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ABSTRACT

The use of exponential smoothing to perform yearly

updating of attrition rates is examined and has merit. It

shows enormous flexibility in adjusting to changes in the

environment affecting the attrition rates, and it displays

almost as much accuracy as the method it is intended to

replace while using thousands of times less data.

A secondary purpose of this study is fulfilled in

confirming that the current aggregate methods are outper-

formed by maximum likelihood estimation, transform cell

scale average, James-Stein, and limited translation

James-Stein. None of these four methods is dominant overall,

but all are improvements over the estimation system now

employed.
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I. INTRODUCTION

A. PURPOSE

This study continues the work started by Major D.D.

Tucker [Ref. 11 and continued by Major John R. Robinson

[Ref. 21 in their respective theses submitted at the Naval

Postgraduate School (NPS) in September 1985 and March 1986.

Their works [Refs. 1,2] dealt with obtaining better attri-

tion rate estimates for the Marine Corps officer manpower

model than the ones currently in use. Both Tucker and

Robinson in the "Recommendations" section of their theses

[Ref. 1: p. 72] (Ref. 2: p. 691 stated that further work on

how to update the estimates from year to year was needed.

This study investigates this "yearly updating" problem.

The primary purpose of this work is to investigate the

efficacy of the exponential smoothing model as a yearly

updating model for Marine Corps attrition rates. The reasons

*for choosing the exponential smoothing model for study are

outlined in Chapter II.

A secondary ob,,ctive of this study will be to compare

the performance of the attrition rate estimators introduced

by Robinson (Ref. 21, which are introduced later in this

chapter, to the current Marine Corps' estimator.

B. BACKGROUND

Much of the background detail for this study is well-

documented in previous works. Tucker [Ref. 1: pp. 15-38,

128-138] explains the Marine Corps Officer attrition and

promotion structure, the structure of the data base used by

the Marine Corps in its officer planning process, the

process itself, and how the data from the Navy Personnel

Research and Development Center was transferred to the NPS

computer system. Robinson's study [Ref. 2: pp. 11,14-20]

10
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contains a complete summary of the estimation methods and

aggregation procedure he used. For continuity, these estima-

4tion methods and this aggregation scheme are used in the

present work.

Robinson's thesis [Ref. 2: pp. 74-75] also includes an
explanation of the Freeman-Tukey arcsine transformation,

which is used to stabilize the variance of the empirical

loss rate estimates. The empirical process is assumed to

have a binomial(n,p) distribution with parameters

n = central inventory for the year
4. p = probability that an inventory unit leaves the

Marine Corps during the year.

The Freeman-Tukey arcsine transformation provides a second
scale for comparison of the estimators within which the

estimates have a more stable variance, and additionally,

behave more like a normal distribution (see Appendix B).

Both Tucker and Robinson [Refs. 1,2] used data from

years 1977-1980 to obtain their loss rate estimates, and

then used years 1981-1982 to validate them. Robinson

[Ref. 2) also had year 1983 to use for validation of his

estimates. Their estimates [Refs. 1,2] worked fairly well in

predicting attrition one year into the future, but their

success faded noticeably as the they tried to predict two or

three years into the future. Thus there appears to be a

time-varying component in the attrition rates. This leads

to the problem of updating the loss rate estimates each year

in order to better forecast future attrition.

C. PREVIOUS WORK

Major Tucker [Ref. 1] showed that the James-Stein

shrinkage estimator was better than both the current method

used by the Marine Corps and maximum likelihood estimators.

He also showed that the James-Stein technique will provide

estimates for those small cells which have no attrition,

, 11



i.e., those cells whose maximum likelihood estimator must

be zero [Ref. 11. Also, Tucker stated in his summary that

the small inventory cells present a problem in loss rate

estimation because "some of the cells are empty for struc-

tural reasons while others are empty by chance" [Ref. 1: p.

70].

Major Robinson [Ref. 21 tried to combat the "small cell"

problem, i.e., the problem with estimating attrition rates

for those cells with low inventory figures, by introducing

the limited translation James-Stein technique of Efron and

Morris [Refs. 3,41. He showed that this technique improves

upoi. the James-Stein estimates used by Tucker [Ref. 11 in

estimating the rates for small cells [Ref. 21. Robinson

[Ref. 2] also introduced a transformed scale cell average

(TSCA), an estimator corresponding to zero shrinkage in the

James-Stein technique, which in many cases outperformed all

other estimators.

D. AGGREGATION METHOD

The United States Marine Corps Officer Corps numbers

approximately 20,000. Each officer below the rank of briga-

dier general is cross-classified into one of 40 military

occupational fields (OF), 31 lengths of service years (LOS),

corresponding to 0 to 30 years in the Marine Corps, and 10

grades, from warrant officer 1 to colonel, for a total of

12,400 categories.

Almost half (6149) of these categories, or cells, are
t"structural zeroes" in inventory. "Structural zeroes" occur

due to Marine Corps policy concerning promotions and because

certain combinations of OF, LOS, and grade never occur,

e. g. , there are no colonels with just 2 years in service.

These cells exist only in theory, not in practice, and are

therefore not included in the feasible region of cells.

A vast majority of the 6251 feasible cells are low

inventory cells. Because of this, it is quite difficult to

12
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obtain useful stable attrition rate estimates for these

cells and it is wasteful to try to treat each cell individu-

ally. There is much communality of behavior among clusters

of cells, and the grouping of cells into aggregates of like

characteristics can ease the bookkeeping burden as well as

provide the desired stability. Ideally, aggregation schemes

can be found for which the aggregates behave in a predic-

table manner and for which meaningful conclusions may be

drawn from statistical tests. However, current Marine Corps

practice groups the cells according to organizational and

operational considerations, producing aggregates that will

not necessarily conform to any specific statistical

behavior.

H. Amin Elseramegy used the CART algorithm to find

aggregations with predictable statistical behavior with

encouraging results in his thesis submitted at NPS in

December, 1985 [Ref. 5]. His results cannot be regarded as

definitive because of operational considerations (e.g.

excessive computer running time required some pre-

aggregation), but can serve to guide future work.

The current Marine Corps manpower model places all occu-

pational fields into four categories: aviation (OF 72, 75),

combat support (OF 13, 25, 35), ground combat (OF 03, 08,

18) and other (includes 32 occupational fields). This

aggregation scheme is used by both Tucker and Robinson

j[Refs. 1,2] and will be used again in the present work. For

continuity, the aviation category will include only OF 75 as

it did in both of their works [Refs. 1,21.

E. ESTIMATION METHODS

Robinson in his thesis [Ref. 21 compared six loss rate

estimators. These estimators are:

1) Original Aggregate (AGG ORIG) -- the current Marine
Corps estimation method. The occupational fields are
placed into the four categories mentioned in the
Sreceding section. Past attrition rates from 1977 to
he present are sub jectively weighted and averaged for

each aggregate. The grand mean of the weighted

13



attrition rates serves as the loss rate estimate for
all cells (OF, LOS, qrade) within the aggregate. Both
Tucker and Robinson [Refs. 1,21 found methods superior
to this one.

2) Transformed Aggregate (AGG TRANS) -- computed by
transforming the empirical attrition rates using the
Freeman-Tukey equation and then calculating the mean
of the transformed values within each aggregate. This
is followed by an inversion to the original scale.
Again, this is a single number used for all cells
within the aggregate.

3) Maximum Likelihood Estimator (MLE) -- Is calculated by
summing all leavers (over time) in a cell and dividing
by the total cell inventory (over time) for the
estimation eriod. This estimator is the MJE for the
binomial distribution described in the previous
section. There are problems with using the MLE in this
setting. While the estimate is indeed unbiased, it is
unstable due to the abundance of small cells causingthe possibility of a wide range of values. Also, this
MLE assumes that each year represents an identical
population, while the data shows that a cell
ehavior can change drastically within a few years

time. A complete discussion of the problems with using
the MLE can be found in [Ref. 2: pp. 17-181.

4) Transformed Scale Cell Average (TSCA) -- computed by
transforming the cell inventory and loss data and
calculating the time average for each cell over the
estimation period. Inversion of the results provides
attrition estimates in the original scale. Use of the
Freeman-Tukey transform holds down the variability of
this estimator, which was mentioned above as a

*4 shortcoming of MLE. This estimate performed
surprisingly well in Robinson s analysis [Ref. 21.

5) James-Stein Estilmator (JS) -- operates from the basic
notion that by "shrinking' estimates toward the grand
mean, the size of the sum of squared residual errors
will be lessened. The shrinking is applied to the TSCA
estimator. An optimal shrinkage factor is found for
each aggregate, and the cell means are shrunk toward
the grand mean by that amount. See Figure 1.1. The
optimal shrinkage factors used here are those found by
Robinson in his thesis [Ref. 2: pp. 34-36. Notice
that since the shrinkage is done in transformed space,
the assumptions of normality and stable variance
required by James-Stein are less compromised.

6) T-imited Translation James-Stein (LTJS) -- intuitively,
it does not seem quite right to shrink all of tne
values towards the grand mean. After all, extreme
values do occur occasionally, and their effects should
be represented in an analysis of the data. This
estimator deals with this problem by limiting the
translation of extreme values toward he grand mean.
From Figure 1.2 one sees that there is an interval
about the grand mean within which full James-Stein
shrinkage occurs, while outside this interval, the
shrinkage is diminished. There is a factor d which
controls the width of this interval. Robinson [Ref. 2:
p.37] found the optimal values for this factor, and
they are used in the present work. For a detailed
explanation of this estimator, see Robinson's thesis
[Ref. 2: pp22-2 51.

14
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F. RESULTS

Exponential smoothing provides a valid yearly updating

model for the Marine Corps attrition rates in all cases.

The estimates produced by exponential smoothing are, more

often than not, better than those produced by the methods of

Robinson [Ref. 2], and require far less data. This model

shows its extreme flexibility by pointing out an external

change in the aviation environment that occurred in 1981 and

actually outperforms the Robinson estimates for this aggre-

gate.

In this study, as in Robinson's [Ref. 2], the TSCA, JS,

and LTJS estimators forecast attrition rates better than the

current method used by the Marine Corps. The maximum likeli-

hood estimator performs well in the transformed scale, but

has extremely large errors in original scale in some cases.

This is due, in part, to the unsuitability in these cases of

using the optimal smoothing constant values for transformed

scale to produce smoothed estimates in original scale for

this estimate (see Appendix C). However, as in Robinson's

work [Ref. 2], no estimation method emerges as the clear-cut

"best" choice.

The ability of exponential smoothing to update attrition

rates is encouraging. However, having studied such a limited

sample of data, we believe that its implementation should be

delayed until further studies can be done when more data

becomes available.

17
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II. YEARLY UPDATING METHODS

A. GENERAL

A yearly updating model is one which allows newly

received data to be combined with data from the past to

update the estimate produced by that past data. By updating

the estimate, forecasts produced by the prior estimate

should be improved upon.

B. CRITERIA FOR MODEL SELECTION

There are many methods available to update parameter

estimates, such as attrition rates, as more data becomes

available. To choose among these methods, Robert Goodell

Brown [Ref. 6] suggests using the following criteria: accu-

racy, simplicity of computation, and flexibility of rate of

response. Of the three, only simplicity of computation i-s

not a major concern for the yearly updating model. In 1963,

when Brown published his book, simplicity of computation was

important for a model because of the relative inefficiency

of computers of that time as compared with those of today.

Since today's computers are millions of times faster, we

will not be concerned with this criterion in our model

selection. However, a criterion which is important in

choosing a yearly updating model is the amount of data that

needs to be stored in order to produce the estimates.

Naturally there are other criteria which may be used to

select a parameter estimation model. However, the three that

seem most appropriate in determining the yearly updating

model used in this study are:

1) accuracy

2) size of data

3) flexibility of rate of response

18



Fulfilling the Marine Corps' need for more accurate

attrition rate estimates is one of the primary purposes of

this pilot study. More accurate forecasts are produced by

such estimates, thereby avoiding some of the costly overages

and underages in inventory which result from the use of the

current estimation system.

One of the purposes of finding a yearly updating

model is to improve upon the forecasts of Tucker and

Robinson [Refs. 1,2], for which accuracy dropped off sharply

after the first year. The yearly updating model selected

should be able to forecast attrition rates one year in

advance at least as well as Tucker and Robinson's

(Refs. 1,21 did, and also improve greatly upon forecasting

rates two or three years from the present.

In reality, it is the estimation of attrition -ates

two years from the time of the most recent data that should

be of major concern. Loss and inventory data for a fiscal

year is not generally available until halfway through the

following fiscal year. Therefore, with the data available,

the next time period in which attrition rates need to be

forecasted is the year following the year in which the data

is received, which is two years ahead of the most current

available data. Thus the accuracy of the estimates for two

years from the time of the most current data, for which

Tucker and Robinson [Refs. 1,2] had little success, is one

7 "of the key figures with which the yearly updating model need

be concerned.

2. Size of Data

This criterion is very important in choosing a

yearly updating model. With 6251 feasible cells, it becomes
unwieldy and costly in terms of computer storage space to

log year after year of loss and inventory data. Thus, a

model is sought which can use short summaries of the data
-0: and still produce valuable estimates.
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3. Flexibility to the Rate of Response

In forecasting, when the current observation is

different from the forecasted value, there are two possible

explanations:, random fluctuation; change in the pattern of

the data. If the error is a random fluctuation in the data,

then the forecasting technique should smooth out the fluctu-

ation. In order for the model to do this, it should produce

estimates based on a great deal of past data. However, if

the error is due to a change in the pattern of the data,

then past data is rendered irrelevant. The estimate should

reflect only the recent processes.

