
AD-Aii 686 A PARALLEL FIRST-ORDER LINEAR RECURRENCE SOLVER(U)
JOHNS HOPKINS UNIV BALTIMORE MD DEPT OF ELECTRICAL
ENGINEERING AND COMPUTER SCIENCE G G NEVER ET AL.IF SEP 86 JHU/EECS-86/7 RFOSR-85-8897 F/G 9/2

I..'

111 1.0 111-' JI 1 2JI5
32

L3

MICROCOPY RESOLUTION TEST CHART

NATIONAL BURIA0 Of STANDARDS JI%4 A

,

S. -~
A ~S.

CD ,K

~~ A P~ARALLEL FIRST-ORDER LINE"Alt ~

REL CURREjNCE! SoIJVElR

(rl-mrd G. L. tver and Louis, J1. I'odr:izlk

DTIC
SEP 05 198O

AV .

A PARALLEL FIRST-ORDER LINEAR

RECURRENCE SOLVER

Gerard G. L. Meyer and Louis J. Podrazik

REPORT JHU/EECS-86/07

Electrical Engineering and Computer Science Department

The Johns Hopkins University

Baltimore, Maryland 21218

-" DTtC
(, :LECTE

\j1 StP 05 1986

D

This work was supported by the Air Force Office of Scientific Research under

Contract AFOSR-85-0097.

D~sTmr1mNr STATUMI'! A
Approved for p'iblitcr#41ri__. I ,_,.,__ :. £

-2-

ABSTRACT

In this paper we present a parallel p'rocedure for the solution of first-order

linear recurrence systems of size N when the number of processors p is small in

relation to N. We show that when 1 < p 2 < N, a first-order linear recurrence

system of size can be solved in 5(N-1)/(p-+1) steps on a p processor SIMD

machine and at most 5(N - -)/(p + -) steps on a p processor MIMD
2 2

machine. As a special case, we further show that our approach precisely

achieves the lower bound 2(N-1)/(p+l) for solving the parallel prefix problem

on a p processor machine.

Or/c

Accesion For

NTIS CRA&M

DTIC TAB 0
Unannou.ced E5
Justification

By ..
Distributioii I

Availability Codes

iAvail a ;dor
Dist 6pecial

'.

,k

..

-3-

I. INTRODUCTION

In this paper we present a parallel algorithm to solve the well-known first-

order linear recurrence system R <N,l> when the number of processors p is

small in relation to N, and where R <N,1> is defined as follows:

R<N,1>: Given N, given b - (b, b2, .. . , by), and given a - (a 2, a3,...,

aN), compute x = (X1, x2, ... xg) such that x, = b, and xi = aixi_ 1 + bi for

i = 2,3,...,N.

We present both SIMD and MIMD versions of the algorithm. We analyze

the SIMD version by first considering a simplified shared memory model of

parallel computation that facilitates comparison with previous work. In that

model the parallelism exhibited by the proposed algorithm is examined in terms

of da'a dependencies only, therefore allowing us to determine the idealized per-

formance of the procedure. We then consider a second model of computation

which consists of a SIMD p processor ring configuration with a broadcasting

capability. In that model interprocessor communication is taken into account,

and a more realistic analysis of the algorithm is performed. The MIMD version

of the algorithm is analyzed by considering the same simplified model as in the

SIMD case, with the exception that the same operation need not be performed

by all processors at the same time. Finally, we observe that the algorithm can

be efficiently mapped to an MIMD p processor ring configuration with a broad-

casting capability.

Many algorithms have been proposed to solve linear recurrences in parallel,

each with different objectives. Earlier results assumed the availability of an

unlimited number of processing elements and were concerned with determining

the number of processors necessary to achieve minimal computational time

.A1'J

A
-..--.

.
,-,

-4-

a. [KOG731, [CHE751, [KUC76], [SAM771. Later, limited processor solutions were

considered. Chen, Kuck and Sameh [CHE78] presented a SIMD algorithm that
solved M-th order systems in (')(2M'+3M)+ O(1og2 -M)steps, but

p M

did not discuss any specific parallel implementation. Gajski [GAJ81] improved

upon this result by performing the SIMD computation in less than

(-)(2M2+3M) steps using p < N processors in a shared memory architec-
.4. P

ture. In this paper we show that by using a SIMD p processor ring network

modified to support global broadcasting, the number of steps required to solve a

first-order linear recurrence of size N > p2 is 5(N-1)/(p+l). This improves

upon the results of [CHE78] and [GAJ81] for the first-order case when N > p 2.

Our approach is a generalization of the matrix factorization technique

presented in [MEY85], and it reduces to the SIMD procedure presented in

[GAJ81] when N - p2.

Moreover, when a = 1, for all i in [1,2,...,N], R<N,I> reduces to a par-

ticular form of the parallel prefix problem. When N > p, Kruskal, Rudolph

and Snir [KRU85] present an algorithm which solves the parallel prefix problem

in 2NIp + 210g 2p - 2 steps. Snir [SNI86] improves upon this approach when

N > p2 by solving the problem in 2N/(p+1) + 0(1) steps, which is within a

constant additive term of the lower bound. In case of parallel prefix, we show

that our algorithm precisely achieves the lower bound 2(N-1)/(p+l) esta-

blished by Snir [SN186] when N > p 2.
w,

Carlson [CAR84 considered mapping the computation of first-order linear

recurrence systems to perfect shuffle and cube-connected systems. A common

feature of both Carlson's algorithm and our algorithm is that the computation

is organized so that the transfer of input and output data can be performed
'5

i -5-

concurrently with the execution of the algorithm, thus providing a balance

between I/O and processing loads.

