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Massachusetts Computer Associates, Inc. (COMPASS) is pleased to
submit this Final Technical Report for Contract DAAK80-81-C-0072,
on Formal Techniques for Specification and Validation of Tactical
Systems.

The primary results of this basic research program are embodied in a
published paper, ‘‘Object-Oriented Subsystem Specification’’, which
is attached as Appendix L

A major objective of this research was to initiate a transfer of formal
specification technology into the design and development of tactical
systems. To this end, the research was carried out in collaboration
with engineers from CENTACS, who participated in a number of
experimental case studies over the duration of the project. One of
these was documented in a separate paper, attached as Appendix II;
this describes our collective first attempts to formalize the design for a
(hypothetical) ‘‘tactical situation - reporting system’’, before either the
formal specification techniques or our informal conception of that
system had fully matured. Essentially the same example is considered
in the final paper.

The starting point for this reasearch was the mathematical approach to
system specification originated by J. R. Abrial at Oxford University,
which has come to be known as “Z”. Much of the work on this
contract was carried out in direct collabortion with the Programming
Research Group at Oxford. A collection of papers on Z from this
group, reflecting the state of their work at that stage, is attached as
Appendix III.
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S. A. Schuman & D. H. Pitt

CA - 8606 - 0202
June 2, 1986

To appear in: Meertens (ed.),

Proceedings of the IFIP Working Conference
on Program Specification and Transformation
(North-Holland, 1986).

This research was supported in part by the U.S. Army
Communications and Electronics Command, Fort Monmouth, N.J.,
under Contract Number DAAK80-81-C-0072.
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OBJECT-ORIENTED SUBSYSTEM SPECIFICATION

S.A. Schuman *
University of East Anglia

DH. Pitt |
University of Surrey

1. Introduction

The aim of this paper is to introduce a rigorous, mathematically based notation for supporting the
earliest phases of the software design process, sometimes referred to as "systems architecture”.
Our objective is the development of a formal framework that could be applied successfully in
practice. As such, we are consciously following in the footsteps of. VDM [Bjgmer & Jones,
1978] and [Jones, 1980]. The particular technique presented here is a variant on the approach
originated at Oxford by J-R. Abrial, which has come to be known as "Z"; this is now documented
in [Suffrin ez al., 1985] and [Hayes, 1986].

Underlying much of the current work in this area is the well established structuring principle of
data abstraction, which implies some basis for modular decomposition into separately specifiable
sub-units. Over the years, two somewhat distinct "schools of thought" have emerged as to the
proper basis for applying such principles "in the large”. We »rgue that this apparent divergence
reflects a fundamental (technical) distinction, between values as opposed to objects. Quite
obviously, both concepts have an important réle to play.

In the case of values this decomposition is based upon "abstract data types", which serve to
characterise some domain of interest in terms of certain constructor and selector functions. The
abstraction then involves specifying an equality relation over such (immutable) values. The so-
called "algebraic" approach, initiated by [Guttag & Horning, 1978] and [Goguen et al., 1978] is
therefore especially appropriate in this context; it is also the focus of most recent research on
formal specification methods.

A "class" of abstract objects, in contrast to a "type" of values, serves to encapsulate the definition
of some internal state in conjunction with an associated set of access operations for querying
and/or updating any individual instance of that class. Thus "axiomatic" methods involving pre-
and postconditions, expressed in terms of a suitable state model, would appear to be the most
natural approach for specifying such abstractions. As foreshadowed by [Dahl, 1972] and [Hoare,
1972}, the "object-oriented” paradigm originally embodied in SIMULA 67 (and subsequently
incorporated into a number of more recent programming languages) has proved to be an extremely
effective technique for decomposing and reasoning about complex systems. Our goal here is to
provide a useful counterpart to those facilities at the level of formal specifications.

Section 2 of this paper contains an informal overview of our notations and conventions. Section 3
gives a more formal treatment, including rules of inference for reasoning about the behaviour
implied by such specifications. Section 4 concludes with the development of an extended
example, specifying the architecture of a distributed information system.

Authors' addresses:
* S.A.Schuman, School of Information Systems, University of East Anglia, Norwich NR4 7TJ,
England;

'DH Pitt, Department of Mathematics, University of Surrey, Guildford, Surrey, GU2 5XH,
England.
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2. Notations and Conventions
Structurally, the specification of an object class comprises two distinct kinds of definition, viz.

(i) A single srate schema, which has the following general form:

I(®y, ... T
X -- component declarations
Y -- invariant predicates
VA -~ initialisation predicates

(ii) An associated set of event schema, each of which is formed as follows:

.9 (0, ...0m = P1....Pn)

P -- parameter declarations
0 -- precondition predicates
R -- postcondition predicates

The header of a state schema identifies the class in question (i.e. it gives it a name), as well as
naming any formal parameters for that class. The event schema headers introduce the name of
each separate operation, in conjunction with names for any input and/or output parameters figuring

in its signature. The association alluded to above is indicated by simply prefixing the class name I

to the individual operation names ¢4 ... ¢, which are for the moment assumed to be unique in the

context of a' given specification. No provisions for explicitly grouping such schema texts into
larger "modules” are considered here.

Inside a schema definition the different lists of declarations or predicates are normally set out
vertically, as independent items appearing one under another, wherein the order is not significant;
alternatively, several such items may be written on the same line, separated by semicolons. It
often arises that a particular list is empty, whereupon the corresponding part of the schema may be
omitted entirely. These latter conventions will be illustrated by a succession of examples, to
follow.

This "box-like" presentation of schema definitions was adopted mainly as a means for setting off
the enclosed formal text from its surrounding (natural language) explanations — without which a
specification is neither complete nor comprehensible. Within this minimal and strictly syntactic
framework, the actual content of every such specification is expressed using essentially the
traditional notations of predicate calculus and classical (ZF) set theory, extended as and when
necessary by additional constructs defined in terms of those notations. Although we are assuming
one specific development of that underlying formalism [Abrial 1982], any other axiomatic
formulation of this well understood mathematical basis would in principle be equally appropriate.
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v Whilst we intend that these specifications should have a fully rigorous (and therefore formal)
interpretation, itis perfectly acceptable — and usually quite helpful — to start out with a much more
"operational” perspective. The state schema, which is where one begins in order to specify some
L class of interest, might well be viewed as defining an abstract "data model" for all objects

] belonging to that class. Support for abstraction comes firstly from the fact that this model is
4 expressed in terms of a "very high-level" and purely "declarative” language, in which the "data
. types” correspond to (presumably familiar) mathematical constructions as opposed to the more
e concrete structures normally provided by a programming language. Any formal parameters of the

state schema stand for constant components, the values of which are independently fixed for each
; separate object instance. The remaining components declared within that schema may then be
construed as "state variables” of an individual object, in that their values can be selectively modified
! as a consequence of applying particular operations. The invariant predicates assert that certain
relationships amongst the component values must always hold; as such, they serve to impose
constraints upon how the state of an object may be changed by any associated operation. Finally,
the initialisation predicates establish whatever conditions are to be assumed at the outset, when an
object of the class in question is first instantiated.

