
D-Al?l 764 IMPROVING RISK CH RCTERIZATIONS 
BSED ON TIE TO~RESPONSE(U) AIR FORCE INST OF TECH URIGHT-PATTERSON AF9

USI FE OH R J BERDINE NAY 86 AFIT/CI/NR-96-151T

7 7LSSFE F/G 6/5 N

sEoEn~hi



40o 12.0

L. 1.8

11111125 jlA I *

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARUS 1963A

a..:

',,% d.

pa.'



SECURITY CLASSIFICATION OF THIS PAGE (When Dal.EInteredI

REPORT DOCUMENTATION PAGE BORE COMPLETINS FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) S YEO EOTAPRO OEE

Improving Risk Characterizations Based THESIS/pjO W y~p
On Time To Response____ _________

6. PERFORMING 04G. REPORT NUMBER

7 AUTHOR(n) 8. CONTRACT OR GRANT NUMBER(s)

Ronald J. Berdine

9. PERFORMING ORGANIZATION NAME AND ADDRESS t0. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

AFIT STUDENT AT: Texas A&M University

CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

tpo 1986
13. NUMBER OF PAGES

69
MONITORING AGENCY NAME & AOORESS(If different from Controlling Office) 1S. SECURITY CLASS. (of this report)

UNCLASS

I5a. DECLASSIFICA-TIONW GRDN
SCHEDULE

DISTRIBUTION STATEMENT (of this Report)D T c
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED ELECTE

SEP 17 196

* DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

IS. SUPPLEMENTARY NOTES

APPROVED FOR PUBLIC RELEASE: lAW AFR 190-1 D sac n

Professional Development
AFIT/NR

19, KEY WORDS (Cowrinrre on reverse -side if necessary and Identify by block number)

20 A BST RAC T (C-i(Itirse or, re terst- side It necrasary and Identify hby block nu~mber)

* ATTACHED

DD I JAN 7 1473 EDITION OF I NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (1I7.en Data Fnlerod)

%. .. . .% . .* .



ABSTRACT

Improving Risk Characterizations Based on Time to Response

(May 1986)

Ronald James Berdine, B. S., Iowa State University;

* M. S., Stanford University

* Chairman of Advisory Commiittee: Dr. Robert L. Sielken Jr.

One of the important aspects of quantitative cancer risk assessment

is to model the frequency of a carcinogenic response as a function of

exposure. Most of the current time-to- response modeling has been done

using the simple' model which does not include the effect of competing

risks. As a result, the probabilities which are stated in terms of these

models do not correspond to real world occurrences. Rather they

correspond to a fictional world where no competing risks exist; that is,

a world where only the risk being modeled is present. The cause-specific

family of models is preferred since it incorporates the effect of

competing risks. A method is presented for utilizing life table data and

existing simple model maximum likelihood estimates to obtain

cause-specific risk characterizations.

Representations for various risk characterizations (e.g.,

time-to-response probability, mean response free period, mean free dose,

and virtually safe dose) under both models are compared. The results

show that the simple model always overstates the effect of the

*carcinogen. The overstatement can easily be in the 20% -200% range.



Two alternatives are introduced for modeling time to death from

tumor when the cause of death is uncertain. One alternative is to model

the time to death irrespective of cause. The other alternative focuses

on the increase in the hazard rate due to the presence of a tumor. Thus,

deaths caused by this increase in hazard rates are considered as being

related to the introduction of the carcinogen. Both alternatives give

risk characterizations which may be more relevant to cancer risk

assessment.
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One of the important aspects of quantitative cancer risk assessment

is to model the frequency of a carcinogenic response as a function of

exposure. Most of the current time-to-response modeling has been done

using the "simple" model which does not include the effect of competing

risks. As a result, the probabilities which are stated in terms of these

models do not correspond to real world occurrences. Rather they

correspond to a fictional world where no competing risks exist- that is,

a world where only the risk being modeled is present. The cause-specific

family of models is preferred since it incorporates the effect of

* competing risks. A method is presented for utilizing life table data and

" existing simple model maximum likelihood estimates to obtain

cause-specific risk characterizations.

Representations for various risk characterizations (e.g.,

time-to-response probability, mean response free period, mean free dose,

and virtually safe dose) under both models are compared. The results

show that the simple model always overstates the effect of the

carcinogen. The overstatement can easily be in the 20% - 200% range.
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Two alternatives are introduced for modeling time to death from

tumor when the cause of death is uncertain. One alternative is to model

the time to death irrespective of cause. The other alternative focuses

on the increase in the hazard rate due to the presence of a tumor. Thus,

deaths caused by this increase in hazard rates are considered as being

related to the introduction of the carcinogen. Both alternatives give

risk characterizations which may be more relevant to cancer risk

assessment.
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1. INTRODUCTION

One of the important aspects of quantitative cancer risk assessment

is to model the frequency of a carcinogenic response as a function of

exposure. The type of modeling has generally been of the form where the

frequency of response is modeled as a function of dose alone as opposed

to including both dose and time. Only recently have researchers

attempted to use a time- to-response variable to model more completely

the biological development of tumors and associated responses (e.g.,

Society of Toxicology ED01 Task Force (1981)). The response of concern

could be death, death caused by tumor, death with tumor, tumor onset or

any number of other possibilities. This paper is concerned with effects

resulting in observable times to response. Methods for modeling

unobservable times are given by McKnight and Crowley (1984) and

Kalbfleisch, Krewski and Van Ryzin (1983).

Heretofore, risk characterizations based on time to response have

been based on the simple model where the general form of the probability

distribution for the time to a specified response is

P s(t;d) = Pr(T<t;d)

with d being the dose and T being the time to the response of interest.

However, P5(t;d) does not reflect the fact that a competing response

might occur before the specified response of interest.

Two models which incorporate times to competing responses are the

latent failure time model and the cause-specific model. In Section 2

Citations will follow the format of Biometrics.
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these models are discussed and the cause-specific model is shown to be

the model of choice. The general form for the cause-specific model is

P c (t,j;d) = Pr(T<t,J=j;d)

where there are p mutually exclusive and collectively exhaustive

responses, J is the indicator of the one response observed, T is the time

at which the observation is made and d is the dose.

In Section 3 the formulations of both the simple and cause-specific

models and their likelihood functions are given. A relationship exists

between the simple and cause-specific likelihood function that allows new

risk characterizations to be calculated using results from an experiment

where the simple model has been applied. Thus improved risk

characterizations can easily be calculated.

Section 4 is concerned with the selection of hazard functions. In

the cause-specific model a hazard function for each cause of an

observation can be modeled. Most of the results developed do not depend

on the parametric form of the specified response's hazard function;

however, a very general form is used to generate examples and simulate

data. The competing risks' hazard function can be derived from life

table data. For many species such data are available.

Sections 5 and 6 are concerned with the impact on certain risk

characterizations of using the cause-specific model instead of the simple

model. The magnitude of this impact is measured in terms of relative

bias. Relative bias is the fraction by which the simple risk

characterization overstates or understates a corresponding cause-specific

risk characterization. In certain cases, bounds are derived for the



3

relative bias as well as examples demonstrating the actual relative

biases. The risk characterizations to be investigated are the

probability that the specified response occurs before a time t, the mean

response free period, the mean response free dose and the virtually safe

dose. Implementation of the cause-specific model requires that the

definitions of these risk characterizations be refined in order to

incorporate the impact of competing risks.

In Section 7 two new options for obtaining risk characterizations

are investigated. These options are for the special case where the

original response of interest is death from tumor but the cause of death

is uncertain. Both of the new options rely on a new definition for the

response of interest. One option defines the specified response to be

death from all causes combined while the second option defines the

specified-response to be death related to tumor as opposed to death from

tumor.

Finally, Section 8 gives the conclusions that can be drawn from the

results in Sections 2 through 7. A short discussion as to the utility of

the procedures derived in this dissertation and their impact on future

risk assessment procedures is also given.
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2. REVIEW OF THE LITERATURE

The theory of competing risks was formalized by Chiang (1970) and

Moeschberger and David (1971). Both used a model which is referred to as

the latent failure time model. This model uses p times to failure, T1,

..., Tp, each denoting the random "latent" time to failure by one of p

competing risks. For each individual only the minimum of T1 , ..., Tp

is observed. Thus, if T = min(T1 ,...,T p), then probability statements

giving the probability of survival until a time t are of the form

Pr(T>t).

Chiang (1970) defines the crude survival function as

(tI .... It p)= Pr(TI>tl,...,Tp >tp)

and the hazard function for each of the latent times to failure can be

defined by

Pr(t<Tj.<t+AtIT>t)

At -0- At

-d {log[Q(t 1,...,t )]} for j = 1, ... , p.(2.1)

dt Itl= =tp=t

Also defined are the marginal survival functions

Q Q.(t.) : Pr(TI>0,...,T.>t .... T p>O)

With the assumption that T1, ..., Tp are independent random variables

equation (2.1) becomes
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-d(t) d {logQ(t)1 for j = 1, ... , p.
3 dt. .1 3 tj= t

This is the assumption used throughout the work by Chiang (1970) and

Moeschberger and David (1971). In fact, Tsiatis (1975) showed that the

latent failure time model is nonidentifiable unless the independence

assumption is made. Examples where more than one model lead to the same

set of hazard functions when the independence assumption is not assumed

are found in both Tsiatis (1975) and Kalbfleisch and Prentice (1980).

Prentice et al. (1978) discussed the latent failure time model

before developing the cause-specific model. They noted that besides the

assumption of statistical independence there is another

"...very strong assumption that the time to failure from cause
j under one set of study conditions in which all ... causes are
operative is precisely the same as under an altered set of
conditions in which all causes except the j-th cause have been
removed. '

Thus, not only is statistical independence required for identifiabilty

but a physical independence among causes of death is implied.

As an alternative, Prentice et al. (1978) formulate the

cause-specific model. It does not require statistical independence nor

does it imply any specified physical relationship among the causes of

death. (The cause-specific model formulation is given in Section 3.2.)

Moreover, as the likelihood was developed, they noticed that it could be

partitioned into multiplicative factors, each depending on a set of

mutually exclusive parameters. This property is important in the

development of methods used in this dissertation and is discussed more

fully in Section 3.

