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MAT-AN INTERACTIVE CALCULATOR FOR MATRIX OPERATIONS:
DESCRIPTION AND APPLICATION EXAMPLES

1 INTRODUCTION

Background

The military conducts many types of economic analyses for a variety of projects,
and putting together these analyses often requires the use of matrices for solving
systems of equations. Many computerized matrix packages are available, but most
require the user to write subroutines, which makes operating these programs more
complicated. Therefore, to make matrix programs easier for military economists to use,
the U. S. Army and Air Force developed mat--an interactive interpreter and calculator
for solving systems of equations expressed as matrices.

Mat is part of the Comprehensive Economic Analysis System (CEAS) maintained
and operated by the U.S. Army Construction Engineering Research Laboratory (USA-
CERL). CEAS is designed for regional economic modeling. It combines data, models, and
tools for conducting various types of regional impact studies, including input-output
analysis, economic-base analysis, and impact area definition. CEAS is available to users
as a subsystem of the Environmental Technical Information System (ETIS) -- a
comprehensive computer-aided methodology for gathering and storing environment-
related information and helping environmental planners assess potential impacts of
military projects and activities.

Mat was designed to complement many of the programs in CEAS by allowing users
to conduct simulation and gaming exercises using scaled-down regional input-output
tables prior to carrying out formal studies of regional economies. Mat is also a valuable
teaching tool for introducing students of regional economics to the fundamental
economic relationships often expressed in terms of matrix algebra. With this aim in
mind, several specialized routines have also been developed for mat, including a function
for calculating the Leontief Inverse (I - A) - 1, the Power Series Approximation to the
Leontief Inverse, and a procedure for updating an input-output table using the RAS
adjustment method. However, users not interested in doing economic studies should also
find mat useful for other applications requiring the manipulation of data stored as
matrices.

Mat allows a user to express matrix operations more naturally. For example, the
command to multiply two matrices, a and b, is,

a*b

More complicated relationships are also easy to construct. For example, to derive
the coefficients for a set of linear regression normal equations, the expression

'R. D. Webster. et al., Modification and Extension of the Environmental Technical
Information System (ETIS) for the Air Force, Special Report N-81/AI)A079441 (U. S.
Army Construction Engineering Research Laboratory [USA-CERI], 1979).

5



b = (XX)' X' Y

in mat is:

b = inv (x' * x) * x'* y

The main advantage of mat is its ease in expressing matrix relationships; however,
it also does extensive error checking. Checks for conformability, syntax, and overflow
are built-in features. All computations are done by double precision arithmetic.

Objective

The objective of this report is to provide the user of mat with a fundamental
knowledge of the system's coi:,:mands, operators, and functions, and to provide examples
of practical problem solving using the system.

Approach

The commands used to operate mat are defined, and the various operators and
functions available to carry out operations on matrices are described. Examples are

*provided that illustrate how mat can be used to solve problems in matrix algebra, input-
*output analysis, and regression analysis.

Mode of Technology Transfer

Mat may be accessed through the University of Illinois' ETIS Support Center. Users
may obtain a login from the Center by calling 217-333-1369.

.
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2 COMMANDS

Mat is implemented on a Pyramid computer running under ()Sx 2.5 (1orkeley 4.2
and System V UNIX*). The program, which is written in YACC,2 reads input typed at a
computer terminal and interprets these characters as a command to be executed by
another program. A library of functions written in C carries out the actual matrix
operations.

This chapter descrihes what the user should know to begin using mat. Throughout
the remainder of this report, input commands are represented in bold-face letters, while
program output is shown as a user might see it on his/her computer terminal.

Variables

Twenty-six registers, represented by the lower-case letters a...z, are reserved for
storing matrix variaihles, and 26 registers, represented by the upper-case letters A...Z,
are reserved for storing scalar values. Once defined, these variables may be used freely
in any valid expression.

Help

A help command ? with the following options is provided.

Typing a single question mark on a line

• ?

prints a document summarizing the various features and commands available in mat
following the style of a UNIX user manual page. Typing a question mark followed by a
matrix variable name prints the dimensions of the variable (if defined) in the format M
rows x N columns.

