
AD-AI7T 671 FORMAL TECHNIQUES FOR SPECIFICATION AMD VALIDATION OF 1/2
TACTICAL SYSTEMS(U) MASSACHUSETTS COMPUTER ASSOCIATES
INC WAKEFZELD 92 JUN 86 CADD-8686-6283

"UNCLASSIFIED DAAK88-8i-C-0872 F/G 9/2

EIIIIIIIIIIhI
EIIIIIIIIIIIIE
EIIIEIIIIIIIIE
EIIIIIIIIIIIIE
IIIIIIIIIIIhEE

I

II2I __8 2.5

L 1 2.2

Q W.M

1.25 l1.4 1.6

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

% ~ ~

DTI

mS Fina Technica Reor

(FrMalTchnuesfoSpciatn

~ and Validtion AsoTctialtes)c

86 7 3 0

DT%

MASSACHUSETTS
COMPUTER ASSOCIATES, INC.
26 PRINCESS STREET. WAKEFIELD, MASS. 01880 * 617/245-9540

Final Technical Report

Contract No. DAAK80-81-C-0072

(Formal Techniques for Specification

and Validation of Tactical Systems)

jJune 2, 1986

CADD-8606-0203
~DTIC

SEP 5 1986

~B

Submitted to:

SU.S. Army Communications & Electronics Command
Fort Monmouth, N. J., 07703-5008

Attn: E. Kivior
'V -. AMSEL-PC-S-A-CO(KIV)

~WI~RMCfO STATEMENT 1
i |Appioved tol public te609%

D ostrib utl ,,n ,,.d ___

A SUBSIDIARY OF APPLIED DATA RESEARCH, INC.

Massachusetts Computer Associates, Inc. (COMPASS) is pleased to
submit this Final Technical Report for Contract DAAK80-81-C-0072,
on Formal Techniques for Specification and Validation of Tactical
Systems.

The primary results of this basic research program are embodied in a
published paper, "Object-Oriented Subsystem Specification", which
is attached as Appendix I.

A major objective of this research was to initiate a transfer of formal
specification technology into the design and development of tactical
systems. To this end, the research was carried out in collaboration
with engineers from CENTACS, who participated in a number of
experimental case studies over the duration of the project. One of
these was documented in a separate paper, attached as Appendix IL1
this describes our collective first attempts to formalize the design for a
(hypothetical) "tactical situation - reporting system", before either the
formal specification techniques or our informal conception of that
system had fully matured. Essentially the same example is considered
in the final paper.

The starting point for this reasearch was the mathematical approach to
system specification originated by J. R. Abrial at Oxford University,
which has come to be known as "Z". Much of the work on this
contract was carried out in direct collabortion with the Programming
Research Group at Oxford. A collection of papers on Z from this
group, reflecting the state of their work at that stage, is attached as

Appendix M11.

1
)-.j, V-, ~ . ~J' .~

".4*........

is

Od

Appendix I

V

OBJECT-ORIENTED

SUBSYSTEM SPECIFICATION

S. A. Schuman & D. H. Pitt

CA - 8606 - 0202

June 2, 1986

I

To appear in: Meertens (ed.),
Proceedings of the IFIP Working Conference
on Program Specification and Transformation
(North-Holland, 1986).

This research was supported in part by the U.S. Army
Communications and Electronics Command, Fort Monmouth, N.J.,
under Contract Number DAAK80-81-C-0072.

J - ''I, ,." " f , i , , -*.p, --- ... %* * .% ., *. % -. . -. *.. • . ,

OBJECT-ORIENTED SUBSYSTEM SPECIFICATION

S.A. Schuman *
University of East Anglia

D.H. Pitt t
University of Surrey

1. Introduction

The aim of this paper is to introduce a rigorous, mathematically based notation for supporting the
earliest phases of the software design process, sometimes referred to as "systems architecture".
Our objective is the development of a formal framework that could be applied successfully in
practice. As such, we are consciously following in the footsteps of. VDM [Bj0rner & Jones,
1978] and [Jones, 1980]. The particular technique presented here is a variant on the approach
originated at Oxford by J-R. Abrial, which has come to be known as "Z"; this is now documented
in [Suffin etal., 1985] and [Hayes, 1986].

Underlying much of the current work in this area is the well established structuring principle of
data abstraction, which implies some basis for modular decomposition into separately specifiable
sub-units. Over the years, two somewhat distinct "schools of thought" have emerged as to the
proper basis for applying such principles "in the large". We Argue that this apparent divergence
reflects a fundamental (technical) distinction, between values as opposed to objects. Quite
obviously, both concepts have an important r6le to play.

In the case of values this decomposition is based upon "abstract data types", which serve to
4-, characterise some domain of interest in terms of certain constructor and selector functions. The

abstraction then involves specifying an equality relation over such (immutable) values. The so-
called "algebraic" approach, initiated by [Guttag & Homing, 1978] and [Goguen et al., 1978] is
therefore especially appropriate in this context; it is also the focus of most recent research onS formal specification methods.

A "class" of abstract objects, in contrast to a "type" of values, serves to encapsulate the definition
of some internal state in conjunction with an associated set of access operations for querying
and/or updating any individual instance of that class. Thus "axiomatic" methods involving pre-
and postconditions, expressed in terms of a suitable state model, would appear to be the most
natural approach for specifying such abstractions. As foreshadowed by [Dahl, 1972] and [Hoare,

p 1972], the "object-oriented" paradigm originally embodied in SIMULA 67 (and subsequently
incorporated into a number of more recent programming languages) has proved to be an extremely
effective technique for decomposing and reasoning about complex systems. Our goal here is to
provide a useful counterpart to those facilities at the level of formal specifications.

Section 2 of this paper contains an informal overview of our notations and conventions. Section 3
gives a more formal treatment, including rules of inference for reasoning about the behaviour
implied by such specifications. Section 4 concludes with the development of an extended
example, specifying the architecture of a distributed information system.

Authors' addresses:
• S.A.Schuman, School of Information Systems, University of East Anglia, Norwich NR4 7TJ,
England;
1 D.H. Pitt, Department of Mathematics, University of Surrey, Guildford, Surrey, GU2 5XH,
England.

- -- -, "- - -- - " - - -

2. Notations and Conventions

Structurally, the specification of an object class comprises two distinct kinds of definition, viz.

(i) A single state schema, which has the following general form:

17(E1 . - - k)

X -- component declarations
"1

Y -- invariant predicates

Z -- initialisation predicates

(ii) An associated set of event schema, each of which is formed as follows:

......i (..m -P.. Pn)

P -- parameter declarations

Q -- precondition predicates

R -- postcondition predicates

The header of a state schema identifies the class in question (i.e. it gives it a name), as well as
naming any formal parameters for that class. The event schema headers introduce the name of
each separate operation, in conjunction with names for any input and/or output parameters figuring
in its signature. The association alluded to above is indicated by simply prefixing the class name r
to the individual operation names 4.1 ... Op, which are for the moment assumed to be unique in the
context of a* given specification. No provisions for explicitly grouping such schema texts into
larger "modules" are considered here.

Inside a schema definition the different lists of declarations or predicates are normally set out
vertically, as independent items appearing one under another, wherein the order is not significant;
alternatively, several such items may be written on the same line, separated by semicolons. It
often arises that a particular list is empty, whereupon the corresponding part of the schema may be
omitted entirely. These latter conventions will be illustrated by a succession of examples, to
follow.

This "box-like" presentation of schema definitions was adopted mainly as a means for setting off
the enclosed formal text from its surrounding (natural language) explanations - without which a
specification is neither complete nor comprehensible. Within this minimal and strictly syntactic
framework, the actual content of every such specification is expressed using essentially the
traditional notations of predicate calculus and classical (ZF) set theory, extended as and when
necessary by additional constructs defined in terms of those notations. Although we are assuming
one specific development of that underlying formalism [Abrial 19821, any other axiomatic
formulation of this well understood mathematical basis would in principle be equally appropriate.

2

* 'Whilst we intend that these specifications should have a fully rigorous (and therefore formal)
interpretation, it is perfectly acceptable - and usually quite helpful - to start out with a much more
.operational" perspective. The state schema, which is where one begins in order to specify some
class of interest, might well be viewed as defining an abstract 'data model" for all objects

i belonging to that class. Support for abstraction comes firstly from the fact that this model is
expressed in terms of a "very high-level" and purely "declarative" language, in which the "data
types" correspond to (presumably familiar) mathematical constructions as opposed to the more
concrete structures normally provided by a programming language. Any formal parameters of the
state schema stand for constant components, the values of which are independently fixed for each
separate object instance. The remaining components declared within that schema may then be
construed as "state variables" of an individual object, in that their values can be selectively modified
as a consequence of applying particular operations. The invariant predicates assert that certain
relationships amongst the component values must always hold; as such, they serve to impose
constraints upon how the state of an object may be changed by any associated operation. Finally,
the initialisation predicates establish whatever conditions are to be assumed at the outset, when an
object of the class in question is first instantiated.

The requisite operations are then specified with respect to this abstract model. Each such definition
is presented as a free-standing event schema (analogous to an independent function or procedure),
but expressed as if it were textually "embedded" into the scope of the corresponding state schema:

- -- components of r

Y€ -- invariants of r

P -- parameters ofo

Q -- preconditions of~i

R -- postconditions of~i

Thus all component names appearing therein refer to the current values of some representative
instance; the actual object will be designated whenever this operation is subsequently applied.
Names figuring in its signature denote additional constants, standing for the values which are either
input (as arguments) or output (as results) in the context of any given application. In general, the
precondition predicates will range over both component and parameter names. They thereby serve
not only to restrict applicability of the operation to certain object states but also to constrain the
possible argument and result values relative to those states: such an event may occur if and only if
all of these conditions are satisfied simultaneously.

Explicit effects of this event (upon individual state variables) are established by the postcondition
predicates, wherein we adopt the common convention of "dashing" (or "priming") a component
name to denote its value a ter the event; for symmetry, the same convention is used in the
initialisation predicates of the state schema, where a dashed name stands for the initial value of that
component (after instantiation).

3

-,' P. %

About the simplest possible example is that of a running balance, which may increase or decreaseby some arbitrary but observable amount. Such balances can be modelled by a single statecomponent, corresponding to their current value:

b: NAT -- state component

4J.

b'= 0 -- initialisation

For purposes of illustration this value is specified in terms of natural numbers rather than, say,
integers (or some more specialised unit of account). Thus there is no a priori upper bound on any
balance, but "overdrafts" are precluded. As the invariant is empty, no further constraints are
imposed. Within this domain, the initial value of every balance is zero. The operations of interest,
namely increasing or decreasing a balance, may then be defined quite succinctly:

B.1

b'> b -- postcondition

'-4'

"". B.D

b > 0 -- precondition

b'< b -- postcondition

No precondition is needed for the increase operation. In the case of a decrease operation,however, the desired postcondition cannot be established consistently without requiring a non-
zero balance before the event (since there is no natural number b' < 0 unless b > 0).

Occurrences of these events are only observable in the sense that an increase always results in a
new balance which is strictly greater than it was beforehand, whereas a decrease has the opposite
effect. But the amount by which the balance changes in each instance is (deliberately) left

Pa indeterminate, so there is no means of influencing what choice is made on any given occurrence.
An operation to query the current balance (without changing its value) might also be provided, if
only to avoid the pitfalls of inadvertently attempting to decrease a balance that has gone to zero:

B.0 (-* a)

a: NAT --output parameter

a = b -- precondition

This operation has no effect (as indicated by the absence of any postconditions), and is always
applicable. But the only reason for defining such events would be to encapsulate completely the
abstract model in question. It is often more productive to defer these considerations until later
stages in the specification process, when the contextual requirements have been firmly established.

€' ., '. ' : ..," " -' .-. . " '.-, " -' " " ' .' "." ..- ,'.' .,' . .'." . . ' ".".". ,. ' ". .'7;'4

• ,. - ,,"k . , - . ., ,. .. ". . . , , , ., -, - . ., , .-,L56.-,_ , .

The dynamic behaviour characterised by such specifications is most easily visualised in the form of
a "decision tree". Accordingly, the initial pattern for a balance belonging to the class specified
above (ignoring the superfluous query function) might be depicted as follows:

bo 0

" .I

II b, >bo

b2 < b, b2 > b,

b2 > 0 I-Dz/

b3 <b 2 b3 >b 2 b3 < b2 b3 >b 2
0 0 0 0

0 0 0 0

0 0 0 0

The branches of this tree are labelled by (denotations of) alternative events which may occur at
distinct points in any possible history and those points, the nodes, are annotated with predicates
reflecting the postcondition established by the immediately preceding operation; the root annotation
corresponds to the initialisation predicate in the state schema. Within these annotations,
component names are subscripted so as to differentiate successive points in "time" (indicated as
depth in the tree). A particular history is then given by the sequence of events, or trace, along some
path from the root of such a tree to any reachable node. The predicates associated with each
successive node in that history are to be interpreted as incremental (or cumulative) assertions about
the object state up to that point.

At the first step in the behaviour for this class, the only possible event is the increase operation I,
which follows directly from the initial condition for the class B and the precondition of the decrease
operation D. Thereafter either I or D events may in general occur, and indeed an increase is always
possible. If, however, the most recent event in any trace was a decrease operation, then the
admissibility of another D event at that point becomes indeterminate because its precondition may
or may not be satisfied, depending on how this specification is subsequently refined (or
implemented). Indeterminacy of this sort is shown above as a dotted branch, to suggest that the
ensuing subtree is conditionally present; the labels appearing on such branches include an
antecedent as part of the event denotation, which predicates are obtained directly from the
corresponding precondition.

The sole purpose of this (admittedly artificial) exercise in underspecification was to defer all
commitments that would in any way quan'fy the actual increase or decrease to a running balance -
so as to encompass the broadest possible class of potential refinements. These include subclasses
for which this indeterminate behaviour is fully resolved (that is, where every "conditional branch"
in the original history is either provably admissible or, alternatively, ruled out altogether), as well
as ones wherein the indeterminacy is still present (but dependent upon more specific conditions,
which are only meaningful in the context of that particular subclass).

5

.... " °.- o,• .. '• , • • •.• t . -. q

As a general rule, refining the specification of some class F involves introducing a new subclass A,
'-" for which further properties are specified relative to that given base. The definition of such a

subclass takes the form of a state schema which simply identifies the relevant base definition(s).

The actual extensions are then presented within an embedded subschema:

A(...)

* , F(. •);, .

"* I -- components of A

Y -- invariants of A

ZA -- initialisation of A

This refinement may be understood to stand for a textual expansion of the defimition as written
(wherein the nesting structure is preserved):

Xr -- components of r

Yr -- invariants of r

X -- components of A

"-- invariants of A

Zr -- initialisation of F

f a -- initialisation of A

6

~~ P

Operations associated with the new subclass would normally be defined in terms of existing
operations on the base class(es). Such promotions can be specified in an analogous fashion, as
refinements to the corresponding event schema:

Pj -- parameters of Oi

-- preconditions of

Rj -- postconditions of 4j

Again, the intended interpretation is most easily visualised in terms of its textual expansion:

A.€ 1 (... *...)

Pi -- parameters of Oi

Qi-- invariants of Oi

Pi -- parameters of Oj

Qj -- invariants of Oj

.:-- postconditions of O

Ri -- postconditions of i

Observe that all parameter declarations and invariants for a designated base operation Oi are
effectively "inherited" within this definition; thus, only additional parameters or constraints
associated with the new operation need to be specified explicitly. This applies equally to the
context of postconditions.

As suggested by the ellipses above, our conventions allow for so-called "multiple inheritance",
where more than one base may be identified in conjunction with such refinements. This provides a
means for combining several (compatible) definitions at the same level, and thereby specifies a
subclass which belongs to many different classes all -t once.

7

.,~~~~~~~~~~~~~~~~~~~..-....,...'..',.........-,'...'-....-......"'.".."""

An obvious refinement of the previously specified balances is the subclass of counters, for which
the abstract model is identical (whence the state schema is in effect just a renaming of that class).
The operations for incrementing or decrementing such a counter could then be expressed as
promotions of the corresponding increase and decrease events, but with stronger postconditions:

SC C.i

B B.I

.-- b'= b+l1

pC.D
B.D

b'= b- 1

Both the initial conditions for this new subclass as well as the necessary precondition for the

decrement operation are thereby inherited, as can be seen by expanding its specification in full:

C C.I

b: NAT b'> b

b'=0 b'= b+1

C.D

b>0

b'< b

',b'= b -1

It emerges that the weaker "observability" postconditions of the balance operations are also
inherited. These properties would be (trivial) theorems of the event definitions if such counters
had instead been specified directly, without reference to the class of balances:

DC DC. I

b: NAT b'=b+1

b'= 0
DC.D

b>0

S=b -1

-p.- p.- .p...7

This example is of course so simple that it hardly matters which way one expresses the
specification. The behaviour is the same in both cases:

tbi 0

b bo+ 1

D I

b j-1b 2 =bb,-+1

DI

b3 =b 2 -1 b3 =b2 +1

DI

b4 b3 - 1 b4 = b3 + 1
0

* 0

0

Not surprisingly, the increment and decrement operations on counters correspond respectively to
the successor and predecessor functions on natural numbers - which is precisely what was
specified! (The backward-pointing edges above, indicating that the nodes in question may be
equated on the basis of their associated predicates, suggest various recursive formulations for these
functions.)

It should be observed that this counter behaviour is in fact a fully resolved (albeit still unbounded)
refinement of the balance behaviour specified at the outset, since the more restrictive postconditions
now determine whether a decrement event is or is not admissible at every point.

9

Should one subsequently wish to impose an upper bound upon such counters, this could be
specified as a further refinement of the unbounded class, corresponding to a restriction on the
original (balance) model. The increment operation then requires a precondition, so as to preserve
this new invariant, whereas the decrement operation is just a direct promotion:

" BC (m) BC.I

C C.I

m: NAT>O b<m

~b~m

BC.D

C.D

Alternatively, this might have been approached by first specifying a subclass of bounded balances:

BB (m) BB.I

B B.I

m: NAT> 0 b<m

~b~m

BB.D

B.D

This new basis can then be refined, as before, by adding the postconditions specific to counters:

'- CB (m) CB.I

BB (in) BB. I

CB.D

BB.D
"'-'" I b'= b- 1

With either approach the resultant behaviour is indeed bounded, but not fully resolved - in that the
admissibility of an increment operation now depends upon the value of the formal parameter m,
which may be different for each separate instantiation of both BC and CB.

10

-~~- -, - -- - -

Another interesting subclass of running balances is the more traditional notion of an account that
may be credited or debited by some specific amount, which is supplied as an argument each time
one of these operations is invoked. Such accounts could also be specified by refinement:

* A A.C(a)

B B.I

a: NAT> 0

, ,,b'= b+ a

A.D (a)

B.D

a: NAT [1..b]

b'= b-a

The amount to be credited or debited must be non-zero in every case, in order to satisfy the
observability properties imposed in the context of balances; moreover, the amount of a debit must
not exceed the current balance since overdrafts were ruled out from the beginning. Thus the
admissibility of a credit or debit operation is always indeterminate, in that it depends upon the actual
value of an input parameter.

Refinement of a class specification more typically involves proper extension, in the sense of adding
new components to the underlying model (some of which may be wholly or partially redundant).
This corresponds to specifying additional 'attributes" for a given subsystem, possibly (but not
necessarily) associated with its implementation. But such extensions might also be introduced
solely to reason about the implied behaviour. Suppose, for example, that one wished to establish
that the sum of all debits to an account never exceeds the total of actual credits. A subclass of
audited accounts is probably more appropriate for these purposes:

AA AA.C (a)

A A.C (a)

c,d: NAT c,=c+a

b=c-d

AA.D (a)

A. D(a)

d=d+a

h ILI

3. Reasoning About Specifications

In this section, we outline the formal basis for reasoning about subsystem specifications, both
statically (considering only the individual schema comprising a class definition) and dynamically
(over their implied behaviour); in particular, we develop the special rules of "historical" inference
which underlie our conventions.

For these purposes we shall also introduce another simple but much more typical example, dealing
with an issue that arises in the design of a great many systems, viz. unique identification. The class
of interest therefore corresponds to a "generator" for the requisite "reference" values, which may
well be abstracted merely as elements drawn from some entirely arbitrary "carrier set", say R. The
state of such a generator would then be modelled as a (finite) subset R of this given carrier set,
comprising the references outstanding at any point, where R is initially empty. Generation of a
new reference is then some (indeterminate) selection from the complement of R (i.e. R R, where \
denotes set difference), whilst nullifying (or "freeing") a reference is just its deletion from R:

REF REF. New(-* r)

R: set[R] r: - R

R'= 0 r e R'

REF. Null(r)

r: R

re R'

g Taking R as NAT>O (and showing other choices as "fan-outs"), the initial behaviour includes:

RO =0

T-New(-+ 1)

1 ER,

1 Le R2 2 q R2

Null(1) ,,' New(-- 3)

New(-+ 1)
',', Null(2)

e.1. 1 R3 1 e R3 2E R3 3E R3
V 0 0 0 0I.

0 0 0 0

0 0 02 0

2.2

: , ' -., - ,''' ,=, .,-.' ''-'-"" ",,''._% ",".".""" ."."-'-.".' " " 3"- -" "."" -".-";".-.".".- ,"..% ") %" %2'" "-" -" 1

The most common application of such references is to identify (or "index") occurrences of values
belonging to some other set, say S. This sort of association is normally modelled as a finite map
(i.e. a partial function):

MAP_____ _ MAP. New(s -r)

R: set [R] S: S

R =dom(M) M'(r)= s

R'- 0 MAP. NuII(r)

r: R

r e R

It would perhaps be more natural to specify this association directly as a new subclass of REF:

MAP______ _ MAP. New(s --+ r)

REF REF.New(-+ r)

M: R->S M'(r) = s

MAP. NuII(r)

REF. NuII(r)

(Note that the map is now specified as a total function). This may be further refined by requiring
that the association be injective (one-to-one), which is expressed by asserting that its converse is

q also functional:

INJ __________INJ. New(s -+ r)

MAP MAP. New(s --+ r)

1: S +> R s e cod(M)

I =M-1 INJ. NuII(r)

I MAP.NuII(r)

13

Taking S to be strings (as in a "symbol table"), the initial behaviour of this subclass now includes:

R0 = 0

N (w('ai'k-2
M, M(1) ='abe'

1 R2 M2(2) ='ijk'

New('xyz' - 1 Null(1) ew('xyz' 3)

M3 (1) ='xyz' 1 e R3 2 e R3 M3 (3) ='xyz'
0 0 0 0

0 0 0 0

0 0 0 0

Such behaviours are to be modelled in terms of traces of event denotations (the sequence of labels
along any possible path in the decision tree depicted above), where every trace is associated to a
corresponding history (predicates on the state, as suggested by the node annotations) from which
properties holding "at that point" may then be inferred.

The different forms of schema definition making up a class specification are nothing more than a
highly stylised framework for setting out the various predicates entering into any possible history.
The predicates in question range over (mathematical) variables which are introduced by a list of
declarations, as follows:

v1: T1; ...; vq: Tq

wherein Vi ... vq are just the names of these variables and T1 ... T. stand for their corresponding
set-theoretic "types". Such types are expressed in terms of certain given or "generic" set names
(herein denoted by letters from a distinguished alphabet A... Z), the names of externally defined
types (e.g. NAT) and the usual set constructions over such types - including products, partial or
total functions and relations, finite subsets and sequences etc. Inside a schema definition, each
variable so declared is thereby asserted to belong to some set having the particular structural
properties associated with its specified type. Thus these assertions can be embodied into a set of
predicates having the following form:

(VI e T1, ... ,Vq E Tq)

where V ... vq are just free variables within that definition. As such, they may be implicitly
quantified at the level of the schema as a whole; embedded declarations could then be thought of as
corresponding to nested quantification.

The characteristic predicates for a given schema are derived by combining these conditions with
additional predicates (over the same free variables) which are obtained from other parts of that
schema definition. All such derived sets stand for the conjunction of their constituent predicates
(whence the empty set is logically equivalent to true).

• ' ', .'t " " ' ', " ' , '.. ". ",, 'l " ,. ,: " .', 1 4

Two separate sets of predicates are derived from the state schema for a particular class, as follows:

- the state predicates S = X u Y
(where X is obtained from the component declarations and Y from the state invariants);

- the initial predicates I = S u Z
(where S is the state, given above, and Zis obtained from the initialisation predicates).

The state predicates are undashed, in that none of the free variables occurring therein are dashed.
But the initial predicates are mixed, which is to say that they will in general contain both dashed and
undashed variables. This is because initialisation is specified as a "pseudo-event" (and will

:, therefore be discussed in that context, below).

Definition. A model for the state as specified in the state schema for a given class is some
association of actual sets to the generic names appearing (directly or indirectly) within those
declarations, together with any substitution of values from those sets (or constructed sets) for all
free variables within that model.

The state so specified must be consistent in the usual sense: there is such a model, and values for
the state variables within that model, satisfying all of the predicates in S (i.e. both types and
invariants); otherwise, that specification is contradictory and no such class exists.

The operations 0, specifically associated with a given class are expressed as relations between
undashed and dashed names, standing respectively for the value of a state variable before and after
some occurrence of the event in question. This convention implies a wholly independent set of free
variables v ,, ..., v' which have exactly the same declarations as their undashed counterparts. The
corresponding types and invariants, denoted S, are therefore obtained by simply dashing each

such undashed name occurring free within S. The characteristic predicates for each event 0i are
then derived from its schema definition as follows:

- the guard predicatesG=S u (P uO)
(which incorporates the parameter declarations P and the preconditions 0);

- the final predicates F= S'u R
(which introduces the dashed names in conjunction with the postconditions R);

- the event predicates E = G u F
(which thereby relates the state values before and after any occurrence of that event).

Each associated event must also be consistent in its own right, meaning that there is a model
(obtained in the same way as for a state) satisfying all of the predicates in E. The same applies to
any specified initialisation, characterised by the set I as defined above. We shall speak of these
characteristic sets as standing for what they serve to describe: "a state S ", "a guarded state G ", "a
final state F ", "an event E" etc. The consistency requirement on all such predicates is essentially
static, in that it can be established for each separate schema in isolation using only axioms of the
underlying set theory and classical rules of inference.

Implicit in every event is some "admissibility" condition, under which it is allowed to occur at all;
this is given by simply positing the existence of a corresponding final state.

Definition. Let E be an event; then its implied precondition, denoted ipc(E), is obtained by
existentially quantifying over all dashed variable names occurring free within E. The. event E is
admissible (and may therefore occur) in any current state C which is consistent with ipc(E).

It follows by construction that ipc(E) =* G = (P A 0 AS), where G is the guarded state embodied
in E; hence that event may only occur if its parameter declarations P and explicit preconditionsO
(as well as the underlying state invariants S) are satisfied.

.p- 15

It is desirable, however, that a given event can indeed occur (i.e."complete" successfully)
whenever its preconditions are satisfied, meaning that there must be a consistent final state for all
admissible occurrences. This leads us to impose a much stronger consistency requirement.

Definition. Let W be a set of predicates, and V be the subset of undashed predicates within W;
then W is end-consistent iff V is consistent and, for any current state in any model that satisfies all
the predicates in V, there is a corresponding final state which satisfies all predicates in W\ V.

Consider, for example, some predicates over a state variable N, assumed to be of type set [NAT]:

(i) {N 0, 1E N'J
* (ii) (N 0, 1 eN', N'=N}

-- (iii) (N 0, 1 E N', N'\{1}=N{1} J

Both (i) and (iii) are end-consistent, whereas (ii) is not - because it fails to cover the case N = {1 }•

We are especially interested in specifications for which end-consistency can also be established
statically. A sufficient condition is that the event in question is what we shall call "well-formed".

Proposition. Let E be an event, and G be the guard for that event; then E is end-consistent if E is
consistent and G = ipc(E); in this case it follows that ipc(E) a G.

The relation characterised by a mixed predicate W may be conceptually "inverted" through another

renaming over its free variables, denoted as iW, which is obtained by specially superscripting all

undashed variables (so that v0 now stands for the "previous" value of v) and undashing all dashed

names (so that v now stands for its new "current' value V). Thus E' expresses, as an undashed
predicate, the net "effect" once some event E has occurred, conditioned on the existence of a
previous state in which that event was admissible.

Definition. Let E be an event; then its weakest postcondition, denoted wpc(E), is obtained by
. existentially quantifying over all previous variable names (of the form v°) occurring free within El.

The term "weakest' is used here to emphasise that this condition does not depend upon any more
specific properties of that previous state. However, by construction we have that wpc(E) =*

wpc(F) =* (wpc(R) A S), which is strong enough not only to establish the (potentially weaker)
postconditions R , as explicitly specified within the corresponding event schema, but also to

"- preserve the invariants associated with its underlying stateS, since these are both included into the
corresponding final state F for that event.

Part of the conciseness of our conventions comes from the fact that postconditions serving solely to
"restore" the state invariants may be omitted, as they are present implicitly. More important is the
omission of conditions which state only that some aspect of the state remains "unchanged", since
these latter properties may be inferred (and are therefore inherited) from previous "history".

Definition. A history is a finite sequence of event predicates, h = (E 5 ... ,Ek), where each Ei
corresponds to an individual occurrence of some event belonging to the class in question.

. We wish to consider situations in which h = h' A (E), for a given initial history h° and event E,
such that a set B, comprising all predicates which hold after h, characterises the previous state

before that occurrence of E. For h to exist, E must be admissible at that point, implying that B is
consistent with ipc(E). The properties holding after this event are given by wpc(E).

16

The weakest postcondition for any event depends upon how its explicit postconditions r e R are
actually written. Compare the effect of different expressions over a state variable N of type

set[NAT], according as some predicate b (say, 0 e N) is or is not known to hold in B:

r wpc(r) wpc(b A r)

IeN' 1eN IeN

N'=Nu{1} 1 EN 0ENA E N

1 EN' IeN IeN

T N'=N\{1) 1 eN 0 ENA1e N

Such examples show that WpC(plAp2) is not in general equivalent to wpc(pl) A wpc(p2), even
where the conjuncts of the latter are equivalent, although we do the following:

Proposition: If pl * p2 then ipc(pl) =: ipc(p2) and also wpc(pl) =, wpc(p2), whence
equivalent predicates have equivalent implied preconditions and weakest preconditions.

We would argue, however, that the main use of such forms as N' = N u (1 } and N' = N\(1 } above
is simply to "carry forward" history, which is tantamount to overspecification if the only intended
effect of the operations in question is to insert or delete the value 1. It is for this reason that we
have introduced inheritence of properties which can be inferred from history. A consequence is
that the weakest postconditions for (b A r) above then become the same for each operation, i.e.
(Or N A 1 e N) on insertion and (O N A 1 E N) on deletion, irrespective of how r is expressed.

W In order to inherit any (undashed) predicates holding in B, the event E as obtained from its schema
must be augmented by some set A of (mixed) predicates serving to re-establish those properties for
the state variables after that event, as reflected in wpc(E u A); but A must be such that this
conjunction remains end-consistent. The strongest possible augments assert that nothing changes.

Definition. Let B be some previous state; then any predicate of the form (v' = v), where v is an
undashed variable name occurring free in B, is termed an identity for B. The set of all such
predicates is denoted identity(B).

This is the default, when R is empty. But if any "updates" at all are specified, E u identity(B) will
not be end-consistent. Some such identities may be appropriate (and indeed this is how the

-* parameters of a schema are held constant, since their names cannot be written in dashed form);
normally, however, a weaker set of "neutral" augments must be chosen.

Definition. Let B be some previous state; then a mixed predicate p over the state variables of B is
termed neutral with respect to B iff identity(B) p. The set of all such p is denoted neutral(B).

For the example above, neutral predicates over N will have the general form (N'r'M = NnM), for
some specific McNAT, or equivalently (N'\-M = N\-M); thus they include (N'r{0} = Nr){0}).

17

Definition. Let B be some previous state and E be an event; then a predicate p C neutral(B) is
termed neutral with respect to B and E iff the set B u E u { p } is end-consistent. The set of all
such p is denoted neutral(BE).

Proposition. The set neutral(BE) is closed under disjunction.

However, neutral(BE) is not in general closed under conjunction. Consider, for example, the
case where B = {1 e N , 2v N } and E = { plv p2 }, with pl E (N'=N\{1}) and p2 (N'=N\{2});
then p I and p2 are both contained in neutral(B,E), but (p lAp2) is not.

This means that not all neutral predicates are mutually compatible. To ensure that only such forms
are chosen, there is a need to "filter" these choices, as follows.

Definition. Let B be some previous state and E be an event; then a predicate q e neutral(B) is
termed central with respect to B and E iff, for all predicates p c neutral(B), the set B uE u {p,q }
is end-consistent. The set of all such q is denoted centra(BE).

Proposition. The set central(BE) is closed under disjunction and conjunction.

With regard to the previous example, the form (N'{1,2)=N\{1,2}) -- (plAp2) is included in
central(B,E). The required inference rule may now be defined in terms of this set.

Definition. Let h be a history and r be an undashed predicate; then h 1= r (r is inferred from h)
is defined inductively (over initial histories h* and events E) by the following rules:(i) 0 I-- true

(ii) h0 A(E) 1 r iff3 peH(h*), qecentral(H(hO),E) o wpc(Eu {p,q}) = r
wherein H(h) denotes the set of all predicates inferred by these rules.

Proposition. The set H(h) is closed under conjunction. (This follows from the closure of
central(B,E), by induction on the length of h.)

A valid objection to the inference rule J- given above is that the choice of neutral augments depends
upon the particular history. An apparently weaker, but static (and thus practically applicable)
inference rule is developed below, using only neutral predicates which are central to the event E
itself (where we assume that identity (B) and neutral(B) are extended to mixed predicates in the
obvious way).

Definition. Let E be an event; then a predicate q r neutral(E) is central to E iff q e central(B,E)
for all states B such that B u E is end-consistent.The set of all such q is denoted central(E).

Definition. Let h be a history and r be an undashed predicate; then h I= r is defined inductively
by the following rules:

• 1 o-. .(i) 0 I = t r u e

(ii) 7o A(E) I= r iff 3 p r H(h), qE central(E) o wpc(E..p,q}) = r
wherein H(h) now denotes the set of all predicates inferred by these static rules.

Proposition. If h I= rthen h Is r (since central(B,E) central(E) for all states B).
18

= 43-! <-,. *
- -

"" ". "-1 , (P "€'. '- r'm md r •. • ,. -- .. • .°" '..-. -.% - ". o

We are now in a position to define consistency over histories, using whichever set of historical
inferences proves most convenient.

Definition. A history h' ̂(E) is end-consistent iff H(h) u E is end-consistent; () is vacuously end-
consistent. A history h is consistent (and therefore plausible) iff all of its prefixes are end-
consistent.

Proposition. If Eis end-consistent and ipc(E) e H(h*) then h° ̂ (E) is end-consistent.

If E is statically "well-formed", h'^ (E) will be end-consistent whenever the guard G for that event

can be inferred from h0 .

The behaviour characterised by a class specification can now be modelled in terms of traces.

Definition. Assuming some association of sets to the generic names appearing within a given class
specification, a denotation for an event belonging to that class is just its signature with any
systematic substitution of values from these sets for the parameter names; an initial denotation is
just the signature of the class after such substitution. The traces for that class are the prefix-closed
set of finite sequences of event denotations, each of which begins with the same initial denotation.

The projection of a denotation is a model for (an occurrence of) the denoted event, wherein the free
variables corresponding to its parameters have the values which were substituted for their names
within that signature. A trace FO ,... .,k) projects onto a history EoA(E 1 ,... ,Ek) iff E is a
projection of ci.A model for the behaviour of a class is then a set of traces, each of which projects
onto a consistent history.

19

4. A More Realistic Example

This section is entirely devoted to the development of a somewhat more realistic example. The
following "roadmap' gives an overview of both the example to be considered and the resultant
system architecture.

Distibuted Information System

Separable Information System Network Infrastructure
I I

INode Identification

Multiview Information System

Partitioned Information System

Part Identification

I.-

The specification is developed exclusively by composition and refinement, which imposes a
"bottom-up" method of proceeding; otherwise, the order of presentation is arbitrary. As usual, the
first stage in this process is concerned with unique identification.