An important problem related to the parallel solution of R<N,l> is the

parallel evaluation of general arithmetic expressions [BRE74]. In the case of

first-order linear recurrences of size N, the pro),lem is to efficiently evaluate xN

in parallel using p processors. In that case, we observe that when applied to

computing xN only, a straightforward application of our approach does not

improve upon existing results [BRE74], [CHE78].

In order to specify the parallelism exhibited by our algorithms, we augment

those statements which can be executed in parallel. We use the following syn-

tax:

FORALL i es DO IN PARALLEL

BODY /* Comments */

END FORALL

which indicates that the BODY may be executed concurrently for each i in the

set S.

The SIMD procedure to solve R <N,I> is presented in Section II; in Sec-

tion III we discuss a parallel implementation of the algorithm, and in Section IV

we present an MIIID version of our algorithm to solve R <N,1>. Finally, our

conclusions comprise Section V.

II. THE SIMD ALGORITHM

The abstract model of SIMD parallel computation (Figure 1) considered in

this section consists of a global parallel memory, p parallel processors, and an

interconnection network, where all processors perform the same operation at

each time step. We further simplify the model by making the following assump-

-6-

tions:

Al. Each arithmetic operation (addition or multiplication) is performed in unit

time, referred to as a step.

A2. There are no accessing conflicts in global memory; furthermore, all data is

assumed to initially reside in global memory.

A3. There is no time required to access global memory.

This simplistic model allows the parallelism of the proposed algorithm to be

analyzed without introducing the added complexity of the implementation. In

Section III we map the algorithm to a specific computational network and we

analyze the corresponding implementation.

Given N and p, our approach to solving R <N,I> consists of partitioning

R<N,l> into a sequence of reduced recurrence systems R<n,l>,

each of size n = p2 , except for the last recurrence system which may be of size

less than p2 . Each R<n,l> is then solved in parallel with its initial value

taken as the final value obtained from the previously solved reduced recurrence

system, except for the first recurrence that uses x, = b1. The first R<n,l> is

solved as follows: (i) each of the p processors concurrently computes a partial

solution for a different xj; (ii) after p parallel iterations p2 partial solutions

have been computed, one for each xj, i in [1,2,...,p 2], where the partial solutions

for xi, i in [l,2,...,pj, are precisely the solutions for R<N,I>; (iii) based upon

xp the next p partial solutions xj, 1 in [p+l,p+2,...,2p] are then updated in

parallel to their correct values. After p-i parallel update iterations R<n,l>

is solved. The next reduced recurrence system of size p 2 is then solved with 2

as its initial value. We continue in this manner until the last R<n,l> is

solved. Since the initial and final values of each R<n,l> overlap, the complete

'-1

-7-

solution of R<N,I> requires solving N-1 reduced recurrence systems.

We now describe the SIMD algorithm to solve R <N,I> when N is

an integer. For w in [O,1,...,(N-1)/(p 2-1)], let the index sets S, and T, be

defined as

S {1 + mp + W(p2 -1) m = 1,2,...,p-1}

and

TW - {1 + mp + (p 2 -1): m = 0,1,...,p-1}.

1. PROCEDURE R(N,p,a,b)

2. zl:= b,

3. FOR w:= 0 TO (N-1)/(p 2-1) - 1 DO /* Solve each R<n,l> *1

4. FORALL i e S, DO IN PARALLEL /* Begin Coefficient Computation Phase */

5. Ali,i] := aj;

6. END FORALL

7. FOR i := 1 TO (p-1) DO

8. FORALL jE S,, DO IN PARALLEL

9. A[i+j,j] := a,+i A[i+j-l,j];

10. END FORALL

11. END FOR /* End Coefficient Computation Phase */

12. FORALL i e S, DO IN PARALLEL /* Begin Partial Solution Phase */

13. Z. :- b= ;

14. END FORALL

15. FOR i:= I TO (p-1) DO

16. FORALL j c T, DO IN PARALLEL

17. z;+i ai+ i zi+j-, + bi+;

%
%

-8-

18. END FORALL

19. END FOR /* End Partial Solution Phase *

20. FOR i e S, DO /* Begin Solution Update Phase */

21. FORALL j := 0 TO (p-1) DO IN PARALLEL

22. xi =A i+j,i] Xz- + Xij

5,* 23. END FORALL

24. END FOR /* End Solution Update Phase */

25. END FOR

26. END PROCEDURE

' . ' N - -1
The preceding algorithm sequentially solves N reduced recurrence

systems of size p2 , each in parallel. Each reduced system is solved in three
phases: the coefficient computation phase consists of the execution of loops 4

and 7 and computes all coefficients of the form ai+ja+j_ •...• aj which are

needed later during the solution updates; the partial solution phase consists of

the execution of loops 12 and 15 and computes p2 partial solutions, in which the

first p partial solutions are the actual solutions; and finally, the solution update

phase consists of the execution of loop 20 in which the coefficients computed in

the first phase are used to update the next p estimates at each iteration. The

N-1complete solution to R<N,I> is therefore obtained after executing 2-1

iterations of loop 3. An example illustrating the computations performed by the

algorithm is given in Figure 2 for the case N = 17 and p = 3 where the nota-

tion z. is used to indicate a correct value for the solution. Note that each com-

putational level may be performed in parallel using at most three processors.