.-.l-"q

2
ot

; - The requisite operations are then specified with respect to this abstract model. Each such definition
T is presented as a free-standing event schema (analogous to an independent function or procedure),
~ but expressed as if it were textually "embedded" into the scope of the corresponding state schema:
x
roi(... »..)
;L X -- components of T
; Y -- invariants of I’
; &2
RS
b
' ‘ o -- parameters of ¢
)
- 0 -- preconditions of ¢
,,l
I
a R -- postconditions of ¢,
: :3;: Thus all component names appearing therein refer to the current values of some representative
Al instance; the actual object will be designated whenever this operation is subsequently applied.
Names figuring in its signature denote additional constants, standing for the values which are either
Py input (as arguments) or output (as results) in the context of any given application. In general, the
»

precondition predicates will range over both component and parameter names. They thereby serve
s not only to restrict applicability of the operation to certain object states but also to constrain the
possible argument and result values relative to those states: such an event may occur if and only if

5‘1

' "& all of these conditions are satisfied simultaneously.
Explicit effects of this event (upon individual state variables) are established by the postcondition
- predicates, wherein we adopt the common convention of "dashing" (or "priming") a component
SN name to denote its value after the event, for symmetry, the same convention is used in the
b initialisation predicates of the state schema, where a dashed name stands for the initial value of that
- component (after instantiation).

! 3
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About the simplest possible example is that of a running balance, which may increase or decrease
by some arbitrary but observable amount. Such balances can be modelled by a single state
component, corresponding to their current value:

@
H B

b: NAT -- state component

b=0 --initialisation

N For purposes of illustration this value is specified in terms of natural numbers rather than, say,
‘.r, integers (or some more specialised unit of account). Thus there is no a priori upper bound on any
™ balance, but "overdrafts” are precluded. As the invariant is empty, no further constraints are
imposed. Within this domain, the initial value of every balance is zero. The operations of interest,

L namely increasing or decreasing a balance, may then be defined quite succinctly:
o
i
' B.l
5
. b'>Db -- postcondition
=
2
- B.D
Y
\'i b>0 -~ precondition
3: b'<b ~-- postcondition
-
. No precondition is needed for the increase operation. In the case of a decrease operation,

however, the desired postcondition cannot be established consistently without requiring a non-
zero balance before the event (since there is no natural number b' < O unless b > 0).

" Occurrences of these events are only observable in the sense that an increase always results in a
" new balance which is strictly greater than it was beforehand, whereas a decrease has the opposite
effect. But the amount by which the balance changes in each instance is (deliberately) left
 on indeterminate, so there is no means of influencing what choice is made on any given occurrence.
s An operation to query the current balance (without changing its value) might also be provided, if
only to avoid the pitfalls of inadvertently attempting to decrease a balance that has gone to zero:
v
ot B.Q(—a)
a: NAT -- output parameter
N a=b -- precondition
=
o~ This operation has no effect (as indicated by the absence of any postconditions), and is always
o applicable. But the only reason for defining such events would be to encapsulate completely the

abstract model in question. It is often more productive to defer these considerations until later
stages in the specification process, when the contextual requirements have been firmly established.
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- The dynamic behaviour characterised by such specifications is most easily visualised in the form of
N a "decision tree". Accordingly, the initial pattern for a balance belonging to the class specified
above (ignoring the superfluous query function) might be depicted as follows:
bg=0
jl::_ I
by>b
" 12> Do
D |
b2 < b1 b2 > b1
-
- 7
. by>0-D,” | D |
7
u
X e
X, yA \
b3<b2 b3>b2 b3< b2 b3>b2

o o] [+ [}

=] Q =] [}

=] -] (=] -]

The branches of this tree are labelled by (denotations of) alternative events which may occur at
distinct points in any possible history and those points, the nodes, are annotated with predicates
reflecting the postcondition established by the immediately preceding operation; the root annotation
corresponds to the initialisation predicate in the state schema.  Within these annotations,
component names are subscripted so as to differentiate successive points in "time" (indicated as
depth in the tree). A particular history is then given by the sequence of events, or trace, along some
path from the root of such a tree to any reachable node. The predicates associated with each
successive node in that history are to be interpreted as incremental (or cumulative) assertions about
the object state up to that point.

At the first step in the behaviour for this class, the only possible event is the increase operation |,
which follows directly from the initial condition for the class B and the precondition of the decrease
operation D. Thereafter either | or D events may in general occur, and indeed an increase is always
possibie. If, however, the most recent event in any trace was a decrease operation, then the
admissibility of another D event at that point becomes indeterminate because its precondition may
or may not be satisfied, depending on how this specification is subsequently refined (or
implemented). Indeterminacy of this sort is shown above as a dotted branch, to suggest that the
ensuing subtree is conditionally present; the labels appearing on such branches include an
antecedent as part of the event denotation, which predicates are obtained directly from the
corresponding precondition.

The sole purpose of this (admittedly artificial) exercise in underspecification was to defer all
commitments that would in any way quaniify the actual increase or decrease to a running balance —
so as to encompass the broadest possible class of potential refinements. These include subclasses
for which this indeterminate behaviour is fully resolved (that is, where every "conditional branch”
in the original history is either provably admissible or, alternatively, ruled out altogether), as well
as ones wherein the indeterminacy is still present (but dependent upon more specific conditions,
which are only meaningful in the context of that particular subclass).
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bt As a general rule, refining the specification of some class I involves introducing a new subclass A,

e for which further properties are specified relative to that given base. The definition of such a
subclass takes the form of a state schema which simply identifies the relevant base definition(s).

i The actual extensions are then presented within an embedded subschema:

v Al...)

S .
= X, -- components of A
.h\ 1
. Y, -- invariants of A
&
=,
e . , , .
Zy -- initialisation of A
N

This refinement may be understood to stand for a textual expansion of the definition as written
(wherein the nesting structure is preserved):

. AC..)
‘ Xr -- components of I
= Yr -- invariants of T
-
-}
X, -- components of A
-
Py
’ Y, -- invariants of A
B Zr -- initialisation of I’
o
=
> yAN -- initialisation of A
o
\Y 6
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Operations associated with the new subclass would normally be defined in terms of existing
operations on the base class(es). Such promotions can be specified in an analogous fashion, as
refinements to the corresponding event schema:

AY (... > ...)
T (...
P -- parameters of ¢
0, -- preconditions of ¢
R; -- postconditions of ¢

Again, the intended interpretation is most easily visualised in terms of its textual expansion:

P, -- parameters of ¢
Qi -- invariants of ¢
P, -- parameters of ¢
Qi -- invariants of ¢
R, -- postconditions of ¢,
R; -- postconditions of ¢

Observe that all parameter declarations and invariants for a designated base operation ¢; are
effectively "inherited” within this definition; thus, only additional parameters or constraints
associated with the new operation need to be specified explicitly. This applies equally to the
context of postconditions.

