RD-A171 686 A PRARALLEL FIRST-ORDER LINEAR RECURRENCE SOLVER(U) i1
JOHNS HOPKINS UNIYV BRLTIMORE MD DEPT OF ELECTRICRL
EERING AND COMPUTER SCIENCE G G MEVER ET AL. :
UNCLASSIFIED SEP 86 JHU/EECS-86/87 AFOSR-85-8097 9/2

NL

BTNV W e Wa e Nah aX g Al & S e e

""é ™ 2 22
=« T 2
L el

= e

iz s gee

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS {963 4

La'
b at >, '.r.».fr.- ----- ama A s
,“s‘ﬁ J W ,(c:."-ﬁ H“ \J, ‘.n',“‘.‘#",\- J‘/ :_ PR o, ; AR,
&?\ ‘L - RN k

NPG! \j-'fx':. PN

i ! d‘. d .AI’ L Sk,

A PARALLEL FIRST-ORDER LINIEEAR

RECURRENCE SOLVER

s e Gt

Gerard G. L. NMeyer and Louls J. Podrazik

REPORT JHU /EECS-86 /07

";-'“- - . . . P

. ?i
D..
N
DISTRIBUTION : ""‘.m M‘l’ n'r n
—';;p:—o-\';t; .ié. putlic yoluassd

Dumb-mm\ J-\hxxu'eu

et O

ELECTRICAL

A

';
&
Y]
e
A PARALLEL FIRST-ORDER LINEAR
1' “
P RECURRENCE SOLVER
R
AN
. Gerard G. L. Meyer and Louis J. Podrazik
M
N REPORT JHU/EECS-86/07
>
W
n
2
.;!:2 Electrical Engineering and Computer Science Department
":: The Johns Hopkins University
=~ Baltimore, Maryland 21218
ko -
&
S
= P
DTIC
% TR LECTE i
3%, \a, SEP 05 1986
"" 2\
N D
D) 4,1
e o
')
]y,
%
E~- This work was supported by the Air Force Office of Scientific Research under
Contract AFOSR-85-0097.
0
uhy
v DISTRIBUTION STATUMINT A
:' Approved for public reloana)
- D\smtmm n Unlinegs-?
-"_. " T o -
N s :
T e L e e A L L e Ll

SRERRRE

v e
%

- g}
A

i L
4"‘;,-‘:'.- ¥ abi

»

=)

ABSTRACT

/).',/,'
In this paper we present a parallel procedure for the solution of first-order

linear recurrence systems of size N when the number of processors p is small in
relation to N. We show that when 1 < p? < N, a first-order linear recurrence
system of size N can be solved in 5(N—1)/(p+1) steps on a p processor SIMD

1

machine and at most 5(N — ;)/(p + %) steps on a p processor MIMD

machine. As a special case, we further show that our approach precisely

achieves the lower bound 2(N—1)/(p+1) for solving the parallel prefix problem

on a p processor machine.

Accesion For

|
NTIS CRA&I o
DTIC TAB O
Unannou-.ced 0
Justification

BY
Distribution|

Availability Codes

i Avail .a':;-d"/ or
Dist Special

A-(

N .:-.n'-"J-.r._.r.(I
,, “.l'.l ‘. 5 .U\..o "o“':‘. \ '\." .-'\.. A % '4.

AT)Y NS
PSS EaN
unvl‘l Ll 3

L. INTRODUCTION

I’
L A
'

- In this paper we present a parallel algorithm to solve the well-known first-
order linear recurrence system R <N,1> when the number of processors p is

small in relation to N, and where R <NN,1> is defined as follows:

R<N,1>: Given N, given b = (b,, by, . . ., by), and given a = (ay, aj,...,

E: ' ay), compute £ = (z, Zy, . . ., zy)such that z, = b, and z; = a;z;_; + b; for
"‘. 1 =23,.,N.
A%
. We present both SIMD and MIMD versions of the algorithm. We analyze
4 "~ the SIMD version by first considering a simplified shared memory model of
§S parallel computation that facilitates comparison with previous work. In that
} model the parallelism exhibited by the proposed algorithm is examined in terms
E of data dependencies only, therefore allowing us to determine the idealized per-
E formance of the procedure. We then consider a second model of computation
‘ which consists of a SIMD p processor ring configuration with a broadcasting
w.\ capability. In that model interprocessor communication is taken into account,
» and a more realistic analysis of the algorithm is performed. The MIMD version
\J- of the algorithm is analyzed by considering the same simplified model as in the
-'A: SIMD case, with the exception that the same operation need not be performed
D

by all processors at the same time. Finally, we observe that the algorithm can

be efficiently mapped to an MIMD p processor ring configuration with a broad-

e casting capability.

,i‘n

3- Many algorithms have been proposed to solve linear recurrences in parallel,

%)

oo each with different objectives. Earlier results assumed the availability of an

s.:'_': unlimited number of processing elements and were concerned with determining
o

Zj:'. the number of processors necessary to achieve minimal computational time

< .

5

L%~

'

.‘n

PRI e '{~} .I.'."‘.f.

el

‘;:f\.‘:r:n_a:.»: 2ol ; e

AT RO OO T

o

; -4 -

e

o5 ' [KOG73|, [CHE75], [KUC76], [SAM77]. Later, limited processor solutions were
Lo considered. Chen, Kuck and Sameh [CHE78] presented a SIMD algorithm that
: solved M-th order systems in ('—2£)(2M2+3M) + O(M?log, -1%) steps, but

\ did not discuss any specific parallel implementation. Gajski [GAJ81] improved
' . upon this result by performing the SIMD computation in less than

}Z (%)(2M2+3M) steps using p < N* processors in a shared memory architec-

-

5 ture. In this paper we show that by using a SIMD p processor ring network

. modified to support global broadcasting, the number of steps required to solve a
jﬁ first-order linear recurrence of size N > p? is 5(N—1)/(p+1). This improves

:;: upon the results of [CHE78] and [GAJS81] for the first-order case when N > p2.
(Our approach is a generalization of the matrix factorization technique
presented in [MEY85], and it reduces to the SIMD procedure presented in

’ [GAJ81] when N = p2.