Our model assumptions imply that we need only consider computational

operations when determining the number of steps required by the algorithm.

%.G

Therefore we must examine those computations performed in loops 7, 15 and 20.

The execution of loop 7 is performed p-1 times, each iteration requiring p-1

processors to concurrently perform a single multiplication, thus loop 7 requires

p-1 steps. Both loops 15 and 20 are iterated p--1 times, each iteration requir-

ing p processors to concurrently perform a multiplication followed by an addi-

tion. Thus, loops 15 and 20 each require 2(p-1) steps. The total number of

steps required to solve each reduced recurrence system R <p 2 ,1> using p pro-

cessors is therefore 5(p-1), and hence the resulting theorem follows.
~N--

Theorem 1: Given N and p such that N- is an integer, the number of

steps required to solve the linear recurrence system R<N,I> using a SIMD

parallel computer with p processors is 5(N-1)
p+l

-- " N-i1
If N is not an integer, our approach to solving R <N,l> requires

that we solve the reduced recurrence system R<nr, >, where n, < p2 . One

.1approach to solving R <nr,l> is to use a technique which is known to be

efficient whenever nr < p 2 . Applicable techniques include the algorithms

presented by Chen, et al. [CHE78] and Kogge and Stone [KOG73]; however,

these techniques are not desirable because they require the machine to store

and execute multiple algorithms based upon the size of the recurrence system.

A less efficient but more practical approach to solving R<ni> consists of

using the proposed technique to solve the augmented system R <p ,1> and sim-

ply terminate the computation when the last x is com uted. In that case the

number of steps required by the algorithm is at most N15(p -1).

Finally, we make the observation that the above SIMD algorithm most not-

ably differs from the approaches presented in [CHE78] and [GAJ81] in that our

10-

approach partitions the problem and sequentially solves a series of reduced

recurrences of size p 2. However, when N = p 2, our approach reduces to that of

I'- [GAJ81], except that Gajski presents the coefficient computation and partial

solution phases as a single computational phase. Moreover, when N > p 2, the

algorithm of Chen, et al. [CHE781 is less efficient than Gajski's as a result of

implementing an extra computational phase in which a separate first-order

recurrence of size p is solved using p processors, requiring an additional 21og 2p

steps.

When N and p are powers of two, the algorithm of Chen, et al. requires

5N N.p + 21og 2p - 5 steps [CHE78] and when 2 is an integer, Gajski's SIMD

algorithm requires -A(5p-3) - 2 steps [GAJ811, whereas when N-1 .p p1 is an

25(N-1)
JA integer, our SINM algorithm requires only steps. For example, when

p+ 1

N = 218 and p = 2 , the number of steps required by the SIMD algorithms

presented in [CHE781, [GAJ81] and this paper are 163,841, 151,550 and 145,635,

respectively.

Finally, when a = 1, for all i in [1,2,...,N], R<N,I> is a particular form

A' of the parallel prefix problem and reduces to computing the cascade sums

(bl+b 2), (bl+b 2+b 3), (bl+b 2+ +bN) in parallel using p processors.

The following corollary is a direct consequence of Theorem 1.

Corollary 1: Given N and p such that N-1 is an integer, the number of%P 2_ 1

steps required to solve the parallel prefix problem using a SIMD parallel com-

puter with p processors is 2(N-l)
p+l

N-iThus, when 2 is an integer, our SIMID algorithm precisely achieves
x"P2_

'p.

' - 11 -

the parallel prefix computational lower bound 2(N-1) established by Snir:,. p +1

[SNI86]. This result improves upon existing approaches to solving the parallel

prefix problem when N > p2 . In that case the parallel prefix problem is solved
in 2 0(1) steps by Snir's algorithm [SNI86], 2 N + 1og2P

i + [S16,2P o~ - 2 steps by.. p +1 p

the data independent algorithm presented by Kruskal, et al. [KRU85], and

S-(2 p-l) - 1 steps by Gajski's algorithm [GAJ81].
p 2

II. THE SIMD PARALLEL IMPLEMENTATION

The abstract model of SIMD parallel computation presented in Section II

neglected the issues of data organization and alignment as well as communica-

4_ tion overhead, all of which are highly machine dependent. We now present a

parallel implementation of the proposed algorithm that takes these issues into

account. The SIMD model of computation considered in this section (Figure 3)

consists of p processors executing the same operation in lock step, with each

processor containing its own local storage. The processors are interconnected

by a unidirectional ring network in which processor i transfers data to proces-

sor i+1, i in [1,2,...,p-l] and processor p transfers data to processor 1. Furth-

ermore, we assume that the network possesses a broadcasting capability that

allows any processor to broadcast data to all other processors. The time

required by the algorithm will be determined under the following assumptions:

Al. Each arithmetic operation (addition or multiplication) is performed in unit

time, referred to as a step.

