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I. Introduction

€ - et
- e -

The synthetic aperture radar on SeaSat Satellite has provided high resolu- !

? tion synoptic images of the earth's surface. However, the same geographical

ﬁ; regions viewed at different look angles sometimes provided different images.

4 This especially was the case of the images in the urban areas surrounding the

g Los Angeles areas (1). In these images the areas of the bright returns did not
.ﬁ correspond while certain areas of low backscatter were common to both the

” images. A study of the causes of this variation in the imagery is the subject
;: matter of the present report.

jE A possible model for the study of backscatter from urban areas due to the
d, synthetic aperture radar is to consider it as a periodic gridded structure with
é the streets and the buildings forming the grid. The average dimensions of the
E grid for our study must have dimensions large compared to the wavelength.

} As part of this task a literature survey was conducted and the principal

;5 relevant references were found to be due to DeSanto (2), Jordan & Lang (2),

X Holford (4), Uretsky (5), and McCammon and McDaniel (7). Uretsky's method which
S is based on the Helmholtz equation reduces the scattering from a periodic

'; surface to an infinite set of linear equati?ns of the form [A] [X] = [Y].

o DeSanto also arrived at the same result using a different approach. For solving
“ the infinite set of equations, the method of reduction was employed. In the

3 method of reduction a truncation of the infinite series is employed and the

j? correctness of the solution will depend on the order of matrix. However, for

3 equations of the first kind, there does not exist, at present, a criteria for

:EE truncation which will assure the convergence of the solution.

3% Holford's method, 1ike that of Uretsky, is based on the Helmholtz integral
_{ - formula and results in a Fredholm integral equation of the second kind for the
2 scattered intensity. This reduces his integral equation to the form

2
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A5 and rigorous proof exists for the convergence of the solutions. We, therefore,
e
; 1j plan to use the approach due to Holford to study the scattering from a periodic

‘.J .
S:F surface. The only numerical results available using Holford's approach is due
o to McCammon and McDaniel and here they consider only relatively shallow struc-
“'-u'-,
y : tures, viz, for Kh ~ 1, where h is the height of the structure, K = 2v/A and A
b is the periodicity.
LT Section Il of the report contains a detailed review of the relevant liter-
-«",‘.- .

-Eﬂ ature. Section III has the results of the backscatter calculations for a

i
Qh‘ typical geometry suited for our observations using the exact method due to
ot
,t;; Holford. Section IV has the conclusions and the recommendations for future work
s

1 on the problem.

}{:

‘ﬁi 1. SeaSat Views of North Amefica, The Caribbean, and Western Europe with Imaging
e Radar, JPL Publication, 60-67, California Institute of Technology, Pasadena, CA.
",

K 2. J.A. DeSanto (1981), Rad. Sci. 16 p. 1315.
i ry
._: 3. A.K. Jordan and R.A. Lang (1979), NRL Report 8284.
190y '
4 i; 4. R.L. Holford (1981) JASA 70 p. 1116.
forY

. 5. J.L. Uretsky (1966), Ann. Phys. 33 p. 400.
R 6. D.F. McCammon and S.T. McDaniel (1985), JASA 78 p. 149,
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” II. Review of the Literature
o The general methods of treating periodic structures can be broadly classi-
ﬁ fied into two general approaches. The first approach are the so-called approxi-
Y mate methods and the second are the more exact methods. Sections II-1 and II-2
v review briefly the approximate methods, while Sections II-3 through 1I-5 review
g: the more exact methods. In Section 1I-6, some of the details, that have to be
\ considered, for the numerical implementation of the calculations for the Holford's
. method are discussed.
Y
¢ II-1 Kirchoff Method
: The general Kirchoff Method is based on Helmholtz integral equation.
¥ Consider a plane wave incident on a rough surface. The scattered field at any
4 observation point P is
L. -1 (fgaw ., 2E
: £P) = g [JE 3 -y 36 s (1)
i:
e where the integral is over the surface and E is the field on the surface.
) v is the free space Green's function (exp(ikR”)/R”),
3,8
E; oTkR” : @)
2 b = = . 2
o R
] where R” is the distance from the origin to P and k = (2r/)). In the above
& equation, E is an unknown. The Kirchoff approximation assumes
l. -
)
N, E = (1+R)E and (35) = (1 - RIE;(k-A) (3)
_ 1 an’s 1
j: where n is the normal to this surface at P and R is the reflection coefficient
Y
E of a smooth plane. In the case of an une dimensional surface where L = z(x),
- and R = +1, Beckman (1963) arrives at the following for the scattering coef-
y ,
N ,
': ficient, o _
‘3 A Beckmann and A. Spizzichino (1963). "The Scattering of Electromagnetic Waves
W from Rough Surfaces", Pergammon Press.
‘-" ---------------------------------------------------
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A2
1+cos(e1+ez)] .

