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Absotract Vf= 11 at 0j2C. . . .iN -~

This paper is concern~ed with spectral estimation of a U,=I j( 2 -j)f4r
finite number of two dimensional sinusoids embedded in U1 =[I. oil. ejj , 1

white noise. Closed form expressions are derived for esti- U = UCO te, (2.3)
mutes using the autoregressive (AR) prediction error where 0 denotes the direct product [5], and the super-
filter approach, as well as using periodogram with Bartlett script T denotes transpose. The Ni.Nz coILinn vector U
window, and the maximum likelihood (ML) method. These can be written as
expressions are useful in the study of resolving closelyr
spaced sinusoidal signals Over a narrow frequency band. uM-, =LTeIUgU 1 . .e "U( 2.4

direct decimation can b- applied to improve resolution f

and/or to reduce comrputation. Simulation results That is. its k"~ element, 0 ig k < N1 Ng, is ey(""f') where
* demonstrate that decimation by (D1.D 2) with a support k"VtNg*1 with 0 s; n < N1. 0 is I < N'o. It is c~on-

size (N,,Ne) yields approximately the same resolution as a venient to use the two indices (n, 1) rath-er thuar. 0'.c sirgle
* support size (DIN 2 .DaNa) used with the urndccimated sig- index k We shall say that the (n, 1)14 element of U is

nal. The use of decimation also reduces significantly cum- U1 .1 = eyfcM 0!in <Nj. 0--t <IV (2 5)
putatien.

ever. though U is a co]ln vector.
1. Introduction Let X be the coktmn vector of sive NIV2 whose It

Computation rate and the ability to resolve closely element is z(Vt2+n. Lo4L). where the irdex pair (n. 1) is
located spectral components are of concern to almost all related to k as b. f-re. and (nos. to) are arbitrary We
spectral estimation methods. These problems have def.ne the attocurrt atior. matrix H as
received considerable attention in the literature [1-4]. InR=EI r(26

* this paper, we extend some of these results to the two i?=E.X 26
dimrensional case. Specifically, we investigate spectral Thus the element of R at the (n,. 1 )"' row and the
estimates of a finite number of sinusoids embedded in (in, k)K column is
white noise in two dimension. We shall concentrate our
discussion on the use of autoregressive (AR) prediction k1 ,)(~) = r (n-in, I -k).
error filter approach. Similar results can be derived for 0VTn~m<NI, O~is,k<No. (2.7)
the maximumn likelihood (ML) estimates and the periodo-
gram using Bartlett window. Using the autoregressive (AR) prediction error filter

4method [2], t6] the signal is assumed to ft an. AR model of
order (N 1 -1. Ng-l) driven by a white noise u(ni. nt2). It

ILI. Two-Dimtensional AR Spectral Estimation can be written as
The two-dimensional process under study is a sam- AF-i N2-1

pled homogeneous (stationary) random field jz(n1 , ne)I. z(n1 . no) =- E at, z(ni-k. ne-1) + u(nj, n4.6)
Its autocorrelation function is defined as k-0 4-0

r~j.no =E ki+ ik2+ o)z'ki ki) (21 where the double summation does not include the k=1=0
t(Vt. ~ a ~x~~ +'ks+ Vz~zk 1 .Icaj (.1) term. The coefficients aja are estimated by minimizing

where E denotes expectation and * indicates complex con- the one step prediction error
jugete. The power spectral density is N,'-L No- I

fi It . no)) le (Vi. Vt,)12 = Iz(ni. no) +- E E a6,A x(Vt-k. Vte-(X§)
%1 .2 .- This minimization leeds to the normal equation

-7~ - T(2.2) RA' = e,r (2 10)

In practice, one observes lz(ns. Vtg)I over a finite where R is the autocorrelation matrix given by (2.6), A* is
support: I s; ti r. Lt. I s; n 2 s; Le. An estimate of the a N1 N, column coefficient vector whose kNt-.l element is
autocorreletion function can be calculated based on the a&, with coo= I, r is the NIN 2 column vector
observed data, and power spectral density estimate is a[1. a .. 0 ]r (2 11)
then obtained For simplicity, we shall use the same nota-
tion r(Vt3 . no) and P( . () to denote these functions as well end a, is the prediction error power, a scaler. The spec-
as their estimates. trum is given by