- o ,-'''-.-. -.- "''f.,'t. " .:- ,' .'' . -" .-. f- T ftf"- " . . " " " . . . - ' - t
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The choice of a parametric form for each cause-specific hazard

function has received much attention in the literature. Not only must

the resulting parametric model fit the data well, but it must provide an

accurate representation of the carcinogenic effect at doses where no data

may be available. Armitage (1982) discusses the implications that

various parametric models have on risk characterizations in the low dose

region. A detailed examination of the effect of the models on a

specified risk characterization (i.e., a virtually safe dose which is

discussed in Section 6) is given in Krewski et al. (1983). One model

which allows considerable flexibility is given by Hartley and Sielken

(1977) and Hartley, Tolley and Sielken (1981). This is the

Hartley-Sielken model used in Section 4 when a parametric form for the

hazard function for the response of interest is specified. A review of

several parametric models is given in Kalbfleisch et al. (1983).

Some research has also been done on estimating tumor prevalence when

the time to tumor onset is unobservable (e.g., Dinse (1985) and Dewanji

and Kalbfleisch (1985)). McKnight and Crowley (1984) showed that the

tumor incidence rate for unobservable time to tumor onset cannot be

estimated unless interim sacrifices are made. All of the models used in

the research cited here use an extension of the cause-specific model as

opposed to the latent failure time model.

LI
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3. TIME-TO-RESPONSE MODELS

3.1 Simple Time-to-Response Models

Simple time-to-response models focus on the time to a specified

response and consider the times to competing responses solely as

censoring times and not part of the model. For example, let the

specified response be time to death due to a tumor. If a subject dies

from some cause other than tumor, then the time of death is treated as a

censoring time for the time to death from tumor. In the simple model the

probability refers to the anticipated time of death from tumor regardless

of whether a competing cause of death might occur prior to that time and

the death from tumor not be observed.

3.1.1 Model Formulation

Suppose an experiment is conducted where several doses of a

carcinogen are administered to N test subjects. The observations are

(Ti,5i'di), i = 1, ..., N where, for the i-th subject

T = time to specified response or censoring time,

1 1 if the specified response is observed at T.

0 if the specified response is censored,

di = dose.

1%

".Qf. * * -- ,. 4,.? -', .' , #Y. '.i": ..-' * <r. .?. " .¢ -. ¢ . '-'.". -- '-'4. ' *- -'' -, .' " -- .
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The hazard function X(t;d) is defined by

X(t;d) = lim Pr(t<T<t+At;dlT>t)
At*O 6t

=-d {log[Pr(T>t)l}
dt

so that

P (t;d) - Pr(T<t;d) = 1 - exp[-ft X(u;d) duls 0

= ft X(u;d) exp[-A(u;d)] du (3.1)

where A(u;d) = fu X(v;d) dv is called the cumulative hazard function.0
The model given by (3.1) will be referred to as the "simple" model

herein. Each model is uniquely determined by its hazard function, or

equivalently, its cumulative hazard function.

3.1.2 Likelihood

For the i-th individual, the observation can be either the response

of interest or a censoring time such as sacrifice or death from some

other cause. The possible contributions to the likelihood for the i-th

individual are given in Table 1.

Table 1.

Simple model likel iood contributions

Likelihood contribution Observation

X(ti;di)exp[-A(ti ;di)] Response of interest

exp[-A(ti ;d i)] Censoring time
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Let e be the vector of parameters associated with X(t;d). Also,

without loss of generality, assume that the first nI observations are

the observed responses of interest and the last n2 observations are

the censored observations where N = n1 + n2. Then the likelihood

function is given by

nl N

L(e;t) = HT {X(ti;di) exp[-A(ti;di)]} HI {exp[-A(ti;d.)]}
i=1 i=n +1

which can be written as

N 6.
1

L(O;t) = HI {[X(t i ;d i )i exp[-A(t i ;d i ) }.
i=l

3.2 Cause-Specific Models

In the formulation of the simple models, the only random variable is

the time to the specified response. Thus, Ps(t;d) gives a hypothetical

probability of the specified response by time t. The actual frequency of

the specified response is never greater than P s(t;d) but can be less than

Ps (t;d) due to competing risk deaths prior to the time of the specified

response. The cause-specific model explicitly includes death due to

competing risks as well as the time to the specified response.

3.2.1 Model Formulation

For the i-th individual, let Ti be the time to one of p+1 mutually

exclusive responses. Let J = 0, ..., p be the indicator of the one

response which is observed. Let J 0 correspond to a scheduled
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sacrifice and let J = 1 correspond to the specified response. Often it

is not necessary to distinguish among the competing risks, so that p = 2

with J = 2 corresponding to a death or censoring by any competing risk.

Also, let di be the dose and let

1 if the i-th individual's response is response j,j = 1, ... , p

ij
0 otherwise

Define the cause-specific hazard function as

X,(t;d) = lim Pr(t<T<t+AtJ=j;dlT>t)
At+O At

= -d {log[P(T>t,J=j;d)]}

dt

The cause-specific model is then given by

Pcs (t,j;d) = Pr(T<t,J=j;d) = ft Xj(u;d) exp[- Ak(u;d)] du

3.2.2 Likelihood

Kalbfleisch and Prentice (1980) give the development of the

likelihood for the cause-specific model. The contributions are as

follows (Table 2):

",M"-" ""
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Table 2.

Cause-specific likelihood contributions

Likelihood contribution Observation

x.(ti;di) exp[- I A k(ti;di)] Response of type j
k = 1,1....

exp[- I Ak(ti;di)l Sacrifice (j = 0)
k=1

Notice that the i-th contribution can be written as

P 6..
El {[x (ti;di)] 1 exp[-A (ti;di)]}j=1

Let 1, ... , ep be the vectors of parameters associated with Xl(t;d),

Xp(t;d) respectively. Then the likelihood functior is

N P 6..
L(91, .... &p;t) = I7 f EI ,.(t.;di)i 1j  exp[-A.(ti;di)]I

i1 j=1 3 1

P N
SI { El [\.(t~d)1 13 exp[-A (ti;di}
j=1 i=1

P
: F1 L.(e.:t) (3.2)j=l

where Lj(ej;t) is the same likelihood function from a simple model with

the j-th response being the specified response of interest and all other

responses are treated -s censors.
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3.2.3 Properties

The cause-specific model is an intuitively appealing model because

of its ability to incorporate competing risks. It also has several

desirable properties. Naturally, J and T are not necesssarily

independent. The simple model is also a special case of the cause-

specific model if p = 1. It is very general since the time T does not

have to be represented as the minimum of p independent response times as

in the latent failure time model.

The tractability of the cause-specific models is facilitated by two :

characteristics.

Mi In the likelihood function (3.2), the el, 0 * p appear in

separate multiplicative terms.

(ii) Each of the multiplicative terms in the likelihood (3.2) has

the same form as the likelihood corresponding to a simple

model.

The maximum likelihood estimates of the cause-specific model

parameters in XI(t;d) are the same estimates that would be obtained

using a simple model and treating individuals who succumb to a competing

risk as censored. Therefore, if these simple model estimates are

available and X2(t;d) is known, the cause-specific probabilities and

other associated risk characterizations can be calculated without making

any alterations in the estimates of the parameters in X1(t;d).
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4. CHOICE OF HAZARD FUNCTIONS

4.1 A Form for the Hazard Function of the Specified Response

A parametric form for Xl(t;d) will be used whenever specific

examples or simulations are required. Theoretically, any form of X1 (t;d)

could be used. A special case of the Hartley-Sielken model will be used

with A1(t;d) = H(t)g(d) and the dose function, g(d), being a non-

negative convex function of dose. In particular, a Weibull form for H(t)

will be used; namely H(t) = Ptk and g(d) = a0 + a1ds for s > 1.

4.2 A Form for the Hazard Function of the Competing Risks

The form for X 2 (t;d) will be defined in terms of S2 (t;d) =

exp[-A 2 (t;d)]. It is assumed that the hazard function for the competing

risks is not dependent on dose. Therefore, the "d" notation will be

suppressed from this point on when referring to X 2(t) and S2(t). Let

S2(t) be a piecewise linear, continuous function not involving dose with

S2(t) = ait + bi  for ti < t < ti+ I, i = 0, ..., m , (4.1)

with ai < 0, bi > 0.

This implies

A2 (t) = -log (ait + bi) for ti < t < ti+ 1 , i = 0, .... m

If the time is scaled such that ti+ 1 - ti = 1, then ai =

S 2(ti+1- S2(ti). The hazard function, X2 (t), can then be expressed as

!1
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k2(t = - A2(t)] -~

[S2(ti+ 1 ) - S2 (ti)]

S2 (t ) , ti  < t 0t +I ,  i = O , ... , m .

In this formulation, there are m + 1 equally spaced points in time

where the number of survivors is available.

This form for X2(t) is convenient when life table data are

available. This may often be the case since many experiments have

control groups of the species under investigation. These groups are

subjected to either none of the carcinogen or the background level of the

carcinogen. The observed hazard rate in these groups will be a good

approximation for X2 (t) provided that the background contribution of

Xl(t;d) is small as will often be the case.

The specific examples used throughout this dissertation use human

life table data to obtain X2(t). The data are from Table 6.2 of Vital

Statistics of the United States (National Center for Health Statistics

(1984)). The contribution of Xl(t;d) to these mortality data is assumed

to be negligible.

The cause-specific probability of succumbing to cause J = 1 before

time t is given by

Pcs (t,1;d) = X (u;d) exp[-Al(u;d) - A2 (u)1 du

or equivalently, in a more convenient computational form,

4
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P cs(t,l;d)=

S{S2(ti) exp[-Al(ti;d)]- S2(ti+ I) exp[-Al(ti+l;d)l
i=O

+ [S 2(ti+ I ) - S2(ti)] fti+ x[Aud)dl

with t = tm+1* The computational form is obtained by substituting the

piecewise continuous form for exp [-A2 (t)] from (4.1) and integrating by

parts to account for Xl(t;d). Depending upon the parametric form for

Al(t;d), the integration in the computational form may be done directly,

or, a numerical integration routine may be used.

.4 " f - ," , m " 4 w " q " " . , € " - ' - " i " . " - . - . " " " " - , ' " - . - . "
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5. RISK CHARACTERIZATIONS INVOLVING TIME TO RESPONSE

In this section risk characterizations obtained from a simple model

will be compared to improved characterizations obtained from the cause-

specific model. Two risk characterizations involving the time to

response are considered; namely, the probability that the time to the

response precedes a specified time and the mean response free period in a

specified period. The comparisons will be made in terms of relative

bias.