As suggested by the ellipses above, our conventions allow for so-called "multiple inheritance",
where more than one base may be identified in conjunction with such refinements. This provides a
means for combining several (compatible) definitions at the same level, and thereby specifies a
subclass which belongs to many different classes all 2t once.
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An obvious refinement of the previously specified balances is the subclass of counters, for which
the abstract model is identical (whence the state schema is in effect just a renaming of that class).
The operations for incrementing or decrementing such a counter could then be expressed as
promotions of the corresponding increase and decrease events, but with stronger postconditions:

C C.

B B.l

b'=b+1

CcD

B.D

b=b-1

Both the initial conditions for this new subclass as well as the necessary precondition for the
decrement operation are thereby inherited, as can be seen by expanding its specification in full:

C C.
b: NAT b'>b
b'=0 b=b+1
Cc.D
b>0
b'<b
bb=b-1

It emerges that the weaker "observability" postconditions of the balance operations are also
inherited. These properties would be (trivial) theorems of the event definitions if such counters
had instead been specified directly, without reference to the class of balances:

0C— — DC.I
b: NAT b'=b+1
b=0
DC.D
b>0
b'=b -1

0

...........

PP T EEAC R .
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This example is of course so simple that it hardly matters which way one expresses the
specification. The behaviour is the same in both cases:

Not surprisingly, the increment and decrement operations on counters correspond respectively to
the successor and predecessor functions on natural numbers — which is precisely what was
specified! (The backward-pointing edges above, indicating that the nodes in question may be
equated on the basis of their associated predicates, suggest various recursive formulations for these
functions.)

It should be observed that this counter behaviour is in fact a fully resolved (albeit still unbounded)
refinement of the balance behaviour specified at the outset, since the more restrictive postconditions
now determine whether a decrement event is or is not admissible at every point.
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Should one subsequently wish to impose an upper bound upon such counters, this could be
specified as a further refinement of the unbounded class, corresponding to a restriction on the
original (balance) model. The increment operation then requires a precondition, so as to preserve
this new invariant, whereas the decrement operation is just a direct promotion:

BC (m) BC.I
Cc C.
m: NAT>0 b<m
bsm
BC.D
C.D.

Alternatively, this might have been approached by first specifying a subclass of bounded balances:

BB (m) B88.]
B B.l
m: NAT>0 b<m
b<m
BB.D
B.D

This new basis can then be refined, as before, by adding the postconditions specific to counters:

CB (m) CB.l
BB (m) BB.1
b'=b+1
c8.D
B88.D
b=b-1

With either approach the resultant behaviour is indeed bounded, but not fully resolved — in that the
admissibility of an increment operation now depends upon the value of the formal parameter m,
which may be different for each separate instantiation of both BC and CB.

10
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Another interesting subclass of running balances is the more traditional notion of an account that
may be credited or debited by some specific amount, which is supplied as an argument each time
one of these operations is invoked. Such accounts could also be specified by refinement:

A A.C (a)

B B.I

a: NAT>0

b=b+a

AD (a)

B.D

a: NAT[1..0]

b'=b-a

The amount to be credited or debited must be non-zero in every case, in order to satisfy the
observability properties imposed in the context of balances; moreover, the amount of a debit must
not exceed the current balance since overdrafts were ruled out from the beginning. Thus the

admissibility of a credit or debit operation is always indeterminate, in that it depends upon the actual
value of an input parameter.

Refinement of a class specification more typically involves proper extension, in the sense of adding
new components to the underlying model (some of which may be wholly or partially redundant).
This corresponds to specifying additional "attributes” for a given subsystem, possibly (but not
necessarily) associated with its implementation. But such extensions might also be introduced
solely to reason about the implied behaviour. Suppose, for example, that one wished to establish
that the sum of all debits to an account never exceeds the total of actual credits. A subclass of
audited accounts is probably more appropriate for these purposes:

AA AA.C (a)
A A.C (a)
c.d: NAT c'=c+a
[ b-c-d
AA.D (a)
A.D (a)
d=d+a
11
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3. Reasoning About Specifications

In this section, we outline the formal basis for reasoning about subsystem specifications, both
statically (considering only the individual schema comprising a class definition) and dynamically

(over their implied behaviour); in particular, we develop the special rules of "historical” inference
which underlie our conventions.

For these purposes we shall also introduce another simple but much more ty‘ﬁical example, dealing
with an issue that arises in the design of a great many systems, viz. unique identification. The class
of interest therefore corresponds to a "generator” for the requisite "reference” values, which may
well be abstracted merely as elements drawn from some entirely arbitrary "carrier set”, say R. The
state of such a generator would then be modelled as a (finite) subset R of this given carrier set,
comprising the references outstanding at any point, where R is initially empty. Generation of a
new reference is then some (indeterminate) selection from the complement of R (i.e. R\R, where \
denotes set difference), whilst nullifying (or "freeing") a reference is just its deletion from R:

REF. REF. New(—>r) —
R: set[R] r~R
R=0 reR
REF. Null(r)
rR
re R

Taking R as NAT>0 (and showing other choices as "fan-outs"), the initial behaviour includes:

Ro=9
New(— 1)
1€ R1

New(— 2)
1 e Rz 2¢€ Rz

Nulli(1) New(— 3)

New(— 1)
Null(2)
1 e Ry 1¢ Ry 2¢ Ry 3eRj
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The most common application of such references is to identify (or "index") occurrences of values
belonging to some other set, say S. This sort of association is normally modelled as a finite map
(i.e. a partial function):

MAP MAP. New(s 5 r) —
R: set [R] s: 8
M: R +>8 rr ~R
R =dom(M) M(r)=s
R=0 MAP. Nuli(r)
rrR
refR

It would perhaps be more natural to specify this association directly as a new subclass of REF:

MAP MAP. New(s ->r)
REF REF.New(— r)
M: R->S M(r)=s
MAP. Null(r)
REF.Null(r)

(Note that the map is now specified as a total function). This may be further refined by requiring
that the association be injective (one-to-one), which is expressed by asserting that its converse is
also functional:

INJ INJ. New(s = 1)
MAP MAP.New(s — )
: S +>R s ¢ cod(M)
=M1 INJ. Null(r)
MAP.Nuli(r)
13
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Taking S to be strings (as in a "symbol table”), the initial behaviour of this subclass now includes:

Ro=0
New(‘abc’ — 1)
M,(1) = ‘abc’

New(lijk' — 2)

1 e Rz My(2) = ijk’

New('xyz’' — 1) Null(1) New(‘'xyzZ' — 3)

Null(2)

M3(1) = 'xyz’ 1¢ Rs 2¢ R, M3(3) = Xyz

Such behaviours are to be modelled in terms of traces of event denotations (the sequence of labels
along any possible path in the decision tree depicted above), where every trace is associated to a
corresponding history (predicates on the state, as suggested by the node annotations) from which
properties holding "at that point" may then be inferred.