Changes in Marine Corps policies in handling its

officer corps, which occur from time to time, often cause

corresponding changes in attrition patterns. Given informa-

tion about such changes, one should be able to detect a new

pattern in the loss and/or inventory data resulting from

them. Thus, we want our yearly updating model to be able to

smooth out random fluctuations in the data during times when

the attrition process is stable over a period of years, yet

still be able to respond rapidly to new conditions. The

model must be able to easily adjust the number and relative

value of past observations in producing the estimate, using

a fairly long series of data for an unchanging process and

only the most recent observations when a change in the

process occurs.

9C. SELECTION OF THE YEARLY UPDATING MODEL

1. Candidate One -- Tucker/Robinson's Methods

Both Tucker and Robinson [Refs. 1,21 showed that the

alternate estimators they introduced outperform the aggre-

gation methods currently employed by the Marine Corps. They

used four equally weighted years of data, 1977-1980, to

produce their estimates (Refs. 1,21. The question that

arises from their findings is why not use the functions that

Tucker and Robinson wrote [Refs. 1,21 to compute estimates

based on five, six, seven, etc., years of data?
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The answer to this question lies in the criteria for

model selection outlined in the previous section, of which

the continuing use of Tucker and Robinson's methods over

time meet none. The accuracy of Tucker and Robinson's esti-

mates [Refs. 1,2] dropped off sharply after the first year

in most cases, and the estimate of attrition two years off

is very important, as mentioned earlier. The amount of data

used to produce their four-year estimates was tremendous;

storing all of that data plus that of additional years would

be totally inefficient. Finally, using their methods with

more data is not responsive to changes in attrition

patterns. Old data, equally weighted with recent data and

which may no longer be relevant, is used in this technique

to produce the loss rate estimates.

Therefore, using Tucker and Robinson's methods

[Refs. 1,21 year after year on all of the data available

since 1977 is not a very good alternative. However, their

methods are valuable for providing a base estimate for the

* exponential smoothing model to be discussed later.

2. Candidate Two -- Movina Averaae

A moving average is simply the sum of the most

recent N observations divided by N. For example, imagine

that a basketball player scores 18, 15, 25, 22, 20, and 14

points in his first six games of the season. Let the scores

be denoted by xi, i = 1,2,...,6. His scoring average is the

sum of these six scores divided by six, or 19.0 points per

game. Call this M6 . Suppose he scores 24 points in his

seventh game. Then, if the practice of finding his scoring

average over the past six games is continued, his six-game

moving average, M7 , can be computed by adding the scores

from the most recent six games and dividing by six. Another

way would be to subtract 1/6 of the score he achieved six

games ago, or game one, and adding 1/6 of his total for the

most recent game, game seven. This produces the six-game

moving average
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M7 = M6 + (x 7 -xl)/N

= 19.0 + (24-18)/6 = 20.0.

Using this procedure to find attrition rates would

be straightforward; one would just find the actual rates for

the past N years and average them. This method does away

with some of the problems with data size encountered with

the previous candidate. Whereas continued use of Tucker and

Robinson's methods [Refs. 1,21 required the storage of all

of the inventory and loss data from 1977 forward, this model

will compute the rates each year for aggregates of cells,

and only these rates, which number N times the number of

aggregates, need be stored. This method may also prove to

be more accurate than the continual use of Tucker and

Robinson's methods [Refs. 1,21 since data from more than N

years ago, which may bear little resemblance to current

data, is eliminated. However, it is difficult to change the

rate of response using a moving average. If a change in the

underlying distribution of the data occurs, it will take N

years for the moving average to fully reflect this change.

One might suggest to keep N small so that it will respond

more quickly to changes, but by doing this, the greater

accuracy produced by larger data sets is sacrificed. Thus,

N must be chosen so as to compromise between these

conflicting objectives.

The moving average is an improvement over the

previous candidate, but it requires more data and is not as

flexible as the candidate which follows, the exponential

smoothing model. However, an understanding of it is helpful,

as the exponential smoothing model is itself a type of

moving average.

3. Candidate Three -- Exponential Smoothin

It is a disadvantage of the moving average that it

has to carry all of the rates needed to compute it, albeit

is a great improvement over the amount needed for the
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continued use of Tucker and Robinson's methods [Refs. 1,2].

Exponential smoothing cuts back even further on the amount

of data needed. Let us see how by continuing the example of

the previous subsection.

Suppose now that after recording the 24 points

scored by the basketball player in game seven, it is discov-

ered that all records of the previous six scores have been

destroyed, but the moving average, M6 = 19.0, still remains.

If the value of x, was known, M7 could be computed. The best

estimate we have for xi is that is was equal to the average,

M6 = 19.0. Using this estimate for xI , a new estimate of the

six-game scoring average can be computed:

Mhat 7 = M6 + (x7 -M6 )/6

= (1/6)x 7 + (5/6)M 6 = 19.833

Mhat 7 is an estimate of the moving average M7 , and

is called the smoothed value of the average. Mhat i will

hereafter be referred to as S I, S standing for "smoothing."

If the equation used to find Mhat 7 = S7 is used to

find each succesive estimate, the definition of the smoothed

R function of the observations is [Ref. 6: p. 101]:

St(x) = a xt + (l-a)St_l(X) (2.1)

The smoothing constant, a, is similar, but not exactly equal

to the fraction 1/N used to find the moving average [Ref. 6:

p. 101]. The operation which updates an estimate by adding

a fraction a of the difference between the current observa-

tion and the previous estimate to that previous estimate is

called exponential smoothing [Ref. 6: p. 1011.

Exponential smoothing discounts past data based upon
the size of the a parameter. How it does so can be seen by

substituting for the previous smoothed value the equation

that produced it from an even earlier smoothed value
[Ref. A: p. 101]:

23



St(x) = a xt + (1-U)(a xt.l + (l-a)St 2 (x)) (2.2)

= a xt+ a (1-U)(xtl) + a (1-a) 2  xt. 2  +...

= a (1-a)k(xt.k) + (1-U)So(x)

Thus, if the smoothing constant equals .2, then the

current data point has weight .2. Previous observations

have weights .16, .128, .1024, etc..

It is seen from the above equations that exponential

* smoothing always requires a prior estimate, St 1 , to perform

the update and find St . Brown [Ref. 6: p. 1021 suggests

using the simple average of the most recent N observations,

or MtI , for the initial value St 1 . In this study, the

prior estimates are found in a similar manner. The functions

developed by Tucker and Robinson [Refs. 1,21 and spelled out

in detail in Robinson's thesis (Ref. 2: pp. 83-1101 are used

to find the estimates over N years of data. An optimal base

estimate 2ength N will be found for each aggregate using the

data available. However, so that the results of this study

may be compared with those of Robinson [Ref. 2], 3-year base

estimates, corresponding to years 1977-1979, will be used.

The empirical rates for 1980 are smoothed onto the base

estimates to produce the updated estimates which can be

validated on years 1981-1983 just as Robinson's estimates

were (Ref. 21.

The exponential smoothing model best meets the

criteria outlined in the previous section. It requires very

little data to be carried from year to year as compared with

the other candidates examined; only the last estimates

obtained by the model need be saved. It is also very flex-

ible to changes in the pattern of the data. When the

smoothing constant is small, the function behaves like the

average of a great deal of past data, whereas large values

of the smoothing constant allow S(x) to respond quickly to

changes in the attrition rate process [Ref. 6: p. 1021. Its

accuracy should be greater than that of the moving average,
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where the data is equally weighted, since exponential

smoothing discounts past data. This will allow for more

recent data to exert greater influence on the estimate,

which is desirable because the near past generally repre-

sents the near future better than the distant past.

Therefore, since it fulfills the criteria better

than all other candidates examined, exponential smoothing is

the yearly updating model used in this work.

11
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III. EXPONENTIAL SMOOTHING

A. GENERAL

Having chosen exponential smoothing for the model to

update the attrition rates annually, the next step is to

implement it. The exponential smoothing itself will be

performed in transformed scale because the variances of the

estimates are more stable in this scale. Therefore, both the

base estimates Si.(x) and observations xi, which are needed

to produce the updated estimate Si(x), will be calculated in

the transformed scale.

When the loss data is collected by the Navy Personnel

Research and Development Center, the cell (OF, LOS, grade)

into which a loss is assigned is the cell to which the

leaving officer belongs at his time of departure. For

example, a first lieutenant with 3 years of service at the

beginning of year i who completes his 4th year of service,

is promoted to captain, and subsequently leaves the service

before the beginning of year i+l is classified as a loss

from LOS 4 years in his OF and the grade of CAPT in year i.

This type of loss classification demands the use of central

inventory data (Ref. 7: p. 251. For data grouped by years,

like the Marine Corps manpower data we have, central inven-

tory for year i is found by averaging beginning-of-year i

stocks with beginning-of-year i+l stocks for each cell. If

beginning-of-year i+l stocks are not available, because we

are at the end of the data set or for whatever reason, the

central inventory for year i is set equal to the beginning-

of-year stocks for year i. This occurs in our data for year

1983, since 1984 is not available for our use. Additionally,

if losses in year i are greater than the central inventory

of year i, the central inventory is set equal to the losses

to avoid the apparent inconsistency of losing more men than
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you have on hand. Thus, in the above example, the officer

would have been counted as a ILT in his OF with 3 years of

service in the inventory for the beginning of year i. The

attrition rate computed then, is the central attrition

rate, which is the number of losses in year i divided by

central inventory for year i [Ref. 7: p. 25]:

m. = yi/Ni (3.1)

The raw data compiled by the Navy Personnel Research and

-i Development. Center consists of losses and beginning-of-year

inventories for the 12400 cells mentioned in the

Introduction chapter. Both Major Tucker and Major Robinson

[ [Refs. 1,2] aggregated this data into the four categories

aviation (OF 75), combat support (OF 13, 25, 35), ground

combat (OF 03, 08; 18), and other. The central inventory

matrices were computed and the loss matrices compiled for

the aviation, combat support, and ground combat aggregates

for all years available (1977-1983 for Robinson and this

work). The 'other' category was not examined by Tucker nor

Robinson, nor will it be here. The best summary of the data

.* manipulation programs producing the central inventory and

~%loss matrices is found in Appendix D of Major Robinson's

*thesis [Ref. 2: pp. 83-104]. In order to be consistent with

the analyses done in those two works, only the grades of

. first lieutenant (ILT) and lieutenant colonel (LTCOL) will

be examined in this pilot study. Like Tucker and Robinson

[Refs. 1,2], all 31 possible lengths of service years will

be included. Additionally, all six estimators explored by

Robinson [Ref. 21 and discussed in the Introduction chapter

I of this study will undergo exponential smoothing and have

their forecasting abilities compared. Thus the total number

of loss rate estimates that will ultimately be computed is

25284, corresponding to 6 estimators, 7 operational fields,
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31 lengths of service, and 2 grades. The analysis will be

broken down by grade and aggregate, as in Tucker and

Robinson's works (Refs. 1,21 thereby setting up 6 study

blocks:

1) Aviation ILTS

2) Aviation LTCOLS

3) Combat Support ILTS
4) Combat Support LTCOLS

5) Ground Combat ILTS

6) Ground Combat LTCOLS

*The base estimate Si_ 1 and empirical estimate xi are

found for all six estimates, 31 lengths of service, and

occupational fields within a study block by using APL func-

tion ESTIM (see Figure A.3), developed by Major Robinson

[Ref. 2: p. 105]. The updated estimate, still in trans-

formed scale, is found by applying exponential smoothing

equation 2.1 presented in the preceding chapter. The

predicted rates are then validated against actual trans-

formed figures from the years that follow. How this is done

is the subject of the next section.

B. FIGURES OF MERIT

The figures of merit (FOM) used by Robinson in his

thesis [Ref. 2] will also be used here. The basis for the

decisions concerning the finding of the optimal smoothing

constants and base period lengths will be the figures of

merit in transformed scale because the data is so much more

well-behaved therein. The original scale figures of merit

will also be calculated and reported in Chapter IV. The

values of a used to calculate the original scale figures of

merit will be the optimal values of a found in transformed

scale.

We would hope, therefore, that the value of the
smoothing constant, a, corresponding to the smallest figure

of merit in transformed scale is very close to that
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corresponding to the smallest FOM in original scale.

Fortunately, this is almost always the case. Two exceptions

are the transformed aggregate estimators for aviation ILTS

and ground combat ILTS, which turn out not to be very

important due to the overall lackluster performance the

transformed aggregate estimator turns in throughout the

analyses. More notably, however, the MLE for combat support

ILTS, ground combat ILTS, and ground combat LTCOLS have

serious discrepancies between values of a producing minimum

figures of merit in transformed and original scales. These

N differences cast serious doubts upon the correctness of

using the transformed scale optimal a as the a value in the

original scale for maximum likelihood estimation. See

Appendix C for the details of this analysis.

In transformed scale, the data is approximately distrib-

uted normally with a stable variance (see Appendix B). Thus,

a good means of comparison between estimators is a sum of

squares error (SSE) computation. The sum of squares error is

defined as:

SSE = (actual-predicted)2  (3.2)

where "actual" and "predicted" are the actual and predicted

values for the transformed attrition rate figures for one of

the validation years (VY). APL function RISKT calculates

the figures of merit for transformed scale using the above

equation (see Figure A. 9).

