is wrong or the data are incomplete. Not indicated here is that the
modificd knowledge base should be tested against the old reference cases to sce whether the old

performances are still maintained. }

Do you think NR2 is a right rule?
Y

{Even though the expert may not know how to edit the knowledge base. he might know whether

the new rules are correct or not. To criticize is easicr than to create.}

The knowledge base has been debugged, but I still have to confirm it by
consulting my advisory experts.

{This message indicates that the changes of the knowledge base in an expert system should be very
cautious! }

Do you have more cases for consultation?
>N

THANK -YOU!

7.3. Validation

The main focus of the JAUNDICE program is its leaming ability. In this section. we
only describe how to evaluate a learning system. (Refer to [Buchanan and Shortliffe 84]

for the methods of evaluation of a performance program.)

D N A S e e R o S T SO S L FOETR Y
SR W :._ SR SN \.\-; RN A

-




23
AN Results and Conclusions 196
e
i
.5\‘ 7.3.1. Rediscovery of Well-Known Concepts
5. 0
}\5 Rediscovery of some well-known concepts has been used by researchers as a way to
.
‘-'?:-f validate the leaming methods; for example. rediscovery of prime numbers by AM [Lenat
Ll . )
N 83}, and rediscovery of Ohm’s law by BACON [Langley 83]. Perhaps, this is one way to
"‘x
‘:::- build confidence in machine leaming. As seen in figure 7.1, our leaming model is also
! _,:.:_ .
b.{5¢ capable of rediscovering some well-known medical rules for diagnosing jaundice.
0
0N 7.3.2. Testing Generality in the Same Domain
K-
*': [n inductive concept leaming, we desire to find concept descriptions (or rules) that are
b 4
L
- consistent not only with the given set of training instances but also with all instances in the
.f:-\,‘_: given domain. Accordingly, the soundness of a learning method can be reflected from the
generality of the result it produces. For this reason, we apply the learning result not only
_-:'-'.-;: to the original training set but also to another set of test cases collected from the Stanford
o Medical Center. The result, as shown in table 7.2. indicates sufficient generality in the
S
) jaundice domain and this in turm implies the soundness of the leaming method. Notice.
A
S however, if the training set is poor. the result will be poor, despite a perfect learning
X
o
“~
o system.
aE
; 7.3.3. Testing Generality in Other Domains
. Domain-independence or generality has been emphasized in designing Al programs.
_r_ The development of our learning model is partially in response to this consideration.
P
P
__-'t_f_ Here. the generality of the developed RL program. which has been employed in
L JAUNDICE. is assessed by applying it to another domain named REFEREE.
1SR
o
s
e "
PR LT)
‘ .;"-I:'-’ - "‘.": SN AT f"r M IR "4. SN s"' "'s"i‘f. N ‘""""".r-"'~'r$"{""-"':":;"L":"-J:'.’":' 20 NG
). J‘, oy . ) A



Resuits and Conclusions 197

REFEREE is an expert program written in EMYCIN for evaluating the quality of
medical papers (refer to [Haggerty 84] for REFEREE). The conclusion is based on the
parameters which deal with the reputation of author, journal. and institution. and the
execution scheme, and the statistical analysis. For example, the parameter "Placebo-.used"
denotes a placebo was used in the experiment. Figure 7.2 shows an example of a rule in

REFEREE.

Rule061: If 1. The quality of planning is unknown.
2. A biostatistician was sufficiently involved.

then it is possible (.3) that planning is good.

(RULEO61 ((SAND (SAME CNTXT PLANNING-UNKNOWN)
(SAME CNTXT BIOSTAT))
(CONCLUDE CNTXT PLANNING-GOOD YES TALLY 300))

Figure 7.2 One example of a rule in REFEREE.

We first construct a set of training instances as follows. Each training instance is
generated by a heuristics-based case generator and then concluded by the REFEREE
program:46 the heuristics used are based on the KB in REFEREE: eg., the relative
weighting for each parameter in making conclusions. Thus, each training instance has data
descriptions and a correct classification. Since we believe the cross-prediction experiment
(i.e.. the result learned from one case library is applied to another) is the best
demonstration of the validity of a leamning method in a given domain. as illustrated by

JAUNDICE. we apply this strategy to testing the generality in REFEREE. Sixty cases are

46We didn’t collect the real cases because the team working on this system has only a limited number of
cases in storage: and another difficulty is that the parameters used by the program. such as the reputauon of
the authors. are often hard to « buin by the people ouwside the field.

&)

N RAe . o R P RN P I N A - -

P R T R i S A N R S e S e R T
"S‘.\i"\’"‘, A S CA AN AL o




-“
.

ERAN

4
I

:'."..\1 ]

AT

W

v "'-

*
2as St S

Sy,
AN

ank

o020

s,

~

(l ‘l L]
:‘ !. ". l“ l‘. l‘. 1

o

Results and Conclusions 198

generated and then divided into two parts; the rules learned from one part are tested by
another. and vice versa. The results, as shown in table 7.3. support our assertion of
domain-independence: i.e.. we have demonstrated the value of the developed learning

model in a medical domain (JAUNDICE) and a non-medical domain (REFEREE).