Let (NI, N,) defines a rectangular support over which e,
the autocorrelation function r(n, no) is estimated, It is PA 4) = NiN- (2.12)
convenient to deflne the following notations. E E .~cl~

_________________ -o .
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and can be expressed as This is plotted in Fig. 1, along with some simulation
t.R-, (results. The data size is L, = LE = 64 and the relevant

PARR' o (2 13) parameters are: N, = N= 5 and = = 0 5r

For two sinusoids (K=
0

1 in white noise, Eq. (3.3)
where U is given by Eq. (2.3). becomes

It is worth noting that the 2-D autocorrelation matrix 1-d 1 -d,
R defined above is a symmetric, positive defrite ',nd PAR( V ) =
blockToepliits, but not Toeplitz, I -NNedoNte2 (a. P1) - NiNgldz N

2
(ae, #a) I'

(3.12)

Ill. Sinusoidal Signals in White Noise where a---, a2 '-' and #I=(-. P2=j-tg and Idij

In order to study the resolution characteristics of an depend on the signal powers Itj as well as the frequency

AR spectral estimation, we assume that true values of the separations (¢t-e) and ((1-1g). These expressions show

autocorrelation function are known rather than those that the PAR are not linear with respect to the individual

obtained from actual data. The signal under study is com- components, and that there is always interference

posed of a finite number, K, sinusoids and a white noise between them. The effect of this interference o2 resolu-

with unit power. The autocorrelation function is tion is not obvious. Roughly speaking, however, when the

9 A n (,k # . + 1) two frequency components are close to each other with
r (n 1. n2) = 6(n 1, ng) + F p

y( 
e respect to the 3 dB axes. then the two spectral peaks will

h-i merge. Since the 3 dB axes are decreasing function of the

where (Ch. (k) is the frequency of the kh sinusoid and ph signal power as well as the size of support, increasing sig-

the corresponding power. The matrix R on a support nal power and/or increasing the size of support will

(NI, N,) has the form improve resolution.
X We note in passing that if N2= I and (=0, the above

R = I + pk UkU* (3.2) analysis reduces to a one-dimensional case ( ], (4].
h-i

where I is the (N 1 N,) square identity matrix and Uk is a
NINZ column vector identical to U of Eq. (2.3) but with IV. Other Spectral Estimates

(IO 6) in place of ((, t). The above discussion can be modified in a straight-

ft can be shown that the AR spectrum in this case is forward way to be applicable to the periodogram using

given by Bartlett window PB [7] and the maximum likelihood esti-
mates Pf [8]. It can be shown that these estimates are

I d, given respectively by

PAR((' 4) = 0.1 (3.3) Page,) = I UrRU
" ,  

(4.1)

1 - N N e di . N '(V - 4-6 1' N-2) N

where d are constants and 1

N1 N*(. 0 = )(3.4) PL(C.O) =UrR_. (4.2)

with Bv(X) given by For K sinusoids in white noise, these expressions
reduce to

n-0 - N sin(A/ 2) (3." ) E Pk I=VN.(a, 00l1 (4.3)

In the case of K= , NINg h..

R I + pU Ur
,  (3.6) and INA1/ N1 N,

and Eq (3.3) reduces to PsL(i,4) = X R

I~4 1-p/ (1+NNap) . Ni-i Cbant ,oj 0jj~,(.