The original scale does not have a normal distribution

nor a stable variance for the estimates. The SSE would

therefore be inappropriate for the FOM calculations in orig-

inal scale. Robinson [Ref. 2: p. 28] sugggested the use of a

chi-square statistic for use to compare estimators in orig-

.inal scale. The chi-square statistic is:
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FOM(t) = (yit-Nitpi)2/NitPi ( l - P i ) , for all i (3.3)

where Yit and Nit. are the losses and central inventory

counts for the it h cell in the tth validation year, and pi

is the inverse transform of the estimate for the ith cell

calculated in transformed scale (see Appendix B). APL func-

tion RISKO (see Figure A.8), which computes the original

scale figures of merit, screens out cells with pi values of

0 and 1 to prevent the above denominator from having a value

of zero. Both RISKT and RISKO find the figures of merit for

all of the validation years available.

With both of these figures of merit, the smaller the

FOM, the better the estimates produced. Figures of merit are

summed over all of the operational fields and lengths of

service within a study block, thereby producing a single

number for necessary comparisons.

C. FINDING THE SMOOTHING CONSTANTS

As mentioned in the preceding paragraph, it is the

smallest figure of merit which we seek. Therefore, the

smoothing constant, a, which produces the smallest FOM for

an estimator is the optimum a for that estimator.

In order for the weighting scheme implied by exponential

smoothing to make sense, u must be between 0 and 1 inclu-

sive. An estimate with a value of a equal to 0 places no

weight on the current empirical data point and all of the

.V weight on the previous estimate; thus, this value is simply
S..V the estimate produced by Robinson [Ref. 2]. Conversely, an

estimate produced with a value of a = 1 is simply the empir-

ical estimate from the most recent year's data.

An APL function was developed to produce the figures of

merit in both transformed and original scale for all valida-
,  tion years available and all six estimators for a study

block for all values of alpha between 0 and 1 by a specified

step size, which in this study is .02. This function,
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ALPHAHAT, calculates the base estimates using function

ESTIM, the empirical data points using function XFOUR (for a

three-year base; XFIVE and XSIX for four- and five-year

bases), which calls ESTIM, and smooths them into the new

estimates using equation 2.1. See Appendix A. Arrays of

figures of merit are produced, which can then be analyzed

and the optimum a found for each estimator and study block.

D. LENGTH OF BASE PERIOD

The length of the base period is important in producing

the loss rate estimates. If the environment is stable over a

long period of time, a long base period is preferred to

smooth out random fluctuations in the data. If the environ-

ment is in a constant state of turmoil, the base period

length should be rather small, and frequent updates of the

base are needed.

To provide a basis for comparison with the results

obtained by Robinson [Ref. 21, a three-year base will be

used in this study, with the fourth year empirical data

smoothed onto it to produce the attrition rate estimates.

Thus, years 1977-1980 are used for computation of the esti-

mates, and years 1981-1983 are used for validation, as in

Robinson's work [Ref. 2].

It should be noted that the choice of three years as the

length of the base period may not be "optimal," that is, it

may not provide estimates as accurate as those of a four- or

five-year base period. Therefore, a short comparison of base

estimate lengths three, four, and five years is presented

below. The MOE used is transformed FOM for forecasted rates

for validation year one. Although we are more concerned with

the estimators' ability to estimate rates two years in

advance, this MOE is chosen so that a 5-year base, which can

only forecast for 1983, may be included.

To find the figures of merit, the optimal a, which is

the value of a producing the smallest FOM for validation
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year one, is found for each base year length and study

block. The resulting figures of merit are then compared to

determine the "best" base period length for an aggregate.

It should be noted that with the limited number of data

years we have to work with, the conclusions drawn by this

short analysis cannot be generalized to future years. The

length of base period problem should be examined in more

detail as more data becomes available.

4%.

TABLE 1

DETERMINATION OF OPTIMAL BASE PERIOD -- COMBAT SUPPORT

FIRST LIEUTENANTS

Estimator 3-Year Base 4-Year Base 5-Year Base
a FOM81 a FOM82 a FOM83

AGG ORIG .50 1.863 1 1.669 .62 1.494
AGG TRANS 0 4.086 0 4.737 0 4.264
MLE .54 2.402 .58 2.409 .48 1.894
TSCA .52 1.610 .62 1.877 .50 1.136
JS .78 1.678 .80 1.817 .58 1.153
LTJS .58 1.641 .66 1.861 .52 1.133

LIEUTENANT COLONELS

Estimator 3-Year Base 4-Year Base 5-Year Base
a FOM81 a FOM82 a FOM83

AGG ORIG .66 1.478 1 1.441 1 1.362
AGG TRANS 1 3.372 1 2.789 0 2.603
MLE .36 1.859 .50 1.625 .40 1.638
TSCA .38 1.024 .72 1.209 .60 .980
JS .36 .935 .76 1.124 .64 .934
LTJS .36 .968 .74 1.143 .62 .956

Note: Figures of Merit are those for transformed scale.

1. Combat Support

Interestingly,* there is an increase in the minimum

FOM from a three- to a four-year base, with the five-year

base minimum FOM being smaller than both of them for the

TSCA, JS, and LTJS estimators for both grades, as well as

AGG TRANS and MLE ILTS. The other 4 estimator-grade combina-

tions show a strictly decreasing trend across all 3 base
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period lengths. Thus, from Table 1, it appears that a 5-year
base would be best to use for the combat support aggregate,

since all transformed figures of merit are smallest for this

base period length.

TABLE 2

DETERMINATION OF OPTIMAL BASE PERIOD -- GROUND COMBAT

FIRST LIEUTENANTS

Estimator 3-Year Base 4-Year Base 5-Year Base
a FOM81 a FOM82 a FOM83

AGG ORIG .58 2.976 1 3.066 1 3.933
AGG TRANS 0 19.842 0 20.923 0 24.811
MLE .72 1.647 .82 2.127 .80 2.909
TSCA .8 1.324 1 1.668 .90 2.559
JS .92 1.460 1 1.664 .96 2.631
LTJS .86 1.348 1 1.609 .94 2.573

LIEUTENANT COLONELS

Estimator 3-Year Base 4-Year Base 5-Year Base
a FOM81 a FOM82 a FOM83

AGG ORIG 1 3.540 1 2.698 1 2.413
AGG TRANS 0 14. 393 0 12. 481 0 12. 653
MLE .42 1.389 .20 1.982 .40 2.250
TSCA .58 1.510 .58 1.904 .70 1.922
JS .58 1.505 .60 1.832 .70 1.884
LTJS .56 1.494 .58 1.881 .70 1.899

Note: Figures of Merit are those for transformed scale.

2. Ground Combat

From Table 2, an increase is seen from both 3- to

4-year bases and from 4- to 5-year bases in all cases except

AGG ORIG and AGG TRANS for LTCOLS. Overall, it appears that

a 3-year base period produces the smallest figures of merit

for validation year one, and is therefore "optimal" for this

aggregate and data set.

The large val.ues of a for first lieutenants are

noteworthy. They may represent the inherent variability of

the process, or they may indicate that the attrition process

for this aggregate is in an almost continuous state of

S3
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change from year to year. The reasons are unclear at this

time, and further analysis with more data is needed to

determine whether or not this trend persists.

TABLE 3

DETERMINATION OF OPTIMAL BASE PERIOD -- AVIATION

FIRST LIEUTENANTS

Estimator 3-Year Base 4-Year Base 5-Year Base
a FOM81 a FOM82 a FOM83

AGG ORIG 1 3.976 1 4.253 .44 4.736
AGG TRANS 0 206.877 0 218.857 0 216.057
MLE .8 2.177 1 4.287 .36 1.502
TSCA .98 1.243 1 4.512 .38 1.176
JS 1 1.402 1 4.494 .38 1.277
LTJS 1 1.386 1 4.518 .38 1.261

.LIEUTENANT COLONELS

Estimator 3-Year Base 4-Year Base 5-Year Base
a FOM81 a FOM82 a FOM83

AGG ORIG 1 7.898 1 10.959 1 6.992
AGG TRANS 1 24.733 0 31.473 0 27.999
MLE .88 3.379 .66 6.637 .50 3.208
TSCA 1 3.341 .94 6.325 .7 3.698i, s 1 3.302 .96 6.311 .72 3.719

LTJS 1 3.321 .94 6.377 .7 3.684

Note: Figures of Merit are those for transformed scale.

3. Aviation

From Table 3, it is seen that for aviators, the

4-year base period has a higher FOM than the other two

candidates in all cases except for AGG ORIG ILTS, for which

the FOM for a 4-year base length is in the middle of the

three values. Thus, the choice for the "optimal" base period

length centers on the 3- and 5-year candidates. For ILTS,

the minimum FOM for the 5-year base is smallest for MLE,

NTSCA, JS, and LTJS, while the 3-year base is "best" for both

of the aggregate estimators. For LTCOLS, the 5-year base has

the smallest minimum FOM only for AGG ORIG and MLE, while

the 3-year base excels for the other four. With six
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estimators being "best" for both the 3- and 5-year base

period lengths, an aggregate-wide analysis results in a

stalemate. Thus, the analysis is broken down by grade, with

the conclusions being that the "optimal" base period lengths

are 5 years for aviation ILTS, and 3 years for LTCOLS.

The a values in this table, shifting from near 1 for

a 3- and 4-year base to around .38 for ILTS and .7 for

LTCOLS for the 5-year base should be noted; they indicate a

radical change in the data. This change comes about, in

part, because of the initiation of Aviation Officer

Continuation Pay (AOCP) in 1981. As explained by Major

Tucker [Ref. 1: p. 18], AOCP provides a bonus per year to

aviation officers which in turn obligates continued service.

The program was applied to all ranks provided the individual

met certain active duty flight status requirements. This

action had its -desired effect on retaining aviation offi-

cers, according to the analysis of Major Tucker [Ref. 1: p.

18].

In this analysis, the effect of AOCP is that data

from the pre-1981 era is not relevant to post-1981 data,

thereby producing a values of 1.0 for the 3- and 4-year

base period lengths for aviation. This means that the esti-

mates producing the smallest figures of merit are simply the

prior year's empirical estimates, which makes sense when the

base years include all pre-1981 data, as they do for the 3-

and 4-year bases. The values of a in the .7 range for 3 of

the 6 estimators for lieutenant colonels and the 5-year base

indicate that theoretically, 19- data should be given a

weight of .7, 1981 data a weight of (.7)(.3) = .21, and

1977-1980 data a collective weight of (.7)(.3)2 = .09 (see

Equation 2.2). This is also consistent with the AOCP

-program; the exponential smoothing model is beginning to

build a base of its own beginning in 1981. This is also seen

to be happening to the 4 estimators introduced by Robinson
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[Ref. 2] for first lieutenants; the model is constructing

its own base. The exponential smoothing model really shows

its flexibility and overall value in its predictions for the

aviation aggregate.

E. STABILITY OF THE SMOOTHING CONSTANTS

The stability of the smoothing constants is important to

the validity of the exponential smoothing model. This is

because if the same value of a produces optimal results in

the short run, then the exponential smoothing model is a
good one to use. We say "in the short run" because changes

in conditions over time that affect the data will demand

updates in a as well as the base period used.

Despite the relatively short base periods forced upon us

by a lack of data, the smoothing constants found for each

study block appear to be rather stable, i.e., there are no

wild fluctuations in the a which produces the minimum trans-

formed FOM. The few exceptions will be identified in the

analysis that follows. The stability of the smoothing

- constaizts will be demonstrated in two ways: within base

period lengths, and between base period lengths.

1. Within Base Period Lenaths

The stability of a within a base period length is

measured by how much a varies in producing minimum figures

of merit for all of the validation years (VY) available.

The analysis of the stability of a within base period

lengths, therefore, is restricted to the 3- and 4-year

bases, since the 5-year base can only be validated on one

year, 1983, in our data set. In addition, the two aggregate

estimators are excluded from this and the following (between

base period lengths) graphical analyses because of the

consistently poor performance they show as compared to the

other four estimators as measured by the figures of merit in

transformed space seen in Tables 1, 2, and 3. An analysis

of the stability of a for these two estimators reveals that
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the AGG TRANS estimator shows perfect consistency in its

optimal a values in all cases, and the AGG ORIG a values are

also very stable in most cases with no notable exceptions.

Note that when reading the graphs for the 3-year

base period length, the solid line is for validation year 1,

1981, the dot-dashed line is for validation year 2, 1982,

and the dashed line is for validation year 3, 1983. The

graphs for the 4-year base period length have a solid line

for validation year 1, 1982, and a dot-dashed line for vali-

dation year 2, 1983. The year corresponding to each type of

line is seen on one of the graphs, usually the "MLE" graph,

on each page.

At first glance, it would appear that these twelve

graphs show some study cells to have very stable a values

while others have a values that vary greatly. Before any

conclusions are drawn, however, attention must be focused on

the scales of the Y-axes. In almost all cases, these scales

are so small that they render the curves practically flat

over the interval covered by the range of optimal a values.

" This indicates stability in a despite the seen difference in

optimal a values since any a value in the range of optimal a

values will produce a figure of merit very close to the

optimal FOM.