5.1 Relative Bias

Relative bias refers to two deterministic representations of a

non-random risk characteristic, one of which is assumed to be the true

representation.

Definition 5.1 Let 45 and 42 be two representations of a risk

characteristic and let (2 be the true representation. The relative

bias of (D with respect to t is

1 21-
RB(¢1'¢2) : ('1 - (2)/ 2 : ®1/I@2 " 1 .

This is the fraction by which ¢1 overstates or understates '2" Often

lower and upper bounds can be calculated for the relative biases.
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5.2 Time-to-Response Probability

5.2.1 Bounds on Relative Bias

If the risk characteristic is the probability that the time to a

specified response precedes a specified time t at a dose d, then the

relative bias of P s(t;d) with respect to PCs (t , ;d) is

RB(P,9P ) = P 5(t;d) 1
scs P Cs(t 1d)

In this case, upper and lower bounds on the relative bias may be

calculated.

Theorem 5.1 If Al(t;d) and A 2(t) are nondecreasing, nonnegative,

continuous cumulative hazard functions such that A1(O;d) = A 2(O) =0,

then for all t > 0

0 < RB(P5, P cs < exp[A 2(t)] - 1

Proof. Since A2(t) is nonnegative,

exp[-A2(t)] < 1 for all t > 0.

Therefore,

P (~d)= 0 X (u;d)exp[-A (u;d)1 d

> ft x (u;d)exp[-A (ijdlexpF.-A(u]d

P c (t,1;d)
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This implies RB(PsP cs) > 0

Also, the hypothesis on A2 (t) implies that exp[-A 2 (t)] is non-

increasing in t. Therefore,

P (t,l;d) = ft Xl(u;d)exp[-Al(u;d)]exp[-A2(u)] du

> exp[-A 2(t)' ft Xl(u;d)exp[-Al(U;d)] du

= exp[-A 2(t)] Ps(t;d)

This implies that

P (t;d)
< exp[A2()

P cs (t,l;d)  2(t)

and the result follows.

The conclusion from Theorem 5.1 is that the simple model inflates

the probability of the time to the specified response preceding t

relative to the cause-specific probability. This is true not only for
p

the actual probabilities but also for the estimated probabilities. This
b

is because i1(t;d) from the simple model is the same as A1(t;d) from the

cause-specific model as shown in Section 3. Thus, the proof is the same

with the true cumulative hazard functions replaced by the estimated

cumulative hazard functions.

5.2.2 Attaining the Upper Bound

The attainability of the upper bound on the relative bias will be

discussed in terms of Ai(t;d). That is, A2 (t) is considered to be a

. . - .- , -- - .-. . - °p - -,-. -.. . .. .
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fixed function of t and the goal is to find Al(t;d) such that the upper

bound in Theorem 5.1 is attained. The case where t = 0 is trivial since

the lower and upper bounds are equal at t = 0. Is there a cumulative

hazard function Al(t;d) such that the upper bound is attainable for some

t > 0?

Consider the case where the carcinogen has no effect until time to.

Here, to is called the latency period. In this case, let the cumulative

hazard function have the form

AlPtd (t-t0)kg(d) for t > tO
Al(t;d)=

otherwise

Then let

F 1 - exp[-p(t-t 0 )kg(d)] for t > t O

FI(t;d) =

0 otherwise

In this formulation, as p increases, the carcinogen's lethality

increases. For all t > t o ,

Pcs(t,l;d) = Xj x1 (u;d)exp[-Al(u;d)iexp[-A 2(u)i du

ft exp[-A 2 (u)] dFl(u;d) .

So,

ft dF1(u;d)
RB(Ps Pcs) t 0 1

0 exp[-A 2( u)] dF1(u;d)



20

Thus, as t *

1 for u > t o

Fl(u;d)-

0 otherwise

the cdf of a point mass at to, and

I exp[-A2(u)]dFl(u;d) -exp[-A 2(t0 )]

This implies

RB(PsPcs) - exp[A 2(t0 )] - 1 as

Thus, the relative bias approaches the upper bound at t = to as -.

This example shows that for a special form of Al(t-d) the relative

bias approaches the upper bound at some t > 0 in the limiting case.

However, if the hypothesis of Theorem 5.1 is changed so that A2 (t) is

additionally required to be strictly increasing then a strict inequality

holds for the upper bound. That is

RB(PsPcs) < exp[A 2(t)] - 1

5.2.3 Effect of Latency Period

Latency period affects relative bias also. To investigate this

effect, relative biases were calculated for several latency periods. The

models used were

P (t;d) ft Xl(u;d) exp[-Al(u;d)] dust o 1

and
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P cs(t,1;d) = t kl(u;d)exp[-Al(u;d) - A2(u)] du

k

where Al(t;d) = P(t-t 0) g(d) for an unspecified g(d) and t0 is the

latency period. For each t = 60, 65, 70, 75, 80, 85, 90, 95, 100, all

combinations of the parameter k and latency period t0 were considered

where

k = 3, 4, 5, 6

and

to = 0, 10, 20, 30, 40, 50, 60.

These ranges for the parameters k and to correspond to observed estimates

of time-to-response effects.

The life table data were truncated at t = 85, so the values of A2 (t)

are extrapolated from t = 85 to t = 100. The extrapolation was uone by

fitting a Weibull cumulative hazard function, A2 (t) = yt
6 , to the life

table data. A least squares fit gives y = 0.3378x10 -11 so that for

t > 85, A2 (t) = tl6

The values of Oxg(d) were chosen such that P cs(75,1;d) = 10-6.

This helps to make the relative biases more comparable across latency

periods. Therefore, each t0 , k combination uses a different value of

Bxg(d).

Tables 3 through 6 give the relative biases. For example when

k = 3, to = 60 and t = 100 the relative bias of the simple model

representation for the time-to-response probability with respect to the

cause-specific model representation is 4.1023 which implies that

P s(100;d) is 5.1023 times greater than PCs(100,1;d), i.e., 5.1023 times

" ' ,: :- -' *- . 2I-°'' -". .-"-* 2."q- ".* " T"." .. . . .\ "--.- , -. ,".. ,.,..
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Table 3

Relative bias of time-to-response probability for
various. latency periods with k = 3

to

upper
t 0 10 20 30 40 50 60 bound

60 0.0901 0.0987 0.1093 0.1227 0.1405 0.1650 0.1990

65 0.1206 0.1327 0.1477 0.1668 0.1922 0.2268 0.2735 0.3062

70 0.1647 0.1820 0.2035 0.2310 0.2671 0.3159 0.3829 0.4742

75 0.2278 0.2527 0.2837 0.3234 0.3756 0.4461 0.5431 0.7719

80 0.3198 0.3566 0.4028 0.4623 0.5414 0.6497 0.8029 1.3875

85 0.4525 0.5080 0.5785 0.6708 0.7957 0.9712 1.2288 2.7151

90 0.6275 0.7098 0.8157 0.9565 1.1505 1.4296 1.8504 5.0207

95 0.8498 0.9694 1.1258 1.3374 1.6358 2.0776 2.7687 10.9788

100 1.1210 1.2907 1.5161 1.8276 2.2787 2.9698 4.1023 28.3121

Table 4

Relative bias of time-to-response probability for
various latency periods with k = 4

to
upper

t 0 10 20 30 40 50 60 bound

60 0.1017 0.1103 0.1206 0.1334 0.1497 0.1710 0.1990

65 0.1387 0.1511 0.1662 0.1850 0.2089 0.2400 0.2812 0.3062

70 0.1931 0.2113 0.2335 0.2611 0.2960 0.3410 0.3992 0.4742

75 0.2722 0.2992 0.3322 0.3732 0.4252 0.4923 0.5798 0.7719

80 0.3910 0.4324 0.4835 0.5477 0.6301 0.7385 0.8849 1.3875

85 0.5687 0.6344 0.7166 0.8218 0.9601 1.1473 1.4100 2.7151

90 0.8123 0.9149 1.0451 1.2150 1.4431 1.7592 2.2119 5.0207

95 1.1368 1.2947 1.4991 1.7719 2.1482 2.6872 3.4888 10.9788

100 1.5542 1.7926 2.1082 2.5407 3.1577 4.0797 5.5266 28.3121



23

Table 5

Relative bias of time-to-response probability for
* various latency periods with k = 5

to

upper
t 0 10 20 30 40 50 60 bound

60 0.1109 0.1193 0.1293 0.1414 0.1564 0.1751 0.1990

65 0.1534 0.1659 0.1808 0.1989 0.2213 0.2498 0.2852 0.3062

70 0.2166 0.2352 0.2575 0.2846 0.3178 0.3591 0.4105 0.4742

75 0.3099 0.3381 0.3719 0.4130 0.4636 0.5267 0.6061 0.7719

80 0.4533 0.4979 0.5520 0.6185 0.7018 0.8080 0.9466 1.3875

85 0.6749 0.7486 0.8395 0.9536 1.1002 1.2930 1.5536 2.7151

90 0.9891 1.1092 1.2598 1.4528 1.7057 2.0453 2.5098 5.0207

95 1.4259 1.6204 1.8697 2.1973 2.6395 3.2531 4.1241 10.9788

100 2.0164 2.3275 2.7369 3.2921 4.0709 5.2036 6.9065 28.3121

Table 6

Relative bias of time-to-response probability for
various latency periods with k = 6

to
upper

t 0 10 20 30 40 50 60 bound

60 0.1184 0.1266 0.1362 0.1476 0.1614 0.1782 0.1990

65 0.1656 0.1780 0.1925 0.2099 0.2308 0.2565 0.2881 0.3062

70 0.2364 0.2551 0.2772 0.3034 0.3349 0.3729 0.4188 0.4742

75 0.3422 0.3710 0.4050 0.4455 0.4942 0.5535 0.6261 0.7719

80 0.5084 0.5551 0.6108 0.6783 0.7609 0.8639 0.9948 1.3875

85 0.7723 0.8522 0.9495 1.0697 1.2211 1.4154 1.6701 2.7151

90l 1.1576 1.2927 1.4600 1.6708 1.9411 2.2935 2.7566 5.0207

95 1.7146 1.9433 2.2333 2.6084 3.1039 3.7712 4.6792 10.9788

100 2.5035 2.8892 3.3929 4.0677 4.9969 6.3113 8.2089 28.3121 4
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greater than the actual probability of observing the specified response

when there are competing risks. Tables 3 through 6 show the increase in

relative bias as the latency period increases, as k increases, and as t

increases. For example, the relative bias for to 40 and k =5

increases from 0.1564 for t = 60 to 4.0709 for t =100. For fixed t 0 and

t, say 40 and 75 respectively, the relative bias increases from 0.3756

for k = 3 to 0.4942 for k =6. Similarly, for k = 5 and t =75 the

relative bias increases from 0.3099 for t 0 = 0 to 0.6061 for t 0 = 60

5.2.4 Fitting a Simple Model Without a Latency Period to DJata from a

Cause-Specific Model with a Latency Period

The relative biases given previously were calculated using the

simple hazard function parameters. Since the factor L1 (O,t) in the

likelihood associated with the cause-specific model has the same form as

the likelihood associated with the simple model, the maximum likelihood

estimates, ~,are the same under both modcls. Hence Tables 3 through 6

also give the relative bias of the estimated simple model relative to the

* estimated cause-specific model. However, if data are from a

cause-specific model with the cumulative hazard function for the

specified response given by

k
q(-o (d) for t >t

AI(t;d)

0 otherwise

* and these data are fit by a simple model with
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* *k

Al(t;d) = t kg(d)

then the likelihoods do not have the same form.