"y Moreover, when a; = 1, for all 7 in [1,2,...,N], R <N,1> reduces to a par-
P‘, ticular form of the parallel prefix problem. When N > p, Kruskal, Rudolph
,;: and Snir [KRU85] present an algorithm which solves the parallel prefix problem
. in 2N /p + 2log,p - 2 steps. Snir [SNI86] improves upon this approach when
t_i'. N > p? by solving the problem in 2V /(p+1) + O(1) steps, which is within a
' constant additive term of the lower bound. In case of parallel prefix, we show
:. that our algorithm precisely achieves the lower bound 2(N—1)/(p +1) esta-

& blished by Snir [SNI86] when N > p®.

g: Carlson [CARS84| considered mapping the computation of first-order linear
‘_ recurrence systems to perfect shuffle and cube-connected systems. A common
feature of both Carlson’s algorithm and our algorithm is that the computation
4 is organized so that the transfer of input and output data can be performed

>

? e A I T 4. A I S A N A A

oI -5-

concurrently with the execution of the algorithm, thus providing a balance

* between 1/O and processing loads.

4
~ An important problem related to the parallel solution of R <N,1> is the
::: parallel evaluation of general arithmetic expressions [BRE74]. In the case of
'. first-order linear recurrences of size NV, the prohlem is to efficiently evaluate zy
i' in parallel using p processors. In that case, we observe that when applied to
?:a computing z) only, a straightforward application of our approach does not
; improve upon existing results [BRE74], [CHE78].
E' In order to specify the parallelism exhibited by our algorithms, we augment
:;. those statements which can be executed in parallel. We use the following syn-
& tax:
E FORALL i ¢ § DO IN PARALLEL
s BODY /¥ Comments */
‘; END FORALL
, x ‘ which indicates that the BODY may be executed concurrently for each 1 in the
1_‘ set S.
s The SIMD procedure to solve R <N,1> is presented in Section II; in Sec-
§ tion III we discuss a parallel implementation of the algorithm, and in Section IV
u we present an MIMD version of our algorithm to solve R <NN,1>. Finally, our
:;E conclusions comprise Section V.
s? II. THE SIMD ALGORITHM
)
;', The abstract model of SIMD parallel computation (Figure 1) considered in
this section consists of a global parallel memory, p parallel processors, and an
:{ interconnection network, where all processors perform the same operation at

. each time step. We further simplify the model by making the following assump-
>
e
-

a:

$*n. \~\--v.\.'n 15' .\-%\ ",r .’_p*}";—“\ ‘.-_-.,q -------- ..-‘:-.‘. :...- o 1-5-" --------

W, (G AE,

2

e
AN

Ny

,
s\

l',

)
WA

........,.A
- -
e o
b _..ng

P A .
o A '-"-ﬂ‘v"l":"n".)

B, +

> -

: P A A A

ik

LTI Tty
Ty

N PR T N N R WS S N VWL T <t e el P LA Lo IR TR € 200 o L a0 % p T SILHLYIF R
"- ‘v‘ ".' {" " o3 ‘.O. Y e .N)*'{.'- .'.‘ '(\ -‘ "{.'"(“' . { . " v P.‘ R all u. ".' " ¢ > '» 4 (." t

tions:

Al. Each arithmetic operation (addition or multiplication) is performed in unit

time, referred to as a step.

A2. There are no accessing conflicts in global memory; furthermore, all data is

assumed to initially reside in global memory.
A3. There is no time required to access global memory.

This simplistic model allows the parallelism of the proposed algorithm to be
analyzed without introducing the added complexity of the implementation. In
Section IIl we map the algorithm to a specific computational network and we

analyze the corresponding implementation.

Given N and p, our approach to solving R <N,1> consists of partitioning

pi-1

R <N,1> into a sequence of reduced recurrence systems R <n,1>,

each of size n = p?, except for the last recurrence system which may be of size
less than p?. Each R <n,1> is then solved in parallel with its initial value
taken as the final value obtained from the previously solved reduced recurrence
system, except for the first recurrence that uses z; = b,. The first R<n,1>is
solved as folloWs: (i) each of the p processors concurrently computes a partial
solution for a different z;; (ii) after p parallel iterations p? partial solutions
have been computed, one for each z;, ¢ in [1,2,...,p2], where the partial solutions
for z;, 1 in [1,2,...,p], are precisely the solutions for R </V,1>>; (iii) based upon
z, the next p partial solutions z;, ¢ in [p+1,p+2,...,2p| are then updated in
parallel to their correct values. After p—1 parallel update iterations R <n,1>
is solved. The next reduced recurrence system of size p? is then solved with T2
as its initial value. We continue in this manner until the last R<n,1>is

solved. Since the initial and final values of each R <n,1> overlap, the complete

! "

" -7-
Lo o)
§3§ N-1
. 2 solution of R <N,1> requires solving 3 reduced recurrence systems.
0 p—1
e, We now describe the SIMD algorithm to solve R </V,1> when A;_ is
= Pl
": an integer. For win [0,1,...,(N—1)/(p2—1)], let the index sets S, and T, be
2 ._-‘.
Y defined as
3 S,={l+mp +wp’~1):m =12,..,p—1}
and
"y T,={1+mp + «(p?=1): m =0,1,..,p—1}.
3
}. 1. PROCEDURE R(N,p,a,b)
‘(2. z, = bl
::. 3. FOR w:=0TO (N-1)/(p®*~1) — 1 DO /* Solve each R<n 1> */
5
-"f 4. FORALL ¢ ¢ S, DO IN PARALLEL /* Begin Coefficient Computation Phase */
{n,
o
i 5. Ali g = a;;
‘&N
:: 6. END FORALL
oS 7. FOR{ :=1TO (p—1) DO
8. FORALL j ¢ S, DO IN PARALLEL
08 9. Ali+] 4] = 64 Ali+i=1,4;
Y
;_2;7 10. END FORALL
~
3
:” 11. END FOR /* End Coefficient Computation Phase */
-::5: 12. FORALL ¢ ¢ S, DO IN PARALLEL /* Begin Partial Solution Phase */
,"u*'
q 13. Z; = b'-;
o
14. END FORALL
% 15, FOR i :=1TO (p—1) DO
b 16. FORALL j ¢ T, DO IN PARALLEL
\!
17. Zigj = Oy Tigjmp + b.'+j;
’)
L
v
-y
R}
. \ +