A measure of the disparity caused by the differing a

values is the maximum percent differential of figures of

merit produced in the range of optimal a values over all

validation years. This error is measured for each valida-

tion year, estimator, and study block by subtracting the

minimum FOM produced in the range of a from the the maximum

FOM produced and then dividing by the minimum FOM. The

maximum of these over the validation years for an estimator

and study block is the error measure.

For these figures, this value is generally very

small, usually between 0 and 2 percent. For a 3-year base
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period length, however, there are some estimator-study block

combinations with errors greater than 5% (chosen arbitrarily

a/ to be an acceptable tolerance), and these are:
1) aviation iLTS MLE with 15.84% error

2) combat support LTCOLS JS with 5.24% error

3) combat support LTCOLS LTJS with 5.78% error

4) ground combat ILTS MLE with 12.87%* error

5) ground combat ILTS TSCA with 8.08% error

6) ground combat LTCOLS MLE with 5.75% error

This implies that only 6 of the 24 a values studied for the

3-year base period may vary too much within validation years

for that base period length.

For a 4-year base-period length even better results

are obtained. The maximum percent differential is the 4.2%

posted by the James-Stein estimator for combat support ILTS,

which also had the largest gap in a values, .24. In fact,

outside of that study group, only one estimator-study block

combination, MLE for aviation LTCOLS, has a percent differ-

ential of more than 1. 1%. Thus, Figures 3.1 to 3.12 appar-

ently show that a is stable within base period lengths for

both cases we can study using the data set.
2. Between Base Period Lengths

-a.',. The stability of a between base period lengths is
measured by how much a varies in producing minimum figures

of merit for equivalent validation years. The analysis will

therefore observe optimal a for validation year 2 using a

3-, 4-, and 5-year base period length, as well as validation

year 2 using a 3- and 4-year base period length.

Note that when reading the graphs for validation

year one, the solid line is for the 3-year base, the the

dot-dashed line is for the 4-year base and the dashed line

is for the 5-year base. The graphs for validation year two

have a solid line for the 3-year base and a dashed line for

the 4-year base. The year corresponding to each type of

50
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line is seen on one of the graphs, usually the 'MLE' graph,

on each page.

*A review of Figures 3.13-3.24 show mixed results for

the stability of the smoothing constants. The aviation

aggregate (see Figures 3.13, 3.14, 3.15, and 3.16) shows a

large instability between base period lengths for validation

year one and an almost perfect stability for validation year

- two. This is again explained by the initiation of the

Aviation Officer Continuation Pay program in 1981. The

instability for validation year one is caused by the large

decrease in optimal a for the 5-year b:ase period from that
of the other two. As discussed in the previous section, the

5-year base contains 1981 data, so the a value no longer has

to be 1.0 to produce optimal figures of merit as it did in

the 3- and 4-year bases (which explains the stability of a

for validation year two). Thus, the instability of a is

welcome here, as it is indicating a change in the aviation

attrition environment.

From Figures 3.17 and 3.18, we see that a is stable

for combat support ILTS. The only exception is the

James-Stein estimator for validation year two. This excep-

tion has a percent differential of 10%, while all of the

other cases have percent differentials well below the arbi-

trary acceptable level of 5%. Figures 3.19 and 3..20 show

that the opposite is true for combat support LTCOLS; only

the MLE shows stability. The percent differentials for TSCA,

JS, and LTJS are all above 10% for the validation year one

case, and have surprisingly small, though unacceptable,

values of 5.1%, 6.7%, and 5.6%, respectively, for the vali-

dation year two case. They are "surprisingly" small because

the ranges of optimal a are very large, .28, .36, and .32,

*" respectively, and one would think that the percent differen-

tial would be much bigger in light of these large ranges. A

pairwise analysis of the optimal a values leads us to

4...
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-believo that the optimal a for the 3-year base is signifi-

cantly smaller than that for the 4- and 5-year bases, for

which a appears stable. Thus, it would seem from this data-

limited analysis that the optimal a values for TSCA, JS, and

LTJS for combat support LTCOLS is stabilizing as the later

years are included in the base.

Figures 3.21 and 3.22 show a very stable optimal a

value for all estimators in both validation year cases for

ground combat ILTS, except TSCA for validation year one,

which has a percent differential of 8.1%. As mentioned in

the previous section, the reasons for the preponderance of a

values of 1.0 for this study block are unknown. All that is

known is that these large a values indicate a very turbulent

environment for the attrition of ground combat 1LTS, with

the patterns changing dramatically from year to year. An

analysis of Figures'3.23 and 3.24 shows that a is stable for

ground combat LTCOLS as well. The only instability seen in

these graphs is the MLE for validation year one, which has a

percent differential of 6.5%. Therefore, the conclusion is

that a is stable for the ground combat aggregate.
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IV. RESULTS

A. GENERAL

This chapter displays various data results, using a

three-year base period, for the six estimators used in this

study.

B. COMPARISON WITH RESULTS FROM EARLIER WORKS
Table 4 thru Table 6 display the figures of merit

obtained by using a 3-year base period and smoothing the

empirical rate of year 4 (1980) onto it. The figures of

merit and optimal a represent those corresponding to the

minimum transformed figures of merit for validation year 2

(1982), since it was determined earlier in this study that

the ability to forecast two years into the future should be

the major concern of the Marine Corps. Table 7 thru Table 9

show the results obtained by Robinson in his thesis [Ref. 2:

pp. 39-411. These estimates are the same as those of a
4-year base period with an a value of 0. In the analysis

that follows, this estimation scheme is referred to as the
"Robinson method" or the "Robinson estimation scheme."

One may notice a slight difference in the original scale

figures of merit between Tables 7, 8, and 9 and Tables 5, 6,

and 7 in Robinson's thesis [Ref. 2: pp. 39-411. This is
because a small error was found and corrected in APL func-

tion RISKO since the submission of Robinson's thesis in

March, 1986 (that being the necessary addition of variable

NV on lines 17-18 of the new RISKO, seen in Figure A. 8,

which was absent from Robinson's version) [Ref. 2].

However, the errors resulting from this mistake in RISKO in

Robinson's original scale figures of merit are quite small,

and in no way invalidate the comparisons he made [Ref. 2].
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The results of using exponential smoothing are now

presented for each of the six study blocks. The MOE for

comparison is transformed FOM.

TABLE 4

EXPONENTIAL SMOOTHING AVIATION FIGURES OF MERIT

TRANSFORMED FOM
a 1981 1982 1983

ist LT
AGG ORIG 1 3.976 5.634 6.260
AGG TRANS 0 206.877 2..2.181 219.619
MLE 1 2.437 5.746 5.156
TSCA 1 1.243 5.249 4.886
JS 1 1.402 5.360 5.126
LTJS 1 1.386 5.398 5.104

LTCOL
AGG ORIG 1 7.898 14.829 13.238
AGG TRANS 1 24. 733 29. 123 29.083
MLE 1 3.423 6.942 7.604
TSCA 1 3.341 7.395 8.210
JS 1 3.302 7.382 8.167
LTJS 1 3.321 7.378 8.191

ORIGINAL FOM
a 1981 1982 1983

1st LT
-u AGG ORIG 1 40. 488 12. 314 50. 363

AGG TRANS 0 384.833 306.151 886.744
MLE 1 13.431 18.361 42.519
TSCA 1 13.428 20.271 25.000
JS 1 16. 923 22. 791 26. 475
LTJS 1 15. 797 22. 423 26. 032

LTCOL
AGG ORIG 1 74.977 113.067 50. 567
AGG TRANS 1 63. 264 92. 066 76. 353
MLE 1 20. 801 65. 982 32. 998
TSCA 1 37.928 44.331 28.742
JS 1 29.665 42.718 27.425
LTJS 1 34.297 43.152 27.835

1. Aia n

From a comparison of Tables 4 and 7, it is se-.i that
exponential smoothing outperforms the Robinson estimation

scheme in all cases and for all validation years except the

transformed aggregate estimator. This exception is not

important at all, since the figures of merit for this
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TABLE 5

EXPONENTIAL SMOOTHING COMBAT SUPPORT FIGURES OF MERIT

TRANSFORMED FOM
a 1981 1982 1983

1st LT
AGG ORIG 1 1.949 1.868 1.581
AGG TRANS 0 4.086 4.580 3.995
MLE .56 2.402 3.093 2.420
TSCA .60 1.617 2.319 1.588
JS .90 1.688 2.257 1.559
LTJS .64 1.646 2.336 1.574

LTCOL
AGG ORIG 0 1.532 1.889 1.956
AGG TRANS 1 3.372 3.649 3.757
MLE .38 1.860 2.520 2.754
TSCA .34 1.025 1.923 2.024
JS .26 .941 1.699 1.732
LTJS .30 .971 1.782 1.861

ORIGINAL FOM
1981 1982 1983

1st LT
AGG ORIG 1 88.732 62. 779 50.792
AGG TRANS 0 234.581 136. 699 96.426
MLE .56 1262.038 2810.514 3858.857
TSCA .60 75.051 86.051 65.598
JS .90 83. 608 77. 961 47.631
LTJS .64 75.074 85.040 60.126

LTCOL
AGG ORIG 0 39.172 38.241 30.186
AGG TRANS 1 41.704 38.615 33.363
MLE .38 136.467 38.763 157.663
TSCA .34 23.446 31.130 29.101
JS .26 22.863 29.503 26.596
LTJS .30 23.074 29.367 27.342

estimator in all cases are so much higher than those for the

others. This result extends into -original scale, where

exponential smoothing is again seen to have lower figures of

merit. Special notice should be given to the exceptional

performance of exponential smoothing in forecasting rates

two and three years into the future as compared to the

Robinson method.

A major reason that exponential smoothing does so

well in this case is the inflexibility of the Robinson esti-

mation scheme. His scheme cannot readily adjust to changes
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TABLE 6

EXPONENTIAL SMOOTHING GROUND COMBAT FIGURES OF MERIT

TRANSFORMED FOM
lL1981 1982 1983~Ist LT

AGG ORIG .92 3.045 3.663 5.988
AGG TRANS 0 19.842 20.724 24.011
MLE .94 1.858 2.165 4.555
TSCA 1 1.431 1.916 4.424
JS 1 1.472 2.008 4.566
LTJS 1 1.405 1.869 4.415

LTCOL
AGG ORIG 1 3.540 3.427 3.671
AGG TRANS 0 14.393 13.453 13. 777
MLE .42 1.389 2.293 3.085
TSCA .56 1.510 2.392 3.169
JS .58 1.505 2.313 3.039
LTJS .56 1.494 2.358 3.108

ORIGINAL FOM
a 1981 1982 1983

1st LT
AGG ORIG .92 64.779 62.206 80.907
AGG TRANS 0 235.108 236.736 303.748
MLE .94 175558.747 449.816 3491.851
TSCA 1 75.514 57.155 124.972
JS 1 82.814 55.067 122.684"-LTJS 1 78.815 53.724 128.000

LTCOL
AGG ORIG 1 90.948 110.793 69.991
AGG TRANS 0 221.432 197.458 128.373
MLE .42 37.820 1383.609 38.934
TSCA .56 40.713 52.936 49.449
JS .58 40.615 53.345 48.090
LTJS .56 40.111 52.986 48.151

in the environment such as the Aviation Officer Continuation

Pay program initiated in 1981. This program, as has been

mentioned before, is believed to have radically changed

attrition patterns for aviators as compared to 1977-1980.

The exponential smoothdng model's ability to anticipate this

change, which it does by completely eliminating the effects

of data from years 1977-1979 by having a values of 1, allows

it to better predict attrition rates for the years following

the change in the aviation environment. Eventually, once a

base period of post-1981 data is established, the a values
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TABLE 7

FOUR-YEAR BASE ESTIMATE AVIATION FIGURES OF MERIT

TRANSFORMED FOM
1981 1982 1983

1st LT
AGG ORIG 6.405 9.645 11.393
AGG TRANS 197.621 202.-022 208.808
MLE 3.914 9.981 10.420
TSCA 3.461 9.574 10.042
JS 3.678 9.768 10.318
LTJS 3.642 9.764 10.279

LTCOL
AGG ORIG 9.957 17.997 15.488
AGG TRANS 25.093 29.506 29.310
MLE 4.366 9.058 8.210
TSCA 5.777 10.967 10'394
JS 5.737 10.911 10.355
LTJS 5.744 10.901 10.340

ORIGINAL FOM
1981 1982 1983

1st LT
AGG ORIG 31. 499 34.924 54.911
AGG TRANS 321.894 286.068 572.830
MLE 22. 804 46.751 57.475
TSCA 19. 333 38.458 49.389
JS 21.144 39.596 51.013
LTJS 20.732 39.434 50.690

LTCOL
AGG ORIG 74.697 111.913 51.256
AGG TRANS 23050.668 248.171 3900.284
MLE 33.932 55.925 22.116
TSCA 37.974 57.475 37.637
JS 36.708 54.901 35.218
LTJS 37.180 55.414 35.619

should decrease substantially, thereby giving the base esti-

mate some meaning in the estimation of the attrition rates.

Further study into this matter should be undertaken as more

data becomes available.