The different forms of schema definition making up a class specification are nothing more than a
highly stylised framework for setting out the various predicates entering into any possible history.
The predicates in question range over (mathematical) variables which are introduced by a list of
declarations, as follows:

vii Ty oo Vg Tq

wherein v ... vq are just the names of these variables and Ty ... T4 stand for their corresponding
set-theoretic "types”. Such types are expressed in terms of certain given or "generic" set names
(herein denoted by letters from a distinguished alphabet A... Z), the names of externally defined
types (e.g. NAT) and the usual set constructions over such types — including products, partial or
total functions and relations, finite subsets and sequences etc. Inside a schema definition, each
variable so declared is thereby asserted to belong to some set having the particular structural
properties associated with its specified type. Thus these assertions can be embodied into a set of
predicates having the following form:

{V1 € T1, ...,Vq € Tq}

where vy...vq are just free variables within that definition. As such, they may be implicitly

quantified at the level of the schema as a whole; embedded declarations could then be thought of as
corresponding to nested quantification.

The characteristic predicates for a given schema are derived by combining these conditions with
additional predicates (over the same free variables) which are obtained from other parts of that
schema definition. All such derived sets stand for the conjunction of their constituent predicates
(whence the empty set is logically equivalent to true).
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Two separate sets of predicates are derived from the state schema for a particular class, as follows:
— the state predicates S = XU Y
(where X is obtained from the component declarations and Y from the state invariants);
- the initial predicates | = Su Z
(where S is the state, given above, and Zis obtained from the initialisation predicates).

The state predicates are undashed, in that none of the free variables occurring therein are dashed.
But the imtial predicates are mixed, which is to say that they will in general contain both dashed and
undashed variables. This is because initialisation is specified as a "pseudo-event' (and will
therefore be discussed in that context, below).

Definition. A model for the state as specified in the state schema for a given class is some
association of actual sets to the generic names appearing (directly or indirectly) within those
declarations, together with any substitution of values from those sets (or constructed sets) for all
free variables within that model.

The state so specified must be consistent in the usual sense: there is such a model, and values for
the state variables within that model, satisfying all of the predicates in S (i.e. both types and
invariants); otherwise, that specification is contradictory and no such class exists.

The operations ¢; specifically associated with a given class are expressed as relations between

undashed and dashed names, standing respectively for the value of a state variable before and after
some occurrence of the event in question. This convention implies a wholly independent set of free

variables vy, ..., Vq which have exactly the same declarations as their undashed counterparts. The
corresponding types and invariants, denoted S’ are therefore obtained by simply dashing each
such undashed name occurring free within S. The characteristic predicates for each event ¢; are
then derived from its schema definition as follows:
- the guard predicates G= Su (Pu Q)
(which incorporates the parameter declarations P and the preconditions Q );
— the final predicates F= S'U R
(which introduces the dashed names in conjunction with the postconditions R );
~ the event predicates E= GU F
(which thereby relates the state values before and after any occurrence of that event).

Each associated event must also be consistent in its own right, meaning that there is a model
(obtained in the same way as for a state) satisfying all of the predicates in £. The same applies to
any specified initialisation, characterised by the set / as defined above. We shall speak of these
characteristic sets as standing for what they serve to describe: "a state S ", "a guarded state G ", "a
final state F", "an event £ " etc. The consistency requirement on all such predicates is essentially

static, in that it can be established for each separate schema in isolation using only axioms of the
underlying set theory and classical rules of inference.

Implicit in every event is some "admissibility” condition, under which it is allowed to occur at all;
this is given by simply positing the existence of a corresponding final state.

Definition. Let E be an event; then its implied precondition, denoted ipc(E), is obtained by
existentially quantifying over all dashed variable names occurring free within E. The.event E is
admissible (and may therefore occur) in any current state C which is consistent with jpc(E).

It follows by construction that /oc(E) = G = (P A Q AS), where G is the guarded state embodied
in E; hence that event may only occur if its parameter declarations P and explicit preconditionsQ
(as well as the underlying state invariants S) are satisfied.

15
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It is desirable, however, that a given event can indeed occur (i.e."complete” successfully)
whenever its preconditions are satisfied, meaning that there must be a consistent final state for all
admissible occurrences. This leads us to impose a much stronger consistency requirement.

Definition. Let W be a set of predicates, and V be the subset of undashed predicates within W:
then W is end-consistent iff V is consistent and, for any current state in any model that satisfies all
the predicates in V, there is a corresponding final state which satisfies all predicates in W\V.

Consider, for example, some predicates over a state variable N, assumed to be of type set [NAT]:
@) {N2OD, 1&g N}
(ii) {N2OD, 1e N, N=N}
(iii) { N=2J, 1 N, N\{1} =N\{1} }

Both (i) and (iii) are end-consistent, whereas (ii) is not — because it fails to cover the case N = {1}.

We are especially interested in specifications for which end-consistency can also be established
statically. A sufficient condition is that the event in question is what we shall call "well-formed".

Proposition. Let E be an event, and G be the guard for that event; then E is end-consistent if E is
consistent and G = /pc(E); in this case it follows that ipc(E) = G.

The relation characterised by a mixed predicate W may be conceptually "inverted" through another
renaming over its free variables, denoted as WP, which is obtained by specially superscripting all
undashed variables (so that v° now stands for the "previous” value of v) and undashing all dashed

names (so that v now stands for its new "current" value v' ). Thus E® expresses, as an undashed

predicate, the net "effect” once some event E has occurred, conditioned on the existence of a
previous state in which that event was admissible.

Definition. Let E be an event; then its weakest postcondition, denoted wpc(E), is obtained by
existentially quantifying over all previous variable names (of the form v°) occurring free within E°.

The term "weakest" is used here to emphasise that this condition does not depend upon any more
specific properties of that previous state. However, by construction we have that wpc(E) =

wpc(F) = (wpc(R) A S), which is strong enough not only to establish the (potentially weaker)
postconditions A , as explicitly specified within the corresponding event schema, but also to
preserve the invariants associated with its underlying stateS, since these are both included into the
corresponding final state F for that event.

Part of the conciseness of our conventions comes from the fact that postconditions serving solely to
"restore” the state invariants may be omitted, as they are present implicitly. More important is the
omission of conditions which state only that some aspect of the state remains "unchanged"”, since
these latter properties may be inferred (and are therefore inherited) from previous "history".

Definition. A history is a finite sequence of event predicates, h = (E;,...,Ey), where each E;
corresponds to an individual occurrence of some event belonging to the class in question.

We wish to consider situations in which h = h° * (E), for a given initial history h° and event E,

such that a set B, comprising all predicates which hold after h°, characterises the previous state
before that occurrence of E. For h to exist, E must be admissible at that point, implying that B is
consistent with joc(E). The properties holding after this event are given by wpc(E).