A2. Interprocessor transfers require one step.

A3. Data broadcasts require one step.

'.

-

- 12-

A4. Each a, and bi required by a processor is assumed to initially reside in the

local memory of that processor.

In order to determine an efficient processor assignment, we first make the

observation that the p consecutive partial solutions updated at each iteration

of the update phase of the algorithm must reside in a different processor.

Furthermore, both the coefficient computation phase and the partial solution

phase of the algorithm exhibit explicit data dependencies which must be

preserved. These constraints can be satisfied if we rotate the processor assign-

ment at each parallel iteration of the algorithm, and in that case, the algorithm

can be directly mapped to a SIMD p processor unidirectional ring network with

broadcasting capability. Figure 4 illustrates such a processor assignment and

the corresponding communication requirements for the case N = 17 and p = 3.

We now present the algorithm to solve R <N,l> as executed by processor

k, for all k in [1,2,...,p].

1. PROCEDURE Rk(N,p,a,b)

2. z 1 := b

3. FOR w := 0 TO (N-1)/(p2-1) - I DO /* Solve each R<n,l> */

4. A [i,f] := a,; /* Begin Coefficient Computation Phase */

/* i = I + (k-1)p + w(p2-l) */

5. FOR i := I TO (p-1) DO

6. A[i+j,j] :i a,+, A[i+j-l,j];

/* j - (1+(k-i-I)p) mod p2 + w(p 2 -1) */

7. END FOR /* End Coefficient Computation Phase */

8. IF k = 1 THEN x:i z ELSE z:i b; /* Begin Partial Solution Phase */

/* i = I + (k-1)p + w(p2-1) */

9. FOR i := I TO (p-1) DO

- 13-

10. z ++j : a++j z b+ - +,;

/* j = (1+(k-i-I)p) mod p2 + w(p 2_1) */

11. END FOR /* End Partial Solution Phase */

12. FOR m := 1 TO (p-1) DO /* Begin Solution Update Phase */

13. z1+i := A [i+j,i] ;i-I + xi+i;

/* i = 1+mp+w(p 2-1), j - (p-m+k-1) mod p

14. END FOR /* End Solution Update Phase */

15. END FOR

16. END PROCEDURE

Our model assumptions imply that we must consider interprocessor com-

munication in addition to operational count when determining the number of

steps required by the algorithm. Therefore, we must examine the computations

and interprocessor transfers performed ia loops 5,) and 12. Each iteration of

loop 5 requires an interprocessor transfer of A [iI+j-l,j] followed by a single

multiplication. Thus, loop 5 requires 2(p-1) steps. Loop 9 is iterated p-1

S.'- times, each iteration requiring an interprocessor transfer of xi+j-l followed by a

multiplication and addition. Thus, loop 0 requires 3(p-1) steps. Loop 12 is

also iterated p-1 times, each iteration requiring a data broadcast of xj-_1 fol-

lowed by a multiplication and addition. Thus, loop 12 also requires 3(p-1)

steps. The total number of steps required to solve each reduced recurrence

R<p2,1> using p processors is therefore 8 (p-1), and hence, the resulting

theorem follows.
: N-i1

Theorem 2: Given N and p such that 2- is an integer, the number ofp 2_1

steps required to solve a linear recurrence system R<N,1> using a SIMD paral-

lel computer with p processors is 8(N-1)

p+1

........... "

', ' '

- 14-

Among the existing SIMD algorithms to solve R<N,1>, the SIMD algo-

rithm presented by Gajski [GAJ81] can be most efficiently mapped to a uni-

directional ring network with broadcasting capability. Based upon the assump-

N,
tions made in this section, when 2 is an integer the number of steps

required by Gajski's approach to solve R <N,I> is -(8p-5) - 3, and there-
p

fore when N > p 2 our approach is more efficient than Gajski's when imple-

mented upon a ring network capable of broadcasting.

Finally, we make the observation that the algorithm does not require all of

the inputs a3 and bi in order for the processing to begin. Specifically, the algo-

rithm requires p2 -1 a3 and p2 bi for every 5 (p-1) computational steps,

corresponding to solving each R <p 2 , > in sequence. Similarly, the outputs xi

are produced in blocks of p -I at a time. This suggests that I/O could be

overlapped with the computation, providing a balance between I/O and process-

ing loads, and therefore the deletion of assumption A4 has a negligible effect if

one assumes that I/O and processing can be done concurrently.

IV. THE MIMD ALGORITHM

In this section we again consider the simplistic model of computation given

in Section II with the exception that we no longer require all processors to exe-

cute the same operation at each step; that is, we now consider a MIMD imple-

mentation in which we neglect the issues of data organization and alignment as

well as communication overhead.

The MIMD approach for solving R <N,I > is based upon the observation

that only p-1 processors are needed at each iteration of the coefficient compu-

N-i
tation phase. Assuming N-I to be an integer, the total number of multipli-12-

P.