A .'.V‘ “ .'.f\" RSN

o

D) gt ¥ o) (3 -

o
»
o
S - 8 -
Y
AT
Wy 18. END FORALL
-
Rahs 19. END FOR /* End Partial Solution Phase */
:.: 20. FORieS, DO /* Begin Solution Update Phase */
B
oy a1, FORALL j := 0 TO (p—1) DO IN PARALLEL
. 22. 2"+" = A[I+J,l] 2.‘_1 -+ I.'+J';
N 23. END FORALL
\l
B,
:_': 24. END FOR /* End Solution Update Phase */
ah 25. END FOR
o 26. END PROCEDURE
~
\‘.. - . - -
_";:\’ The preceding algorithm sequentially solves 7, reduced recurrence
L ™ p —-—
V!
X systems of size p2, each in parallel. Each reduced system is solved in three
';:,:" phases: the coefficient computation phase consists of the execution of loops 4
e '
b and 7 and computes all coefficients of the form a;,;a,,,;_, ' - - a; which are

needed later during the solution updates; the partial solution phase consists of

o

Y
;:: the execution of loops 12 and 15 and computes p? partial solutions, in which the

»>
$: first p partial solutions are the actual solutions; and finally, the solution update

“ ~

' phase consists of the execution of loop 20 in which the coefficients computed in
N E the first phase are used to update the next p estimates at each iteration. The
Jé. complete solution to R </V,1> is therefore obtained after executing p2:1
V3! iterations of loop 3. An example illustrating the computations performed by the
EE algorithm is given in Figure 2 for the case N = 17 and p = 3 where the nota-
:f.* tion Z, is used to indicate a correct value for the solution. Note that each com-
putational level may be performed in parallel using at most three processors.

N
:: Our model assumptions imply that we need only consider computational
)

oy operations when determining the number of steps required by the algorithm.

R e G R L S P S T T L L T SRS e T B e I A N e L o Jey T e UL T I e T T Y
M g O A M A I A N R T AT AL ISR e D S
S Sa¥, . - i W A

L] »

Pla? B W I W «

\,

-9Q-

Therefore we must examine those computations performed in loops 7, 15 and 20.
The execution of loop 7 is performed p—1 times, each iteration requiring p—1
processors to concurrently perform a single multiplication, thus loop 7 requires
p—1 steps. Both loops 15 and 20 are iterated p--1 times, each iteration requir-
ing p processors to concurrently perform a multiplication followed by an addi-
tion. Thus, loops 15 and 20 each require 2(p—1) steps. The total number of
steps required to solve each reduced recurrence system R <p2,1> using p pro-

cessors is therefore 5(p —1), and hence the resulting theorem follows.

Theorem 1: Given N and p such that is an integer, the number of

p3—1

steps required to solve the linear recurrence system R </NN,1> using a SIMD

. . 5(N—-1
parallel computer with p processors is 1
P

pi-1

If is not an integer, our approach to solving R <N,1> requires

that we solve the reduced recurrence system R <n,,1>, where n, < p2. One
approach to solving R <n,,1> is to use a technique which is known to be
efficient whenever n, < p%. Applicable techniques include the algorithms
presented by Chen, et al. [CHE78] and Kogge and Stone [KOG73|; however,
these techniques are not desirable because they require the machine to store
and execute multiple algorithms based upon the size of the recurrence system.
A less efficient but more practical approach to solving R <n,,1> consists of
using the proposed technique to solve the augmented system R <p2,1> and sim-

ply terminate the computation when the last z; is computed. In that case the

number of steps required by the algorithm is at most NQ_i 5(p—1).
p —

Finally, we make the observation that the above SIMD algorithm most not-

ably differs from the approaches presented in [CHE78] and [GAJS81] in that our

Ly v e e e e e e . D R S S S o . . T M P T e e .
i B e S AL R IR R R SR ORI ._-".'..,_0..-',\::._ e J‘.j‘ Mot T .;l‘._-{‘\._!..}_‘,‘f\- e A "..-é, o
» o . b .. 3 3

(oA A i £

]

I

XA

-10 -

A _ approach partitions the problem and sequentially solves a series of reduced

recurrences of size p°. However, when N = p?, our approach reduces to that of

'_{‘::‘ [GAJ81], except that Gajski presents the coefficient computation and partial
.}\

:‘ solution phases as a single computational phase. Moreover, when .V > p?, the
%

' algorithm of Chen, et al. [CHET78] is less efficient than Gajski's as a result of
| ._ implementing an extra computational phase in which a separate first-order
.-‘ - - . » 3 . »

o recurrence of size p is solved using p processors, requiring an additional 2log,p
Ag

steps.
* When N and p are powers of two, the algorithm of Chen, et al. requires

< N o I
e LIS + 2log,p - 5 steps [CHE78] and when _ﬂ? is an integer, Gajski's SIMD
% P P

algorithm requires —%(Sp —3) — 2 steps [GAJS81], whereas when 2_1 is an

> p p—

4 ‘:. integer, our SIMD algorithm requires only S(N-1) steps. For example, when
e p+1

oy

! N =28 and p =23, the number of steps required by the SIMD algorithms
,‘ presented in [CHE78|, [GAJ81] and this paper are 163,841, 151,550 and 145,635,
L

:.\ respectively.

J Finally, when a; = 1, for all 1+ in [1,2,...,N], R<N,1>is a particular form
of the parallel prefix problem and reduces to computing the cascade sums

:’, (by+bs), (by+by+b3), ..., (b;4+bo+ - -+ +by) in parallel using p processors.
v

. The following corollary is a direct consequence of Theorem 1.

S

j-f- Corollary 1: Given N and p such that 2, is an integer, the number of

.2 p2—

v .

i.r steps required to solve the parallel prefix problem using a SIMD parallel com-
- puter with p processors is M

p+1

’ Thus, when = (’_l is an integer, our SIMD algorithm precisely achieves

. p"_

s

<

RN

2

J:.

“4

A
£
e

LI N N N R T G R N T R e L -
A AN A N A N T N e
M e A M WA Wiy WYy ¥ . n »

- 11 -

2N —
the parallel prefix computational lower bound :(N?Ll established by Snir
p

[SN186]. This result improves upon existing approaches to solving the parallel

prefix problem when N > p2. In that case the parallel prefix problem is solved
2/

+1

in + O(1) steps by Snir’s algorithm [SNI86], Qﬁ + logyp - 2 steps by
p

the data independent algorithm presented by Kruskal, et al. [KRU85], and

Y (2p—1) — 1 steps by Gajski's algorithm [GAJS1].
p?