' _ _ . 1 ey
-7/2

e e] is the direction of the incident field, E2 is the field reflected in the

¥ direction 62 and

o s o2 : )

o £ rev = 5 [(sine1 - s1n92)x (cose] + cosez)c(x)] (5)
ey This approkimation is valid when A>>\ and the radius of curvature of the ir-

’  regularities is large compared to the wave length. Consequently, this method

; 23 will break down when there are sharp edges.

LY
;;w. I1-2 Rayleigh Method

In the Rayleigh Method, the field is expressed as a-sum of plane waves

-

oyl whose directions correspond to the scattering angles and for a periodic surface,
the scattering direction will be given by the grating equation. So for a

periodic surface z(x)
z(x) = hcosKx (6)
S The grating equation for the field is
% .
S sin02m = sine0 + mK/k m=0, +1, #2,... (7)

T The total field in the region z>z(x), E, (eq. 8), is the sum of the incident
I field, E;, and the reflected field, E,,

" | EaEtE
P = eikl'F s L AmeiR2m°F (8)

m= -o

- -y oa- - ) '
& Lot 0 RGN Ll i oy A ol T ™ o N e T BN T T e A RN AN ;
N e e A A Ry o e S e e e N e AT T
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e where “ R
KZm = k(ex sine, + ezc0592m)
A
%d K1 = k(ex sine0 - e, coseo)
‘.&0 - - - -
o r = (xex + yey + zez)
™ and éx, éy and éz are the unit vectors in the x,y and z direction. For the case
-
1§ of the Dirichlet boundary, E‘z=c(x) = 0. So, from Equations (7) and (8), we
| nave
: e-ikz(x)cosey _ ) Ame+1'mkx + ike(x)cose, (9)
':: m=-@
gf Expanding both sides of Equation (9) in terms of Bessel functions, Beckman et
Y
" al. (1963) arrives at the expression for the coefficient A_
=
- [
\j = ) m
5 Jn(khcoseo) mZ-w( i) A, Jn+m(khc°592m) (10)
From this set of equations, the coefficients Am are determined, which are used
h in Equation 8 to obtain the field. '
Uretsky (1966) notes that the major error in the solution given in Equation
" 8 is its implication that it describes the field everywhere above the surface.
;i This has also been pointed out by Lipman (1953) that the solution does not take
.* into account both up and down going waves excited in the "valley" of periodic
- surface. We will now describe two methods of solving the problem, both based on
19
N the integral equation formulation, starting from the Helmholtz equation, which
L will take into account both the upgoing and downgoing waves in the periodic
- structure.
2
N B.A. Lipman (1953), J. of Op. Soc. Am., 43.
".
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K II-3 Uretsky's Method
L This section describes the method proposed by Uretsky (1966) for solving
% .
:::: the boundary value problem. For simplicity we consider a two dimensional
: problem and the scalar wave equation. The problem reduces to the solution
\ 3 of the two dimensional equation
Sy
190
s aZng,zz 3P (x,z 2 ]
5 + ¢ 3 + k! =0 (11)
ax 3z J
e
i subject to boundary conditions which can be either soft, i.e., P(x,z) = 0 on the
._._:
JI:;:' boundary, or hard, i.e., _aPa: 2L . 0, or an impedence boundary condition, i.e.
- %-ﬁ- AP = 0 on z(x), where A is a constant. Specifically, we will consider a
v
\Q:: surface
A
" z = z(x) = hcoskKx where K = (2r/A) (12)
N The field is now the sum of the incident field Pinc(x,z) and the scattered field,
1 RN .
o P, given by the Helmholtz integral.
| - : NEAGEESE
2 P(x,2) = P, .(x,z) + Hl P(r-) E TR -
%4 - -
o () (7.7-1y 2PLr2)
-Hy (kjr-r-|) < TH 1ds (13)
D where r” = (x”, z(x*)) and the integral is taken along the boundary. In the
,&fl, case of a soft boundary, (P(r*) = 0)
S -
o p(r) = P, (r) + & [ w(x) HE (k|F-7-]) ax- (14)
inc 3V 0
o where -
,‘C- i
> = (1 2P ds)
- v(x) [k n dx,’
i z=g(x)
“
",
0 i[ aP 2P
e -1 [- P, a(x) ._] (15)
¢ 3
ok z ) 2=z (x)
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As Equation 11 is unaffected by a shift of 2x/A and the boundary condition

is also unaffected because it has a periodicity equal to 2m/A, we can make the

following expansion for y(x).

