
A-ft71 82 PROGRANTICS 1(U) CRNEGIE-HELLON UMY PITTS8RN PR

Al- n ITH ER NARNN 12 NY 81 D A B 7-2-C-JI?3

UNCLASSIFIED F/0 9/2 ML

12.5
-. III IIIIW. I ..-..
11 . 1 36 22-

IL. 112.0

1.25).

MICROCOPY RESOLUTION TEST CHART

p.-

4-'-°,--

-

am *..
.

J *

04
00

Programatics II
rn.

A. N. Habermann

Carnegie-Mellon University

Pittsburgh, Pa 15213

Contract DAAB-7-82-C-J173

Abstract

-Programatics" is the context in which one can talk about programs written in the
functional programming languagel'Alfa" - Programs written in Alfa are collections of
domain and function definitions. The moSt important tool for defining functions is that of
functional composition, which allows us to write functional expressions that create new
functions out of existing ones. In addition to the language Alfa, Programatics contains
rewriting rules for functional expressions and a library'of proven functional, equivalences
that can be used for substitution of subexpressions. This report supersedes "Notes on
Programatics Part I", dated 8 September 1980. Two major changes are that primitive
types. such as integer, are no longer part of the Alfa language and that the concept of type
has been replaced by that of domain.

DTICSSEP5 19863
^ELECTE

SThis research is sponsored by the Software Engineering Division of CENTACS/CORADCOM, Fort
Momouth, NJ.

L&J

-6WIwgvnON STATEMEN7
jkppI9, lot public ret.084W

Distriuti Unlimited J

867 7 5

.d -. ,.,.. :- --

anh 12 May 1981 Procramatis 11 page

Table of Contents

1. introduction.1
1.1 Names and Primitive Domains.

1.2 The Atomic Domain. 2
1.3 Sequences. 3
1.4 Equality of Atoms and Sequences. 4
1.5 Representation of Domains. 5

2. Functional Composition. 7

2.1 Constant Functions.

t/

I f'

P(~"1

anh 12 May 1981 Programatics II page 1

1. Introduction.

1.1 Name', and Primitive Domains.

The unive se of objects we are going to talk about is partitioned in a small (finite) collection of non-

intersecting sets, called primitive domains. Examples of primitive domains are the set of all integers,

the set of ASCII characters, etc. For several of the primitive domains, object names are chosen such

that their representation indicates the primitive domain of the object referred to. For instance, the

representation of the number twelve as a string of digits, 12, reveals that the object referred to

belongs to the set of integers. Likewise, the representation of a character between single quotes, e.g.,

+' or '7' or 'x', conveys that the object referred to belongs to the set of ASCII characters. In other

cases, objects of a primitive domain are made public by listing their names. If objects in different

primitive dom)ains have the same name, potential ambiguities can be avoided by prefixing the object

names by the names of the domains these objects belong to. For example, the name John occurs in

both families

Smith: = {John, Mary. Susan, Dave),
Jones := (Bob, Betty, John, Don)

Ambiguities can be avoided by using th~e full names "Smith.John" and "Jones.John". The primitive

domains will all be referred to by distinct names.

We make one important assumption about the names we use:

For every pair of names denoting objects in a given primitive domain, it is decidable
whether or not these names denote the same object. That is, for every pair of names (u, v),
denoting objects in a primitive domain D, the predicate "u = v" is computable and yields
either true or false.

Examples: let T: (a, b, c, d).

The equations " first(T) = a " and "successor(b) = c "are true.
The equations " predecessor(c) = a" and last(T) = b" are false.

• 1

anh 12 May 1981 Programatics II page 2

1.2 The Atomic Domain.

It is often the case that a function f(x) is defined for certain values of its argument 'x', but not for all

conceivable values. Such a function is calk-d a partial function. For example, the function "sqrt",

which computes the square root of its argument 'x', is defined for real numbers greater or equal to

zero, but not for negative numbers. The set of argument values for which a function is defined is its

input domain. If D is the input domain of a function f(x), the set of all images, f(D), is its output domain.