Table7.3 Experiments of learning in REFEREE expert system.
Rules learned from one case library are tested by itself
and another case library, and vice versa. The diagnostic
accuracy of every test is shown here.

Library A Library B

(30 cases) (30 cases)
New rules (A) 96.7% 93.3%
New rules (B) 80.0% 90.0%

New rules (A): Rules learned from library A.
New rules (B): Rules learned from library B.




\ q',..\
5

"4
ERS ;
=\ Results and Conclusions 199
oy
.

‘r.t‘

S LN
s

ok 7.4.1. Basic Assumptions
A . . .

A The assumptions are the following: most of the training instances should be correct and
A
’. ﬂ . .

E} the descriptive language should be adequate (i.e.. without causing inconsistency) to
] describe the concepts to be learned. Although we use optimization techniques described
LS
O in Chapter 4 to make the learned rules consistent with most of the training instances.
g
*..-. . . .
unless most of them are correct. no good results will yield. Inadequate descriptive
(o language will cause inconsistent leaming problems (i.e.. no perfect solutions) {Mitchell 78].
S5

Rt ‘."_“ .

L Some work has begun to explore the problem of creating new language. e.g., [Utgoff 82];
e
‘,1 however, this is still a difficult issue.

19
S 7.4.2. Requirement of Domain-dependent Knowledge and Heuristics
b,

1 . . o sl
‘ The success of Meta-DENDRAL [Buchanan 78a] is a demonstration that the initial
~‘:'.: domain-dependent knowledge (coded into a "half order theory") is crucial for leaming.

B -,

o However, our experiment proves that it is possible to build a new KB with adequate
,: performance without initial domain-dependent knowledge.47 This seeming improvement.
i []

Y . . .. .

i\‘: perhaps. can be explicated by the relative adequacy of the selected training instances and
N . . . .
‘,a: tractableness in the domain we choose. Even so. the success of our leaming model still
)

relies on some domain-dependent heuristics; i.e., we define minimal generality and

o
T specificity. Then, what's the difference between the initial knowledge (or half order
3=
o theory) and heuristics? [n fact. they both represent "constraints”. In our view, learning is
‘ a heuristic search, the more constraints. the narrower the search space: if the constraints
_‘;f-Zj are accurate. the learning is made efficient: otherwise the result may be distorted or
" 47However. correct classification of cases by outside expens requires a lot of domain knowledge: Meta-

- DENDRAL did not require this.
oY
"-‘v

w

MRS R N

: R e R R L T e e N T
2t L T S A S A S T S AN T L IO R

e I .
Al

¥ V)




N i A g i ket s sl aad- ARACaRtrali ek il ol i alirafih” skl st el '.T

e o

l¢‘

N
e Results and Conclusions 200
b *.

il incomplete. Accordingly, we often choose the constraints that represent high level
“-_f abstraction and are well-established and thus bear broader and more meaningful
B .
L
oy implications. The program CONDENSER (see Chapter 3) also demonstrates that

_ v machine can generate a proper bias and displace in part the requirement of the initial
0y domain-dependent knowledge.
9'| p
Y
) 7.4.3. Case Selection
::;: In learning from examples, the importance of this issue is never overemphasized. Near-
~
\"-

- miss negative instances [Winston 70] are important to discover the discriminant features

. and are also important in the theory of condensation (described in Chapter 3). Careful

.
| J- . . - . .

o selection of instances can expedite the convergence of a concept [Mitchell 78]. It is
N

7,

» desirable that machine can generate any instance that it thinks can help leamning: the
x':::'- restrictions often come from the want of a technique for verifying the generated instances.
o _

o 7.4.4. Domain-Dependent Rules of Generalization or Specialization

J
;:-: The rules of generalization used in the learmer should be tailored to domain
>

‘--:' . . N . . . .

L characteristics. Were it not for those domain-specific rules of generalization. the results of
. ,,-.:

_ ) learning may be of poor quality. For example, the "take minimum™ rule is designed for
= medical domains (see Section 2.1.1): so. a common generalization of "(GOT 200)" and
~
s "(GOT 400)" is "(GOT 2200)". On the contrary, if we use the "changing constant to

»
Shed variable” rule (not used in JAUNDICE) for the above example. the result is "(GOT x)".
:::.3, which means "GOT can be any value” and is. in fact. less medically meaningful.

w4

o
o o .
R AT AN N -3 -




~

. 1' :’J“J B

-

:-lr

OO YAk
PR S

Results and Conclusions 201

7.4.5. Representational Adequacy

Here, instead of discussing general representational schemes. we focus on how to
represent appropriately a given fact within a given representational framework. A good
representation denotes a representation that is “simple” but “"meaningful”. | The
CONDENSER program (described in Chapter 3) is an example of dynamically
representing the instances during learing in order to achieve operational efficiency. Still.
the representation of feature values is important. For example, we use values: "mild".
"moderate”, and "marked” for a clinical feature "HEPATOMEGALY", instead of the
real measurement of the liver size. Here, we illustrate how an improper representation can
hurt learning. Consider two different representations for two positive instances: “posl”
and "pos2”, and one negative instance: "negl”, with only one clinical parameter "GOT"

as follows:

Representation I:
posl: (GOT 200)
pos2: (GOT 400)
negl: (GOT 100)