o(x) = 2 wne1kanx
where
sinen =a = (a. + n K/k)
_ _241/2,
COSGn =Y, = (1 @ ) ; an§J
= 1(-1+an2)]/2; a,>]

Substitution of the above in Equation (14) yields (Holford (1981))

p(r) = Py (1) + 1 vy I eI (2)
N==x M= - ’
where -
iktz
.1 e' 124,
Tn,nl2) = 2 J L) 22
) 'Ym

A
C,(t) ='% J g~ italx)-inkxyy

(=]

Holford (1981) has shown that the integral I n(z) is given by

= Tky 2
i 2, Cronlkyple " 'm 2>¢(x)

Also the field P(x,z) can be written as

P(x,2) = Py (x,2) + z R, oikagx + iky z

N= e

Inserting Equation 21 into Equation 18 and comparing with Equation 22, we

obtain

] [--]
- i—_' z ¥n Cn- n(kYm)

We now proceed to determine the Yy In the Equation (18), we let the field

A a e A A AN B o o g g e o hrah o ANl 0 b A0S A atiata dn A Bl i Sl s Ss 4 s Al 2 a ok Aol Rl e h Aok Ak g Rl -l e Sak Ban Aok Ak Al Aok A Aok Ao d
" 'rr--,r-'wn--m-wr«_;r-,.,w_,1

(16)

(18)

(19)

(20)

(21)

(23)
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point, r approach the boundary.

AN P
P(rllc(x). Pinc(rllc(x)+ 3 J v(x?) Hé (klr-re])dx (24)

If we now apply the boundary condition that P(r) = 0 we have

T o) i rhen = - Pyt 2

-dd

Substituting Equation (16) in Equation (25)

§ ] Doty WD e+ 2y (0 (26)
where = [(x-x")2 + (g(x) - ¢(x-))21/2
Applying the operator
A .
H e~ TkapX gy . (27)
0 fkax-tky 2
to both sides of Equation (26), we obtain on substituting, Pinc(x,z) = e
from Eq. 8.
,,§.. ¥y Vm,n = ~2Cplkvg) m=0, 11, 42, ... (28)
where Vm’n A o
-1 &ty | £H) (et than®” gx- (29)
[} -®

This set of linear equations (Equation 28) is used to solve for vy which is
then substituted in (Equation 23) to obtain R,

Note that the set of linear equations is of the form AX = Y. The procedure
recommended by Uretsky (1966) is to truncate the set at some value n=N and then
solve the Tinear equation by matrix inversion. However as Holford (1981) has

pointed out there is no guarantee that the solution for AX = Y will converge as

»
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il Fig. 1. Plane wave scattering from a surface s(x) of period
;" g L and depth d. The closed contour (123451) is used for Green's
-rk theorem. The incidence angle is 8,, and 8, is one of the discrete
B scattering angles. Diagram lines are slightly offset for clarity.
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m or will converge to a correct solution. This method is valid only for
equations of the second kind represented by (I + A)X = Y where I is an identity
operator. Holford's method of overcoming this will be discussed later in

Section 11-5,

11-4 Method of Desanto

Desanto (1981) has proposed another approach which is similar to that of
Uretsky. For a sinusoidal surface shown in Figure 1 and a plane wave incident
on the surface.

wi(x’z) a e'lkuox - ikYOZ (30)

where

e0
ay = sineo,

= incident angle

=
Y COSGO

0
The reflected field is then
. +
vo(x,2) = ) Aneikanx tky,z , . (31)
n

where

sing, =a  =a, *+nA/A=a +n K/k n =0, +1, +2,...

cose, = v,
The Green's function

6X{x,z) = (e311k07m2'1k0°mx)) (32)
satisfies the wave equation in the region z>0. We now consider the contour

12345 in Figure 1 and apply the Green's theorem to the contour

(33)