16
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The weakest postcondition for any event depends upon how its explicit postconditions r € A are
actually written. Compare the effect of different expressions over a state variable N of type

set[NAT], according as some predicate b (say, 0 € N) is or is not known to hold in B:

r wpc(r) wpc(b A1)
1e N ie N 1e N
N'=Nu {1} 1eN OeNAaleN
1e¢ N 1e¢ N 1e¢ N
N' =N\ {1} 1e¢N OeNAl1gN

Such examples show that wpc(p1Ap2) is not in general equivalent to wpc(p1) A wpc(p2), even
where the conjuncts of the latter are equivalent, although we do the following:

Proposition: 1If p1 = p2 then ipc(p1) = ipc(p2) and also wpc(p1) = wpc(p2), whence
equivalent predicates have equivalent implied preconditions and weakest preconditions.

We would argue, however, that the main use of such forms as N' = N U {1} and N' = N\{1} above
is stmply to "carry forward" history, which is tantamount to overspecification if the only intended
effect of the operations in question is to insert or delete the value 1. It is for this reason that we
have introduced inheritence of properties which can be inferred from history. A consequence is

that the weakest postconditions for (b A r) above then become the same for each operation, i.e.
(OeN A 1eN) on insertion and (Oe N A 1& N) on deletion, irrespective of how r is expressed.

In order to inherit any (undashed) predicates holding in B, the event E as obtained from its schema
must be augmented by some set A of (mixed) predicates serving to re-establish those properties for

the state variables after that event, as reflected in wpc(E U A); but A must be such that this
conjunction remains end-consistent. The strongest possible augments assert that nothing changes.

Definition. Let B be some previous state; then any predicate of the form (V' = v), where v is an
undashed variable name occurring free in B, is termed an identity for B. The set of all such
predicates is denoted identity(B).

This is the default, when A is empty. But if any "updates” at all are specified, E U identity(B) will
not be end-consistent. Some such identities may be appropriate (and indeed this is how the
parameters of a schema are held constant, since their names cannot be written in dashed form);
normally, however, a weaker set of "neutral” augments must be chosen.

Definition. Let B be some previous state; then a mixed predicate p over the state variables of B is
termed newsral with respect to B iff identitytB) = p. The set of all such pis denoted neutral(B).

For the example above, neutral predicates over N will have the general form (N'"M = NnM), for
some specific MCNAT, or equivalently (N\~M = N\~M); thus they include (N'~{0} = N{0}).
17
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-_»} Definition. Let B be some previous state and E be an event; then a predicate p € neutral(B) is
B termed neutral with respect to B and E iff the set B E U { p } is end-consistent. The set of all
such p is denoted neutral(B,E).
i Proposition. The set neutral(B,E) is closed under disjunction.
:f- However, neutral(B,E) is not in general closed under conjunction. Consider, for example, the
v case where B = {1gN ,2¢N } and E = { p7 v p2}, with p7 = (N'=N\{1}) and p2 = ( N'=N\{2});
q then p7 and p2 are both contained in neutral(B,E), but (p1Ap2) is not.
- This means that not all neutral predicates are mutually compatible. To ensure that only such forms
are chosen, there is a need to "filter" these choices, as follows.
o ’
K Definition. Let B be some previous state and £ be an event; then a predicate q € neutral(B) is
- termed central with respect to B and E iff, for all predicates p € neutral(B), the set BUE L {p,q}
a is end-consistent. The set of all such q is denoted central(B,E).
N Proposition. The set central(B,E) is closed under disjunction and conjunction.
=
™ With regard to the previous example, the form (N\{1,2}=N\{1,2}}) = (p7Ap2) is included in
A central(B,E). The required inference rule may now be defined in terms of this set.
N
Definition. Let h be a history and 7 be an undashed predicate; then h |= r ( ris inferred from h )
N is defined inductively (over initial histories h° and events E') by the following rules:
i M 0 |= true
(i) i ME) |=riff3 peH(r), qecentrak H(),E)e wpc(EL {p,q} )=>r
N wherein H(h) denotes the set of all predicates inferred by these rules.
) Proposition. The set H(h) is closed under conjunction. (This follows from the closure of
u central(B,E), by induction on the length of h.)

A valid objection to the inference rule |= given above is that the choice of neutral augments depends

upon the particular history. An apparently weaker, but staric (and thus practically applicable)
Z.:: inference rule is developed below, using only neutral predicates which are central to the event E

itself (where we assume that identity (B) and neutral(B) are extended to mixed predicates in the
" obvious way).

Definition. Let E be an event; then a predicate q € neutral(E) is central to E iff q € central(B,E)
for all states B such that BL E is end-consistent. The set of all such qis denoted central(E) .

Definition. Let h be a history and r be an undashed predicate; then h |= ris defined inductively
by the following rules:

% M 0 |= true
(i) W ME) |=r iff 3 peH(I*), qecantral(E) e wpc( B Ap,q} )=>r
wherein H(h) now denotes the set of all predicates inferred by these static rules.

Proposition. If h|= rthen h |= r (since central(B,E) < central(E) for all states B).
N 18
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We are now in a position to define consistency over histories, using whichever set of historical
inferences proves most convenient.

Definition. A history h° X(E) is end-consistent iff H(h*) L E is end-consistent; {) is vacuously end-

consistent. A history h is consistent (and therefore plausible) iff all of its prefixes are end-
consistent.

Proposition. If E is end-consistent and ipc(E) e H(h°) then h° *(E) is end-consistent.

If E is statically "well-formed", h° *(E) will be end-consistent whenever the guard G for that event
can be inferred from h°.

The behaviour characterised by a class specification can now be modelled in terms of traces.

Definition. Assuming some association of sets to the generic names appearing within a given class
specification, a denotation for an event belonging to that class is just its signature with any
systematic substitution of values from these sets for the parameter names; an initial denotation is
Just the signature of the class after such substitution. The traces for that class are the prefix-closed
set of finite sequences of event denotations, each of which begins with the same initial denotation .

The projection of a denotation is a model for (an occurrence of) the denoted event, wherein the free
variables corresponding to its parameters have the values which were substituted for their names

within that signature. A trace €9/\gy,...,€k) projects onto a history EgMEj,....E) iff E is a

projection of €. A model! for the behaviour of a class is then a set of traces, each of which projects
onto a consistent history.
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~3 4. A More Realistic Example

h This section is entirely devoted to the development of a somewhat more realistic example. The

i following "roadmap” gives an overview of both the example to be considered and the resultant
:.:: system architecture.

'.L s
i Distibuted Information System

Separable Information System Network Infrastructure

l
! Node Identification
. Multiview Information System
|

View Identification

Partitioned Information System

l

Part Identification

The specification is developed exclusively by composition and refinement, which imposes a
"bottom-up” method of proceeding; otherwise, the order of presentation is arbitrary. As usual, the
first stage 1n this process is concerned with unique identification.