Representation II:
posl: (GOT mildly-elevated)
pos2: (GOT moderately-elevated)
negl: (GOT mildly-elevated)

It is straightforward that representation 11 causes inconsistency while with representation I.

we can find a description “(GOT 2200)" which is consistent with the three instances.




i - DEC " gt el shan dhgd Shnit Bl A® Sk Aod 4 \'\"."..'TV:'T
b
X Results and Conclusions 202
2
-"h'
- 7.4.6. Rule Redundancy
,-::j Since. in EMYCIN-based systems. evidence can be combined, redundancy will cause
-Z; the same piece of evidence to be reconsidered more than once and make the conclusion
L imprecise. Too many redundant rules may also jeopardize the efficiency. Syntactic
: redundancy is easier to detect than semantic redundancy. by which we mean two different
e
K rules look different but imply each other. We may further make a distinction between the
j following conditions: redundancy between rules and redundancy between rule sets: by
-, the latter. we mean two sets of rules make the same prediction for every case. The RL
? program is able to remove syntactical redundancy; however, it is often hard to determine
semantical redundancy particularly between two sets of rules except definitional
. redundancy. In our experiment, we found the influence of semantical redundancy is
negligible: moreover this redundancy is useful when data are incomplete and only one of
= the redundant rules is fired [Buchanan and Shortliffe 84].
-
J 7.5. Comparison with Related Work
13
i‘ Among the related work.®® Meta-DENDRAL [Buchanan 78a] may be the most closely
e
‘e . related work since it also employs a heuristic search from the most general hypothesis and
can discover multiple disjunctive rules. The sophistication of Meta-DENDRAL may be
oy due to its task-oriented approach: it also implies some critical issues in learning, such as
l.‘.
' efficiency and noisy data. Meta-DENDRAL, successful as it is, however, lacks the ability
P
O\
g
4 .Y
:‘ -\;‘ 48ln the aspect of acquinng new knowledge by machine learming, parucularly leamning from examples,
10y refated works include: {Haves-roth  76). [Hayes-roth 78}, [Hunt 66]. [Hunt 75} {Smith 77). [Larson 77).
e {Muchalsky 77[, (Michalsks 78] (Michalski 83af. (Quinlan 79]. {Quinlan 83]. (Samuel 67]. [Vere 75]. [Pawlak 81},
:: [Holland 80). [Anderberg 73], {Buchanan 78a]. See [Cohen and Feigenbaum 82) and [Buch:nan 78b] for more
"‘, discussions of these systems and other references.
.4
Ws

TS L
A T .\.':“."'..;r\
g . all A AN AL RSN

PR AT e e AT T IO Py P T P N TP L LI R L
Rt S O A e T AR SRt
: . 4 B LT b A X ¥ o M Ny e A ACx




feld
ale

..,.'
LA N

‘ e
AR

o
LYy
. ¢ 5 %

2 talal t.,l‘l"ﬂ

LI T T 3
. .
2ot

Y »
e [I
et

. .'l"..l
oW

.‘,
LU

Results and Conclusions 203

of incremental learning. As the evolution based on the previous works on inductive
concept learning, the learning model developed in this thesis is intended to theorize on
several issues, some of which may have already been noticed in other works, and provide
unified solutions for them: for example, feature condensation to improve efficiency.
optimization to handle noisy data, and incremental updating the knowledge base to make
it complete. Indeed, all these considerations contribute to the significance behind this
model. Here, we neglect all detailed comparisons. which can be referred to in the previous

chapters.

7.6. Future Extensions

We propose four possible future extensions as the long term goals.

7.6.1. An Expert System with the Ability of Discussion

The current implementation of JAUNDICE can receive simple feedback from the user
but it lacks the ability of engaging in a sophisticated discussion® with the user. The
requirements (or difficulties) of developing such an intelligent system that can discuss with

the user and even make comment on his thought include as follows:

1. Understanding natural language.

2. A huge knowledge base that comprises common sense and domain specific
knowledge.

The system can understand the user’s thought well only if the system can accept natural

49 . . .
Here. we mean the discussion involves acuve learning rather than learning by being told. That 1. the
machine can learn or discover something instanty by wking the feedback from the human. This abiity 1

lacking 1n some programs. such as [Clancey 79, which also have the ability of discussion.




Results and Conclusions

language as a way of communication. And only if the system has a rather complete

knowledge background. the system is capable of discussing and commenting,.

A part of the man-machine dialogue may look like the following:

(H: human, M: machine)
M: My diagnosis is X, what is yours?
H: But my diagnosis is Y! Could you give me your explanation?
M: My explanation is ....... ., how about yours?
H: My explanation is ......,
M: I think something is not right in your explanation,

which is .....
Would you like to reconsider your diagnosis?

7.6.2. Unsupervised Learning

In our scheme, we assume there is a teacher to classify the training instances correctly.
and the learning is based on this classification. The task will become more difficult if there

is no teacher: this is called "unsupervised leaming”. Under this situation. the system has

to discover the classification by some observation and experiment and select instances by 4
itself. Some work has begun to explore this issue, e.g.. [Buchanan 78a). [Lenat 83] and

[Michalski 83b).