+
36— _ ot
[ 3 - et g, 0
C

and
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11

b(x,z) = by (x2) + ] Ael¥oin® ¥ Ty (34)

n’-ﬂ

If we now let 23 and 51 shrink to zero, then the integral along the path 12

becomes
+A/2 _ ' .
Iip = J {:jkoyme1ko(°‘o'°‘m)x t_ikoymZAneiko(°n'“m) + 1’koyoe”<o(°‘o+"m)x
-A/2 n
‘ - ikOZAnyneiko(°n+“m)x} dx (35)
n
For 6 along 1-2, Eq. 35 reduces to
I]Z = -4wiym(A/A)6m° (36)
and for G~ along 1-2, Eq. 35 simplifies to
1,, = (4niy 2 A ‘ (37)
Hence
: +
‘ -§ for G
I,, = (4niy A mo
12 m X } (38)
Am for G

The integral along 23 and 51 are zero since we have allowed 2 to approach 3 and

5 to approach'1. The equation simplifies to

+ +
i(w%%‘-ei%?,-) wr [WE-E® a-o (39)
1 345
or
G- .+ 3 3G .+ 2
(v 59 -G—s%) du=-£(w§g ‘5—3%) du (40)
385 2

Gmo for +

0 -Am for f-

MRSy SR R




o oy

D) N )
|‘5l‘!\ ,hlf'n A 'A"~

.............

12

We now need to evaluate the left hand side of the equation. Let us assume

Dirichlet boundary condition.

“Spg| for +
NG R (a1)

Following the method of Uretsky, we now replace %rT w(x,z(x))du by ¢(x)dx, where ¢(x)
is a periodic function with a period A. )

o(x) = i—" e'Ka%0*B(x) (42)

where B(x) = 2 exp[-ikodyo('l + cos(2n/A)x)] E i"an exp(in2rx/A). (42a)

Substitufing Eq. 42 to the right hand side of Eq. 41, we obtain
[ etxeta 3o

345
A/2 . |
= J 6X(x,z(x)) i—"e1k0°ox8(x)dx (43)
-A/2
“d 21X 2w
Now,. let z(x) = - 2—(1 + cos T) and let y = =X %
I 6X(x,z(x)) %% du
345
'_e;(‘lxodvmﬂ) I” e‘(ikodvmcosy/Z - 1my)c(y)dy (44)
-y
where

Cly) = B(3=y)

Using equation 41, we obtain for 6"

" - - Aniy
J C(y)e( fmy - ik dv cosy/2) m o (ik d/2v,) s

Yo

o (45)

-

e A T A I G L N AL WL
A \ .l.‘. TS ﬁ."

L T T T G N T TS R Y
T e S S .
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and for G~

Jﬂ C(y) exp[-imy + i(kodym cos y/2)] dy = -Am(4niyo/ko) exp(-ikodym/z)

-1

(46)
From Eqs. 44(a) and (42a)
2iy_A . .
Cly) = - (—2)elikedvo(l * cosy)/2) ¢y ) i"a i} (47)
0 nfo

Substituting for C(y) from Equation 47 in Equation (45), then yields the set of

linear equations for m#0

o) + 1 #n poalrg) = 0 (48)

Similarly, substitution in Equation (46) gives
Y
0 m + + +
Ag = - (z2) Mexp(iy) (I (k) + T a9 (h) (49)
m. n#o

where

k _d
+ . 0
= g tvy) 5

We, therefore, solve the first set of linear equations to obtain a, which is
then used in Equation 49 to obtain the AL

Jordan and Lang (1979) solved the Equations 48 and 49 numerically. They
state that no numerical instability was experienced and the stability of the
method was checked by testing conservation of energy (i.e) ZIRnI2 ;ﬂ =1 for
real orders of n. Wirgin (1980) reports that the method oanesantoowas also
used by Whitman and Schwering (1977) who reported no instasility for Kh < 1 and

Kh < 2.36. However, in their experience this method does not work well for

Kh>r. Further Wirgin states that the solution will become unstable for Kh>rn.

A. Wirgin, (1980), JASA 68, p. 692.
G. Whitman and S. Schwering, (1977), IEEE. PGAP 25, p. 869.
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Though Jordan and Lang reported no instability in their numerical computation,
as the equations are of the form AX = Y, convergence to the correct solution

cannot be guaranteed..

