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Improvement of Resolution and Reduction of Computation in 2D Spectral
Estimation Using Decimation®

Iihe 7ou** and PBede liu

Department of Electrical Engincerirg and Computer Science
Princeton University,

Abstract

This paper is concerred with spectral estimation of a
finite number of twe dimensional sinusoids embedded in
white noise. Closed form expressions are derived for esti-
mates using the autoregressive (AR) prediction error
filter approach, as well as using periodogram with Bartlett
window, and the maximum likelihood (ML) method. These
expressions are useful in the study of resolving closely
spaced sinuscidal signals Over a narrow frequency band,
direct decimation can b~ applied to improve resolution
and/or to reduce computation. Simulation results
demonstrate that decimation by (Dy,Dg) with a support
size (N,,Ng) yields approximately the same resolution as a
support size (DN, DN;) used with the urdecimated sig-
nal. The usc of decimation afso reduces significantly com-
putaticn.

L. Introduction

Computation rate and the ability to resolve closely
located spectral components are of concern to almost all
spectral estimation methaods. These problems have
received considerable attertion in the hterature [1-4]. In
this paper, we extend some of these results to the two
dimernsional case. Specifically, we investigate spectral
estimates of a finite number of sinuscids embedded ir
white noise in two dimension. We shall concentrate our
discussion on the use of autoregressive (AR) prediction
error filter approach. Similar resuits can be derived for
the maximum likelihood (ML) estimates and the periodo-
gram using Bartlett window.

1I. Two-Dimensional AR Spectral Estimation
The two-dimensiona! process under study is a sam-

pled homogeneous (stationary) random field {z(n,, ng)i.
Its autocorrelation function is defined as

r(n, ny) = Elf(k‘ + 1y, kg +ng) z(ky, kz)} (2.1)

where F denotes expectation and ® indicates complex con-
jugate. The power spectral density is

PRO= T T rin.npe ™t

LR Py
-n<¢é tsw (2.2)

In practice, one observes {z(n,; ng)| over a finite
support: 1 S n; % L;,1 £ n; £ [, An estimate of the
autocorrelation function can be calculated based on the
observed data, and power spectral density estimate is
then obtained. For simplicity, we shall use the same nota-
tion r(n,, ng) and P(¢, ¢) to denote these functions as well
as their estimates.

Let (N, Ng) defines a rectangular support over which
the autocorrelation functior r(n,, n;) is estimated, It is
convenient to define the following notatiors.
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T
Ue = {1. e’f, e’ el m} .

: o7
U= frertem, oo ot
U=U® U, (2.3)
where ® denotes the direct product [5], and the super-
script T denotes transpose. The N.:Nz column vecter U
can be written as
PRI ]

U= {u{. e U], % U], U{]r (2.4)

That is, its k** element, 0 < k& < NN, is e/™40 yhere
k=nNa+l with 0 s n < N,,0s ! < N, It 1s cor-
venient to use the two indices (n, 1) ratter thar tie sirgle
index k. We shall say that the (n, [)*® element of U is

Un.y = e!(n(&l(), 0sn<N,, 0sl<N, (25)

evern though U is a column vector.

Let X be the column vector of size NN, whose k'
elermert is z(ng+n. lp+l), where thre irdex pair (n, ) is
related to k as befrre, and (ng lo) are arbitrary We
defirne the autecorre atior matrix K as

R = E'lxx"} (2.6)
Thus the element of R at the (n. I} row and the
(m, k) column s

Rm.).m.py=r(n-m. l-k).
0s=n m <N, 0sl k<N, 2.7

Using the autoregressive (AR) prediction error filter
method [2], 6] the signal is assumed to £t ar AR mode! of
order (N;—1, Ng—1) driven by a white npise u(n,. np).
can be written as

N1 Ng=t
z(n, ng) = —*ED ‘2 au 2(ny—k, ne—1) + u(n,, ndR.6)
S0 %
where the double summation does not include Lhe k=1=0
term. The coeflicients a, are estimated by mirimizing
the one step prediction error
M-t Mgt
le(ni. ne)l®= |z(ni. ng) + ‘)30 IZO au z(ni-k, n.—(YY)

This minimization leads to the normal equation
RA"=ep ¢ (2 10)

where R is the autocorrelation matrix given by (2.6), A° is
a NN, column coeflicient vector whose kN,+! element is
oy with @go=1, £ is the NN, column vector

=[1,0 --- 0)7 (2 11)
and ¢, is the prediction error power, a scalar. The spec-
trum is given by

Pan(¢. &) = F—r 2 (2.12)

1Y T ane-t@cHnge
k=0 (=0

4.7 .1

CH1945-5/84/0000-0042 $1.00 < 1984 IEEE

YR ISH RSN

elease;
ed.