- 15-

cations required to compute all necessary coefficients is (N-1)(p-1) p-1 ofp+l

which may be performed concurrently at each step. Therefore, all of the

N-1required coefficients can be computed in steps using p-1 processors.
p+i

This leaves one processor free for (N-1 +i) steps, allowing us to expand the

size of the recurrence by at most no - | i and use the free processor
[2(p +1)J

to concurrently solve the reduced system R <n 0 ,i>. Thus, using an MIMD

approach we can solve the entire system R <N+n0 ,i> in 5(N-1) steps.
p+1

Given a recurrence system of size N and the number of processors p the

following lemma expresses n o in terms of N and p only.

Lemma 1: Given N and p, n0

2p +3

Given N and p, our MIMD approach to solving R <NI> consists of parti-
[Nno-i

tioning R<N,I> into a sequence of p 2_1 + 1 reduced recurrences.

The first recurrence is of size n 0 +l and all others are of size p2 , except for the

4. last recurrence that may be of size less than p 2. The coefficient computation

phase of the algorithm uses p-i processors to compute all needed coefficients

for all of the reduced systems. Concurrent with this computation, the free pro-

cessor computes the solution to R <n 0 +i,l>. Each subsequent R <n,l> is

then solved in the same manner as in the SIMD algorithm by executing a par-

tial solution phase followed b a solution update phase. The complete solution: N-no--I1
is obtained after solving all N-n..1 + I reduced recurrences.

*N - n o--1
We now present the 1MEVD algorithm to solve R <N,I> when 2

is a2_ 1
is an integer. As in the SIMD case, it is not difficult to modify the algorithm if

- 16-

the above assumption is not satisfied by simply terminating the computation at

the point when the last xi is updated. For w in [O,1,...,(N-no-1)/(p 2-1)I, we

* now define the index sets U. and V, as

= {. + no + mp +w(P 2 -1): m 1,2,...,p-1}

and

V, {1 + no + mp + W(p2 -1): m = 0,1,...,p-}.

1. PROCEDURE R(N,p,a,b)

2. x1 := b1

3. FOR i := 2 to n0 +l DO /* Solve R<n0 ,1> */

4. zi = aiz-, + bi

5. END FOR /* End R<n0 ,1> Solution */

6. FOR w := 0 TO (N-no-l)/(p2-1) - 1 DO /* Begin Coefficient Computation Phase */

7. FORALL i U, DO IN PARALLEL

8. A [i,i] := aj;

9. END FORALL

10. FOR i := 1 TO (p-1) DO

11. FORALL j e U,, DO IN PARALLEL

. 12. A [i+j,j] :=f ai+j A [i+j-l1j];

13. END FORALL

14. END FOR

15. END FOR /* End Coefficient Computation Phase */

16. FOR w :- 0 TO (N-no-)/(p2-1) - I DO /* Solve each R<n,I> */

17. FORALL i e U,., DO IN PARALLEL /* Begin Partial Solution Phase */

18. Zi := 6;

19. END FORALL

. -
a
,

- 17 -

20. FOR i := I TO (p-1) DO

21. FORALL je V, DO IN PARALLEL

22. zi+j := ai+, zi+j-1 + bh+i;

23. END FORALL

24. END FOR /* End Partial Solution Phase */

25. FOR i i U, DO /* Begin Solution Update Phase */

26. FORALL j := 0 TO (p-1) DO IN PARALLEL

27. zi+ :-- A [i+j,i] zi- + ;i+;

. 28. END FORALL

29. END FOR

30. END FOR /* End Solution Update Phase */

31. END PROCEDURE

Note that (i) the coefficient computation phase of the SIMD algorithm has

been modified so as to compute the necessary coefficients for all R<n,l> before

the first reduced recurrence is solved in parallel; and (ii) the processor that is

*idle during the SIMD coefficient computation phase is now used to concurrently

compute the solution to R<n0 +1,1>. An example illustrating the computa-

tions performed by the MIMD algorithm is given in Figure 5 for the case N

19 and p = 3.

Based upon the MIMD model considered in this section, we conclude that

the time required by the MIMD algorithm is determined by the computational

operations performed in loops 3, 6 and 16. Loops 3 and 6 are executed con-

currently, using 1 and p-1 processors, respectively. Loop 6 requires
N-n 0 -1 steps, and the quantity no has been defined so that loop 3 requires

p+1

at most the same number of steps as loop 6. All p processors are used in exe-

* 'i

-18-

, 4(N-no-1)
cuting loop 16, and thus loop 16 requires p+1 steps. The number of

steps required by the MIMD algorithm is therefore 5(N-no-1) steps. Thus,
p+l

the resulting theorem follows.

Theorem 3: Given N and p such that N > p2 + 2p - 1, the number of steps

required to solve a linear recurrence system R<N,1> using a MIMD parallel

computer with p processors is at most N- -- , 15(p -1).
(+3/2)(p -1)

When N = p 2 + p - 1, our approach reduces to the MIMD algorithm

presented in [GAJ81] in which the number of steps required to solve R <N,I> is

at most[2 N - 5(p-1). When N > p2 + yap - 1, our MIMD approachI~p +~ p-2l

differs from [GAJ81] by organizing a single coefficient computation phase to

compute the necessary coefficients for all R<n,l> before the first reduced

recurrence is solved in parallel, rather than including a coefficient computation

phase as part of solving each reduced recurrence.