All domains are constructed out of elements of the atomic domain T and the unique object nil. The

elements of T are called the atoms. The atomic domain is the union of a collection of non-intersecting

primitive domains, T : = B v C v I u Primitive domains that usually are included in the atomic

domain T are the set B (the set of Boolean values (true, false)), the set C (the set of ASCII characters)

and the set I (the set of integer numbers). Other primitive sets may be included if so desired. For

example, the atomic domain may be extended by a new primitive domain "Color" or a domain "Daya.

New primitive domains are defined by enumerating their atoms. For example,

domain Day: a (Sun, Mon, Tue, Wed, Thu, Fri, Sat)

In the next sections, the specific nature of the primitive domains is of little or no importance. We

assume, for the time being, that some brimitive domains have been chosen, one of which is B, the

Boolean domain. All domains, including the predefined domains and the ones added by definition to

the set of atoms, are enumerable sets. (In fact,for computer applications, primitive sets may be large,

but everyone of them, including the set of real numbers, is finite.) The property of being enumerable

is considered with favor, because it makes all primitive domains totally ordered. For every pair of

objects (u, v) of a primitive domain D, the predicates "u < v", "u <= v", "u > = v" and "u > v" are

computable and have the usual meaning.

The unique object nil is called a sequence, and in particular the empty sequence. We assume that

nil is not an element of T. In the next section we will see how the empty sequence is used to create
non-empty sequences.

,,.
4.

4t

-p

q
0

- , , r " -. . ." ,' . . * 4 . - . . -" °"•.°- ••. . = . = •. = °.= -. = . . . °° % ' ' %

,IL =. -, ,- - ,7 & - J - .- r I1 -', ,L ; : - -1: ¢ f~ t T F ."X V ''7W . 7 ' . W ' ;' . - S.

anh 12 May 1981 Programatics II page 3

1.3 Sequences.

A proper sequence (or a non-empty sequence) is constructed out of an existing sequence and an

object that is either a sequence or an atom. The construction is denoted as "z << u", where "z" is a

sequence, "u" is either a sequence or an atom, and "<'" represents the operation push.
(Occasionally, we write "push(z, u)" instead of "z << u".) The operation push is defined in conjunction

with the operations pop and last by the rule

IF s:= push(z, u) = z << u, THEN pop(s) = z and last(s) = u.

Initially, there are no other existing sequences than the empty sequence, nil. Thus, the first collection

of proper sequences that one can create, all use nil for "z" and an atom or nil for "u". If the atomic

domain is defined as T: = (a, b, c), the first collection of proper sequences is

nil << a, nil << b, nil << c, nil << nil.

Since pop(z << u) = z, application of "pop" to any sequence of this collection yields nil as
result. Since last(z << u) = u, application of "last" to the sequences of this collection yields

respectively a, b, c and nil.

The proper sequences that we just created can now be used to generate longer sequences by
substituting them either for "z" or for "u" in the expression "z << u". It is obvious that, because of the

construction procedure, all proper sequences must have the form

nil<< u, << u 2 << ... << Un, where n > O.
It is frequently more convenient to represent a proper sequence as a list of the form

(u 19 u2 1 1Un), for n > 0.

An alternative representation of the empty sequence, nil, consistent with the list notation is"()".

Examples.
push result pop last

nil <(a (a) () a
(a) << a (a, a) (a) a
(b) << a (b, a) (b) b
(a. c) (< (b) (a, c, (h)) (a, c) (b)
(a, c) << (b, c) (a, c, (b, c)) (a. c) (b, c)
(a, a) << nil (a, a, nil) (a, a) nil

The set of all proper sequences, S, is defined as the transitive closure (T, nil, push). The union S v
(nil) is the set of all sequences, Z. The union T v Z = T v S v (nil) is the universe, U. We adopt the

convention that t" represents an atom (an element of T), "z" a sequence that may be empty (an

element of Z), "s" a proper sequence (an element of S) and "u" any object of the universe (any

element of U).