Partitions are uniquely identified as elements PID
drawn from some carrier set P; initially, there
are no such parts in existence. Part: set[P]

Part' =0
Whenever a new partition is first defined, its PID. New Part (- p) ——
identification is distinct from that of any other
part currently in-use. ’ p: ~ Part

' pe Part

An existing part identifier may be nullified, in PID. Null Part(p)
which case it is deleted from the set of those
currently in-use. p: Part

p ¢ Part

20
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}; Based on this part identification, the structure of a partitioned informanon system is now specified.
The information in the system consists of a PIS
separate sequence of data for each defined part,
- corresponding to the (historical) order in which PID
successive data were added to that particular
- partition. The actual data values belong to
some underlying set D, which is not further
specified at this level. Info: Part ->seq (D]
-
. When a new part is first created, the associated PIS. New Part (— p)

sequence of information is empty.

~ PID. New Part (— p)

" Info'(p) = )
When an existing part is nullified, information PIS. Null Part (p)
previously associated with that partition is no
longer known within the system. PID. Null Part (p)

(]

When a new datum is added to an existing part, PIS. Add Data (d,p)
' it becomes the latest in the sequence associated
ﬂ with that partition. d D
p: Part

Info'(p) = Info(p)*(d)

.

-

'.\

“\

- Specifying the structure of the information itself is an overriding concern in the design process for

- many such systems. Here, however, these issues have been abstracted almost completely (so that

» they may be addressed as an orthogonal aspect at some later stage). The only commitment is to
partitioning, where the information associated with each part is truly independent; thus this

- abstraction would not be adequate for relational structures. We have also postulated an historical

-;f interpretation, as opposed to “overwriting semantics”, for reasons which will become apparent.

This decision could be reversed later, by encapsulating the model so as to allow access to only the
most recent data for each partition.
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g A characteristic of most database-like systems is the ability to support multiple views of the same
information. Such views must first be identified.
Views are uniquely identified as elements VID
o drawn from some carrier set V; initially, no
- views are defined. View: set [V]
v : View' =0
N When a new view is defined, its identification VID. New View (— v)
) is distinct from any other view in existence.
& v: ~ View
vl
> ve View
8 When a view is nullified, its identifier is no - VID. Null View (v)
longer known.
v: View
‘c
s
! ve View
) This view identification is then combined with the partitioned structures specified previously to
- ] define a multiview information system, followed by promotion of the operations on VID and PIS.
;'::f In an information system with multiple views, VIS
each partition originates in one particular view,
N but may be visible (as a component) in many VID: PIS
g views; every part is a component of the view in '
e which it originates.
- Orig: Part -> View !
s Comp: Part <-> View ;
2
A Orig ¢ Comp
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New views may stll be created at any time
(without further restriction).

Only views which are not currently in the role
of the originator for any existing partition may
be nullified.

Each new part is created from some specified
view, which thereby becomes the originator for
that partition.

A partition may only be nullified from the view
in which that part originates.

Only the originating view for a given part may

VIS. New View (- v)

VID.New View (> v)

VIS. Null View (v)

VID.Null View (v)

v & cod (Orig)

VIS. New Part (v — p)

PIS.New Part (- p)

v: View

Orig'(p) = v

VIS. Null Part (p,v)

PIS.Null Part (p)

v: View

p Origv

VIS. Add Data (d,p,v)

add data to that particular partition.
PI1S.Add Data (d,p)
v: View
p Origv
23
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vé Additional operations, specific to a multiview system, are also introduced at this level.
The originating view for any partition may be VIS.Chg Orig (p,v,u)
ey changed by its current originator, provided that
0 the part in question is already a component of . Part
the view designated as the new originator. S'U_ %iew
'S uzv
e p Orig v
p Compu
Orig'(p) =u
A part may be made newly visible in some view VIS. In View (p,v,u)
v from another view u« wherein it is already a
component. p: Part
v,u: View
pCompu
(p,v) ¢ Comp
(p,v) e Comp'
A component part may be excluded from any VIS. Ex View (p,v)
view which is not (currently) the originator for
that partition. p: Part
v: View

(p.v) e Comp\Orig

(p,v) € Comp'

All of the foregoing operation definitions embody design decisions which are, in some sense,
arbitrary; they could just as easily have been made (and specified) differently.
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At this point we turn to specifying the underlying network. Again the first step is concerned with
uniquely identifying the nodes in such a configuration.

Nodes are uniquely identified as elements of NID
some set N; a subset of the nodes so identified
are said to be "up" at any given time. Node, Up: set [N]
Up < Node
Node'= @
When a new node is introduced it is given a NID. New Node (— n)
distinct identifier; such newly defined nodes
are initially "down" (i.e. not up). n: ~ Node
n € Node'
An identified node may be (definitively) deleted NID. Null Node (n)
from the set of known nodes within the system.
n: Node
ne¢ Node'
Nodes which are down may be brought up. NID. Node Up (n)
n: Node\Up
ne Up'
Nodes which are up may also go down. NID. Node Down (n)
n: Up
ne Up'
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ol . The nerwork infrastructure is then characterised as a further refinement, which introduces the

interconnection of individual nodes.

3
’ Every defined node is connected to itself, and NIS
i may also be connected to other such nodes;
these connections are considered to be bi- NID
directional. A node is said to be accessible from
o another node if there exists some sequence of
x interconnected nodes leading from one to the
-+ other, where all of the nodes in question are up. Conn: Node <-> Node
Acc: Node <+> Node
'
. Conn = Conn""
}3 id[Node] < Conn
Acc = (Conn N UpxUp )*
R
ey
~ Additional operations at this level might include events such as the following:
Lo
2, It is possible to establish a new connection NIS.MakeConn (n,m)
- between previously unconnected nodes.
: n,m: Node
l:'.
o
(n,m) ¢ Conn
i
ﬁ (n,m) e Conn'
J\‘
A Existing connections may be broken at any time NIS.BreakConn (n,m)
(but a node cannot be disconnected from itself).
& n,m: Node
™
X n#m
~ nConnm
(n,m) & Conn’
=
o
o Quite obviously, this network definition is merely a "placeholder’, which is introduced more for
- purposes of illustration than for its actual substance. In practice, it should be replaced by a
(sufficiently abstract) specification for the real network infrastructure upon which the system of
v interest is meant to be constructed.
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Before proceeding to our objective of a physically distributed system, it is helpful to introduce an
intermediate abstraction corresponding to a separable information system. This is formulated as a
further refinement to the multiview systems already specified.