A question mark followed by a dollar sign "$" prints all the currently defined matrix
variables and their dimensions. For example,

5> ?$

might produce the following ,mtpul:

a: 10 x 10
i: 10 x 10
u: I x 10
v: 10 x 1

*L NIX is a trademark ,f hell Laboratories.
S. J..,hnson, -((C: Yt rIother' Compiler-Compiler (Bell Laboratories, 1978). See

ailso the fiNI \ Programmer's kfon'al Supplementary Documents (University of
California at Berkeley. 1984).
Brian W. Kernighan and Dennis M. Ritehie, The C Programming Language (Prentice
Hall. Inc., 1979).
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This says that four variables are currently defined: two matrices, a and i, having 10 rows
and 10 columns each, a vector, u, with one row and 10 eolumns; and a vector, v, having
10 rows and one column. The symbol ">" is the prograin prompt, which indicates that
mat is ready to accept input from the keyboard and the number preceding it (e. g., 5>) is
the current command line number.

Comments

Any line beginning with the "#" character is interpreted as a comment. For
example: # This is a comment. Such lines are ignored when mat is used in interactive
mode. However, when commands are read from a file, comments are printed to the
standard output and can be used to label output. Noninteractive use of mat is covered in
the tutorial introduction provided in Chapter 4.

Input and Output

Matrix variables are initialized or defined either by reading the contents of a file in
which a matrix has been stored previously or by assigning a variable to an array typed on
the terminal. Exceptions are the identity matrix and unity vector which may be created
using the ido and uvo functions, respectively (explained on p 14).

The reado function is used to read a matrix from a file.

1> read(a,nrows,ncols, "myfile")

This command defines a variable a to be a matrix having the dimensions nrows rows and
ncols columns; the matrix is stored in file "myfile."

File names must be surrounded by double quotes " " and may contain letters,
numbers, dots ".", underscores " ", or slashes "". The length of file names is restricted
by the UNIX system to 14 or fewer characters. A file name containing one or more ""
characters is interpreted as a full pathname (e. g., "/usr/smith/data") and may be up to
99 characters long.

Matrices may also be assigned values typed directly at a user's terminal. The
format for this procedure is shown in the following example.

I> a = (.25 .5 .15 .751 2 2

This defines "a" to be a 2 x 2 matrix containing the elements between the square
brackets. There are four important points to remember when defining a matrix in this
way:

1. Elements within the square brackets must be separated by space or tab
characters.

2. Matrix elements are assigned row by row. That is, in an N1 x N matrix, the first
N elements within the brackets make up the first row. If the matrix dimensions
following the right bracket exceed the number of elements, the remaining elements are
assigned the value zero. If, instead, the following had been typed,

8



1 a .25 .5.15 .7 513 2

the first two rows of "a" would contain the elements within the brackets and the third
row would contain all zeros. As a special case,

> a =[ M N

defines an M x N null matrix.

3. A maximum of 100 elements can be Pssigned to a matrix when input is read
from a terminal. Matrices containing more than 100 elements must be read from a file.

4. A newline character (linefeed or carriage return) typed before the rightmost
dimension is a syntax error.

Output is automatically displayed on the user's terminal following execution of any
valid expression. To see the contents of "a" just type its name alone on a line followed
by a carriage return.

2> a
0.250000 0.500000
0.150000 0.750000

The contents of a variable may be written to a file using the put() function.

2> put(a, "myfile")

This writes the contents of "a" to file "myfile." The same restrictions on file names
mentioned on p 8 also apply here.

Output from an expression may also be redirected to a file rather than being
displayed on the terminal. This may be useful when working with larger matrices that
would be difficult to read if printed on an 80-character width screen or if one is using a
terminal with a slow baud rate (< 1200 baud). The command to redirect output to a file
is

2> a > "myfile"

In this case, the contents of variable "a" are :-, vcd in file "myfile." The ">" symbol is
used to indicate redirected output, which is familiar to UNIX users. When redirecting
output from a more complicated expression, the left-hand side must be surrounded by
parentheses, such as

2- (a * b) , "myfile"

A final way to print output is to use the putfo (formatted put) function. An
example is

2> putf(a,15,8. "myfile" )

This will print the contents of "a" to "myfile" with a minimum of I- positions used to
display each array element and eight digits displayed to the right of the decimal point.
As a special case, the file name "term," when used with putt(), will print the matrix
elements on the user's terminal.