** • S %'.;t*.

anh 12 May 1981 Programatics II page 4

1.4 Equality of Atoms and Sequences.

The fact that the set of atoms, T, is the union of a collection of non-intersecting primitive domains,

implies that each atom belongs to exactly one primitive domain. In Section 1 we stated the

assumption that for every pair of elements (u, v) of a set D the predicate "u - v" is computable and

yields either true or f;lse. Thus, equality is defined for every pair of elements of a primitive

domain. For any pair of atoms belonging to two different primitive domains, equality is false, because

primitive domains have no elements in common. For the empty sequence, nil, we define the equality
"nil = nil" to be true, while the equality "nil = u" is defined to be false if u is either an atom or a

proper sequence. For proper sequences s, s2' equality is defined by the rule

s1 = s2 is true iff pop(s1) = pop(s 2) and last(s1) = last(s2).

TheOrem 1: Every proper sequence s can be broken apart and put together again by
the rule: s = pop(s) << last(s).

Proof. Let z : = pop(s) and u : = last(s).
The relationship between "push", "pop" and "iast" states that

pop(z << u) = z and last(z << u) = u.
The equality s = z << u is true, because pop(s) = z = pop(z << u) and last(s) = u = last(z < u).
*0*e

Examples. Let T := {a. b).

a = a is true a = b is false a = nil is false (a) = nil is false
(a) = (a) is true (a (b)) = (a (b)) is true a = (a) is false nil = (a b) is false
(a (b)) = (a b) is false (nil) = nil is false nil = () is true (a a a) = (a a a) is true

Note.

The reader should be aware of the distinction between the three symbols "= ",":=" and "= =".

S'= " represents equality of objects in the universe U. As such, it represents a function (or
predicate) that maps a pair of elements of U into the boolean domain (true, false).

* ": =' "stands for the phrase "is being defined as". The lefthand side is a name that is
introduced as a representation of the righthand side.

* "= =" represents functional equivalence. Two functions "f" and "g" are equivalent on a
common domain D, denoted by "I = = g", if f(x) = g(x) for all x c D.

anh 12 May 1981 Programatics II page 5

1.5 Representation of Domains.

Domains are needed in function definitions for specifying the functionality of a function, describing

the input and output domains. We use a notation of the form:

f : D->E,

where "f" is the function name. "D" the input domain, "E" the output domain and "D .> E" the

functionality of function f.

It is often the case that a domain is supposed to describe a set of objects that have a common

structure, such as pairs of integers or matrices of a certain size. Primitive domains are enumerable

sets and can therefore be represented as sequences. It is possible to describe other domains also as

sequences, but such an approach leads to a rather clumsy notation. Take for example the case of

integer pairs. The domain of all integer pairs can be constructed as a sequence by distributing the

primitive domain "int" over all elements of itself, resulting in pairs (i, int), and by then distributing each

first element of these pairs over the second. The concatenation of all resulting sequences is the

sequence that contains all integer pairs1 . It is obvious that this way of describing domains is not very

convenient.

A better construction procedure for domains is the following. Analoguous to the construction of

objects out of primitive objects and nil, domains are generated from the primitive domains by taking

subsets and by combining existing domains. Starting with the primitive domains, other domains are

generated by the rules:

* (D1, Dn), for n > = 1, represents the domain of sequences whose it" element is an
object in domain D', for 1 (= i < = n.

is (D..) is a domain of sequences [including the empty sequence] whose elements are
objects in domain D.

* (),,) is a domain of sequences [not including the empty sequence] whose elements are

objects in domain D.

* 0 u E is the domain of elements that are in the union of domains D and E.

its D I p is the domain of elements x in domain D for which the predicate p(x) is true.