There is an independent projection for SIS
] each separate component (part, view)
i so that the sequences of data associated VIS
with the same partition in different
. views need not be identical; the length
o of a given projection is the span of that
component. The set of such projections Proj: Comp -> seq[ID]
for the views in which each part Span: Comp -> NAT
originates is exactly equal to the
! information within the system as a
) whole. The projections for other
. components may lag behind. Span = (#)oProj
& | Projs(id[Part] & Orig) = Info
Projo(id[Part] & Comp) < pref-1clnfo
g
‘..‘.
These latter invariants are expressed in terms of the operator to join two relations with a common
< domain:
&

| & (A <+>B)x(A<+>C)->(A<+>(BxC))

»

‘ a(R1&Rp)(b,c) & aR{baaRsc

The "lag" is specified as some prefix of the original information, where this relation has its usual
definition:

-

-, | _pref_: seq[D] <-> seq[D]

I p pref x < 3s:seq[D]e(p*s=x)

‘-

It follows from the above specification that component projections for the same partition differ only in

-.: their respective spans; they must agree on prefixes of equal length, as it is not possible to "rewrite
R history"”. All operations on VIS may be promoted directly (since each part can only be extended from
the view in which it originates). In addition, some means must be provided for dealing with out-of-
= date projections:
[ >
! A particular component part in view v SIS.Update (p,v,u)
b o may be brought up-to-date with respect
SN to that same part in another view u, .
h provided that no information would be p: P?/rt
lost as a result. V.U view
pCompyv
g p Compu
Span (p,v) < Span (p,u)

s

Proj’ (p.v) = Proj (p,u)

1
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Finally, a distributed information system is obtained by mapping the separable views (established at
the previous level) onto some given network infrastructure.

A particular node is designated as the host DIS
for each view, which thereby determines a
corresponding base for every component. SIS: NIS

However, there is at most one
representative sequence of data for each
partiton at any node, whence the

projections of that component part are Host: View -> Node
L%zgncal in all views sharing the same Base: Comp -> (Part x Node)

Repr: (Part x Node) +> seq[D]

Base ¢ ( id[Part] ® Host )
Proj = Repr - Base

The required correspondence, (Part x View) -> (Part x Node), is specified above in terms of a
relational product:

| ®_: (A<+>C)x(B<+>D)>((AxB)<+>(CxD))

| (ab)(R1 ® Rp)(c.d) & aR4c A bRod

The operations appropriate to such a distributed information system would mainly be introduced as
promotions from the previous level, whilst taking into account any additional constraints imposed by
the physical distribution. For instance:

A component may be brought up-to-date DIS.Update (p,v,u)
with respect to another view provided that
the hosts for both views are mutually SIS.Update (p,v,u)

accessible. (NB: this will update that
component part for all views on the same
host.)

Host(u) Acc Host(v)

Certain technically more complex issues (e.g. relating to restart and recovery) might also begin to be
tackled at this level, in conjunction with promoting specific events inhenited from the underlying
network definition. At this point, however, the overall system structure announced at the outset is
essentially complete.
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It should be observed that further development of the foregoing specification is limited by its
somewhat "Olympian" perspective, wherein only rather global properties of the system have so
far been characterised. Despite this objection, formalisation of such a top-level design is a useful
first step. For the particular example considered here, subsequent refinements (leading towards an
actual implementation) ought properly to be formulated as a decomposition into independent
processes, based on the concepts of communication and synchronisation developed by
Milner{1980] and Hoare[1985]. These questions will be addressed in a sequel to this paper.
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APPENDIX II

An Experiment with an Approach to Formal Specifications

Serafino Amoroso
Thomas Wheeler
Center for Tactical Computer Systems
U.S.A. CECOM
Ft. Monmouth N.J.
&
Stephen Schuman
Massachusetts Computer Assoc.

Wakefield Mass.

Abstract

An experiment is described involving a new approach to system
specifications. The process of developing a formal specification from an
informally specified distributed information system concept forms the basis
of the experiment. The new approach, which is based on formal mathematical
techniques, 1is introduced gradually as the experiment is described. An
attempt is made to document the experience and lessons learned as the

experiment progressed.
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Introduction

An investigation was begun a few years ago into potential applications for
the newly emerging distributed systems technology to the Army's Air/Land
Battle Forces. This investigation's purpose was to help motivate and give
direction to a research effort on distributed systems that was beginning at
the time. The firstc application considered was a distributed
communication/database system for battalion situation-status reporting in a
battlefield environment.

An informal specification of a somewhat abstract version of this
situation-status reporting system formed the starting point for the
experiment that is reported here on a new approach to system specification
using formal mathematical techniques(l1]. Although the approach({2, 3] has
been under investigation for several years (mainly at the Programming
Research Group at Oxford University in England), it is still evolving and is
not yet in its final state.

Although there were no distinct roles given to each of the authors, the
intent was to simulate a small team containing representation from three
disciplines. The first are the "user representatives", those who understand
the need for the system being designed and the intended application, the
second were the designers, those who are responsible for the intended
implementation. Both of these are assumed to have an intuitive understanding
of the formal techniques that will be used to reason about the design that
is sought. The third are the "analysts" who are assumed to be fluent in the
formal techniques described here.

The formal techniques used here are still under development and the intent
primarily was to experiment with the approach evaluating its current
utility. This possibly might clarify some aspects of the approach that could
be improved. The hope of gaining a deeper understanding of the distributed
system itself was not an insignificant part of our motivation.

The preceding paragraph was the primary motivation for the experiment,
however the process described in this paper can be viewed by the reader as a
design effort for a certain aspect of the system, namely the distributed
nature of an information management system. Viewed in this way, it is Thoped
that the reader will gain some of the appreciation that was gained by the
authors, of the insite into solving complex problems of system design
provided by the precision and clarity of mathematical reasoning.

The formal notation used in the approach will be introduced gradually as the
paper progresses.

An Informal Specification of a Distributed Database System

The informal description of a distributed communication/database system
concept given here, was written before the formal specification was
attempted, Since one of the expected henefits of doing a formal
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specification is additional insights into the concepts being modeled, It
should be of some interest to revisit this starting point after the formal
specification is developed.

Consider a collection of computer work stations physically separated over
some distance (e.g., a few miles) interconnected by some electronic
communications medium (e.g., packet radio). The interconnection pattern need
not be total but it should be nonethe)ess possible for any work station to
communicate with any other work station. The only physical devices
(hardware) used to implement the system are those physically located with
each work station. This would include at least a computer, a keyboard and
screen, some secondary storage, and the communication equipment. The
hardware at each station is identical. The system must be mobile in the
sense that the stations will be moving from time to time to different
physical locations. Moving will probably involve a logging out process
followed later by a logging in process.

Each station maintains a 1local file system. The basic unit managed by
these file systems is the report, which is similar to the programming
language concept of a record, as found for example in Pascal. A report
consist of a fixed number of fields, each being an information unit of some
type. The number of the fields and the type assigned to any field can be
changed only at what we will call ‘“system initialization time". Such
alterations to the structure of a report will not be a frequent occurrence.
Examples of field values are: a numeric value, say INTEGER or REAL, or a
tuple of numeric values, or a string of characters.

The local file system will manage a collection of such reports, one of
which will be designated as the current report. The file system will be able
to modify the values of any of the reports in the collection, create new
reports, delete reports, etc. An editing capability will be available at
each station.