2. Combat SuDDort

From a comparison of tables 5 and 8, one sees that

in all cases for combat support ILTS, the Robinson method

figures of merit are slightly smaller than those produced by

exponential smoothing. The values of a vary widely over the

six estimators. Notice that maximum likelihood estimation
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TABLE 8

FOUR-YEAR BASE ESTIMATE COMBAT SUPPORT FIGURES OF
MERIT

TRANSFORMED FOM
lsLT1981 1982 1983C, Ist LT
AGG ORIG 1.528 1.842 1.385
AGG TRANS 3.308 3.722 3.238
MLE 2.273 2.843 2.409
TSCA 1.383 2.008 1.468
JS 1.470 2.066 1.532
LTJS 1.428 2.045 1.482

LTCOL
AGG ORIG 1.316 1. 701 1.755
AGG TRANS 2.601 2.898 2.981
MLE 1.589 2.157 2.444
TSCA .910 1.689 1.752
JS .809 1.514 1.556
LTJS .831 1.560 1.611

ORIGINAL FOM
1981 1982 1983

1st LT
AGG ORIG 79.521 69.344 54.319
AGG TRANS 288.130 131.044 104.613
MLE 141.815 145.434 104.668
TSCA 73.190 85.451 71.852

' JS 74.158 81.133 63.562
LTJS 74.148 84.524 68.079

LTCOL
AGG ORIG 34.631 46.427 38.481
AGG TRANS 41.785 44.739 64.345
MLE 36.015 62.882 48.468
TSCA 27.773 40.777 45.453
JS 26.191 36.758 41.956
LTJS 26.171 36.865 42.044

produces alarmingly high figures of merit in the original

scale. This is a direct result of the unsuitability of using

the optimal a for transformed scale to predict original

scale rates discussed in Chapter 3 (see also Appendix C).
A Additionally, its figures of merit in transformed scale are

higher than those for all but one of the other estimators,

so it appears that MLE is not a very good alternative to use

for this study block.

S .
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TABLE 9

FOUR-YEAR BASE ESTIMATE GROUND COMBAT FIGURES OF MERIT

TRANSFORMED FOM
1981 1982 1983., Ist LT

AGG ORIG 2.774 3.609 5.720
AGG TRANS 18.280 19.064 22.044
MLE 2.693 4.258 6.178
TSCA 1.957 3.447 5.231
JS 2.169 3.629 5.505
LTJS 2.045 3.482 5.334

LTCOL
AGG ORIG 3.692 3.596 3.783
AGG TRANS 13.108 12.209 12.546
MLE 1.252 2.029 2.925
TSCA 1.598 2.414 3.333
JS 1.584 2.332 3.223
LTJS 1.567 2.367 3.263

ORIGINAL FOM
1981 1982 1983

1st LT
AGG ORIG 79.406 87.445 110.324
AGG TRANS 271.834 255.215 341.258
MLE 91.399 134.172 170.424
TSCA 69.166 94.099 118.799
JS 76.811 98.672 125.292
LTJS 73.141 94.657 121.432

LTCOL
AGG ORIG 100.321 122. 612 75.718
AGG TRANS 250.966 342.375 4494.138
MLE 35.833 45.817 56.710
TSCA 37.521 51. 760 57.158
JS 36.909 50.712 55.615
LTJS 36.373 50. 828 55.562

Comparing Tables 5 and 8 for lieutenant colonels, we

see that the Robinson method's estimates are barely better

than the exponential smoothing estimates in all cases. The

values of a producing the minimum figures of merit for 1982

range from .26 to .38 over the 4 estimators introduced by

Robinson [Ref. 21. However, as one can see from Figure 3.4,

, the curves are flat enough in this range that choosing any a

in this range would produce good results.

Exponential smoothing, therefore, proves to be an

good technique for predicting attrition rates for the combat
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support aggregate. Its forecasting ability is almost as good

as Robinson's method while requiring far less data.

3. Ground Combat

A comparison of Tables 6 and 9 shows that exponen-

tial smoothing outperforms the Robinson method's estimates

in most cases for the ground combat aggregate. For ILTS,

exponential smoothing is better in all cases except for the

aggregate estimators. The improvement over the Robinson

method figures of merit is almost 50% for validation year

1982 for MLE, TSCA, JS, and LTJS, and is also quite notice-

able for the other two validation years. Again, the reasons

for the a values near or at 1.0 are unknown, but they indi-

cate a radical change in the attrition environment for

ground combat ILTS. Further study is needed to determine

whether or not this turbulence is specific to our data. But

whatever causes this apparent yearly change in attrition

patterns, the exponential smoothing model shows its efficacy

as a forecasting model in this study block by anticipating

this change and discounting the now-irrelevant base period

data, with the result being significant improvements in

forecasting ability over the methods of Robinson.

For ground combat LTCOLS, The AGG ORIG, TSCA, JS,

Aand LTJS estimators using exponential smoothing have smaller

figures of merit than the Robinson estimation scheme, and

the figures of merit for AGG TRANS and MLE are slightly

higher for exponential smoothing than for the Robinson

method. However, the differences are small in both direc-

tions; they are not nearly as pronounced for this study

block as they are for combat support ILTS. These results

hold for all three validation years. Again, we see the expo-

nential smoothing model producing attrition rates as good

as, if not better than, a method which theoretically

requires much more data. This study block, then, also shows
exponential smoothing to be a good model to perform the

attrition rate calculations.
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C. ATTRITION RATES

The attrition rates for all 7 operational fields for

first lieutenants and lieutenant colonels are presented in

Tables 10 thru 23. Attrition rates are computed for all 6
estimators and all 31 lengths of service.

Unlike the estimates produced by Robinson for the orig-

inal aggregate [Ref. 2: pp. 54-671, those calculated by

exponential smoothing are not the same for all cells with

non-zero rates, except when a=O, as is the case with combat

support LTCOLS. They would be -the same were the smoothing

done in original scale, but since it is done in transformed

scale, variability is introduced. This is because taking the

average of two sets of data in transformed scale, linearly

combining them using Equation 2.1, and then transforming

back to original scale will not produce a single average for

all cells as would linearly combining two original scale

average rates. This is basically the same reason that there

is variability in the transformed aggregate estimates.
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TABLE 10

AVIATION ATTRITION RATES FOR 1ST LTS

LOS AGG ORIG AGG TRANS MLE TSCA JS LTJS

0 0 0 0 0 0 0
1 0 0 0 0 0 0
2 .0179 .1154 .0008 .0003 .0005 .0005
3 .0253 .2283 .0266 .0283 .0300 .0294
4 .0159 .2527 .0090 .0100 .0114 .0106
5 .0282 .2221 .0402 .0421 .0437 .0434
6 .0216 .1442 .0240 .0270 .0278 .0278
7 .0204 .0758 .0386 .0432 .0430 .0430
8 .0350 .0064 .0621 .0729 .0698 .0698
9 .0788 .0067 .0251 .0533 .0510 .0510
10 .0710 .0072 .1197 .1335 .1282 .1282
11 .0480 .0182 .0063 .0307 .0277 .0277
12 .0123 0 .0033 .0155 .0097 .0109
13 .0832 0 .0284 .2679 .2027 .2313
14 .0725 0 .5000 .5000 .5000 .5000
15 0 0 0 0 0 0
16 0 0 0 0 0 0
17 0 0 0 0 0 0
18 0 0 0 0 0 0
19 0 0 0 0 0 0
20 0 0 0 0 0 0
21 0 0 0 0 0 0
22 0 0 0 0 0 0
23 0 0 0 0 0 0
24 0 0 0 0 0 0
25 0 0 0 0 0 0
26 0 0 0 0 0 0
27 0 0 0 0 0 0
28 0 0 0 0 0 0
29 0 0 0 0 0 0
30 0 0 0 0 0 0
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TABLE 11

AVIATION ATTRITION RATES FOR LTCOLS

LOS AGG ORIG AGG TRANS MLE TSCA JS LTJS

0 0 0 0 0 0 0
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0
7 0 0 0 0 0 0
9 0 0 0 0 0 0
1 0 0 0 0 0 0
10 0 0 0 0 0 0
12 0 0 0 0 0 0
13 0 0 0 0 0 0
14 0 0 0 0 0 014 0 0 0 0 0 0
15 .0098 0 .2957 .0298 .0373 .0373
16 .0089 .1001 .0001 .0101 .0076 .0076
17 .0907 .0672 .0270 .0010 .0003 .0004
18 .1304 .1762 .0015 .0026 .0046 .0034

19 .1302 .2278 .0015 .0012 .0029 .0016
20 .1442 .2514 .0717 .0790 .0850 .0820
21 .1739 .2575 .1568 .1642 .1684 .1681
22 .1791 .2639 .1991 .2054 .2084 .2084
23 .1812 .2512 .2447 .2506 .2514 .2514
24 .1919 .2182 .2464 .2549 .2542 .2542
25 .1776 .1835 .2676 .2765 .2735 .2735

26 .1281 .1071 .3326 .3401 .3303 .3313
27 .1018 .0237 .2925 .3070 .2926 .2950

28 .1602 .0016 .6575 .6311 .5953 .6145
29 .1789 .0430 .4119 .4343 .3998 .4139
30 .1184 .0500 .9944 .9683 .9423 .9605
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TABLE 12

COMBA SUPPORT ATTRITION RATES FOR 1ST LTS
CODE 07 ENGINEERS

LOS AGG ORIG AGG TRANS MLE TSCA JS LTJS
0 0 0 0 0. 0 0
1 0 o 0 o
2 .2357 .3571 .0901 .1119 .1388 .1134
3 .1987 .3973 .2610 .2697 .3124 .2791
4 .1547 .3940 .1446 .1455 .1768 .1454
5 .1903 .3793 .1838 .1861 .2144 .1897
6 .1870 .3511 .2990 .3072 .3086 .3135
7 .2066 .2976 .3226 .3443 .3214 .3325
8 .1820 .1756 .3753 .4145 .2619 .3768
9 .1824 .1916 .0520 .1312 .0871 .1266
10 .1933 .2023 .2075 .2523 .2371 .2444
11 .2578 .1953 .2667 .3089 .3358 .3200
12 .2370 .1711 .0411 .1327 .1338 .1326
13 .1915 .1461 0 .0801 .0843 .0868
14 .1216 .1711 .0064 .0269 .0273 .0329
15 .1375 .1618 .0036 .0373 .0384 .0463
16 .1683 .1218 .0005 .0748 .0640 .0754
17 .1616 .1149 .0009 .0739 .0586 .0723
18 .2148 .1461 .0012 .0966 .1065 .0977
19 .2209 .1218 .0018 .1161 .1132 .1113
20 .2370 .1002 .0646 .1989 .1384 .1692
21 .2869 .1077 .0924 .2503 .1946 .2252
22 .2756 .0923 .0118 .1912 .1728 .1845
23 .2062 .0661 .0006 .1463 .1005 .1220
24 .2815 .0168 .1583 .3626 .4550 .3571
25 .2370 .0003 .1671 .4058 .4575 .3916
26 .2370 .0003 .1671 .4058 .4575 .3916
27 0 0 0 0 0 0
28 0 0 0 0 0 0

4 29 0 0 0 0 0 0
30 0 0 0 0 0 0
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TABLE 13

COMBAT SUPPORT ATTRITION RATES FOR IST LTS
CODE 13 COMMUNICATIONS

LOS AGG ORIG AGG TRANS MLE TSCA JS LTJS

0 0 0 0 0 0 0
1 0 0 0 0 0 0
2 .2370 .3579 .1800 .1738 .2067 .1802
3 .1939 .4065 .2699 .2669 .2949 .2719
4 .1855 .4031 .2084 .2063 .2264 .2063
5 .2148 .3893 .3155 .3184 .3204 .3245
6 .2086 .3540 .2932 .3072 .3356 .3087
7 .2077 .2932 .4424 .4523 .3931 .4370
8 .2561 .2847 .2528 .2799 .2783 .2767
9 .2291 .3230 .1881 .2078 .2178 .2172
10 .2091 .3304 .1381 .1514 .2213 .1667
11 .1977 .2909 .0941 .1268 .1807 .1422
12 .1715 .2179 .0097 .0579 .0681 .0663
13 .1332 .1077 .0175 .0942 .0410 .0857
14 .1350 .0367 .0040 .1113 .0398 .0774
15 .0905 .0003 .0265 .1909 .0222 .1426
16 0 0 0 0 0 0
17 0 0 0 0 0 0
18 0 0 0 0 0 0
19 .2370 .0003 .1671 .4058 .4575 .3916
20 .2370 .0003 .1671 .4058 .4575 .3916
21 0 0 0 0 0 0
22 0 0 0 0 0 0
23 0 0 0 0 0 0
24 0 0 0 0 0 0
25 0 0 0 0 0 0
26 0 0 0 0 0 0
27 0 0 0 0 0 0
28 0 0 0 0 0 0e29 0 0 0 0 0 0
30 0 0 0 0 0 0
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TABLE 14

COMBAT SUPPORT ATTRITION RATES FOR 1ST LTS
CODE 20 MOTOR TRANSPORT

LOS AGG ORIG AGG TRANS MLE TSCA JS LTJS
0 0 0 0 o 0 0
1 0 0 0 0 0 0

2 0905 1618 0140 .0173 .0102 .0172
3 .0983 .2472 .2572 .2942 .2035 .2776
4 .0926 .2690 .2669 .2635 .2461 .2534
5 .0812 .2751 .1576 .2076 .2071 .2178
6 .0670 .2149 .2195 .2537 .1756 .2345
7 .0817 .0752 .1060 .2807 .1599 .2411
8 .1616 .0266 .9991 .8392 .5214 .8041
9 .1271 .0566 .9236 .8146 .6270 .7987