1. THE SIMD PARALLEL IMPLEMENTATION

The abstract model of SIMD parallel computation presented in Section II
neglected the issues of data organization and alignment as well as communica-
tion overhead, all of which are highly machine dependent. We now present a
parallel implementation of the proposed algorithm that takes these issues into
account. The SIMD model of computation considered in this section (Figure 3)
consists of p processors executing the same operation in lock step, with each
processor containing its own local storage. The processors are interconnected
by a unidirectional ring network in which processor ¢ transfers data to proces-
sor i1+1, ¢ in [1,2,...,p—1] and processor p transfers data to processor 1. Furth-
ermore, we assume that the network possesses a broadcasting capability that
allows any processor to broadcast data to all other processors. The time

required by the algorithm will be determined under the following assumptions:

Al. Each arithmetic operation (addition or multiplication) is performed in unit

time, referred to as a step.
A2. Interprocessor transfers require one step.

A3. Data broadcasts require one step.

e -12 -
e

O
:':::' A4. Each a; and b; required by a processor is assumed to initially reside in the
W -

.'l ;

' local memory of that processor.

',:3 In order to determine an efficient processor assignment, we first make the
: observation that the p consecutive partial solutions updated at each iteration
N

S of the update phase of the algorithm must reside in a different processor.

-:’ Furthermore, both the coefficient computation phase and the partial solution
_(:. phase of the algorithm exhibit explicit data dependencies which must be

1N

hc preserved. These constraints can be satisfied if we rotate the processor assign-

3 ment at each parallel iteration of the algorithm, and in that case, the algorithm
""u
B . . qs . . .
:; can be directly mapped to a SIMD p processor unidirectional ring network with

]

.(‘l‘ broadcasting capability. Figure 4 illustrates such a processor assignment and
:-_: the corresponding communication requirements for the case N =17 and p = 3.
:Z:: We now present the algorithm to solve R </V,1> as executed by processor
4 :-,

' k, for all k in [1,2,...,p].

4, 5.'

e 1. PROCEDURE R,(N,p,a,b)

-

: 2. =},

; 3. FOR w:=0TO (N-1)/(p?*~1) - 1 DO /* Solve each R<n 1> */
:::: 4 Alig] = ey /* Begin Coefficient Computation Phase */
N . 2_q) *

N /4= 14 (k=)p + w(p?=1) */

K,
e 5. FORi:=1TO (p—1)DO
[~ o

= 6 Ali+5,5]) = a;4; AlS+5-1,5];

iy
L /* 5 = (1+(k=i=1)p) mod p? + w(p?~1) */
., ‘ 7. END FOR /* End Coefficient Computation Phase */
e

N 8. IF k = 1 THEN z; := z; ELSE z; := b,; /* Begin Partial Solution Phase */
= /%=1 4 (k=1)p + w(p?-1)*/

i 9. FOR < :=1TO (p—1)DO

O
L4

S
273

{‘
l

-

i

Pl

P g
FeTEr
Tl T S e

ATy

WY ¥V
MY

A
» -
v % %

o Ty

l. ”

2
l_"..l

: T v 3
 PERAAARA

»

- &0

&

, - Tl ¥t AT AT A, e v Y S
O 30 5 ‘F“(") N P e TS DN RTINS st Y SRR

10. Tivj = Oiyj Tigj + binji

/* 7 = (14(k~i=1)p) mod p% + w(p?-1) */

11. END FOR /* End Partial Solution Phase */
12. FOR m =1 TO (p—-1) DO /* Begin Solution Update Phase */
13. Tipy = A[i+],i] Zio + Ty

/* i = 14+mp+w(p®~1), j = (p—m+k—1) mod p */
14. END FOR /* End Solution Update Phase */
15. END FOR

16. END PROCEDURE

Our model assumptions imply that we must consider interprocessor com-
munication in addition to operational count when determining the number of
steps required by the algorithm. Therefore, we must examine the computations
and interprocessor transfers performed iu loops 5, 9 and 12. Each iteration of
loop 5 requires an interprocessor transfer of A[t+7—1,5] followed by a single
multiplication. Thus, loop 5 requires 2(p —1) steps. Loop 9 is iterated p—1
times, each iteration requiring an interprocessor transfer of z;,;_, followed by a
multiplication and addition. Thus, loop 9 requires 3(p—1) steps. Loop 12 is
also iterated p—1 times, each iteration requiring a data broadcast of z;_, fol-
lowed by a multiplication and addition. Thus, loop 12 also requires 3(p—1)
steps. The total number of steps required to solve each reduced recurrence
R <p%,1> using p processors is therefore 8(p —1), and hence, the resulting

theorem follows.

p?-1

steps required to solve a linear recurrence system R </V,1> using a SIMD paral-

lel computer with p processors is —8-(%1
p

Theorem 2: Given N and p such that is an integer, the number of

_____ AT S .uﬂ'_t!_'-h‘ QWCLUR
Ak Wb vy VY “ 3 S A * '{ .-! w'

...........

- 14 -

Among the existing SIMD algorithms to solve R <N,1>, the SIMD algo-
rithm presented by Gajski [GAJ81] can be most efficiently mapped to a uni-
directional ring network with broadcasting capability. Based upon the assump-

. . . . N . .
tions made in this section, when — Is an integer the number of steps

p
required by Gajski's approach to solve R <N,1> is -N—.Z(Sp —5) — 3, and there-
p

fore when N > p? our approach is more efficient than Gajski's when imple-

mented upon a ring network capable of broadcasting.

Finally, we make the observation that the algorithm does not require all of
the inputs a; and b; in order for the processing to begin. Specifically, the algo-
rithm requires p2—1 a; and p? b; for every 5(p —1) computational steps,
corresponding to solving each R <p%,1> in sequence. Similarly, the outputs z;
are produced in blocks of p?—1 at a time. This suggests that I/O could be
overlapped with the computation, providing a balance between /O and process-
ing loads, and therefore the deletion of assumption A4 has a negligible effect if

one assumes that [/O and processing can be done concurrently.
IV. THE MIMD ALGORITHM

In this section we again consider the simplistic model of computation given
in Section II with the exception that we no longer require all processors to exe-
cute the same operation at each step; that is, we now consider a MIMD imple-
mentation in which we neglect the issues of data organization and alignment as

well as communication overhead.