9



Size Limitations

The current implementation of mat requires matrices to be no larger than 100 rows
by 100 columns. In an interactive environment, operations on very large matrices are
wasteful of computer resources. Programs written for specific tasks can handle these
applications much more efficiently.

Getting out of Mat, Interrupts, and Suspending Output

To exit mat, type "quit". This will cause an immediate exit from the program,
erasing any variables the user has defined (except those previously saved in files). To
suspend output on the terminal (i. e., to inspect results), type control-S; to restart
output, type control-Q. Hitting the interrupt key will cause mat to stop what it is doing
(e. g., printing out a large matrix) and provide a new prompt (>). On some terminals, this
may be the "rubout" key; on others, control-C will cause an interrupt signal to be sent.

UNIX System Interface

The mat user can communicate easily with the operating system. Any line that
begins with the character "!" is passed to the operating system for execution. This
facility can be used to list files, enter a text editor, etc. UNIX system commands (e. g.,
text editors) that interact with the user return to mat when the interaction is complete.

1> !ed myfile
...edit file myfile with text editor...
q
2> # ready for next mat expression

1 0



3 OPERATORS AND FUNCTIONS

This chapter describes the various operators (Table 1) and functions available in
mat to carry out operations on matrices. A brief description and an example of each is
given. Chapter 4 provides a tutorial introduction that demonstrates how these operators
and functions may be combined to solve real problems in matrix algebra, input-output
analysis, and regression analysis.

In the following discussion, "a" and "b" are assumed to be matrices that have been
defined previously and are compatible for use in the specified operations.

Assignments

The z sign assigns the contents of one matrix to another or sets a variable equal to
the results returned by an expression. This assigns to the left-hand side the result
contained by the right-hand side. For example, b = a, and b expr. (expr is any valid
combination of variables, operators, and/or functions.) Also, because the assignment
operator itself returns an expression, multiple assignments are possible (e. g., c b
a). The result of an assignment is not printed on the user's terminal.

Matrix Operators 7

Addition and Subtraction

Matrix addition and subtraction are denoted by the + and - operators (for example,
a + b and a - b). As previously mentioned, mat checks for conformability before
attempting to carry out the operation.

Multiplication

The operator for matrix multiplication is . An example is: a * b. Again,
conformability is checked.

Division by Column arid Row Sums

Division by column sums and division by row sums are two related operations that
are often useful in input-output analysis. The operator for division by column sums is
represented by I, while that for division by row sums is \. For example, to divide the

Table I

Operators, in )ecreasing Order of Precedence

transpose
exponentiation (t"()RT AI' N **), right associativ

(unary) minus
* / \ multiplication, dii, ion, divisi,,n )y column and row sums
+ addition and subt rat ion
- assignment, right associative
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n elements of "a" by its column sums "b", type a lb. Similarly, for division by row sums,
type a \ b. The section describing matrix functions (pp 13-14) mentions two functions
esum0 and rsumO--that return the column and row sums of their arguments. Thus,
instead of the above expression for division by column sums, one could substitute the
results of a function call; e. g., a / csum(a).

Transpose

Mat uses the ' sign to indicate the need to transpose a matrix or a vector. Although
a function is actually called to produce a transposed matrix, the ' operator is a true

* operator in the sense that the transpose operation has a higher order of precedence than
any of the operators for +, -, *, /, or \. To take the transpose of "a" and assign it to "b",
the command is: b = a'.

- Parentheses

Precedence can be explicitly determined by surrounding an expression with
parentheses. Normally, mat will interpret an expression like a - b - c as (a - b) - c. If,
instead, the result should be interpreted as a - (b - c), the user must put parentheses

* around (b - c).

Scalar Operators

Mat also supports combined operations with matrices and scalars. (Note: Scalars
are defined as numbers containing a decimal point.) Operations with whole numbers that
lack a trailing decimal point are treated as a syntax error. Scalar values may be assigned
to any single upper-case letter. In the following discussion, the symbol K is assumed to
be a constant scalar (e. g., K = 3.14159).