A small Monte Carlo study was conducted to obtain estimates of the

relative biases associated with not only using simple models but also

omitting the latency period. In this study the probability of the

specified response occurring before time t would be of the order 10-6

if the dose levels of primary concern were used. This would require that

the number of simulations be very large in order-to insure that at least

a few specified responses occurred. To alleviate this problem, the study

was conducted using doses high enough to give moderate to large

percentages of the outcomes being the specified response. The estimated

probabilities were then extrapolated down to the low dose region. The

simulation procedure is as follows:

The experimental data were generated using

Pcs (t,l:d) = ft Xl(u;d)exp[-A1 (u;d) - A2(u)i du

with

Al(t;d) = B(t-t 0 ) kg(d) , t > to and t 0  40

Also, let

P (t;d) = f X*(u;d)exp[-Al(u;d)] du

with

AI (t;d) =*t 
k g(d)

i4 °% .... '"". . . . .......... .... . ,• .. " . . .. .•. .............. ......... .. .... '
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The dose function, g(d), was not specified: however, it was assumed

that at the dose level d. where the estimated relative bias was to be

computed, g(d0 ) = 1 and P cs(75,1;d0 ) = 10- 6 . This implied a value for

0. The experimental data were simulated with 1000 observations at each

of d1 , .... d5 where

Pcs(tmax'l:di) = fi (5.1)

with f1 = 0.3, f2 = 0.4, f3 = 0.5, f4 = 0.6, f5 = 0.7 and tmax = 125

corresponding to a maximum possible lifetime. Equation (5.1) implied the

value of g(di).

For each of 300 sets of experimental data, the maximum likelihood

estimates , and k were determined as well as RB(Ps,Pcs). Tables 7

through 10 give the sample means of the RB( sP cs )'s. The variances are

not given in the tables but they were small. Several 95% confidence

intervals were constructed and resulted in interval half-widths which

were about 2% of the relative bias estimates. The last column in each

of these tables is the corresponding column from Tables 3 through 6 with

to = 40. This last column shows the actual relative bias of the simple

model with latency period relative to the cause-specific model.

Tables 7 through 10 show that the effect of not including a latency

period in a simple model when the underlying cause-specific model has a

latency period usually increases the relative bias, especially for larger

k. The difference is not so great for the middle values of t, say t = 75

or 80, as it is for smaller or larger values of t. For example, for

k = 5 and f3 = 0.5 the relative bias without a latency period is 0.3684

2.
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Table 7

Relative bias of time-to-response probability
for k = 3 and to = 40.

Known relative
bias of the

Estimated relative bias of the simple model simple model
without a latency period with a

latency period
t fl 0.3 f2=0.4 f3 = 0.5 f4 = 0.6 f5 = 0.7

60 0.2755 0.2257 0.1782 0.1197 0.0671 0.1405
65 0.1553 0.1263 0.1035 0.7447 0.0616 0.1922
70 0.1570 0.1429 0.1397 0.1350 0.1595 0.2671
75 0.2458 0.2457 0.2628 0.2842 0.3533 0.3756
80 0.4306 0.4467 0.4894 0.5446 0.6756 0.5414
85 0.7456 0.7840 0.8634 0.9683 1.1941 0.7957
90 1.2218 1.2932 1.4282 1.6098 1.9848 1.1505
95 1.9231 2.0453 2.2663 2.5687 3.1816 1.6358

100 2.9295 3.1299 3.4842 3.9761 4.9663 2.2787

Table 8

Relative bias of time-to-response probability
for k = 4 and t0 = 40.

Known relative
bias of the

Estimated relative bias of the simple model simple model
without a latency period with a

latency period
t f1 0.3 f2 =Q0.4 f3 =0.5 f4 =0.6 f5  0.7

60 0.5602 0.4642 0.3714 0.2663 0.1666 0.1497
65 0.3068 0.2515 0.2034 0.1491 0.1132 0.2089
70 0.2515 0.2211 0.2031 0.1850 0.2025 0.2960
75 0.3194 0.3097 0.3200 0.3382 0.4179 0.4252
80 0.5154 0.5276 0.5727 0.6381 0.8071 0.6301
85 0.8848 0.9297 1.0267 1.1652 1.4807 0.9601
90 1.4835 1.5784 1.7595 2.0193 2.5848 1.4431
95 2.4334 2.6116 2.9347 3.4034 4.4075 2.1482

100 3.9150 4.2345 4.8000 5.6312 7.4077 3.1577
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Table 9

Relative bias of time-to- response probability
for k = 5 and to = 40.

Known relative
bias of the

Estimated relative bias of the simple model simple model
without a latency period with a

latency period
t f 1  0.3 f 2 =O0.4 1 3 =0.5 1 4 = 0.6 f 5 =0.7

60 0.8866 0.7307 0.5867 0.4250 0.2572 0.1564
65 0.4644 0.3818 0.3047 0.2236 0.1556 0.2213
70 0.3428 0.3002 0.2616 0.2316 0.2388 0.3178
75 0.3867 0.3750 0.3684 0.3866 0.4792 0.4636
80 0.5899 0.6117 0.6423 0.7230 0.9422 0.7018
85 1.0133 1.0832 1.1704 1.3525 1.7929 1.1002
90 1.7357 1.8855 2.0696 2.4312 3.2775 1.7057
95 2.9572 3.2497 3.6106 4.3057 5.9278 2.6395

100 5.0116 5.5661 6.2578 7.5852 10.7137 4.0709

Table 10

Relative bias of time-to-response probability
for k = 6 and t 0 = 40.

Known relative
bias of the

Estimated relative bias of the simple model simple model
without a latency period with a

latency period
t f 1  0.3 f2 =0.4 f3 =0.5 f4 =0.6 f 5 0.7

60 1.2522 1.0328 0.7871 0.5755 0.3529 0.1614
65 0.6233 0.5105 0.3856 0.2851 0.1950 0.2308
70 0.4269 0.3656 0.3029 0.2665 0.2677 0.3349
75 0.4436 0.4180 0.4032 0.4250 0.5275 0.4942
80 0.6513 0.6619 0.7017 0.8002 1.0575 0.7609
85 1.1220 1.1847 1.3100 1.5391 2.0820 1.2211
90 1.9608 2.1141 2.3937 2.8675 3.9685 1.9411
95 3.4585 3.7847 4.3654 5.3269 7.5760 3.1039
100 6.1521 6.8226 8.0128 9.9777 14.6566 4.9969

.e A- .:!e
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for t = 75 (compared to 0.4636 with a latency period), but 0.5878 for

t = 60 compared to 0.1564) and 6.2578 for t = 100 (compared to 4.0709).

The relative biases for the simple model without a latency period tend to

decrease as the values of fi increase for smaller t but the relative

biases increase as the values of fi increase for larger t.

5.3 Mean Response Free Period

5.3.1 New Definitions

Mean response free period was introduced as a risk characterization

by the Society of Toxicology ED0 1 Task Force (1981). It is defined as

follows:

Definition 5.2 The mean response free period, MFP(t;d), is the

expected time at dose d without a specified response in the first t

units of time. Analytically,

MFP(t;d) :t - ft (t-u) [dP(Td)T du

0 dt ]T=u

Using the simple model, this becomes

MFP (t;d) = t - ft (t-u)Xl(u;d)exp[-A1 (u;d)l du . (5.2)

The concept of a mean response free period must be refined to

incorporate the multiple possible responses in the cause-specific model.

Definition 5.3 The total mean response free period under the

cause-specific model is

!-, ,'.,',- .' ' ''..' ii' ,<.- . . '. -.. . . . . ..-.-.. . " --. " ".-'".;. .?v -? - Y "''. """.' ';
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MFPcs(t;d) t - ft (t-u)(Xl(u;d)+,2(u))exp[-Al(u;d)-A2(u)] du.

This is the expected time without a response due to cause 1 or 2 in

the first t units of time at dose d. It is also possible to define mean

response free periods associated with each cause.

Definition 5.4 The cause-specific mean response free period

associated with cause j is the expected time without a response due

to cause j in the first t units of time at dose d. Analytically,

MFPc (tj;d) = t - ft (t-u)Xj(u:d)exp[-Al(u;d)-A2 (u)] duFcs 0t~ 1d2

The relationship among the mean response free periods under the

cause-specific model is

MFPcs (t;d) = MFPCS (t,l;d) + MFP cs(t,2;d) - t

Since the simple model attempts to model the probability of the

specified response, comparisons will be made between MFPs(t;d) and

MFPcs(t,1;d) and measured in terms of relative bias.

5.3.2 Bounds on Relative Bias

From Definition 5.1, the relative bias of the simple mean response

free period, equation (5.2), with respect to the cause-specific mean

response free period due to cause 1, Definition 5.4, is

MFPs(td)

RB(MFP (t;d),MFP (t,1;d)) = M_ -1
MFP cs(t,l d)

=C
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In Section 5.2.1, it was shown that the simple model overstates the

probability of a specified response before time t. Therefore, it follows

that the simple model should understate the mean response free period

associated with cause 1. The following theorem verifies this conjecture.