WO ARn AR - 5 s ‘ s ate Al Sk sl ni® sl bt st o v S it e e i et g v'vvv‘-'v'.j

e
T
1\-“
QN .
AN Results and Conclusions 205
e
ALK
\~": .. . . gt .
tas 7.6.3. Training Instances with Multiple Classitications
:..:::..'_ In our scheme, we generally assume the classifications are mutually exclusive and we
b
select those cases with a single classification as the training instances. The task will be
4 harder if one case may have more than one classification, which may be due to the fact
D ‘v-_',‘-
J }}-j that the expert cannot further distinguish or. in medicine. it may be due to the coexistence
1‘:.:‘:
R of more than one disease.
A
- 7.7. Conclusion
3, .\ A ]
i
D The theories and methods developed in this thesis can serve as a framework for
) J
e inductive concept learning. The model can not only become a general knowledge
S acquisition tool. because of our consideration of generality, efficiency. noise tolerance, and
incremental learning ability. but can also lend itself to constructing a high performance
. : expert system which can continuously grow and adjust its own knowledge base.
o
J.
.r:'.-
Y
o
N
ot
-
s
' -‘
SO
5
’:'.:
R
LA
."-‘
-
.:;..
37
’
A ."
>
<4
"-./‘ o e e e L te e 0, ._'-'_'-_- ™y L » ~ . Nty :_

SRS P g Ry T
“u n\. "-I"-J"-‘ﬂ‘."cy '4"-'\' 'a




» -z “ad- 3 v ~ < N “Alar gl “Alatid e g - A A i v T \."'"'T"U"‘f"k‘j

.

| ¥,

- Degree of Certainty 206

¥

.

‘-

<

K- Appendix A

- Degree of Certainty

~ . .

'\.:,

\-,

N

Approaches to inexact reasoning (reasoning under uncertainty) include probabilistic

::f»". methods (e.g.. Bayesian statistical approach used in [Warner 64]). fuzzy set theory [Zadeh
s

- 65). CF model! [Shortliffe 76], Dempster-Shafer theory ( [Shafer 76] and [Bamett 81}).
.__ Most of them have been applied to medical decision making. Another approach
<

'.;:: introduced here. called "degree of certainty”, stems from CF model used in MYCIN
-I‘,.‘

J',_n )

. [Shontliffe 76].

‘:Ef; Degree of certainty is used to represent uncertainty in this thests. [t is a real number.
n:_:

o ranging from -1 to 1. Each statement is assigned a degree of certainty: 1" means

) . .

P “definitely yes"; "-1" means "definitely no”; "0" means "not knowing at all"; any number
:i'_:: between 0 and 1 denotes that we tend to believe it and the number represents the
v estimated chance of "yes": and any number between -1 and 0 denotes that we tend not to
‘:fij betieve it and the number represents the esimated chance of "no”. For example, the
:j::-' statement: "if the dark cloud appears. it rains with degree of certainty .5". means "if the
= dark cloud appears. the estimated chance of raining is 50% and we tend to believe it will
s
..\., rain’,
o
[ '::J

In an expert system. the assignment of a degree of certainty to a rule in the knowledge

Z:::f base is based on the expert estimate. which is the integration of many factors. including
.

o

\es

e T e e T e e




P A et st e et ha® RNl el b oAl aiis oL st i R S g "T
o~ 207
.:.:.:,
-
e
!.\-: -
\ N g . - . - . .
- probabilistic knowledge and attitude (bias). Mathematically. degree of ceruinty is defined
-
e as follows:
-
B ..\‘\.
"‘,1 degree of certainty (h, e) = P(h/e)S(h. e)
i~
.- where,
:j.j- h: hypothesis
- e: evidence or pattern
‘N P(h/e): probability of h, given e
' S(h, e): strength of e for h
e
'_:_1',: S(h. e} is a strength factor and may be viewed as a weighting factor assigned to an evidence
o
a “e" for a given hypothesis "h".
ot
L An evidence is in fact a pattemn composed of one or more than one feature (or
o . : . : . -
‘ attribute). We assign a predictive value, ranging from 0 to 6 and reflecting statistical
OR knowledge. to each feature for a given hypothesis. Then the predictive value of an
= evidence (or a pattern) is defined as the sum of the predictive values of all features in that
¥ evidence (or pattem).50 Then. the "predictive value(h. )" is mapped to the strength factor
L “S(h. e)” in an ad hoc fashion as follows:
Vil For a confirming evidence.
'.'-f:f Mapping: Predictive valye(h, e) S(h, e)
i 2
.4
d‘ 0
- (2 3) .6
e (3 4) .8
_ {4 5) .9
(5 6) .95
o >6 1
'::-'.. 50111: assignment of a predicuve value tor a pattern. bused on the predicuve values of individual features. 1§
sumdar to the decision making i Rheumatologv where combinations of ditferent number of major and munor
P cntena (each ¢ntenon 1s a symptom or sign of laboratory test) may vield different conclusions. For instance.
_':I rheumatc fever can be diagnosed with a pattern of two major cntena or 4 pattern of one major plus two minor
A cntena.
oL
s
e
B "




4
.

l‘,)

Nah A

P )

Ty
-~
b
by

208

There is another (ad hoc) mapping for disconfirming evidence. Assume the disconfirming

rules are formed from high frequency evidence (refer to Section 2.4): the mapping is as

follows:
P(e/h degree of certainty(-h, -e)
1 1
[.8 1) .5
[.6 .8) .3
<.H 0

Degree of certainty of different pieces of evidence can be combined according to CF
combining function in MYCIN [Buchanan and Shortliffe 84] or Dempster-Shafer theory
as in [Gordon 84]. Moreover, degree of certainty and CF are related in the following ways.