N



DR i il in il S oo R ot i Ate B A3 Ale Al i caliatal ol \mh wal eul el aad wekh way 0ad i

and can be expressed as
rp-t
Pup(t. §) = SR L 213
(8.8 = Tirpee (2.13)
where U is given by Eq. (2.3).
It is worth noting that the 2-D autocorrelation matrix

R defined above is a symmetric, positive defirite and
dlockToeplitz, but not Toeplitz.

1. Sinusocidal Signals in White Noise
In order to study the resolution characteristics of an
AR spectral estimation, we assume that true values of the
autocorrelation function are known rather than those
obtained from actual data. The signal under study is com-
posed of a finite number, K, sinusoids and a white noise
with unit power. The autocorrelation function is

X
r(nine) = 8(ny ng) + 3 pee 0 (3
k=1

where (¢5. £&:) is the frequency of the k' sinusoid and p,
the corresponding power. The matrix R on a support
(M), Nj) has the form

R=1+ f o USUE (3.2)
[ 13}

where / is the (N ,N:z) square identity matrix and U, is a
NN columr vector idertical to U of Eq. (2.3) but with
(¢e. &) in place of (¢, £).

It car be shown that the AR spectrum in this case is
given by

Pwrlt. &) = — (3.3)
f1- NnNe‘zl di ga (&~ E—8)1®

where d; are constants and
#w w8 &) = Bu ($)Bn (&) (3.9
with By(A) giver by
1 1 sin(Na/2
BaN) = - T emi=g’t sin(NM2) (35

=0 N sin(A/2)
In the case of =1,
R =1+pUU], (3.6)
and Eq. (3.3) reduces to
1-p/ (1+ N Npp)
P, &)= 3
48 (8. &) 1 1-NiNwoes 5,8 =¢1 £=£:)/ (1+ NN [®

@7
it has a peak at the unbiased location (¢,, ¢;). and the
peak value is

Pir(¢y. 81) = (1+ N \Ng)[1+(NNe—1)p) = (N Ng0)¥(3.8)

which is proportional to p*. So the peak of AR spectrum is
not a power estimate but a square power estimate.

We now determine the 3 dB contour around the peak
in the frequency plane (¢, ¢) from the equation

Py 81) =2 P&, &) (3.9)

By using first 2 terms of the Taylor series expansion of Eq.
(3.3). it can be shown that the contour is approximstely
given by

N =1)(€=¢1) + (Ne—1)(4—43)| = 2/ NiNap  (3.10)
which is a rhombus with the "major/minor axes” equal to
D¢ ar = 47 (Ny=1)N Nep. .
and
Dy ar =4/ (Na=1)N | Neo. (3.11)

This is plotted in Fig. 1, along with some simulstion
results. The data size is Ly = L; = 64 , and the relevant
paramcters are: Ny = Na=5end ¢; = ¢, =C5n

For two sinuscids (K=2% in white noise, Eq. (3.3)
becomes

Pt £) = L

[1=NNe@gw v (@1, B1) = NiNedepn wo(ae B2)|®
(3.12)

where ay;=¢—¢y, ag=¢—¢e and B,=¢-&,, fo=t~—¢e and {di}
depend on the signal powers [p} as well as the frequency
separations (¢y—¢e) and (¢1—¢2). These expressions show
that the P,; are not linear with respect to the individual
components, and that there is always interference
between them. The eflect of this interference on resolu-
tion is not obvious. Roughly speaking, however, when the
two frequency components are close to each other with
respect to the 3 dB axes, then the two spectral peaks will
merge. Since the 3 dB axes are decreasing function of the
signal power as well as the size of support, increasing sig-
nal power and/or increasing the size of support will
improve resoclution.

We note in passing that if Ng=1 and §{=0, the above
analysis reduces to a one-dimensional case (1], [4].

IV. Other Spectral Estimates

The above discussion can be modified in a straight-
forward way to be applicable to the periodogram using
Bartlett window Pp [7] and the maximum likelihood esti-
mates Py (8]. It cen be shown that these estimates are
given respectively by

1

Pg(¢.8) = NINE UTRU”, (4.1)
ar?
Py (8.8) = TJT-RI"_‘U— (4.2)

For K sinusoids in white noise, these expressions
reduce to

X
Pole.0) = a—+ L oulownglar. 8015 (43)

and
1/ N\ Ny

7 X
1=NiNe 3. 3 Cimenwylar, Bi)oy ny(@m. Bm)

i) mey

Pur(¢.8) =

(4.4)

The coeflicients Cyn depend on the signal powers ard the
frequency separations.

V. Decimation to Improve Resolution

It is seen in the previous section that the resolution
can be improved by increasing the size of support. 'n the
2-D case, however, the increasing size of support will
greaily increase the computation since the size of auto-
correlation matrix R is (N;Ng) x (NyNg). We demonstrate
in this section that direct decimation of an input data
sequence can improve the resolution without increasing
the size of support. This technique has been used in the
one-dimensional case on the periodogrem [3], the ML
(Capon) method, and the A™ method [4]. It is to be
expected that the saving in computation in the 2-D case is
even more significant.