The MIMD approach for solving R </V,1> is based upon the observation

that only p—1 processors are needed at each iteration of the coefficient compu-

p-1

tation phase. Assuming to be an integer, the total number of multipli-

b I N Y

¢ h

....
o)]

Y,

]
AP -
‘.\Al. oAy

AOLLAR
LS

s

P

15

227

-15 -

cations required to compute all necessary coefficients is ME{:D-, p—1 of
p

which may be performed concurrently at each step. Therefore, all of the

—1 .
steps using p —1 processors.

required coeflicients can be computed in

This leaves one processor free for (N—1)/(p+1) steps, allowing us to expand the

size of the recurrence by at most ny = -‘-)-(—-_m
“\p

and use the free processor

to concurrently solve the reduced system R <ny1>. Thus, using an MIMD

approach we can solve the entire system R <N+ny,1> in é(N—_;l—ll steps.
4

Given a recurrence system of size N and the number of processors p the

following lemma expresses ngy in terms of N and p only.

Lemma 1: Given N and p, ng = ﬂ;(}_’ﬁl}

2p+3

Given N and p, our MIMD approach to solving R <NN,1> consists of parti-
N'—no—l

pi-1

tioning R </V,1> into a sequence of + 1 reduced recurrences.

The first recurrence is of size ny+1 and all others are of size p?, except for the
last recurrence that may be of size less than p2. The coefficient computation
phase of the algorithm uses p —1 processors to compute all needed coeflicients
for all of the reduced systems. Concurrent with this computation, the free pro-
cessor computes the solution to R <ny+1,1>. Each subsequent R<n,1>is
then solved in the same manner as in the SIMD algorithm by executing a par-

tial solution phase followed by a solution update phase. The complete solution

N—ny—1
is obtained after solving all —2-9-1-—— + 1 reduced recurrences.
p —
. N'—no—l
We now present the MIMD algorithm to solve R <N,1> when —Tl——
p —

is an integer. As in the SIMD case, it is not difficult to modify the algorithm if

P - ‘-3'-', '\-‘r..."-‘h‘\v‘- '-"i\ '.-'v"v',"‘r N
TRt P QR o A A e

i) 15, A n { il

h)
(1A 1A
LA
" - 16 -
1%
““}: the above assumption is not satisfied by simply terminating the computation at

the point when the last z; is updated. For win [0,1,...,(N—no—l)/(pz—l)], we

W now define the index sets U, and V, as
) ".-:::
;ﬂf Uy={1+ne+mp +w(p’-1): m =1,2,....p—1}
(L
e, and
oo
E::E Vo={1+no+mp +wp?-1): m =0,1,....p—1}.
-.":-y
1. PROCEDURE R(N,p,a,b)
XY S
ey
.‘ ';(\' 2. 1'1 = bl
8o
'Q\::‘; 3. FOR ¢ :=2to nyg+1 DO /* Solve R<ny,1> */
‘x’ 4. I = 68; %, + b,‘
b 5. END FOR /* End R<ng,1> Solution */
-y
-r‘-J_‘
;::_' 6. FOR w := 0 TO (N—ny—1)/(p*~1) = 1 DO /* Begin Coefficient Computation Phase */
R
' 7. FORALL i ¢ U, DO IN PARALLEL
o Alislm a
el . . [1,¢]] := a;;
HEER
S 9. END FORALL
RO
B 10. FOR i :=1TO (p—1) DO
e 11. FORALL j ¢ U, DO IN PARALLEL
W
i
KO
= 13. END FORALL
e
\.-;-..j 14. ENDFOR
N
% 15. END FOR /* End Coefficient Computation Phase */
JOAE
; -2 16. FOR w := 0 TO (N-ny-1)/(p%*~1) - 1 DO /* Solve each R<n,1> */
-
ﬁ:: 17. FORALL ¢ ¢ U, DO IN PARALLEL /* Begin Partial Solution Phase */
o
h-.o 18. z; = b;;
ey
1 19. END FORALL
e
"
e
'\-s'.'
ot
4' .,-
27, \tl

-
o

,-1"
A

Racaas LN LA 1) b U0y 5,000 07 “ht U T SO0 OO Lo ! s :
v’[“" 5 \’:’lw’& My @"‘:lf’.,t .‘\'~|_I~|_\'y‘l'_,‘&'.tt?;‘.b’a?_‘q““hl.h‘ﬂ..l‘).l'p,l‘_q.« A‘-"lljhﬁ'y."l."l‘.‘l!..] v) ol

S e e

?
IR

o a T,

- o T TR T g v e ool aad and it saadh Slad Ata Ach Al A Sl b sael Ak aal sl el helotilhe Al Ale Al Ahe Ade 4

-17 -

20. FOR i :=1TO (p—1) DO
21. FORALL j ¢ V, DO IN PARALLEL

Tivj = Oigj Tivj1 + biaj

23. END FORALL

24. END FOR /* End Partial Solution Phase */
25. FOR i ¢ U,DO /* Begin Solution Update Phase */
26. FORALL j := 0 TO (p—1) DO IN PARALLEL

217. Ty = Alf4+7 0] 2y + 24

28. END FORALL

29. ENDFOR
30. END FOR /* End Solution Update Phase */

31. END PROCEDURE

Note that (i) the coefficient computation phase of the SIMD algorithm has
been modified so as to compute the necessary coefficients for all R <n,1> before
the first reduced recurrence is solved in parallel; and (ii) the processor that is
idle during the SIMD coefficient computation phase is now used to concurrently
compute the solution to R <ny+1,1>. An example illustrating the computa-
tions performed by the MIMD algorithm is given in Figure 5 for the case N =
19 and p = 3.

Based upon the MIMD model considered in this section, we conclude that
the time required by the MIMD algorithm is determined by the computational
operations performed in loops 3, 6 and 16. Loops 3 and 6 are executed con-

currently, using 1 and p —1 processors, respectively. Loop 6 requires
N“‘no-‘l

o+l steps, and the quantity ny has been defined so that loop 3 requires

at most the same number of steps as loop 6. All p processors are used in exe-

-

I3) w 1% ° o ‘ o0, O ™ o 4) Ry C oo, b $ Q) . O 1) A
v) Y 2 2 h
2T -“‘!".n" IO XY ‘?’,“f"ke:fb.ﬁ,l ST L L S SRS t’t po ’I-, > NS O Sl ST R l‘.’l’c‘:‘!ﬁ’:ﬁ) l‘!‘ '

)

Al

. - 18-

-~

e 4(N—ny—1

X h cuting loop 16, and thus loop 16 requires ————— steps. The number of

e | T v

- steps required by the MIMD algorithm is therefore T steps. Thus,

:: the resulting theorem follows.