11-5 Method Due to Holford

Holford (1981) has developed a method to overcome this problem. This
method is similar to the approach of Uretsky, where we §tart with the two
dimensional boundary value problem and seek a solution to the differential
equation satisfying the given boundary conditions on the surface and the radia-

tive condition at x2 + 22 > ®,

[1-5-1: Surface Satisfying the Dirichlet Boundary Condition:

Applying the Helmholtz integral formula as in Section 1I-3 we obtain for
the Dirichlet boundary condition,

() = Pipe(r) + % [wtxdm, (D kifrep) axc (50)
where -
v(x) = (; g: gi)zsc(x) (51)

Let the normal derivative operator ik ][- a -+ (x) ] be applied to both

sides and taking on the limit when z -+ c(x), we obtain

b(x) = w(x) + & [w(x ) [- &+ oo 23 n‘”mr-r )dx- (52)

It has been shown by Meecham (1956) that the integrand on the right hand side

has a singularity at r = £~ and this integrates to a term %w(x) in the limit.

W.C. Meecham (1956), J. Rat. Mech. Analysis 5 p. 323.
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§ Thus, we have ()
: N (=)

' ) = a(x) - K fy(x) ‘I_ = (53)

r=-

& « [(z(x) - z(x)) - (x"-x)z*(x)]dx

\ where

. 0=+ L= &4 oo (x) Sgelkegr - Thrg?

: = - [y + gz (x)Je kX = Thrge(x) (54)

We therefore obtain
- () (152
. Hy ' (k|r-r]) :
o) + 3 o) aF T L eteed = e —ele—ne- (0 Tex-
) r-r’ .

= 2y(x) (55)
As explained in Section II-111, ¢(x) is periodic with the period A. So

1kanx - ik(a°+nK/k)x

v(x) = E Ve E Ve

> N=~o N=ww
| - eikaoxzwneinKx ‘ (56)
n

Substituting for y(x) in the above expression

- o o

, Xwne1k°nx + —% ID ik nX (H(1)(k|r-F‘|)/|r-r‘|)
E" n .

[(z(x*) - 2(x)) - (x"-X)e"(x)1dx" = 2p(x) (57)

We now apply the operator

- -

1
A

A
J e"k“mx dx (58)
0

. o o
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to both sides of the equation and obtain

~

Ym * gwnum,n = 2"’m (59)
where ()
A L) - -
. HY (k| r-r-])
u = ]_J o~ Tka x dxgj gika x” [ :
m,n A 2 IF-F,I
0 -0
[(z(x") - z(x)) - (x“-x)z"(x)]dx" (60)
and A
~ .1 -ika_x
Y = 1 jw(x)e m” dx
o

A .
= - %-I (v +,a°c’(x))e1k°‘ox - Hhrge(x) gy (61)
0
This set of linear equations (Eq. 59) is now solved to determine ¥, and then w
This is then used to obtain P(r). The specular reflection coefficients for
various orders of scattering is obtained from Equation (23) which is reproduced

below

R = 7%_' E ¥p Cpep (k) ' (62)

N= =

II-SLZ: Surface Satisfying the Neumann Boundary Condition:

Applying the boundary condition %%-= 0, in Eq. 13, we obtain

Pr)-= Pypc(r) + z‘r-f o) 5 O, VKPR D] e (o) Bt
= (63)
where ¢(x~) = P(x°,z(x”)). We now let r + [x,z(x)], then using the same

method as was used in deriving Eq. 52, we obtain

St RS Bert A |

x).

.

s




- [ (1)¢
F o0 = 400 + 2 [ g0y M KIFFD)
- |r-r|

[lz(x) - ¢(x?)) - (x-x")g"(x~)] dx~

7 (])( ku)

o(x) = 20(x) + 15 [ o(x) T clxox) dx”

| —

where

Clxox*) = [(z(x) - 2(x")) = (x-x")g"(x")]
w = [x=x1)2 + (x(x)-x(x*))21/2

where o(x) = P. (x. z(x)). We now write

inc

¢(X) = Z ¢ eika X

n=-=

Substituting in equation (64a), we obtain

.\.-

ikax [ ke xy 1k M k) -
: )',¢ne n" - I C(x,x‘)({q;ne n" ) —5-——— dx” = 2¢(x)
) n - n
A *