For a confirming evidence "e”, if P(h)~0 and we assign S(h, e)=1. then:

P(h/e) ~ CF(h, e) = degree of certainty(h, e)

[f P(h) W0, by properly choosing S(h. e). degree of certainty can still approximate CF. The
main feature of "degree of certainty” is the incorporation of a strength factor which can
reflect expert attitude toward evidence (e.g.. conservative or aggressive) in a specific

domain.

Practicatly, using CF will tace one problem. which is as follows: for a confirming
evidence "e", because there often exist many hypotheses. the pnor probability tor each
hypothesis P(h) is close to zero. and the CF becomes simply conditional probability P(h/e)

as follows:




- - - Lk Yot A A el find S A el 0 Sl Rk i B S el ok i - "'ﬂ-—."r‘.“'\’

~ . 209

CF(h, e) = (P(h/e)-P(h))/(1-P(h)) ~ P(h/e)

Therefore. to overcome this problem. we define "degree of certainty” by separating out

the strength factor which should be considered in Al

s

AP R
1 e
'.,A,‘

kY A o3 4l

oS

«

¥ (SN
AR
(RPN AR

z~,»_',"‘;

R
&AL

§o> Yy

)

.
- ae

#gh
.
‘s

»

)l‘

(=

MRS FEEL S .4 LT NN e
- :‘_\'_x J-“:r *-'.'-“-'\\'-J. \\s\)-\




l\*
o 210
K L

N
e
v References

s [Aiello83]  Aiello, N.

. A comparative study of control strategies for expert systems:AGE

o impiementation of three variations of PUFF.
". In Proceedings of the third National Conference on Artificial Intelligence.
e Washington, D.C.. 1983.

- (Anderberg 73] Anderberg, M. R.

X -.: . Cluster Analysis for Applications.

0 Academic Press. New York, 1973.

: (Balakrishnan 84] Balakrishnan. A. V.

e Kalman Filtering Theory.

Optimization Software, Inc.. New York. 1984,
[Bamett 81] Barnett. J. A.

. Computational methods for a mathematical theory of evidence.
o In Proceedings of 7th International Joint Conference on Artificial
jI'-I"_: Intelligence. Vancouver, 1981.

, [Becker 78} Becker, P. W.
.» ) Recognition of Patterns Using the Frequencier of Occurrence of Binary
.;:_Z:-j Words.

o Springer-Verg, New York, 1978.
b [Blasbalg 62]  Blasbalg, H. and Blerkom. R. V.
Message compression.

0N In Davisson, L. D. and Gray. R. M. (editor), Data Compression. .
= Dowden. Hutchinson & Ross. [nc., New York, 1962.

LR

s

i (Blum 82] Blum, R. L.

o Discovery and representation of causal relationships from a large time-
o oriented clinical database: the RX project.

PhD thesis. Stanford University, 1982.




.__
A

LA S
LAY

B
+

L~
«®a

1

. 1]
W
b . afef oSy, %5

L4

N

A R o
‘«‘!:’l.,ﬁ,‘,‘

PO

o -

Gu

AR EREN
Y I R NP A ¥

(Brillouin 62]

[Buchanan 69]

[Buchanan 78a]

(Buchanan 78b]

211

Brillouin, L.
Science and Information Theory.
Academic Press Inc., New York, NY, 1962.

Buchanan. B. G. and Sutherland. G. L. and Feigenbaum, E. A.

Heuristic DENDRAL: A program for generating explanatory
hypotheses in organic chemistry.

In B. Meltzer and D. Michie (editor). Machine intelligence. vol 4, .
Edinburgh University Press. Edinburgh, 1969.

Buchanan, B. G. et al.

Model-directed leamning of production rules.

in Waterman, D. and Hayes-Roth, F. (editor), Pattern-Directed
Inference systems. . Academic Press. New York, 1978.

Buchanan. B. G.. Mitchell. T. M., Smith. R. G.. Johnson. C. R. Jr.

Models of Learning Systems.

In Belzer, J., Holzman. A. G., and Kent. A. (editor). Encyclopedia of
Computer Science and Technology, . M. Dekker, New York, 1978.

[Buchanan and Shortliffe 84}

[Carbonell 83]

[Clancey 79]

[Clancey 83)

Buchanan, B. G. and Shortliffe, E. H.

Rule-Based Expert Systems.

Addison-Wesley Publishing Company, Inc., Reading, Massachusetts,
1984.

Carbonell, J. G.. Michalski, R. S.. Mitchell, T. M.
An Overview of Machine Leaming.
In Machine Learning, chapter 1, . Tioga, Palo Alto. CA, 1983.

Clancey, W. J.
Transfer of rule-based expertise through atutorial dialogue.
PhD thesis. Computer Science Department. Stanford University. 1979.

Clancey. W. J.

The epistemolo‘gy. 9; a rule-based expert system: A framework for
explanation.

Artificial Intelligence 20. 1983.