,Addition and Subtraction

The operations of adding a scalar to a matrix and subtracting a scalar from a
matrix are handled as expected: a + K and a - K. Both pre- and post-scalar operations
are recognized, so that K + a is equal to a + K.

". Multiplication and Division

Scalar multiplication and division are a * K and a / K, respectively.

E xponentiation

The exponentiation operator is For example, to raise each element of "a" to the
power of 2. type a " 2.0.

Unarv Minus

Mat also recognizes the unar, operator, -, so that an expression such as a - 1.0
(add 1.0 to each eloment of a) is interpreted correctly.

12
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Functions

Inverse

The invo function is used to produce the inverse of matrix "a". For example, to
take the inverse of "a" and assign it to "b, type b = inv(a). This function has several
error-checking mechanisms, including checks for conformability and singularity.

Determinants

The det0 function returns the determinant of a matrix in double precision form.
An example of its use is det(a). The argument to det0 must be a square matrix.

Diagonalization

Diagonalizing a vector implies the creation of a square matrix having the same
number of rows and columns as elements in the original vector, and placing the elements
of the vector on the main diagonal with zero in all the off-diagonal elements. The
function that carries out this operation is diago; e. g., diag(a).

Trace

The trace of a square matrix is the sum of its main diagonal elements. The
command to calculate the trace of a matrix "a" is tr(a).

Norm

The norm of a matrix is defined as the largest of the column sums of the absolute
values of the elements in a matrix. The norm() function returns the norm of its matrix
argument in double precision form; e. g.,

n

norm(a) = max ': jaij
k i=1' i

Minimum
The min0 function returns the smallest element of a matrix in double precision

form; e. g., min(a).

Maximum

The max0 function returns the largest element of a matrix in double precision
form; e. g., max(a).

Element

The el() function returns an element of a matrix in double precision form. For
example, el(a,3,1) returns element a 31"

Column Sums

The csum0 function returns a I x N vector, each element of which is the sum of the
jth column elements of its matrix argument; e. g., csum(a).

13"
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Row Sums

The rsumO function returns an N x I vector, each element of which is the sum of
the ith row elements of its matrix argument; e. g., rsum(a).

Identity Matrix

An identity matrix has each cell of the main diagonal equal to 1 and zero in all the
off-diagonal cells. Such a matrix is useful in transformation operations and is integral in
solving systems of equations in input-output analysis. An identity matrix may be
produced using the ido function. For example, id(3) generates a 3 x 3 identity matrix.

Unity Vector

A unity vector's elements are all equal to 1. Unity vectors are also useful in
certain transformations. The command uv(3) creates a 3 x I unity vector.

Test for Symmetry

To determine if a matrix is symmetric, the isym0 function is used; e. g., isym(a). If
the matrix is symmetric, this command returns silently, and the next line prompt is
given. If the matrix is not symmetric, a message is printed identifying the first aij aji
pair found not to be equal.

Transformation Functions

Transformation operations are useful for rescaling raw data into a more
appropriate form. This is often the case in regression analysis. Several types of
transformation functions are available in mat.

Absolute Value

The abs0 function takes a single matrix argument and returns a matrix whose
elements are the absolute values of the elements in the original matrix.

Truncation

The into function takes a single matrix argument and returns a matrix whose
elements are equal to the truncated integer component of the values in the original
matrix.

Exponentiation

The expo function takes a single matrix argument and returns a matrix whose
elements are equal to eaij.

Natural Logarithm

The logo function takes a single matrix argument and returns a matrix whose
elements are equal to log eaij.

14
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Common Logarithm

The loglO() function takes a single matrix argument and returns a matrix whose
elements are equal to logl 0 aij.

Square Root

The sqrt() function tykes a single matrix argument and returns a matrix whose
elements are equal to (aij)

Reciprocal

The recipo function takes a single matrix argument and returns a matrix whose
elements are equal to I.

aij

Special Applications Functions

The following specialized functions are provided in mat but their use is limited to
certain types of applications, such as input-output analysis, or to use only with
symmetric matrices.