:::: Theorem 3: Given N and p such that N > p? 4 %p - 1, the number of steps
_: required to solve a linear recurrence system R <N,1> using a MIMD parallel
o . . N—%

| \ computer with p processors is at most I(P T3/2)(p 1) 5(p—1).

'] When N = p? + ¥%p - 1, our approach reduces to the MIMD algorithm

?\ presented in [GAJ81] in which the number of steps required to solve R <N,1> is

-;: at most -—:zl_l— (p—1). When N > p? 4 %p - 1, our MIMD approach

b p°+¥%p—2

= differs from [GAJ81| by organizing a single coefficient computation phase to

&: compute the necessary coefficients for all R <n,1> before the first reduced

:: recurrence is solved in parallel, rather than including a coefficient computation

:E: phase as part of solving each reduced recurrence.

:}:. . Finally, we note that, like the SIMD algorithm, the MIMD algorithm can

a ' also be directly mapped to a p processor unidirectional ring network with

. broadcasting capability. Figure 6 illustrates such a processor assignment and
:_ the corresponding communication requirements for the case N =19 and p = 3.

N V. CONCLUSIONS

: The algorithm presented in this paper exploits the fact that for a fixed

:.f: number of processors p, the parallel approach presented in [MEY85] to solve

' R <N,1> attains maximum speedup %(p +1) when N = p2. When N > p?,

g the structure of R <N,1> allows the solution to be obtained by sequentially

53‘ solving a series of reduced recurrences, each of size p?, except for the last

3

<

........... AR T I IO R RGN Gl - - LR RS E Y Yl Nl Ol N
-~ ,\{.f‘., 4"‘-"'«"1‘ -.‘,‘. :' f. - -.. ‘.-*,3.** \-s ANV N o gy X),\

) V. \' A » A0

-19 -

recurrence system which may be of size less than p2. As a result, we are able to

improve upon existing approaches for solving R <N,1> whenever N > p2.

REFERENCES

[BRET74]

[CARS4]

[CHET5]

[CHE78]

(GAIS1]

[KOG73]

[KRUSS)

[KUCT8]

Brent, R.P., The Parallel Evaluation of General Arithmetic Expres-

sions, JACM, Vol. 21, No.2, April 1974, pp. 201-206.

Carlson, D.A., and Sugla, B., Time and Processor Efficient Parallel
Algorithms for Recurrence Equations and Related Problems,
Proceedings of the 1984 International Conference on Parallel Process-

ing, August 21-24, 1984, pp. 310-314.

Chen, S.C. and Kuck, D.J., Time and Parallel Processor Bounds for
Linear Recurrence Systems, IEEE Trans. Computers., Vol. C-24,
No.7, July 1975, pp. 701-717.

Chen, S.C., Kuck, D.J. and Sameh, A.H., Practical Parallel Band
Triangular System Solvers, ACM Trans. on Mathematical Software,
Vol. 4, No. 3, September 1978, pp. 270-277.

Gajski, D. J., An Algorithm for Solving Linear Recurrence Systems
on Parallel and Pipelined Machines, IEEE Trans. Computers., Vol.
C-30, No. 3, March 1981, pp. 190-206.

Kogge, P.M., and Stone, H.S., A Parallel Algorithm for the Efficient
Solution of a General Class of Recurrence Equations, IEEE Trans.

Computers., Vol. C-22, No. 8, August 1973, pp. 786-793.

Kruskal, C.P., Rudolph, L., and Snir, M., The Power of Parallel
Prefix, IEEE Trans. Computers., Vol. C-34, No. 10, October 1985,
pp. 965-968.

Kuck, D. J., Parallel Processing of Ordinary Programs, Advances in

Computers., Vol. 15, Academic Press, New York, 1976, pp. 119-179.

N y | i':l

- 921 -

wy [MEY85] Meyer, G.G.L., and Podrazik, L.J., A Matrix Factorization Approach
to the Parallel Solution of First-Order Linear Recurrences, Proceed-
L ings of the 23-rd Annual Allerton Conference on Communication,

Control and Compuling, October 2-4, 1985, pp. 243-250.

[SAM77] Sameh, A.H., and Brent, R.P., Solving Triangular Systems on a
":t: Parallel Computer, SIAM J. Numer. Anal., Vol. 14, No. 6, December
\1? 1977, pp. 1101-1113.

[SNI86) Snir, M., Depth-Size Trade-offs for Parallel Prefix Computation,

- Journal of Algorithms, Vol. 7, No. 2, June 1986, pp. 185-201.

. N %

S T T T S T M ST AT A LT AT I TR AP RN Ay
.Slii‘y,lgh ‘ ' "\‘* ‘o -!A J .. J 1

¥

Nl bl L o .

TEUF T RUNLWUNURL P I WY W w: w" wt owe

'
W
'

Parallel NMemory

M, M, My | ... M

Interconnection Network

Pl P2 P3 LY P

Parallel Processor

Figure 1. The Abstract Parallel Comp.ational Model

>
N
k
LhN
. -23-
~
e,
1A
ot
ot
-_:_t
4 \..:
gl
:' Ce Computational Time Parallel Computations
Phase Step
' L]
.:.\ Coefficient - A[4r4] =0, Al17] = a;
e Computation 1 _— Al5,4] = asA[4,4) A[8,7] = a5A[7,7)
N Phase
we 2 —_— Al6,4] = agA[5,4) A[9,7) = a,A[8,7)
if Partial =0t zy=b4 z7=b;
:_1': Solution 3,4 2o = Aoy + b2 Iy = 5T, + bB Ig = GgZ7 + bg
o Phase
":u 5,6 I3 = G32; + b3 Tg = GgTp + bo Ig = 4473 + bg
L
Solution 78 z, = Al44]z5 + 24 z5 = Al54)z5 + 75 zo = AlB4)z5 + 7
Update 9,10 27 = A[1,7)z4 + 21 zg = A[8,7)z¢ + 25 Zp = A[9,7]z¢ + 1,
Phase
.:" Cocﬂicient ——— A[l2,l2] = Gy A[l5,15] = a5
b Computation 11 —_— Al13,12] = a;3A[12,12] | A[16,15] = a,6A[15,15]
o - Phase
N 12 —_— A[14,12] = a,,A[13,12] A[17,15] = a,-A[16,15]
1594
W,
';'_'. Partial Iy = Iy Ti2= by, z)5=bys
.~ .
:' Solution 13,14 Zyg=ay0Zy + byo Ti3= 061372 + by3 Tio= 816715 + bjp
o Phase
\: 15,16 Iy =6+ by Ty =023+ by Ty = 8172738 + b7
o
:.: Solution 17,18 Zyg = A[l2,12]2“ + I I3 = A[l3,l2]z” + Z;3 Ly = A[l4,12]2“ + Ty,
.:‘ g;::::e 19,20 | zi5 = A[15,15]z), + 235 Zio = A[16,15]2,, + 244 7 = A[17,15]2)4 + 29
‘
o
23
%
Y FIGURE 2 : Solution of R<17,1> for 3 processor SIMD computer
\-
\U
A%
e
-
o
-J'
‘h"'
o
~
Y
e
L
v
t:..