Partitions are uniquely identified as elements PID
drawn from some carrier set P; initially, there
are no such parts in existence. Part: set [P]

Part' = 0

Whenever a new partition is first defined, its PID. New Part (-4 p)
identification is distinct from that of any other

P part currently in-use. p: - Part

pe Part'

An existing part identifier may be nullified, in PID. Null Part(p)
which case it -s deleted from the set of those

.curnty in-use.rre p: Part

p e Part'
0.2

I ,:) ,.,:_ < .:,.,.,:..,:,:.',:.',',;, ' ".'...:: :-.'...-."< .?......,. ,..Z)',,', ;.'20.,'

Based on this part identification, the structure of a partitioned information system is now specified.

The information in the system consists of a PIS
separate sequence of data for each defined part,
corresponding to the (historical) order in which PID
successive data were added to that particular
partition. The actual data values belong to
some underlying set D, which is not further
specified at this level. Info: Part -> seq (D]

When a new part is fist created, the associated PIS. New Part (-4 p)
sequence of information is empty.

PID. New Part (-- p)

Info'(p) = (

When an existing part is nullified, information PIS. Null Part (p)

previously associated with that partition is no
longer known within the system. PID. Null Part (p)

When a new datum is added to an existing part, PIS. Add Data (d,p)
it becomes the latest in the sequence associated
with that partition. d:

p: Part

Info'(p) = Info(p)A(d)

Specifying the structure of the information itself is an overriding concern in the design process for
many such systems. Here, however, these issues have been abstracted almost completely (so that
they may be addressed as an orthogonal aspect at some later stage). The only commitment is to
partitioning, where the information associated with each part is truly independent; thus this
abstraction would not be adequate for relational structures. We have also postulated an historical
interpretation, as opposed to "overwriting semantics", for reasons which will become apparent.
This decision could be reversed later, by encapsulating the model so as to allow access to only the
most recent data for each partition.

21

7 .. %

A characteristic of most database-like systems is the ability to support multiple views of the same
information. Such views must first be identified.

Views are uniquely identified as elements VID
drawn from some carrier set V; initially, no
views are defined. View: set V]

View'= 0

When a new view is defined, its identification VID. New View (-4 v)
is distinct from any other view in existence.

v: -View

v E View'

* When a view is nullified, its identifier is no VID. Null View (v)
longer known.

v: View

I• v e View'

This view identification is then combined with the partitioned structures specified previously to
*define a multiview information system, followed by promotion of the operations on VID and PIS.

In an information system with multiple views, VIS
each partition originates in one particular view,
but may be visible (as a component) in many VID; PIS
views; every part is a component of the view in
which it originates.

Orig: Part -> View

Comp: Part <-> View

Orig Q Comp

*.2.2d**

New views may still be created at any time VIS. New View (-* v)
(without further restriction).
"-'. VlO.New View (.-+ v)

Only views which are not currently in the r6le VIS. Null View (v)
of the originator for any existing partition may
be nullified. VID.Null View (v)

v e cod (Orig)

Each new part is created from some specified VIS. New Part (v --+ p)
view, which thereby becomes the originator for
that partition. PIS.New Part p)

v: View

Orig'(p) = v

A partition may only be nullified from the view VIS. Null Part (p,v)
in which that part originates.

PlS.Null Part (p)

v: View

p Orig V

Only the originating view for a given part may VIS. Add Data (d,p,v)
add data to that particular partition.

PIS.Add Data (d,p)

Iv: View

p Orig v

23

Additional operations, specific to a multiview system, are also introduced at this level.

The originating view for any partition may be VIS.Chg Ong (p,v,u)
changed by its current originator, provided that
the part in question is already a component of p: Part
the view designated as the new originator. p: Viewi v,u: View

U V

p Orig v
p Comp u

Orig'(p) = u

A part may be made newly visible in some view VIS. In View (pv,u)
v from another view u wherein it is already a
componentp, p: Part

v,u: View

"" p Comp u

(p,v) e Comp

(p,v) e Comp'

A component part may be excluded from any VIS. Ex View (p,v)
view which is not (currently) the originator for
that partition. p: Part

*v: View

(p,v) e Comp\Orig

(p,v) e Comp'

All of the foregoing operation definitions embody design decisions which are, in some sense,
arbitrary; they could just as easily have been made (and specified) differently.

24

:4

At this point we turn to specifying the underlying network. Again the first step is concerned with
uniquely identifying the nodes in such a configuration.

Nodes are uniquely identified as elements of NID
some set N; a subset of the nodes so identified
are said to be "up" at any given time. Node, Up: set [N]

Up Q Node

Node' = 0

When a new node is introduced it is given a NID. New Node (-e n)
distinct identifier; such newly defined nodes
are initially "down" (i.e. not up). n: - Node

n e Node'

An identified node may be (definitively) deleted NID. Null Node (n)
from the set of known nodes within the system.

n: Node

n e Node'

Nodes which are down may be brought up. NID. Node Up (n)

n: Node\Up

ne Up'

Nodes which are up may also go down. NID. Node Down (n)

n: Up

n E Up'

25

The network infrastructure is then characterised as a further refinement, which introduces the
interconnection of individual nodes.

Every defined node is connected to itself, and NIS
may also be connected to other such nodes;
these connections are considered to be bi- NID
directional. A node is said to be accessible from
another node if there exists some sequence of
interconnected nodes leading from one to the
other, where all of the nodes in question are up. Conn: Node <-> Node

Acc: Node <+> Node

Conn = Conn 1

id[Node] g Conn
Acc = (Conn n UpxUp)+

Additional operations at this level might include events such as the following:

It is possible to establish a new connection NIS.MakeConn (n,m)
between previously unconnected nodes.

n,m: Node

(n,m) e Conn

(n,m) e Conn'

Existing connections may be broken at any time NIS.BreakConn (n,m)
(but a node cannot be disconnected from itself).

n,m: Node

n*mn
n Conn m

(n,m) L Conn'

Quite obviously, this network definition is merely a "placeholder", which is introduced more for
purposes of illustration than for its actual substance. In practice, it should be replaced by a
(sufficiently abstract) specification for the real network infrastructure upon which the system of
interest is meant to be constructed.

26

Before proceeding to our objective of a physically distributed system, it is helpful to introduce an
intermediate abstraction corresponding to a separable information system. This is formulated as a
further refinement to the multiview systems already specified.

There is an independent projection for SIS
each separate component (part, view)
so that the sequences of data associated VIS
with the same partition in different
views need not be identical; the length
of a given projection is the span of that
component. The set of such projections Proj: Comp -> seq[ID]
for the views in which each part Span: Comp->NAT
originates is exactly equal to the
information within the system as a
whole. The projections for other
components may lag behind. Span = (#)oProj

Projo(id[Part] & Org) = Info

Projo(id(Part] & Comp) a pref "1 olnfo

These latter invariants are expressed in terms of the operator to join two relations with a common
domain:

&: (A <+>) X(A <+> C) -> (A <+> (3 X C))

a(R 1&R 2)(b,c) * aR 1bAaR2 c

The "lag" is specified as some prefix of the original information, where this relation has its usual
definition:

pref: seq[D] <-> seq[D]

p p pref x t* 3s: seq[D]*(pAs=x)

It follows from the above specification that component projections for the same partition differ only in
their respective spans; they must agree on prefixes of equal length, as it is not possible to "rewrite
history". All operations on VIS may be promoted directly (since each part can only be extended from
the view in which it originates). In addition, some means must be provided for dealing with out-of-
date projections:

A particular component part in view v SIS. Update (p,v,u)
may be brought up-to-date with respect

' to that same part in another view u,
provided that no information would be p: Part

lost as a result. v,u: View

p Comp v

p Comp u
Span (p,v) < Span (p,u)

Proj' (p,v) = Proj (p,u)

27

Finally, a distributed information system is obtained by mapping the separable views (established at
the previous level) onto some given network infrastructure.

A particular node is designated as the host DIS
for each view, which thereby determines a
corresponding base for every component. SIS; NIS
However, there is at most one
representative sequence of data for each
partition at any node, whence the
projections of that component part are Host: View-> Node
identical in all views sharing the same Base: Comp -> (Part x Node)
host.

Repr: (Part x Node) +> seq[D]

Base (id[Part] 0 Host)

Proj = Repr o Base

The required correspondence, (Part x View) -> (Part x Node), is specified above in terms of a
relational product:

0: (A<+>C)x(B<+>D)->((AxB)<+>(CxD))

(a,b)(R1 0 R2)(c,d) 4- aRlC A bR2 d

The operations appropriate to such a distributed information system would mainly be introduced as
-.,' promotions from the previous level, whilst taking into account any additional constraints imposed by

the physical distribution. For instance:

A component may be brought up-to-date DIS.Update (p,v,u)
with respect to another view provided that
the hosts for both views are mutually SiS.Update (p,v,u)
accessible. (NB: this will update that
component part for all views on the same~host) Host(u) Acc Host(v)

;p.

Certain technically more complex issues (e.g. relating to restart and recovery) might also begin to be
tackled at this level, in conjunction with promoting specific events inherited from the underlying
network definition. At this point, however, the overall system structure announced at the outset is
essentially complete.

28

U
- _e.w

It should be observed that further development of the foregoing specification is limited by its
somewhat "Olympian" perspective, wherein only rather global properties of the system have so
far been characterised. Despite this objection, formalisation of such a top-level design is a useful
first step. For the particular example considered here, subsequent refinements (leading towards an
actual implementation) ought properly to be formulated as a decomposition into independent
processes, based on the concepts of communication and synchronisation developed by
Milner[1980] and Hoare[19851. These questions will be addressed in a sequel to this paper.

Acknowledgements. This work was supported in part by the U.S. Army Communications and
Electronics Command under a research contract with Massachusetts Computer Associates, Inc.,
and by the U.K. Science and Engineering Research Council through a part-time visiting
fellowship with the Programming Research Group at Oxford University. Significant contributions
were made (from both sides of the Atlantic) by S. Amoroso, B. Cohen and T. Wheeler, who
participated in experimental case studies over a long period of time. We are especially grateful to
Gillian Hall and Jane Vergette for the most tangible contribution of all: taming the untried

"K technology used to produce the typescript of this paper.

REFERENCES

1. Abrial, J-R., A Theoretical Foundation to Formal Programming,
Programming Research Group (Oxford University, 1982).

2. Bjomer, D. and Jones, C.B., The Vienna Development Method,
LNCS No. 61 (Springer-Verlag, 1978).

3. Dahl, O-J., Hierarchical Program Structures,
in Structured Programming (Academic Press, 1972) pp. 175-220.

4. Goguen, J.A., Thatcher, J.W. and Wagner, E.G., An Initial Algebra Approach to the
Specification, Correctness and Implementation of Abstract Data Types,
in Yeh (ed.), Current Trends in Programming Methodology, Vol. IV: Data Structuring,
(Prentice-Hall, 1978) pp. 80-149.

5. Guttag, J.V. and Homing, J.J., The Algebraic Specification of Abstract Data Types,

Acta Informatica, Vol. 10 (Springer-Verlag, 1978) pp. 27-52.

6. Hayes, I. (ed.), Specification Case Studies (Prentice-Hall Intl., 1986).

7. Hoare, C.A.R., Communicating Sequential Processes (Prentice-Hall Int'l., 1985).

8. Hoare, C.A.R., Proof of Correctness of Data Representations,
Acta Informatica, Vol. 1 (Springer-Verlag, 1972) pp. 271-281.

9. Jones, C.B., Software Development: A Rigorous Approach (Prentice-Hall Intl., 1980).

10. Milner, R., A Calculus of Communicating Systems, LNCS No. 92 (Springer-Verlag, 1980).

11. Suffrin, B., Morgan, C., Sorensen, I.H. and Hayes, I., Notes for the Z Handbook,
Programming Research Group (Oxford University, 1985).

29

.:.A2 .AA.,1

APPENDIX II

i
An Experiment with an Approach to Formal Specifications

Serafino Amoroso
Thomas Wheeler

Center for Tactical Computer Systems
U.S.A. CECOM

Ft. Monmouth N.J.

Stephen Schuman
Massachusetts Computer Assoc.

Wakefield Mass.

Abstract

An experiment is described involving a new approach to system

.- specifications. The process of developing a formal specification from an

informally specified distributed information system concept forms the basis

of the experiment. The new approach, which is based on formal mathematical

techniques, is introduced gradually as the experiment is described. An

N attempt is made to document the experience and lessons learned as the

experiment progressed.

.%

% ..
-

Introduction

i An investigation was begun a few years ago into potential applications for
the newly emerging distributed systems technology to the Army's Air/Land
Battle Forces. This investigation's purpose was to help motivate and give
direction to a research effort on distributed systems that was beginning at
the time. The first application considered was a distributed!communication/database system for battalion situation-status reporting in a
battlefield environment.

An informal specification of a somewhat abstract version of this
'. situation-status reporting system formed the starting point for the
, . experiment that is reported here on a new approach to system specification

using formal mathematical techniques[l]. Although the approach[2, 3) has
been under investigation for several years (mainly at the Programming
Research Group at Oxford University in England), it is still evolving and is
not yet in its final state.

: Although there were no distinct roles given to each of the authors, the
e- intent was to simulate a small team containing representation from three

disciplines. The first are the "user representatives", those who understand
- the need for the system being designed and the intended application, the
'. second were the designers, those who are responsible for the intended

implementation. Both of these are assumed to have an intuitive understanding
of the formal techniques that will be used to reason about the design that
is sought. The third are the "analysts" who are assumed to be fluent in the
formal techniques described here.

The formal techniques used here are still under development and the intent
primarily was to experiment with the approach evaluating its current
utility. This possibly might clarify some aspects of the approach that could
be improved. The hope of gaining a deeper understanding of the distributedUsystem itself was not an insignificant part of our motivation.
The preceding paragraph was the primary motivation for the experiment,

-. however the process described in this paper can be viewed by the reader as a
design effort for a certain aspect of the system, namely the distributed
nature of an information management system. Viewed in this way, it is hoped
that the reader will gain some of the appreciation that was gained by the
authors, of the insite into solving complex problems of system design
provided by the precision and clarity of mathematical reasoning.

. The formal notation used in the approach will be introduced gradually as the
paper progresses.

An Informal Specification of a Distributed Database System

IL The informal description of a distributed communication/database system
concept given here, was written before the formal specification was

,. attempted. Since one of the expected benefits of doing a formal

specification is additional insiqhts into the concepts being modeled, 4t
should be of some interest to revisit this starting point after the formal
specification is developed.

Consider a collection of computer work stations physically separated over
some distance (e.g., a few miles) interconnected by some electronic
communications medium (e.g., packet radio). The interconnection pattern need
not be total but it should be nonethe)ess possible for any work station to

- communicate with any other work station. The only physical devices
(hardware) used to implement the system are those physically located with
each work station. This would include at least a computer, a keyboard and
screen, some secondary storage, and the communication equipment. The

- hardware at each station is identical. The system must be mobile in the
sense that the stations will be moving from time to time to different

-. physical locations. Moving will probably involve a logging out process
.- followed later by a logging in process.

Each station maintains a local file system. The basic unit managed by
these file systems is the report, which is similar to the programming
language concept of a record, as found for example in Pascal. A report
consist of a fixed number of fields, each being an information unit of some
type. The number of the fields and the type assigned to any field can be
changed only at what we will call "system initialization time". Such
alterations to the structure of a report will not be a frequent occurrence.

.. Examples of field values are: a numeric value, say INTEGER or REAL, or a
.- tuple of numeric values, or a string of characters.

The local file system will manage a collection of such reports, one of
which will be designated as the current report. The file system will be able
to modify the values of any of the reports in the collection, create new
reports, delete reports, etc. An editing capability will be available at
each station.

The basis for intercommunication among the stations is the notion of
"global data areas". The collection of stations making up a particular
system can involve any number of global data areas. Any global data area,
say G, has a number of stations inputing information to it and a number of
stations outputing information from it. An inputing station for G is not

." necessarily also an outputing station and vice versa. To be an inputing
station to G means that W can send a copy of a report to G. The totality of
all information held by G is the collection of all reports sent by the
inputing stations for G. An inputing station can have at most one report in
G at any time. It can have no reports in G, it can remove a report and
replace it by a new report or not replace it at all. Outputing stations for
G can query the information in G. Precisely what the query capabilities are
is open at this time. We may want to restrict the query capabilities of
particular outputing stations. Since the only hardware For these systems is
at the physical location of the stations, processing support for the global

,. data areas must he at the stations.

.P The most important attribute for the intended application of these systems
is "robustness", that is, the ability of a system to maintain a continuity
of servkce even under severe operating conditions and as individual stations
go down. A station can go down either by an orderly log-out, or abruptly (by
malfunctioning or by being destroyed e.g. by hostile action). If G has input
stations Wl,...,Wm and output stations Wl',...,Wm', then if Wi qoes down,

its most current report in G (if any) continues to be accessible to the
- output stations which can continue to function to the maximum extent
possible. Likewise, if some Wj' goes down, the rest of the system must
function with no change other than the fact that Wj' will not be performing
queries. In other words, if any station goes down, whether or not it is an
inputing or an outputing station for G, the rest of the system must be able
to function normally. All this implies that a global data area cannot be
i implemented at any one station. The situation is similar for multiple
stations going down at once. Other problems are aggrevated when multiple
stations go down (e.g., problems of communication connectivity). We leave

. these issues open for now.

The question of the robustness of a system also includes the question of
data consistency and currency. If W updates a report in G, then after "some
reasonable period of time", all outputing stations for G should get this new
report instead of the older version. At any moment of time, two outputing
stations for G should always qet information extracted from the same
versions of a given report.

Beginning the Experiment

We decided to begin by trying to formulate the essential concepts underlying
* this technology, as opposed to beginning the specification of a particular
system. We thus stepped back from the particular system with the expectation
that the essential concepts would form a framework for the resulting system
specification. Essentially what we planned to do first was to look at the
class of such systems, and thus avoid imposing bounds too soon.

.. (This use of generalization, which follows naturally from the mathematical
.. nature of the approach to specification, leads to better long term

maintainability properties in the resulting system, as requirements changes
are easily accommodated. The maintainability of a system is a direct
consequence of its ability to accomodate changes in the requirements. The
existence of an explicit framework for a system's design based on the class
of systems it belongs to, leads to a high probability that a change fits

- within that framework, unless, of course, the change places the system
* outside that class.)

After some discussion, the following three concepts seemed central.

(1) different "views" inside a distributed system,

(2) "virtual nodes" that need not physically exist, and

(3) "replication" or redundancy.

The first goal was to give some clarity and precision to these notions.
Hopefully we could then study their implications to the design.

Basic Concepts.

The users of the system are visualized as the "originators" of information

" . - - -

.:

. in the system. Each information unit so generated is a "report" and for now
there is no need to consider the structure of individual reports.

Each user will define a sequence of such reports, namely the history of all
the reports this user has generated. Each user is capable of appending
another report to this sequence at any time (i.e., generating another
report).

•* INF =def seq RPT

(Certain mathematical concepts are considered standard and will be used
freely, among these is the set of sequences of elements from some other set,

* for example, the above expression states that INF is the name of a set
defined as the set of all finite sequences over a set RPT. Looking back, we

• should have used the identifier INFO instead of INF, and we should have kept
:-# things more general by using the identifier DATA rather than RPT. The choice

of identifiers for the various concepts introduced is not a trivial matter.
It is an important factor in the readability and clarity of the notation. We
in fact use "info" for a related concept later, and we do eventually drop
the name INF and change RPT to DATA. The the notational system being
described has the important attribute of encouraging experimentation by

r making the process of changing and improving the concepts being defined
rather easy. As we will see, these changes and improvements can be more
substantial than just changing identifiers.)

The Initial Formal Specification.

At this early stage we chose to model the system users or "originators" by a
partial mapping "orig" from a set NID (node identifiers) to INF. Note that
at this stage we were conceptually identifying the concept of "node" and
"user"

S Orig : NID -I-> INF

The set MID is intended as the collection of all possible names to be used
r. for originators, this includes originators that may enter the system in the

future. Any element of NID in the domain of Orig is being used to name an
originator currently in the system, and its value under the mapping is
intended to model the sequence of reports issued by the originator from the
time he entered the system. Note this sequence of reports can be empty.

Continuing we defined

"* Curr : NID -I-> RPT

The mapping Curr (current report) has this form (its "signature").
.7 Inuitively, Curr assigns to an element of MID in its domain of definition

the most current report issued by the "node". Curr is defined by:

Curr = Last(Orig)

which gives the last element in the sequence (Orig).

I. .*: . .

i.

Conceptual Modules and Semantic Operators

An important aspect of the notation used in this approach to formal
specification is that of a "conceptual module". The following was the first
conceptual module attempted for this application. It was an initial attempt
at a definition of the concept of a "node".

Node(n)

S n : NID

Own : INF

I Oth : VIEW

- Each node n is considered to consist of its name (an element from the set
*NID of node identifiers), a sequence in INF (the node's "own" information

history), and a "view" of the totality of all information in the system. The
concept of VIEW was one of the notions considered central and at this point
was yet to be made precise.

Another conceptual module considered at this early stage was:

INFO

Orig NID-> seq RPT

range(Orig) = < >1

5 This module was an attempt to characterize the totality of all information
in the system. The mapping "Orig" (which here is total) associates with each
element of NID a sequence of reports. Here all of the potential node
identifiers are already associated with RPT sequences, the unused names are

;:be mapped to empty sequences. The expression below the double line in the
module specifies "initial conditions". Here the report sequences are all

s initially empty.

INFO contained a "semantic operator" which makes possible the generation of
a report by a particular user.

INFO.Issue(n, r)

n : NID
r : RPT

I Orig'(n) = Orig(n) *<r>

-6- -

-~~~V 19- -.T W - -

-" The meaning of this "semantic operator" (for the conceptual module INFO) is
'. that given a node identifier n and a report r, r is placed as the latest

entry in the node's history of reports. Hence, a new report has been
generated. In the notation the prime (') symbol is used to indicate the
condition of a mathematical entity after an operation has been applied.

The concept of a "view" mentioned above is intuitively the idea of a node
"seeing" some part of the total information available in the system. Our

" first attempt at a formal definition took the following form.

VIEW(n)

° n : NID

. I Own : seq RPT

Inf : NID -I-> seq RPT

Inf(n) = own

I Enf contained in Orig

The identifier "inf" (information) which was earlier used to name the set of
all finite sequences from RPT, is now being used for a different role. The
constraint "Inf contained in Orig" states that Inf is some part of the total
system information. This attempt to capture the concept of a view was soon
improved to a rewrite of the INFO module:

INFO--

Orig : NID -> seq RPT

View : NID -> (NID -I-> seq RPT),

View(n)(m) contained in pre(Orig(m)), where n m,

I View(n)(n) = Orig(n), and

n in dom(View(n)).

. range(Orig) = [<>1

The operator "pre" on sequences is the set of all initial parts (prefixes)
of its sequence argument. The first constraint above states that "the view
that n has of m is always some initial part of the sequence of reports
issued by m". The "view" that a node has, "view(n)", is specified to be a
set of some of initial prefixes of the histories of some the nodes of the
system. A node can always view all of its own information. A node can always
view its own latest information, but the latest information generated by
some of the nodes may not be locally available yet.

.'"

-

Refining The System.

A period of consolidation and redefinition resulted in the specification
which follows. Such consolidation and redefinition seems to be a vital part
of the formal specification process. It is here that most of "progress"
seems to be made.

~. The specification, whose exposition makes up the main body of the paper, is
composed of four main parts. The first is the specification of the
functional aspects of the system, the second describes the distributional
aspects of systems, the third combines these to form a distributed

'. information system and the fourth extends this to address the issue of
robustness.

P..

The Formal Specification.

Both the formal text (conceptual modules and semantic operators) and the
prose which follows each module and operator are considered to be parts of
the specification, with the prose being commentary and interpretation of the
formal text.

System Functions.

The first facet of the system to be specified was the functionality, which
is specified independent of the idea of distribution which is added later.

Concept S1: System made up of Parts.

SI[NAME]

I Part : FF(NAME)

Part= I

A conceptual module Sl defines the Parts of the system in terms of a
"generic" set NAME. (By a "generic set" we mean that no properties of the
set are specified other that the fact that the set contains a supply of
elements, and that it can be determined whether or not two arbitrary

: elements of such a set are equal.) A set "Part" (the collection of parts of
' the system) is meant to be an abstraction of the users or uning programs of

the system and is specified with "signature" FF(NAME) which means that Part
will always be a finite subset of the set NAME. (The use of the term "nodes"
for "the system users" was not a good choice, and was changed to separate
the two concepts it embodied, the logical parts, users or user programs and

. data, and the physical parts, or nodes, as will be seen below.) The set Part

-p &NJ+J..id

is initially empty. (The empty set = [1).

Sl.NewPart(-> p)

p : NAME

p not in Part

p in Part'

New parts can be added to the system. Parts are always to be named by an
element from NAME. (The symbol "-)" indicates that "p! is an explicit result
of this operation, ie. an out parameter.)

S1.DelPart(p)

Ip : NAME

p not in Part'

Parts can be deleted from the system.

Concept S2: Describing Information in the System.

S2[DATA__

I S

Info : Part -I-> seq DATA

Comp : FF(Part)

Comp = dom(Info)

This module extends the first module Si. In this way new modules can build
directly on previously defined modules. Info and Comp are implicitly empty
initially since Part is initially empty.

The vague terms "Part" and "Comp" (the components which have information)
were used in an attempt to keep the development as general as possible. The
plan was that we would give the identifiers finally adopted a great deal of
thought once the system concepts were clearly understood.

- .* Nx- :-bK . ~

id

S2 •MakeComp(p)

p : Part

p not in Comp

p in Comp'

~ I Info'(p) = (}

System "parts" can be made into system "components" which can then issue
information.

S2.Issue(c, d)

S c: Comp

d : DATA

;. IInfo'(c) = Info(c) *<d>

Only system "components" can issue information. This source of information
is the only way information will come into the system. (Notice that the
formal statements are not difficult to read, "Conceptual Modules" containing
definitions, constraints on values(invariants) and (after the double line)

. initial conditions, while "semantic operators" contain definitions,
;? conditions of operation(preconditions) and (after the double line)

results (postconditions).

- Concept S3: Entry of Information.

S3

S2

Orig FF(Comp)

- The group of current originators is a subset of "Comp" and is initially
Sempty (since Comp is).

S3.AuthOrig(c)

c : Comp

Ic in Orig'

S3.NonOrig(c)

"- Ic : Comp

c not in Orig'

4 Ability to origionate information can be given and withdrawn.

S3.Issue(o, d)

~o Orig

d : DATA

S2.Issue(o, d)

W Only authorized Originators can issue information. (Note the replacement of
a "semantic operation" by a restricted version.)

Concept S4: Viewing Information.

S4
S3

.'.' IVis Part <-I-> Comp

. i View : Part -> (Comp -I-> seq DATA)

Id(Comp) contained in Vis

All p, All c • (p, c) in Vis <=> View(p)(c) contained in Pre(Info(c))

Two concepts are introduced at this level. Visibility describes which parts

can see which components' information. View describes what information a
part sees for each component. The invariants state that components can see
their own information and a part sees a prefix of the information for those

Ucomponents in its view.

- S4.Open(pp, cc)

Ipp :FF(Part)

~Icc : FF(Comp)

SIcc contained in vis'(pp)

IAll p, All c :(p, c) not in Vis => View' (p)(c) >
rk* I _

Visibility can be extended. Added views are initially empty.

.~S4.Close(pp, cc)

Ipp :FF(Part)

SIcc : FF(Comp)

cc not contained in Vis*(pp)

Visibility can be removed.

S4.MakeComp(p)______________

IS2.MakeComp(p)

I(p, p) in Vis'

When system parts are made components, they are able to see the information
which they issue (replacement of operation hy extended version, so as to

-..maintain the invariant).

S4.Sync(c, s, d)

Bc c: Comp
s, d : Part

c in im(Vis)[s)

SIc in im(Vis)'(d)
o.. <
#(View(d)(c)) = *(View(s)(c))

View' (d)(c) = View(s)(c)

It is possible to make the view that a part(destination) has of a
component's(c) information the same as the view another part(source) has of
that component's information (ie. to synchronize their views), as long as
both have views of that component's information and the source's view was
later (ie. had more recent versions).

This concludes the specification of the functionality of the system. As was
stated earlier this is not meant to be a specification for an operational

" system but rather a class of systems. As such it includes only those
functional properties that were deemed to be essential to this class of
systems, ie. distributed information systems.

V.

Distribution of a System.

The next set of "Conceptual Modules" addresses a different aspect of theSdistributed information system, those concepts essential to the distributed

nature of the system. As this aspect looks at the system from a different
perspective, ie. is orthogonal to the functional view, this specification is
independent of the functional specification. These two specifications will
be combined later to specify both aspects of the system.

.% %

Concept PI: Physical Distribution of Nodes.

Pl[NN]

' I. Node : FF(NN)

Conn : NN <-I-> NN

I Path : NN <-I-> NN

.- . Conn contained in Node X Node

Conn in symm(NN)

Path = Conn*

Node =

This conceptual module defines the basis of a distributed system as a
collection of Nodes which are Connected together allowing those Nodes with a
Path between them to interact. (Note that the term Node is used here in a
much more restricted sense than its use in the first attempt at a
specification, here it is an abstraction of a single computer in a network
of computers.) Node will always be a finite subset of names from another
generic set of names (NN). Only existing Nodes can be Connected, with the
existence of a path depending on the closure of the individual Connections.
Conn is a symmetric relation. Node, and therefore Conn and Path, is empty.

Pl.NewNode(-> n)

n : NN

n not in Node

n in Node'

Pl.DelNode(n)
' n in Node

In not in Node'

Nodes can be added and deleted.

Pl.Connect(n, m)______________a in, m : Node

n, m not in Conn

I(n, m) in Conn'

SP1.DisConn(n, m)_____________

In, m : Node

.~'I(n, m) in Conn

I(n, m) not in Conn'

~Individual Connections, and therefore Paths, can be added to and removed
from the network of Nodes.

Concept P2: Activation/Deactivation of Nodes.

.Conceptual module P2 builds on the network of Connected Nodes provided by P1
to add the concept of parts of this system, either nodes or Connections, notIbeing available for use at times durinq the life of the system.
P2

poI Up : FF(Node)

IAvl : FF(Conn)

SIAcc :FF(Path)

SIAvI contained in Up X Up

IAcc = Avl*

The Nodes that are working are a finite subset of the existing Nodes. The
SAvailable Connections are that finite subset of the Connections whose Nodes
are Up. The Accessible Paths are, likewise, the closure of the available

LConnections.

? *~.. ~ -- .- ail.,

P2.NodeUp(n)

n : Node

In not in Up

S n in Up'

r,. P2.NodeDn(n)

qn : Up

S n not in Up'

Nodes can come Up and go down, implicitly causing Connections to become
". Available or not resulting in making accessible/inaccessible other Nodes.

Pl and P2 contain the concepts we have chosen as essential in the modeling
" of the distributional aspects of systems. Note that we have, for instance,

chosen not to explicitly consider that connections could go down independent
of Nodes, on the basis that to a user of a connection, either the connection
or the node going down appears the same.

Distributed Information System: Combining Concepts.

The functional conceptual modules which provided for the Issuing and Viewing
* of information are combined with the distributional conceptual modules to
.- form the concept of a distributed information system. This allows us to

consider those aspects of an information system which either follow from its
distributed nature (modules Dl through D3), or can use this distributed

-nature to advantage (module RI).

Concept Dl: Distributing Parts.

Now that the system is distributed, Parts (users or programs) are considered
.'[to exist at a Node. Note that this choice precludes explicit duplication of
"" Parts, as will be seen later (conceptual module RI) the normal operation of

the system provides enough redundancy so that explicit duplication is not
. needed.

4

* S%~

* %

DSysl -

IS4

P2

- IHome : Part -> Node

The first Distributed System conceptual module combines and directly extends
both the final functional and distributed configuration modules. Every Part
has a Home Node. (Again since Part and Node are both initially empty, Home
is also.)

DSy9l.NewPart(n ->p)

DSl.NewPart(->p

In : Up

I Home'(p) - n

When Parts come into existence, they do so at a Home Node. (Promotion of a
semantic operation to include the effects of a new concept.)

DSysl.MoveHome(p, n)

p : Part; n : Up

SIHome(p) / n

• (Home(p), n) in Acc

I Home'(p) = n

The Home of a Part can move.

Concept D2: Activation/Deactivation

,. In addition to the long term existence of Parts on Nodes, there is a shorter
term Activation/Deactivation of these Parts based both on the desires of the
Part and the status of the Node where it is located.

:.:

DSys2

DSysl

I Site : Part -> Up

Sess : FF(Part)

! Sess = dom(Site)

,. Parts can only be active (in Session) when they are at a Site which is Up. A
Part's Site can be different from its Home.

DSys2.LogIn(P, n)

p : Part ; n : Up

p not in Sess

ISite'(p) = n

I DSys2.LogOut(p)

S p: Sess

i p not in Sess'

P Parts can Log in or out at a Node which is Up.
DSys2.NodeDown(n)

I P2.NodeDn(n)

In not in range(Site')

When a Node goes down, there are no Parts at that node in Session, ie.
activity at that Node ceases.

Concept D3: Distributed Entry and Retrieval.

* The activity of the Parts and Components in the distributed system must take
into account the effects of the distributed nature of the system on the

operations. Both the effects on existing operations and the addition of new
-C o:erations must be considered.

D s3________________________

IDSys2

~No concepts are added here, only operations.

DSys3.Issue(s, d)________________

IS3.Issue(s, d)

s sin Sess

I(Site(s), Home(s)) in Acc

In order to Issue information, a source must be in session and have access
to its Home.

DSys3.Sync(c, s, d)------------------------------

IS4.Syrxc(c, s, d)

d in Sess

I(Home(s), Site(d)) in Acc

SSynchronization requires that the Home of the source be accessible to the
destination, but not that the Component that they are synchronizing on be
accessible to either.

DSys3.Query(s, c, ->d)

s :Sess

c :Comp

~d : DATA

! I (s, c) in Vis

#(View(s)(c)) > 0

• I (Site(s), Home(s)) in Acc

* d = last (View(s)(c))

Query is not an essentian operation since all of the information is
available and therefore all queries are possible, but it is included here to
indicate and examine restrictions which should be included when queries are
specified. (Note that if this were the only Query, only the last Data item

. would have to be kept in any implementation of this system.)

Robust Distributed System.

A robust distributed system extends the distributes information system to
allow for the possibility of reconstructing a Part which happened to be (at
Home) at a Node which went Down..

Concept Rl: Reconstruction of Information.

. RbDSysl

I DSys3

Best : Node -> (Comp -I-> seq DATA)

I Temp : FF(Part)

I Best contained in View o inv (home)

All n, All p(at n), All c : #Best(n)(c)>= #View(p)(c)

Best (at each node) contains the latest view of each component that any Part
at that Node has. (The two constraints are a precise but inelegant way of
saying this, elegance requires reformulation in terms of more sophisticated

relational operators.)

RbDSysl.TempPart(n, p, ->q)

n : Up; p : Sess; q Name

I q not in Part

ml
q in Part' and q in Temp'

View'(q) = Best(n) restricted to im(Vis)fp)

p not in Sess'

o TempPart creates a temporary Part whose View is as good (up to date) as any
that exists on Node n and removes P from being in session.

c RbDSysl.ReplPart(q, p)

q, p : Part

q in Temp

I Info'(p) = Info(q)

View'(p) = View(q)

! Home'(p) = Home(q)

Site'(p) = Site(q)

q not in Part'

ReplPart replaces the "value" of p with that of q and deletes q from the
'- legal Parts.

These two operations can be used together to reconstruct a Part from
",, operationally available implicit replication thus obviating the need for

explicit replication whose sole purpose is for the reconstruction of Parts.

Conclusions:

En our description of this experiment, we have avoided speaking of the
approach used as being a "methodology". The entire intent of the approach is
to develop a useful notational framework in which a wide variety of system
concepts can he expressed and in which one can reason about these concepts.

We envision a small team of highly trained designers, with the close
cooperation of the potential users, reasoning out the system design. A
formal system of notation would be used to express with mathematical
precision the concepts agreed on so far, up for discussion, etc. Having such
precise documentation would focus the design, and its dynamic nature would
make it serve as a growing baseline for the design. The fact that the
notation enables implications of the design to be formulated and proven,
allows the team to experiment with issues that are usually not possible to
consider until the design has been implemented.

Another way of describin "specification" is as a process that a design
team goes through in developing a system specification, not only for the
document that will result. The process itself is of more value than the
resulting specification in the sense that it requires a treatment of the
concepts that must help to ensure their consistency and correctness. More
specifically, as each conceptual module is formulated and developed, the
thought process is anchored and the discussion focuses on the appropriate
issues. The resulting document should not be dismissed. A specification of
the desired system will exist with a degree of precision seldom approached.