Theorem 5.2 If Al(t;d) and A2(t) are nondecreasing, nonnegative

cumulative hazard functions such that Al(O;d) = A2 (0) = 0. Then for all

t > 0,

-1 < RB(MFPs(t;d),MFPcs(t,I;d)) < 0

Proof: Since A2(t) is nondecreasing in t,

f0 (t-u)x 1(u;d)exp[-Al(u;d)] du

> ft (t-u)Xl(u;d)exp[-A1 (u;d)lexp[-A2(u)] du

so that

MFP s (t;d) < MFPcs (t,l ;d)

This implies

RB(MFP (t;d),MFP (t,I;d)) < 0
s cs 5

Also, MFPcs (t,;d) may be written as

MFP (t,l;d) = t[l - P (t,l;d)]
cs cs '

+ ft uxXj(u;d)exp[_Al(u;d) . A2u) du
.,q

>0 1'2

0-

U

5%5
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since both terms are nonnegative. Similarly MFPs (t;d) > 0. Therefore,

RB(MFP s(t;d),MFP cs(t,1;d)) > -1

5.3.3 Examples

Some examples are presented to illustrate the magnitude of the

relative bias of the simple mean response free period with respect to the

total mean response free period under the cause-specific model. Using

the hazard function for the competing risk, described in Section 4,

computational forms for MFP s(t;d), MFP cs(t;d), MFP cs(t,1;d), MFP cs(t,2;d)

and MFP s(t;d) can be obtained in a straightforward manner sometimes

including one or two integrations-by-parts. They are

m
MFP cs(t;d) = t - t I {S2(t i ) e x p [ - A l ( t i ; d ) ]

i=0

- $2 (ti+ 1)exp[-Al(ti+1;d)]}

m
+ I (tiS 2(ti)exp[-A1(ti;d)]
i=0

- ti+S 2 (ti+1)exp[-AI(ti+1:d)]}

m ti+1
+ Y fai ft. uxexp[-Al(U;d) du}i=0 i

{b rt+1
+ 0{bi "t.' exp[-A 1 (u:d)] du}i=O tiI

' , -"..,.*.. / " ", "' " " " " " " " " " "*. . . .".. .""."".". ...... ... . . " " ""
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mn ti+1

MFPcs (t,2;d) : t + t I {ai f exp[_Al(U;d) ] dui=0 ti

I i f ti uxexp[-Al(U;d)] du}]1

MFP cs (t,l:d) =MFP cs (t;d) - MFP cs (t,2;d) + t ,

and

MFP s (t;d) = txe1p-Al(tdd)_d

m+ Y {t i exp[-AIl(ti;d)- ti+lexp[-A(ti+;d)l

i=0

M t i+ l exp[-Al(U;d)] du,

t

with t = tm+1

These formulae are used to obtain the mean response free periods

used to calculate RB(MFP s(t;d),MFP cs(t,l;d)) in Tables 11 through 14.

The form used for the cumulative hazard function due to the cause of

interest was the same as in Section 5.2, i.e., A1 (t;d) = t kg(d).

Tables 11 through 14 correspond to k = 3, 4, 5 and 6, respectively. Each

column in these tables is calculated for a different Pxg(d) where Oxg(d)

is chosen so that

Pcs (75,1;d) = f0  (= 10 -6)

Pcs(t max '1;d) fi = 1 ...., 5

where fl = 0.3, f2 = 0.4, f3 = 0.5, f4  0.6, f5  0.7 and t max = 125.

pF,
* c.. . .
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The resulting mean response free periods are not given in the tables

but both the simple and cause-specific mean response free periods

associated with f0 were very close to the value for t. However, the mean

response free periods decreased as fi increased. For example,

MFP cs(100;d) = 99.9999 and MFP s(100;d) = 99.9999 for f0 
= 10 -6 and k = 3;

but MFP (100;d) : 78.3223 and MFP (100;d) 72.6925 for f3 = 0.5 and
cs ' s

k :3.

Some of the conclusions that can be drawn from the tables are as

follows:

(i) The magnitude (absolute value) of the relative bias increases

as t increases.

(ii) For smaller values of t, the magnitude of the relative bias

decreases as k increases, but for large t the magnitude

increases as k increases.

(iii) The magnitude of the relative bias tends increases as the

probability of a specified response over a lifetime increases.

In comparison to the relative biases in Tables 3 through 6 for the

time-to-response probabilty, the relative biases in Tables 11 through 14

for the mean response free period are small. For example, if the

probability of a specified response before time t = 75 is 10- 6 then the

relative bias in Table 4 for the time-to-response probability for k = 4,

t = 40 and t = 75 is 0.4252; but the relative bias in Table 12 for the

mean response free period for k = 4, and t = 75 is only -0.31461O
-7.

Thus, P (t;d) is 1.4252 times greater than P (t;d) but the mean responses cs

free periods are almost the same under both models.

I -. °o -, oA .° I° *'" o''.° j-... . ---.. ' . o° ".. . .".' "1 "
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6. RISK CHARACTERIZATIONS INVOLVING DOSE

In this section, as in Section 5, risk characterizations obtained

from a simple model will be compared to corresponding risk

characterizations obtained from a cause-specific model. Two risk

characterizations involving dose are considered; namely, mean free dose

and virtually safe dose. The comparisons will be made in terms of

relative bias.

6.1 Mean Free Dose

6.1.1 Definition

The mean free dose was introduced by the Society of Toxicology ED0 1

Task Force (1981). It is interpreted as the dose which would result in a

specified fractional reduction in the mean response free period.

Definition 6.1 The mean free dose at time t is the dose d which

satisfies

MFP(t;d) : - ,

MFP(t ;O)

with 0 < E < 1 and E being near 0. The mean free dose at time t is

denoted by MFD(t;E).

This definition may be used with any of the mean response free

periods defined in Section 5.3. The notation for a mean free dose will

correspond to the notation used in Section 5.3 for mean response free

period. For example, if Definition 6.1 uses MFP cs(t,1;d), then the

notation for the corresponding mean free dose would be MFD cs(t,I;).

... " ' . . - - - . ". " . • " 1
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6.1.2 Approximations of Mean Free Dose

By assuming a fairly general form for Al(t;d), simple approximations

are available for MFD cs(t ,1;E) and MFD s(t;c). They can be derived as

follows: Let

A 1 (t;d) = (1 + d r) t k

Then MFD cs(t,1;E) is the dose d that satisfies

MFP CS(t,l;d) = MFP CS(t,1;0) - cxMFP c(t,1;O)

with

MFP cs (t,l;d) =

t- ft (t-u)(1+d r)Ok uk -lexp[-(1+dr )Pu k _ A u)I du . (6.1)

Using the approximation for small 0, exp(-d rOu k) 1, equation (6.1)

becomes

MFP cs(t , ;d)

t - ft (t-u)(1+d r)Ok uk -ex P[_puk A Au)] du

Thus MFD c(t ,l1;e) is approximately the dose d which satisfies

t -ft (t-u)(1+dr)Ok uk lexp[ _Ouk - A2() du

f (t-u)Okui exp[-u A(u]d

- xMFP c(tIIO I
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which can be rewritten as

(i+dr) ft (t-u)3kuk'lexp[-Ouk - A2 (u)] du

ft (t-u)Pkuk-lexp[u k 
- A2(u)] du

+ exMFP CS(t,1;O)

Solving for the dose d the result is that

1/r

MFDXMF cs (ti1;O)] 62MFDcs(tle) t- cs . (6.2)

A similar derivation for MFD s(t;E) yields

1/r

MFD (t;e) _M-- s(t;O )  (6.3)
sI t-MFP (t;O)

Tables 15 through 22 give examples of the mean free doses calculated

from numerical search routines and the approximations (6.2) and (6.3).

These mean free doses were calculated for t = 75 and e's that correspond

to losses of 1 hour, I day, I week and I month in a 75 year period. The

values of r were r = I and r = 3 corresonding to linear and nonlinear

dose functions, respectively.

Generally the approximations agree with the mean response free dose

obtained by the numerical search technique to about three digits.

However as the dose increases the approximation is not as good. For
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Table 15

Approximations of mean free dose with k =3 and linear dose function

5F ~;)MD s( C

Usi ng Using
Search Search

Technique Approximation Technique Approximation

*1.52x10-6 0.4955x10 +1 0.4955x10 +1 0.5507x10 +1 0.550540O+1

3.65x10- 0.1189xl10+3 0.1189xlO +3 0.1322x10' +3 O.1322xI0 +

2.55xl104 O.8327x10 +3 0.8325xl10 0.9255xI10+3 0.9252xl0 +

i.11iixf 0.3624x10O 0.3620x10O 0.402840lO 0.402340lO

Table 16

Approximations of mean free dose with k 3 and nonlinear dose function

MFDS(tse) MFDCS(t 1s,)

Using Using
Search Search

CTechnique Approximation Technique Approximation

1.52xl106 0.1705x10 +1 0 . 1 7 0 5 x1 0 f+1 0.1766x10 +1 0.1766xl0+1

3.65xl105 0.4918xl0+1 0.4918xl10+ 0.5094xl1&+ 0.5094x10 +1

2.55x10-4 0.9408x10 +1 0.9407xl10+1 0.9745x10 +1 0.9744xl0+1

1.11X10-2 0.1536x10 +2 0.153540O+2 0.1591X10 +2 0.159040O+2
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Table 17

Approximations of mean free dose with k =4 and linear dose function

MFD S~t~e) MFDCs~tl

Using Using
Search Sea rch

ETechnique Approximation Technique Approximation

-6 +1 + 1+1.52x10 O.5978x10+ 0.5978x10 O.6821x10 1 .6821x10+

3.65xl10 5 O.1435xlO~ +3 O.1435x1QO +3 O.1637xlO~ +3 .1637lO +3

2.55x1O- 4 O.1OO5xlO~ +4 O.1QO4xlO~ +4.1146xlO~ +4 O.1146xlO +4

1.11X10 -2 O.4374x1O~ +4 O.4367x1O' +4 O.4991xlO~ +4 .4983xIO +4

Table 18

Approximations of mean free dose with k =4 and nonlinear dose function

MFD s (t;E) MFD cs(t , ;E)