h NURES T T AT EE WA MNP
.h e Rt R A, .) b S N, by '. '\',.

Rin a0 UG ; o Py T
..A'Q.wﬂ ‘lv.’.&‘:on?‘,'?lu'ta:"t‘ : o, \ 4' - A

T e AT N A e LR e T
» 54- choy Yl r P W T
[N R] A g Ba st K # v by

o e A A Al at s e e s A caE MLl s ik bk -vw-w.-wrvwva

Input Data <a;,b,>

Ny
D
DS Broadcast Bus

27,

562

:’ B

Output Data <z;>

Pl
F l.l"

[0 D]
LA T L

G 8 Ayt
A

w2t

FIGURE 3. The Practical Parallel Computational Model

XA p
A

4 ;';l

X%

£

™
b
: s'vl.’)l/‘
.

r~ o

; - . B T L S T LB L I I T T Y
A : - C e A LRV I S A R PP LR Y) SR I ~ PR .
. “‘m L. i/‘.. w 5 5 . ,A.:_-\-‘ ._-.._-.-_.\\I":.,‘ SN A e A e KN 4.'..\. . - LARNENE R NG 2 :\ , \ \ « =
o C AL GNP .o X B A 2 .

l).'
l‘ ll " l‘
o S o

»
.
»
3

X 3%

P
U
LRAOY)

to
(2]
.

Parallel Computations

Computational Time
Phase Step PROCESSOR #1 PROCESSOR #2 PROCESSOR #3
Processor a, i = 681416 g, i =249,10,12,17 a, i =357111315
Resident
Data b, i = 1681416 b, i =2,4910,12,17 b, i = 357111315
R Al4,4] = 7,7 =
Coefficient ! [4.4] = 00— A7) = a7 —
Computation 23 A[87] =~ apA[77] — - Al5,4] = aAl4 4] —
Phose 1 Al6.4] = 26A[5 4] Al9,7] = a,Al87] —
Partial 5 Zi= b= Tambe— Tr=br—
Solution 6,78 Ig= agr;+ bg— Zo= 6L + bo— Tog= Qg4+ by —
h
Fhase 9,10,11 ITg= aoI5+bg Zog™= GoZg + bg 13—a3z2+63:'o
Solution 12,1314 Zo= Al6djzs+ 70 z4=Al44|z5+ z, Zs= A[5,4]z5 + z6
Update 15,16 Zg= A[87|z4 + s Zo= A[9,7|z4 + 2o Z7= A[77lze + 2
Phase
_— Al12,12] = A[15,15] = a
Coefficient 17 [| =8p— [J 15—
Computation 18,19 Al16,15] = a,A[15,15) — Ip— Al13,12] = a,5A]12,12] —
Fhase 20 Al14,12) = a,,A[13.12] A[17,15] = 4,;A[16,15) Zo—
Partial 21 Lo — Im-blg—* 215-615—0
Solution 22,23,24 Zig™ G715+ blo"" Zyo™ G0l + bw—‘ Ti3= 61370+ b13—’
Phase —
25,26,27 Tu= 1213+ by Tiy=6yT1e+ by In=anZpot+by=
. 28,29,30 114-A{14,12l11|+ I“:’ Zm"A[l?,lQ}Zu"’ Zi2 Zla-A[13,12]1“+ I3
Solution
Update 31,32 Ilg-A[ls,lsllu'f Iis 117-A[17,15]Zu+ X7 215-A[15,1511“+ Is
Phase
Processor 1, i =1681416 2, i =249101217 z,, i =357.11,13,15
Resident
Results

Notation: —+ indicates that the data evaluated at the current step is transferred to the processor on the right.

= indicates that the data evaluated at the current step is broadcast to all processors.

FIGURE 4 : Processor Assignment for SIMD Solution of R<17,1> with p = 3

=

"~

l‘l!l"_l.J .} _I J

P b Jet gt gy

v+ IR ¢

»

BPCT YA SN Y

i A me ds G
"“ ~y W el .

Computational Time Paralle]l Computations
Phase Step
Coefficient 7 =0b Al6,6) = a, A[9,9] = g
C""f“‘“‘w" 1 Ty = gz, A[7,6] = a;A[6,6) A[10,9] = a,,A[9,9]
R<ng+1,1> 2 Zo=125+ by A[8,6] = agA[7,8] A[11,9] = a,,A[10,9]
Solution
Phase —— A[14,l4] = 0,4 A[17,17] = a7
3 T3 = ayT, A15,14] = a;sA[14,14] A[18,17] = a,5A[17,17]
4 Z3=123+ b3 A[16,14] = a,4A[15,14] A[19,17]) = a,,A[18,17]
Partial Z3=13 zg = by zg = by
IS,‘;::::M 5,6 Z,=a23+ b, z7 = 872 + bg Tyo = 610%s + byo
78 Zs = agzy + bg zg = agZ7 + by)y = e + by
Solution 9,10 z¢ = Al6,6]z5 + 74 z7; = A[7,6]zg + 27 zg = A[8,8]z; + z4
Updatc 11,12 Iy = A[9,9123 + Zy FA A[lO,Q]Zg <+ Iy Z = A[ll,glzs + Ty
Phase
Partial Iy =1In Ty = by z17= by
i:l:::o" 13,14 Zy3= a2 + byp Tip= 015714 + bys Tig=a1g%)7 + byg
15,16 Z)3= ap;Z12 + by Zie = 819715 + byg Tig= 819715+ by
Solution 17,18 | zy, = All4,14]z,3 + 2714 Zis = Al15,14]2)3 + 2,5 210 = A{16,14]215 + 744
g’}:ddlc 19,20 Iy = A[l7,l7]zu +)7 Zig = A[18,17]Zw + z8 L9 = A[19,17]Zw + Z9
ase

s

€ ey w A C* .