Leontief Inverse

The linvo function computes the Leontief inverse of its matrix argument. This
command is shorthand for the equivalent expression inv(id(3) - a), assuming "a" is a 3 x 3
matrix. However, linvo should run faster for most applications since the command
interpreter has to do less work, and related function calls are internalized.

Power Series Approximation of the Leontief Inverse

An alternative approach for estimating the Leontief inverse is the method of power
series expansion.' While the power series approximation method is usually mentioned in
the context of being less computationally intense than directly inverting a matrix (a
debatable point), its real virtue is in providing an economic interpretation for the
Leontief inverse.

The psa( function is used to compute the power series approximation of the
Leontief inverse. This function takes two arguments. The first is the matrix for which
the Leontief inverse is to be estimated, and the second is the number of approximations
(rounds) that the user wishes to make. For example, psa(a,5) will return an
approximation of the Leontief inverse after five rounds. (Note: A single round is defined
to include both the direct (I) and first-round (A) effects.)

RAS Adjustment Method

The RAS adjustment method is used to update an input-output direct coefficients
matrix using partial information.5 This operation is carried out using the ras0 function,

4 Ronald E. Miller and Peter D. Blair, Input-Output Analysis: Foundations and Extensions
(Prentice-Hall, Inc., 1985).
'Miller and Blair, pp 277-296.
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which takes five arguments. The first argument is the current direct coefficients
matrix; the second is an N x I vector containing estimates of total industry outputs; the
third is an N x 1 vector of total industry sales; the fourth is a I x N vector of estimated
total industry purchases; and the fifth is the level of accuracy desired. For example,
ras(a,x,u,v,.00l) adjusts "a" using x, u, and v to an accuracy of 0.001.

The operation terminates when the desired level of accuracy is achieved. If
convergence has not occurred before 10 iterations have been completed, the user is asked
if he/she wishes to continue. If the answer is "yes," the RAS method is carried out until
convergence or another 10 iterations when the user is again asked to continue, and so
on. If the user decides not to continue, a copy of the results is saved in a file called RAS
dump (overwritten, not appended). This file may be used to continue the RAS procedure
later.

At each iteration the ras( function prints the maximum values of the R and S
vectors so the user may better determine if continuing the procedure seems worthwhile
or whether cycling has begun.

Characteristic Roots and Vectors (Eigenvalues and Eigenvectors)

The following two functions are limited in use to symmetric matrices only. Their
application is intended primarily for Principal Components Analysis, although there may
be other applications.

The cr() function is used to extract the characteristic roots of a square symmetric
matrix. This function takes three arguments. The first is the matrix itself. The second

is an integer number less than or equal to the dimension (number of rows or columns) of
the matrix. This number indicates the number of roots to extract. The order in which
roots are extracted is in descending order, beginning with the dominant root, the second
largest root, the third largest, and so on. The third argument is the level of accuracy
desired.

As an example, the command cr(a,3,.001) will extract the largest three
characteristic roots of "a" with the level of accuracy specified by the third argument.
The result returned is an N x I vector with the roots in descending order.

Characteristic vectors associated with the characteristic roots are computed using
" the cv0 function, which has the same arguments as cr(. The result returned is a matrix

having the same number of rows as the original matrix, with each column representing a
characteristic vector, again in descending order from left to right.

Editing

The following functions perform nonnumeric transformations of matrices. For
example, one may wish to read in a large matrix "a", using reado, and select a submatrix
of "a" to carry out an operation. Alternatively, one may want to append two or more
matrices before saving them in a file with puto or putfo. Another possibility is to
selectively change a matrix element to perform a sensitivity analysis (e. g., change an
element in the final demand vector of an input-output table).

16
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Extracting Columns and Rows

The functions xc0 (extract by columns) and xro (extract by rows) are used to
extract a submatrix from a matrix. Both functions take three arguments. The first is
the original matrix, the second is the position of the first column or row to be extracted,
and the third is the total number of columns or rows to be extracted. To illustrate the
use of xco, the command xc(a,3,5) will extract five columns from "a", beginning with
column 3. Note: The expression a = xe(a,3,5) is valid.