Using Using
Search Search

eTechnique Approximation Technique Approximation

1.52x10 -6 O.1815x10 +1 O.1815xi1 O.1897xl1 O.1897x10 +1

3.65xIO- 5 O.5235x10 +1 O.5235x10 +1 O.547lx1O~ +1 .5470x10 +1

2.55xI0 O.1002xl0+ 0.1001X10+ O.1047x10+ 0.1046x10+

O.110 .1635x10 +2 O.1635xl10+2 O.1709x10 +2 O.1708x10 +2
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Table 19

Approximations of mean free dose with k 5 and linear dose function

MFD (t;e) MFD cs(t,1;E)

Using Using
Search Search

Technique Approximation Technique Approximation

1.52x106 0.6967x10+1 0.6967x10+1 0.8144x10+1 0.8144x10O+1

3.65x10 5  0.1672x10+ 3  0.1672x10+ 3  0.1955x10+3  0.1955x10+ 3

2.55xi0 4  0.1171xlO+4  0.1171xlO +4  0.1369xi0 + 4  0.1368xl1O+ 4

1.11x102 0.5099x10+4  0.5090x10+4  0.5961x10+ 4  0.5949x10+ 4

Table 20

Approximations of mean free dose with k 5 and nonlinear dose function

MFD s (t;E ) MFD cs(t,l;E)

Using Using
Search Search

Technique Approximation Technique Approximation

1.52xi06 0.1910x10+1 0.1910x10+1 0.2012xi0 +1 0.2012xI0+1

3.65xi0 -5  0.5509XO+1 0.5509xi0+1 0.5804xi0 +1 0.5803xl0+1

2.55x10 -4  0.1054x10+2 0.1054xlO+2 0.111OxlO +2  0.111Ox10 + 2

l.lx10-2 0.1721x40+2 0.1720x10+2 0.1831xi0+ 2 0.1812l0+ -
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Table 21

Approximations of mean free dose with k : 6 and linear dose function

MFDs (tC;) MFDcs(tI;C)

Using Using
Search Search

Technique Approximation Technique Approximation

1.52x10-6 0.7932xi0+1 0.7932x10+1 0.9478x10+1 o.9478x10+1

3.65x0 -5  0.1904x10 +3  0.1904x10 +3  0.2275x10+ 3  0.2275x10+ 3

2.55x10"  0.1333xiO 0.1333x1O +4  0.1593x1O 4  0.1592x1O +4

1.11X10-2 O.5807xO +4  O.5795x1O+4  O.6940xiO+4  O.6924x1O +4

Table 22

Approximations of mean free dose with k = 6 and nonlinear dose function

MF S (t ;e)  MFDcs(t,1;E)

Using Using
Search Search

C Technique Approximation Technique Approximation

1.52xi06 0.1994x10+1 0.1994x10+1 0.2116xi0+1 0.2116xi0+1

3.65xi0-5  0.5753x10+1 0.5753x1O+1  0.6105x10+1 0.6104x10+1

2.55x0 -4  0.1101xi 0+2 0.110O0x0+2 0.1168x10+2 0.1168x10+2

1.11xi0 2  0.1797x10+2 0.1796x10+2 0.1907xi0+2 0.1906x10+2

* * ." . *.
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example at k : 4 and e : 1.52x0 "6 with a linear dose function both the

approximation and the search method yield a simple mean response free

dose of 0.5978xi0 +1 but at E = 1.11xi0 "2 the approximation is

0.4367x10+4 while the search technique gives a simple mean response free

dose of 0.4374x0 +4 . This is as expected since the approximation of

exp(-d ru ) I is better for low doses.

For the same reason the approximation is not as good as k

increases. This can be seen by comparing the approximation and search

values at e = i.11x10 -2 in Table 15 with the corresponding values in

Table 21.

Also, the approximation is better for the nonlinear dose function.

This is because the nonlinear dose function results in a lower mean

r kresponse free dose which in turn makes the approximation exp(-dr~uk) " 1

better.

6.1.3 Relative Bias

The relative bias will depend upon which form of the mean free dose

is considered. Since any change in the total mean response free period

due to the introduction of a carcinogen would be of concern, the total

mean free dose is explicitly considered in this subsection. The mean

free doses are calculated from the simple mean response free period,

equation (5.2), and the total mean response free period under the

cause-specific model, Definition 5.3. The relative bias of simple mean

free dose with respect to total mean free dose under the cause-specific

model is
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MFDs(t;e)

RB(MFDsMFD) 
MFDs(t;E)

s Cs MFD C(t;E)-1

The form of the specified response's cumulative hazard function used

to calculate the mean free dose is

Al(t;d) = (1 + dr)ptk (6.4)

with r = 1 and r = 3 corresponding to linear and nonlinear dose

functions, respectively. The value of P is such that P cs(75,1;O) = 10-6 ,

and the mean free doses are calculated at t = 75. Tables 23 and 24 give

the relative biases for the linear and nonlinear dose functions with

k = 3, 4, 5 and 6. The same values of e as those in Tables 15 through 22

were used to compute the relative biases.

Tables 23 and 24 show the following:

(i) All relative biases are negative, indicating that MFD s(t;E)

understates MFD cs(t;s).

(ii) Relative biases are virtually unaffected by changes in E. This

is expected since E cancels when the relative bias is

calculated using the approximation.

(iii) Relative biases have greater absolute values as k increases.

(iv) The magnitude of the relative bias is greater when the dose

function is linear than when it is nonlinear.

The effect of using the simple model instead of the true cause-

specific model is larger when the dose function is linear. For k = 6 and

a linear dose function the relative bias is -0.1925. This means that the

. 'Z
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Table 23

Relative bias for mean free dose with linear dose function

444% k

3 4 5 6

1.52x10 -6 -0.1301 -0.1551 -0.1755 -0.1925

3.65x10 -5  -0.1301 -0.1551 -0.1755 -0.1925

2.55xlO 4  -0.1302 -0.1552 -0.1756 -0.1925

1.11x10 "2 -0.1302 -0.1553 -0.1757 -0.1927

Table 24

Relative bias for mean free dose with nonlinear dose function

k

e3 4 5 6

1.52x10-6 -0.04541 -0.05464 -0.06231 -0.06878

3.65x10-5  -0.04541 -0.05465 -0.06231 -0.06878

2.55x10-4  -0.04542 -0.05465 -0.06232 -0.06880

1.11x10-2 -0.04544 -0.05469 -0.06238 -0.06887

MFD (t;E) is about 0.8 times as large as MFDCs (t;E). That is, the mean

response free dose calculated under the simple model is only 0.8 times as

large as the true mean response free dose when competing risks are

considered.
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6.2 Virtually Safe Dose

6.2.1 Definition

The virtually safe dose was considered in Hartley and Sielken (1977)

but was used with quantal response models prior to 1977. It is

interpreted as the dose which would result in a specified slight increase

in the probability of the specified response occurring before time t over

this probability at dose 0.

Definition 6.2 The virtually safe dose at time t is the dose d

that satisfies

P(t;d) = P(t;O) + it

with 0 < n < 1 and it near 0. The virtually safe dose is

denoted by VSD(t;n).

Since the probabilities that were compared under the simple and

cause-specific models were Ps(t;d) and Pcs(t,1;d), in Section 5, the

virtually safe doses are calculated in terms of these two probabilities

using Definition 6.2 and the corresponding virtually safe doses will be

VSDs(t;m) and VSDcs(t,1;n) respectively. The VSDcs(t,1;n ) refers to

increasing the cause-specific probability of the specified response as

opposed to the total probability of some response.

6.2.2 Approximations of Virtually Safe Dose

As with the mean response free dose, simple approximations for the

virtually safe doses are available if a fairly general form for A1 (t:d)

is assumed. Let

, -. * * * * * * * * * * **'... . ~ ~ ~ ~ '~.:
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is
,

A1 (t;d) : (I + dr) Otk

Then VSDcs(tl;t) is the dose d that satisfies

ft (l+dr) kuk lexp[-(l+dr)uk - A2(u)] du

ft ku k- exp[-Pu 2(u)] du + n

Using the approximation, for small 0, exp(-dr uk) I this becomes

(l+dr) ft Okuk-lexp[-uk 2(u)] du

ft O kuk-lexpE- u - A2 (u)] du + nt

Solving for the dose d the result is that ..-

rllr

VSDcs (tl;) : P st 1 (6.5)cs( zo .

A similar derivation for VSD s yields

VSDs (t;n) 1/r (6.6)

Tables 25 through 32 give examples of the virtually safe doses

calculated from a numerical search routine and the approximations (6.5)

and (6.6). The virtually safe doses are calculated for t = 75, n = 10- 7,

10-6 10- and 10-. The values of r were the same as for the mean

response free dose; namely, r = 1 and r : 3.
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Table 25

Approximations of virtually safe dose with k = 3

and linear dose function

VSDs(t;i ) VSD cs(t,1;it)

Using Using
Search Search

it Technique Approximation Technique Approximation

10-7  0.8145x10-1 0.8145xI0-1 0.I00Oxi0 +0  0.1000x10+0

10-6 0.8145x10+0  0.8145xi0 +0  0.100x10 +1  0.1000x10 +

10-5  0.8145x10+1 0.8145xi0+1 0.100OxiO+2 0.I00xi0+2

10- 4  0.8145x10+2 0.8145x10+2 0.1000x10 +3  0.i000x10 +3

Table 26

Approximations of virtually safe dose with k = 3

and nonlinear dose function

VSD (t;) VSD (t,1;)

Using Using
Search Search

n Technique Approximation Technique Approximation

10-  0.4335x10+O 0.4335x10+0 0.4642xi0 0.4642x10 +0

10-6 0.9339x10+0  0.9339xi0+0  0.1000x10 +1  0.I00x10 + 1

10-5 0.2012xi0+1 0.2012xi0+1 0.2154x10+1 0.2154x10+1

10-4 0.4335x10+1 0.4335xi0 +1 0.4642x1O+1 0.4642xi0+1
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Table 27

Approximations of virtually safe dose with k =4

and linear dose function

VSDs(t;t) VSDCS(t,1;n)

Using Using
Search Search

Technique Approximation Technique Approximation

-0 .86xO11 +0 +
10-  0.7860xi01 0.7860x0 -  0.1000x10 0.1000x10 +

6+0+0 +1 +
106 0.7860x10 0  0.7860x10 0.100010 0.1000X10+

10 0O.7860x10+1 0.7860x10 0.100010 0o.100XI+2

10- 4  0.7861xiO+2 0.7860xi0+2 O. 1000X10+ 3  O.O00Oi + 3i,

Table 28

Approximations of virtually safe dose with k = 4

and nonlinear dose function

VSD s (t;i) VSD CS(t,1;n)

Using Using
Search Search

Technique Approximation Technique Approximation

10- 0.4284xi0+0 0.4284xO4 0.4642x00 0.4642x10+0
06+0+0 +1 +

10-6 0.9229x10+0 0.9229x10 0.lO00xll 0.1000x10+

10"  0.1988xi0+1 0.1988x0+ 0.2154xi0+ I  0.2154xi0+ I

10-4  0.4284x10+1 0.4284×10+1 0.4642x10+1 0.4642x10+1

.-!