Appendix

Syntax of "Conceptual Module" and "Semantic Operation".

CONCEPTEGENERICSET]-----------------------------

(includedconcept I

Iid: SIGNATURE I

----- --

I invariant descriptions I

----- --

[initial condition I

I---

CONCEPT. Operation (Parameters)--------------------

ii (extension

I(Parameter Signatures

! I Pre-condition

--

SPostCondition

References.

1. The Vienna Development Method, D. Bjorner and C.B. Jones, Springer-Verlag
lecture notes in computer science, No. 61, 1978.

2. Towards a Mathematical Semantics of Computer Languages. D. Scott and

C. Strachey, Oxford University T.M. PRG-6.

3.Formal Specification of a Editor B. Sufrin, Oxford University T.M. PRG-21-

Appendix 3: Papers on Z, Programming Research Group, Oxford University

I 1. Mathematics for System Specification
by Bernard Sufrin

2. Notes for aZ Handbook
Part 1: The Mathematical Language

by Bernard Sufrin, Carroll Morgan, lb Sorensen, Ian Hayes

3. The Schema Language
(same authors)

4. An Example of Data Refinement:
Implementing a Two-dimensional Array as
a One-dimensional Vector

by Carroll Morgan

5. Examples of Specification Using Mathematics

by Ian Hayes

. ". 6. A Message System
* " by Ian Hayes

S7. CICS Temporary Storage
by Ian Hayes

8. Formal Specification of a Simple Assembler
". by Bernard Sufrin

9. Case Studies in Formal System Specification
by Bernard Sufrin

.' "10. Z Reference Card

IW.% '¢

,.

Mathematics for System Specification

"4 iBernard Sufrin

Oxford. 1983/84

Preface

This course and its companions "System Specification and Development", and "Program
Correctness" are intended to show you how to use mathematics (and in this course, more
specifically set theory) in the design and development of computer-based systems. The
principal message of this first course is that by using the notation and reasoning methods
of mathematics it is possible both to present understandable and coherent system
specifications and to discover design flaws long before a system goes into production.
Later we will demonstrate that programs themselves can be viewed as mathematical objects,
and show how it is possible to prove whether or not programs meet their specifications.

The emphasis in the first course is on learning to use mathematics as a tool, so our initial
.*1 presentation of the basic notation and reasoning methods will be intuitive and informal.

Whilst this may be unfashionable in some quarters, it is an approach we share with the
teachers of many forms of applied mathematics. We introduce the basic notation by an
informal characterisation of the meaning of its sentences. We extend the basic notation by
using its definitional power to construct a toolkit which is powerful enough to let us begin
to desc:ibe and reason about some simple, practical systems. During this part of the course
we are careful to present convincing Ir ormal arguments that what we claim are theorems
are theorems in fact, but we do not introduce the idea of a formal proof until much later.
By this time the need for rigour will have become clear, and we will spend a short time in
outlining the formal basis for the notation and reasoning methods presented earlier.

S-. 1. Introduction

The use of natural language as a vehicle for the specification (or description) of
computer-based systems has serious limitations. Anybody who has ever been the victim of
bad or inadequately documented software will confirm that the manuals which purport to
describe the behaviour of a system never tell the whole story. Almost every programmer
who starts to use a new machine, programming language, or operating system sets up a

-.~number of experiments, in which they attempt to discover how it "really" behaves. It is a
commonplace observation that computer systems (be they large or small) accumulate around
themselves a body of folklore - necessary knowledge for anybody who wishes to use them
effectively - and a number of "experts - people who understand (or claim to) the
hidden secrets of the system because they have read - the source codd

* *.~" But even knowledge gained this way is transient because systems never remain remain
. stable. Consider, for example., an applications program built using a database package

which itself relies on an operating system. Because there is no definitive and unambiguous
record of the precise nature of the facilities which the operating system must provide, the

' . manufacturer's system programmers may decide arbitrarily that a certain behaviour is
"accidental", and may remove it during a rewrite - perhaps thereby triggering a rewrite
of parts of the database package, and thence (by the same unhappy process) a rewrite of
the application program. So an enormous amount of time, energy and talent is wasted in
simply running to stand still; an activity which is given the name "maintenance" - as if

S. programs were subject to the action of the weather!

7 Sep 84

,'. "~~~~~~~ ~~~ %4'J " *"% . - ,%" %' '- ". r "J =E = - " .. I

The fact that natural language permits a variety of interpretations to be made of a given
specification is partly responsible for this confusion. Agreements made in good faith
between system designers and their clients, turn out to be based on mutual mystification

%, (or exhaustion) rather than a common understanding of the nature of a requirement; the
same situation obtains for agreements between designers and implementers, between groups
of implementers working on different layers of a system, and between systems- and
applications-programmers.

As well as wasting hours in perplexing discussions caused by differing interpretations of
terminology, a design team which records its decisions in natural language is often unable
to foresee serious negative consequences of bad decisions taken early in the life of a system.
These often emerge only after a great deal of work has been done on system
implementation - by which time it has become too costly to remedy them fully.

The end result is what it has become fashionable to call the Software crisis: the paying
customers rarely get what they thought they were going to get, the price is usually higher
than they thought they were going to pay, and the end users suffer more misery than they
had dreamed was possibld

It has long bee conjectured that formalisation can and should play a role in the process
of system design and construction, the expectation being that its employment would
mitigate at least some of the problems outlined above.. But except in certain rather

% specialised areas (for example compiler construction, numerical algorithms) the problems of
putting this precept into practise have come to be regarded as almost insurmountable by
the majority of practising programmers and designers.

-4

In this course we present a formal .anguage - the language of set theory - and show
how to use its notations to record decisions about the intaded behaviour of
computer-based systems, and its reasoning methods to elucidate the consequences of such
decisions. In order to illustrate this, we will apply the notation to the description of a
number of systems some of which are more than just academic examples. Finally we will
consider formal criteria by which the correctness of a program relative to its specification
may be judged.

U.

2. The Language of Set Theory

"Every mathematician agrees that every mathematician must know some
set theory; the disagreement begins in trying to decide ho. much Is
some. ... The studentes task in learning set theory is to steep himself
in unfamiliar but essentially shallow generalities until they become
so familiar that they can be used with almost no conscious eiort. In
other words, general set theory is pretty trivial stuff really, but if
you want to be a mathematician you need some, and here It is; read it,
absorb it. and forget it.

Prom the introduction to aNaive Set Theory by Paul R. Halmos

"For the logician, a main virtue of a theory is that It be concise, so as
to be easier to study and characterise: notation is typically devoid of
all intuitive content, so that a sentence Awill not be confused with its
meaning. rt is common that intuitively evident sentences are quite

difcult to prove in such theories.

Por the computer scientist, it Is more Important that a theory be easy
to use. Proofs of evident sentences within the theory should be easy
to discover, and possibly to automate, and should ree ct the intuition
behind themo

Prom 'hoe Iogcal Basis for Computer Programming- by Zohar Manna

U and Richard Haldinger.

2.1 Introduction
The study of logic (and later of set theory) arose out of the desire of mathematicians to
produce rules which enabled them to say which arguments were valid and which were not.
In view of its importance to mathematicians, it may come as rather a shock to a
Computer Scientist to discover that despite the fact that it has been studied as a topic in
its own right for at least a century, mathematicians have not yet agreed upon a concrete
syntax for the language of set theoryl If you understand that concrete syntax isn't really
very important you may be more surprised to learn that they haven't agreed on an
abstract syntax or a semantics (more precisely an auiomatisation) either.

'."

If we want to use the language of set theory as a means of communicating ideas, then
we're obliged to choose an existing variant or to invent one of our own. It turns out --
though it might not have - that it doesn't really matter which variant we choose; the
differences between the rival axiomatisations will not drastically affect the way we work
or the style of reasoning we are able to use. This is because the differences between
axiomatisations only become apparent in the curious realms of the transfinite, and
computation is done in the realm of the finite (or at worst the countably infinite).

Apart from a little syntactic sugaring, the language presented in the first part of the
Id course follows that presented in the first part of [Abriall - to whom those concerned

with a more formal approach may turn. It will later become apparent to cognoscenti that
there are differences with that language which are not merely cosmetic. For the moment,
though, those differences may not be perceived, and in any case can safely be ignored.

3

.7- %. - ** '

Other informal presentations will be found in [laimos., and fres1.

If we were programmers studying a programming language with the intention of
programming in it we might examine it in terms of expressions, declarations and
commands and their respective meanings, and try to discover what it had in common with
the languages we already knew. We'd also try to discover the purpose of any glaring
unorthodoxies. As programmers and mathematicians studying one dialect of the languag;
of set theory with the intention of writing specifications in it, we will rind it useful to
begin by examining its four interrelated sublanguages, namely the language of terms. the
language of preo'cates, the language of devfnatons, and the language of theorem., In
subsequent sections we will show how the languages are extended.

Assuming some familiarity with the ideas, vocabulary and symbolism of logic and set
theory, we will try to give a general idea of the flavour of these component languages by
means of a few simple examples. After reading these you should be able to point out the
main differences between our notation and the "standard" notations. Understanding our
reasons for introducing the differences will certainly take longer.

2.2 Term language
A term is a phrase of the language which corresponds intuitively to a set or to an
element of a set. Examples of sets are a pack of wolves, a bunch of grapes, a flock of
pigeons or a collection of books. An element of a set may be a wolf, a grape or a
pigeon, a book, a number, or a function. A set may have elements which are other sets -
for example in classical geometry a line is a set of points so the set of lines in a plane is
an example of a set of sets.

The simplest kind of term is a name, for example:

Bernard

The language of definitions (which we discuss later) is used for introducing new terms into
a document written in the language of set theory, and giving them meaning. In order to

4. simplify what follows, we will assume that N has already been defined in such a way that
it denotes the set of Natural Numbers (nonnegative integers).

One way to specify a (finite) set of Numbers is to write down its elements one by one -
this is often called an eitensional definition or specification. For example:

(Q. 2. 3. 5. 7)

It is obviously out of the question to give extensional specifications for sets (even finite
sets) above a certain size. We cannot, for example, write down all the elements of the set

I.%,of prime numbers. Another kind of term is used to denote such large sets, and an example
of this kind of term is:

n:N I (d.ivisors n) = (1, n)

which reads "the set of natural numbers n whose divisors are I and n". This style of set
description is called comrehenslve, it is used to specify subsets of a certain set by
giving the characteristic properties of their elements.

The first part of such a term is a signature, in the case of our example:

4 % %o %%

•L e

-: IN

which Introduces a nev, variable n which may take values from the set of natural
numbers (IN) and whose scope is the second part of the term, namely the predicate

lj (divisors n) = (1, n)

In fact it doesn't matter what the name of the variable is: a number is in the set denoted
by this term exactly when the divisors of that number are I and the number itself; indeed
the same set can be denoted by:

p' (a:N I (divisors a) = (I. a)

or by:

cabbage:N I (divisors cabbage) = (1, cabbage) I

Yet another way to read this term is "the set, each of whose elements is a Number whose
divisors are I and itself".

2.3 Predicate language
A predicate is a phrase of the language which corresponds to a statement (about sets
and/or elements) which may be true or false. For example: "x is smaller than 4, "There is
no number which is larger than all the prime numberso, "AU prime numbers are of the
form n4n4li for some numbers n and m*. "The inverse of the successor function is a
function".

A predicate is either a orimItive predIcate or is constructed from simpler predicates by

means of propositional connectives which are denoted by the signs:

A and...
.. V or"..

- ... not ...

,...e..actl. th /n ...

Supposing that P stands for a predicate which corresponds to "There is no number which
is larger than all the prime numbers", and that 0 stands for a predicate which corresponds
to "All prime numbers are of the form -*, then the predicate:

(AP A 0] (Pl.)

corresponds to the statement "There is no number which is larger than all the prime
.- numbers and all prime numbers are of the form -". The predicate

p V 0 4 P:

corresponds to the statement "There is no number which is larger than all the prime
numbers, or all prime numbers are of the form .

5

By definition in order to orove the truth of the first of these predicates (PI), of course,

we would have to prove the truth of both its constituents, that is P and 0. (If ou think
you can prove 0 then come and see me). By definition, in order to prove the truth of the
second predicate (P2), all that is needed is to prove one of its constituents; in other words
the symbol which we pronounce "or" corresponds to the idea "either - or - or both".

It turns out that the propositional connectives can all be defined in terms of not and and
by syntactic equivalence., thus if P and 0 are predicates we have:

p V 0 a - (-P A -Q)

p a a a -p v a

The "exactly when" relationship between two predicates. P and 0 (sometimes read "P if and
only if Q") is written

-4P 0. a

it is the conjunction (and) of the predicates which correspond to "if P then Q" and "if Q
then P", that is

p-0.Q & p--PQ A Q-p

Evidently one strategy for proving an "exactly when" predicate would be to prove both its
S"t.if - then _" components.

It is very important to understand that the truth of the statement "if P then Q" does not
guarantee the truth of the statement "if not P then not Q". You might be able to
convince yourself of this by considering, for example, the "real life" fact "if" it is r-ening9
then the roof Is met": if "It is not raining" is the only fact we know, then we still
can't conclude anything about the wetness of the roof (it may just have stopped raining, or
a flock of herons with bladder trouble may have just flown over). Perhaps it would be
easier to convince oneself of this if instead of saying "if P then Q" we said "Q must hold
whenever P holds".

The first arlnItnve aredicate we will introduce is the one which corresponds to the
concept of of membership or belonging. If the element x belongs to the set S then the
predicate

xES

is true; otherwise the predicate is false. For example.,

3 G primes

is true, but

2345678 e prjes

is false.

Next we introduce the predicate which corresponds to the equalty relationship between
sets: two sets are said to be equal if they have exactly the same elements. If S and T
denote subsets of a set which have exactly the same elements then we write S=T.

6

% % %~

*
t

,

1 The third predicate to be introduced is the "i$ a subset of" predicate: if every element of a
set S is also an element of the set T then we say that S is a subset of T and write:

ScT

If S is a subset of T which does not have exactly the same elements as T then we say it is
W a proper subset of T and write:

ScT

Later in this section we will formalise the connection between these three kinds of
predicate.

The predicate which corresponds to the notion "all - have the property -" is written with
a symbol which frightens some people. For example, the statement "all numbers when
added to themselves produce a prime number' is expressed as the predicate:

V n:N . (n+n)epriaes
p -

Of course this predicate - and the statement to which it corresponds - is false, but that
doesn't mean we can't write it down.

Here are some more examples:

(a+i = b+i)
divisors n = (1. 5, 7)
n 6 primes

I(n: (divisors n) = (Q. n) 0 # ()
3 n:N . (divisors n) = (1, n)

V a:N; b:N . (a+1 = b-1)

* The last predicate - which formalises the statement that for all natural numbers a and b.
a+1 is equal to b-1 - is false, whereas the first three may be true or false depending on
the values of n, a, and b - we need to know more about these values in order to discover
whether or not the predicates are true. There are many situations in which it may not be
possible to demonstrate the truth or falsity of a predicate.

The alert reader will have noticed that the predicates above aren't independent of each
other. The penultimate predicate - which is also written with a symbol which some

* people claim to be frightened of - may be read "there is a natural number, n, which has
divisors I and n*. It is true exactly when the fourth predicate

4 n:N I (divisors n) = (I., n)) ()

which may be read "the set, each of whose elements is a Number whose divisors are - is
not the empty set" is true (and false exactly when the fourth predicate is false).

We can use "exactly when' to encapsulate the connection between the subset relationship
and a "for all -" predicate more formally. The following predicate is always true for any
sets S and T:

(S Q T) (V x:S xeT)

7

We can do the same for equality of sets; the following predicate is always true for any

sets S and T:

(('V x:S . xT) A (V x:T .xeS)) (S=T)

Since "exactly when" is a transitive relationship (that is for any predicates P, Q and R, if

P holds "exactly when" Q holds, and if Q holds "exactly when" R holds, then P holds
"exactly when" R holds) the following connection between the subset relation and the

equality relation follows from the two connections just outlined:

((S c T) A (T a S)) - (S=T)

Finally, we can express a general relationship between statements of the form "there is a -

for which the property - holds" and "all - have the property -0, namely that for all sets
S and predicates. P

(V x:S . P) "C 3 x:S . "P

In other words P holds for all elements of S exactly when there is no element of S for

which the negation of P holds.

2.4 Definition language - Syntactic Equivalences
A sImple syntactic equt'alence is a phrase of the language which associates a name
with a term. For example, the following definition asociates the name primes with a
term denoting the set of all prime numbers.

primes A (n:N I divisors n = (1, n)

It signifies that prime. is a shorthand for the term on the right hand side of the a sign.
For example, if we are asked to prove that

3 6 prime.

then the first thing we do is to substitute the definition of primes for primes itself, and
try to prove that:

:3 41 (n: N I ... I

which we will probably do by trying to prove that the predicate _ holds when 3 is
substituted systematically for n in it.

Another form of the same definition is:

-prime.n :N I divisors n = (1, n)

It means exactly the same as the "a" form.

t4eI More complicated forms of syntactic equivalence will be introduccd as the need arises.
i,

'S

S

V..

2.5 Theorem language
Stripped of its prose any text in the language of set theory consists at the "top level" of

-F several definitions, followed by several theorems. A theorem is a statement about the

definitions; it asserts that a certain predicate can be (has been) proved to be true from the

definitions themselves and the rules of reasonIng of the language of set theory.

The simplest form of theorem is written as a turnstile sign followed by a predicate:

S, Predicate

The following theorem, for example, is tantamount to an assertion that we have proved
Uthat 3 is an element of the set denoted by the name prime.

b- 3 Q primes

Of course have not yet introduced the rules of reasoning so it is not strictly possible for
our readers to prove this theorem. What is possible is to argue Informally from an

intuitive knowledge of the properties of sets and of the divisors function but this
inf ormal argument should not be mistaken for formal proof. Indeed there is another
problem: we have yet to write down a definition for "divisors", any informal reasoning

. must at present be based on the fact that the name 'divisors' suggests that the function in
*, question maps a number into the complete set of its divisors - which may not be sot

We will say more about the rules of reasoning later. For the moment it is sufficient to

understand that a theorem Is not a predicate, nor may a theorem be written within a

predicate; for example the following pseudo-set-theoretical text is not part of the
language m r set theory.

WRONG 4 1 (divj.ors n) C n 0 pri.e) WRONG

2.6 Definition language - Signatures

2.61 - Variables
In order to introduce a new variable we must first indicate the set of values over which
the variable is permitted to range; we do so by means of a signature. For example, the
following signatures associate respectively n with the set N (natural number) and a and b

with the set sequences of K

-0 n: N
a. b: seq M;:

The phrases within which signatures introduce variables include the predicates

V Signature . Predicate

3 Signature . Predicate

and the terms

W Signature I Predicate

X Signature I Predicate Term

9

W1

The signs

3. V

are called "quantifiers' in classical logic. When we use this word we also include the signs:

x. (I ...)

We will say more about X later.

The scoaa of the association between name and type (that is those parts of the text from

which the association is visible) for variables introduced this way is the text of the

Predicate, (or in the cae of the x-term the text of the Predicate and the Term) except

where the association is temporarily made invisible by an intervening signature for the

sam e name c.

For example in the following predicate

V a:LECT

3 n:CAR . pred, A (a:IN I pred) = 0}

the association a: LECT is "visible" in pred. the association n: CAR is visible in predl and

pred2. and the association a:N is visible in pred2.

2.6.2 - Constants
.Ile In order to introduce a new constant into a piece of mathematical discourse, we also give

a signature for it; this time at the "top level". The signature may be associated a predicate
which constrains its value in some way. Predicates which constrain constants introduced in

this way are sometimes called axioms.

For example this is how to introduce a constant (of type) Number., whose value we require
to be between seven and ninetee, but about which we wish to be no more specific

procesoropernode: N

74procesopernode41t

The double horizontal line has no significance, except that it serves as typographical
emphasis that the signature appears at the top level. Likewise the short horizontal line

simply separates the signature from the predicates with which it is associated, and the long

single horizontal line emphasises the end of the predicates.

The following signature and its associated predicate introduce a constant function from

numbers to numbers, named foo, which maps every number into its square:

foo: N -" N

Y n:N . foo n = n x n

Of course we haven't explained properly what we mean by the sign - or by the word
.'uctlon' We will do so later.

10

- --

A constant defined in this way is visible throughout the whole of the remaining

"mathematical discourse', except for those places where variables with the same name are

visible.

52.7 Set Comprehension Revisited
Mathematicians sometimes use another form of comprehensive specification to denote the

set of all things "of a certain kind', for examplc:

N- (n:h . n

OR_ denotes the set of all things of the form

where n ranges over the natural numbers. Another example is

*"" a. n: I m nn 2 <44 • n3-m 3)

which denotes the set of all things of the form

3-

where a and n range over the num bers in such a way that the sum of their squares is less
than 44.

In fact the general form of a comprehensive set specification it

Signature I Predicate . Term)

There are a number of special cases of this form which can be abbreviated. If the
Predicate doesn't constrain the variables of the signature (in other words if it is
identically true) then we leave it out and write the comprehension as

Signature . Term

If the Signature introduces a single variable and the Tern Is that variable then we leave
out the Term and and write the comprehension as:

- (Signature I Predicate

This form of abbreviation will later be generalised.

If we leave out both Tern and Predicate we just get the degenerate case

Signature

An example of this is

(x:X I

which is an abbreviation for

• oI

(x:X i true. x)

which is the set of elements x of X for which the predicate true holds. Of course this is
just the set

x

itself.

Some mathematicians use one or both of the syntactic forms:

Term I Signature I Predicate
Term I Signature

to denote set comprehension.

2.8 Structured Types: Part 1
We have shown how to specify subsets of a given set using extensional and
comprehenslve specifications, but then (sub)-sets can never have more in them than the
original set. In this section we introduce two means of constructing 'bigger" sets from
given sets; the remaining method (tree-constructions) will be introduced later.

. 2.8.1 Cross-Products - Sets of Tuples
If Ti and T2 are both sets, then the term

denotes another set, namely the set of two-tuples (ordered pairs) whose first elements are
*l dr;.wn from Ti and whose second elements are drawn from T2. This set is sometimes

called the product or cross-poroduct of TI and T2.

The ordered pair whose first element is a and whose second element is b is written

Ca, b)

If we have somewhere defined

LECT a (3S, TH)
CAR a (R 350V, PVM4g5, A420GBH

then the term

LECTxCAR

denotes the set of ordered pairs

(BS. RWR360W). (BS. PVM4gSW), (BS. A420CBH),
(TH. RWR360W), (TH. PVM495W). (TH. A420GBH)

This set has six elements - the arithmetical product of the number of elements in LECT
and the number of elements in CAR, hence the name cross-roduc.

12

-,. *d. %",

Another term denotes the same set, namely

.(1:LECT: m:CAR . (1, a)

It can be read as "the set of all ordered pairs (. m) where 1 is an element of LECT and a
is an element of CAR. By generalising the abbreviation introduced in section 2.7 we can

rewrite this term as

1:LECT; a:CAR }

Subsets of the cross product are denoted by terms of the form:

1:LECT; a:CAR I Predicate . (1. a)

which (again generalising the abbreviation of section 2.7) can be shortened to

1:LECT; a:CAR I Predicate I

We can generalise the notation for two-tuples to that for n-tuples by using the following
" syntactic equivalences

T, x T, x T, a T, x (T, x T,)

and

(x, y. ... z) a (x. Cy ... z))

r.For example:

LECTxCARx(1983, 1982. 1981)

denotes the set of triples

1:LECT; n:CAR; y:N I yE(1983. 1982, 1981) . (1. y))I
- 2.8.2 Power Sets - Sets of Subsets

The owerset of a given set, S say, denoted by the term

is the set whose elements are the subsets of S. For example the powerset of LECT is

U. (BS). (TH) (BS, TH) I

Notice that the number of elements of P S is 2 to the po.er of the number of elements
of S (hence the name).

The term () denotes the empty set, whose properties with respect to any set X can be
summed up by the theorem:

- V x:X x1()

13

In other words - no member or any set Is a member of the empty set.

What is more, the. properties of an empty subset SS of a set X with respect to any

predicate P can be summed up by:

- V SS:P X . SS={) - (V x:SS P)

In other words any predicate about all the elements of an empty set is true, of course
since there are no such elements this fact is not too useful!

Notice that the powerset of the empty set has exactly one element, namely the empty set
itself; that is:

- CP ()) = 0}

This should demonstrate that it is important to be very clear about the distinction between
a set with no elements and a set whose single element is a set with no elements (if you
don't like this, then reflect on the difference between an empty tea packet, and a cupboad
with only an empty tea packet inside).

The powerset of N is very large (so big that its size isn't expressible as a INatural number).
Here is one way of specifying a constant whose value is a single element (/e a set of
numbers) of that huge set-

F Even: P N

[V n:N . neEven *.* (3 n:M . n,,a)

We read this "Even is a set of numbers, and every number n is in even exactly when it is
• twice some number a* Here's another example.-

Odd: P Nl

Odd= n:Even . n+1

"Odd is the set of numbers of the form n+1 for even numbers n."

As an exercise try specifying Even in the style we used for specifying Odd and specifying
Odd in the style we used for specifying Even.

2.8.3 Finite Subsets
The idea of a finite set is quite familiar to us, but it's surprisingly hard to find a simple
formal definition. Informally, the finite sets are those whose elements we an "count".

Notation: If X is a set, then we write

to denote the set of finite subsets of X. Evidently if X is itself finite we have:

14

.N
It can also be proved that

F'- X I = U { x:X; 8x:F . (x U s

in other words, the set of finite subsets of X contains the empty set and those made by
"adding a single element of X to a finite subset of X".

The number of elements in a finite set, S, sometimes called its cardinalty, or s/ze. is
written aS . The important properties of the * operator, which reflect the fact that finite
sets can be built up by adding elements 'one by one to the empty set, arc

V S:F X . V x:X . xOS * #((x)US)=l+*S

If T does not denote a set, then the term aT ha no meaning.

This concludes our introduction to the flavour of the sublanguages of the language of set
theory. By now you should understand the ideas to which terms and predicates correspond,
what a signature is, how to specify a subset of a given set, and how to specify sets of sets
and sets of tuples.

.1

r

aS.

F.-.

..

M
........-- °.

~'~' ~ ~ ~ a,.-. S K ~* ' *b .~ . S

3: The Language of Relations and Functions

In this section of the course, we show how the basic language of set theory is extended to
include notations which allow us to describe relations and functions.

3.1 Binary Relations
You are already familiar with the concept of a binary relation - for example in
mathematics the relations "Is less than". "is a subset of" or in law "owns a car whose
registration number is'. In the language of set theory, binary relations are considered to be
sets of pairs.

For example, the "less than" relation on the natural numbers is the set of pairs

"d' (i:N; j:N I (3 k:N . i+eczj A lcO))

(though we wouldn't der'ine it in this way).

Notation: If R is a binary relation between elements of A and of B, and if a: A and b:B
then the predicate

~aRb

is syntactically equivalent to the predicate

(a.b) 6 R

Sometimes we write a maps to b under R or R maps a to b; using this terminology, of
course, we see that "<" maps (for example) 3 to every number bigger than three.

Relations can be finite, for example suppose that OWNER is the set of all potential car
owners, that REG is the set of car registrations, and that MAKER is the set of car
manufacturers Without concerning. ourselves with the internal structure of these sets let's
also suppose that we have certain distinguished constants, namely

TH. JS. BS. RB, IS: OWNER
Ford. Bentley. Renault. Morris, Datsun: MAKER
a420gbh, rwr350w, pvs495, is400 p. a19O: REG

Then we could specify relations owns and made respectively:

((TH, a420gbh), (BS. rwr360w), (BS. pvs495), (IS. is4aOp)

((Renault. a420gbh). (Morris. rwr30w)
(Morris. pvu495), (Datsun. is4OOp). (Bentley. a190)

In which case the following predicates would be true

TH owns a420gbh
BS owns rwr360w
Morris made rwr360w

whereas these are false

16

BS own. is400p
TH owns pvu4g5

Bentley made pvm495

Ford made a42Ogbh

It is customary to use the following syntactic sugar for the the pairs which make up a
relation:

ab- b Q (a.b)

so owns would be written

(THII-a420gbh. BSI-.rwr360w. BSI-pvm495. ISQ-i,4Oap

and "<" could be written

Si:4; J: h 1 (3 k: N ...) iJ

Notation: Given two sets X and Y the set of relations between X and Y - which is
denoted X'-Y - is the powerset of their cross product. More formally.

(X.Y X+-Y a P(XxY)

This is a more complicated form of syntactic equivalence which comes in two parts; the
first part reads Ogiven two sets X and YO and the second defines the left hand term to be
syntactically equivalent to the right hand term. We could also have written it as

X+-+Y XY]
P(X'XY)

3.2 Domain and Range of a Relation
eI Given a relation

R: X+=-Y

the domain of R - written do R - is the set of all elements of X which R relates to at
least one element of Y. In other words

don R = { x:X I (3 y:Y x R y))

The range of R - written ran R - is the set of all elements of Y which are related by R
to at least one element of X, that is

ran R = (y:Y I (3 x:X x R y)

A relation whose domain and range are subsets of the same set is called a homogeneous
relation. The emoey relation 0 is just the empty set of pairs. Its domain and range are
empty; it isn't too interesting (to be more precise it's about as interesting as the number 0
or the empty set).

17

3.3 Partial Functions
Functions are amongst the most basic tools of mathematicians and computer programmers.
As programmers you may be used to thinking of functions as 'recipes for computing'

certain quantities; in the language of set theory (indeed in the whole of mathematics apart
from computation) it is convenient to treat functions more abstractly than this, namely as

special kinds of relation.

A relation R is called a partlal fruction if it maps each element of its domain to
exactly one element of its range. More formally:.

X-*Y X.Y]
F(R:X-4+Y I (V x:X; Y.y 2 :Y . (XRy, A xRy2) -00 yt=yZ

The so-called total 1:unctions from a set X are defined by

X-- Y i.Y]

*F(f:XY I don f z X

In referring to a function as total it is important to say from ,hat set it is total. This is
because in general we can derive many "total* functions from a partial function - one for
each subset of its domain. More formally:.

Y E: X-Y.

v S:P X
Sr(doa) (x.X; y:Y I X4ES A X £ y)E(S-eY)

We use the phrase proper relation to describe a relation which is not functional. (For
example "<").

Notation: if F:X-*Y is a function, and if x is an element of the domain of F. then the

term
F x

means the unique y in Y such that xFy. If. on the other hand, x is not an element of the
domain of F then we cannot conclude anything about that term.

For example, consider the "unsquare" function

unsq = (x: 4 . xe -- x

The term

unaq 4

means 2, because 2 is the unique number satisfying 4 unuq x. On the other hand, the
term unsq 5 has no meaning (or to be more precise, cannot be reasoned abouIt any

e ' further i.

Infix Notation: if F: (X x Y)- Z is a function, and if x:X and y:Y then the

following syntactic equivalence holds

x F y a F(x.y)

%%
%

. : ...-: .: -: : : -: . :: :: " ,

-' "R

At first sight this appears to be syntactically ambiguous, since if F is a function it is also
a relation, and we already defined the oredcate

a R b 4 (a.b)ER

The apparent ambiguity may be resolved by inspecting the "shape" of the function and of
its operands. To be more precise, it x. y, z, and F are introduced by

x: X
y: Y

z:Z
F:XxY - Z

then the phrase

(x F y)

is a term of type Z. On the other hand the phrase

(xy) F z

4P, is a aredcate, as is the phrase
'N,

(x.y) F (x F y)

/ For the moment our language doesn't have to be understood by computers, so there's no
need when defining a function F to say whether xFy or F(x.y) is the form we'll use.

-.4

'9

3.4 Specification by Predicate
We have hitherto defined relations and functions by giving extensional or comprehensive
specifications of sets of pairs. We now introduce a more convenient style of specification.
namely "by predicate". For example, here is a specification of the relation "is the square

of-

squares: N .-* IN7

V n: N: i:TNT
(n squares i) - (U2 = n)

and here is a specification of a fairly uninteresting total function

boring: N -

V n:N . boring n = n' + 31n + 2

The defining predicate is equivalent to the predicate

boring z-{ n:h . nv-en 2 .+31n+2
"1*t

If we were being careful we would check that the polynomial term denotes a natural
number for all n: H for if it did not, then the defining predicate would not be consistent
with the signature; this is because the signature requires that the constant boring take its
value from the set of total functions from H.

Finally here is a specification of the function which maps a nonempty set of numbers to

* its minimum element (P, means the set of nonempty subsets)

min: (F, N) - M

V S:P, N
&in S 4 S A

V x:S . min S < x

W%

Notice that in this latter case we give no hint about how to discover the number in
question. we just give its properties. Such property-oriented specifications, particularly of

PM functions, may seem a little strange to programmers who are used to giving

"computational recipes"; notwithstanding this they are widely used in mathematics.

., One slight abuse ol" language which we permit is to omit the topmost universal
. quantification when to do so would cause no confusion. This is usually the case when

specifying relations or (total) functions, for example

squares: N -. ZNT
boring: N - N

n squares i. - i2=n
boring n n2 * 31n + 2

20

3.5 \-expressions
In some branches of computer science it is customary to denote functions by (so-called)
lambda-expressions. The following syntactic equivalence defines these terms:

X Signature I Predicate . Term 6
{ Signature I Predicate . (variables of Signature) '-* Term

For example:

X a. n:IN I m~n (u+n.a-n) *
{a. n:1N I mn .(a~n)-(&{+n. a-n)}

which denotes a function which maps pairs of numbers into pairs of numbers.

Exercise:
Write down a term which denotes the r-ange of the function denoted by

X Signatute I Predicate . Term

Notation:
If 0 is a binary infix operator with signature - 0 : X x Y - Z, then

a. U y) a X x:X . x a y and (x 0 X * y:Y . x O y

For example consider _+ _:N x N - N and :N x N --* N

(3 + _) is a function which adds 3 to its argument.

(55 - is a function which subtracts its argument from 55.

3.6 On Unsatisfiable Specifications
The pattern of much of the software architect's work is to specify what a problem is,
using the mathematical notation, then go on to discover whether or not the specification is
satisfiable. It is important to realise that the language of mathematics is sufficiently
powerful to allow us to specify things which may not exist. For example, consider

boring?: h - N

I V n:N . boring> n- n2 -31n+2

In this case the polynomial term doesn't denote a natural number for all values of n. so
the specification is unsatisfiable. In other words, whilst there is a artl/al function on the
natural numbers with the indicated property, there is no such total function. Now
consider.

prim*'e r:

Y n:primes prime? > n

, Unsatisfiable specifications aren't always so immediately and demonstrably unsatisfiable.

21

4: The Mathematical Toolkit

We're now in a position to use the definitional notation, introduced earlier, to introduce
the "kit" which well need for subsequent specifications.

"l 4.1 Operations on Sets
If X is a set, then we can specify the difference, union, and intersection operations, and the
inclusion relation(s) on subsets of X as follows:

"X]

U -.

n: (P X) x (P X) - (P X)

S, - S, a (x:X I XgES A xOS,
4P S, U S= x:X I xS vx S,)
. I S, n S = x:X I XOS, A X.S2)

,%

- : (PX) -' (P X)

; S1 Q x:S1 . xGS 2
S, C S, (S,$S2 A Sac.S,,)

These operators have a large number of properties, with which every aspiring
mathematician and computer scientist must become familiar. If you have any doubts about
your understanding of them then do the exercises in (lblschutzl.

4.2 Functions and Relations as "Data"
Functions and relations whose domains or ranges are sets of functions or relations are
called "higher order'. It is important to understand that higher order functions and

. relations are as easy to define as the "simple" functions and relations we have met up to
A now.

First we take a practical example let us suppose that we wish to model a database which
records the owners of cars. If we make the simplifying assumption that every registration
number has an owner (perhaps the "ministry of transport") then the state of this database
at any stage in its evolution can be modelled by a total function of type DB defined by

OB a REG - OWNER

A family of transactions, each of which records the fact that a person a has bought a car
*;' whose registration is r can be modelled by the function-

buys: (ONERxREG) (DB-DB)

. , (a tuXR r) db =db- r -(db r)) u(r -a

22

V ZS&I

This is a function of two arguments, whose result is itself a function. For each owner a
and registration r there is a function

a biyI r

* which maps our model of the state of the database before the transaction into our model

of its state after the transaction.