: Applying the operator %-J e'1k“mxdx to both sides, we obtain
l o )
k. A ® 1
B 1 ~-ik - 1 - (
. b, - KJ e-ikapx, J (z¢ne1kanx y ik k %

n
. 0
K A ,
b =2 ]XI o(x)e - TkapX gy
¢ ()
. *m - 2¢num,n =
. n
where Um,n is given by
‘ A o (M

H (ku) .
- 1 -ik ik ool .
: Um,n iy J e” XX dx J —5---—————-e 1k"‘nx C(x,x~) dx-
[) 0 -0
)
[}
R e e R e e S

—] C(x,x") dx-

17

(64)

(64a)

(65)

(66)

(67)

(68)

(69)

(70)

; A Y
"t)-_' PR
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KX The set of linear equations obtained can now be solved to yield ¢ which then
‘L{G can be substituted in the Equation 63 to yield P(r). The reflection coefficient
“‘-". ' .

E}:: for this case is given by the following expression (Holford).

Lhw

. R =T o C  (Ky )( (m.n)Ka“) (71)

, 25— ) ¢ C (Ky )y, +—F

SV m 2ym ponomenttmlt m kym

NN
gAY . . : .
:«;: We note that in this case, the equation for ¢, s in form (I + A)X = Y and
LY

therefore, convergence is guaranteed,

,:u‘:;j
Qi;- II-6 Numerical Implementation of Holford Method
)
:} We will now describe the numerical implementation of the method due to

Holford, as we will be discussing the results in the following Section III.

"z

=

Specifically we will consider the case where the surface is a sinusoidal surface

-

A

v -
Ed

-
[
>

and satisfies Neumann conditions. We, therefore, have

*, g

z(x) = h cos Kx

a

oo The linear set of equations to be solved is
£t .
i b - ) %0 Ym0 = Om m=0,+1, ... (72)
.v': n *
-jﬁ% where V_  is given by
D ::: A ' g (1) - .
B v =Ll [ gy e-tkagx 1k [ Gika x* (k|r-7"{)
m.n A e m 7 e n —
T ’ 5 - [r-r] z = z(x)
e
1508
2/
p (e(x) = g(x?) - (x = x*)g~(x")) dx* - (73)
- Where
=3 . ’ 2112
e [P-F| = [(x = x2)% + (g(x) - ¢~(x))°] (74)
w5
., Let v = (x-x~)
o
e . =
"‘ ) - -
ary Vo K’J e TkapXgy J e kanX” ¢(c,x")dx- (75)
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where
1kh %1)(k°) .
K(t,x*) = ({(cosKx - cosKx”) + KrsinKx”) (76)
and
p = [rz + hz(cost - cost')zll]/2
Then,
Vo = %- eikapX” gy” I e~ TkopX k(r,x*)dx

m* K(t,x°)dx~*

"
|-

©
-1 - - -' +' -
ik(ap-a )Xy, - I o~ Tkapx Hika x

n
|t

O O > O >
(1]

[ ]

-i(m-n)Kx‘dx, I “Tka m K(t,x")dt | (77)

where  k(a_-a ) = K(m-n)

Voon = Vmon * (vm,n - Vm,n) (78)

where Qm n is obtained using ﬁ(r, x°) in the Equation (74) k(r,x‘) is different fro*

K(t,x*) in that o is set equal to t. (i.e) the cosine terms in o are neglected.

and K(t,x”) is given by Equation (75). To determine Va.ne We consider Vm o as

This manipu]ation will simplify the final computation of Vm n

9
-

o-Takx”, . [ e-ibrg(r’x,)dr

=1
A

=1
A

l%-——\s O*~———>0

e‘bT l e~ 1A R x-)dx- (79)

--------- '-I‘f P w L T (TR, Ak A ~ LIPATCY.
""'-"ﬂ-f ‘ N PR T RATA MR S '
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. - ik H1(])(k|1‘|)
W K(t,x*) = -5--——-T;T-———-[c(X‘+ 1) - g(x7) - g (x7)] (80)
b
where a = (m-n) and b = “kap,

-~ )
‘._ Integrating with respect to x~,

N - A (M

. . .k H (k|t]) o
- 1| jibt i1 . - Y o er (g -iaKx .
= i = ] o0 T T Lelxe) - o) = ven(x)] €7
3 - 0 (81)

Let A

- < 1 PP L1 S

N, 2 * 1 Jc(x Je dx~ . (82)
. o

{ | Then from the periodicity of the terms in the integrand, we have

. t' - 1) :