) [Clancey and Letsinger 81]
Clancey, W. ], and Letsinger. R.
NEOMYCIN: Reconfiguring a rule-based expert system for application
to teaching.
L In Proceedings of the 7th International Joint Conference on Artificial
Intelligence. Vancouver, 1981.

[Cohen and Feigenbaum 82]
Cohen, P. R. and Feigenbaum. E. A. (editor).
The Handbook of Artificial (ntelligence, Volume [11.

) Kaufmann, Los Altos, CA, 1982,
N [Croxton. Cowden. and Klein 67}
2 ‘ Croxton, F. E., Cowden, D. J.. and Klein, S.

Applied General Statistics.
Prentice-Hall Inc., Englewood Cliffs, NJ, 1967.

[Davis 76] Davis, R.
Applications of meta-level knowledge to the construction, maintenance,
and use of large knowledge bases.
X PhD thesis, Computer Science Department, Stanford University. June.
1976.

- an e e
P I

[Davis 79] Davis.R. ) - .
Interactive transfer of expertise: Acquisition of new inference rules.
Artificial [ntelligence 12, 1979.

[Davis 80] Davis. R.
Meta-rules: Reasoning about control.
Artificial Intelligence 15, 1980.

[Davis and Buchanan 77)

J Davis. R.. and Buchanan. B. G.

‘ Meta-level knowledge: Overview and applications.

In Proceedings of the 5th International Joint Conference on Artificial
g . [ntelligence. Cambridge. Mass.. August, 1977.




[Dempster 83]

[Dietterich 81]

{Dietterich 83]

213

Dempster, A. P. and Rubin. D. B.

Introduction.

[n Madow. W. G., Olkin. I., and Rubin. D. B. (editor), /ncomplete Data
in Sample Surveys, Volume 2. chapter 1.. Academic Press Inc.. New
York, 1983.

Dietterich, T. G. and Michalski. R. S.
[nductive leaming of structural descriptions.
Artificial [ntelligence 16, 1981.

Dietterich, T. G., Michalski, R. S.

A Comparative Review of Selected Methods for Learning from
Examples.

In Machine learning, chapter 3, . Tioga Publishing Company. Palo Alto.
CA. 1983.

[Dietterich and Buchanan 81]

(Duda 78}

[Fu 84]

[Gordon 84)

Dietterich, T. G. and Buchanan. B. G.

The Role of Critic in Learning Systems.

Technical Report STAN-CS-81-891. Computer science department.
Stanford University. 1981.

Duda. R. O. etal.

Development of the PROSPECTOR consultant system for mineral
exploration.

Technical Report. Artificial Intelligence. SRI International. 1978.

Fu. Li-Min and Buchanan. B. G.

Enhancing Performance of Expert Systems by Automated Discovery of
Meta-rules.

In Proceedings of the Ist conference on Artificial Intelligence
Applications. |EEE. Denver. Colorado. December. 1984.

Gordon. J. and Shortliffe, E. H.

The Dempster-Shater Theory of Evidence.

In Buchanan. B. G.. Shortliffe. E. H. (editor). Rule-Baied E xpert
Systems. chapter 13, . Addison-Wesley Publishing Company. Inc..
Reading. Massachusetts. 1984.




] "'_-’_- _-" .’_.' .

NORTRR) -

LA N

-

-
L%/

'

\
X N
‘::‘.l'o

(Gray 74}

[Haggerty 84]

[Hahn 29]

[Hahn 30]

[Hayes-roth 76]

[Hayes-roth 78]

[Hayes-Roth 83)

---------
-------

214

Gray. R. M. and Davisson. L. D.

A mathematical theory of data compression?

In Davisson, L. D. and Gray, R. M. (editor). Data Compression, .
Dowden, Hutchinson & Ross, Inc.. New York. 1974.

Haggerty, J.

Referee and Rulecritic: Two Prototypes for Assessing the Quality of
Medical Paper.

Technical Report, Computer Science Department, Stanford University,
Master Thesis, 1984.

Hahn, H.

Empiricism. Mathematics. and Logic.

In McGuinness, B. (editor). Hans Hahn: Empiricism. Logic. and
Mathematics. . D. Reidel Publishing Company, Boston.
Massachusetts, 1929.

Hahn, H.

The Significance of the Scientific World View. Especially for
Mathematics and Physics.

In McGuinness, B. (editor). Hans Hahn: Empiricism. Logic, and
Mathematics. . D. Reidel Publishing Company, Boston,
Massachusetts. 1930.

Hayes-Roth, F.

Patterns of [nduction and Associated Knowledge Acquisition
Algorithms.

in Chen. C (editor), Pattern Recognition and Artificial [ntelligence., .
Academic Press, New York, 1976.

Hayes-roth. F. et al.
Machine Methods for Acquiring Learning and Applving Knowledge.
Technical Report R-6241. The RAND Corporation. 1978.

Hayes-Rorh. F., Waterman. D.. and Lenat. D.

An Overview of Expert Systems.

In Building E xpert Systems. chapter 1.. Addison-Wesley Publishing
Company. Inc.. Reading. Massachusetts, 1983.




NN

el

Ees 215

\ ::4.

£

3

a [Holland 80]  Holland. J. H.