10 .1746 .0367 .0002 .1614 .0738 .1243
11 .1721 .1002 .1863 .3277 .2873 .3184
12 .1721 .1002 .0003 .0938 .0684 .0805
13 .1528 .1461 .0017 .0544 .0508 .0652

14 .1862 .1404 0 .0839 .0803 .0881

v 15 .2692 .1798 .0102 .1228 .1626 .1249
16 .2043 .1345 .0005 .0949 .0966 .0950
17 .1862 .0840 0 .1137 .0811 .0938
18 .2546 .0661 .0070 .1956 .1508 .1759
19 .2148 .0752 .0012 .1508 .1094 .1288
20 .3091 .0457 .3740 .4019 .4646 .3950
21 .2546 .0661 .0070 .1956 .1508 .1759
22 .3011 .0367 .1552 .3486 .4546 .3463
23 3011 0367 .1552 .3233 .4502 .3243
24 .2692 .0081 .1605 .3767 .4561 .3686

25 .2692 :0081 :1605 .3731 .4555 .3654
26 .2692 .0081 .1605 .3731 .4555 .3654
27 .1683 .0018 .0005 .2301 .0703 .1769
28 .1216 .0088 .0516 .2748 .0477 .2210
29 .2148 .0088 .1726 .4482 .4620 .4272
30 .2692 .0081 .1605 .3559 .4525 .3500
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TABLE 15

COMBAT SUPPORT ATTRITION RATES FOR LTCOLS
CODE 07 ENGINEERS

LOS AGG ORIG AGG TRANS MLE TSCA JS LTJS

0 0 0 0 0 0 0
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0

- 5 0 0 0 0 0 0
6 0 0 0 0 0 0

1 7 0 0 0 0 0 0
8 0 0 0 0 0 0
9 0 0 0 0 0 0
10 0 0 0 0 0 0
11 0 0 0 0 0 0
12 0 0 0 0 0 0

* 13 0 0 0 0 0 0
- 14 0 0 0 0 0 0

15 .2019 .0094 .1263 .3156 .3495 .3273
16 0 0 0 0 0 0
17 .1404 .1507 .0001 .1012 .1084 .1100
18 .1531 .2705 .0001 .0370 .0780 .0546
19 .1542 .2939 .0001 .0299 .0739 .0443
20 .1422 .3012 .2587 .2506 .2557 .2589
21 .1328 .2984 .0443 .0897 .1303 .1100
22 .1408 .2908 .1488 .1486 .1722 .1660
23 .1514 .2662 .0962 .1260 .1492 .1452
24 .1366 .2368 .2638 .2742 .2543 .2591
25 .1492 .1979 .1442 .2581 2640 .2534
26 .1746 .0977 .0007 .1273 .1289 .1237
27 .1475 .0866 .6841 .6243 .5213 .5931
28 .1289 .0218 .6117 .5407 .4169 .4692
29 .1289 .0218 .0685 .3187 .2386 .2514
30 .1206 .0748 .5488 .4937 .4012 .4345
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TABLE 16

COMBAT SUPPORT ATTRITION RATES FOR LTCOLS
CODE 13 COMMUNICATIONS

LOS AGG ORIG AGG TRANS MLE TSCA JS LTJS

0 0 0 0 0 0 0
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 a 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0
7 0 0 0 0 0 0
8 0 0 0 0 0 0
9 0 0 0 0 0 0
.10 0 0 0 0 0 0
Ii 0 0 0 0 0 0
12 0 0 0 0 0 0
13 0 0 0 0 0 0
14 0 0 0 0 0 0
15 0 0 0 0 0 0
16 .1385 .0010 .0777 .4148 .2942 .3253
17 .1200 .1767 .0052 .1298 .1252 .1324

18 .1304 .2615 .0012 .0530 .0831 .0681
19 .1535 .3052 .0001 .0273 .0723 .0403
20 .1381 .3222 .1480 .1784 .2087 .2010

21 .1238 .3170 .1689 .1914 .2051 .1967
22 .1515 .3170 .1590 .1927 .2193 .2170
23 .1673 .2841 .1437 .1654 .1799 .1763
24 .1495 .2615 .2642 .2531 .2573 .2559
25 .1488 .2302 .1832 .2521 .2699 .2524
26 .1369 .1644 .3054 .3026 .2411 .2668
27 .1637 .1177 .3865 .4655 .3164 .3906
28 .1475 .0866 0 .1736 .1510 .1499

29 .1475 .0866 .1387 .3213 .2692 .2749
30 .1321 .2368 .3756 .3945 .3490 .3531
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TABLE 17

COMBAT SUPPORT ATTRITION RATES FOR LTCOLS
CODE 20 MOTOR TRANSPORT

LOS AGG ORIG AGG TRANS MLE TSCA JS LTJS
0
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0
7 0 0 0 0 0 0
8 0 0 0 0 0 0
9 0 0 0 0 0 0
10 0 0 0 0 0 0
11 0 0 0 0 0 0
12 0 0 0 0 0 0
13 0 0 0 0 0 0
14 0 0 0 0 0 0
15 0 0 0 0 0 0
16 .1780 .0010 .1573 .3692 .3769 .3584
17 .1780 .0010 .1573 .3692 .3769 .3584
18 .1637 .0094 .0003 .3062 .2117 .2227
19 .1475 .0354 0 .2113 .1550 .1551

20 .1385 .0623 .1923 .3483 .2709 .2801
21 .1238 .0491 .4323 .4363 -.3445 .3686
22 .1424 .0491 .2332 .4020 .3082 .3311

- 23 .1780 .0010 .1573 .3692 .3769 .3584
24 0 0 0 0 0 0
25 0 0 0 0 0 0
26 0 0 0 0 0 0
27 0 0 0 0 0 0
28 0 0 0 0 0 0
29 .1637 .0094 .0003 .3062 .2117 .2227
30 .1570 .0623 .8041 .6442 .4519 .5405
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TABLE 18

GROUND COMBAT ATTRITION RATES FOR 1ST LTS
CODE 03 INFANTRY

LOS AGG ORIG AGG TRANS MLE TSCA JS LTJS

0 0 0 0 0G 0 0
1 .1835 0 .4514 .5000 .5000 .5000
2 .1861 .3367 .0129 .0217 .0385 .0246
3 .1690 .3828 1093 .1063 .1291 .1106
4 .1449 .3829 .1458 .1423 .1632 .1472
5 .1808 .3725 .1732 .1764 .1937 .1822
6 .1792 .3453 .2387 .2407 .2486 .2486
7 .1474 .2996 .2559 .2637 .2630 .2630
8 .1859 .2312 .0855 .1026 .1105 .1105
9 .2204 .2653 .2155 .2353 .2333 .2333
10 .1974 .2649 .1681 .1832 .1870 .1870
11 .1847 .2271 .0814 .1031 .1105 .1105
12 .1927 .1047 .1769 .2217 .1971 .2000
13 1722 .0208 .0038 .0694 .0547 .0547
14 .1913 .0566 .0094 .1855 .1114 .1414
15 .2367 .0566 .0570 .2892 .1882 .2366
16 .1949 .1904 .0113 .2494 .1371 .1898
17 0 0 0 0 0 0
18 0 0 0 0 0 0
19 0 0 0 0 0 0
20 0 0 0 0 0 0
21 0 0 0 0 0 0
22 0 0 0 0 0 0
23 0 0 0 0 0 0
24 0 0 0 0 0 0
25 0 0 0 0 0 0
26 0 0 0 0 0 0
27 0 0 0 0 0 0
28 0 0 0 0 0 0
29 0 0 0 0 0 0
30 0 0 0 0 0 0
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TABLE 19

GROUND COMBAT ATTRITION RATES FOR 1ST LTS
CODE 05 ARTILLERY

LOS AGG ORIG AGG TRANS MLE TSCA JS LTJS

0 0 0 0 0 0 0
1 0 0 0 0 0 0
2 .1879 .2913 .0126 .0285 .0435 .0328
3 .1578 .3427 .1780 .1797 .1932 .1869
4 .1520 .3442 .2301 .2318 .2404 .2396
5 .1682 .3218 .1889 .1938 .2035 .2022
6 .1597 .2750 .2756 .2793 .2734 .2734
7 .1467 .1705 .4580 .4711 .4242 .4502
8 .1707 .1329 .1988 .2302 .2093 .2103
9 .1684 .1424 .2686 .2891 .2614 .2682
10 .1889 .1537 .1291 .1644 .1559 .1559
11 .1741 .0922 .1440 .1918 .1695 .1703
12 .1364 .0369 .1185 .1753 .1441 .1498

* 13 .0906 .0027 .1420 .2080 .1458 .1698
14 .1328 .2399 .0047 .1210 .0486 .0761
15 .2050 0 .4504 .5000 .5000 .5000
16 .2050 0 .4504 .5000 .5000 .5000
17 0 0 0 0 0 0
18 0 0 0 0 0 0
19 0 0 0 0 0 0
20 0 0 0 0 0 0
21 0 0 0 0 0 0
22 0 0 0 0 0 0

V 23 0 0 0 0 0 0
24 0 0 0 0 0 0

-" 25 0 0 0 0 0 0
, 26 0 0 0 0 0 0

27 0 0 0 0 0 0
28 0 0 0 0 0 0

-, 29 0 0 0 0 0 0
30 0 0 0 0 0 0
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4TABLE 20

GROUND COMBAT ATTRITION RATES FOR 1ST LTS
CODE 10 TANKS

LOS AGG ORIG AGG TRANS MLE TSCA JS LTJS

0 0 0 0 0. 0 0
1 0 0 0 0 0 0
2 .2003 .1607 .0256 .0654 .0694 .0694
3 .1756 .2534 .1063 .1121 .1215 .1215
4 .1287 .25.43 .1321 .1326 .1403 .1403
5 .1807 .2516 .2540 .2716 .2633 .2633
6 .1663 .2019 .2822 .2899 .2719 .2731
7 .1307 .1065 .0716 .0850 .0808 .0808
8 .1471 .0208 0 .0355 .0279 .0279
9 .2572 .0392 .0830 .2134 .1760 .1861
10 .2088 .0683 .0271 .1059 .0932 .0932
11 .1391 .0230 .0011 .0258 .0206 .0206
12 .1479 .0731 .0006 .1037 .0526 .0691
13 .1192 0 .0124 .1062 .0364 .0622
14 .0958 0 .0219 .1489 .0331 .0813
15 0 0 0 0 0 0
16 0 0 0 0 0 0
17 .2050 0 .4504 .5000 .5000 .5000
18 0 0 0 0 0 0
19 0 0 0 0 0 0
20 0 0 0 0 0 0
21 0 0 0 0 0 0
22 0 0 0 0 0 0
23 0 0 0 0 0 0
24 0 0 0 0 0 0
25 0 0 0 0 0 0
26 0 0 0 0 0 0
27 0 0 0 0 0 0
28 0 0 0 0 0 0
29 0 0 0 0 0 0
30 0 0 0 0 0 0
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TABLE 21

GROUND COMBAT ATTRITION RATES FOR LTCOLS
CODE 03 INFANTRY

LOS AGG ORIG AGG TRANS MLE TSCA JS LTJS

0 0 0 0 0 0 0
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0
7 0 0 0 0 0 0
8 0 0 0 0 0 0
9 0 0 0 0 0 0
10 0 0 0 0 0
11 0 0 0 0 0 0
12 0 0 0 0 0 0
13 0 0 0 0 0 0
14 0 0 0 0 0 0
15 .0151 .1625 .0596 .1020 .0867 .0964
16 .0277 .0191 .0034 .0150 .0122 .0151
17 .1500 .2018 .0001 .0204 .0246 .0226
18 .1327 .3044 0 .0054 .0089 .0061
19 .1195 .3290 .0029 .0058 .0092 .0064
20 .1311 .3383 .1187 .1211 .1281 .1237
21 .1476 .3345 .0848 .1002 .1091 .102722 .1411 .3277 .1395 .1592 .1673 .1623

a , 23 .1314 .3099 .1477 .1667 .1736 .1702

24 .1627 .2941 .2292 .2490 .2528 .2508
25 .1466 .2590 .2207 .2388 .2410 .2396
26 .1394 .2159 .2107 .2034 .2009 .2039
27 .1345 .1618 .2265 .2134 .2062 .2114
28 .1707 .0897 .2299 .2495 .2424 .2415
29 .1741 .0661 .1263 .1549 .1471 .1504
30 .1666 .1463 .4337 .4319 .4168 .4225
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TABLE 22

GROUND COMBAT ATTRITION RATES FOR LTCOLS
CODE 05 ARTILLERY

LOS AGG ORIG AGG TRANS MLE TSCA JS LTJS

0 0 0 0 0 0 0
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0
7 0 0 0 0 0 0
8 0 0 0 0 0 0
9 0 0 0 0 0 0
10 0 0 0 0 0 0
11 0 0 0 0 0 0
12 0 0 0 0 0 0
13 0 0 0 0 0 0
14 0 0 0 0 0 0
15 0 0 0 0 0 0
16 .0293 .0310 .0033 .0655 .0508 .0587
17 .1459 .1167 0 .0336 .0362 .0361
18 .1415 .2141 0 .0152 .0192 .0171.
19 .1232 .2424 .0136 .0241 .0276 .0262
20 .1475 .2390 .2642 .2813 .2812 .2794
21 .1457 .2282 .0751 .0990 .1051 .1024
22 .1276 .2123 .1129 .1229 .1282 .1257
23 1361 1742 .1583 .1996 .2008 .1984
24 .1497 .1446 .3989 .4354 .4264 .4267

- 25 .1374 .0897 .2138 .2547 .2495 .2472
26 .1187 .0519 .4907 .4585 .4331 .4451
27 .0776 .0448 .8269 .7777 .7420 .7573
28 .0877 .0310 .2152 .2266 .1932 .2102
29 .2426 .1625 .6976 .5877 .5592 .5751
30 .2966 .0207 .6503 .5945 .5703 .5848

." .