Finally, we note that, like the SIM algorithm, the MIMD algorithm can

also be directly mapped to a p processor unidirectional ring network with

broadcasting capability. Figure 6 illustrates such a processor assignment and

*: the corresponding communication requirements for the case N = 19 and p = 3.

V. CONCLUSIONS

The algorithm presented in this paper exploits the fact that for a fixed

number of processors p, the parallel approach presented in [MEY85] to solve
2

R<N,I> attains maximum speedup -(p+1) when N = p 2. When N > p 2,
5

the structure of R <N,I> allows the solution to be obtained by sequentially

solving a series of reduced recurrences, each of size p2, except for the last

~NX

J

19-

recurrence system which may be of size less than p2. As a result, we are able to

improve upon existing approaches for solving R <N,I> whenever N > p2.

n,.

in, -o

* °°

ini

- 20-

REFERENCES

[BRE74j Brent, R.P., The Parallel Evaluation of General Arithmetic Expres-

sions, JACM, Vol. 21, No.2, April 1974, pp. 201-206.

[CAR84] Carlson, D.A., and Sugla, B., Time and Processor Efficient Parallel

Algorithms for Recurrence Equations and Related Problems,

Proceedings of the 1984 International Conference on Parallel Process-

ing, August 21-24, 1984, pp. 310-314.

[CHE75] Chen, S.C. and Kuck, D.J., Time and Parallel Processor Bounds for

Linear Recurrence Systems, IEEE Trans. Computers., Vol. C-24,

No.7, July 1975, pp. 701-717.

[CHE78] Chen, S.C., Kuck, D.J. and Sameh, A.H., Practical Parallel Band

Triangular System Solvers, ACM Trans. on Mathematical Software,

Vol. 4, No. 3, September 1978, pp. 270-277.

[GAJ811 Gajski, D. J., An Algorithm for Solving Linear Recurrence Systems

on Parallel and Pipelined Machines, IEEE Trans. Computers., Vol.

C-30, No. 3, March 1981, pp. 190-206.

[KOG73] Kogge, P.M., and Stone, H.S., A Parallel Algorithm for the Efficient

Solution of a General Class of Recurrence Equations, IEEE Trans.

Computers., Vol. C-22, No. 8, August 1973, pp. 786-793.

[KRU85] Kruskal, C.P., Rudolph, L., and Snir, M., The Power of Parallel

Prefix, IEEE Trans. Computers., Vol. C-34, No. 10, October 1985,
pp. 965-968.

[KUC76] Kuck, D. J., Parallel Processing of Ordinary Programs, Advances in

Computers., Vol. 15, Academic Press, New York, 1976, pp. 119-179.

4

- 21 -

[MEY85] Meyer, G.G.L., and Podrazik, L.J., A Matrix Factorization Approach

to the Parallel Solution of First-Order Linear Recurrences, Proceed-

ings of the 23-rd Annual Allerton Conference on Communication,

Control and Computing, October 2-4, 1985, pp. 243-250.

[SAM77I Sameh, A.H., and Brent, R.P., Solving Triangular Systems on a

Parallel Computer, SIAM J. Numer. Anal., Vol. 14, No. 6, December

1977, pp. 1101-1113.

[SN186] Snir, M., Depth-Size Trade-offs for Parallel Prefix Computation,

Journal of Algorithms, Vol. 7, No. 2, June 1986, pp. 185-201.

.J
a'

I- '2-

Parallel Nienory

•. Interconnection Network

M1 "2 Al _l

p

NEl

-

Parallel Processor

Figure 1. The Abstract Parallel Comnpailational Model

-23 -

N"

Computational Time Parallel Computations
Phase Step

Coefficient A[4,41 = a4 AJ7,7] = a7
Computation 1 A[5,41 = aA[4,4j A[8,71 = aBA[7,7]
Phase

2 A[6,41 = aSA[5,4] A[9,71 = agA[8,7]

Partial Zi = bi X4 = b4 X7 = b7
Solution 3,4 22 = a, + b2 xr = a6X4 + b6 x8 = a8z 7 + b8
Phase

5,6 23 = a;X2 + b3 z 8 - aOz6 + bo xg = aqxg + bg

Solution 7,8 24 = A[4,4Z 3 + z 4 z6 = A[5,4]z 3 + z 6 ze = A[6,4]z 3 + X6

Update 9,10 27 = A[7,7]z 8 + 17 zs = A[8,7]zo + 18 z9 = A[9,7]zo + Ig
Phase

Coefficient A[12,12] = a12 A[15,15] = a16

Computation 11 A[13,121 = al3A[12,12] A[16,15] = a1.A[15,15]; - Phase
Pa 12 A[14,12] = ai 4A[13,12 A[17,151 = a,-AL[16,151

Partial Z= 29 X12 = b 16 = b16

Solution 13,14 z10 - al 0 z, + blo 13 = a 13X 12 + b 13 XI0 = alex16 + b1e
Phase

15,16 211 = a1lz 1 O + bl, X14 = a 1 4XI 3 + b 14 Z17 = a17Z1 + b17

Solution 17,18 212 - A[12,12]zl + z 1 2 213 = A[13,12jzII + X13 214 - A[14,12]zll + X14Update 19,20 216 = A[15,15]z 14 + X16 zle = A[16,15]z 14 + z1e Z17 = A[17,15]z 14 + X17

Phase

FIGURE 2 Solution of R<17,1> for 3 processor SIMD computer

!-i44

%* -,..