I
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Table 29

Approximations of virtually safe dose with k = 5

and linear dose function

VSDs(t;n) VSD cs(t,I;1)

Using Using
Search Search

Technique Approximation Technique Approximation

10- 7  0.7634x10 1  0.7634x10 -1 0.1000O0 +0 0.100010+0

106 0.7634x0+0 0.7634xi0 +  0.100O01 0.1O00OX IO

10- 5  0.7634xi0+1 0.7634x10+1 0.1000O0+2 O.lO00O10+2

10 0.7635x0+2 0.7634xi0+2 O.O00O 3  0.1O00O

Table 30

Approximations of virtually safe dose with k = 5

and nonlinear dose function

VSD s (t;-n) VSDC (t,I;t)

Using Using
Search Search

Technique Approximation Technique Approximation

10-7  0.4242x10+0 0.4242x10+0 0.4642xi0+0 0.4642xi0+0

10- 6 0.9140x1O +0  0.9140x10+0 0.1000410+1 O.1O00xlO+ 1

10-5 0.1969xi0+1 0.1969x0+1 0.2154x10+1 0.2154xi0 +1

10-4  0.4242xi0+1 0.4242x0+1 0.4642xi0+1 0 .4 6 4 2xi
+1

6N.v
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Table 31

Approximations of virtually safe dose with k = 6

and linear dose function
SVSDs(t;n )  VSDcs(tll;.R)

Using Using
Search Search

I Technique Approximation Technique Approximation

10-7 0.7450x10-1 0.7450x10 "1  0.100x10+0  0.1000x10+0

10-6 0.7450x10+0 0.7450x10 +0 0.1000x10 +1 0.1000×10 +1

10-5  0.7450xi0+1 0.7450xi0+1 0.100OX10+2 O.lO00O+2

10-4  0.7451xi0+2 0.7450x10+2 0.100X10 +3  0.1000x10 +3

Table 32

Approximations of virtually safe dose with k = 6

and nonlinear dose function

VSDs (t;i) VSDcs (t,1;i)

Using Using
Search Search

it Technique Approximation Technique Approximation

10-  0.4208x10+0 0.4208x10+0 0.4642x10 0.4642x10+

10-6 0.9065xi0 +0  0.9065x10 0  0.1000x10 0.1000xlO+

S10-5 0.1953x10+1 0.1953x10+1 0.2154x10+1 0.2154x10+1

10-4  0.4208xi0+1 0.4208x10+1 0.. ,42x10 0.4642x10+1

-"
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The approximations agree almost always with the virtually safe doses

obtained from the numerical search technique to at least four digits.

The values of the virtually safe doses appear to be changing by exactly a

factor of 10 as n increases when the dose function is linear. This is

because n is increasing by a factor of 10 also. These approximations

appear to be much more accurate than those for the mean free dose.

6.2.3 Relative Bias

The relative bias of the simple virtually safe dose with respect to

the cause-specific virtually safe dose is given by

VSDs(t~it)
RB(VSDsVSDc) = VSDs(t;n) - 1

5 cs VSD c(tit

The form of the specified response's cumulative hazard function is

the same as it is in the discussion of the mean free dose and is given by

equation (6.4). The values of r, 0 and k were chosen in the same

manner. The relative biases were calculated for it = 10- , 10-6 , 10- and

10-4 and are given in Tables 33 and 34.

Tables 33 and 34 provide conclusions analogous to those drawn from

Tables 23 and 24:

i) All relative biases are negative, indicating that VSDs (t;n)

understates VSD (t;T).cs
(ii) Relative biases are virtually unaffected by changes in i. This

is expected since n cancels when the relative bias is

calculated using the approximation.
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Table 33

Relative bias for virtually safe dose with linear dose function

k

it3 4 5 6

10-7  -0.1855 -0.2140 -0.2366 -0.2550

10-6  -0.1855 -0.2140 -0.2366 -0.2550

10-5  -0.1855 -0.2140 -0.2366 -0.2550

10-4  -0.1855 -0.2140 -0.2366 -0.2550

Table 34

Relative bias for virtually safe dose with nonlinear dose function

k

IE 3 4 5 6

10-7  -0.06612 -0.07712 -0.08605 -0.09345

10-6 -0.06612 -0.07712 -0.08605 -0.09346

10-5 -0.06612 -0.07712 -0.08605 -0.09346

10-4  -0.06613 -0.07712 -0.08605 -0.09346

(iii) Relative biases have greater absolute values as k increases.

(iv) The magnitude of the relative bias is greater when the dose

function is linear than when it is nonlinear.

The relative biases for the virtually safe dose are about the same

as for the mean free dose. Again the relative bias increases with k and
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is larger when the dose function is linear rather than nonlinear. For

k = 6 and a linear dose function, the relative bias of VSDs(t;n) with

respect to VSDC (t,l;n) is -0.2550. Thus, VSD s(t;n) is about 0.75 times

as large as VSDc (t,1;it). That is, the virtually safe dose calculated

under the simple model is only 0.75 times as large as the true virtually

safe dose when competing risks are considered.

pp

* . *. . -.
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7. ESTIMATION OF HAZARD FUNCTIONS WHEN THE CAUSE OF DEATH IS UNCERTAIN

The results in the preceding section were developed with the

assumption that the specified response of interest is observable, e.g.,

death with tumor, observable tumor onset, or death from tumor (when the

cause of death can be determined). In the last case, death from tumor, a

common problem that arises is that the cause of death cannot be

determined accurately. This section describes two risk assessment

options when the cause of death is unknown, but it is known whether an

individual died with a tumor or not.

7.1 Option One: All Causes of Death Combined

Option one is to consider the difference in the survival function

(or the corresponding cdf) for a specified dose d=d versus the survival

function (or cdf) for the dose d=O. That is, compare

Pr(T<t Id=d*) versus Pr(T<t Id=O) .

Here, the time to death (from all causes combined) is the specified

response. If the zero dose level is taken to be the level naturally

occurring in the environment, then Pr(T<tId=O) can be obtained from life

tables or estimated from the experimental data. The probability

Pr(T<tld) can be estimated as a function of d from the experimental

data. An acceptable dose d=d could then be defined as the dose at which

Pr(T<t d=d) exceeds Pr(T<tId=O) by no more than a specified amount, say

10- 6 , for any value of t in a specified time interval. This approach

assumes that the dose's effect on the combination of all causes of death
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is of interest. If only the dose's effect on death related to

carcinogenicity is considered to be important, then option two is more

appropriate.

7.2 Option Two: Death Related to Tumor

Option two is derived from a model discussed in both McKnight and

Crowley (1984) and Kalbfleisch et al. (1983) but utilizes a new

definition for the specified response. The model is given as follows:

Let

*

= time to tumor onset

= time to death .

The hazard rates to follow use the notation given by Table 35 as

subscripts.

Table 35

Notation for hazard functions used for death related to tumor

Subscript Denotes:

T presence of a tumor

NT no tumor present

D death

DFT death from tumor

DCR death from competing risk

DRT death related to tumor

Define the hazard rate for tumor onset to be

xT(t) : lim Pr(t< <t+AtI >t,& >t)

At O At
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the conditional hazard rate for death given that a tumor has occurred to

be

X (t) = Irn Pr(t<r<t+At) L>t,u <t)
At *0 At

and the conditional hazard rate for death given that no tumor has

occurred to be

XI(t) = Pr(t< <t+AtIr>t,, >t)
AtDO At

Also let

1 if the death is due to tumor

2 if the death is due to competing risks.

Then the hazard rate XDIT(t) can be partitioned as follows:

X (t) = lim Pr(t<T<t+At,J=lj >ttZ <t)
OJT At *0 At

+ lim Pr(t< <t+AtJ=21T>tT <t)

At -0 At

X DFTIT(t) + XDCRIT(t) , (7.1)

where the last two hazard rates are the hazards corresponding to death

from tumor given that a tumor has occurred and death from a competing

risk given that a tumor has occurred, respectively. Notice that the

conditional hazard rates do not depend on the time of the tumor onset

rather they depend only on the existence of the tumor prior to time t.

McKnight and Crowley (1984) discuss this situation with respect to

SLis
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XDIT(t). If this hazard rate is written as being conditional on the

time of tumor onset, then it is not identifiable. Therefore, XDIT(t) is

regarded as a marginal hazard function that averages the risk over the

distribution of r

If the cause of death can be determined, then XT(t), XDCRIT(t),

XDFTIT and XDINT(t) can be estimated provided interim sacrifices are

made (see McKnight and Crowley (1984)). Kalbfleisch et al. (1983) give

the likelihoods for this case. However, if the cause of death cannot be

determined, then the hazard functions XDFTIT(t) and XDCRIT(t) are not

identifiable and only XDIT(t) can be estimated.

Assuming that the cause of death cannot be determined, the focus is

now shifted to a new specified response - death related to tumor. This

response has meaning only for the case where the hazard rate in the

presence of a tumor exceeds the hazard rate in the absence of a tumor. A

death related to a tumor is defined to be a death caused by the increase

in XDIT(t) relative to XDINT(t). This implies that the hazard rate for

the specified response is

XDRTIT(t) = XDIT(t) - XDINT(t) . (7.2)

A death related to tumor may be a death caused by a tumor directly or a

death resulting from an increase in the hazard rate for a competing

risk. Since a death related to tumor is not necessarily clinically

differentiable from other deaths with tumor, it is important that the

estimation procedure for XDRT T(t) does not require that such
RIT

differentiations be made.