) PRTALICTEE

Von = ’-'z‘-J elbr —‘-—l—;r—— [ca(ei.aKT-'l-iaKr)] de | (83)
b This integral is in the form of Weber-Schasheitlin type (Watson 1944) and it
[n -y )

n gives

!
L - Kb 2 7 7.2 ‘
_ Vm’ntica[—fw—{+/k - (b + aK)¢ - / k°-b°] (84)

(k%-b%)"/

Substituting for a and b, we have

] (n-m)Ka ' :
e L B kv * kgl ‘ (85)
,. In the case of a pure sinusoid, of the form hcosKx, the fourier coefficients are
N :
4 h/2 for a = + 1,
- - n o (n=mKe
:E Von =1 7 [T + kly,=vpy)] [men] =1
- =0 [m-n| # 1 (86)
'f.:-: G.N. Watson. A Treatise on Bessel Functions, Cambridge Univ. Press
203 Cambridge, England, 1944,
e |
B e S L S e e e e :

..........
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The next step is to evaluate (Vm,n - Vm,n) =V m.n
A «©
d = 1 [ ~ika x +ika _x~ . .
v mn R Je m" dx J e n" f{x,x )'dx (87)
o -t
oMy w Mg
f(x,x7) = ik [ - —) ((z(x) - ¢(x7)) - (x-x")g~(x~))dx~
20 20
o = [lxx")2 + (c(x) - ¢(x*))?]"/2 (88)
0 = (x-x)
writing the integral over the infinite limits as a sum
A . A
Vdm n® %—Je"k“mx dx J J e KX g (x,x~ + qn) dx”
0 q=-»0
A A o )
= %-Je"k“mx dx[ g1 kapX (I f(x,x* +qn) dx*) (89)
0 0 q=-¢n
A A .
- % J o~ Tkogx-imkx J aikagx” + iknx (T f(x,x" +qn) dx*
0 0 Q==
A A
= % J e ImkX 4y J g TknX f(x,x*)dx”
where ° °
F(x,x*) = e~ Tkag (x-x7) YF(x,x" + gA). (90)

q
We can easily evaluate f(x,x”) and determine its fourier coefficients corres-

ponding to m and n. We will show that, as the point x»x” and q = 0, %(x,x‘)

is bounded. To show this, we take a sinusoidal surface represented by z(x) =

hcosKx
i M ko) 1 M iko)
f(x,x°) = (- - - ——) [(h coskx - h cosKx”) + h(x-x*)KsinKx"]
° (91]
writing x = x* + +t as before
A e e )
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Ex: i ko) 1 (D ko)

) f(x,x°) = ( > - — [h cosK (x° + t) - h cosKx” + hKrsinkx] (92)
109 °
G as x»x*, t=0
‘-‘,‘ﬂ
-"‘?.-.‘
h{cos(Kx* + Kr) - cosKx” + KrsinKx“]
). = h[cosKx“-coskt - sinKx“sinKr - cosKx” + KrsinkKx“] . (93)
¢',', 2 2
fi For small values of t, sinKr = Kt and coskr = (1 - %—). Therefore, the right-
i hand side of Equation 93 now becomes [-cost‘(thrz/z)]. By a similar argument,
3 " we write for small values of t
(i o = t(1 + h2kPsin?kx-)1/2 (94)
Also for small argument
s (1) 12, :
f-'.:'-j | Hyt H(2) v - (3D _ : (95)
j Substituting all these in the expression for f(x,x*) we obtain

\ " 3.4 v eind kxe |

454 as x»x*  ink(1 + h“K®sin“Kx")

i g0

PY A

- : f(x,x“) can therefore be evaluated without difficulty and a 2D FFT is performed
L .

oy to obtain the elements of the matrix .Vdm n’

5 - "

b From Equation 71, we have
= (1-9-0%=20 - (97)
.‘4' . - .

o~ The expression for V = has a singularity at vy, = 0 and therefore we multiply
2 each equation by the corresponding v

e o a

ﬁ | [F - 39 - 79935 = 2%y (98)
3 1 - ’

s:: where y is a dtagonal matrix containing Y along the diagonal.
o The method of Holford can also be used to calculate the scattering strength
} due to a beam of finite bandwidth by the following scheme.
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The incident plane wave is split into its fourier components given by

Bla,) = ETH Pinc(x,k)e“"“o“dx (99)