"* Since the model of the database is itself a function, we evidently have defined a function

whose result is a function from functions to functions. This may be a bit mind-blowing

for people who are used to programming in languages where functions aren't "first-class"
objects: remembering that we are writing in a descritlve language rather than a
programming language may help to calm you down.

Notice that we used union and set difference to describe the relationships between the
functions modelling the database before and after the transaction. This is perfectly

legitimate: the sets are (in this case) sets of pairs. This is where the mathematical idea of a
function (relation) as a set of pairs begins to pay off; we can operate on functions and

relations using the same operators as we use to operate on sets. In the next section we use
this freedom in order to specify some very powerful operators indeed.

4.3 Operations on Relations and Functions
An operator which may already be familiar is (forward) composition of relations, defined

by

" _ ! _: (X.-Y) X (Y*-2) - (X - 2;)

(x.z) 4E I, ;R) *-* 3 y:y . (x.y)GR, A (y,z)GR,

For example., suppose the relation

madeby =p a420gbh-Renault. rwr360w-Morrie,
pvm4g51-*orris. is400p--Datsun. algO-Bentley

Then the relation owneacarmadeby, defined by

P" owneacarmadeby = owns ; madeby
..

is (in extenso)

BSM-orria, TH-*Renau,. ISI-Datsun

Notice that it also happens to be a function.

Some authors also use the sign * defined by:

R2 R, R, i R

23

% - : - " (. - .)

4.4 A Simple Example: Family Life
Suppose we are designing a database in which to keep information about families. Let P

denote the set of all persons; each person has but a single biological mother and a single
biological father and we capture this fact by introducing two partial functions

ma. pa: P -' P

The functions are partial beause we cannot hope to record this information about
everybody who has ever lived. We do insist, though that everbody who has a mother has a
father and vice versa, (thereby ruling out immaculate conception). We also know that
nobody can be both a father and a mother, and record these real-world constraints by
adding the predicates

don ma don pa
ran n ran pa = (0

to our speification. For the moment we shall ignore several other real-world constraints.
We can now define several other family relationships using composition and union. For

qP eaample:

parent.
grandma.

grandpa: P-P

'-

parent = ma U pa
grandma = parent s ma
grandpa = parent ; pa

In order to define brother and sister we need a few more tools.

The inverse function

I (y.x)E(inv R) o (x.y)ER

maps a binary relation into its inverse.

Notation: if R is a relation then

CR" (inv R)

For exam ple:

madeby = made"

Note that the inverse of a function is not necessarily a function. For example, consider the

f unction:

. ..- o. .24

....................................... V .

Its inverse is a relation which holds between every number n and any pair of numbers
whose sum is n.

* - Exercise:
* Write a comprehens~ve specification of the inverse of .

The identity relation on subsets of a set is defined by

Id: (P X) -" (X-X)

Id S = (x:S . x-x

Exercise:
Summarise in prose the "effect' on a relation of composing it on the left/right with an
identity on a /arooer subset of its domain/range? Suppose that R is a relation, S is a
subset of its domain and T is a subset of its range. Write down terms which denote the
set of pairs which comprise the relations.

Rs(Id T)
L . (Id S) R

Resuming, for the moment, our "family life" example, let's now suppose that we keep a
record of who is male and who is female; nobody is both:

:;'-, uf 0

The real-world constraint which requires mothers to be female and fathers to be male is
recorded by.

ran pa r a
ran ma c f

The relations sister and brother are now (almost) respectively definable by

parent ; parent-' (Id f)
parent ; parent " I (Id m)

All that is left is to prevent males from being their own brothers and females from being
their own sisters:

sister = (parent i parent' I (Id £)) - (Id £)

brother = (parent j parent" j (Id m)) - (Id m)

Notice that we used right-composition with an identity relation to -estr'ct the size of a
relation. The following operators restrict relations by specifying a restriction on their
domain and range respectively:

25

4f % -t<

r :(X-Y) X (P X) - (X.-.Y)
\ (X4Y) X (P X) -- (XY)

R r S = (id S) ; R
R \ S = R r (X-S)

4_ (X-Y) X (P Y) -~ (X-Y)
_ / _ : (X4-Y) X (P Y) - (X-Y)

R 4 T = R ; (id T)
R / T = R 4 (Y-T)

The domain restriction operator may be used with its operands reversed, as if defined by:

r : (P X) x (X4-Y) - (X-Y)

S r R = (id S)iR

* For example,

CX X:N . x1) r {2.31 = (2-4. 3--*g

(X x:F . xe) 4 { 2.3) =)

(x:H . x2) J 1..8 = 1I-*1, '-4)

2. 3)t O\ x:H . xc)) 2'-4. 31'-4 9

4-5 The Registration Database Revisited
Consider, for a moment, the database example: in our original definition of buys we had
to write a rather unweildy term to denote the database after the transaction. The operators
we have just introduced allow us to make this a bit less cumbersome; it is easy to show
that

db \ (r) U (r --a I (a u r) db

In fact the idea of a relation being like another "except _" occurs so frequently in
specification that we introduce another operator - the relational overrde operator:

- : (X-Y) x (X4-Y) - (X*-Y)

R, a R = 'R, \ (dom R.,) U R.

Fur example, the function:

26

dbU (r-a

"behaves" like db except that it maps r to a. A slightly more interesting example is the

following characterisation of a database transaction which allows "simultaneous"

registration of a number of vehicles to a single owner (perhaps a car wholesaler):ii
bulkbuye: OWNERx(F REG) -- (DB-DB)

"." [(a hulkbuys S) db = db • r:S . r -a

4.6 Generalised Application: Image
The Image of a set S through a relation R (sometimes called the R-image of S) is the set

of elements of R's "destination" to which R maps elements of S. The function

12: (X - Y) "-*((P X) "(P M)

"- In R S =(y:Y (3 x:S .xRy)

maps a relation R into a function which maps a set S of elements into its image through

R.

For example, consider the relation owns of section 3: here are some examples of ,mages
through it

I2 owns (BS) = (rwr360w. pv*49 5}

In owns (BS. RB) = (rwr360w, pv*495)

Is owns (TH. BS) = {rwr3Ow. a420gbh. pvn495)

Notation: if R: X -Y is a relation and S a subset of Y, and y an element of Y then

R [a] 2l R (y)

For example

owns ((IS) = {is4Op)
owns (IS] = (iU400p)

owns ((R., IS. TH) I = {i4Oap, a420gbh)
owns { =

4.7 Properties:
If R. R1. R.:X4-Y are relations, and if S, S, and S2 are subsets of X, and if T is a subset
of Y, then the following predicates (amongst others) always hold:

do. R = ran R
ran R' = don R

(R, J R2)" R," U R2'

27
"j%

(R, U R')[S) = Rj S) u R2[S)
R[S, U S, i R[S, I U R(S, 3

don(R, I R2 = R-' (don R2 I
ran(R, ; R2) R ran R, I

don(RS) = Sn(do. R)
ran(R4T 1 2 Tn(ran R)

Exercises:
(I) Prove the properties outlined above.

(2) We have outlined some properties of union with respect to the image and inverse
operators; what are the properties of 1natersecton with respect to these operators?

(3) Siblings are people who share the same parents. Half-siblings share the same father or
the same mother but not both. Specify the relations sibling, half-sibling,.half-sister, cousin,
great-aunt. What is interesting about the relations cousin and sibling? Can you specify the
relation "childless aunt'?

228

%J

.

." " W . .." 'q",,J . . . "" J ' " %/ "%% ,=v.' .4 ,. ..*. ' .. " "" " " '. .. w ' .' 1 I' ' ,, ' " 28 , .

4.8 Finite Sequences
Finite sequences are important because they allow us to capture the essence of entities as

diverse as lists, files, arrays, memories, and histories. Although it is possible to give an

abstract axiomatic characterisation of them, we have chosen to formalise them as partial
functions from the natural numbers. As we shall see below, this augments the applicability

j of the existing toolkit.

We first define the tn,e par-tai f'unctions - they are the partial functions whose

- domains are finite.

Ix. Y]

X - a (f: X-.Y I don f e F X)

Given a set X, the fInt!. saquancas ol' X are the finite partial functions from N to X
whose domains are of the form Ln (for some n: N). More formally

~eq[X].(f: I * X I don £ 1. .#f)

For exam ple:

(-5. 2-6, 3I-- 77) C seq(fi]
(I.'-Ford) C s[q(AKER]

1'-0{}. Z--priae8) e seq[P NJ

In general the following syntactic sugar is used for extensional specifications of sequences

<> a ()
<a,> a (P-4a,

<a, ... a,> a (P- a,. ... n-,a.)

4.8.1 Basic Sequence-Building Operators
One way of building a new sequence is to 'push a new element onto the front of" an
existing sequence, thus

-" cons: (XxeeqfX]) -,seq[X]

V x:X; sssq(X x cons (I-x) U predia

defines an operator which "pushes" an element x onto the front of a sequence S. It is
called cons because it constructs a new sequence (it also captures at least some of the

properties of Lisp's cons). We usually abbreviate this operator to the infix sign - thus
if x is an element of X and a is a sequence of Xs

x ^ a X cons s

We are obliged to show that our definition of co s is consistent with its signature, le that

for a sequence 9 and an element x. the term which defines x cons a really denotes a
function with all the characteristic properties of a sequence.

If we recall that the function pred is the inverse of the function suc on the natural

29

numbers, le that:

prod z (C0-1l. 1-2.

j Then, by virtue of the definition of composition (see earlier).

dos(predsm) a pred't(dom a)
= suc(1..#G]
= 2.. #3.1

and so

don (1-x) U (pred::) = .. #u.l
.IC# (I-x) U (pred~n)) = 1 #o

V

which is exactly what the sequence axioms require.

A more concrete example is

44^<33 22> = (1-44) U (2"33, 3 -- 22
= <44 33 22>

In fact the sign ^ is overloaded (just as the sign - means both arithmetic subtraction and
set difference). It also denotes an operator (pronounced "snoc" if you like) which pushes
an element onto the end of a sequence, namely:

unoc: (aeqCX]xX) -- X

V x:X; u:8oq(X] . a snoc x = a U (suc #0 '- x }

If x is an element of X and a is a sequence of Xs then

When the sign " is used, it should always be clear from context (or to be more pr
.' from the types of its operands) whether the 'cons or the "snoc" operator is meant. In

cases where this is not so, we will use snoc and cons themselves; sometimes in proofs we
add a little arrowhead to the * for readability - thus

a cons
a onoc

4.8.2 Operators on Sequences
Many sequence operators have domains which are the nonempty sequences, defined by:

(XI

seql a seq(X] - (<>)

For example hd and t which behave rather like the Lisp operators car and cdr.

30

hd, last: seql[X] X

tl. front: seqI[X) - seq[X]

v x:X; s:seq[X]

hd(x " g) = x
last('x) =x

ti.(X " g) = 9
front('x) =s

Exercise:

We have specified thesn operators nonconstructively - that is by giving predicates which
relate them to cons and snoc rather than by giving terms which denote the set of pairs to
which they correspond.

Prove that the following constructive definitions satisfy the specifications for hd. front.
_i. and last.

hd X s:seqfX] I s#<> . (g 1)

front = X e:seq[X I s#<> . st(t..(pred #e))

tI, = X s:aeq(Xl I s#<> . sucia \ (0)

last z X 9:eeqX] I go<> . e(#e)

We will use the same style of specification for the operator which aapends two sequences,
namely

-* : seqX]xeeq(X -- seq(X]

V s:geq(Xl .
<> * 9 a = 0,,0.1

ti V s, e2:geq(Xl x:X

(xGa)e 2 = X'(B,*62) aoo..

What we have done is to saecfy the result of appending any sequence to the empty
sequence; and then specify the result of appending a sequence s, to a nonempty sequence in
terms of the result of appending s2 to the tail of the nonempty sequence; since all
sequences are either empty or nonempty we have covered all possible cases, and you might
think that for this very reason that a function which satisfies the above specification must
therefore exist. This is indeed the case, but it neced not be so in general. Later in the
course we shall see that a certain class of Orecursive" specification is always satisfiable, and
that this specification falls into that class. For the moment, though, we will demonstrate a
constructive solution to the equations above, namely:

- - = X s,,s,:seq[X]

- U (shift #8) ;82

31

shif t: ti;N
shift a n n-rn

Exercise:
Think about the strategy you would use to prove that this definition satisfies the
specification.

The last standard operator on sequences is the one which reverses them, specified by:

rev: sq[Xl -rev.X

rev (x cons 9) = (rev a) snoc x ... Ir.

Exercises:
(1) give a constructive definition which satisfies this specification.

(2) try to prove that the following theorems bold given that x is an element of X and s,

2 ~S, - s, are all sequences of Xs

(8 (a 3u) = (8, B*a) * 2, (Ti')

Urev(a, a.,~ (rev 9-) *(rev a,) (T3.)

(revirev) a a .. (i

2. 4.83 Reasoning about Sequences
The well-known orlnclple of mathematIcal Ind~l.ction allows us to begin to reason about
sequences. Summarised in set-theoretical form it states that if a certain set of natural
num bers is known to contain n. 1 whenever it contains n.* and if it is also known to
contain zero. then in fact it contains all the natural numbers. Formally. we have

Y S:P N4

OGS A

V n:S .n+1eS

)S=4

It is clear that this principle could be extended to the sequences - for we could prove
things by induction over their leng9ths. The following theorem Is easily proven from the

principle of mathematical induction:

VSS:P (Beqcx])

32

<> e SS A

V s:SS; x:X X 's SS

- SS=seq[X]

This result is called the prInciple of finite sequence induction. It is a special case of a
much more general result which we shall examine later in the course, namely the

nc f structural induction.

In order to show how to use this principle, we shall prove that the set SS of sequences a
which satisfy

(revjrov) a = 9

contains all the sequences. More formally. if

SS a (9:eeq[X) I (revzrev) a = a)

then

- SS = aeq[X]

Our proof is structured along the lines of the induction principle - we will first prove
what is called the Base Case:

() (rev;rev) <> = rev(rev <>) compostion delfinition
(2) (revirev) <> = (rev <>) rev.1

* (3) (rev;rev) <> = <> rv. I
(4) <> e SS 3 SS dfefinition

Next we perform what is known as the Induction Step. To do so we must show,
given a sequence a in SS and an element x in X, that x " a is in SS. Suppose, then that a
is a sequence in SS; this supposition is called the induction hypothesis and from it we
proceed formally as follows

(5) BeSS Induction Hypothesis
(8) (revjrev) a*= 5 .. 5 defintion
(7) rev <x> = <x> (SnfMs t see later.,

(8) rev(rev(x-)) =rev((rev a) x)

(9) a rev((rev a) <x>) .. 7
(10) H = (rev <x>) * (rev (rev a)) T9. r3
(11) H X <X * . 18. "

. S. compositon def
(12) = (x <>) am u, Z s
(13) H =x (<> s) I. O .2

(14) =x 13. app.l
(15) V x:X; a:SS . BeSS - X^8 a SS .eneralisaton

This completes the second part of the proof; we can now apply the sequence induction
principle and conclude that SS contains all the sequences.

The ! on the left hand side of the equalities on lines 9-4 stands in each case for the term
* on the right hand side of the previous line; it just saves typing.

33

. ... p-...' - . " " , 5' ''* '

Each line in our proof consists of a numbered fact or hypothesis, supported by some

evdence. In each case the evidence consists of a reference to a previously-numbered fact,

and/or a predicate from a definition, and/or a theorem (or Lemma - which is just a
-local- theorem) which is proven elsewhere.

i The local "lemma* was

V x:X . rev<x> = <x>

Proof (left as an exercise).

4.8.4 Useful Properties
If s is a sequence of elements of X and if if is a function whose domain includes the range
of s, then the composition of a and f is also a sequence. More formally:

V z:seqCX]; £:X-"Y
(ran 9);(doa V me (;if)eeoq(Y]

If a sequence s, is a prefix of a sequence s then the set of pairs which constitute s, is a
subsat of the set of pairs which constitute s, More formally:

V sm.92:9oqX .
3e:seqX]

1e*w-s2 - zlcs2

For this reason we usually use the 'subset" relation between sequences to mean 'is a
prefix of". This is an example of an idiom.

If s is a sequence, then the relation "are adjacent elements in s" is captured by a relatively
" simple formula, namely

8' Mucfe

Exercises:

(I) prove the following theorem

I- V a:seq(X]; xl,x2:X
(xi. x2) G 3'Jaucclu

3i:(1..#s-l) . i = xl A 9(j1) : x2

(2) use the above fact to give a simple specification of the set of sequences of X which are
"ordered with respect to" a homogeneous relation "<" on X.

.I

34

4

<.. -.

%

5: Disjoint Unions, Recursive Types, Enumerated Types

5.1: Introduction
In previous sections we introduced ways of making new types of set from existing sets, but
did not say anything about the "primitive" sets of the language. Indeed in order to avoid
discourse about primitive sets we "parachutedo the natural numbers (IN) into our discussion
without really defInlng them. In this section we introduce the only notation by which
new primitive types of set are defined. We also show how the notation may be used to
define abstract forms of the tree-like structures which are common objects of discourse in
Computing Science. This notation is currently used by practitioners of the "Z" style of
specification; there is no corresponding "standardn notation.

5.2: Strong Typing
Although we have not yet introduced any of the consequences which flow from it, the
language we have introduced so far is strongly typed. What this means is that certain
terms and predicates are defined by us to be well-typed, whereas others are ill-typed; in
general we only provide means of reasoning about well-typed terms and predicates.

The role played by type-analysis in mathematics is analogous to that played by dimensional
analysis in physics and mechanics; it is a safeguard against writing utterly nonsensical
mathematical terms and predicates, but is no guarantee that the mathematical model is true
to reality or even consistent.

A complete explanation of the type rules is beyond the scope of these notes, but we can
illustrate their spirit by briefly considering the union operator, which has 9eneric type
specified by the signature

I

U: (P X) x (P X) - (P X)

This means that every instance of the union operator must have operands which both have
type P X - tor some prImitive type of" set X - and that its result is also of type P X.

Now suppose that Y and 2 are distinct primitive types and that y is of type Y and s and
t are of type P 2; in other words

y: Y
6: PZ

t: PZ

Then the term

is well-typed because the generic parameter X in the type-specification of the union

operator can be instantiated with the primitive type Z. On the other hand, none of the
terms

~yu y

yU z

gY

35

YUZ

are well-typed, because in none of these cases can we find a suitable instantiation of the

type variable X.

In the next section we introduce a new category of type-constructor which allows us both

to overcome certain problems introduced by strong-typing, and to describe certain kinds of
"recursively-specifled" sets (sometimes called trees).

5.3: Disjoint Union
Suppose for a moment that we want to specify a function, find, which searches a list of
words for a particular word, say foo, and either returns its index (if it appears once) or
an error code indicating whether it appears more than or less than once. Let us suppose
that the set of error codes, call it E, is primitive (generic), and that the set of words, call
it W. is also primitive.

How do we write a signature for the function we have in mind? Clearly

find: seq[W] -- (E U N)

will not do, for there is no primitive type of set of which both IN and E are subsets and

so the u term on the right of the function arrow is 11l-eyed. What we need on the
right of the arrow is a type of set which contains "as many" elements as there in N and E
combined, but in which there is no confusion between num berish and errorish things.

One such set is

N X E x (0.1)

where the third component of each

(n. e. which)

triple indicates whether the n or the e part is the real information contained in the triple.
This is unsatisfactory, firstly because it is only one of a number of possible "codings'. and

secondly, because it is 'overkill" in the sense that each number has several possible
representations in the coding, namely

(n. errnone., 0) (n, erruany. 0) (n, erroverflow, 0) ...

and each error has an infinity of representations in the coding, namey:

(0. errnone, 1) (1. *rrnone, 1) ... (557890. errnone. 1)

(G. errmany, 1) (1, errmany, 1)
(0, erroverflow, 2)

Mathematicians abhor clutter, so it is perhaps not surprising that our notation allows us to
describe precisely the set which is needed, namely one which has exactly one element for

each element of E and exactly one element for each element of N. The term

error<<E>> I result<<>

36

denotes such a set. The identifiers result and error are chosen for their mnemonic value,

not for any technical reason.

If we call this set S (which we can do in the usual way by putting the name S on a box

around it)-

K error<<E>> I result<<>>

2. then the following InjectIve functions are defined "automatically"_

error: E S
result: N - S

ran error U ran result = S
ran error n ran result =)

The axioms for these functions indicate precisely that there's neither junk (the union of the
ranges of the functions is exactly S) nor confusion (the ranges are disjoint).

Moreover, because the functions are injective(See Append/x Z1J, their inverses are also
functions, so that given an element a: S - then if it "stands for" an error code, le if

- s(ran error)

"' then the one in question is

error " a

Likewise if it stands for a number,

ue(ran result)2
" then the one in question is

result' a

We are now in a position (for better or for worse) to specify the function we first

thought olf. First we introduce some constants to denote the word being sought and the

. error codes:

.s

too: V

none: E
many: E

37

hHaving done so we can specify:

find: seq[W] - S

vs: seq[W]
sindex=O - find a = error none
#index>l - find a = error many
#index=i - find a E result(index 3

where
index = s*[(foo) 3

5.4: General Characterisation of Disjoint Union
In general if Si - Sn are terms which denote scts and if idl - idn are identifiers, then
the term:

id<<S> > I ... id<<S>>

denotes a new set. Such set-denoting terms hardly ever appear without being named, which
is done in the usual manner, for example:

7- id 1<<S,>> I ... I id.<<S.>>

In this case the following constants are defined and remain in scope for as long as the
nam e 0.

id, S, - D
id 2 : S2 - D

id, : S, - 0

< ran id, ... ran id, > 2aCtj.ign 0
.';

and - as you might have expected - the ranges of these injective functions partition
d [seg Appendix I the new set.

38

5.5: Reasoning Methods
The principal method of reasoning about disjoint unions is based on the following

(meta)-theorem.

P: P D

VS:S . (id, 9) Q P A

p
Ys:S,. (id, s) e P

) *P=D

Which expressed informally reads: if a certain property (the characteristic predicate of P)

holds for all ways of constructing an element of 0 then it holds for all elements of 0.

Special Case: Enumerated Types
The term

id l l .. id,

denotes a "new" set. If this set is named, (E say) then the following constants are defined

and remain in scope for as long as the name E.

id, E

id, E
iid, id >

-...

Moreover they all denote different elements of E.

Technical Note- In fact thIs Is the only correct way to
Introduce a 'new' type consIsting of an ea.umeration of
elements. The dernition

E A (foo. baz. biah)

(which Is occasionally used with the indentlon of defining an
enumerated type.1 means nothing at all 'n our notation except
In tAhe scope o f oo baz and blah. and even then It may not be
well-typed.

39

RO-AI71 671 FORMAL TECHNIQUES FOR SPECIFICATION AND VALIDATION OF 2/3
TACTICAL SYSTEMSiU) MASSACHUSETTS COMPUTER ASSOCIATES
INC WAKEFIELD 62 JUN 86 CAIOD-8696-8282

UNCLASSIFIED DAAKS-8-C-072 F/G /2 U

g a 1j32 2.

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS- 1963-A

'r

% PIP

5.6: Hybrid Case
Terms of the form

id, I idl<<S2>> I ... idJ<<S>> I id.

(in which some of the identifiers stand alone) are perfectly valid. When such a term is
named (H say) the following constants are defined:

44

id, H
id2 S2 - H

id S - H

id. H

< (i , ran id2 ran id, . > Ida itons H

The pattern should be obvious. The stand-alone identifiers correspond to constant elements
of the new type, the remaining elements correspond to injective functions into the new
type. The elements of the type are partitioned appropriately.

F.,

5.7: Recursive Types
Trees occur sufficiently frequently in the world of specification that it is useful to have a
small library of conceptual tools with which to manipulate and reason about them. It is
rather convenient to be able to specify trees 'recursively'. but we have to take some care
when doing so.

Let us consider, for the moment, the problem of specifying what is a Lisp(kit)-list.
Informally.

A list is either an atom or a pair of lists

Clearly it doesn't matter what the internal structure of the set of atoms is, we will denote
this set by A and try to construct a (strictly) set-theoretic specification of the lists:

L = A u L x L)

V ,What we are trying to convey here Is that the set of lists contains all the atoms and is
dosed under the cairIng operation. Unfortunately this "specification' of the set of lists
has no solution because the strong typing prevents it. (Scottophiles please note: ve
mean "no solution In our set theory'; the sign - means something diferent in
Scottery .;

We can be satisfied with a set which is rich enough to contain one representative for every
A and one for every pair of L. It turns out there is a set which has just the properties we
want; it is defined in our notation by:

40

* .~. .'%

atom<<A>> I cor<<LxL>>

1 n The theory (due to Tarski) behind such recursive specifications is simple and elegant: its
details need not concern us here, but as might be expected we have recourse to the
techniques we used in defining disjoint unions. In essence the equation implicit in the above
definition has a solution because given a set, C say, which is big enough to "carry" the
lists, and given injections:

atom: A - C
~cons: CxC >- C

(ran cons.) n (ran atom) - 0}

whose ranges are disjoint, it is possible to discover a subset of C

L: PC

which has the properties

atom(A I g L
con(L x L L

In other words it contains an element (atom a) for each aGA and an element conm(xy)
for each pair of lists (x.y)G(L x L). This set is clearly good enough.

It turns out that a lot of interesting new types can be defined in this way, for example

zero I sue<< NUN >>

1BIN -I
Jnil I node<< NUlIxBINXBIN >>

PThese will easily be recognisable as (a set isomorphic to) the natural numbers and the set
of binary trees which have numbers at the nodes

IP. Not all such specifications denote 'reasonable sets, though. For example

-SILLY
F foo<< SILLY >> I baz<< SILLY >>

might have nothing at all in it, but might not.

In general, the set of trees specified by

* T id,<<S,>> ... I id.<<S.>>

Im'I

41

,----.. . ,-, . --,',,.,, . . .". , .-)." . . .",.j,,.;.. .,.;. ' .' ,. ". . "" "". %"%' V % W %" . % ." " ., " - %'% ,

is nonempty if there is at least one term S1 - Sn in which T does not appear free (or
if at least one of the ids stands alone).

The functional ids - are sometimes called the constructors of T; those ids which stand
alone are called ground elements of the type. The ground constructors of T are those
whose Si terms do not contain T free; elements in their ranges are called the ground

I trees (or structures) of the type. The remaining constructors are called proper
constructors: elements in their ranges are called the proper trees (or structures I of
T.

Technical Note" It (almost) turns out that this kind of speciicaton

works ifr each term Si in which T appears free, has a certan
prooerty, namely that the fIuncton

f ax Xr id 1 [S

Is monotonic under incluson. That is, given two subsets X and Y of
some hypothetical set, we can prove that:

xCY - f(X I ; f(Y I

Untortunately there is a snag; sometimes it is just not possible to
f/nd a large enough "carrier'. A sufficient condition tfor the
existence of a large enough carrier Is to restrict the S, terms
which contain T to one of the following finite forms:

T x (... may contain T)
F T (finite subsets of Ti
T- ... (finite mappings f'rom Ti
... : I (f'inite mappings to r)

A,

4'

°,.

, 42

7 :-§::°w4~.-*'

5.8: Reasoning Methods -- Structural Induction
The most important reasoning method applicable to recursively specified sets is the
"r,ncale of structural Inductlon. We will illustrate the general principle of this

*: method by presenting instances of it which are appropriate for reasoning about the sets L.
NUN. and BIN.

The list induction principle is

S: P L

Va:A . (atoR a) E S A

V11. 12: S . conn(11.12) G S

) SzL

If a property holds for the image of every atom, and if it holds for lists consed from lists
for which it holds, then it holds for all lists.

The NUN induction principle is:

S: P NUN
q%-

zero 6 S A

Vn: S . (suc n)eS
) SSNUN

If a property holds for zero, and for the successor of every NU for which it holds, then
it holds for al numbers.

The BIN induction principle is:

S: P BIN
i-

nilGS A

V bi. b2: S; n: NUN . node(n. bi, b2) e S
S=BIN

The general principle is a little tedious to state formally, but you can see the idea, which
to can be summarised as follows: To prove that a property holds for all elements of a

recursive type first prove that all the 9-ound elements of a type have the property; then
prove that all ground trees have that property; finally, under the assumption that all its
subtrees have the property, prove that each proper tree has the property.

"4

- j -" " * "% ."• 4" " ,"u ".,C%,. '. " ." .. ". ' .- '.*% % . '.". ,"" ". . ,..'3 "%

5.9: Reasoning Methods -- Recursion Principle
Hitherto we have specified certain functions "recursively" without having any assurance
that the specifications were satisfiable. For example, the following is a specification of a

function which is intended to list the nodes of a binary tree in are-order

flat: BIN - a *q[NUHI

flat nil = <>
V n: NIl; bl, b2: BIN

flat(node(n. bl, b2)] = (flat bl) * <n> * (flat b2)

It turns out that a large class of recursive specifications of total functions on trees

(including the one above) are indeed satisfiable.

41. We will summarise the recursion principle by giving a typical instance of its application,

without going into the theory behind its validity. Suppose T is defined by

'Congo I connl<<X>> I conn2<<YXT>> I conx3<<YxTxT>>

where X and Y and Z are type expressions which don't contain free occurences of the
identifier T. Suppose we are also given:

gO: 0
Gi: X -D

H2: Yx 0 - D

H,3: Z)DxD - D

The following specification of f is satisfiable:

f: T -D

f Congo = go
' Vi WxX . f (Conal X) =. GI X

Vy:Y; t:T • f(con@2(y,t)) w My.F f t)

W~z:Z; tl,tZ: T . f(cons3(z,tcl,12)) =H3(y, f ti., f t2)

That is to say, there really is a totaL function which behaves as specified.

In general the principle states that in order to specify a total function over a
recursively-defined type it is necessary to specify its value at all ground elements of the
type. to specify its value at all ground trees of the type, and to specify its value at all
proper trees of the type. In this latter case it is permissible to mention the value of the
function at subtrees.

In our definition of BINary trees, the single ground element is nil, and the single (proper)
constructor is nods. These correspond to congo and cone3 of our "typical instance". The
specification of flat is valid because <> corresponds to gO. and the function

A a. n. t a. <n> . t

44

which is of type

seq[NUM] x NUN x seq[NU] - seq[NUMJ

corresponds to H3.

U In our notes on adequate representations for finite partial functions we shall apply both

the structural induction principle and the recursion principle extensivel,,.

Appendix I: Partitions
In this appendix we give formal definitions of disjointness and partitions.

disjoint: P(saq (P X)

partitions: seq (P X) - (P X)

qV SS: soq (P X)

% SS 6 disjoint
V i, ,:don SS .

isi, ,- (SS i,) n (SS i,)

V SS: seq (P X) ; S: P X.
SS part.i.tions S -* (SS 6 disjoint) A U(ran SS)=S

A set of (sub)sets of X is disjoint if it is pairwise disjoint; that is if no two distinct sets
have a nonempty intersection.

U A disjoint set SS of (sub)sets of X partitions a (sub)set S of X if its (generalised) union is
S.

Appendix IL Injections
Suppose we picture each relation by drawing an arrow from each domain element to the

range elements to which it corresponds. Then we would see that the l'unctional relations

are those in which there are no divergin9 arrows - each domain element maps to exactly
one range element. The injectIva ,unctions are the functions in which there are also no
convergin9 arrows every element of the range arises from just one element in the domain.

If we reverse the arrows of such a function (take its inverse) we will immediately notice
that the resulting relation is itself a function (no diverging arrows). Thus each injective

function is itself a function. More formally we definc

(X,Y]

X > 0 (f:X-(I f-' Y-X I

X - Y a (X> Y) A (X--Y)

The two signs we introduce denote respectively the partlal injections and the total

injections.

45

Appendix III: Syntax
The following is a summary of the syntax of those parts of the language we have so far
explained.

Term : Id
Signature IPredicate .Term ... see comprehension

Termint set extension
Terlintemyst

Termx Trm product constructor
PTerm ... subset constructor
FTern .in.t. Subset Constructor

Tree
0Term ... size

FnTerx Tern f.. unction application
Term FnTern Term ... infix sfunction application
A Signature I Predicate .Term .. lambda abstraction

* Tree :3Branch

Branch I Tree ... disjoint union

Branch := Id ... ground element
Id<<Term,.,... tree constructor

Predicate,:= 3 Signature .Predicate..............existential quantifrication
V Signature .Predicate..............universal quantification
Term x Torn....................equality
Term 4 Term....................Membership
Term A Term....................negation of equality
Term c Term....................proper subset
Term c Term....................subset
Predicate A Predicate...............conjunction
Predicate v Predicate...............di.sjunction
Predicate -*Predicate ... implication
Predicate oe Predicate...............logical equivalence
-Predicate ... negation

Term RelTers Term i.. nfilx relation membership

ReI.Terz ::a Term

P1FnTerm =Term

Signature :=TypeAttr

Ty'peAttr; Signature

TypeAttr := IdLint: Term

TermLiat :=Term

Term. Teralint
IdList ::z Id

Id. Idlist

Detn EIdLintl TermaTerm ... SyntactIc Equlvalen~ce
(IdLint] Signature I Predicate ... Constant SpecWi cation
[IdLiat] rd a Tree

46

Bernard Sufrin. Ext 281

12:15:Z7 Connected to: Martin R. Raskovsk! (x294)
12':15:22 In service of: 3FOO 000~.0 OO 4165
12:15:25 Receiving: Sys:5ervic~e>3AA'B 41F1 AD99 FSE7
12: IS: 28 Receiving: Sys: Serv i ce>38A8030DF--PD99ETAD3%
12: 15:30 Receiving: Sys:Service>38AB OODF AD99:EF-D3
1Z:lS:33 Receiving: Sys:Service>39A863074 A099 ZCS7%I12:15:54 Receiving: S s:Serv ice>39A863074 A099-ZC67
12:16:24 Running: rint *Sys:Service>PFint.Re
12: 16:24
12:16:33 Print indirect from: Sys:Service>Print.Me
12:16:39 Context from: Sys:Service38A...0DF_D99..EAD3
12:16:43 qOoc: Entry
12:16:54 Printing: Sys:9 Srvice>39AB..6074jD99...C67
12: 18: 19 Printed 10 pages
12:18:20 q Doc. Exit
12:18:29 qpr tnt: Exit
12:18:29
12:18:54 Connecting: To Network via Data Switch
IZ:19:01 Connect ing; To Time Service
12:19:01 Time Service: 1Z:19:01 07-Sep-84

4.12:19:01 Reserved until: 2Z:49:01 07-Sep-84
12:19:02 LServ Ice: Entr:5
12:19:57 Reserved until: lz4:807-Sep-84

12:19:58 Connected to: Bernard Sufrin. Ext 281
12:19:58 In service of: 4000 0000 0200 S766

-'12:20:01 Receiving: Sys:gerviEOW3 DFCF A099 888
2:29:0 Receving:Sys:Service>F7AA:AA9A'AO99_628l%

1Z: 20:08 Receiving: Sys: Serv ice>F7AAA-A9A.-09962Z81
12:20:15 Receiving: Sseri>FSA 1070 099885E"
12:20:03 Receiving: Sseri>FSAA007009988SE
12:2 1:03 Receiving:t Sy-e~c>CA-BFeesE
1 Z:Z:42 Receiving: Sys:Service>FCA FBQ-AD9 EA~9
12:22:05 Receiving: Sys: Serv ice)ZDAB81C6-AD99 OA8%
12:22:29 Receiving: SsSrieZA-1SA9 A
12:23:513 Receiving: Sys: Serv ice)2DA881C6ZFA0999CA%
12:23:3 Receiving: SYS:Service>ZFA OFZF AD99ECIA~
IZ:Z3:3 Receiving: Sys:Service)ZA - 401A099SEC1 A
12:24:03 Receiving: Sys:Service>31A840060D99 DC1~
12:24:27 Receiving: SYS:Service>3A88401Th0992DC13
12:24:50 Receiving: S,'s: Serv ice>33A_ OSZAD9043
12:25:19 Receiving: Sy:Sr e3SAB90SZA0P99-0243

12:2:47 eceiing:Sys:Service>35 033TD99 3E9%~
12:26:06 Receiving: Sys:Serv ice>35A8_03F3 A099 3ES
12:26:27 Running: qPrint USys:Service)PFint. e
12:26:27
12:25:37 Print indirect from: Sy::Service>Print.Me
12:26:42 Context from: Sy :ServiceF7AAAA.P99...Z81
12:26:46 qp~oc: Entr
12:26:52 Printing: S .Serv ice)FSAA.0070O...88-OSE
12:28:26 Printed 8pae
12:28:31 Printing: Sy:eveesABB-DSFA

*- :29:31 Printed 7 Peges
* 12:29:36 Printing: Sys: Serv ice>DAB.81C6...D99..90AB

12:30:30 Printed 6 Pages
12:30:34 Printing: Sys:ServiceZFAB-..FZF...D9_EClA
142:31-3G Printed 7 pages
12Z:32:40 rnig Sys:Serv ice) 1A8....4IAD99_2DC1
12:31:34 rnig Printed 6 Pages
12:3Z34 ritig Sys:Service33A..9S.AO99..0243
12:32:38Pinig Printed 8 pags12:33:51 Printing: Sys:ServiceMSB03F3_099....3ES
12:34:30 Printed 4 pages
12:34:31 qpOoc: Exit
1Z:34:40 q r int: Exit

12:34:4

Notes for a Z Handbook
Part 1: the Mathematical Language

Draft L8 August 1984

,'p

AbstractIn these noes we present a concise suMM&ry of the mathmatcal
sublanguage of the specfication notation z.