*,*m .*-.p .~ :. -m... , ... v #-.;.. - -y-.-> -. . ..-- : --- , - y.v \
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if XDIT is replaced by its equivalent expression in (7.1), then

X DRTIT(t) = XIJFTIT(t) + XDCRIT(t) - XDjNT(t)I

which futher emphasizes that a death related to tumor is not just a death

from tumor but refers to the increase in all causes of death in the

presence of a tumor relative to all causes of death in the absence of a

tumor.

To estimate the desired risk characterizations, it is necessary to

first estimate XT(t), XDIT(t) and XDINT(t). This is done by using the

likelihoods from Kalbfleisch et al. (1983) which simplify when the cause

of death is unknown. The resulting likelihood contributions are

LI  XD NT(t) exp[-ft (XD NT(u) + XT(u)) dul

L1  : exp[-J (xDINT(u) + XT(u)) du]

L1 1 =f XT(u) exp[-fu (%T(v) + XD1N(v)) dv -ft XD1 (v) dvldu,

and

LIV = f XT(u)xexp[-fu (XT(V) + XDjNT(v)) dvi

X XT(t)xexp-ft X ~(v) dvi du

where Table 36 gives the situation governing each of the contributions.

Using these contributions, the maximum likelihood estimates T(t),

XDIT(t) and &DINT(t) can be obtained and XDRTIT(t) is obtained by

2.,
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Table 36

Situations for the likelihood contributions when
the cause of death is uncertain

Contribution Situation

LI  death at time t with no tumor present

LI1 sacrifice at time t with no tumor present

LII I  sacrifice at time t with a tumor present

LIV death at time t with a tumor present

applying equation (7.2). Thus, the time-to-response probabilities and

other risk characterizations for the time to death related to tumor can

be estimated.

The dependence of the hazard functions on dose has been suppressed

in this discussion. A natural experimental situation would be to

estimate the probability of death related to tumor at dose d and compare

this to the probability of death related to tumor at dose 0. Also, other

risk characterizations based on dose, such as mean free dose and

virtually safe dose, can be estimated.

These two options provide the researcher and risk assessor with

alternatives when the cause of death is unknown. Both options require

that a new specified response be determined. The first option gives risk

characterizations when death from all causes combined is the specified

response. The second option gives a method for estimating risk

characterizations when death related to tumor is the specified response.

p .. . . . . . . . . . . . .. . . . . . .~ ~ ..
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8. CONCLUSIONS

* This dissertation has demonstrated a method for improving risk

characterizations from a simple model by incorporating competing risks

via the cause-specific model. Two aspects of this method arise which

make the incorporation of the cause-specific model desirable; they are

increased accuracy and ease of implementation.

7 The cause-specific model give inure accurate representations of risk

characteristics than the simple model in two ways.

(i) The cause-specific model reflects the possibility of a

competing response occurring before the specified response

whereas the simple model does not.

(ii) The cause-specific model implies more relevant risk

characteri zat ions.

The difference between the two models was discussed in terms of

relative bias. In Sections 5 and 6, bounds are obtained for various risk

characterizations and examples are given that demonstrate how the simple

model overstates the effect of the carcinogen. If the risk

characterization is a time-to-response probability, the simple model can

overstate the probability by as much as 800% depending on latency period,

time, and parameter values of the specified response's hazard function.

However, most overstatements are of the order of 50% - 60% for middle

values of time, latency period and parameter values.

Additionally, if the data are generated from a cause-specific model

with a latency period but fit by a simple model without a latency period,

then the overstatement of the carcinogenic effect is usually increased.
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This was demonstrated by a simulation study in Section 5. It shows that

the simple time-to-response probability may be as much as 1400% larger

than the true time-to-response probability under the cause-specific

model.

The magnitude of the relative bias for mean response free period was

not as large as it was in the case of time-to-response probability. In

fact, if the probability of the specified response occurring before time

t is of the-order 10-6 then the relative bias for mean response free

period is almost negligible; however, if the risk characterization is

given in terms of dose, the relative bias may be larger. For example, if

the dose function is linear, the virtually safe dose under the simple

mmodel may only be 75% of the virtually safe dose under the

cause-specific model. The same order of magnitude holds for the relative

bias of the mean free dose. This percentage increases to about 90% if

the dose function is nonlinear (e.g., cubic).

The risk characteristics under consideration have different

representations under the simple and cause-specific models. By using the

new definitions of the risk characterization under the cause-specific

model the researcher is required to be more precise in his definition of

the specified response and the health effects to be measured. These risk

characteristics under the cause-specific model are easily interpreted.

Accuracy is just one advantage of the cause-specific model;

implementation is another. As shown in Section 3, the relationship

between the cause-specific and simple likelihood functions allows the use

of existing simple model maximum likelihood estimates to develop

cause-specific maximum likelihood estimates. Also, the approximation for
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the competing risks' hazard function, X2(t), given in Section 4 is both

reasonable and convenient. Thus, the procedure given in Sections 3 and 4

for incorporating the cause-specific model can be implemented using

either the experimental data alone or the simple model estimates and a

life table approximation for the competing risks' hazard function.

Finally, when the cause of death is uncertain, the framework of the

cause-specific model allows the estimation of time-to-response

probabilities for the specified response, death related to tumor. Using

this new response is reasonable and may be more relevant to the risk

assessment than defining the response to be death from tumor when the

cause of death is unknown or subjectively assigned.

In the area of quantitative cancer risk assessment many modeling

problems occur such as low dose extrapolation, interspecies extrapolation

and the incorporation ot competing risks. These are, by no means, easy

problems to solve. They should each be considered by risk managers, risk

assessors and researchers with the attitude that accuracy in all aspects

of the modeling process is important. This dissertation provides these

people with the necessary information to decide if the simple model is

sufficient in a particular situation, and if it is not, it provides a

method for improving the risk characterizations by utilizing existing

results without setting up new experiments.

- ,



67

REFERENCES

Armitage, P. (1982). The assessment of low-dose carcinogenicity.
Biometrics 38 (Supplement on Current Topics in Biostatistics and
Epidemiology), 119-129.

Chiang, C.L. (1970). Competing risks and conditional probabilities.
Biometrics 26, 767-776.

Dewanji, A. and Kalbfleisch, J. D. (1985). Non-parametric methods for
survival/sacrifice experiments. Proceedings of the Symposium on
Long-Term Animal Carcinogenicity Studies: A Statistical Prospective,
100-106.

Dinse, G. E. (1985). Estimating tumor prevalence, lethality and
mortality. Proceedings of the Symposium on Lonu-Term Animal
Carcinogenicity Studies: A Statistical Prospective, 91-99.

Hartley, H. 0. and Sielken, R. L. Jr. (1977). Estimation of "safe doses"
in carcinogenic experiments. Biometrics 33, 1-20.

Hartley, H. 0., Tolley, H. D. and Sielken, R. L. Jr. (1981). The product
form of the hazard rate in carcinogenic testing. Current Topics in
Probability and Statistics. M. CsorgO, D. Dawson, J. N. K. Rao and
E. Saleh (eds.). North Holland, NY, 185.

Kalbfleisch, J. D., Krewski, D. R. and Van Ryzin, J. (1983). Dose-
response models for time-to-response toxicity data. The Canadian
Journal of Statistics 11, 25-49.

Kalbfleisch, J. 0. and Prentice, R. L. (1980). The Statistical Analysis
of Failure Time Data. John Wiley & Sons, New York.

Krewski, D., Crump, K. S., Farmer, J. H., Gaylor, D. W., Howe, R.,
Portier, C., Salsburg, D., Sielken, R. L. Jr. and Van Ryzin, J.
(1983). A comparison of statistical methods for low dose
extrapolation utilizing time-to-tumor data. Fundamental and Applied
Toxicology 3, 140-146.

McKnight, B. and Crowley, J. (1984). Tests for differences in tumor
incidence based on animal carcinogenesis experiments. Journal of
the American Statistical Association 79, 639-648.

Moeschberger, M. L. and David, H. A. (1971). Life tests under competing
causes of failure and the theory of competing risks. Biometrics 27,
909-933.



68

National Center for Health Statistics: Vital Statistica of the United
States, 1979, Vol. II, Mortality, Part A. DHHS Pub No. (PHS)
84-1101. Publich Health Service, Washington. U. S. Government
Printing Office, 1984.

Prentice, R. L., Kalbfleisch, J. D., Peterson, A. V., Flournoy, N.,
Farewell, V. T., and Breslow, N. E. (1978). The analysis of failure
times in the presence of competing risks. Biometrics 34, 541-554.

Society of Toxicology EDO1 Task Force (1981). Re-examination of the

ED01 study: Risk assessment using time. Fundamental and Applied

Toxicology 1, 88-123.

Tsiatis, A. (1975). A nonidentifiability aspect of the problem of
competing risks. Proceedings of the National Academy of Science,
USA, 72, 20-22.

,.q

°, q " " " " " " ',' ,'t' "t' " " ", " .",, " . • 
""

'" ", " •"., ' "." "," "q" " -," " , "m °
* -

-'• - • ° I "°, "'° -'o ' " '. '



69

VITA

Ronald James Berdine was born in Creston, Iowa on September 30,

1950. He is the oldest of three sons born to James and Bessie Berdine

who now live in Shannon City, Iowa.

He received a Bachelor of Science degree in mathematics from Iowa

State University in 1971 and a Master of Science degree in Operations

Research from Stanford University in 1980. From 1980 to 1983 he was an

instructor and assistant professor of mathematics at the United States

Air Force Academy. In May of 1986 he expects to receive a Doctor of

Philosophy degree in Statistics from Texas A&M University.

He is presently a major in the United States Air Force and holds an

aeronautical rating of senior navigator. His next assignment is to be at

Rhein-Main Air Base, Giermany as an electronic warfare officer. From

there he expects to return to the United States Air Force Academy. His

permanent address is: 1116 Todd Trail, College Station, Texas, 77840.



. .!... ...........

4

K
L ~-.

I

f.

4

4 1

r

~4.

*1 ., .~
'I

t .*

9.,
"S

5%

4

-5----

i-.

7
-..