Replacing Columns and Rows

A submatrix of a matrix may be replaced by another matrix using the rco (replace
by columns) and rr0 (replace by rows) commands. Each function has four arguments.
The first argument is the matrix on which the operation is to be carried out, and the
second is the position of the first column or row to be replaced. The third argument is
the total number of columns or rows (including the first) being replaced, and the fourth is
the replacement matrix. An example should make this clear. rc(a,2,3,b) is the command
to replace columns 2 through 4 of matrix "a" by matrix "b". Note: the number of
columns (rows) in "b" need not be the same as the number of columns (rows) being
replaced in "a"; for example, if "a" is a 3 x 4 matrix and "b" is a 4 x 4 matrix, then the
command rr(a,1,2,b) prints a 5 x 4 matrix.

Appending Columns and Rows

Matrices may be appended to each other using the ac0 (append by columns) and ar0
(append by rows) functions. Each function has three arguments. The first is the matrix
being operated on, the second is the matrix being appended, and the third is the position
(column or row) in the first matrix after which the second matrix is to be appended. If
"a" and "b" are both 3 x 3 matrices, then ac(a,b,3) appends "b" to "a", resulting in a 3 x 6
matrix. Alternatively, ar(a,b,3) appends "b" to the bottom of "a," giving a 6 x 3 matrix.
A matrix may also be appended to itself and the result assigned to the same variable; for
example, a = ac(a,a,O). Here, position 0 implies to begin appending to the first column
(row).

Swapping Columns and Rows

The sco (swap columns) and sr) (swap rows) functions are used to change the
position of any two columns or rows in a matrix. For example, sr(a,1,3) produces a
matrix in which the positions of rows 1 and 3 are interchanged.

Modify an Entry Value

The function modo is used to selectively change a single element in a matrix or
vector. The command mod(a,3,1,3.5) changes the current value of a to the value 3.5.

,
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4 TUTORIAL INTRODUCTION

This chapter shows how mat can be used to solve real problems in matrix algebra,
input-output analysis, and regression analysis. Four examples illustrate different types
of commands. The first demonstrates the basic use of various operators and functions; it
also shows how to solve systems of equations of the form

AX b

The second example features the functions used to perform nonnumeric transformations
of matrices. The third example demonstrates functions relating to input-output analysis.
It also illustrates how mat commands may be read from a file and how in-line comments

are used to label output when input is taken from a file. Finally, the fourth example
demonstrates the use of mat for solving a problem in multiple regression analysis and
shows how to compute the characteristic roots and vectors of a symmetric matrix.

. Example 1: Matrix Algebra

This example demonstrates the basic mat operators and functions. All text
following a sharp sign "#" is a comment.

% mat
*. type ? for help, quit to exit

1> a =[2 1 34 6 1212 3 # define a to be a 2 x 3 matrix

2> a # print a

2.000000 1.000000 3.000000

4.000000 6.000000 12.000000

3> b = 11 0 7 3 6 91 2 3 # define b to be a 2 x 3 matrix

4> a +b # sum aandb

3.000000 1.000000 10.000000
7.000000 12.000000 21.000000

5> c = [0 06 0 5 112 3 # definec

6>a+b+c #suma+b+c

3.000000 1.000000 16.000000
7.000000 17.000000 22.000000

7> e = a + b + c # set eequal toa+b+c

8> e # print e

3.000000 1.000000 16.000000
7.000000 17.000000 22.000000
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9> d = a - b # subtract b from a and set equal to d

10> d # print d

1.000000 1.000000 -4.000000
1.000000 0.000000 3.000000

11> 2. * a # multiply a by 2 (a scalar)

4.000000 2.000000 6.000000
8.000000 12.000000 24.000000

12> f =[2 13 4 0 7 1 1613 3 # define f to bea3 x 3 matrix

13> a *f # multiply a and f

11.000000 5.000000 31.000000
44.000000 16.000000 126.000000

14> a / csum (a) # divide a by its column sums

0.333333 0.142857 0.200000

0.666667 0.857143 0.800000

15> a \ rsum(a) # divide a by its row sums

0.333333 0.166667 0.500000
0.181818 0.272727 0.545455

16> a' # transpose of a

2.000000 4.000000
1.000000 6.000000
3.000000 12.000000

17> a * a' # crossproduct of a

14.000000 50.000000
50.000000 196.000000

18> ?a # print dimensions of a

2x3 '