The direct decimation scheme is depicted in Fig. 2.
The two reasons for the higher resolution are that the
decimation expands the frequency scales by the factor D,
end D, respectively and that the bandpass filter removes
interference from out-of-band noise, thus raising the
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eflective SNR.

To demonstrate the improvement of resolution by
decimation, Fig. 3 shows the AR estimates on the data
which consists of 2 sinuscids at frequencies
(01775 7,0 1775 n) ard (0.1975 n, 0 1975 =) and noise ?
dB below tke sinuscids. Fig. 5(A) shows the P,s with
Ny= Np=5 without decimation, (B) the Psr p with
Ny = Np =5 and decimation D; = D = 4, both plotted on
012857 % ¢, ¢ € 025 . These simulation results show
that direct decimatior improves the resolution without
increasing the size of support.

Ir. order to investigate the improvement of resoclu-
tior by decimation, we may introduce the notation of
"resolution boundary” which, as in the 1-D case [9], for
twe = _usoids with equal power is defined as the frequency
separatior (A, A¢) = (1¢,=¢2l. |£,—¢3]) at which the spec-
trum at the center frequency is equal to the average of
the :peclra at the two sinusoid frequencies, i.e.,

(u fn“fe) = _{pm((, £1) + Parl¢e £2)] (5.1)

The resolutior boundary is the minimum resolvable fre-
quency separation for a given SNR. In Fig. 4 we show a
special symmetric case with A¢ = A¢. The solid line exhi-
bits the theoretical curve of SNR vs. &¢ computed from
(5.1) with Ny= Ng=10. The dashed lire indicates the
same theoretical curve for corresponding decimated
spectra with Ny = N =5, and D, = Dp = 2. The two curves
are seer: to be close to cuch other. The triangles and rec-
targles are corresponding simulation results on a
(32 x 32) data with center frequency ¢p= §p=0.25m.
Since these results are obtained by averaging only two
irdeperdert trials, a considerable variatior. is present.

Pa(fzie

VL Decimation to Reduce Computation
In the last sectior, we have seen that using decima-
tion by factor (D;. D) car reduce the support size

(Ny. Ng) to (F‘- D—') while maintainirg the same resolu-
2

tior.. A reductior ir the size of support is accompanied by
a saving of computation.

For a support (N,, N;) ard a data size (L; X L), the
number of multiplicatior. in the computatiorn of autocorre-
lation matrix is

Ng+

Ni+1
Mg = N.Nz(z,,-'z—)(l.z )& NyNeLyLz (8.1)
If the Justic algorithm [10] is used to solve the block
Toeplitz matrix normal equation, Eq. (2.10), the computa-
tior. may be O(NENE). I the Gaussian-Seidel iteration is
used, the number of multiplication is

My % y(NyNg)? (6.2)

where 7 is a constant depended on the number of itera-
tion. Thus the total number of multiplication for a Pag
estimate is

Mag = Mg + My ™ N\NgL,Lg + 7N;!Ng. (6.3)

Suppose the band-pass filter preceding the down
sampling in Fig. 2 is a first quadrant FIR filter with length
of impulse resporse (Np, Npp)  The number of multipli-
catior. for the filtering is

(Ly+Np)Nry (Le+Nrg)Nre

Mro= 20D, 20

{8.4)

The rumber of multiplication for computing the
autocorrelation matrix and for solving normal equation
for a decimated AR spectrum are respectively

Mu o= Nile [LatNpy  N4Dy Lo+ Nra _ Nt De)

"2~ DiDs | D, 20, )| Ds 2Dy |
_ M

85

~ e (€.9)
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\."'\"\ 3 M

>

(N1Ne)® - My
(D10 (D\De)?
Thus, the total number of multiplicatior is approximately

ard My p=7 (6.6)

Mg p=Mp o+ Myp+ Mpp= -+ Mep (67)

_ M
(D D e
If D, = Dp = D, the saving of computation is by a factor
D*, excluding the fitering ¥r »

Discussion

The resotution of sinusoids in white noise using 2D AR
spectrum is investigated in this paper. Closed form
expressions of spectral estimates are given. The peaks of
the AR spectra indicate the square of the power of each
component. A 3 dB contour in the frequency plane is
introduced to facilitate the study of resolution charac-
teristics.

Decimation is then applied to narrow-band 2-D spec-
tral estimation. Simulation results ind:cate that a spec-
tral estimate on a support (N;Ng) with a decimation fac-
tor of (D,, Dg) has a resolution approximately equivalent
to that of a spectral estimate on a support (D,Ny, D;N2)
without decimation. It is also shown that decimation
reduces computation by a factor (D;Dg)® without
sacrificing resolution.

This analysis can be extended to most other 2-D
spectral estimation methods, suct as periodogram and
maximum likelihood method, and similar results car be
obtained.
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