I..,

I... - 21 -

r.p~

i
'I'.

S.. Input Data <a, b,>

V.

V..

'V

- Broadcast Bus

Pp

I I
'V.. I
NA

Output Data <xi>

V.-. S

-'V

.~ ..~
-'V

FIGURE 3. The Practical Parallel Computational Mode!

V..

V

' 25 -

"-'" C pParallel Computations
,-.-Computational Time

Phase Step PROCESSOR #1 PROCESSOR #2 PROCESSOR #3

Processor
Resident a,, i - 6,8,14,16 a,, i - 2,4,9,10,12,17 a,, i- 3,5,7,11,13,15

Data b,, i - 1,6,8,14,16 b,, i - 2,4,9,10,12,17 b,, i - 3,5,7,11,13,15

Coefficient 1 A[4,41 - a 4 - A[7,71 - a7 --

Computation 2,3 A[8,71 - asAJ7,71 --. A[5,41 - asAI4,41 --
Phase

4 A6,41 - aoA[5,41 A[9,71 aq.A8,7]

Partial 5 zj- bl 4 - b4" X7- b 7 -

Solution 6,7,8 rs - a9z7 + bs -2 - azl + b2 -" x6 - a&Z4 + bb--*

Phase 9,10,11 xe- a zO,+ bo a
9 - ags + ba Z3 - aZ2 + bs-

Solution 12,13,14 ze - A[6,41z3 + X " Z4 - A[4,41z + z 4 zs - A[5,4]z3 + z 6

Update 15,16 z- - AJ8,7]za + zs z, - A[9,7]zo + xq Z7 - A[7,71z, + X7

Phase

Coefficient 17 A[12,121 - a12 --- A[15,151 - a 1-6

Computation 18,19 A[16,151 - a1 2Ats,15l-- zD- AJ13,121 m alA112,12 --

Phase 20 A114,121 - ai.A[13,12] A[17,151 - al7 A[16,15] zo

Partial 21 x1- b is - i

Solution 22,23,24 zxi- a1 lx 1 + b i .io- atozo+ bio Z1 3 - a13z 12 + b, 3 -

Phase 25,26,27 I14- a 1 + 614 17 - a17 1 0+ b 1 zi- a1 j 10 + b

Solution 28,29,30 , - A!14,12!zI + X1 4 .4 z12 - A[12,12zu + X 12 - Aj13,12]z1 + X13

Update 31,32 z a - A[16,15]12 4 + XI8 Z 7- A[17,15Z 14 + x 17 z - A[15,151z1 4 + z 1

Phase

Processor
Resident z,, i - 1,6,8,14,16 z,, i - 2,4,9,10,12,17 x,, i - 3,5,7,11,13,15

Results

Notation: --- indicates that the data evaluated at the current step is transferred to the processor on the right.

-- indicates that the data evaluated at the current step is broadcast to all processors.

FIGURE 4 Processor Assignment for SIMD Solution of R<17,1> with p = 3

b ..--

- 26-

Computational Time Parallel Computations
Phase Step

Coefficient Z1-- bI A[6,6] = a6 A[9,9]-- ag
Computation I X2 = a.2x A[7,6] = a 7A[6,61 A[10,91 = arOA[9,9]

+

R<no+ll> 2 Z2 = T2 + b2 A[8,6] = asA[7,6] A[11,9] = aliA[10,9]
SolutionPhase

A[14,14] = a1 4 A[17,17] = a 17

3 x3 = a3 :2 A[15,14) = ajsA[14,14] A[18,17] = alsA[17,17]

4 23 = :3 + b3 A[16,141 = aeA[15,14] A[19,17] = algA[18,17]

Partial 23 = 23 Xe = b= be

Solution 5,6 24 = a4z 3 + b4 7= a7: 6 + b7 :-o a1 0:9 + bl0
Phase

7,8 z6 = a6Z4 + bs xg = asz 7 + b8 ii -- ,T1O + bl

Solution 9,10 ze = A[6,6]zs + xe 27 - A[7,6]z2 + X7 z2 - A[8,6]z 5 + xg

Update 11,12 z= = A[9,9]zs + g zio = A[10,9]z 8 + X0 z1 = Afll,9]z 8 + :t
Phase

Partial 2r1 = --- X14 = b14 T17 = b17

Solution 13,14 212 = aI2ZII + b12 :15 = alf: 14 + bl, :18 = ats18 7 + bi 8
Phase

15,16 213 = a13z 12 + b13 te = ajex16 + ble :T1 - aj 9:1 8 + big

Solution 17,18 Z4 = A[14,14jzI3 + X14 215 = A[15,14]z 13 + I15 Zia = A[16,14]z1 3 + XIS

Update 19,20 217 - A[17,17 1 10 + :-T7 zt - A[18,17]ze + 218 zjq = A[19,17]zle + X19
Phase

FIGURE 5 Solution of R<19,1> for 3 processor MIMD computer

, .