19> ?$ # list all defined variables and their dimensions

a: 2 x 3
b: 2 x 3
c: 2 x 3
d: 2 x 3
e: 2 x 3
f: 3 x 3
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20> a- b-c # evaluate (a- b)- c

1.000000 1.000000 -10.000000
1.000000 -5.000000 2.000000

21> a - (b - c)

1.000000 1.000000 2.000000
1.000000 5.000000 4.000000

22> tr(f) # trace of f

- 8

23> inv(a) # inverse of a (an error)

inv: matrix not square

24> inv(f) # inverse of f

0.368421 0.157895 -0.368421
* 0.894737 -0.473684 0.105263
* -0.210526 0.052632 0.210526

25> f * inv(f) # check definition of inv(f)

1.000000 0.000000 0.000000
0.000000 1.000000 -0.000000
0.000000 0.000000 1.000000

26> id(3) + id(3) # add two identity matrices

2.000000 0.000000 0.000000
0.000000 2.000000 0.000000
0.000000 0.000000 2.000000

27> (uv(3) + uv(3))' # add two unity vectors and transpose result

2.000000 2.000000 2.000000

28> min(f) # smallest value of f

0

29> max(f) N largest value of f

7

30> norm(a - b - c) # norm of result of (a - b) - c

12
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31> recip(a) # compute reciprocal of a

0.500000 1.000000 0.333333
0.250000 0.166667 0.083333

32> a = 1 2 2 -2]2 2  # define a to be a 2 x 2 matrix

33> b = 110 812 1 # define b to be a 2 x l vector

34> det(a) # check if a is nonsingular

-6 # a is nonsingular

35> inv(a) *b # solve AX = b

6.000000
2.000000

36> quit # end this session

%

Example 2: Nonnumeric Transformations

This example illustrates the use of editing functions in mat.

% mat
type ? for help, quit to exit

I> a = [2 1 3 4 0 7 1 1 6] 3 3 # define a to be a 3 x 3 matrix

2> a

2.000000 1.000000 3.000000
4.000000 0.000000 7.000000
1.000000 1.000000 6.000000

3> b = xc(a,2,1) # extract column 2 of a and assign to b

4> b = b * 2.5 #multiply b by 2.5

5> a = rc(a,2,1,b) # replace column 2 of a by the new b

6>a

2.000000 2.500000 3.000000
4.000000 0.000000 7.000000
1.000000 2.500000 6.000000

7> u uv(3) # define u to be a 3 x I unity vector

8> a ac(a,u,0) # append u to the first column of a
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9> a

1.000000 2.000000 2.500000 3.000000
1.000000 4.000000 0.000000 7.000000
1.000000 1.000000 2.500000 6.000000

10> a = sr(a,2,3) # swap rows 2 and 3

11> a

1.000000 2.000000 2.500000 3.000000
1.000000 1.000000 2.500000 6.000000
1.000000 4.000000 0.000000 7.000000

12> a = mod(a,3,3,-4.5) # change a(3,3) to -4.5

13> a

1.000000 2.000000 2.500000 3.000000
1.000000 1.000000 2.500000 6.000000
1.000000 4.000000 -4.500000 7.000000

14> quit # end this session

Example 3: Input-Output Analysis/Noninteractive Use

This example shows how a file containing mat commands (in this instance, the 1-0
related commands linvo and psao) can be run in noninteractive mode. The results may be
printed on the terminal, as in this example, or redirected to a file (e. g., mat < ex3 >
out.ex3). This is followed by a problem demonstrating an application of the ras0
function.