86

'-a'I*



TABLE 23

GROUND COMBAT ATTRITION RATES FOR LTCOLS
CODE 10 TANKS

LOS AGG ORIG AGG TRANS MLE TSCA JS LTJS

0 0 0 0 0 0 0
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0

-. 6 0 0 0 0 0 0
7 0 0 0 0 0 0
8 0 0 0 0 0 0
9 0 0 0 0 0 0
10 0 0 0 0 0 0
11 0 0 0 0 0 0
12 0 0 0 0 0 0
13 0 0 0 0 0 0
14 0 0 0 0 0 0
15 0 0 0 0 0 0
16 .0972 0 .0006 .2593 .2115 .2288
17 .1147 .0077 .0002 .1060 .0935 .0951
18 .1538 .0085 .0001 .0790 .0752 .0746
19 .1315 .0634 0 .0396 .0402 .0404
20 .1032 .0661 .1689 .1690 .1629 .1637
21 .1956 .0548 .0596 .1936 .1939 .1888
22 .1769 .0689 .2050 .2508 .2441 .2422
23 .1716 .0489 .0317 .0899 .0879 .0878
24 .1205 .0429 .1361 .1596 .1460 .1556

-' 25 .1323 .0085 .3439 .4017 .3756 .3854
26 .1995 .0017 .0889 .2828 .2869 .2775
27 .1850 .0077 .1695 .2636 .2373 .2452
28 .1083 .0448 .1714 .4064 .3781 .3828
29 .1252 .0876 .3967 .5706 .5365 .5446
30 .2061 .0004 .6177 .5570 .5312 .5376
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V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

This study investigated the ability of the exponential

. .. smoothing model to update attrition rates for Marine Corps

manpower models from year to year. Its value as a yearly

updating scheme has been demonstrated in this work.

For the reader who wants a single general purpose value

of a, we offer the value a = .4, but do so reluctantly.

Brown has suggested using an a between .01 and .3 in the

applications he studied [Ref. 6: p. 106). Our work,

involving manpower attrition rates, appears to call for

larger values. However, we have identified some special

situations for which the smoothing constant should be

considerably larger, e.g., aviation LTCOLS and lLTS with a

pre-1981 base forecasting post-1981 rates.

Exponential smoothing produced estimates for the combat

support and ground combat aggregates that were, more often

than not, better than those produced by the methods of Major

Robinson [Ref. 2] , without needing, in theory, the massive

data files his methods use to produce the attrition rate

- estimates. The exponential smoothing model reflected the

change in the aviation environment that occurred in 1981 and

easily outperformed the Robinson method's estimates in this

aggregate for the years following because of the inflexi-

bility of the Robinson method. It also anticipated an

unknown source of turbulence in the ground combat first

lieutenant attrition rates, and bested the estimates of

Robinson's methods for this study block.

Also seen in this study was that three of the four esti-

mators presented by Robinson [Ref. 2], transformed cell

scale average, James-Stein, and limited translation

James-Stein, outperform the current method used by the
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Marine Corps when exponential smoothing is used in all vali-

dation years and study blocks except validation years 2 and

3 for combat support ILTS. These two exceptions, however,

were also the only ones seen in Robinson's thesis [Ref. 2:

p. 40]. Unfortunately, none of these three emerges as the

clear-cut "best" estimator in this study, but all are better

than the current Marine Corps estimator.

The maximum likelihood estimator shows the same good

performance in transformed scale in this study as it did in

Robinson's [Ref. 2: pp. 39-41]. However, there are more

cases of large original scale figures of merit for MLE in

the present work than were seen previously (see Tables 4-9).

These extraordinarily large figures are seen for the ground

combat aggregate for both grades and for combat support

ILTS. Not coincidentally, these are the same study blocks

for which the use of the optimal a for transformed scale to

produce original scale estimates was determined to be unsui-

table in the analysis of Appendix C. The ability of the MLE

to produce attrition rates better than those of aggregate

estimators for the other three study blocks indicates that

it, too, may be better than the aggregate methods currently

in use, and warrants further study into the cause of the

problems in original scale just mentioned. Perhaps if

smoothing is done in original scale rather than transformed

scale, the optimal properties of MLE will be better

displayed.

Thus, Robinson's conclusion [Ref. 2: p. 681 that the

MLE, TSCA, JS, and LTJS estimators should be given serious

consideration for replacing the Marine Corps' current scheme

is reiterated in this work.

B. RECOMMENDATIONS

Despite the encouraging results produced herein, it is

not recommended at this time that either exponential

smoothing nor any of the four promising estimators presented
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as alternatives to the current method be implemented.

Further study is needed in the following areas:

1. Base Period. The problem of anticipating major changesin Marine Corps policy such as the one that the avia-
tion OF underwent in 1981 and their effects on the
length of the base period should be studied. Also, as
more data becomes available, more analyses like the
ones conducted herein to determine optimal base period
length should be conducted to produce stronger conclu-
sions about base period length.

2. Aviation. As more data is obtained the aviation
aggregate should be re-e-amined and 1981 used as the
first base year to see if lower values of a can be
produced indicating a consistency from year to year
in the foss rates which did not exist from 1977 to
1983.

3. Ground Combat ILTS. The reasons behind the values of a
being 1.0, which indicate a year-to-year change in
attrition patterns for this study block should be
investigated. Despite the excellent results achieved
with respect to the low figures of merit produced, a
ersistence of such a values would indicate that the

base period is totally unimportant, thereby making the
use of exponential smoothing unnecessary. The issue

V is, therefore, whether or not the a values seen for
ground combat ILTS herein are the product of a

aeculiar set 'of data. A new analysis of this study
block should be undertaken using years other than
1977-1979 as the base period as soon as enough data
becomes available to perform validations on newly
produced attrition rates.

4. Maximum Likelihood Estimation. In light of the prom-
ising performance seen for this estimator in trans-
formed scale using exponential smoothing an
investigation of the unsuitability of using trans-
formed optimal a values to produce original scale loss
rates seen for certain study blocks is needed.

5. Aggre ation. As recommended by Major Robinson [Ref. 2:
Sp. 69[. the work of Amin Elseramegy [Ref. 5], who used

the CART routine to find aggregations with encouraging
results, should be investigated. Also the work of
Major Tucker [Ref. 1: pp. 75-841, whiclh demonstrated
increased attrition at certain lengths of service for
certain grades, should be followed up by attempting to
aggregate by LOS instead of OF to see if the results
can be improved.
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FUNCTIONS USED IN CALCULATIONS

The following APL functions, and ones similar to them,

are used in this study to produce the figures of merit and

attrition rates seen in the tables in Chapters III and IV.

These procedures require that the following variables be

global, i.e., defined throughout the workspace:

(1) N = the estimation period central inventory array,
e.g., NA5,

(2) Y = the estimation period loss array, e.g., YAS,

(3) VN = the validation period centarl inventory array,
e.g., VNA5,

(4) VY = the validation period loss array, e.g., VYA5,

(5) AN = the estimation period average inventory array,
e.g., ANA5,

(6) G = the forced James-Stein shrinkage rate, and

(7) DEE = the factor used in limited translation
James-Stein shrinkage.

Functions like A5B seen herein set the values of all of

these parameters except G, which is set in the workspace

itself to 0.

In order to create the arrays of figures of merit for a

values between 0 and 1 for a three-year base period, APL

function ALPHAHAT is called (see Figure A.1). ALPHAHAT calls

A5B in Figure A.2 to produce the 3-year base estimates from

years 1977-1979 and the empirical estimates for 1980. To do

this, A5B sets the values of the global variables, then

calls ESTIM, seen in Figure A.3, to produce the base esti-

mates. ESTIM, in turn, calls BINPREP in Figure A.4, SUMSQ in

Figure A.5, and MLE in Figure A.6 in performing its calcula-

tions. A5B then calls XFOUR in Figure A.7 which resets the

global variables N, Y, and AN, and calls ESTIM to produce

the empirical transformed attrition figures. Notice that the
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" V ALPHAHAT LBbUBtSTEP-RATES:MI;M2 ALPHA NUMSTEPS
1 n THIS FUNCTION WILL FIND THE VALUES OF HE RISK
2 FUNCTION IN BOTH TRANSFORMED AND ORIGINAL SPACE
3 m FOR VARYING VALUES OF ALPHA BETWEEN ANY TWO

A LIMITS SET BY THE USER.
5 .INPUT LOWER BOUND'
.6 LB+O

7 n' INPUT UPPER BOUND'
:8 UB+1
91 n ' INPUT STEPSIZE'
.0 STEP+O.02

1 ALPHA+LB
12 NUMSTEPS-1+ (UB-LB ) STEP

,13 A INITIALIZE ARRAYS ORI-OR6 AND TR1-TR6 WHICH
. 14 P ARE THE ARRAYS OF FOM'S FOR ALPHAS BETWEEN

C15 P LB AND UB BY STEPSIZE STEP. VALUES 1-6
C16 P CORRESPOND TO AGG ORIG AGG TRANS, MLE,
17] TSCA JS AND LTJS, RESPECTIVELY.
18 OR1+O2+O3-OR4-OR54-OR6+ (NUMSTEPS, (1pVN))oO

119 TR1+TR2+TR3+TR4+TR5+TR6+(NUMSTEPS, (l+pVN) )p
c20i M1+1
L21 A CALL A5B TO OBTAIN BASE ESTIMATE S3 AND
22 A EMPIRICAL ESTIMATE S4:E 23 A5B
24 A HERE IS THE EXPONENTIAL SMOOTHING FUNCTION
25 NEXT:R+(ALPHAxX4)+(S3x(1-ALPHA))
26 A CALL RISKO AND RISKT AND PLACE THE RESULTS
27 a FOR THIS ALPHA VALUE IN THE OR AND TR ARRAYS
28 RISKO
29 RISKT
30 M2+1
31 ONE:OR1[M1M23 R1 M21
32 OR2 M M;M2] -R2 M2
33 OR3 M ;M2J+R3EM2
34 OR4 M;M2 -R4CM21

[35 OR5 M1;M2' +R5EM2
36 CR6 CM ;M2 < -R6[A2
37 TR1 M1 ;M2 RAOEM23
38 TR2 MI;M2 +RAT[M2
39 TR3 M1;M2] +RMEM2]
40 TR4 M1;M2 +RT[M2]
41 TR5 M1;M2 4+RJCM2
42 TR6 M1;M2]+RLEM2]
43 M2+-M2+1

144 .)ONExi(M2<2)
4 5 NEWSTEP: ALPHA4-ALPHA +STEP
46 MIM1+1

L 4 7  -*NEXTxi (ALPHA5UB)

Figure A. 1 APL Function ALPHAHAT

James-Stein shrinkage factors calculated for the base esti-

mates and the DEE values used in limited translation

James-Stein for the base estimates are also used for the

empirical estimates. ALPFIAHAT then smooths the empirical
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7 A5B
1 DEE4-O.8
2 N- 3 31 1 +NA5
3 Y- 3 31 1 +YA5
4- VN4-VNA5

6 AN4" 3 31 1 +ANA5
7 SS (PVN)o1
8, A CALL ESZ'IM TO PRODUCE BASE ESTIMATE 3
9.. A FROM 1977-1979 DATA:4 10 ESTIM
1 S3+R12] R CALL XFOUR TO PRODUCE THE EMPIRICAL RATES
13 A X4 FOR 1980:
1 XFOUR
15 G O

V

Figure A.2 APL Function A5B

estimates onto the base estimates and calls RISKO in Figure

A.8 and RISKT in Figure A.9 to provide the figures of merit.

RISKO calls BINCONV in Figure A. 10 to produce original scale

loss rates using the inverse arcsine transformation seen in

Appendix B for use in the chi-square FOM formula. The

resulting arrays, which provide figures of merit for all

estimates and for all validation years, can be analyzed to

find the a values which minimize transform FOM.
The above example would find the figures of merit for a

3-year base period for aviation ILTS. In order to obtain the

figures of merit for the other five study cells, functions

much like A5B are created to set the global variables equal

to their respective loss and inventory figures. To make

these calculations for 4- and 5-year base period lengths,

functions called XFIVE and XSIX are written. These functions

are the same as XFOUR except that XFIVE finds the empirical

rates for 1981 and XSIX does so for 1982. The A5B-type func-

tions are also changed accordingly to alter the number of

years used to calculate the base estimates.
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V P ESTIMkI;S; U;C ;C;K;M: ZB ZBBA;AGO; AGT;D
CALCULATES THE AGGREGATE (ORIGINAL)

23 n AGGREGATE (TRANSFORMED) MLE (ORIGINAL),
3 A TSCA (TRANSFORMED) JAMES-STEIN, AND

14j aLIMITED TRANSLATION7 JAMES-STEIN (LTJS)
n ESTIMATORS FOR Z AS SCREENED BY D.