' Adaptive Algorithms for Discovering and Using General Patterns in
” Growing Knowledge bases. |
:-_': Policy Analysis and [nformation Systems 4. 1980.

4 [Hunt 66} Hunt E. B.

. Experiments in [nduction.

:,j Academic Press, New York. 1966.

b
85 {Hunt 75] Hunt, E. B.
| Artificial Intelligence.

:5;2 Academic Press, New York, 1975.

a
-“_E;'.: [Krupp 82] Krupp. M. A. et al.

'y Current Medical Diagnosis and Treatment.

£ Lange Medical Publications, Los Altos, CA, 1982.

J [Kulikowski 82] Kulikowski, C. and Weiss. S.

o Representation of expert knowledge for consultation: The CASNET and
EXPERT projects.

E'.;Z In P. Szolovits (editor). Artificial Intelligence in Medicine, . Westview

-_:;' Press. Boulder, Colorado. 1982.

R (Langley 83]  Langley, P.. Bradshaw. G. L.. and Simon. H. A.

_ Rediscovering chemistry with the BACON system.

-" In Machine learning, chapter 10.. Tioga Publishing Company. Palo
% Alto. CA. 1983,

o

a

) (Larson 77} Larson, J.
A Inductive Inference in the Variable-Valued Predicate Logic System VL2]:
, e Methodology and Computer Implementation.
PhD thesis. University of [llinois. May, 1977.

(Lenat 83] Lenat. D. B.
: Theory formation by heunistic search. The nature of heuristics {l:
. Background and examples.
j,’.:: Artificial Intelligence 21, 1983.

...........
---------
-----

SOOI L S - N e R
; ! >
$ ! ) ', ALY




Y- -

o

.

Ya_a 2.3

216

[Madow, Nisselson, and Olkin 83]

Madow. W. G., Nisselson. H.. and Olkin, [.

Review of Theory.

In Madow, W. G.. Nisselson. H.. and Olkin. . (editor), /ncomplete Data
in Sample Surveys, Volume I, . Academic Press Inc., New York,
1983.

(Malchow-moller 81]

[Martin 71]

[Michalski 75]

[Michalski 77]

(Michalski 78]

[Michalski 83a)

Malchow-Moller. A. et al.
Causes and Characteristics of 500 Consecutive cases of Jaundice.
Scandinavia Journal of Gastroenterology 16. 1981.

Martin, W. A. and Fateman. R. J.

The MACSYMA system.

In Proceedings of the 2nd Symposium on Symbolic and Algebraic
Manipulation. 1971.

Michalski, R. S.

Variable-Valued Logic and its Applications to Pattem Recognition and
Machine Leaming.

In Rine, D. C. (editor), Computer Science and Multiple-Valued Logic
Theory and Applications, . North-Holland. 1975.

Michalski. R. S. .

A system of programs for computer-aided induction.

In Proceedings of Sth International Joint Conference on Artificial
Intelligence. Cambridge, Mass.. 1977.

Michalski. R. S. and Larson, J. B.

Selection of most representative training examples and incremental
generation of VLI hypotheses: The underlying methodology and
description of programs ESEL and AQI 1.

Technical Report 867, University of lllinois, 1978.

Michalski. R. S.
Theory and Methodology of Inductive Learning.
In Machine Learning, chapter 4, . Tioga, Palo Alto, CA, 1983.

".’.."-"r" ﬁ--’
Bt '.‘u.-““.‘h'!‘lk.\’, s, .!.ﬂ»"'l*.‘\'! lz\‘!\k }




b 217

o [Michalski 83b] Michalski. R. S. and Stepp. R. E.

N Leaming from observations: Conceptual clustering.

s In Machine learning, chapter 11,. Tioga Publishing Company, Palo
MON Alto, CA. 1983,

[Michie 84) Michie, D., Muggleton, S.. Riese. C., Zubrick. S.

-3:::: RULEMASTER: A Second-Generation Knowledge-Engineering
A0 Facility.
: ‘~.¢ In Proceedings of the |st conference on Artificial Intelligence
i Applications. |EEE, Denver, Colorado, December. 1984.
R [Miller, Pople. and Meyers 82]
E;:}: Miller. R A.. Pople, H.E.. Meyers. J D.
\;Z:: INTERNIST-1, an experimental computer-based diagnostic consultant
L for general internal medicine.
j:j:j The New England Journal of Medicine 307, 1982.
N
o [Minsky 63) Minsky. M.
) Steps toward Artificial Intelligence.
o In Feigenbaum, E. A. and Feldman, J. (editor). Computers and Thought.
‘.»é . McGraw-Hill, New York, 1963.
4 [Mitchell 78] Mitchell. T. M.
) Version Spaces: An approach to concept learning.
A PhD thesis, Stanford University. December, 1978.
s [Papoulis 65]  Papoulis. A.
:: 3 Probability. Random Variable, and Stochastic Processes.
McGraw-Hill, New York, 1965. chapter 1.
'\lf-
:'f.: [Patil 82] Patil, R. S.. Szolovits. P.. and Schwartz, W. B.
L, [nformation acquisition in diagnosis.
2 In Proceedings of the National Conference on Artificial Intelligence.
o Pittsburgh. PA. 1982,
o [Pawlak81]  Pawlak. Z.
AN Classification of objects by means of attributes.
o Technical Report 423. Institute of Computer Science. Polish Academy of ’
P Science. 1981.
N
b5
e
e