% cat ex3 # type file ex3

read (a, 3, 3, "A") # Read a 3 x 3 matrix "a"
a
linv(a) # Leontief inverse: linv(a)
inv(id(3) - a) # I - a inverse: inv(id(3) - a)
psa(a,10) # Power Series Approx. after 10 iterations: psa(a,10)
quit

% mat < ex3 # read mat input from file ex3 and print results to stdout

Read a 3 x 3 matrix "a"

0.120000 0.100000 0.049000
0.210000 0.247000 0.265000
0.026000 0.249000 0.145000

Leontief inverse: linv(a)

1.188156 0.200897 0.130359
0.383365 1.544494 0.500674

4 0.147778 0.455909 1.319365
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I - a inverse: inv(id(3) - a)

1.188156 0.200897 0.130359
0.383365 1.544494 0.500674
0.147778 0.455909 1.319365

Power Series Approx. after 10 iterations: psa(a,10)

1.188019 0.200665 0.130172
0.382969 1.543828 0.500134
0.147496 0.455436 1.318982

% mat # example of RAS adjustment

type ? for help, quit to exit

1> a = [.12 .1 .049 .21 .247 .265 .026 .249 .14513 3 # direct coefficients

2> x = [421 284 2831 3 1 # total outputs

3> u = [245 136 1591 3 1 # total interindustry sales

4> v = 1251 107 1821 1 3 # total interindustry purchases

5> b = ras(a,x,u,v,.001) # RAS adjustment

1: Max R = 2.64045610, Max F = 1.36368708 # max R and max S at each iteration
2: Max R = 1.15500540, Max S = 1.03809930
3: Max R = 1.02262738, Max S = 1.00746016
4: Max R = 1.00449947, Max S = 1.00151540
5: Max R = 1.00091821, Max S = 1.00031001 # procedure took 5 iterations

6> b # RAS adjusted coefficients matrix

0.392452 0.121906 0.159669
0.150887 0.066153 0.189714
0.052860 0.188702 0.293727

7> quit

Example 4: Regression Analysis/Eigenvalues and Eigenvectors-

This example demonstrates a problem in multiple regression analysis solved using
mat. An example illustrating the use of the cr0 and ev0 functions is also included.

% mat

type ? for help, quit to exit

1> read(x,15,3,"X") i read file containing dependent variables
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2> x

1.000000 1.000000 1.000000

1.000000 2.000000 4.000000

1.000000 3.000000 9.000000

1.000000 4.000000 16.000000

1.000000 5.000000 25.000000
1.000000 6.000000 36.000000
1.000000 7.000000 49.000000
1.000000 8.000000 64.000000
1.000000 9.000000 81.000000
1.000000 10.000000 100.000000

1.000000 11.000000 121.000000
1.000000 12.000000 144.000000
1.000000 13.000000 169.000000
1.000000 14.000000 196.000000

1.000000 15.000000 225.000000

3> read(y,15,1,"Y") # read file containing independent variables

4> y

0.580000
1.100000
1.200000
1.300000
1.950000
2.550000
2.600000
2.900000
3.450000
3.500000
3.600000
4.100000
4.350000
4.400000
4.500000

5> b = inv(x' * x) * x'* y # solve for coefficients

6> b

0.100527
0.421320

-0.008053

7. ((y - * b)'* (y - * b)) (15. - 3.) # compute estimated variance

0.028376

8> S 0.028376 # set S equal to estimated variance

9> c S inv(x' * x) # compute variance covariance matrix
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10) C

0.022514 -0.005800 0.000312
-0.005800 0.001862 -0.000110
0.000312 -0.000110 0.000007

Ib I>r(c,3,.00001) # characteristic roots (eigenvalues)

0.02 4036
0.000347
0.000000

12> cv(c,3,.00001) # characteristic vectors (eigenvectors)

0.967344 0.253368 0.013503
-0.253095 0.964101 0.078606
0.013719 -0.079459 0.996814

13> quit

75.5u 2.9s 14:28 9% 10+453k 6+Bio 3pf+Ow
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5 SUMMARY

This report has described the ,ommands, operators, and functions of mat an
interactive interpreter and calculator for solving systems of equations expressed as
matrices. Mat provides error checking, and cheeks for conformability, syntax, and
overflow. It can also be useful for apolications requiring manipulation of data stored as
matrices. Examples have been provided that show how the system is used to solve
problems in matrix algebra, input-output analysis, and regression analysis.
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