L[ A ] EACH PACE OF THE R ARRAY IS A SEPARATE
[7 • m ESTIMATE. THE DEE VA"LUES USED HEREIN
8 8]A ARE SET IN THE CALLING PROGRAM A5B,
[9A A8B ETC.. D IS THE SCREENING
10 A MATAIX CREATED FROM AVERAGE INVENTORY
11 P WHICH SCREENS OUT THE ZERO INVENTORIES.
13 Z4-Y BINPREP N

14 D* (+/ 3 1 2 NANz0)x0
15 R (6 (i+oZ))pO
16 S SUkSQ Z
17 P* (+/ .x(oY)D)D)++/Nx(pN)pD18 AGO-( O.5+(+1N+1+p))*O.5)x-lo+2xP
19 ACT(+/ ZB)++/,D
S20 ZBBA (o2B)oZBB
21 G(GxMZI)+SHJXM=1

,22 C*-OFI-SHJ4G
t23 -(2+1 SLC)xiO<C
24 C OF1-SHJ (K-3)+(2-K-KxM)x+/S
25 U I(ZB-ZBBA)xSHJ*0.5
[26] R 1;; ]+(1+QrfoAGO
27 R12;; +](IoR AGTE 28 R 3;; 4 MLE
29 R 4;; ]ZB
L 30 R 5;;-] DxZBBA+CxZB-ZBBA
31 LL:C14.OF1-SHL+(1LDEE+U)xSHJ

L32 RF6;3]+DxZBBA+ClxZB-ZBBA
V

Figure A.3 APL Function ESTIM

V Z+Y BINPREP N
EPREPS THE FREEMAN-TUKEY VERSION OF THE
2" A ARC SIN TRANS FOR BINOMIAL DATA

£3. A Y IS LOSSESk N IS INVENTORY
Z+-1o-l+2xY A+1

5] , Z-+0.5x ((0.5+N)*0.5)xZ+-o-+2x (7+1) N+1

Figure A.4 APL Function BINPREP

Finally, in order to produce the original scale esti-

mates, the ABS-type functions are modified to perform the
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- -" V X+SUMSQ Z;SSE
r. A CALCULATES THE SSE AND SSB FOR Z. ALSO

. CALCULATES THE MLE (ZB) AND GRAND MEAN
3 AOR AGGREGATE (ZBB), BOTH DIRECTLY FROM
4 A TRANSFORMED DATA._. :< K* + +l ,D

ZB Dx (+/Z)+M 1+pZ-"L7 ZBB -( +/ ,ZB ) K

[8- X++/,Dx+J (Z-(PZ)QZBB)*2
"S.[9" X-(X-SSE) ,SSE-+ / ,Dx+7(Z-(pZ)PZB)*2V

Figure A. 5 APL Function SUYISQ

V Z Y MLE N;M1
,1 CALCULATES THE MLE IN THE ORIGINAL SCALE
'" AND TRANSFORMS IT INTO ARCSIN SPACE.
3 D+(+/ 3 1 2 0ANzO)zO

M14( (p +YY)PD)x (+7Y)+I N
15] Z Dx ((.5+(+¢N)+11pN)*O.5)x-1o-+2xMl

Figure A.6 APL Function ,LE

SVXFOUR
I P l THIS FUNCTION WILL CALCULATE THE TRANSFORMED

i2 EMPIRICAL ATTRITION RATE X4 FOR USE IN THE
2 P EXPONENTIAL SMOOTHING MODEL FOR ALL SIX
3 A. ESZIMATORS. CALLS ESTIM.
4' N 1 31 1 tNA5

5 Y4 -1 1 1 +YA5
61'-N 1 31 1 +ANA5

7 ESTIM
L8. X4*+R

Figure A.7 APL Function XFOUR

smoothing operation with the a values fixed at their optimal

levels for each of the six estimators to produce the
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V RISKO-D;KJVB-ARiSiA;NV
I A COMPUTkS TlE OAIGINAL SCALE RISK.
2 A VY AND VN ARE THE VALIDATION
3 A YEAR LOSSES AND INVENTORY. VN VY

A R A.ND AN MUST BE IN THE WORKSPACE.
5 A FIGURES OF MERIT (RISKS) ARE PLACED
6 a IN VECTORS R1 THRU R6 WHICH CORRESPOND
" 7 TO ORIG AGG ORIG TRAS. MLE, TSCA,
8 A JS, AND LTJS, RESPECTIVELY.9 ,
10 K41
11 D+vAN>O
12 V4-( (DV) pD)xV+BINCONV
13 ARV (pVY) pD)xVY+VN
14 S.(V=O)A(V=I)
15 R14R2,R3,R44-R5.R6+(I+pVN)pO
16 LM:A. (DV)QARCK;iJ
17 NV. pVpN-*
18 RRe(pV) )pNDr)xxNVx(Sx(A-V)*2)*Vx(1-V)
120 R K ISSK; xRR 1;
29 LA.J++ SS .K;;] xRR1 2;
21 KK14-+/,st3;]1
22 R3 FK-+/,SS K;;]R[;IKK-,DKI
23 R4 K .+/,SS K;; xRR 4;;
S24 R5 ~K .+/,SSLK;; JXRR [5;;
25 R61KI .+/,SSEK;;) xRR [6;;26 K.K+1
27 LMxi(K:1+pVN)

V

Figure A.8 APL Function RISKO

smoothed transformed figures. Function BINCONV in Figure

A. 10 is then called, which inverts the transformation and

yields the original scale attrition rate estimates seen in

Tables 10 thru 23.
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V RISKTI;D-Z
I COMPUTS WHE SCALED RISK. VY AND VN ARE THE
2 VALIDATION YEAR LOSSES AND INVENTORY. VN, VY,
3 R AND AG MUST BE IN THE WORKSPACE.
5 FIGURES OF MERIT (RISKS) ARE PLACED
6 RIN VECTORS RAO RAT RAI RT, RJ, AND
7 RL WHICH CORRA'SPONh TO'
7 O RI0 AGGOCR10 TRANS MLE TSCA,
8 JS, AND LTJS, RESPEC1±IVELI.

10 Z4+VY BINPREP VN

12 RAO+.RAT+RM.RT'eRJ+RL+-(l+pVN)PO
13 D+-(+/ 3 1 2 OANz0)=O
14 LL:RAOi~1 4-( SSC j; x(ZCI ;J-RE1 *) )*2)++/,D
14 R IC .1 1 ;-.x(Z I1;.-R[2;. '1*2).+/D

1R M I ]~ + , S [I ; ; x Z ; ; : R 3 ; ; j * 2 1 / ,
17 RTLI ++/SS I:; .. z ; R 4u;; )*2 )+/I,D
18 RJ I ,/SS I; ;; -I!R 5;; *2 4+/,D19 RLI I-+/ SS I;; I;";i-R[6;; *2 ++/,D
20 1+1+1 +
211 -)LL x 1(1.-51+ pVN))

Figure A.9 APL Function RISKT

V BINCONV.VO;Vi.N1.D
I n INVERTS ARC SIk TkANSFORMATION. R IS THE*2 A ARRAY TO BE TRANSFORMED. N IS THE CENTRAL
3 A INVENTORY FOR THE ESTIMATION YEAiRS.
4 D4-v7AN>0
5 BGO0.5xl+loR+ (O.5+(N14-(PR)p+,N)*+IpN)*0O5
6 VO+R< (o+2)x (N1+0.5)*0.5
7 V1.-R* (02) x(Nl+0.s)*0.5
8 B4-((PR)pD )xV1+BxVoVl
91 AO 6 31 p B

v

Figure A. 10 APL Function BINCONV
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APPENDIX -

FREEMAN-TUKEY ARCS INE TRANSFORMATION

1. GENERAL

Because the TSCA, James-Stein and 'limited translation

James-Stein techniques make the assumptions that the distri-

bution of the number of losses is normally distributed with

constant variance, and because the binomial model for the

loss data does not meet these assumptions, a transformation

is needed. The Freeman-Tukey arcsine transformation produces

values for which normality and constant variance become more

tenable assumptions.

Robinson demonstrated in his thesis [Ref. 2: pp. 74-79]

that both the normality and variance assumptions are compro-

mised somewhat for low values of n and p. He therefore

concluded that the Freeman-Tukey transform is unreliable at

such values. Therefore, the validity of the results for

James-Stein estimation and limited translation James-Stein

must be questioned in this analysis as they were in

Robinson's [Ref. 2: p.19]. The following two equations are

represented in APL by functions BINPREP (transform) and

BINCONV (inverse transform). See Appendix A.

2. THE TRANSFORMATION

The equation for the transformation is:

x = 0.5(n+0.5)1/2 sin'1(2y/(n+l)-l) (B.1)

+ sin-1 (2(y+l)/(n+l)-1)

This equation transforms raw losses, y, into transformed
losses, x using the central inventory, n.
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3. THE INVERSE TRANSFORMATION

To invert the transformation and produce the rates in

original ipace, use the following set of equations:

nij= (1/T)F, nij(t), for all i (B. 2)

vij = xij/(nij+.S).S (B.3)

0 vi. le. -n/2 (B.4)

r = .5(1+sin vij(t)) if -n/2<Vij<n/2
1 vij. ge. ic/2

where nij is the central inventory for the ith LOS and the
jth OF, xij is the corresponding transformed attrition

figure, and v., the corresponding loss rate estimates in the

original scale.
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ANALYSIS OF OPTIMAL ALPHA OF TRANSFORMED AND ORIGINAL SCALES

1. GENERAL

The following tables give the optimal values of a for

transformed and original scales for the three-year base

period used in the production of the attrition rate esti-

mates in Chapter IV. The values of a listed are those which

produce the minimum figures of merit for validation year 2,

1982.

As one can see from the comparison tables, the a values

sQ. producing the minimum figures of merit for transformed scale

are very close in most cases to the a values producing the

minimum figures of* merit for original scale, with the

notable exceptions being MLE for combat support and ground

combat. Each of the aggregates is discussed below.

TABLE 24

COMPARISON OF TRANSFORMED AND ORIGINAL ALPHA
AVIATION AGGREGATE

ILTS TRANSFORMED a ORIGINAL a
AGG ORIG 1.00 1.00
AGG TRANS .00 1.00
MLE 1.00 1.00
TSCA 1.00 1.00
JS 1.00 .98
LTJS 1.00 .98

LTCOLS TRANSFORMED a ORIGINAL a
AGG ORIG 1.00 1.00
AGG TRANS 1.00 1.00
MLE 1.00 .98
TSCA 1.00 1.00
LJS 1. 00 1.00

Note: Optimal a values are for validation year 1982.
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2. AVIATION

Looking at Table 24, one sees that for aviation, the a

values match up almost perfectly except for the transformed

aggregate for ILTS, which has values at completely opposite

ends of the limits of a for the two scales. However, since

the aggregate transform estimator shows very poor perform-

ance throughout the analyses in Chapters III and IV, with

much larger figures of merit than the other estimators,

inconsistencies like this are not of much concern.

TABLE 25

COMPARISON OF TRANSFORMED AND ORIGINAL ALPHA
COMBAT SUPPORT AGGREGATE

ILTS TRANSFORMED a ORIGINAL a
AGG ORIG 1.00 1.00
AGG TRANS .00 .00
MLE .56 1.00
TSCA .60 .50
JS .90 .90
LTJS .64 .56

LTCOLS TRANSFORMED a ORIGINAL a
AGG ORIG .00 .00
AGG TRANS 1.00 1.00
MLE .38 .34
TSCA .34 .36
JS .26 .36
LTJS .30 .36

Note: Optimal a values are for validation year 1982.

3. COMBAT SUPPORT

From an analysis of Table 25, one sees that the combat

support aggregate likewise shows a consistency in the values

of a for transformed and original scales. The only excep-

tions to this are MLE for iLTS, which has a difference in a

values of a whopping .44, and, to a much lesser extent, TSCA
for ILTS and JS for LTCOLS, which each have a difference in

a values of .10.
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TABLE 26

COMPARISON OF TRANSFORMED AND ORIGINAL ALPHA
GROUND COMBAT AGGREGATE

ILTS TRANSFORMED a ORIGINAL a
AGG ORIG .92 1.00
AGG TRANS .00 .34
MLE .94 .64
TSCA 1.00 .92
JS 1.00 1.00
LTJS 1.00 .94

LTCOLS TRANSFORMED a ORIGINAL a
AGG ORIG 1.00 1.00
AGG TRANS .00 .00
MLE .42 1.00
TSCA .56 .52
JS .58 .50
LTJS .56 .50

Note: Optimal a values are for validation year 1982.

4. GROUND COMBAT

The ground combat aggregate also shows consistency

between optimal values of a in transformed and original

scales for all estimators except MLE for both grades and AGG

TRANS for ILTS. The lack of consistency between the a

values for transformed and original scales for MLE seen in

Table 26 as well as in the ILTS section of Table 25 is of

major concern. Unfortunately, using the transformed optimal

a value to produce figures of merit in the original scale

for MLE has a big effect on those figures, making them much

larger. This casts into doubt the ability of the exponen-

tial smoothing model to produce good maximum likelihood

estimates of attrition rates.
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