Examples.

1Anticipating the discussion of functional composition in Chapter 2. the function th3t generates the sequence of all integer
pai s from the primitive sequence of integers is

"link: aldistr • rdistr - (id. id): int").

pa

%

anh 12 May 1981 Programatics II page 6

nat := int Iid>0 even int I(id%2) = 0
frac = (int, int) I last # 0 arith = nt u frac v float
NIL := u lid = nil tree := NIL L(u, tree, tree)

intvec = (int..) intmatr = (intvec..) I = : a len
family = (father, mother, son, daughter) parent = family lid E (father, mother)

The function "ic" maps the input onto itself. The predicate "id > 0" is true for positive integers and

false for zero or negative integers. The function "%" is the remainder function. The domain of

fractions is defined as a restriction on the domain of integer pairs by requiring that the second

element be non-zero. The domain of binary trees is defined recursively. At least one of the alternatives

in a recursive definition must be non-recursive. An intvec is defined to be a (potentially empty)

sequence of integers. An intmatrix is a sequence of intvecs that all are of the same length. The

function "alen" takes the length of all elements of the input sequence and the function "="

compares the results for equality. The family domain is an example of a new domain (cf Section 2) and

parent is defined as a subdomain by restricting the family domain.

i

-,=. * -.,...,.-,'.. ..'..'.',- ='......'-..-.,.-... o ..'o/.,'."..,,'....-. ,.. -. . ..-.', €

I

anh 12 May 1981 Programatics II page 7

2. Functional Composition.

2.1 Constant Functions.

A function f that maps every element of the universe onto a fixed element u e U is called a constant

function. For instance, the function f(x) = 5 maps every real number onto the integer number

5. Likewise, the function f(x, y) = (0, 0) maps 3very point in the cartesian plane onto the origin.

For every element u e U there is exactly one constant function that maps every element of the

universe onto that particular element. The constant function associated with a particular element u e

U is denoted by 9[u]. Thus, T[u] is the function f such that T[u](x) = f(x) = u for all x e U.

One of the functional composition rules in Alta is that of serial composition, denoted by the symbol

". its definition is that of functional composition in mathematics:

"f : g" is the function "h" such that h(x) = f(g(x)).

Two important properties of constant functiops are expressed in the following theorems.

Theorem 1: For every function f and element u e domain(f), the serial composition of f
with the constant function p[u] is'the constant function qp[v], where v = f(u). That is,

f: qul= =9f(u).

Proof. Let v := f(u),g:= q[v] and h := f: 4[u].
h(x) = f(qp[u](x)) = f(u) and g(x) = q[v](x) = v.
Since f(u) = v, h(x) = g(x) for all x c U. Thus, h = = g.

Theorem 2: For every function f and every element u t U, the serial composition of the
constant function q)[u] with f is the same as that constant function on the domain of f. That
is,

97[u] : f = = qju] on domain(f).

Proof. Let g:= Tu] and h : = g : f. Thus, g(x) = u for all x e U.
h(x) = g(f(x)) = u for all x for which I is defined. Thus, h = = g on domain(f).

S....

Examples.

composition result function application

sqrt: 9)[1 6 1 q)[41 sqrt(q[16](23)) = sqrt(16) = 4
,[7): sqrt q)[7] for x > = 0 q)[7](sqrt(16)) = 4p[7](4) = 7

q)[nill : max q,[nil] for (int, int) 9q(nil](max(3.8)) = q)ni](8) = nil
max: 4p[(2, 7)) q[7] max(q.[(2, 7)1(x)) = max(2, 7) = 7

* -. *~. - - - - -. -. - .~.~r~-v-:- ''y-,.*~-p~~ ~

II
I

J

Ii

~-

'-5-.,-

t5-
.5-

~55%S~

Say

- I-.

a~s%
JS.~

I
~'1

a'

'*4 .55

'.5.

.5.

II