Bernard Sufrin
Carroll Morgan

p. lb Sorensen
Ian Hayes

Oxford University Computing Laboratory
Programming Research Group

8 Keblc Road
Oxford OXI 3QD

England

17 Aug 84
L_

ZZ,
-

Introduction

When specifications are written in the Z notation, two complementary formal languages are
employed: the mathematical language and the schema language. The mathematical language is
based on standard set theory, but is "strongly typed" in a way which most Computer Scientists
will find familiar. The schema language supports the systematic presentation of large-scale

system specifications, or families of specifications, which embody material defined in the
0 mathematical language.

Z has evolved a good deal since its introduction in 1979 [Abrial]. and this handbook is an

attempt to capture the state of the mathematical language as it stands in mid-1984. For an

introduction to the mathematics which underlies Z the reader may consult any of the material

in Section 1 of the bibliography. For an introduction to the style and practice of formal
system specification which Z supports see section 2 of the bibliography, which is a list of case
studies which for the most part use the present dialect.

p

2
...............,.-.-....'. ,..-........---" .-. ".--.

Basic Notation

§1.0 Preliminaries
In what follows we use

Sclass
def,
def2

def.

to define a new syntactic class cla.. A definition in this form should be taken to mean that
wherever a phrase of class clas is required, it can be supplied in one of the forms def,
dof

The principal syntactic classes we shall define are signature, term, predicate. In specifying
syntactic equivalences we shall assume that the syntactic variables

t. t, t ... t, range over terms

id, id,. id. range over symbols, as do
V. Vt. VS . . . V,

Big, Big,. 9ig2. ... aig, range over signatures

p, p, a ... p, range over predicates

F, F,. Fs range over terms which denote functions
R. Ri. R, range over terms which denote relations
T. T,. Ta, ... T, range over terms which denote sets

The lexical structure of the class of symbols is left undefined, but includes all sequences of
alphanumeric characters, and all peculiar shapes which the artistically inclined may care to
think up to represent mathematical objects mnemonically.

When specifying syntactic equivalences, the symbol 2 between two patterns a and b means "a
and b are defined to be syntactically equivalent. To be more precise, if by substituting
appropriate phrases for the syntactic variables in the pattern a we match a phrase of the
language, then this phrase may be replaced by the phrase formed from the pattern b by
making the same substitutions for syntactic variables. Likewise if b matches a phrase of the

0language, then the phrase may be replaced by a suitably modified a. (See note 3 of §LI for a

simple worked example).

Technical Note: As presented here the syntax appears to be ambiguous, for
except in two cases we have not mentioned the binding power (precedence)
of the symbols of the notation. Nevertheless, since the symbols used as
operators are always introduced by signatures which indicate their
set-theoretic type, the structure of compound phrases can usually be inferred
from context, and in awkward cases parentheses may be employed to make
the structure explicit.

i3
. _ , 3

§1.1 Signatures
A type declaration introduces a new variable or a new constant, associates it with a symbolic

identifier, and ascribes to it a type, from which may be deduced the values which it is

permitted to take. A signature is a sequence of type declarations.

Syntax:

signature :
decl
decl ; signature

decl : :

p, symbol : term

Syntactic Equivalence:

id,. id 2 . id. T -- id, : T; id, T; ... id. T

Examples:

cartiagereturn: CHAR

size: Number; weight: Iumber; contents: P THING

size: Number
weight: Number

f' contents: P THING it)

factor: primes 4-i Number (21

g carriagereturn. linefeed: CHAR 13)

+ X xN"N d

adder: N - N -' N i

5 Notes:

"' A declaration may be presented in vertical form, in which case the semicolons between type

attributions inay be omitted, and each type attribution appears on a new line.

'=' A term which appears to the right of the colon in a type attribution must denote either a

M type, or a set whose carrier type can be determined. (See Appendix i)

This signature is syntactically equivalent to carriagereturn: CHAR; linefeed:CHAR the

substitutions being: CHAR for T, carriagereturn for id,, linefeed for id 2 (and 2 for n).

When introducing a function symbol whose name is not composed of alphanumerics, it is

customary to indicate its fixity by putting underline symbols in the places where its argument

or arguments will appear. This signature introduces the infix symbol _+_., which maps pairs of

numbers to numbers.

"' This signature introduces a function symbol, adder, which maps a number into a function

from numbers to numbers. The function-arrow signs are right associative so the term A-B-C

should be parsed A -- (B -- C). Function application, denoted by juxtaposition, is left

associative (see §!.2).

..

",' ..

§11. Terms
A term is a phrase of the mathematical language which corresponds intuitively to a set or

to an element of a SOL

Syntax:

term ::u
symbol
s mignature I predicate ern) set comprehension

t erm. term, ... t erm) finite set extension
t term. term ... term) n-tuple

term x term x ... x term product set (n-tuples)
P term power set (subsets)
tern term function application

LL term arbitrary choice from a set

branch I branch ... I branch disjoint union

L. branch ::=

symbol
boynbl<<terz>>

Note:
Function application is denoted by juxtaposition, which associates to the left. The term

add a n therefore denotes the application ((add a) n). Of course nothing forbids the use

of parenthesis around arguments, as for example in delete(ioo).

Syntactic Equivalences:

v,:T,; v2:T.; ... v.:T. I p v,:T,; vs:T2;. v.:T, I p (v, ... v.)

Big . t - Bg I true. t

v,: T,; v2:Ts; ... v.:T. T. x T. ... T.

(t B ig P Bi) t ~
(t. Big B) '- (aig . t)

t, F t 2 (t,.' t t,)
t, F ta F (t . t2) (31

Xv,:T,; v2 :T2 ; . v,:T. I p t : (v,:T,; v.:T.; ... v.:T. I p (v, ... v.)-t)

t Alg ig I p :a- (igI p. t) is)

Notes:
"' In situations where the form signature I predicate . term appears, the term may be

omitted when it is a tuple consisting of the variables of the signature, as may the predicate

if it is identically true.

' The sign - is pronounced "to'. or "maps to"; terms of this form appear in the

construction of relations. (see Relations, §2.2)

,' Infix notation for function application. (see Functions, §2.3)

A function is just identified with the set of domain-range pairs which it maps between. (see

Functions, §2.3)

"' This permits local definitions to be made.

.3. ? .- . ,' .. I

Examples:
(n:N I divimors n a (53. 73) . n"

(n:IN I divisors n a (1. n)
- (i.j: I I i+j E prime. (i.j)) £21

(ij: IN I L+j 6 pris.o

(53, 73)
gaI

U. J. k)
lot

IN x IN x IN ,7,

(i.j. k: N I $,

P (53. 73) 11)

ia (x:I I xi = 64 . x 412)

, x,y: H I x=42 A y=45 x. x'31

pair<<N x 16> I triplo<<l x N x IN>> 41

blue I white I green
dial

Interpretation:
The squares of all numbers divisible only by 53 and 73.

.4 ,2, The numbers which are only divisible by themselves and I (the primes).

124 The set of all pairs of numbers whose sum is a prime.

,41 Same as 43,

.'f The set whose two elements are 53 and 73

,O, The triplet (3-tuple) i j k.

The set of ALL triplets of numbers.

, Same as

"" "' The set of all subsets of (53. 73); that is C0. (53). (73). (53.73)).

ISM The empty set.

The set of all subsets of the empty set; that is (()).

2.
P " ' A number whose cube is 64; either 4 or -4.

412 The difference between 42 cubed and 45 squared.

The disjoint union of the pairs of numbers and the triples of numbers. (See Appendix I).

"" The enumerated type whose elements are blue, white, and green. (See Appendix I).

% %

§13 Predicates
A predicate is a phrase of the mathematical language which corresponds intuitively to a
statement (about sets or elements of sets), which may or may not be provable..

Syntax:

predicate ::=

- predicate negation
predicate A predicate conjunction (and)
term = term equality
term 4 term set membership
term tern subset
torn symbol term relation holds between terms coo
3 signature . predicate existential quantification (for some)
predicate c definition local definition

Note:
to) It is customary to underline a symbol composed only of alphanumeric characters when

it is used as an infix operator.

Syntactic Equivalences

p,Vp -C- p, A -P,) disjunction (or)

p - pa C- p,) v p2 implication (if-then)

pt ' pa (p, p2) A (p2, P,) logical equivalence

% -Ct, = t 2) inequality
-(t, C t.) nonmembership

t, C t (,; 12) A Ct, $ t,) proper subset

(V sig . p) - C 3 Big . (p) I universal quantification (for all)

3, Big p (3 Big . p) A

Y. (v,.v: (ig l p) v,=v,) existence of a unique element

MV gig I p, .N V Wi~g .P1 P2 its

3 wig I Ps pa 13 wi g .p, A p2 421

p, A p2 AA . Pt

P2

F," (31

t, Rt 2 - ts. t,) E R 4

t, R, t 2 R2 t3 (t, R, t,) A Ct, R, t3)

Notes

"' The left hand side of this equivalence is read "p, holds for all - such that p,".

'2' The left hand side of this equivalence is read. "p, holds for some - such that p,".

A long sequence of conjunctions may be written vertically provided that the indentation

established for the first predicate is inherited by the following predicates.

. The left hand side is sometimes read as "R maps t, to t 2 ". In Z a relation is identified

with the pairs of elements between which it holds. (See §2.2)

7

Examples
-(369 e primes)
(mydog G haufleas) A (age sydog > 14) (2)

((weather here) = raining) v (here = Paris) £31

((weather here) e awful) - (here = Oxford) "4

(x uvides y) * =, (3 z:H . x x z = y) ,s,

EUROPE c STATE 480

(369. 7) G prise n'
3 .tate:EUROPE stateUK A (head state) dseant Victoria ge

V state:EUROPE state e EEC 110

3 state:EUROPE I statoeUK (head state) d nda Victoria £103
£113

V state:STATE I state e EUROPE state e EEC M)

V p: PERSON .£2'
father p 6 PERSON
mother p 4 PERSON

children p C PERSON

Bernard decendant Samuel we descendant A child •
£23

Interpretation:

"' 369 is not a member of the set of primes.

2, Mydog is a member of hasfleas and its age is greater than 14.

3 The weather here is raining or here is Paris.

' ' If the weather here is a member of awful then here Is Oxford.

'' x divides y If and only if there is a number z whose product with x is y.

'' EUROPE is a subset of the set STATE.

-' The set whose two elements are 369 and 7 is a subset of the set of primes.

" There is a state in EUROPE which is not the U and whose head is a descendant of
Victoria.

t' All states in EUROPE are members of EEC.

£3O (Same as 8)

£" (Same as 9)

"" The father, mother, and children of all persons are persons.

£12" Bernard is in the relation descendant with Samuel, where descendant is defined to be

the transitive closure (see §2.7) of the relation child.

"%
Ze ':

J1.4 Definitions
Constants are defined either by syntactic equivalence, or by axiomatic specification. Generic (ic
families of type-parameterised) definitions are preceeded by a sequence of type identifiers,
which indicate the formal type parameters of the definition.

Syntax:
definition : axiomatic

syntactic
generic

axiomatic . :

preodi cate:

syntactic ::u

A'* term 4 tern

generic ::u [symbol. ...) definition

Note:
e' Generic definitions specify families of constants; see examples and 'o below.

Examples:

poly: N -* N

V x: #4 . poly x X* 2X3

PSproceomorspernode: N

7 < procesorupernode < 19

prime, squarepriose: P h

prime. = (n:IN I divisors n (. n)

Sequarepri se (n:primes .n

9

impossible: N

V n:prise impossible > n

NuberPair N x N

NumberPair 6

x I

Interpretation
The symbol poly denotes a function which maps numbers to numbers. Every number maps

under poly to the sum of its square and twice its cube.

421 The symbol proces-orupernode denotes a (constant) number between seven and nineteen.

The symbols prime, and squareprinem denote constants: prison is the set of all numbers
divisible only by I and themselves; aquareprime is the set of numbers generated by squaring
each prime

"' The symbol impossible denotes a number which is larger than or equal to every prime.
This is an unsatisfiable specification, of course, since there is no such number.

The symbol NuberPair is syntactically equivalent to the term N x K

q'. Same as

j Further Exam ples

PrimaryColour
Red [Blue I Yellow

(X]

U : P X X P X-- P X

V o, 02: X .i U 8i(XX X D V 6 x U),

R Cx]
" II

flatten: seq (seq X) - seq X flat.0

flatten <> a <> flat. 1
V x:,eq X; o:oeq (seq X)

flatten(x " a) = x * (flatten a) flat.2

Interpretation
"' PrimaryColour is a type which contains exactly three elements, named Red, Blue.
and Yellow. (See Appendix I).

s This is a family of definitions. For every type X, the infix symbol u,. denotes union for
sets of elements from X. This is a function which maps pairs of sets to sets. The result set and
the argument sets are all subsets of X. It is customary to omit the subscript ., when using the
operator in a term since it can be inferred from the types of the operands. For example, if we
have

• " • " " ' " " • " " J'"a .IO "r . "" ,P "I -" t " J" *" -* ", ', r • . ,% .= Oct .- ,

gold: P FISH

angel: P FISH

then the u in the term gold U angel denotes the union function for sets of elements of type

FISH, ic urts, For further details see Appendix L

to This specifies a family of functions on sequences of sequences. In order to be able to refer
(for example within proofs) to the different parts of the specification we have labelled them.
This is an informal practice which can improve the readability of documents when used

judiciously.

§1.5 Chapters
As yet there is no formal way of modularising a Z document. Present practise is to divide

the material presented in a specification into named chapters. Each chapter consists of some

symbol definitions explained by prose, together with some theorems (see W16). Although it is

rare for constants defined in different chapters to be given identical names, any confusion

between such constants is resolved by qualifying their names with the name of the chapter in

which they were defined. For example: if in a single Z text we have chapters named SIMPLE

STORAGE and SAFE STORAGE, each of which defines something named STORE, and if we wish in

a subsequent chapter to refer to both constants, then we use the symbol: SIKPLESTORAGEJSTORE

to denote the former and the symbol SAFESTORAGE§STORE .to denote the latter.

It is also customary for Z documents to be self-contained. Any symbols which are referred to

in a text are to be found explained in a chapter (perhaps an appendix) of the document. In

order to simplify matters It is assumed, unless otherwise indicated, that the standard material

of section 2 of this document (on sets, relations, functions, numbers, sequences iteration and

transitive closure) is present. Constants defined in these standard chapters may freely be used

anywhere in a document.

.l

§1.6 Theorems
A theorem is a statement about the definitions which appear in its chapter and the chapters to

which it refers. The statement is an assertion that a certain predicate has been proved from the

definitions themselves together with the rules of reasoning of Z "'. In order to be able to

refer to theorems within prose or from proofs which use them, we sometimes label them with

identifiers or numbers.

Syntax:

theorem ::z
- predicate

hypothesis - predicate

hypothemi ::-

signature
mignature I predicate

hypothesi.; hypothesis

Examples:

-3 prisn

x-IN a-x+1 G N 2

x.y:I N x$O0y I- (prod x)=(pred y) (x=y) 13,

Notes:

"' A theorem doesn't amount to an assertion that we wish we could prove a certain predicate,
or that we think that we might be able to but haven't quite enough to time to go through the

motions. Such a statement is usually called a conjecture, and may be written with a ?'- sign in
place of the a- sign. For details of the way in which proofs should be presented, see Appendix
2.

' This theorem reads "given a natural number x, we can prove that x+1 E ".

..' This theorem reads "given natural numbers x and y, which both differ from zero, we can
prove that (prod x)=(pred y) - (x=y)'.

,/.

12

..,.. ...> .. ,..Z.: :> .. :.- .. . , :. .. .: ..: ..:.- ..:- ..>

2

Standard Chapters
%I

§2.1 Sets
2W1 There are no "built-in" sets in Z. Despite this, it is customary to assume that the
symbol l denotes the set of natural numbers (nonnegative integers). In fact , together
with the usual operations on it, can be defined within Z (see Appendix I for details).

It is also customary to preface a Z document with a form of words such as

"let PERSON denote the set of all persons, and let CITY denote the set of
all cities - we need not go into the internal structure of these sets any
furthero.

This form of words can be interpreted as meaning 'we could give constructive definitions
of PERSON and CITY, but such definitions would simply be a distraction at presentw. The
symbols PERSON and CITY are said to denote "given sets" under these circumstances, and a
document with such a preface characterises a family of specifications, one for each possible
constructive definition of the "given sets'.

212 For any set T. the term P T denotes the set of all sets whose members are drawn
from T. ie the set of all subsets of T. Nothing can be a member both of T and of P T.

-T, E (P T,) - T, r Ta

- (TjTg) A (TEST,) *-* (T,"Ts)

21 ±For any set T. the term F T denotes the set of all finlte subsets of T. A set of
i elements is finite If there is a one-one correspondence between its members and an initial

segment of the natural numbers.

2.4 For any sets T, ... Tthe term T, x... x T. denotes the set of all n-tuples such as:

These are characterised by

.- C,) t).(T, x ... x T.) -- t,eT, A ... A t.T.

Nothing can be a member both of one of the sets T, and of T, x ... x T..

2 For any sets T, T.., and any distinct symbols id, id, the term

id,<<T,>> I ... I id.<<Tn>>
.4-

denotes the "labelled disjoint union" of T, .. T,. Nothing can be a member both of one
of the sets T, and of the disjoint union. This is a set which contains exactly one element
for each of the elements in T,. one for each of the elements of T,. and one for each

of the elements of T. but no more. The symbols id, ... id, denote injective functions
which map to and from the disjoint union (see section 5 of [Sufrin] for more details).

2.1.5 For any distinct symbols id, . i.. d, the term id, I id I ... id, denotes the
"enumerated type" which contains exactly the elements id, ... id,.

PP ~"0 -d %~d ~. .

J2.2 Relations
For any sets T, and T,. the set of all binary relations between T, and T, is defined to be
the set of all sets of ordered pairs from T, x T.. When elements t, and t, are related by
R, we sometimes say that R maps t, to t. The domain of a relation R is the set of all
elements which are mapped to something by R; the range of R is the set of all elements to
which R maps elements of its domain. The inverse of a relation R, written R', has the
ordered pairs of R reversed.

Definition:

(T,. T21
T, T2 79 P(T, x T,)

* Syntactic Equivalenes:

Definitions:

-(T

don R a (x:T, I (3y:T xRy))
ran R a (y:T, (3x:T, xRy))
R' a ((y-x) y:T 2; x:T, I xRy)
t. R ta A (t,.t9)eR

Note
"' This is a context-dependent set of definitions; It signfies that for any sets T, and T. the
four syntactic equivalences hold for all binary relations R between sets T, and T..

Examples:
L For each set S of elements of T. the identity relation between pairs of elements of S is
defined by:I

id: (P T) - (T*-T)

,'.~ vS:P T.
"" L~d S =((x -" x).x: T 1xGzS

so, for example.,

id (3.4.5) (3-3, 4-4, 5-5

Notice that

S: P T - (Ud S) = (Ud S)"

2. Na .- , IN is the set of all relations between pairs of numbers. An example of such a
relation is -c.-

.'

Which can be characterised by any of the following, logically equivalent axioms:

I- . = (n,. n,: N 1 (3 d:I . n,,d=n2) (n, n2)

14
. -, -,.. , - , ,. . .. - , .-. .-- ,. ._ .- ., "... '/ ",..2,: .', .. ,, ",. .,' .- : ".. ." . . . - ..-. .' .'; - ,- -' ,,'r '-,.'-,%'

t.(,, n2 : I (3 d:N . n,+d=n 2))

Sn,.n 2: N .

n.t 4cn 3 d:IN - n,ed=n2

I Another binary relation betwen numbers is the finite binary relation:
i { 0 -1. 1b-2. 2 -3. 30-3. 0 0-)

Theorems:

R: T,4-T 2 - (R"')"= R
R: T, 4-. 2 '- don(R') = ran R. R. Ts '-Ta ran(R") =don It

I

.5.1

m ~z

§23 Functions

2.3J Notation for Functions
The set of partial functions from T, to T2 is the set of relations between T, and T, which
map elements of their domain to a single element of their range. A partial function is said
to be total from T, if its domain is all of T,. A function is said to be a finite mapping
from T, if its domain is a finite subset of T,.

(T,. Tl
T,- T2, a f R:T,'-4T, I(V x:T,; y,.y2:T3 . xRyS A xRy2 yffy,))
T, -- T2 a (f:T,-T, I don £ T,)
T, - T, a (f:T,-+T, I don f F 7T)

An injective function is one whose inverse is also a function. We use the following
symbols to denote the partial, total and finite injections

I [TI, T21
K.4 T. T T2 a f:Ts-T2 I f" C T,'T,

T~~ 1 , ,) n IT, - T2)
T, Ta a (T, -' T2) n (T, - T,)

A function is said to be (a surjection) onto T, if its range is the whole of T,. The
arrow-symbols used to denote the surjcctive functions are derived from the usual function
arrows by adding an extra "head". The most important are those used to denote the

partial surjections, the total surjections, and the one-one functions, namely:

IT,, T21
T, -40 Tza A :T,-T, I ran f = T)

T, T, a (T, - T,) n (T, - T2)

T, T, A IT,- T,) n (T, - T2)

2.3.2 Notation for Function Applications

If F is a function from T, to T, and if x is a member of the domain of F. then the term
F x denote the unique element y of T, which stands In the relation F to x. in other
words the value of F at x. The simplest way to formalise this is

IT,. Tl

F:T,- T; x:T, I xedon F I- (x - F x) e F

In fact we may not deduce anything interesting about the term F x if F doesn't denote a

function or if x is not in the domain of F. (see Appendix 2 for further details)

p §2.4 Simple Operators

2.4.1 Difference, union, and intersection functions.

-. T

U

_ n _ (P T) x (P T) - (P T)

V S,. S,: P T
S, - S2 = (x:T I xeS, A xS2

S , U S2 = (x:T I xES, v xES)

S, r) S ,. x:,T I X,-S, A X-.S-

24.2 Subset and proper subset relations.

IT]

c (P T) - (P T)

Y S,, S,: P T.

S, V . S,: -PT x:T . x4ES, x1ES.)

St C S2 (St#S 2 A $Sc)

2.4.3 Natural Numbers
The natural numbers have an element, 0. There is an injective total function, eucc, on the
natural numbers, whose range does not contain 0.

0: IN

Succ: N >- N

0 ran aucc

Notation:

N, a N - (0)
prod A suce"

Theorems:
Recursion Principle

IT]
x:T: g:T-"T 3, f:N-T . £ 0 = x A SUCC fig oil

Induction Principle
'. S:P IN - OGS A (V n:S . mucc n G S) - S=N

Note:
" This theorem is the justification for our using the 'recursion equation" form of

specification for the iterative composition function L defined in §2 7.

2.4.4 Numerals
The Arabic digits denote numbers defined by

1 Amuc O, 2 a suc I. ... g a suc 8

The usual conventions concerning the numbers denoted by multi-digit sequences apply.

-4-

q...-

2.4.5 Arithmetic Operators and Relations

- x : x N--4 N I

i
_: xN

N N

X a, n:h . (ucc' m)2

~m. n?~. _ +)". 3(15)17)

add: N N - I N W

add a n = a+n

-X- - a, n:I . pred m 14)(91

-" UCC
0

IO

Notes:
"' The operator symbols x and - are given additional meanings here. In any context the
particular meaning of one of these symbols can be determined from the types of its operands.

2Addition is defined as the repeated taking of successors.

Multiplication is defined by repeated addition.

Notce that the subtraction operator is partial since no INatural number precedes 0.

Repetition is denoted by R' and explained in J2.7.

R9 is a relation formed by taking the union of all repetitions of the relation R. as

explained in §2.7.

" The term (+ a) denotes a function which adds a to its argument More generally, the

following conditional syntactic equivalences hold:

f: T, x - T, s:T,; t:T, (a f) *X t:T2 . f(s. t)

f: T,) T T, ; T :T,; t:T2 E _ t) A X ,:T1 . £(a. t)

2.4.6 Segments of the natural numbers

_ .. _ : h x IN --* h

V m, n:ti . a..n = (:N n

2.4.7 Finite Sets and their Cardinality
A finite set of elements of T is a subset of T which can be put into a one-one correspondence
with some initial segment of the natural numbers.

... -:.. .-.. :..-: .- . -... .. -. -..-...--. - :.:. ::.:.-. . . .:. . . . -.-. ...--....
L~ %.~A .A .A .A ~ .A .--.- .. '. ,

F T a (S:P T I 3 n: I; : T-1-. f G S-(1. .n))

In fact it turns out that there is only one such segment; its length is called the cardinality (or
size) of the finite seL The size operator 0 is therefore defined by:

n_ : F T

I,..S;r
. U*S a- &L n-l N (3 f :T- N . f" 4 S- (1,..n))

Theorem:
The size of the union of two disjoint finite sets is the sum of -the sizes of the sets

(TI

S,.S2: F T I s 1 se{) -- #(S U S2) a #s, + #S3

rO.

2.4.5 Gen ralised Union and Intersection
The generalised union of a set SS of sets of T is the set which contains those members of T
which are in at least one of the sets In 5S. The generalized Intersection of SS is the set which
contains those members of T which are in all the sets of SS.

U -.

n P(P T) " (P T)

* V SS:P(P)
U SS a (x:T I (3 S:SS . xES) I
n SS = (x:T I (V S:SS xeS))

Theorem *:

SS:P(P T) i- SS=) USS = (0
SS:P(P T) i- SS=() nSS a T

19.M

"p.

§2.5 Operators on Relations
In this section we define relational composition, relational restrictions, relational overriding and

N" relational image. Since functions are simply specialised kinds of relation, the relational
operators defined below may also be applied to them.

(T,. T". T I

2-51 Composition

S-_ (T1 -T.) x (T,--T,) - (T,*-T 3)

V R,:T "-T2; R,:T, -T. x:Ts; z:T,.

. . (x.z) cc (R, j R2) -, 3 y:T, . (x~y)GR, A (y.r)Gi,

Some authors also use the sign a defined by: R e R, A R , P,

2.5.2 Domain and Range Restriction

-r (T,-T7w) x (P T,) - (T,4-T2)
- - z (T,4--T 1) x (P T,) -. (T1 '-"T2)
- - (T-T,) x (P T,) - (T,4-*Ts)
- / - (T,4-T,) x (P T,) - (T,*-T2)

V R:T 14-4T; S,:P T,; S2:P T.
R t S, = (Ud S,) ; R
R \ S, = R t (T,-S,)
R iJ S, RI (d S2)
R / S, R 1 (T2-S,)

It is often convenient, particularly when performing algebraic manipulations, to place domain
restrictions to the left of the relation; we therefore derine the following variants of the domain
restriction operators:

- : (P T,) x (T,"-T.) -'(T-T)

-\- : (P T,) x (Ts-T.) - (T,- T,)

V R:T1 "-4T; S,:P T,
P S t R = (Id S) i R

S \R= (T, - S) I R

-, 2.53 Relational Overriding

"- • - (T7"T.) x (T,-T.) ' (T,4"Tq)

,. V R,. R2:T-s "T .

R = (R, \ (dom R2)) U R,

20

2.5.4 Generalised Application Relational Image
The image of a set S through a relation R (sometimes called the R-image of S) is the set of
elements of the range of R to which R maps elements of S.

(I T, 4- T.) x (P T,) - (P T,)

V R:T,-*Ta; S:P T,
R (S J = (y:T, I (3 x:S . xRy))

Syntactic Equivalnce:

R:T,*T2; t:T, 1 R[t a * R((t)]

Theorems:
(T.T,.T,T,.T4

R:T,4-T,; S,:P T,; S2: P T2 I- R I don R) = ran R

R:T T,-T2; S,:P T,: S,: P T2 " R-' ran R I = don R

R:T,4-T,; S,.S,:T, " R(S, U S,] = RIS,) U RIS,]
R:Te-*T,; S,.Sa:T2 - RI S, n S2 R[S,] A R[S.]
F:T,)44T; S,,S2:Ta I- Ft S, A S2] = F(S,] n F(S 3]
R:T,-T,; S,,S3:T2 I" S, r S. R- S, C R.S,]

R:T,-T2 - id(doa R) c R i R-1
R: T,-T, I" id(ran R) r R-' j R

R:T,-4T2 '- R-1 E T, - T, - id(do R) = R R*'
F: T,-T- id(ran F) = F' J F

R,:T4-T,; R2.T,*-.T, (- R, % R,)* R2-) R-

R,:T T,-T; R:T,4-.T3 - dom(R, j R2) = R,"(don R2 3
R,:T,4-*T2 R2:T,-T, ." ran(R, i Rq) a R2(ran R, I

R,:T,-4Ts; R,:T4-.T3; R,:T3'4T4' " R, j (R2 ; R,) = (R, j R) R,
R:T -T- R I (id T2) a R - (id Tt) j R

R,.R2:T, iT2; R,:T-.T, - (R, U R.) s R3 z (R,;R2) U (R~sR,)

R,.R2:T,4-T T; R3:Ts-T, (- [R, A R) ; R, r (R,iR,) A (R,;R,)
R,.R, :T ,-4T; F:T,>4T, (R, n R2) I F = (RJF) A (R2;F)

R,,R2:T,+-*T2; R,:T,+-*T, - R, r. R. (R,;R) c (RsR,)
R,:Ts-*T, R,.R,:T,4-T, I- R, C R3 - RoR,) r (RJR,)

R,:T,.-T2; R,,R3:T2i-T, -R I (R2 U R,) = (RjR2) U (RJR-)
R,:T ,.-T,; R,,R:T '-.T, I- R, ; (R. n R.) C (RiR,) n (RsR3)
F:T,-HT,; Ra.R,:T,4-T3 - F j (R2 A R,) * (FiR,) n (FIR.)

R,.R2:TT,-T2 - (R, U R2) R U R2 "
'

R,. R2:T,*-T2 - (R, nA R2) R " n R "
t. R,.R: T'-T, ,- (R, - R,)z R,' - R

RRR: T,-T - R, R2 R2 R, c R,"

R1, R2.,: T "T, "- R, (R, 0 R,) f (R, 0 R,) 0 R,

R:T,-T, C- (R M ()) = R ((R,
R, R ,: TT '- don(R, 0 R2) = don R, U don R,

, I- ran(R, 0 R,) = RJT, - donr R2) U ran R2

21

§2.6 Finite Sequences
2.6.1 Given a set T. the finite seaquencs of T are the finite partial functions from N to T whose
domains are initial segmet of the natural numbers.

[T]
seq T

f: N T I don f = ..#)

- q, T
"eq T -

1go

For example:

1 1'--5. 2'-+6, 3b-477) E seq N

{1-0. 2'-primes) 4seq (P IN)

In general the following syntactic sugar is used for extensional specifications of sequences:

<> {)ea
<a&> 1" l-a'

<a, ... a,> B (1- a, ... n'-oa.)

Theorem:

u:seq T,; f:T,-Ta o ff 4 seq T2

2.6.2 Sequence Construction Operators
One way of building a new sequence is to push a new element onto the front of an existing
sequence, thus

cons: (T x (seq T)) -- seq T

Y t:T; o:eq T.

Another way is to push the new element onto the end of the sequence, thus

q anoc: ((seq T) x T) - seq[T)

V t:T; m:oeq T

4 g s = m u (Bucc Wa '- x)

Syntactic Equivalence:

T t, t 2 snoc t,

22
*e.,~%'. '.4 L%

Theorem R
L Primitive Rtcursion for Sequences

IT,. T2
x: T,; g:.T, xT.-4T2

~3, f : (eq T,) -T2

£ <> = x
Y t:T,; s:seq T, . f(t 2on= u) a g(t. £ s)

2. Sequence Inductlon

(T]
S:PCseq T) I- (<>GS) A (Vg:S; t:T . (t m)GS) S=(seq T)

243 Sequence Selection Operators

hd, first, last: seq , T - T

Uti. back, front: seq, T -- seq T

first a A m:ueq T I a$<> . (m 1)
front a A s:seq T I sc . sr(l..(pred Wo))

back = X s:seq T I a*<> succis \ (0)

last - X s:seq T I <> . s(s)
hd 0 first
t- t - back

"- 2.6.4 Sequence Operators - Append, Reverse

_ : (soeq T) x (seq T) - (seq T)

rev : (seq T) -' (seq T)

- X s8 :.eq T . a, U a) - ; a,

rev

X s:seq T . (reveeg #e)jeuccle

reveeg: N - (seq IN)

V n:I4 . reveeg n ((i.-n-i) .:14 I i .E .n

Notes:

The term a - Us,) denotes an IN -W 14 function which maps a number n into the

number n-#a,. See note ,v, of §2.4.5.

Syntactic Equivalence:

all 82: seq X ' , B2 a a, 62

Theorem s:

8:seq T - <> 6 <> a

8*.8,.e,iseq T - a * (S' a S') = (s, 6)

a,.s,;seq T; t:T - (t cons s,) a 6, = t cns (6, 02)

• 23 . . •% .4. - . - - '. '..'..". " ?,"-
• -.. -. '-' . - =-' _- .'_ ' , , .. - .. %r

m1,as;.eq T - rev(, * =)82 (rev -2) * (rev a,)

w:ueq T; t:T #- rev(t a) a (rev a) anoc t

rev <> =<>
t:T - rev <t> <t>

'- rev ; rev = id(seq T)

2.6.5 Subsequences

aflter.
for: (aeq T) x T -- (aq T)

q V m:oeq T; n:N

a aL er n = ucc j a

a *gr n =a (1..n)

Theorems:

a: ,,q T; n:N ((a far n) * (a af= n) a
a: ueq T 0-8(mt) =6
a: ,aq T - (a fe O) z m

2,6.6 Sequences of Relations
Distributed composition and override of sequences of homogeneous functions are defined by
primitive recursion over sequences.

IT)

• aeq (T'-.T) -. (T4-T)

0 <> z id T

%!> a id T

V a:eq(T4-aT); R:T4-bT
a(R gon a) a R a (aS)

J(R gorm a) C R g (aS)

Theorems:

a,. m: oaq(T4-.T) - i(a, * 82) = (1'1) 1 (i01)
al x2: aq(T*T) '- a"t, * a2) a (am,) a (aa)

24

%*%

=It

§2.7 Iteration and Transitive Closure
The nth iterate of a homogeneous relation is its n-fold composition with itself. This definition
is justified by the Recursion Principle for natural numbers (see §2.43)

iter: N x (T -T) - (T+-T)

V R:T4-"T; n:lH .

0 1= R i jd T
(muc n) i= R = R j (n a R)

Syntactic Equivalence

RI t L= R

The (reflexive) transitive closure of a homogeneous relation is the union of all its iterates, its
irreflexive transitive closure is the union of all its iterates but the zeroth.

..
• (T.-T) - (T4-.T)

V R: T4- T
R U (R". n:h)
R" U { R". n:N,

Theorems:

R:(T.-T); n,n:N '- (R')' (R" z RIO 'fa
R:(T.-T); u.n:i - (RO) I (R) O RIO 01
R:(T.-.T); n:IN (R"' (R-1)0
R,. R 2 :T"-T; n:IN - (RJR,) (R2 R,) - R (R,)R = R," R*
R:(T"-T) - Re ; R = R"
R:(T-T) -R I R a R" a R i Re

R:(T'-T) - (R'] = R"
R:(T'-T) - (R')" = (R')"
R: (T-'eT) - (Re)

" =(R')o
R. R2:T4-T - (R,sR,) = (R,R, -, (Q, j R9)' R," j R."
"R,.R2: T-'T *- R,* U R2 r CR, U R,)e

.- ucc e =
'- aucc* Z

25

." • , '

Appendix I
The Z Type System

(omitted in Draft)

.¢,

I

U

26

* * * * ~ * * d~ * * *.. ~ . -' J'1~7'~~'dl * *

Appendix 2
Rules of Reasoning forZ

(Omitted in Draft)

9-7

Acknowledgements
As it stands today. Z is the product of many persons' efforts and patience. Our source of

inspiration, and (so to speak) spiritual co-author is Jean-Raymond Abrial. Those who have

worked closely with us on material related to Z include: Tim Clement, Tony Hoare, Cliff

Jones, Stefan Sokolowski, Mike Spivey. Those who have and influenced us over the years

include: Rod Burstall, John Hughes, Roger Gimson, David Gries, Lockwood Morris, Steve

Schuman, Philip Wadler. Many thanks to the MSc students who have provided a more or

less tolerant audience for our ideas since 1979.