"‘35 4 e e e ’:P‘ " -r «
Ll Al A AL N

PR
ra) LS00

FIGURE 5 : Solution of R<19,1> for 3 processor MIMD computer

-

ML I L RIS A N % Wi) ™23 ‘~' S e T R B T Y
IR AN T e e I S S T L)

BT VR ST AP T

Fog TR T R g™ “ppe r
SRy ’ <0t A
o G ‘ﬂ. ”0’. () A..C"o. L 0‘

i t‘.
\ ,,
" -27-
e
-
By~
7
w2
..\:-.
i Parallel Computations
e ’ Computational Time
Bt M
- Phase Step PROCESSOR #1 PROCESSOR #2 PROCESSOR #3
xat P
ue rocessor s, 1 = 8101618 8, =2346111214,19 g, 1= 579131517
i) Resident
'-'..:- Data b,, s = 1810,16,18 b, | = 46,11,1214,19 b, 1 =» 23579131517
‘o
't-.‘
Coefficient ! Zy=by— Al6.6] = ag— Al99] = ag—
- Computation 2,3 A[109] = a,6A[9.9] — To= a3l — Al7.6] = a;A[6,6] —
f “
A % +
,'-::: R<ngtl 1> 4,5 A[8,6] = a5A[7.6] Al119] = a,,A[10,9 Zo= 2o+ bo—
.\.::‘. Solution 6 Zo— Al1414) = a4 — A{1717]) = a7 —
.. "
e Phase 78 A[18,17] = a,5A[17,17] — Iy= QsZy— A{15,14) = a,6A[14,14] —
1 9,10 A[16,14] = a,,A[15,14] Al19,17] = 3 ,A(18,17] Is=zI3+ bg—
\i::.
e
e . 11 =-b Zo=b
N Partial Zs— %o o o o
i Solution 12,13,14 Tio= 610Zo+ bo— Ze= G Zs+ by~ Ty= G7Zg+ by —
; Ph
N ase 15,16,17 Zg= agl; + bg Iy=anzie+ by Zs= 0ozt b=
i
AN :
SR . 18,19,20 Zzg= A[8,6|z5+ 23 = Zg= Al6,6{z5+ z¢ Z7 = A[7,6]z5 + z7
:,»\' Solution
i "h! Update 21,22 Zio™ A[lO,Q]zg + Xy - A“l,glzs +zy Zg™= A[g,ngs + Zy
Phase
v .-
Py
.".:n: 23 ——— Zig= bu—’ Iy bl7_.
SO Partial
e
i::- Solution 24,25,26 Tig= di92;7+ big— Zig= 819+ bo— Zyg= 15214+ Dis—
w% Phase -
27,28,29 Zio= 610215+ byg Z=dprigt+ by Zig= a15Z2+ b =
-
-
2
s . 30,31,32 = A[16,14 = - All4,14 + = A[l5,14 +
| ::?_. Solution Zi0 [213+ 710 214 [|Zis + 214 Zs [213 + 215
. ‘E-: Update 33,34 Zig™= A[18,17]I|e + Zi8 g™ A[19,l7]z,g + Zy F At A A[17,l7]2 o+ 217
K o Phase
. =2
e Processor z,, i = 18,10,16,18 z,, i =46,11,12,14,19 z,, i =23579131517
T Resident
> Results
Lo
:‘. Notation: —=+ indicstes that the data evaluated at the current step is transferred to the processor on the right.
':‘ =3 indicates that the data evaluated at the current step is broadcast to all processors.
x5 . . .
e FIGURE 8 : Processor Assignment for MIMD Solution of R<19,1> with p =3
_‘-:::
4
l.fl -~
.' ’
x
[y ’
s
‘ -
W
o

) ; —
<

: .;lCL.RITV CL‘SSI‘lCAT'CN O‘ Tnlﬁ PAQE (“7"\ Da - l’nln.d)
2 s e
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORY NUMBER 2. covv CCESSION CIPIENT'S CATALOG NUMBER
JHU/EECS-86/07 AT i é ?C_
4. TITLE (and Subtitle) v S. TYPE OF REPORT & PERIOD COVERED |
A PARALLEL FIRST-ORDER LINEAR RECURRENCE TECHNICAL
SOLVER
6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
GERARD G.L, MEYER AND LOUIS J. PODRAZIK AFOSR-85-0097
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

THE JOHNS HOPKINS UNIVERSITY
BALTIMORE, MARYLAND 21218

1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH /NM - SE:’TREM:’EPR 1986
BOLLING AFB, DC 20332-6448 - NUMBER OF PAGES

14. MONITORING AGENCY NAME & ADDRESS(!! different from Controlling Ollice) 1S. SECURITY CLASS. (of this report)

UNCLASSIFIED

15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thie Report)

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the sbstract entered in Block 20, i1 dilferent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse alde If necessary and identily by block number)

LINEAR RECURRENCE; ALGORITHM COMPLEXITY; PARALLEL EVALUATION;
PARALLEL PROCESSORS; PARALLEL PREFIX

20. ABSTRACT (Continue on reverse side {f neceseary and identify by block number)

In this paper we present a parallel procedure for the solution of
first-order linear recurrence systems of size N when the number of processors
p 1s small in relation to N. We show that when 1< p2& N, a first-order
linear recurrence system of size N can be solved in 5(N-1)/(p+l) steps on a
p processor SIMD machine and less than 5N/(p +2) steps on a p processor
MIMD machine.

DD ," 5", 1473 eoiTion oF 1 nov 68 15 oBsOLETE UNCLASSIFIED
S/N 0102- LF-014- 6601

SECURITY CLASSIFICATION OF THIS PAGE (When Date Bntered)
'

¥ AR - LN _.'A'-‘
A A L R Y

o » T l a ¥ ~ '¥ \-‘{ W
e L g S S S R A =

bt | ANAOONG) RRnANTT

o X D000 00T o R L .
Jidt o :§ :‘;.\‘ ":"'u.s\ 2 T
' o it)

O
e At c.. DN -’z.:‘m

idt ,a'H (Yo N.o