-27 -

Parallel Computations
Computational Time

Phase Step PROCESSOR #1 PROCESSOR #2 PROCESSOR #3
~Processor

Resident a,, i - 8,10,16,18 a,, i - 2,3,4,6,11,12,14,19 a,, i - 5,7,9 13,15,17

Data b, i - 1,8,10,16,18 b,, i - 4,6,11,12,14,19 b,, i - 2,3,5,7,9,13,15,17. --,

Coefficient 1 z 1 - bi--* A[6,61 - aa--* A19,91 - a a-.

Computation 2,3 All0,9 - aoA[9,91 -. z 2 - a.,x -.. A[7,61 - a7A[6,61

+... 4,5 A[8,61 - asA[7,6] A111,9] - alA110,9] Z2- Z2+ b2--*.. <no+1,t>
Solution 6 Z2 - A[14,141 - a14 -. A[17,171 - a 7-

* Phase 7,8 A[18,17] - aieA[17,171 z-.3 - a3Z2 "-* A[15,141 - aiA[14,141

9,10 A116,141 - aeA[15,141 A[19,171 - aiA[18,171 Z3- z3 + b3--

Partial 11 Z3 " Ze - be-* xg - ba -
"... Partial 1

%' Solution 12,13,14 Zio- ao0 x9 + bio- Z4" a 4 Z3+ b 4 -# z 7 - a7 zs+ b 7 -
Phase 15,16,17 zq- az 7 + be x11- a 1z 10 + bi, z5- a6Z4 + bs--

Solution 18,19,20 zs - A[8,6jz 8 + xz - ze - A[6,6jz 6 + ze Z7 - A[7,6]zs + z 7

Update 21,22 z o - A[10,9lz, + Zio z - A11'Iqzs + Xii z - A19,9128 + xg

Phase

Partial 23 --- - -b 14 Z 17 - b 1.

Solution 24,25,26 x Is - a 1 z 17 + b 1 - z 12 - a 19z 11 + b 12 - z 16 - a 15z 14 + b 16 -
Phase 27,28,29 Z a- atezjb+ bln zi- a zt9+ big Z 1 3- a 3 z 2 + b13 -

Solto ,30,31,32 zis - A[16,141z 13 + Xi 1- 14 - Al14,141Z13 + Z14 z - A[15,141z 13 + Z15-.5" Solution

Update 33,34 zI - A[18,171z e + z to zie - A[19,17]zle + Za1 Z17 - A[17,171z 1 0 + z1 7

Phase

Processor
Resident z,, i - 1,8,10,16,18 z,, i - 4,6,11,12,14,19 Z,, i - 2,3,5,7,9,13,15,17

Results

Notation: indicates that the data evaluated at the current step is transferred to the processor on the right.

"- indicates that the data evaluated at the current step is broadcast to all processors.

FIGURE 8 Processor Assignment for MIMD Solution of R<19,1> with p - 3

-p.

4'. " • - - . , , . . - - ., , ! ' , ., % , , ,, 7 . .' . ' - -. . ' - ' -.- . " . , .. ' . . ' .. '.,

%e SCLRI Y CLAS5,1FICATICN OF THIS PAGE (14'7 0. * fet* ed)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMIPLETING FORM

* .REPORTi NUMBER -12 GOT,cCEyN 40 BCPETSCTLGNmE

JHU/EECS-86/07

4. TITLE (d Sbfltl)...S TYPE OF REPORT & PERiOD COVERED

A PARALLEL FIRST-ORDER LINEAR RECURRENCE TECHNICAL

SOLVER
S. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(e) S. CONTRACT OR GRANT NUMBER(s)

GERARD G.L. MEYER AND LOUIS J. PODRAZIK AFOSR-85-0097

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA A WORK UNIT NUMBERS

THE JOHNS HOPKINS UNIVERSITY
BALTIMORE, MARYLAND 21218

1I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH /NM
SEPTEMBER 1986

13. NUMBER OF PAGES
BOLLING AFB, DC 20332-6448 27

14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) IS. SECURITY CLASS. (at thle report)

UNCLASSIFIED

IS. DECL ASSIFICATION DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thl Report)

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the ebetract entered In Block 20. if different from Report)

IS. SUPPLEMENTARY NOTES

It. KEY WORDS (Continue on reveree aide If necessary and Identify by block number)

LINEAR RECURRENCE; ALGORITHM'COMPLEXITY; PARALLEL EVALUATION;

PARALLEL PROCESSORS; PARALLEL PREFIX

20. ABSTRACT (Continue on reveree olde If neceseary and Identify by block number)

In this paper we present a parallel procedure for the solution of
first-order linear recurrence systems of size N when the number of processors
p is small in relation to N. We show that when I < p2 (N, a first-order
linear recurrence system of size N can be solved in 5(N-1)/(p+l) steps on a
p processor SIMD machine and less than 5N/(p +1) steps on a p processor

MIMD machine. Z

DD , 'A" 1473 EDITION OF INOVS5 IS OBSOLETE UNCLASSIFIED
S/N 0102. LF- 014- 6601 SECURITY CLASSIFICATION OF THIS PAGE (Whten Dete Enteed)

% % %

.1r