References
[Abrial]

J-R. Abrial

U The Specification Language Z: Syntax and "Semantics"

Software Engineering Project Working Paper,
Programming Research Group. Oxford. April 1980. (out of print)

(Morgan]
Carroll Morgan

q Schemas in Z A preliminary reference manual

Programming Research Group, Oxford. March 1984.

(Morgan&.Sufrin]
-". Carroll Morgan & Bernard Sufrin

Specification of the Unix file system

IEEE Transactions on Software Engineering. March 1984.

[Sufrin]
Bernard Sufrin

Mathematics for System Specification
*I Lecture Notes 193/84

Programming Research Group. Oxford. September 1983

Bibliography

(omitted in Draft).

28

," '4.

% t
N -,S

The Schema Language

Programming Reearch Group

Br-U Kable Road
Oxford OXI 3QD

July L984

Abstract

One of the more prominent feature of the Z specification technique is its use of

achea". This document give a compact description of what schemas are and

how they are manipulated. Some of the notations introduced are still considered
preliminary.

4,-

U

...-

The Schema Language -2-
.1p.

Contents.

L Introduction.

2. Definition, notation and naming of schemas.
21. Definition of a schema.
2.2. How schemas are written.
2.1 How schemas are named.

I Schemas within mathematical text.
U2 Rules of syntactic equival nce.

, 3.2 Omission of (). tuple and pred.

4. Basic schema operations.
4.1 Renaming variable.
4.2. Schema decoration
4.3. Schema inclusion.
4.4. Schema extension.

S. Conventions for using the basic operations.

6. Logical schema operation.
6. Binary operation.
6.2. Unary operations.
6.3. Quantifiers.
6.4. Predicates as schemaL
6.5. Conventions for using logical schema operations

S7. pecial purpose schema operations.
71 Hiding.
7.2. Projection.
7.3. Consistency.
7.4. Forward relational composition.

7.5. Domain and range.
7.6. Application.
7.7. Overriding.

& Schemas and theorems.

C-

The Schema Language -3-

1. Introduction

Schemas are a device for organising the presentation of the mathematical text of Z
specifications. Specifications in Z are generally given as predicates relating observations of the
object specified; for example, the following specification is satisfied by any right-angled triangle:

Let the positive real numbers a. b, and c be the lengths of the
given triangle's three sides. Then

a 2t~ + b 2
. C 2

of this spesification, it 1s the Engih text which associates the names a. b, and c with the sides

*of triangle In 7, the mathematical text would in addition introduce the variable's types
(suppose R" is the set of positive real numbers):

a. b. c: R"

This pattern of declaration and predicate occurs so frequently in Z specifications -

in sets (a.b.c: R" I a2 + b2 = c2
)

in functions Xa.b. c: R" a2
* Cb.

2
. ab

in predicates Va.b.c: R" I a2 + b2
. C

2 =,a A Cb
3a.b,c: R" a' + b2 = C. a b

i that it has taken on a life of its own; it has become the schea:

Pythagorea

a. b. C: R*

a
2 + b

2
. c

2

The above is a named schema (Pythagorean) expressing the relationship holding among the sides
of a right-angled triangle.

*ll The advantage of recognizing and naming schemas is that it simplifies the presentation of large
but shallow mathematical text (which is typical of specificadon).

°'V

...- ~ .-

-~ ~ ~ ~~~~~7 1-*.,.. . .. *~~~

The Schema Language -4-

2. Definition, notation, and naming of schemas

U 2.1. Definition of a schema

A schema comprises a signature part and a predicate part, either of which may be empty. The
signature part is a list of variable declarations, and each declaration consists of the variable's
name and its type. For example, the following signature declares two variables:

Pchief: PERSON
indiana: P PERSON

chief is of type PERSON (that' is, it may take values from that set). and indians is of type
P PERSON (the powerset of the se PERSON). The set PERSON itself is assumed to be defined
elsewhere.

The predicate part of a schema consists of a single predicate - for exam ple:

chief 0 indiana

The type constructors (P etc.) and the predicate syntax are given in Part I of the Z handbook.

2.2. How schemas are written

Schema., may be written in either a horizontal or vertical form:

Horzota

chief: PERSON; indiana: P PERSON I chief 0 indiana

chief: PERSON; indians: P PERSON

chief 0 indiana

The above schema describes the relationship between the chief of an indian tribe and his indians.
In the horizontal form, the signature and predicate are separated by a vertical bar (pronounced
such that'). In the vertical form, the signature and predicate are separated by a horizontal line

(again "such that"). and the schema itself is enclosed in a box. As a convenience, declarations
may be broken at semicolons, and long predicates may be broken at conjunctions (A), and
written on several lines with the ;or A elided -for example,

chief: PERSON
.4.

* indians: P IND~I

chief i indiane
indians

*.>.CKC:7 . .

The Schema Language

2.3. How schemas are named

Naming a schema introduces a syntactic equivalence between the name and the schema itself. In
the horizontal form, a schema is named by introducing the name and the schema together,
separated by a ("Is syntactically equivalent to"):

Tribe 2 chie.f: PERSON; indians: P PERSON I chief A indians

In the vertical form, the schema is named by labelling its surrounding box:

Tribe

chief: PERSON
% indians: P PERSON

chief 0 indians

Il.-

'%

-p

The Schema Language -6-

3. Schemas within mathematical text

Section I above noted that many of the mathematical notations of set theory have a schema-like
syntax. Set comprehension is one example; here is the set of all tribes:

(chief: PERSON; indians: P PERSON

chief I indians . (chief, nd.ian)).

Using the syntactic equivalence defined in section 2.3 above, one could write this as just

(Tribe . (chief. indian)).

or. using the convention introduced in section L2 of the handbook, as simply (Tribe). This
macro-like use of schemas was in fact their original application, and the "raw" mathematics
could always be recovered by substituting a schema's body wherever its name occurred.

3.1. Rules of syntactic equivalence

Given below are the contexts in which schemas may appear directly in mathematical text.

Set comprehension

A schema enclosed in set-braces "0 is syntactically equivalent to the uorresponding set
- comprehension.

(Tribe)

is equivalent to

(chief: PERSON; indians: P PERSON I chief 0 indians)

In some ircumstancs the brackets can be omitted; see 3.2 below. When we use this
form to denote a set, we choose not to know the ordering of components in elements
of the set. Hence we follow the practice of using this form only where the ordering
does not matter. We disa.1ow sentences like

(Tribe) ; PERSON x (P PERSON).

(c, a) 4 (Tribe) where c: PERSON; a: P PERSON.

We allow sentences like

(Tribe I *indians < 120) G (Tribe).

[Here. * is the cardinality operator on sets].

i%

The Schema Language -7-

...ambda abstraction

A schema preceded by "'X and followed by " is syntactically equivalent to the

corresponding lambda abstraction.

XTrib.. Oindians

is equivalent to

Xch.ief: PERSON; indians: IP PERSON I chief 4 indiana. Oindians.

The projection function which for a given tribe gives the set of its indians is

,,S XTribe. indians..

If tr: Tribe, then the application of this projection function to tr,

$ €,XTrib.. ind.ann)(tr),

is often written indiana(tr) or tr. indians for convenience.

Quantification

A schema preceded by "Y' or '3', and followed by . is syntactically equivalent to the
corresponding quantification.

3Tribe.indian a (a

is equivalent to

V ' 3chief: PERSON; indiana: P PERSON I chief 0 indians. indians 0 (

Tupie

A schema preceded by the symbol "tupie* is syntactically equivalent to the ordered
tuple of its variable names in some undetermined order. For example,

tuple Tribe

is an ordered pair containing the names chief and inda.anu, i.e. it might be

(chief. indianas)

In some circumstances, the tupJe can be omitted; see 3.2 below. As we choose not to
know the ordering of components, we follow the practice or using this form only
where the ordering does not matter. Hence we disallow

tupie Tribe 4 PERSON x (P PERSON).

while we allow

tuple Tribe a (Tribe).

,% .

... . . .,.,-. .- -..----, -. ---;- -.... -2'7 2.--.--- --0."- i; .'

The Schema Language

Furthermore, we use :up. only where the context agrees with the signature of the

schema.

Pred

" A schema preceded by the symbol "prod" is syntactically equivalent to its predicate

part.

P prod Tribe

is equivalent to

chief * indian1

in some ircumstances. the prod can be omitted; see 3.2 below. To avoid ambiguity,

pred should be used only where the context agrees with the schema's signature.

3.2. Omission of 0, tuple, and prod

The set braces (} can be omitted when the schema appears as part of a type; set comprehension

is assumed. For example,

size: (Tribe) - N

l may be abbreviated

iaze: Tribe N i

atup.e can be omitted where syntax requires a term. and "pred" where syntax requires a

predicate. For example,

chief 0 indians (chief. indians) 4 (Tribe)

is equivalent to

prod Tribe tup.e Tribe 4 (Tribe)
p

which can be abbreviated (but inadvisedly)

Tribe Tribe 6 (Tribo)

Note, however, that here, the braces () cannot be dropped.

.o

J.,

:4

The Schema Language -9-

4. Basic schema operations

The basic operations of renaming, decoration, inclusion, and extension allow schemas to be
constructed directly from other schemas. (Some of these operations are special cases of more
general operations introduced in section 6.)

4.1. Renaming variables

Renaming a schema variable changes its name in the signature and in the predicate part (where
it may be necessary to further rename bound variables in order to avoid clashes). The notation
is

schema [newnaae/oldnaae]

For example,

Tribe CP/chiei Ccabinet/indiana1 a

PH: PERSON

cabinet: P PERSON

PH 0 cabinet

As usual.

[nev 1/old] Cnew 2 /old, ...

may be written

[new,/old,. nev/old, ...I

4.2. Schema decoration

Schema decoration is a special case of variable renaming, decorating a schema is equivalent to
so decorating each of its variables. Typical decorations are superscripts and subscripts; for
example

Tribe' a chief : PERSON

indiana': P PERSON

chief* 0 indiana'

For a decorated schema, it is guaranteed that the ordering of components obtained with tup.e
1 and set comprehension agrees with that obtained for the original schema. This allows us to write

for example,

tup.e Tri.e' =uple Tribe.

The Schema Language -10-

4.3. Schema inclusion

A (super-)schema can be built from other (sub-)schemas by including the sub-schemas in the
signature of the super-schema. Each sub-schema adds its variables to the super-signature., and the
sub-predicates are conjoined with the super-predicate. Duplication of variable names is allowed
(and in fact is common) as long as the duplicated variables agres in type. For example., let

eSquaws 2 indians, squaws: P PERSON I squaws r. indiana

Then the following four schemas ar equivalent:

Tribe a
Squaws

Tribe
squaws: P PERSON

squaws r Lndianu

chief: PERSON
Squaws

chief 0 indians

.

chief: PERSON
indiann.
squaws: P PERSON

chief if indiana
squaws Q indiana

.o-

4.*

'. .' 4 .. ,4~4 J, -

. .., . J. , ., .. . , ,- - , - . - , . ,4,.. .. , . . 4. .. -,* A: ' ,, . .' , . .-...

The Schema Language -1-

4.4. Schema extension

I A new declaration can be added to the signature part of a schema by the notation

schema; newdeclaration

For example,

- i n Tribeaduita a Tribe; squaws: P PERSON

Tribeadults
chief: PERSON

indian.: P PERSON

squaws: P PERSON

chief * indian.

A new predicate can be conjoined to the predicate part of a schema by the notation

schema I newpredicate

For example,

b Sm.1.Tribe a Tribe I indian = ()

is equivalent to

SallTribe
chief: PERSON

indians: P PERSON

chief 0 indians
indian = (1

and

YTribe I indians = 0. indians = 0

is equivalent to

Vchief: PERSON: indiane: P PERSON I
chief d indians A indians = (. #indians = 0

.. ~~.1 . .~ .* ..*4

The Schema Language -12-

5. Conventions for using the basic operations

The following is a mathematical description of the event of electing a new chief. In it, the

variables chief and indianm represent observations before that event; chief' and Indians'

represent observations after it. candidatse is the set of indians from which a new chief will be
drawn.

As a first step. let the schema ATribe describe all events which do not change the membership
of the tribc

ATribe

Tribe
__Tribe'

(chief) U indi.ans
*1 (chief') U indiana'

or, in full,

"Tribe.
chief. chi.ef': PERSON

indian. indians': P PERSON

chief 0 indiana

chief' 0 indiana'

(chief) U indiana =
(chtef') U indiana'

Then the schema N.oChe.f is the definition of the event of electing a new chief:

NewChi.efe
4Trib.
candidates: P PERSON

candidatesV indians
chief' 4 candidate.

J%

'

, ,, .,,, , , . , ,, . ,.':g..... ,... ,.....,........ ,...=....... ,....

The Schema Language -13-

The above is equivalent to

NewChief________________
chief, chief' : PERSON
indian., L.dian'.
candidates: P PERSON

chief 0 indiana
ch.ief * indians'

(chief } U indians =

(chief') U indians'
U.

candidat s Q indians
chief' 4 candidate.

Although the two forms above are equivalent, the choice in the former of appropriate
(sub-)schemas, and their name, has allowed a more effective presentation - as a result, it is
clear that NewChief describes a tribal event (ATribe) which depends on one parameter
(candidates).

1-

LI

B

..

. •

pcJ . ~ * 2 . - : ~ ~. . . U'. * U ~ U * %* U . \U - U

The Schema Language -14-

6. Logical schema operations

Section 3.1 above introduced prod, which allows expressions such as

prod A A prod B

for schemas A and B. And where allowed by section 3.2, the prod can be omitted, so that the

above predicate can be written (remembering that A and a are schemas):

AA a

This suggests that A. for example, could be defined as a schema operator directly; that is, A A B

would be a schema, in the appropriate context. But because of the possible confusion between

schemas and predicates, it is essential that such a definition would satisfy (schema A on the left):

prod (A A 3) a (prod A) A (prod B)

In fact there is a simple definition which has this property. The logica. schema operations of
A . , . -, and quantification, are introduced below.

6.1. Binary operations

Binary logical operations applied to schemas form their result by:

L merging the operands' signatures (duplicated variables are identified - but their
types must agree), and

2. joining the predicate parts with the logical operator itself.

For exam ple.

Tribe A Squaw. Q

chief: PERSON

indians,
squaws: P PERSON

chief 0 indians
squaws r indians

This is of course equivalent also to

Tribe

Squaws

The Schema Language -IS-

And given the definition

NoChange

ch.ie' = ch.ief

then

n NewChief V NoChange a

6Tribe
candidates: P PERSON

(candidates c indianu A

chief' e candidates)

v (chi. ' = chief)

The above schema covers the contingency that the incumbent might remain.

6.2. Unary operations

A unary operator applied to a schema is applied to the predicate part directly; the signature is
unaffected. For example,

-Tribe a chief: PERSON

indiana: P PERSON

-(chief 0 indians)

63. Quantifiers

Both universal and existential quantification can be applied to schemas. The quantified variable
must occur in the signature of the schema, and it must agree with its type in the quantification.

The resulting schema is formed by removing the quantified component from the signature and
so quantifying it in the predicate part. For example,

Windians: P PERSON I indians - (0. Tribe a

• " " chi~ef: PERSON

Yi.ndianI: P PERSON I indiarI 0 (. chief A ind~ians

V"

U.

The Schema Language -16-

4-. and

3chief: PERSON. Tribe a

indiana: P PERSON

3chief: PERSON. chief i indianu

U
6.4. Predicates as schemas

lust as a schema can be written where a predicate is required (with pred perhaps implied), a
predicate can be written in the place of a schema. The implied signature is formed by declaring
each free variable of the predicate, where each variable's type is in agreement with the current
context. Thus

BigTribe a Tribe A indians 0)

is equivalent to

BigTribe a Tribe A (Undiann: P PERSON I indian $ (0)

(the context is supplied by the schema Tribe), and is finally

Bigrrib
chief: PERSON
Indiana: P PERSON

chief A indiana

indian # (*)

For a further example, see 7.6 below.

6.5. Conventions for using logical schema operations.

A ducriptilon of the state of a practical system will often involve a large number of
components, and many of the operations will leave all but a few of the components unchanged.

For example, in practice, a tribe will have some non-eligible members

NonEigible

children. squawe: P PERSON

children n squaws =)