My
S
ﬁ AT LR

At et AT T et AT AT e e e
¥ SRR P A et i
0 ' R LA AL A IR AT I AT
‘I‘\%Rl‘t‘l_'aurnlg‘,a‘




) e ,
IR AT
8‘.{“"‘.‘) o4

"‘. 18
P 'Q,"('-l I

[

[T
Oy S

s

2
A a .._('k.

[Petersdorf 83]

[Politakis 82]

[Quinlan 79]

[Quinlan 83]

[Samuel 67]

[Schiff 46)

[Shafer 76]

(Shortliffe 76]

[Simon 83}

i Aia-Ahe A Ale-iie Al Al Al Ale e ARAle AU on 4 gie AR AR S e

Petersdorf. R. G. et al.
Harrison’s Principles of Internal Medicine.
McGraw-Hill. New York, 1983.

Politakis. Peter G.
Using empirical analysis to refine expert system knowledge base.
PhD thesis, LCSR, Rutgers University, October, 1982.

Quinlan. J. R.
Induction over large data bases.
Technical Report HPP-79-14, HPP, Stanford University, 1979.

Quinlan, J. R,

Learning efficient classification procedures and their applications to
chess end-games.

In Michalski. R. S. et al (editor), Machine Learning, chapter 15,. Tioga.
Palo Alto, CA, 1983.

Samuel. A. L.

Some-studies in machine learning using the game of checkers 1 - Recent
progress.

1B Journal of Research and Development 11, 1967.

Schiff, L.
The Differential Diagnosis of JAUNDICE.
The Year Book publishers. Inc.. Chicago. 1946.

Shafer. G.
A Mathematical Theory of Evidence.
Pninceton University Press, Princeton, NJ. 1976.

Shortliffe E.H.
Computer-based medical consultations: MYCIN.
American Elsevier. New York. 1976.

Simon. H. A.

Why Should Machine Lean?

In Machine learming. chapter 2. . Tioga Publishing Company. Palo Alto,
CA. 1983.




219

[Sirken 83) Sirken, M. G.
Handling Missing Data by Network Sampling.

: [n Madow, W. G.. Olkin, L. and Rubin, D. B. (editor). /ncomplete Data
¥ in Sample Surveys. Volume 2. chapter 8.. Academic Press [nc.. New
- York. 1983.

\ [Smith 77] Smith. R. G.. Mitchell, T. M., Chestek. R. A., and Buchanan. B. G.

A model for leaming systems.
In Proceedings of 5th International Joint Conference on Artificial
Intelligence. Cambridge. Mass.. 1977.

[Stern 75) Stern. S. et al.
Use of Computer Program for Diagnosing Jaundice in District Hospitals
and Specialized Liver Unit.
British Medical Journal 2. 1975.

[Suwa 84] Suwa, M., Scott, A. C., and Shortliffe, E. H.
Completeness and Consistency in a Rule-Based Expert System.
‘ [n Buchanan. B. G. and Shortliffe, E. H. (editor). Rule- Based Expert
. Systems, chapter §.. Addison-Wesley Publishing Company. Inc..
. Reading, Massachusetts, 1984.

[UtgofT 82) UtgofT. P. E.
Acquisition of appropriate bias for inductive concept learning.
Technical Report. Thesis proposal. Department of Computer Science,
Rutgers University, 1982,

[Van Melle 80] van Melle. W.
System aids in constructing consultation programs. 1
UMI Research Press. Ann Arbor, MI. 1980.

[Vere 75] Vere, S. A. T
[nduction of concepts in the predicate calculus.
In Proceedings of 4th International Joint Conference on Artificial
' Intelligence. Thilisi. USSR. 1975.

o, ™ A T e W 5 o (T i g Vo R R e S R et et :_ - T .-_"..'_.4.‘ .',;.' j‘.-‘;(‘ - '.:_..: ..'.__.:.j

B ' » “‘\. O."‘J'_‘ o ERETRI JES R R
R D I S Ay AN M i e A AN




s
“alt

¢
.' .' .I

b "y

NN
A

.
LK. ," _"

[Wallis 82)

[Warner 64]

[Waterman 68)

[Winkeiman 81]
[Winston 70]

(Zadeh 65]

220

Wallis, J. W. and Shortliffe. E. H.

Explanation power for medical expert system: studies in representation
of causal relationships for clinical consultations.

Methods Info. Med 21, 1982.

Wamer. H. R. et al.

Experience with Bayes Theorem for computer diagnosis of congenital
heart disease.

Ann. N. Y. Acad. Sci. 115. 1964.

Waterman. D.

Machine Learning of Heuristics.

PhD thesis. Stanford University. 1968.
also report CS118. Al 74.

Winkelman. E. I.
The Differential Diagnosis of Jaundice.
Primary Care 8, 1981.

Winston, P. H.
Learning structural descriptions from examples.
Technical Report TR-76. Project MAC, MIT, 1970.

Zadeh. L. A.

Fuzzy sets.
Information and Control 8, 1965.




Mg abd Sl el B8 £ A 4 A 4 d

Pt I e R e

T T YT YT WY WY

AN L

TS