%I -NNoJRN(€-Cl. 4-4t)/ (I-N 1NO) I" (4.4)

(3.7) The coefficients Ci. depend on the signal powers and the

It has a peak at the unbiased location (C,. ti), and the frequency separations.

peak value is

PAR( t. t1) = (1+NNgp)[ I +(NNg-1)p] - (NJtJP)2(3.8) V. Decimation to Improve Resolution

which is proportional to pg. So the peak of AR spectrum is It is seen in the previous section that the resolution
not a power estimate but a square power estimate. can be improved by increasing the size of support. 

i
n the

We now determine the 3 dB contour around the peak 2-D case, however, the increasing size of support will

in the frequency plane ((, 4) from the equation greatly increase the computation since the size of auto-
correlation matrix R is (NINg) x (N 1 N,). We demonstrate

PA(C1. t'1) = 2 PR ) (3.9) in this section that direct decimation of an input data

By using first 2 terms of the Taylor series expansion of Eq. sequence can improve the resolution without increasing
(3.3), it can be shown that the contour is approximately the size of support. This technique has been used in the
given by one-dimensional came on the periodogram [3], the ML

(Capon) method, and the Ar method [4]. It is to be
I(Ni-l)(('-() (N,-I)(Q-()j = 2/ NtNsp (3.10) expected that the saving in computation in the 2-D case is

which is a rhombus with the "major/minor axes" equal to even more significant.

c, AR="(N,-i)NjNi. The direct decimation scheme is depicted in Fig. 2.
The two reasons for the higher resolution are that the

and decimation expands the frequency scales by the factor D,

Dj. AR = 4/ (Ng-)NtNep (3.11) and Dg respectively and that the bandpass filter removes
interference from out-of-band noise, thus raising the

4.7.2
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effective SNR. and MN.-- (Dg)* - (DD()6

To demonstrate the improvement of resolution by (DDa)
2  (D1 D2 )(

decimation, Fig. 3 shows the AR estimates on the data Thus, the total number of multiplication is approximately
which consists of 2 sinusoids at frequencies M
(0 1775 r. C 1775 rr) and (0 1975 it. 0 1975 ri) and noise 7 MAR. D = MR. V + MN. D + MF. D = MAR+ MF.D (6.7)
dB below the sinusoids Fig. 5(A) shows the PAR with (DIDE)'
NI = N, = 5 without decimation, (B) the PAR.D with If DI = = D, the saving of computation is by a factor
N, = Ni = 5 and decimation DI = D, = 4, both plotted on D

4
, excluding the FiJtering Mp. D

0 125 r I , ( S 0 25 r These simulation results show
that direct decimation improves the resolution without

* increasing the size of support. Discusion
In order to investigate the improvement of resolu- The resolution of sinusoids in white noise using 2D AR

' ton by decimation, we may introduce the notation of spectrum is investigated in this paper. Closed form
resolution boundary" which, as in the l-D case [9]. for expressions of spectral estimates. are given. The peaks of

twr' * .- asoids with equal power is defined as the frequency the AR spectra indicate the square of the power of each
separation (A. A) = (k1,-I IJt-bI) at which the spec- component. A 3 dB contour in the frequency plane is
trum at the center frequency is equal to the average of introduced to facilitate the study of resolution charac-
the spectra at the two sinusoid frequencies, i.e., teristics.

t1-( , PR((. ) + PAR(N, ti)] (5.1) Decimation is then applied to nar2- spec-

22 2 tral estimation. Simulation results indicate that a spec-

The resolution boundary is the minimum resolvable fre- tral estimate on a support (NINE) with a decimation fac-
quency separation for a given SNR. In Fig. 4 we show a tor of (D I, DO) has a resolution approximately equivalent
special symmetric case with AC = A4. The solid line exhi- to that of a spectral estimate on a support (D I N,, D2 N2 )
bits the theoretical curve of SNR vs. A" computed from without decimation. It is also shown that decimation
(5.1) with Ni = Ng= 10 The dashed line indicates the reduces computation by a factor (D1 Dz)E without
same theoretical curve for corresponding decimated sacrificing resolution.
spectra with N, = Nz = 5, and DI = Dg = 2. The two curves This analysis can be extended to most other 2-D
are seen to be close to 1.-ch other. The triangles and rec- spectral estimation methods, such as periodogram and
tangles are corresponding simulation results on a maximum likelihood method, and similar results car. be
(32 x 32) data with center frequency Co = fD = 0.25 7T. obtained.
Since these results are obtained by averaging only two
independent trials, a considerable variation is present.
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