The resultant scattered field is computed from

széi) = J Blay) ﬁscat(x’z;“o) da,, (100)

where ﬁscat(x’z’ao) is the scatter field due to unit amplitude plane wave
incident upon the surface with a direction cosine g
ITI. Results

A possible model for study of the urban areas with a SAR would be to model
the surface as a rectangular periodic surface with a period of 30m and a height
of abbut 15m. For an incident wave length of above .235m, the number of scattering
angles will be of the order of 300 and a corresponding 300 x 300 matrix for
obtaining the scattering intensities at these angles. Because of such a large
matrix inversion, a smaller period for the surface was picked. It is felt that
this scaled down m&de] will also exhibit the principal characteristics of the
original model we are interested in. The computation involves estimating the
scatter‘intensities at discrete angles given by the grating equation using the
exact method due to Holford. This was done at different incident angles ranging
from 5° to 25°, with the corresponding back scatter directions given by -5° to -25°
respectively. Higher angles were not considered as bulk of the energy was
scattered in the forward direction at these angles. Also the look angles for SAR
is in the region 20° + 3°.

The issues in the numerical implementation of the scheme are

(a) The infinite sum in Equation (2.89) can be approximated by a finite

number of terms and a length of 10A was sufficient to obtain con-
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& vergent results

'_ ' (b) Nyquist criteria was used for sampling while performing the 2-D FFT.

-,

- (c) A rectangular window for the FFT did not perform well, while Hanning

ji window significantly improved the results.

| (d) Conservation of energy was used as a test to check the validity of the

$I results and except for one case, the energy conservation was not

.

< violated. In that case (5° angle), the reflection coefficient was

. slightly greater than one at scattering angles close to grazing

Al

x and less than one at other angles.

- Figures 1 to 4, the reflected energy is given as a function of the incident
angle (8) for various scattered angles. The back scattered angle is -6. As the
incident angle increases the back scattered intensity decreases significantly.
Figure (5-7) shows the back scattered energy as a function of the incident angle

. for Kh = 5,10,15 and A/x = 10 and Figure 8 for Kh = 10 and A/A = 15. The back |

’ji scattered energy decreases rapidly to insignificant levels beyond 25°. However

L .

é; it seems to be having a minimum between 0 and 25°. This may be a possible

= explanation for the observed variation in the intensity of the two SAR images in

o the LA area.

£

. For the same Kh = 10, as A/x increases, (Figures 6 and 8) the reflected
energy decreases significantly. This indicates that the fundamental component

o3

¢ of the spatial structure contributes a significant amount of energy.
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b
ESZS IV. Conclusions and Recommendations
i ' The numerical results indicate that there is a definite variation in the
i%;g back scattered intensity as a function of the aspect angle. However in order
.xi: for us to do a more realistic model, we would need the facilities of a large
*: . computer like the CRAY, due to the computer intensive nature of the calculation.
gig In any future work, a request for such facilities has to be made, and only then
'EEE can one compare the actual observations from the SeaSat images with the model

i calculations.
%§§? Mode11ing of the back scatter as being from a series of regularly spaced
‘%i{ flat rectangular radiators parallel to the earth surface was not pursued as it
j:;l was felt that significaht errors would result from neglecting the height of the
i‘%{ buildings. To include this effect, one would have to use some modified aspects

. of ray tracing and GTD corrections to rays. This represents another alternate
approach that need: to be investigated and numerically implemented.

;ES; In order for us to get a more quantitative feel for the back scattered

ESE radiation, it would be useful to perform experiments on scaled down models using
‘{\ laser beams and optical frequencies. Measurements of optical backscatter can be
:ig made by modelling the city as a grating or a crossed grating and simulating the
Eég satellite radar with coherent optical radiation. The ratio of the optical

*fi? wavelength to the length of the gratings periodicity will be equal to the ratio
tz;; of the radar's wavelength and the dimensions of a city block.
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MISSION
of
Rome Air Development Center

RADC plans and executes research, development, test
and selected acquisition programs in Support of
Command, Control, Communications and Intelligence
(C31) activities. Technical and engineering
dupport within aneas of competence is provided 2o
ESD Program Offices (POs) and othen ESD elements

20 perform effective acquisition of C31 systems.
The areas of technical competence include
communications, command and control, battle
management, infoamation procesdsing, surveillance
densons, intelligence data collection and handling,
sd0lid state sciences, electromagnetics, and
propagation, and electronic, maintainability,

and compatibility.
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