and we know that election of a new chief will not affect these non-eligible members, so the
election event must conform to

~~~~~~~~~~~~~~~~~~..,....,........ .....-... ,... ...............-......-.................... ,....,,..... "...',...-.--'.'.,,



The Schema Language -17-

mNonElgi.ble

!NonEligible

NonEligible = NonEligible'

where

ANonEligible 8 NonEligible A NonEligible'

The practical tribe is described by

PTribe
Tribe
NonEligible

disjoint <indians. children. squaws>

where

(I. X1

-" disjoin: P (I - P X)

1 S • disjoint -

Yi. J: don S. S i n S =(

The event of electing a new chief is described by

ElectChief a APTribe A NeWChief A aonEligible.

where

tiPTrib. a PTribe A PTribel.

4.4



The Schema Language -LS-

..-. 7. Special-purpose schema operations

This section describes further schema operations which have been developed from time to time
Sfor use in particular specifications Some of these operations have become part of the standard

repertoire; some have not. It is part of the Z approach to specification that special tools can
and should be developed if necssary; the following list of operations is intended to serve as an
example of how this has been done in the past.

* 7.1. Hiding

The notation

schema\var -able

1P is syntactically equivalent to the schema (see 6.3 abo-'c)

3variabl.: type. schema

where the type of variable is taken from the signature iuf schema. As a further convenience,

schema\variable\ \variab..e2 .

can be written

schema\ (variable,, variable 2 ...)

Finally, the list of to-be-hidden variables variable., variable, ... can be taken directly
from the signature of another schema. That is,

schema, \ schema,

is equivalent to

schema, \ ("all the var.ab.es of schema,
which are also in .chem")

(in which the predicate part of schea,2 is ignored).

."

. .. --- . . . . . .. . ... '



The Schema Language -19-

7.2. Projection

Projection hides all variables except those mentioned. Thus the notation

schema t (variable,. variable2 ....

hides all variables of schema except variable,. variable,, .... And similarly to hiding.

schema, t schema,

is syntactically equivalent to the schema

schema, \ (Oall the variables of schemaa1
whch" are not in schema,")

(Again the predicate part of schema, is ignored). Projection of schema , onto scheaa, retains
only thosu variables also in the signature of schema all others are hidden.

7.3. Consistency

The notation

schema, 0 schea,

or schema 4 schema,

is read 'schema, consistent with schema%; it is syntacticaly equivalent to the schema

(schema, r sches%) (schema, r schema,)

And the notation

3schema, 40 schema,

is equivalent to the schema
I,'.

A, (schema, 4 schema) A (schema, schoa,)

An example of consistent with is given in section 8 below.

7.4. Forward relational composition

Tenotation

A JB

denotes the forward relational composition of the two schemas A and B. It is used in
specifications where A and a describe events, and follow the "undashed before/ dashed after"
convention (NewChj.ef in section 5 above is such a schema). The composition AMB describes the

event "A followed by a'.

Assuming for illustration the definitions

. . .. ,.-- , . , .



- ~ ~ ~ M FF Fri. q ~ - -C .v,. -r1r~ W .rr v-wt r ~

The Schema Language -20-

s. &: 3 S s. : S

a! Alpha b)' Beta

P(a , a') 0(b. a a')

(in which a! is an output from event A. and b? is an input to event B) the forward relational

composition is formed as follows

L All after variables of A which match before variables of B are identified by renaming
both variables of each matching pair to a single fresh variable (variable' in A matches
variable in B):

Al i A C s/s'l i -. : S
a! Alpha

P(a. so a')

B'I a [sl9s I A gos': S
b? Beta

Q (b. a')

2. The renamed schemas are conjoined, and the fresh variable(s) hidden:

A j B i (Al A 31) \ u I

a, a': S
a! Al pha
b? :Beta

330: S. P(s. so. a') A

Q(b. a. s)

The notation

C >> 0

denotes an operation performed as a two-stage pipeline: an operation satisfying specification C is
performed at the first stage, and an operation satisfying 0 at the second stage. The output from
the first stage is used as input to the second stage if required. The 'pipe' operator >> is used in
specifications where C and 0 describe events and follow the convention that the names of inputs
and outputs end in "' and I respectively.

... . .. . .. , .. - -,_... . . ,%,, '_.; '<',%.,','...",.",, , . .":"":, . ..' . ." .',, ,1 t.% "¢> -,% " "



The Schema Language -21-

Assuming for illustration the definitions

C 0

al. sl: Sl 92, s2': S2
a!: Alpha a?: Alpha

p P(sI. sl'. a!) Q(s2. e2'. a?)

then

C >> D a (C(a/a!] A 0(a/a?]) \a.

7.5. Domain and range

The operations do- and ran are used on scihemas following the before/after' convention as in
7.4 above. TaJking A and a as before,

don A a A r ("undahed variables of A") 2

m:S

3 a': S; a': A pa s.. a')

ran is formed by projecting onto the dauhed variables, and then undashing them (a special case
of renaming). Thus

(ran ) B t ("dashed components of 8")

and so

ranB a

-. am: S

3 so: S; b: Beta. 0(b. al. a)

Notice that the variables of ran B are undashed, and that this renaming has forced a change of
bound variable (a to se).

F,.I



The Schema Language -. 2-

7.6. Application

if schema A follows the before/after' convention, and schema S is undashed, then the application

of A to S is written

A Is)

II and is syntactically equivalent to the schema

ran (S' A)

(It is necessary to decorate S so that the composition operator properly identifies its now
dashed variables with the undashed variables of A.)

This operation is very like forming the image of a set through a relation. For example, given

S

Sand

s uSU.A+

then

A IS) a IN

Following section 6.4 above, this could be written

-' A (a 51 * : H4

7.7. Overriding

If schCmas A and B follow the before/after' convention, then A overridden by a is written

and is equivalent to the schema

(A A -do2 B) v B

This operator is very like the overriding of functions or relations. For example, given

I%
r %



The Schema Language .3-

I... 

a. a: N a. a: N

and
S * 5

a' = "7

then A a
(S' X a e 2. A 8 5)

v (s' 7 A g 5)

46

"-.

1
4%'

..

4.,

-4

°.5



The Schema Language -24-

8. Schemas and theorems

Having used schemas to present a specification, one can also use schemas to construct hypotheses
and state theorems about it. If a schema describes the static properties of some object, one may
wish to ask if there can be such an object. For example. if the set PERSON is non-empty.

e" then there exist an individual and a set of people which together form an instance of the
schema Tr.ibe:

PERSON * (} I- 3Tribe

which is syntactically equivalent to

PERSON 0 -
•. ,3chief: PERSON; indians: P PERSON I chief 4 indians.

Also, we may wish to ask if the objects described by some schema have certain properties. As a
first example., when a new chief -is elected, the new chief is not a child. This can be formulated

- VElectChief. chief' A children

(ElectChief is defned in section 6.5). The theorem can also be formulated

ElectChief I- chief' d children

which is syntactically equivalent to

6P~riLb* &ewChief ^ atonElgible -

chief' A children.

The proof is based on the axioms for the three schemas on the left hand side:

(1) chief' e candidates from Ne#Chief
(2) candidates . indians from NewChief
(3) chief' 4 indians (1), (2)
(4) indiana ) children u () from PTribe in 6PTribe
(5) chief' 0 children (3), (4).

This completes the proof.

A second example is the following' given a non-empty tribe, it is always possible to elect a new
chief, that is,

VTribe I indian , {). o 3Trib'. NewChief.

or alternatively,

Tribe I indiana 3 ( - 3Tribe'. NewChief.

.. . . . . . . . . . . . - .



An example of data refinement:

Implementing a two-dimensional array
as a one-dimensional vector

* Carroll Morgan

Programming Research Group
8-11 Keble Road

Oxford OXI 3QD

Prepeared for the
Mfathematics for Software Engineering Course

oxrord University
3"-f i

h September 158
I-

L The abstract state
2. The abstract operations
I The concrete state

4. The abstractions
S. The concreu operations
6. Proof of refinement
7. Conclusion - what was really important

I. The abstract state

The abstract state consists simply of a two-dimensional array:.

ABS

array: ROW x COL - VALUE

where

ROW a 0..(Row - 1)

COL A O..(Colu - 1)

for some positive integers Rows and Colo.

.. 1A
%i



2

2. The abstract operations

There are two abstract operations - one for reading from the array, and one for writing to it
(ReadA for read abstract. WriteA for mrite abstract):

- .AABS a ABS A ABS'

Read4A

AABS

r?: ROW
c?: COL
v!: VALUE

array' = array

v! - array (r?.c?)

Writ*A
• "2 6ABS

r?: ROW
c?: COL
v*: VALUE

array' = array a [(r?.c?) ' v?

.. 3. The concrete state

The concrete state consists of a one-dimensional vector; it is just large enough to accomodate all
of the values in the abstract array.

CON
Ivector: CELL -* VALUE

CELL a 0.. (Cells - 1) where Ceol = Rows * Cole

4. The abstraction

,- The abstraction functions lay out the array row-by-row in the vector. IN and OUT are inverses:
IAN

ABS

CON

[Yr: ROW; c: COL. array (r.c) vector ((Cole * r) * c)l

7 Sep 84

-6- %.- w. %/. .''2"+.i",'. . : .:,' '. , "./..,".. ... . .'.,...,-.% .,. .. ..



I3

OUT
9,.,ABS'

CON'

CYr: ROW; c: COL. array* (r.c) vector' ((Colo • r) * c)I

OUT could have been defined as follows, with the same effect:

OUT A IN'

S. The concrete operations

There are two concrete operations, corresponding to the two abstract operations:
ad-

ACON a CON A CON*

ReadC

ACON
r?: ROW
c?: COL

v! : VALUE

vector' = vector
v! = vector((Cole * r?) + c?)

WriteC

&CON
r?: ROW
c?: COL
v?: VALUE

vector' = vector a E(Cola * r?) + c?) 1 v"

6. Proof of refinement

• " The proof of refinement is in two parts. The first part proves properties of the abstraction
itself, independent of the operations that are being refined (subsections 6.1 and 62). The second
part proves properties of the abstract and concrete operations, in their corresponding pairs (6.3
for ReadA and ReadC, 6.4 for WriteA and riteC).

7 Sep 84

'., -'- ',~~~~. .. '. -.. ..... .. - . . ,..-.-.-.-". -.. '., . -.. -... .--".. -'. - . ; .'-, "..' •- .- ,.,



4

6.1 uI is total

We must show [VABS. (3CO1. INII; that is (we expand the predicate), we must show

[V array: ROW x COL -' VALUE.

(3 vector: CELL - VALUE.

[Yr: ROW; c: COL. array (r.c) a vector ((Cola * r) + c)11

We do this by constructing the required vector ((3 vector ... 1) explicitly.

(1) IV e: CELL. vector (e) , array (* diZ Coln. a m Cola)]

But to show that this vector exists, we require

IV e: Cell.

* dix Colo 6 ROW
A *. Cola 4 COL]

We need this because array is defined only for arguments in the appropriate sets - and we must
show that the arguments are in the appropriate sets. In fact, it follows from from the
definitions of CELL. ROW, and COL, and the properties of dia and MgA

Now we know there is a vector with property (1). we must show it's the right one. For this, we
need

[V array: ROW x COL - VALUE.

IV e: CELL. vector (e) = array (o i Cola. * a Cola)]

(Vr: ROW; c: COL. array (rc) - vector ((Cola • r) + c)l]

and this follows from

[Yr: ROW; c: COL.

(2) (Cola * r) + c Q CELL

A ((Cola r) + c) div Cola = r
A ((Colo * r) + c) ag Cola = c]

7 Sep 84

... .'.. .... .. . . ..' . . . .- -,.. -.. . . . .. - ..- .. -. --.- .-.. ' _, ,,-.-. .-', ." ,,P> ,



6.2 QU is total

We must show [YCON'. (3ABS'. OUT]]; that is, we must show

[V vector': CELL -' VALUE.

[3 array: ROW x COL - VALUE.

[Vr: ROW; c: COL. array' (r.c) = vector' ((Colea r) c)]

But to show this, we need only that

[Vr: ROW; c: COL. (Colm * r) + c 4 CELL]

and this has already been shown ((2) above).

6.3 Radc is a refinement of Readh

Showing that a concrete operation is a refinement of an abstract operation is done in two stages.
In one stage, we must show that whenever the abstract operation can be applied, then so can the
concrete one; this is done for ReadA and ReadC in section 63. In the other stage, we must show
that anything the concrete operation does is acceptable in the sense that the abstract operation
could have done it also (section 63.2).

6.11 Liveness - If the abstract operation can be applied, then so can the concrete one.

We must show that (ReadA A IN) - [3CON'; v!: VALUE. ReadC]; that is, we must show that
fr

array, array': ROW x COL - VALUE
vector : CELL - VALUE

r ROW
C COL

VALUE

the following holds:

array' = array

A v, = array (r".c?)
A Yr: ROW; c: COL. array (r.c) = .'ector ((Cols a r) + c)

(3 vector': Cell - VALUE; v!: VALUE.

vector' = vector
v ! = vector ((Cola * rl) + c?)]

This implication is easy to prove., because the consequent is always true; the antecedent is
unnecessary in the proof. The consequent is true because ReadC can always be applied, and this
follows from

7 Sep 84

• = * " t'.P ° *" '"" '"J'll'" #.%#." "' . . w•'" J 
" "

Jm
%.

% %.4"", #.-* -- C-....#% * . .. .'C.' * € '.q.•., ' C " ". C



6

(Cola r?) + c? G CELL

which we have already shown ((2) above, with change of variable).

6.3.2 Safety - The concrete operation does only what the abstract operation allows.

We must show that (IN A ReadC A OUT A (3ABS'; v!: VALUE. ReadAl) = ReadA; that is, we
must show that for

array, array' : ROW x COL - VALUE

vector. vector': CELL -. VALUE
r? :ROW

"- c? : COL

v ! VALUE

the following holds

lYr: ROW; c: COL. array (r.c) a vector ((Cola r) c)1

A vector' = vector

A V! = vector ((Cole * r?) + c?)l

*-A (Vr: ROW; c: COL. array' (rc) = vector' ((Cola r) cfl

A [3 array*: ROW x COL -' VALUE; v!: VALUE.

v! array (r?,c?)]
rarray = array

array' =array

A v! = array (r). c 7)

"'" This is trivial.

6.4 WriteC is a refinement of WriteA

6.4.1 Liveness - If the abstract operation can be applied, then so can the concrete one.

We must show that (WriteA A IN) (3CON'. riteC]; that is. we must show that for

array, array': ROW x COL -- VALUE

vector : CELL - VALUE

r) :ROW
c')  :COL

VALUE

the following holds

7 Sep 84

-- ' ". . . . . .-' - 4 - -



7

I array' = array a I(r?.c?) -o v?I
A (Vr: ROW; c: COL. array (rc) = vector ((Cole * r) + c)

(3 vector': Cell - VALUE.

vector' = vector a [(Cola * r?) + c?) '- v?]

! As usual, this is guaranteed by

(Cola * r?) + c? a CELL

6.4.Z Safety - The , oncrate operation does only what the abstract operation allows.

We must show that (INA WriteC A OUT A [3ABS'. riteA) ,- WriteA; that is, we must
show that for

array, array' : ROW x COL - VALUE
vector, vector': CELL -- VALUE
r? : ROV
c? : COL
v? : VALUE

the following holds

(Vr: ROW; c: COL. array (r.c) : vector ((Cola * r) + c)]

A vector' = vector U [((Cola * r?) + c?) - v?]

A [Vr: ROW; c: COL. array' (r.c) = vector' ((Cola * r) c)l

A (3 array': ROW x COL -. VALUE.

array' z array a ((r?.c?) '-b v?]]

array' : array a [(rl,cl) -. v1]

We show this by considering two cases:

Cast I

We show that

[Yr: ROW: c: COL.

(r.c) 0 (r).cl) array' (r.c) = array (r.c))

7 Sep 84

=) .%. %. =. %............................"...........................................................,...............



- 4-rV Q U41,-- -v-v -!WWW T V T V

This is a consequence of

[Vr: ROW; c: COL.

(r.c) # (r?.c?)

(Cole * r) + c 0 (Cola r?) + c?]

That is, it is a consequence of the non-overlapping of the row-by-row representation.

%Case 2

We show that

array (r?.c?)

This is trivial

7. Conclusion - what was important

The representation of two-dimensional arrays as one-dimensional vectors is hardly a startling

refinement; the mathematics above is a lot of work for something so trivial! Even so, the exercise

*'. has not been entirely pointless. We discovered by doing it that the validity of this particular

refinement depends on the following facts:

The mapping function (Cola * r) c is guaranteed to return a result in the set CELL:

(vr: ROW; c: COL. (Cola • r + c CELL]

it is an injection:

r": ROW
cl: COL

[Yr: ROW; c: COL.

(r.c) 0 (r?.cl) - (Cola * r) + c (Cola * r?) c?]

and it is onto (that is, it has an inverse which is total):

[1r: ROW; c: COL.

((Cola * r) + c) div Cols = r
A ((Cola * r) + c) nod Cols c)

In larger examples, it might be harder to "guess" just what the crucial points of the refinement

* are - that's why it is important to be able to be systematic. And it should be remembered that

such crooe's of refinement are necessary only once for each refinement. Any subsequent

development which uses the refinement does so for free.

7 Sep 84

tPb
* >.. .... .... ..:- -



Examples of Specification Using Mathematics

Ian Hayes
Programming Research Group,

Oxford University,
8-11 Keble Road,

Oxford,
U.K.

OXI 3QD

Abstract

A number of specification examples are developed in a notation which is based on typed set

theory.

Au.8

',.' 31 Aug 84

'......................................................

........................................................



uw-w-w-w- W-vi

2 Specification Examples

A Symbol Table

The first example specifies a simple symbol table. It demonstrates using a mathematical function
to specify an abstract data type. We will specify a symbol table with operations to update,
lookup and delete entries in the symbol table. We will describe our table by a partial function
from symbols (SYMi) to values (VAL):

st : SYM -" VAL

The arrow -- indicates a function from SYrl to VAL that is not necessarily defined for all
elements of SYr (hence "partial"). The subset of SYi for which it is defined is its domain of
definition:

%l dom(st)

If a symbol s is in the domain of definition of st (s Q dom(st)) then st(s) is the unique
value associated with s (st(s) 6 VAL). The notation ( s -. v ) describes a function which is
only defined for that particular s

dom(( s - v >3 ( s }

and maps that s onto v

( s - v }(s) =V

More generally we can use the notation:

( 1  , Ys, X-2 , Y**. X

where all the x,'s are distinct to define a function whose domain is ( x,, x2 ...... Y and
whose value for each x, is the corresponding y,. For example, if we let our symbols be names
and values be ages we have the following mapping:

st ("Fred"' -23. "Mary" 1

which maps 'Fred* onto Z3 and "lary' onto 19, then the domain of st is the set:

dom(st) = ( "Fred*, 'Mary" >

and

st('Fred*) - 23
:. . st('"Mary') = 19

The notation () is used to denote the empty function whose domain of definition is the empty
set. Initially the symbol table will be empty:

St K

31 Aug 84

.- -.-- . " .. " " "".'.".". ."." "



Specification Examples 3

We are describing a symbol table by modelling it as a partial function. This use of a function
is quite different to the normal use of functions in computing where an algorithm is given to
compute the value of the function for a given argument. Here we use it to describe a data
structure. There may be many possible models that we can use to describe the same object.
Other models of a symbol table could be a list of pairs of symbol and value, or a binary tree
containing a symbol and value in each node. These other models are not as abstract because
many different lists (or trees) can represent the same function. We would like two symbol
tables to be equal if they give the same values for the same symbols. However, it is possible to
distinguish between two unordered list representations that as symbol tables are equal; on the
other hand, for the function representation different functions represent different symbol tables.
The list and tree models of a symbol table tend to bias an implementor working from the
specification towards a particular implementation. In fact, both lists and trees could be used to
implement such a symbol table. However. any reasoning we wish to perform involving symbol
tables is far easier using the partial function model than either the list or tree model.

As some operations can change the symbol table we represent the effect of an operation by the
4..relationship between the symbol table before the operation and the symbol table after the

operation. We use

st, st' : SY --* VAL

where by convention we use the undecorated symbol table (st) to represent the state before the
operation and the dashed symbol table (st') the state after. The operation to update an entry
in the table is described by the following schema:

Update

st, st' : SY! - VAL
s): SYM

vVAL

st st ( S - v 7

p -

A schema consists of two parts: the declarations (above the centre line) in which variables to be
used in the schema are declared, and a predicate (below the centre line) containing predicates
giving properties of and relating those variables. In the schema Update the second line declares
a variable with name "g which is the symbol to be updated. The third line declares a
variable with name "v7* to be the value to be associated with s7 in the symbol table. By
convention names in the declarations ending in "'7" are inputs and names ending in "!" will be
outputs; the "" and '" are otherwise just part of the name.

The predicate part of the schema states that it updates the symbol table (st) to give a new
symbol table (st') in which the symbol s7 is associated with the value v?. Any previous value
associated with s ? (if there was one) is lost.

31 Aug 94

/ ' . . . . , , J - " . " " : , , ' ,, , .6" " %. ' . , , : . , " , :, / "r " . : _" "i " _



4 Specification Exam pies

The operator * (function overriding) combines two functions of the same type to give a new
function. The new function f a 9 is defned at x if either f or 9 are defined at x, and will
have value S(x) if 9 is defined at x. otherwise it will have value f(x):

dom(f 9) a doam(f) u dom(g)

x E dom() - [f e 3)[x) = 43x)

x 0 dam(g) A x 6 dom(f) - (f 0 9)(x) = f(x)

For example:

( "lary'- 19. 'Fred" '- 23 > 0 < "Fred" - ZS. "George" -* 6Z >
( "ary* - 19. "Fred" - 25. "George* - 62 >

For the operation Update above the value of st'(x) is v if x = s 7 . otherwise it is st(x)
provided x is in the domain of st. In our example we are only using 0 to override one value
in our symbol table function; the operator a is, however, more general: its arguments may both
be any functions of the same type.

The following schema describes the operation to look up an identifier in the symbol table:

LookUp

st. st' SYfl .- VAL
s: SYMl
Y! VAL.

s) e dom(st) A

V!2St(S?) A

=st" St

The second line of the signature declares a variable with name "s') " which is the symbol to be
looked up. The third line -of the signature declares a variable with name "v!" which is the
value that is associated with s? in the symbol table.

The first line of the predicate states that the identifier being looked up should be in the symbol
table before the operation is pc. rmed; the above schema does not define the effect of looking
up an identifier which is not in Lhe table. The second line states that the output value is the
value associated with s? in the symbol table st. The final line states that the contents of the
symbol table is not changed by a LookUp operation.

31 Aug a4

..- >%



Spa- i.- ..an Examples

The operation to delete an entry in the symbol table is given by:

Delete

st. st' : SYrM - VAL
'-% s7 : SYrl

s7 6 dom(st) A

st St \( s'

To delete the entry for s7 from the symbol table it must be in the table to start with
(s7 a dom(st)). The resultant symbol table st' is the symbol table st with s? deleted from
its domain. We use tie domain subtraction operator \ where:

dom(f\s) a dom(f) - s

x E dom(f\s) -* (f\s)(x = f(x)

9. where f is a function and s is a seA of elements of the same type as the domain of f. For
example:

C "Mary" I-. IS. Frsd" -. ZS, George" - Z } \ * "Mary", 'Fred" )

< * George" '- 6Z >

Exercise 1: Specify an operation to find all (the set of) identifiers that have a given value, v'? in
the symbol table. 0

31 Aug 94
,.



6 Specification Examples

File Update

a The second example is a specification of a simple file update. It uses sets and functions to
model the file update operation.

Each record in the file is indexed by a particular key. We will model the file as a partial
function from keys to records:

f : Key - Record

A transaction may either delete an existing record or provide a new record which either replaces
an existing record or is added to the file. The transactions for an update of a file will be
specified as a set of keys d7 which are to be deleted from the file, and a partial function u?
giving the keys to be updated and their corresponding new records. We add the further
restriction that we cannot both delete a record with a given key and provide a new record for
that key. For example, if:

f" = k, i- r I, k., r. , k.3 ' r3' k, r4

Ne " d? z k214, k.

" •u = k3 -=. r.. k. r.

then the resultant ile f' will be:

f. k, - r,, k. - ls, ks r,

Our specification is

File Update

f, f' : Key - Record

d?: IP Key
u1 Key - , Record

d? dom(f) A

d' dom(u?) (>A
', = (f\d') 0 u?

The original file F and the updated file f' are modelled by partial functions from keys to
records. The keys to be deleted (d?) are a subset of Key. Hence d? is an element of the

powerset of Key (the set of all subsets of Key); the notation F? Key is used to denote the
powerset of Key. The updates u ? are specified as a partial function from Key to Record.

31 Aug 84

% 
.

. . .

.



Specification Examples 7

We can only delete records already in the file F. Hence the set of keys to be deleted d7 must
be a subset of the domain of the original file (d' C dom(f)). We are precluded from trying to
both delete a key and add a new record for the same key as the intersection of the deletions
with the domain of the updates must be empty (d7 n dom(u 7 ) = 0). The resultant file f' is
the original file f with all records corresponding to keys in d? deleted (f\d?), overridden by

• ,the new records u?.

The last line of Fi le Update could have equivalently been written:

f= (F u? ) \ d'

.4  Although it is not always the case that these two lines are equivalent, the extra condition that

the intersection of d? and dom(u'?) is empty ensures their equivalence in this case.

Lemma: Given d? n dom(u7) = 0 the following identity holds

(f 0 u7 ) \ d7 2 (f \ d*7) 0 u7

Proof: Firstly we show the domains of the two sides are equal:

dom((f.u'Y)\d1) = dom(fo ")1 - d?

= (dom(f) U dom(u?)) - d?
z (dom(f) - d?) U Cdom(u?) -d')

= (domCf) - d7) u dom(u ")
as d7 M dom(u') 0 ()

= dom(f\d "y) U dom(u?)
= dom((f\d1)eu')

Secondly. for any key k in the domain, the two sides are equal. We prove this for the two cases
k 4 dom(u?) and k 0 dom(u7 ):

(a) If k e dom(u'7) then
k 9 d? as dom(u?) n d = }
((foul)\dM)(k) = u?(k) as k 6 dom(u") A k 9 d?

and ((f\d?)QJu7)(k) - u?(k) as k 9 domCu")
J'i (b) If k 0 dom(u?) then

((f¢ u1Sd'Y)(k) = (feu)(k) as we assumed k G dom((fuj')\d?)

SMk) as k 0 dom(u?)
and ((f\d')eu?)(k) z Cf\d?)(k) as k 0 dom(u)

= (k) as k 6 dom((feu'?)\d7 ) 0

In the specification of F, I* Update if we were not given the extra restriction then, as specified
. in the last line., updated records would have precedence over deletions. If the alternative

specification were used then deletions would have precedence over updates. It is sensible to
. include the extra restriction in the specification as it allows the most freedom in implementation

without any real loss of generality.

Exercise 2: In the version of File Update given above each key has (at most) a single record
associated with it. Define a new data type for a file that allows multiple records for a single
key, and a new file update operation; the inputs to the operation will have to take a different
form from those given above. (Hint; Use relations.) 0

31 Aug 84



8Specification Examples

Virtual Memory

Virtual memory can provide a much larger apparent memory to the user than the physical main
memory available. A virtual memory (Vrl) is implemented by a combination of main memory

'. (1IM) which stores part of the current virtual memory, a memory map (MlMap) which maps those
virtual addresses currently resident in the main memory into the corresponding main memory
address, and secondary memory (Sri) which stores that part of the virtual memory that camnot
fit into main memory.

If we let Virtual..ddr be the set of virtual memory addresses, lainAddr be the set of main
memory addresses, and MU be the set of values that can be stored in a unit of memory, then we
can model a virtual memory system by:

Virtual-Memory

VM VirtualAddr -MU

AA : Mlain _:ddr - MU

S1 Virtual.pddr -. MU
MilaP Virtual_ ddr 4 MainAddr

ran(MMap 2 Main Addr A

Vrl = Sl * (rMM * flrlaP)

Both VM and Ill are total functions: they are defined for all values in their respective sources,
Virtual.Addr and Main..Addr. SM is not necessarily defined for all values in its source and
hence is a partial function. The uncrossed arrow (-) is used to indicate a total function and

the crossed arrow (-.4) to indicate a partial function.

, llap is a partial function that is also a one-to-one correspondence: for each element in its range
there is a unique corresponding element in its domain:

q r : ran(lMlao J

Y x,. x2 domt(Mrap)

(MMaP(xI) = y A MMap(Xa) X y) - (x, = x,)

We use the notation ")--#" for a total one-to-one correspondence and the notation ", for a
partial one-to-one correspondence. The term "injection" is commonly used in mathematics for a
one-to-one correspondence.

%!

The first predicate in the schema Virtual-Memory states that the range of riMap is the whole of
tain-Addr. This means that for every main memory address there is a corresponding virtual
memory address; such corresponding virtual memory addresses are unique because Mulap is
one-to-one. The memory map is only defined for those virtual addresses currently corresponding

31 Aug 84

... "



* Specification Examples 9

to main memory addresses. In mathematics a function

" X . Y

whose range is equal to the whole of its destination (Y) is called a lsurjection'. We say f maps
X onto Y.

In order to understand the second predicate in Virtual.lemary we need the definiton of
relational (and hence functional) composition "o" If we have two relations:

, V : X 4-P Y

Z then we can compose thes two relations to give a relation

sof : X -2

defined by

x (sef) y a 3y:Y . X f y A y g z

The domain of gof is given by

- dom(g f) x a : dom(f) I 3y : dam(s) x f y >

which is not necessarily the whole of dom(f).

Properties: ran(f) c dam(S) dom(gf) = dom(f) (a)

ranch) ; dam(S) - (f * 9) * h a 9 h (b)

Another way of writing composition is to use the forward relational composition operator

where

fgg ; a f"

The second predicate of Virtual-lemory is:

SVi a S ' (rlM 0 rlrlap)

The virtual memory is equal to the secondary memory except where virtual addresses are in the
domain of the memory map, in which case the contents of the virtual memory locations are

given by the contents of the corresponding (according to Miap) main memory locations. For an

address addr the contents of the virtual memory is given by:

Vf(addr) = SMladdr) if addr 0 dom(?MoMhiap)

x I'r(llap(addr)) if addr e dom(MlrMoM'lap)

Note that the specirication does not require that dam(S1) and dom(leMlitiaP) are disjoint. If an
address is in both domains then when the virtual memory is used the contents of Sri are ignored.

31 Aug4



10 Specification Examples

.- Lemma:. dom(MMOMMap) - dom(MMap)

Proof:
dom(MMlrl = MainAddr a ran(MMap)

as M"M1 is total and iMfap is onto.

dom(M r1ltlap) = dam (Mlap)

by property (a) above 0

In order to state a simp!e theorem about Virtualjlemory we need to introduce the concepts of

the inverse of a relation (or function) and the identity function on a set. The inverse of a

relation R is the relation R" defined by:.

y R x if and only if x R y

For a function f (a function is a relation with the additional constraint that for any x in its

domain there is a unique Y related to it by f) its inverse f" is not necessarily a function. For

exam ple. if

f = ( a .- 1. b I- 1 )

then

f-I u { 1 -. a. I b )

which is not a function as i does not map to a unique value.

The identity function on a set S is given by:

id(S) 1 2 1 S • s - s >

4.* It maps every element of S onto itself.

Properties: We have the following useful properties of inverses and identity functions. If
SR: X -Y

(that is. R is a relation and f is a one-to-one correspondence) then:

(r')' r (c)

f f id(dom(f)) (d)
'."

r e id(dom(r)) - r [e) 0

Exercise 3: Prove the properties (a) " (e) given above. 0

31 Aug 84



Specifica tion Examples

P Theorem:
MM V llap t

i Proof:
P r: = SI (Mr a MMap)

Srflap" (Sf1 * (ll o lap)) o ap

M= 11 a M a *Map"
by property (b)
as ran(fltlap") * dom(Mllap) dom(MM M frlap) by lemma

X MM e id(dom(rIlap"))

as (1aw is one to one and property (d)
= fi

as dom(rlrlap - ) = ran(rlrlap) = lainAddr = doam(rM)

and property (c) 0

Exercise 4: Show that:

dom(S ) U domcrlflap) dom(Vl) 0

Exercise 5: If the memory units in the desciptikn given are pages of 41K bytes give a
definition of flU and operations to read and write single bytes in the virtual memory given a
byte address. (Ignore flM. 511. and ll for this exercise.) 0

-."

31 Aug 84

......



12 Specification Exam pies

Sorting

U The third example specifies sorting a sequence into non-decreasing order; it uses bags (multi-sets)
and sequences.

The input and the output to Sort are sequences of items of some base type X. We model a
sequence as a partial function from the positive natural numbers (IN*) to the base type X as
follows:

seq X 2 ( s : IN* - X I dom(s) = I..as )

where as is the number of entries in the mapping s (which is also the length of the sequence
s). The notation of enclosing a list of items in angle brackets can be used to construct a
sequence consisting of the list of items. For example

.',/ t= a, b., c >

I ( - a, Z -6b 3 ~- c: >

We can select an item in a sequnce by indexing the sequence with the position of the item:

t(Z) - b

S = <s(1). s(Z). . s(nsi>

The empty sequence is denoted by <>.

The output of Sort must be in non-decreasing order. *We de'inc

Non-Oecreasing(s seq X)

doa(s) . < j "- -(s(j) < sO))

where > is a total ordering on the base type X.

The output of Sort must contain the same values as the input, with the same frequency. We
can state this property using bags. A bag is similar to a set except that multiple occurrences of

*. an element in a bag are significant. We can model a bag as a partial function from the base
p" type X of the bag to the positive integers where for each element in the bag the value of the

function is the number of times that element occurs in the bag:

- bag X a X -- IN'

P%* 31 Aug 84

', -. .. .A. ... ' . .. . . "



Specification Examples 13

We use the notation I ... I to construct a bag. For example;

C 1, Z, Z, Z I I -* 1, Z - 3

The following gives some examples of how sets. bags. and sequences (in this case, of natural

numbers) are related:

S(1.Z,Z.Z> = (I,ZZ> = 2,,Z> = (1,Z> = (2,1

[1IZZZ] A (1,22] = 2.1Z,] , (1,Z = [Z,]

<1,Z,2,2> $ <1.Z,Z> s <Z.1,Z> <1,Z> 0 <Z,>

In specifying Sort we would like to say that the bag formed from all the items in the output

sequenc, is the same as the bag of items in the input sequence. We introduce the function

items which forms the bag of all the elements in a sequence. For example:

items(<>) a (H

Items(<1>) • El]

items(<,.Z.Z>) = ,tems(<Z.1,2>] 1.Z.Z]

,tems(<l,.Z,3>) 2 tems(<Z.1,3>] C1.2,3]

More precisely:

items: sq X -bag X

items(sl x ( : ran(s)
S (- x - < , : doam(s) I st,) x>

Each element of the bas type X is mapped onto its frequency of occurrence in the sequence.

The function items is more concisely given by the equation:

items(s) • 0
"

31 Aug 84



14 Specification Examples

Finally, the specification of sorting is given by:

Sort

out! : seq X

Non-Oecreasng(out') A

items(out!) a otems(in 7 )

A' Sort is an example of a non-algorithmic specification. It specifies what Sort should achieve but
not how to go about achieving it. The advantage of a non-algorithmic specification is that its
meaning may be more obvious than one which contains the extra detail necessary to be
algorithmic. The specification is given in terms of the (defining) properties of the problem
without biasing the implementor towards a particular form of algorithm. There are many
possible sorting algorithms. The implementor should be allowed the freedom to choose the most
appropriate.

Exercise 6: Rewrite the sort specification for the case of sorting a sequence with no duplicates
into strictly ascending order. 0

S.%

":" iAug 84



A Message System

i
Ian Hayes

Programming Research Group,
Oxford University Computing Laboratory,

8-11 Keble Road,
Oxford,
U. K.

OXI 3QD

Abstract

CThe (0lowinS message Syn is based on Lhe message handling in CICS. The specification itself
is an interesting example it combines states (of input and output devices). and gives a number
of examples of the use of te he operator on schemas.

:

p.:

I 2Sep4



A Message System

1.. Message Output

We can represent a set of output devices by a mapping from a device name to a sequence of
messages that have been output to that device:

NOUT

noq : Name - seq Message

The operations on output that we will discuss here neither create nor destroy devices:

ANOUT a NOUT A NOUT' I dam noq' - dom noq

Sending a mesage to a device simply appends the message to the queue for that device

NSend0

&NOUT

n? :Name

m? lessage

%.%

Vnoq roq 0 C n? -. noq(n?)]<n,?> }

I

lU

•

2Sp8

-I



.w-.V-AX

A Mesage System 3

Multiple Destinations

A message may be sent to a set of destinations:

NSendl,

4NOUT
rns" : Name
M :Message

ns C dam noq A

noe' - noq 0 < n ns? • n -noq(n)*<m?> >

All the names in ms'? must correspond to valid output devices. Each device in n? is sent the

message.

Conjecture

Given:

ToSet 2 n? Name; ns!- IP Name n$! n7

the following equality holds

NSenld a ToSet >> NSetldlUa

The schema operator ">>" identifies the outputs (variables ending in "1 of its left operand
with the inputs (variables ending in -'-) of its right operand; these variables are hidcn in the

Ile, result. All other components are combined together as per schema conjunction (A).

°,

2 Sep 84

. ..



4 A Message System

Message Input

We can represent a set of input devices by a mapping from a device name to a sequence of
messages yet to be input from that device

NIN

niq : Name - seq lessage

The operations on input described here will neither create nor destroy devices

ANIN a NIN A NIN' I dam niq' - dam niq

Receiving a message from a device simply removes it from the head of the input queue for that
." -device:

NRece, ve,

ANIN
n1 Name

M! :Message

m! hd(nlq(nl)) A

ntq' - niq 0 ( n1 tl(niq(n?)) }

Send and Receive

We can define an operation that both sends a message to a device and receives a message from
that device:

NSendReceve, 2 NSendc A NReceiveo

Con iecture

NSendReceve = NSend, ; NReceve0

2 Sp 84

:', " - ". ,'"," , . " .- - . .', "",. ' " - w . " '"" " 
'

.a,-. '-,, " ," ";•%"""":w-.4 
' '

"'.' ' ", .'' 
'

"% ".e w



_______-________ -,.: . . : rr :: , - . . y : , : ,Tr , , '-. . . - - .-

A Message System 5

Combining Input and Output

We will introduce NOEV to describe the combined input and output state for all the devices. If a
device can be used for input then it must be able to be used for output:

NDEV

NIN
" NOUT

dam niq Q dam noq

An input operation will preserve the output state and an output operation will preserve the

=NIN a ANDEV I NOUT' NOUT

-NOUT a ANDEV I NIN' NIN

where &NOEV a NOEU A NOE'

The operations on the combined state arc

NSend a NSendo  A -NIN

NSendrl 2 NSendrl, A -NIN

NRece, ve NRecave, A =NOUT

NSendReceive 2 NSendReceiveo A ANOEV

Conjecture

NSendRecetve = NSend ; NReceive

.,g

2 Sep 84

V.. , .... .v ; -' > . . :: - .-... : .,> ,?:e ,:--'--.. .' -'-:.:-: ',.:-:-: :-: -: :.:- -..:.:-:- :.:-:. ;K



6 A Message System

Logical Names

Rather than work wi'h actual (physical) device names, as we have up until this point., we would
like to work with logical names that are mapped into physical device names. We use the
following mapping from logical names to physical names:

LtoP

Itop : LName - Name

None of the operations discussed here modify the mapping from logical names to physical
names hence we will use

-LtoP 2 LtoP A LtoP' I LtoP* = LtoP

If a logical name actually corresponds to a device we perform the operation on that device,
otherwise we use the device with physical name console:

MaPName

=LtoP

dev Name seq Message
In' LName I
n ! Name

2="

n! in? a dom(ltop;dev3 - top(ln°').

console

d)

The operations on a single device become:

LSend 2 MapName(- oq/dev] >- NSend

LReceive 2 MaPName(n,q/dev] Y> NReceive

LSendReceive a MapName~niq/dev] ,> NSendReceive

Coniecture

NOEV I dam nq 2 dam noq I- LSendReceive LSend LReceive

2 Sep 84

'Nh



A Message System 7

Multiple Logical Destinations

h To send a message to a set of logical names we need to map the set of logical names into
physical names. If none of the logical names correspond to a device we send the message to the

a,. device with physical name console:

rMapSet

=LtoP

lns: IP Name
'nsi IP Name

NOUT

ns! = ( Cltop(lnsl n dam noQ = - ( console >,

,top41nsl') n dam noq

The operation to send a message to a set of logical devices is:

g1 LSendl a rapSet >> NSendMl

Conjecture

pGiven:
ToSetL a in" : LName; Ins! P LName I ins! = ( in? >

the following equality holds

LSend ToSetL >> LSendi

I

2Sep 84

z!



A Message System

Domains of the Operations

In practice we would like all the operations to be total (defined for all inputs). Unfortunately
the operations as defined are not total. If a name (or a set of names) does not correspond to
an actual device then the name will be translated to the special device console; if the console
does not exist the operation is not defined. For the output operations ensuring that the
console exists is a sufficient pre-condition for the operation to be defined. (We will also need
this pre-condition for input.)

Pre 2 NOEV; LtoP; m? : MessaSe I console 6 dom niq

Remember that doa niq Q doa noq so console 6 dam noq.

Con iectures

Pre; in' LName I- dom LSend

Pre; ins' F? LName I- dam LSendMl

For the input operations we need the additional requirement that the queue of mesnages yet to
be input on the device is not empty:

PreIn a Pre; n) Name I niq(n9
) $ <>

Con iectures

"MaName(niq/devl >> Preln I- dom LRecetve

M1aPName~niq/dev] > Preln I- dam LSendReceive

2 Sep 94

• . ..- . o.- -.-. ,•. -. -. % . . % % -.' , "- % % % % -,,.- ' , , , ,% . " % %.* % " . '



CICS TEMPORARY STORAGE

Ian Hayes
Programming Research Group,

Oxford University,
8-11 Keble Rd.,

Oxford,
U.K.

OXI 3QD

Acknowledgements

The work reported in this paper was supported by a grant from IBM. The starting point for
this specification was an earlier specification done by Tim Clement. This specification has
benefited greatly from the detailed comments of Carroll Morgan and lb Holm Sorensen.

-,. Specification

Temporary storage provides facilities for storage of information in named "queues". The
operations that can be performed on an individual queue are either the standard queue-like
operations (append to the end and remove from the beginning), or arry-like random
read and write operations.

A Single Queue

An element of a queue is a se-uence of bytes:

TSElem - seq(Bytel

p A single queue may be defined by:
TS.

ar seq(TSElem]
P

P ; mar

The array ar contains the items in the queue. The size of the array is always equal to the
number of append operations that have been performed on the queue since its creation -
independently of the number of other (remove, read, or write) operations. The pointer P keeps
track of the position of the item which was last removed or read from the queue.

2Sep



z Temporary Storage

The initial state of a queue is given by an empty array and a zero pointer.

Ts.n,ta, a - T SO I (ar Z <>) A (p = 0)

b We will define (our operations on a single rs". The definitions of these operations will use the

schema;

TrSO a TSO A TSO'

6TSO (ai for change) defines a before state TSQ, with components ar and p (satisfying p < war),

and an after state TSO', with components ar and p' (satisfying p w ar'). The schemas for

the operations follow.

Append,
I. &TSO

from7 :TSEIem

tam! integer

ar' = ar * <from?>
item! = mar'

. p

The new element f rom7 (a -9- at the end of a name indicates an input) is appended to the end
of ar to give the new value of the array. The position of the new item is returned in tem (a

at the end of a name indicates an output). The pointer position is unchanged.

Remove.
&rSO

into! : TSElem

" I= < wafr

into! a ar(l=')

ar' a ar

k The pointer must not have already reached the end of the array. The pointer is incremented to
the next item in the queue and the value of that item is returned in into!. The contents of the
array is unchan .

-I tee
~ATSO

itemm :integer
from? :TSElem

item? d 1.."ar

ar' = ar 0 (item? -o from7>

The position , tam? must lie within the bounds of the current array. The item at that position
in ar is overridden by the value of from? to give the new value of the array. The pointer
position is unchanged.

2 Sep 84

I=-! ,--, ,," ,-," ," --,' -,e "-," -.-" .-" ."+..........................................................................."...."..-......-.-...-....'.- ;.



Temn porary Storage 3

R~ead,

item' integer

Si tO! TSE~em

ite "  a 1.-. ar
into! :ar[tem2)

P," ' tem 7

ar' ar

The value of the item at position item7 , which must lie within the bounds of the array, is
returned in into!. The pointer position is updated to be itern?. The array is unchanged.

In the above, all the operations have been specified in terms of the array ar and pointer P.
While this is reasonable for the Read and Wr ite operations it does not show the queue-like
nature of the Append and Remove operations. Let us now show that the queue-like operations
are the familiar ones. We can define a standard queue by:

0

q : seq(TSElem]

The standard append to the end of a queue operation is given by:

Standardppend

from? TSElem

q' - q < <from?>.

where AC 2 Q A 0'.

,1 The standard remove from the front of the queue operation is given by:.

Standard_Remove
5- AC

into! : TSElem

% q = <into!> 0 q'

The predicate in the above specification may be unconventional to some readers. It states that
the value of the queue before the operation is equal to the value returned in into! catenated
with the value of the queue after the operation. This form of specification more closely reflects
the symmetry between StandardApend and Standard_Remove than the more conventional:

q' M tal1(q)

into! head(q]

2 Sep 94

%_ _N_%~".
- ~



4 Temporary Storage

To see the relationship between standard queues and temporary storage queues we need to

formulate the correspondence between the respective states:

01..ike____________ ___
0
TSO

q = tailltar)

A standard q corresponds to the array ar with the first p elements removed. Given this

relationship between states we will now show the relationship between Append, and

Standard..Pppend. What we will show is that if we perform an Append, with initial state TSQ

and final state TSO' then the corresponding standard queue states 0 and Q' (as determined by

OLike and OLike' respectively) are related by Standard..ppend. This can be formalised by the

following theorem:

Ap end, A OLike A OLike' J- Standard..ppend

Proof:
1. q ,q' : seq(TSEleml; from? TSE1em from OLike, OLike' and Append,

Z. q' - taill'(ar') from OLike'

3. = tailP(ar * <from?)>) from Append,

.. CtaiPl(ar)) * <from?> as p 4 nar from TSO

S. = Q * <from?> from OLike

G. Standardoppend from (1), (5) 01

We can now do the same for Remove. Again we would like to show:U
Removea A QLike A OLike' I- Standardyemove

Proof:
1. .q' : seq(TSElem]; into! : TSElem from OLike, OLike' and Remove,

2. p < war from Remove,

3. q - tai ' ar) from OLike

4. a <ar(p*.)> * (tail "' (ar)) from (2) and property of tail

S. - <into!> * (tail" (ar')) from Remove0

6. = <,nto!> * q' from OLike'

7. Standard_Remove from (l). () C

Errors

In allowing for errors we can introduce a report to indicate success or failure of an operation.
If an error occurs we would like the rSO to remain unchanged. This can be encapsulated by:

ERROR__________________
" ATSQ

report! : CONOITION

illTSQ' :TSQ

2 Sep 8 4

V

LA *. .



Temporary Storage 5

In the operations described above there are three errors that can occur, trying to remove an item
from a 7SO that is empty, trying to read or write at a position outside the array, and running
out of space to store an item.

NoneLeft'

ERROR

A = mar

report! z ItemErr

Outoflounds!
ERROR

:,.,. temli s nteseri

item
7  1. .natr

report! ItemErr

NoSpace!
ERROR

report! NoSpace

If the operations work correctly the report will indicate Success:

Successful

report! CONDITION

report! = Success

The operations given previously can now be combined with the erroneous situations. We will
redefine the operations in terms of their previous definitions.

Aopend a Append, A Successful v NoSpace!
• Remove 2 Remove, A Successful v NoneLeft'

Urte a Writeo A Successful v OutofBounds! v NoSpace!

Read a Rea A Successful v Outof8ounds!
P

Rote that NoSpace! does not specify under what conditions it occurs. The specifications of
Aoend and Wr te do not allow us to determine whether or not the operation will be successful
from the initial state and inputs to an operation. This is an example of a non-deterministic
specification. It is left to the implementor to determine when a NoSpacel report will be
returned (we hope it will not be on every call).

2 Sep 84

S %



o 6 Temporary Storage

Named Queues

We now want to specify a system with more than one queue. A particular TQ can be specified
by name and the above operations performed on it. We will use a mapping ts from queue
names (TSOName) to queues. The state of our system of queues is given by:

ts : TSQName - TO

The initial state of the system of queues is given by an empty mapping:

TS-Intal a TS i ts =>

Our operations require updating of a particular named TSO. We can introduce a schema to
encapsulate the common part of updating for operations on queues that already exist:

Updat eO
TS

queuel' TSOName
C - &TSQ

'-. queue7 dom(ts)

TO = ts(queue7)

ts' = ts * (queue? -. TSO
*

where TS 2 rs A TS'. Note that UpdateO specifies that the named queue (alone) is updated

but does not specify in what way it is updated. This is achieved by combining it with the
single queue operations to get the operation on named queues.

In adding named queues we have added the possibility of a new error: trying to perform
u operations on non-existent queues. This error is given by.

NonExistent!
ATE

queuel :TSOName

report! CONDITION

Iqueue' i dom(ts)
rS' = TS
report! 2 QIdErr

Our operations, except AppendO which is allowed on a non-existent queue. can now be redefined

in terms of our previous definitions

4. PemoveQ a (UpdateO A Remove)\ATSO v NonExistent!
UWrteO 2 (UpdateO A Lrite)\ATSO v Nonexistent!
ReadQ 2 (UpdateO A Read)\ATSO v NonExistent!

The \aTSQ hides the temporary variables (at. p. at' . p') from the signature of the final

operation. These operations all inherit the errors from the equivaient single queue operations.

2 Sep 84

%..



fiO17 671 FORMAL TECHNIQUES FOR SPECIFICATION AND VALIDATION OF /ok 7 TACTICAL SYSTEMS(U) MASSACHUSETTS COMPUTER ASSOCIATES
INC WAKEFIELD 62 JUN 86 CADD-8686-8293

7UNCLASSIFIED DAAKSO-i--097C2 F/ 9/2NL

EhhhhhhhmmmhhhhE
El..momos



=I L2

111.25J~J 41112

MICROCOPY RESOLUTION TEST
NA ~~iIJR I ~ ANI)ApRN~I.



Temporary Storage 7

A queue is created by performing an AppendQ operation on a queue that does not yet exist.
The following schema describes the creation of a queue;

CreateO
6TS

lueue7 : TSOName
. TSOInitial

TSQ'

queue7 0 dom(ts)
ts' = ts u (queue? -* TSQ'

Again the relationship between TSOGnitial Car, p) and TSQ' (ar', p') is not defined
Swithin this schema. This is supplied by Append in the following derinition:

AppendO A ((UpdateQ v CreateQ) A Append2\ATSO

Note that for a non-existent queue, if an error occurs at the Append level (i.& a NoSpece
condition), then an empty queue will be created.

In addition to these promoted operations on named queues we have an operation to delete a
named queue

Oeleteau
* - 4TS

queue? TSOName

report! CONDITION

queue? •dom(ts)
. s' = ts ( queue?)-

report! Success

An exception occurs if the queue to be deleted does not exist so the definition of OeleteQ
becomes:

,- IL OeleteO a OeleteO. v NonExistent'

%%%

! 2 Sep 84



Temporary Storage

A Network of Systems

U Temporary storage queues may be located on more than one system. Let us call the set of all
possible system identifiers Sysld. We can represent temporary storage queues on a network of
systems by:

NTS
nts : SysId -"* TS

pI

where dom(nts) is the sa of systems that share temporary storage queues and for a system
with identity sysid such that sysid 4 dom(nts), nts(sysid) is the temporary storage state of
that system. The operations on temporary storage queues may be promoted to operate for a
network of systems by the following schema:

Network
ANTS

sysid? SysId

ATS

sysid? 6 dom(nts)
TS = nts(sysid?)

nts' - nts e ( sysid? I-. TS' >

i where ANTS a NTS A NTS'. As with promoting the operations to work on named queues the
above schema only specifies which system is updated but not how it is updated. This will be
supplied when this schema is combined with the definitions of the operations on a single system.
Network operation also introduces the possibility of an error if the given system does not exist:

NoSystem!

ANTS

sysid? SysId
report! CONDITION

sysid? 0 dom(nts)
NTS' = NTS

report! = SysIdErr

The operations on a multiple system are given by*

AppendQN, 2 (AppendO A Network2\ATS v NoSystem!

RemoveQN, a (RemoveQ A Network)\AT7 v NoSystem!
ReadON0  a (ReudO A Network)\ATS v NoSystem!
LriteQN, 2 (UritGQ A Network)\ATS v NaSystem!

2 Sep 84



Temporary Storage 9

The sysid'7 and queue7 name supplied as inputs are not necessarily the ones on which an
operation takes place. A queue name on a given system may be marked as actually being
located on another (remote) system, possibly with a different name on that remote system. We
will model this by the following function which takes the input pair of sysid and queue'
name and gives the corresponding actual sysid! and queue! name on which the operation will
be performed:

remote : (SysId x TSOName) -- (SYsId x TSOName)

In many cas the input sys, d? and queue? name are the actual system and queue name; in
then cases remote will behave as the identity.

We will use the following schema to incorporate remote into the operation:

TSRemote
sysid?, sysid! Sysld
queue?. queue! TSOName

(sysid!, queue!) x remote(sysid?, queue?)

The outputs, sysid! and queue!, of TSRemote form the inputs to the operations. If a sysid?
parameter is supplied then the operations on temporary storage queues are defined by.

AppendON a TSRemote >> AppendONO
RemoveON, a TSRemote >> RemoveON,
ReudQNI a TSRemote >> ReadONo
UrteQN a TSRemote >> UriteON,

If no sysid? parametar is given then the operations are given by:

V AppendON, AppendON (cursysid?/sysid?]

RemoveQN, a RemoveQN, C cursys i d?/sys i d? I
, ReadQN2  a ReadONtcursysid?/sysid?I

UriteON, a Ura teONIcursysid?/sysid?]

That is, the sysid? parameter is replaced by a parameter giving the identity of the current
-system (the system on which the operation was initiated).

_.

PR

2 Sep 94

.. ..



t0 Temporary Storage

A note on the current imolementation

Each system keeps track of the names of queues that are located on other (remote) systems and
for each remote queue the identity of the remote system and the name of the queue on that
system. It is possible that the referred request could be for a queue name that is also remote to
the referred system, in which case the request will be referred on to yet another system. To find
the system on which the queue actually resides we need to follow through a chain of systems
until we get to a system on which the queue name is considered local We can model the
implementation by the function:

rem : (SysId x TSOName) - (Sysld x TSOName)

which for a sysid and queue name gives the sysid and queue name of the next link in the chain;
if a sysid and queue name pair is not in the domain of rem then the chain is finished. The
correspondence between rem and remote is given by:

remote a rem*

where rem* is the transitive reflexive closure of rem, defined by.

rem* 2 Cid \ dam rem) U (rem * rem)

Thati

reml(s, q) Cs, q) if (s, q) € dom rem

sremi rem Cs q) if (s. q) 6 dom rem

As remote is a total function the equality of remote and rem* requires that no chain of rem
contains any loop (so that rem* is also total).

Given the function rem if we take the corresponding (curried) function with the following
shape:

r : Sysld - (TSQName -+ (SysId x TSOName))

~so that:

r(s)(€l) =rem~s, q)dsm(r(s)) < rQ : TSQName I Cs, q) 4 dam rem }

The mapping that needs to be stored on a system s is given by r(s), which is of type

TSOName - (Sysld TSOName)

2 Sep 84



Formal Specification
of a

j Simple Assembler

(Draft 1: March 1984)

Bernard Sufrin
Oxford University Programming Research Group

8 Kable Road
Oxford OX1 3QD

Abstract

"- In the first part of this paper we show how to construct an abstract
specification of requirements for a simple assembler, so as to illustrate a
typical way of using the language of set theory outlined in(Sufrin84l Both
procedural and repruentional abstraction are employed in order to capture
the essence of the requirements without overwhelming the reader with details
of possible implementation In the second part of the paper we give the
outline of a high level desig for a program and indicate how to prove that
it is a realisation of the requirements formalsed in the first part.

!

V

I

,E~

- .

... .. , . . , . , . ,.. . -. K.., -% ,. . - - .'.'.'. ..



-F~~ MENE -

Z. 2

Introduction
In this paper we first show how to use the language of set theory to construct a simple

formalisation of requirements for an assembler, then we outline the design of a simple "in-core

assembler, show that this design meets the specification, and indicate how the design might be

further developed towards an implementation. Both specification and design are presented at a

rather abstract leve, and are therefore 'unreal*. It is this very high level of abstraction which
allows the specification to be simply explained and easily understood, and allows the design to

be easily proven to meet the specification.

An Assembler is a program which translates a sequence of assembly language instructions into

a sequence of "machine language instructions* ready to place in the store of the machine. In

this paper we shall assume that the machine for which we are going to specify our assembler is

a "one and a half address' computer; in other words each machine instruction will reside at a

certain location in the store of the machine, and will have an opcode field, a register field, and

an address field. We shall also assume an assembly language instruction to be divided into

several "fields' - an optional symbolic label field, a symbolic opcode field, a symbolic register

field, and a symbolic operand field. Each assembly language instruction will determine the

(content of the opcode field, the content of the register field and the content of the address field

of the corresponding computer instruction. Sometimes the opcods field will contain a 'directives
- perhaps indicating that the radix in which subsequent numbers are to be interpreted should
change.

In order to simplify what follows we shall consider the symbolic opcode and register fields as

one, and consider the machine opcode field to include the register information. A typical
translation performed by the assembler, might be

Assembly Lantuase Machine Store

Labi acod 02ran Lo'n Qncode Addraaas octal)

.radix 10 1
v: .const 1024 I1: 2000
v2: .Const 4095 12: 7777

.radix 9 I
loop: move r2. v2 13: 22 2

addi. r2, 23 14: 12 23

moves r4. v1 15: 34 1

coup r2. v2 I5: 52 2

jump exit 17: 70 11

jump@ r2, loop Is: 72 3

exit: return 19: 77

.end

Primitive Data Types
Applying the principle of representational abstraction, the first thing that we decide is that in

order to characterise an assembly language instruction, we do not need to know the exact details

of its representation as a sequence of characters or bit strings. By the same principle, neither do

we need to know the exact details of the representation of a machine instruction. We will

therefore denote the entire set of assembly language instructions by:.

10 Jul 94

:,%;
IF. sou



3

A

and the entire set of machine language instructions by

The essence of an assembler can be characterised by the relationship between its input (a
sequence of assembly language instructions) and its output (a sequence of machine language
instructions). We will find it far easier to investigate this essence if for the time being we

abstain from considering things like error listings, and relocateable binary files. This is not to
say that such things will not be important in a more complete specification of requirements, but

Uthe general rubric under which we sail is "essence first, decorations later".

Formally, then, we will derive a relation of type

seq A - seq M

The next step in our formalisation is to further chauacterise the structure of the assembly
language and of the machine language. In doing so we shall denote the set of (symbolic) label
identifiers by

SYM

and the set of opcode symbols by

OpsOP

Structure of Instructions
The abstract structure of assembly language instructions can now be formalised by the
introduction of four functions, corresponding to the fields of the instruction and related by two
axioms:

. lab: A - SYh

op: A "- OPSYM
ref: A - SYM

-b

nue: A -4 N

don ref n don nun a 0
don ref U don nun a A

Taken together, these formalise the fact that an assembly language instruction may have a label.
and an opcode field, and must have a reference or a number field, but not both. Now in

characterising the abstract structure of the language we do not care whether the Number in the
operand field arose from the interpretation of a string of decimal digits, binary digits, or unary
digits, so that is has been possible here to suppress radix directives. Indeed the structure

p. presented here assumes the suppresusion of all directives.

The abstract structure of machine instructions may be characterised similarlr, assuming that the
instruction and address fields of such instructions are represented in our specification by natural

10 Jul84

F' " ,. ....*--- ,•., .. -ls* '...'.-*-(' ., . ._x ' . '..r '. p.'
"
,.-, .p' b-% * - .~ * .. * .-. -. 6 :Q .- ~. >;-%-. ,,% ' ., -



num bers, we have:

addr: 11 - N

A machine language instruction mav have an instruction field, and must have an address feld;
this allows us to use the assembler to preload numeric or symbolic values.

We shall assume that we have been given a way of translating symbolic opcods to numbers,
that is, a function:

a OPS

The set of valid mnemonic opcode symbols is the doain of this function.

Pr 1: Requirements
We require that the assembler tra.slate symbolic opcodes to their corresponding numeric
opcoda, translate symbolic addresses, where they appear, to numbers representing the
corresponding addres, and translate numeric fields where they appear. In what follows we shall
derive predicates corresponding to each of these requirements in turn.

Symbol Definitions
Suppose that the input sequence of assembly instructions is denoted by:

in: meq A

Exploiting the fact that a sequence is just a special kind of function from the natural numbers,
we note that the composition:

in ; lab

is a function of type

N - SYM

%which maps the number of each instruction in which a symbolic label is defined, to the label
which is defined there. In the case of our example we have:

in ; lab = ( I-V1 2 -V2 3-.I.oop gS-.ex,.t

The inverse of this function is in general a relation which maps symbols to all the places in the
input where they appear as labels. For this reason we define:

myabtab A (in lab)'

10 Jul 84



gS

In order to formalise the idea that there should be no multiply defined symbols, we require that
the inverse of syubtab be a function. Remember that in general the inverse of a function may
be a one-to-many relation; requiring that it be a function is the same as requiring that it map
each element of its domain to just one element of its range. Later we will be able to give
additional justification for this rather obvious requirement, which is expressed formally by:

syubtab a SYfl - N

Symbolic and Numeric References
Once more exploiting the definition of sequences, the composition

in , ref

is a function of type

N - SY

which maps assembler instruction numbers in the input to the symbols which are referenced at

those instructions. In the case of our example we have

31--v2 5'-"v 6-vZ 71xe 8i-*oop )

The term

ran( in i rof

denot-i the finite set of symbols which are referenced in the input, so to formalise the
requi ment that all symbols which are referenced by assembly language instructions are defined

in the nput, we write

ran( in i ref ) G don .yubtab

The function

in J nun

of type
;2 N ,- N

likewise maps assembler instruction numbers in the input to the numbers which are referenced
by those instructions.

Exercise L show that by virtue of the axioms for ref and nun the two functions we have
just discussed have disjoint domains.

Opcode References
The function

in I op

of type

10 Jul 94



6

14 - OPSYM

maps assembler instruction numbers to the opcode symbols which are referenced by them. To
formalise the requirement that all referenced opcode symbols be valid mnemonics, we write:

ran(Ln ; op) Q doa anea

Address Fields
Suppose that the output sequence of machies instructions is denoted by

out: uoq rM

then the function

out ; addr of type N -4# N

maps machine addresses to their corresponding address fields. We want the address field of the

instruction at location n to have the value of the symbol at

(in I ref) n

* if" assembler instruction n had a symbolic operand. The corresponding value is

(in ; ref i .yabtab) n

and we want it to have the value

(.n i nua) n

if the corresponding assembler instruction has a numeric operand. Since every assembler
instruction must have either a numeric or a symbolic operand, we can express this formally in a
single line, namely:.

(out addr) z (in i ref ; syubtab) U (in ; nun)

In order to check that our formalisation is sensible, we should ensure that the right hand side of
this equality denotes a function (since we have already established that the left hand side does.

* so), and (because we have stated that each assembler instruction corresponds to a single machine
instruction) that the domain of this function is the same as the domain of in. Of course these
needn't always be true, but the conditions under which they are true will be the preconditions
for a successful assembly.

Let us first examine the conditions under which the RPHS of the equality denotes a function.
Since (exercise I) inlref and ininun must by virtue of the structure of the assembly language

'' be functions with disjoint domains, all that remains necessary for us to articulate explicitly is
that eyubtab itself be a function; this condition corresponds to the "no multiply defined
symbols" condition which we discussed in detail earlier.

10 Jul 34



7

Next we examine the conditions under which the function has the same domain as in. Since the
union of the domains of

(in ; ref) and (in ; nun)

is the domain of in. all we must articulate explicitly is the condition under which the domain
of

(in j ref ; symiubtab)

is no smaller than the domain of (in ; ref). This is precisely when

ran(in ; ref) a don sybtab

which corresponds to the "all referenced symbols are defined" condition discussed earlier.

Oncode Fields
All that remains is for us to formalise the relationship we require between the opcode fields of
the input and the instruction fields of the output. This is simply.

out j nlmt = in j op ; ane

Ensuring that every assembler instruction with an opcode field gives rise to a machine
instruction with a corresponding field is just a question of ensuring that the domain of the
right hand side is equal to the domain of insop. This is ensured providing that the range of
injop is a subset of the domain of ane,,, corresponding to the "a~l referenced opcodes must be
valid mnemonics" condition discussed above.

.

"4

-J

"" 10 Jul 84

.$.. , , -., .. . .. : ,- -.,:: ..



Specification Summary
. In this section we summarise the discussion so far by defining the relation a which

we wish to hold between the inputs and outputs of the assembler.

Context

lab: A - SYM
0o3: A -~ OPSYII
ref: A - SYM
num: A" N

don ref n don nun = (0
don rof U don nun = A

imat: It - N
[addr: rl - N

'A"' anon: OPSYM " N

Specification:

anaueblouto: :q A 4- seq M

Y in:seq A; out: seq M

in annomh.ko out

ran( in j ref ) c don symbtab A

ran( in J op ) G don aen A

symbtab G SYlI -, N A

(out j addr) = (in s ref I uynbtab) U (in nun) A

(out j Aarat) = (in i op anon)

.ymbtab a (in j lab) "

Discussion
We have illustrated two important techniques, namely procedural abstraction and representational

abstraction, by formalising the essence of the relationship required between the input and output

of a simple assembler. By procedural abstraction we mean statement of input-output
relationships without statement of the computational structures used to achieve them; by
representational abstraction we mean the statement of essential structural or semantic qualities of

data, without statement of the computational structures used to store them.

10 Jul 94

I. ,
"

-f**" - .. . '" .' . """ ".*-"," / ," " . ' ." , " ,' . ," j ,' , ," ,



9

In one sense we might be said to have established the basis for outlining a small "theory" of
simple assemblars. Such a theory, however simple and abstract, gives us an intellectual handle by
which we may grasp much more complicated machine and assembly languages, such as those
outlined in the exercises below.

Any program which can be proved to satisfy the relationship defined here is. for us. an
assembler. Now we haven't given any clues about how to go about constructing such a
program, but that enterprise is the subject of the next section of our paper.

Exercises
w2. How would you specify the appearance of a listing on which errors, such as multiply defined

and undefined symbolic references, are noted.

3 What should the output sequence of instructions look like for erroneous input? Is it
important?

4. How could we extend the specification to cover radix directives in the input language?

S. How would you extend the specification so as to treat register symbols properly.

6. Specify an assembler for a Vax-like machine, whose machine instructions don't all occupy the
same number of addressable units.

Pan 2: Hih Level Design of an In-Store Assembler
In this section of the paper we outline the design of a simple in-core assembler and show that
it meets the specification defined above. The assembler will operate in two phases: during the
first phase it will build a symbol table, place numeric operands and opcodes in store, and build
structures which represent the positions of symbolic references; in the second phase it will use
the symbol table and structure reference information to place the correct values in the remaining
unfilled address fields.

In order to construct a model of a two phase program, we will need to define three things a
set, Is, of intermediate states (to model the state of the asembler between phases), a function.
phasel, to model the first phase. and a function phane2, to model the second phase. Inthe language of set theory, the way to model "first this, then that is to compose the functions
'this" tad mthat". Maer formally we aim to dthine

Is
e phasel: seq A - IS

phane2: IS - aeq f1

In order to prove that the model satisfies the specification, we will have to prove that the
composition of the two functions has at least the same domain as the relation aae~ableuio,
and, moreover, that it agrees with asn.ai.alto on its domain. More formally

do,(phanot phase2) = don afmnebleuto A

(pha,,l ; phae2) r aoomblen.to

We call this relationship "satisfieso, and writc

10 Jul 94

S%



10

phase I; phaseZ C asmeableato

The theory of "satisfaction* is presented in Appendix L The main result allows us to give
specifications speci and 9pec2 of the two phases, such that

specl J "pcZ asseablae.to

knowing that if we can find phasel and phae*Z such that:

phanel 1 8pseC A

phaae2 g opec2 A

(ran phasel) r (doa phae 2)

then

phane1 phauZ 9 anneableuto

The Desifzn
At the end of the first phase we shall be left with an intermediate state in which information
about symbolic definitions (at). and information about symbolic references (rt) is available, and
in which there is a sequence of partly-filled machine instructions (anachronistically but
evocatively called core). We model this information as abstractly as possible at this first stage
of development. More formally,

..S t: $M -+ SN

core: seq M

We now define pect

spect: *oq A * IS

in .22og (at, rt, core) m

at a (in ; lab) A

rt a (in j ref) A

(core ; addr) \ (doa rt) = (in ; nun) A

(core ; inat) a (in ; anen) A

at 4 S'f -e N

The first line of the predicate formalises the statement that the symbol table records all
definitions of each label. The second line formalises the statement that the reference table
records the symbol referenced at each location whose assembly instruction had a symbolic
operand. The third line formalises the statement that the in-store values of address fields
corresponding to locations whose assembly instruction had numeric operands are in place. The

10 Jul 84



fourth line form alises the statement that all opcode fields are in place. The address fields of the
instructions with symbolic operands are allowed, by this specification, to take any values at all.

The second phase should leave all opcode fields in place., should leave numeric address fields in

place, and should fix-up" the values of address fields corresponding to symbolic operands.

Since the source text' is no longer accessible, the only way to tell the difference between
symbolic and numeric address fields is by inspecting the domain of the reference table.

Formally, we have

spec2: IS - seq M1

(Ct. rt. core) sJ out

at a SY -" N A

ran rt r don at A

(out i mat) u (core I iant) A

(out ; addr) \ (don rt) a (core j addr) \ (don rt) A

(out j addr) r (don rt) = (rt i at)

Exercise:
Prove that the composition of apecl and apecZ satisfies the specification aua*bJe eto.

i Conclusion

We have constructed specifications for the two phases of an in-store assembler. In each case we
have captured the essence of the information processed by the phase, but in neither case have we

'- specifed., the order in which the information is processed. nor have we specified the final form

in which this information will be stored in a computer. This leaves a number of possibilities
open to those who will define structurally and algorithmicafly more explicit realisations of the

, two ph-sesa

Appendix 1: Satisfaction
A relation r is said to satisfy a (relational) specification a if its domain is identical to that of

a and if it agrees pointwise with * for each element of their common domain.

: (X+-Y) 4-' (X4.Y)

r a - (do. r)u(dom 9) A (r c a)

For example. the succ=or function on the natural numbers is a relation which satisfies the
specification: "greater than"; indeed any number of iterations of suc satisfies 'greater than".

auC V 'V n: IN . "I -o suc
n 

-9

The predecessor function on the natural numbers satisfies the specification "less than', but may

10 Jul 94

-.<.,,....-...*.'•, o. ,..-.-.. . .*.-.%, - --,-- .;. ,':, .- . - : .. .. . ./i , -i" "l 
"

,"r',"; '£: " .- ,r" " " " t " - " 1 I I 1%



not be iterated more than once without failing to satisfy it.

prod ; < V n:h . n>L (prod' '<)

The first two results are rather obvious: satisfaction is both reflexive and transitive.

r: X-'Y -  rcr

rl, r2, r3: X'-Y I- (rlcr2) A (r2r3) - (rLzr3)

The main result used in this paper concerns the relationship between specifications and
relational composition.

al. rl: X +- Y; a2. r2: Y +, 2

rlgl A rZc2 A (ran rl)G(don r2) - (rl;r2) 9 (sl;a2

These results allow us, when searching for a relation which satisfies a certain specification, to
search instead for two relations which satisfy the specification when composed. These two
relations can serve in turn as specifications for a pair of relations whose composition will
satisfy the original specification provided that the second implementation relation is prepared to
proces' everything 'outpute by the rirst.

Acknowledgmeents
The author has benefited from much discussion over the years with colleagues and students at

the Programming Research Group. Jean-Raymond Abrial, who first showed us how to put set
theory to productive use as a Software Engineering tool, remains a continuing source of
inspiration. The specification is a much altered version of [Sorensens2b any mistakes herein are
the author's own

Bibliography

SorensenS2
Specification of a Simple Assembler
CICS Project Working Paper
lb Holm Sorensen
Oxford University Programming Reearch Group, 19

Sufrin$4

Mathematics for System Specification
Lecture Note (MSc. in Computation)
Bernard Sufrin
Oxford University Programming Research Group, 1983/84

10 Jul 84

p



Case Studies

Formal System Specification

Bernard Sufrin
Oxford

Hilary 198Z/93

Abstract Algorithms

Introduction
The correctness criterion for our simple asssembler was a relation between input and
output in which we used functions such as Inverse which are not part of the repertoire of
everyday (or even functional) programming languages. We used these functions in the
siecif 'cation because they were easy to reason mdth.. as we develop a orogram from our
specification we will be introducing functions and structures which are ever-closer to
those provided by our target programming language(s).

In the case of the assembler, the reoesentational abstracton which we made was to
model the input and output as sequences of abstract objects rather than characters, and
to model the symbol table as a binary relation between symbols and numbers. The
procedural abstraction we made was to specify the assembly operation by using
comlposition on entire sequenes and nve-rs/on. In a later section of the course we will
show how we can begin to use morn machine-oriented representations. in this section we
show how to begin to use machine-oriented contol-structures in the realisation of what
w we will call Abstract Algorithms.

As our first example we take the problem of constructing the inverse of a function such
as:

in s £

where

in: aeq(XI

f,-X - y

This is clearly part of a solution to the problem of constructing an assembly algorithm.

We shall first give a orocedurally abstract, state-oriented specification of the problem.
Our abstract algorithm will have state which is characterised by the input which remains
to be read. and by the inverse relation which has so far been constructed; more formally
we have...

ST

in: soq[XJ
rel: Y 4"* N

For a given input and function, inO and £ say, the abstract algorithm must transform a
state in which the relation is empty and none of the input has yet been read...

INITIAL a ( S rel=(); inuin

into one in which there is no more input to read and in which the relation is the required
inverse, namely:

FINAL a ( ST j in-<>; rel=(in. ; f)"

Perhaps it will come as no surprise that our Plan for building a less Procedurally abstract
program will involve a loop each iteration of which will be (modelled by) the function
step ..



step: ST 'ST

..e -amt to zhoose trits so that the function

rNVALG 2 (re" at step)

satisfies the specification. In other words so that

INITIAL don INVALG A

INVALGC INITIAL I G FINAL

Nate: we have Included a small appendix In whIch we de"fne the
fUnction repeat and developa a small mathematical analogue aif the
theory ofr iterative control structures. 4lthough the rest ofr this
dOCqmelnt IS r-elati'Vely in7dependen Of the app~endiX, It Arovides a
More formal justifiain Year some of the infrormal arguments wVe use
belom.

Design of Step
We will define step so that it decreases the length of in whilst always resulting in a
state which is in the set:

INVAR a ( ST relx(sofarif)-' where sofar *in ain 0

our definition Is...

stop
ffST jin*<>

in' z tail in;
first in 4 don f

rel' a e* U (fefirst in 1l4iincl-iin
first in 0 don f

relV = ral

... whichl can be proven to satisfy the above requirements.

Because stop decreases the length of in. and maintains the INVARiant, the theory ofp iteration mow allows us to conclude that:

(repat step) 4 (ST -~ ST)
ranC repeat step) I; ( INVAR n (ST - don step)

Procedurally interpreted this means that the loop terminates in state...

ST in=<> n INVAR

that is...

ST in-<>; rei=(sofarjf)*' where sofarmin,

.. which by a few manipulations transforms to FINAL.

Iz



Making Step less Abstract
The specification of step is still Procedurally aostract ,n the sense that it involves two
mpjlcations:

first in E dos f ...

first in 9 dom f - ...

we can continue the process of algorithmic development by splitting step into two
;parts...

change: ST - ST

nochange: ST - ST

wrlich are defined so that

step = (change U nochange)

as follows:

change =
"ST ino<>; first ine(dos f)

in' = tail in;
rel' = rel U ( E[.o]first in 1*#in,-*in I

nochange =
wST I in*<>; first in¢(doa f)

in' = tai in;

rel = rel

The domains of these functions are disjoint, so their union is still a function. We claim
that this function behaves exactly like step. leaving the proof as an exercise.

In fact taking the union of functions with disjoint domains is the closest mathematical
analogue we have to the alternatlon construct of programming languages. (We will not
here consider nondetarmlnlstic alternation of the kind modelled by unions of functions
with nondisjoint domains, although this is of great theoretical and Practical interest).

So far we have convinced ourselves that - in a context where f is known - the function

(repeat step)

'le takes us from an initial state in which the entire input sequence remains to be Processed
and the relation is empty, to one in which there is no input left to be processed and the
relation is the required inverse.

We can achieve this initial state by a Function

init: seq(X] - INITIAL

init
> ino: eeq[X]

uST

relt{);
in-in,

The overall structure of the function which specifies our abstract algorithm is now:

kr-. Z



L.-a z 'repeat fchange 'i nochange)

ne "control :onstructs" used 'ave neon emonasised; they are afl mathematical unCtrons.

- e now. ask a rhetorical :uestion: s it possible to convince ourselves that the rallowingi orogram 'mPiements the aoove abstract algorithm)

let in:seq[X] = i.na

rel:Y N in

do
jlh<>

let x:X a first in

n:N 1 n-*0-*in in

if x dnE

rel. in := rel U ( x-n ). ta.l in
0

xC(dox E)
in := al. in

fi

od

The answer, as you've probably guessed, is supposed to be *yes*. What you may not have

guesed is just hom we are going to do the convincing.

What we shall do is to give the semantics of the orogrammng language in terms of the
mathematical tools with which we are already familiar. In order to make the presentation
simple. we will not give a forml denotationel semantICs -- a mapping from phrases of

the language to phrases of the mathematical toolkit; instead we will develop the

language as if it were a syntactic sugaring of the toolkit. Once we have done this it

will simply be obvious that the program and the algorithm are the same mathematical

function expressed in different notations.

By showing how the control constructs of a programming language can be modelled by the

algorithmic' combinators of our specification language we hope to convince the reader
that "specifications and *programs" are both mathematical objects, subject to
mathematical reasoning methods, and that there is no unbridgeable gulf between a
procedurally-abstract function specification and a program which computes that function.

p . The Abstract Algorithmic Language

In this section we define the Abstract Algorithmic Language (AAL). The ful language
is not implemented anywhere; it is merely a notation which allows the program designer to
exPress "procedurally' strategies for computing functions (and relations) which have been
specified nonprocedurally.

An abstract algorlthm is just a Partial homogeneous relation (in this paper we will only
deal with determInistic abstract algorithms, which are partial homogeneous functions). As
we illustrated earlier, the development of an ahi:trct al/gorthm starts from a
procedurally-abstract specification, in successive steps we try to decompose the original
specification into smaller *more computable' specifications, which when assembled using
the "algorithmic" combinators:

U alternation

sequencing

repeat iteration

r guarding

are equivalent to the original specification.

are

9



RAssignment

-4ere iS one of the simplest of' the abstract algorithms:

X n: N . x n

it s the algorithm wrtich squares its single, numeric, variable. Another way of writing it,
whi c, makes its status as an "algorithm' a little clearer !s:

ff n: N . n' = n x n

Another way of writing the same algorithm is provided in the RAL notation, namely:

pros n: N . n :: x n

AAL Programs
In general, programs in AAL have the form:

pros v, :T ... v.:T. . St

where St is an PAL Statement in which the variables vt ... v. appear. We are going to
explain the meaning of the AL by giving the syntax of each kind of statement and then
showing what oartal homogeneous function the program

prog v,:T1, . .. v.: T. St

stands for. For the moment. however, we will continue to consider the meanings of
programs of just one variable and of the forms by which such programs are cobined to
Produce more complex programs; later we will give the rules by which these can be
generalised.

Even simple assignment programs may not always "work"; for example consider (program 1):

pros n:lN . n := n-I

In Fact this is the function

ff n:N . n* = n-1

whose domain is N-(O). If we give a procedural interpretation to this (that is to say if
we think of it as something that is going to "run*) then one explanation for this is that
program 1 does not terminate for all possible starting states; an alternative explanation
is to say that this program is going to cause an "exception" to occur if started with n=O.

Let us consider how we might "totalise" this program. le make it run for all possible
starting values of n. The simplest way is to see if n is zero and in that case do
nothing at all. The hybr/d (because expressed in a mixture of the PAL and mathematical
notation) relation below describes just this behaviour:

(pros n:t4 n :n 1) r ( n:N I nzO ) U
(pros n:N . n := n-1)

The domains of its two component functions are disjoint, so it is in fact a function. It
maps nonzero n to n-1 and maps zero to zero.

We can write the first of the unioned functions in a more compact way in AL using the
guarded* form of statement.



pr"s 1.14N -%=O - n := n

:n senora!, 'F St -s an PAL statement and P is a (mathematical) Predicate, then the AAL
zragram:

pros X: X .P - St

-neans the (now hybr'dl function:

(pros x: X .St) r ( x: X I P

Even if we use this new notation for restriction, our function is still expressed in hybrid
form, namely:

Wwould lktohvanALfrFotkigthe unonnof two programs.

means the same as the hybrid program:

(pros x: X .Sti) U (pros x: X StJ

Sometimes. to make it clear that there is more than one possible "control path* within
the statement St we will write:

if St fi

N, Tis means the same an St.

How do we say "do vmothing'l The AAL program:

Pros x:X .skip

means the same as the abstract program

p.- that is

Cid XC)

At last we can write our abstract 'exceptiom Proof predecessor Program entirely in AAL,
(program Z):

pros n:t4

nl :x nl-1

nmO - skip



Healthiness of Alternations
:f - Y try ' tfin of'e 4AL. notation as a genuine programming language then we notice

sometning rather strange about Program 2: there is an alternation clause, one of -iriose
arms s noat "guarced'" As mathematicians (at least temporarily) this doesn't bother us;
after all, AAL s dust a nlotation For describing mathematical relations. But as
.,potent;aliy) mpiementers. we might ozuake in our boots (or Foam at the mouth) at the
Prospect of being asked to implement a Programming language with assignments in wrliich
-Failure" of' a statement causes the system to "backtrack* to the last 0 undoing ai.l
assIgnments on /7e 4way'I

In order to get around this difficulty we shall impose a healthiness constraint on
alternation statements. The rule will be that a.1. statements combined ith 0 must be
guarded.. that is, alternatives should take the Form:

P2 St 2

a

Moreover, we should prove for each of the guarded statements.

-,__ Sti

that the guard is stronger than the "weakest Precondition* of the statement, lea

X: X IP, ) i; dam( pros x: X . ST,

Finally. for an alternative statement to be "determnistic', the "guard sets* must be
proven to be disjoint (this is a sufficient not a necessary condition, but we will
,'oluntartly burden ourselves with it).

Iteration
if St is an ARL statement, then the AAL program:

* pros x:X .do St ad

means the same as the hybrid program:

repeat( pros x:X . St

Cur theory of iteration (in which repeat is defined) tells us that if we are to prove
anything about such a loop then

pros x:X .St

* had better denote a (strictly) partial decreasing function.

:n general then the Statement of a loop will be an alternation of several guarded

statements. For example:

% %



pr-os n: N
do r 3 *

n > ' n n-1
ad

-.hicrn. no matter what the value of n has originally, leaves it either3or4n

Sequencing
If Stl and StZ are statements, then the AAL Program:

pros x: X St, Stl

means "he hybrid Program:

prosgx:X .Stt Cpros xX .St2

Generalisation to Several Variables
For the most part the generalisation of the above definitions to programs of many
variables is completely straightforward. rhe only exception to this is the ass,,gnmenr

1C. stacemele. which we now consider. The meaning of the AAL prm-gram:

pros v,:? T, v... v V

-where E is a term in which vi .. vn appear free -- is the function:

rn i v,:T ... v:r

In other words, the function which leaves all variables unchar,--d except for the one on
the left-hand side of the assignment sign.

It is convenient to have a notation for slmultaneouvs assgnmepe. exemplified by:

pros v,:? .. v.: T. v,. v. v. z El E'.

pros v,: T, .:T

j

E3

h which both mean the function

8



2

v V,

Tne ;,nal precicate is ntende6 to Convey that the values if all variables other than vl

v3 .rk remain the same.

Notce that the two programs

pros a.b: N. a b. b a

pros a.b:4 . a := b; b := a

mean different functions; the first means:

A ab:N . Cb. a)

P rnIlst the second means:

X a.b:N . (b. b)

Assignment to Mappings
:n the same spirit, we introduce a form of assignment to variables of a special type,
namely mappings. .4ithin the scope of a variable

N: X " Y

(a mapping from X to Y) the statement:

means the same as the statement:

t := E 2

Naturally the terms El and E2 had better be well-typed!

Declarations
Next we define an AAL construct which introduces "initialised" variables. If St is a
statement and E is a term of type Y then the AAL program:

0A. pros x:X
let y:Y E in St

means the function

CX x:X . (x. E3) pros x:X; y:Y . St ) C X x:X; y:Y x)

Similarly, the PAL ;rogr2ms

r 9



-rog X:(
let , and Z: = 2n St

7ears :,-e '.rc:cn

*,x X , . *, 2

prog X: X; y.Y; Z: 2ro : ; :'; z . S: :X; Y: ; z:Z . x)

"-,s :oncludes our definition of th e Abstract Algorithmic Language.

iN" Summary
_e -ave 3iven ules which allow AAL *programs' to be transformed into mathematical
-e 'at:ons ( -unctions). In principle it ,s enough to refer the person who wishes to reasonP- acout AL programs to this (albeit only semi-formal) semantics. and suggest that any
-easoning ne =one ising only the rules of mathematical language. In Practice it wi'll prove
,se.-ui to merive some oroof rules For AAL constructs and combining forms from their
nat!,ematical translations. Indeed the constructs we have described so Far were chosen

.rec:sely necause the derived Proof rules For them are simple to understand and work
-t. :n the next section of this document we will Present derived Proof rules for hAL
.r'c, ..iill be familiar to students of Dijikstra's or Hoare's systems of reasoning about

=rcgrams. iere is nothing arbitrary or synthetic about the rules we will Present, they
are smoly consequences of and proved using) the definitions as mathematical fur-t:ons'-"of th.e AAL zonstructs.

-. "

V7~ i~. ,*- % .~ 7-

'°%

L2 _& ,* 11--,d



Z Reference Card

1. Definitions.

LHS 2 RHS Definition by syntactic equivalence.

2. Logical symbols.

P A Q Conjunction: "P and a".
p V a Disjunction: "P or 0".
P - a Implication: "P implies a" or "if P then a'.
- P Negation: "not P'.
V Universal quantification: "for all
3 Existential quantification: "there exists . .

3. Sets.

- Set membership
Q Set inclusion: S ; T a (V x: S. x a T).
c Strict set inclusion: Sc T a S Q T A S T.

(sig I pred term) The set of term such that pred given sig:
x e ( sig I pred . term) (3 sig I prod . x = term)

u Set union: S U T 2 ( x: X I x e S v x ).

, Set intersection: S n T 0 ( x: X I x 6 S A x e T ).

- Set difference: S - T a { X: X I X S A x E T).
( ) The empty set

(a. b) Ordered pair.
I' Cartesian product: X x Y Q ( x: X. Y. Y.

P Powerset: P X is the set of all subsets of X.
F Set of finite subsets; F X a ( S: P X I S is finite).
0 Size (number of elements) of a finite set.

U. n Generalised set union and intersection: for SS: P (P X),
U SS 2 { x: X 1 (3 S: SS . x E S) ).
n SS a ( x: X I (V S: SS . x G S) ).

disjoint Pairwise disjointness for SS: P (P X.
disjoint SS 0 V S. T: SS. S A T (} - S T.

4. Relations and Functions.

A - B The set of relations from A to B: A-B 2 P (A " B).

A - B The set of partial functions from A to B:

A-'" - (f: A - B I (V a: A; b. b': B.
a £ b A a f b ' - b =b) ).

A - 3 The set of total functions from A to 8:

A - B ( : A - B I (V a: A 3 b: B a b) ).

I%



Ia - ,C -

The relation t'.a. bi. c. d). relating a and o, c and d

Lambda-abstraction:
A a: A I prod term Ia: A Iprod .(a. term)

£ x The function f applied to x

dom The domain of a relation or f unction; for P.: A ~- B.
don R a ( a: A 1 (3 b: B .a R b) I

ran The range of a relation or function: for R. A - B
ran R 2 ( b: B I( 3 a: A .a R b) I

Relational or functional composition: for R: A '- 3; S: B s- C,
S a R a ( a: A; c: C I ( 3b: B. . a R bA tS C)

Forward relational (or functional) comnposition: R ;S a S * R.
id Identity function: id A ^2 A a: A. a.

R'tThe inverse of relation R: for R: A 4- B,

R*' a(b: B; a: AlI a R b
V The relation (or function) f composed with itself k times: for f: A 4-A.

f= i~d A. V f. f2 £ f 0 f = f 0 f f.

Image: for R: A '-B; S: P A,

R~s) a (b: B 1 (3 a: S . a R b)

r ~ Domain restriction: for RZ: A - B; S: P A.
Rs a ( a: A; b: B I a RbA a QS)

Domain co-restriction: R \ 5 a R t(A - S).
4 Range restriction: for R: A -B; T: P B.

R I T a (a: A; b: 8 1 aR b AbE6T I
/ Range co-restriction: R / T a R J (3 - V).

a Relational or functional overriding: for f.* g: A -B,
fog 0 (f \dong) Ug.

5. Numbers.

tiThe set of natural numbers (non-negative integers)
cc Successor function: suce a A n: IN . n+..

a.. n The set of natural numbers between a and n inclusive:
a. .n 2 ( k: N I x 4 k l n.

max~m. n) The greater of a and n
m ), n -max~m. n) = m

m 4 n - max~m. n) =n

6. Sequences.

seq A The set of sequences whose elements are drawn from A:
seq A 2 ( 9: IN -~ A 1 (3 n: N . do. a 1. .n)

On The length of sequence s: do. a z 1. . #a.
The empty sequence (

<a. b. c> The sequence ( 1 '- a, 2 -b, 3~-c ). etc.

2

..........U



neac The first element of a sequence.
.st The last element of a sequence

- All but the first element of a sequence.
fr on c All but the last element of a sequence.

For a: seq A I s -,

heads s (II).

last s ls Ps),

tail s a succ ; (s \ (I),
front a a 9 \ (#s).

Adding new head and tail: for s: seq A; x: A,

x a a ( I - x ) U succ "  a ,
a x 2 S U ( succ Is - x

Concatenation: <> t = t. (x a) t =x (a t).
rev Reversing: rev <> <>. rev (x s) : (rev s) x.

7. Schema Notation.

[For details set "Schemas in Z"].

Schema definition:

SCH

a: A

b: B

axioms

Use in signatures after v. 3. h, ( ... etc.:
. SCH I predicate ) a ( a: A; b: 3 1 axioms A predicate ).

Y SCH . predicate a V a: A; b: B I axioms . predicate.

tuple The tuple formed of a schema's variables: tuple SCH a (a. b).
pred The predicate part of a schema: prod SCH a axioms.

[new/old] Renaming of components.
S.- S2 Decoration, systematic renaming.
Use in definition of other schemas: inclusion, extension.

A, v. etc. Logical operations.

Hiding.
Projection.

. Relative consistency.
Relational composition.

dom, ran Domain and range.
Application.

% Overriding.

3



aIa.aa. - a U.aap paM.Jtr aJ-r~sr r wrwl.2 -r~n-n--.w. - - - ;Tflr~-n~-,

'I

I

**1~
.'~ S.

'~

.r .j~

-1

k

j.