The basis for intercommunication among the stations is the notion of
"global data areas". The collection of stations making up a particular
system can involve any number of global data areas. Any global data area,
say G, has a number of stations inputing information to it and a number of
stations outputing information from it. An inputing station for G is not
necessarily also an outputing station and vice versa. To be an inputing
station to G means that W can send a copy of a report to G. The totality of
all information held by G 1is the collection of all reports sent by the
inputing stations for G. An inputing station can have at most one report in
G at any time. It can have no reports in G, it can remove a report and
replace it by a new report or not replace it at all. Outputing stations for
G can query the information in G. Precisely what the query capabilities are
is open at this time. We may want to restrict the query capabilities of

' particular outputing stations. Since the only hardware “or these systems is

at the physical location of the stations, processing support for the Jlobal
dara areas must bhe at the sgtations.

The most important attribute for the intended application of these systems
L8 "robustness”, that is, the ability of a system to maintain a continuity
nf service even under severe operating conditions and as individual stations
go down. A station can go down either by an orderly log-out, or abruptly (by
malfunctioning or by being destroyed e.g. by hostile action). If G has input
stations Wl,...,Wm and output stations Wl',...,Wm', then if Wi qgoes down,




its most current report in G (if any) continues to be accessible =0 the
output stations which can continue to function to the maximum extent
possible. Likewise, if some Wj' goes down, the rest of the system must
function with no change other than the fact that Wj' will not be performing
queries. In other words, if any station goes down, whether or not it is an
inputing or an outputing station for G, the rest of the system must be able
to function normally. All this implies that a global data area cannot be
implemented at any one station. The situation 1is similar for multiple
stations going down at once. Other problems are aggrevated when multiple
stations go down (e.g., problems of communication connectivity). We leave
these issues open for now.

The question of the rohustness of a system also includes the question of
data consistency and currency. If W updates a report in G, then after "some
reasonable period of time", all outputing stations for G should get this new
report instead of the older version. At any moment of time, two outputing
stations for G should always get information extracted from the same
versions of a given report.

Beginning the Experiment

We decided to begin by trying to formulate the essential concepts underlying
this technology, as opposed to beginning the specification of a particular
system. We thus stepped back from the particular system with the expectation
that the essential concepts would form a framework for the resulting system
specification. Essentially what we planned to do first was to look at the
class of such systems, and thus avoid imposing bounds too soon.

(This use of generalization, which follows naturally from the mathematical
nature of the approach to specification, leads to better 1long term
maintainability properties in the resulting system, as requirements changes
are easily accommodated. The maintainability of a system is a direct
consequence of its ability to accomodate changes in the requirements. The
existence of an explicit framework for a system's design based on the class
of systems it belongs to, leads to a high probability that a change fits
within that framework, unless, of course, the change places the system
outside that class.)

After some discussion, the following three ccncepts seemed central.
(1) different "views" inside a distributed system,
(2) "virtual nodes" that need not physically exist, and
(3) "replication" or redundancy.

The first goal was to give some clarity and precision to these notions.

' Hopefully we could then study their implications to the design.

Basic Concepts.

The users of the system are visualized as the "originators" of information




-"'
-

hS

L

» in the system. Each information unit so generated is a "report" and for now
there is no need to consider the structure of individual reports.

P

Each wuser will define a sequence of such reports, namely the history of all
the reports this user has generated. Each user is capable of appending
another report to this sequence at any time (i.e., generating another
report).

72

INF =def seq RPT

(Certain mathematical concepts are considered standard and will be used
‘!. freely, among these is the set of sequences of elements from some other set,
* for example, the above expression states that INF is the name of a set
defined as the set of all finite sequences over a set RPT. Looking bhack, we
should have used the identifier INFO instead of INF, and we should have kept
things more general by using the identifier DATA rather than RPT. The choice
of identifiers for the various concepts introduced is not a trivial matter.
It is an important factor in the readability and clarity of the notation. We
in fact use "info" for a related concept later, and we do eventually drop
the name INF and change RPT to DATA. The the notational system being
described has the important attribute of encouraging experimentation by
making the process of changing and improving the concepts being defined
rather easy. As we will see, these changes and improvements can be more
substantial than just changing identifiers.)
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The Initial Formal Specification.

At this early stage we chose to model the system users or "originators" by a
partial mapping "orig" from a set NID (node identifiers) to INF. Note that
at this stage we were conceptually identifying the concept of "node" and
"user"

Oorig : NID -|-> INF

The set NID is intended as the collection of all possible names to be used

for originators, this includes originators that may enter the system in the

future. Any element of NID in the domain of Orig is being used to name an

originator currently in the system, and its value under the mapping is

intended to model the sequence of reports issued by the originator from the
= time he entered the system. Note this sequence of reports can be empty.

Continuing we defined

- The mapping Curr (current report) has this form (its "signature").
Inuitively, Curr assigns to an element of NID in its domain of definition
the most current report issued by the "node". Curr is defined by:

4
|
Curr : NID -|-> RPT l
l
Curr = Last( Origqg) i

which gives the last element in the sequence (Orig).
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o Conceptual Modules and Semantic Operators

" An important aspect of the notation wused in this approach to formal
specification 1is that of a ‘"conceptual module". The following was the first

conceptual module attempted for this application. It was an initial attempt
.« at a definition of the concept of a "node".

Node(n)

o}

NID

g

n : INF

(®)
t
>

VIEW

— e —— — —— e ———

~ Each node n 1is considered to consist of its name (an element from the set
NID of node identifiers), a sequence in INF (the node's "own" information
history), and a "view" of the totality of all information in the system. The

<. concept of VIEW was one of the notions considered central and at this point
was yet to be made precise.

Another conceptual module considered at this early stage was:

INFO

Orig : NID -> seq RPT

range(Orig) = [< >}

This module was an attempt to characterize the totality of all information
in the system. The mapping "Orig" (which here is total) associates with each
element of NID a sequence of reports. Here all of the potential node
identifiers are already associated with RPT sequences, the unused names are
'~ be mapped to empty sequences. The expression below the double line in the

module specifies “initial conditions". Here the report sequences are all
initially empty.

. INFO contained a "semantic operator" which makes possible the generation of
a report by a particular user.

%jINFO.Issue(n, r)

n : NID
r : RPT

Oorig'(n) = Orig(n) * <r>




Whir

N

The meaning of this "semantic operator" (for the conceptual module INFO) is
that given a node identifier n and a report r, r is placed as the latest
entry in the node's history of reports. Hence, a new report has been
generated. In the notation the prime (') symbol is used to indicate the
condition of a mathematical entity after an operation has bheen applied.

The concept of a "view" mentioned above is intuitively the idea of a node
"geeing" some part of the total information available in the system. Our
first attempt at a formal definition took the following form.

VIEW(n)
|

n : NID

Own

seq RPT

Inf

NID -|-> seq RPT

Inf(n) = own

Inf contained in Orig

I
l
I
!
l
I
|
I
|
I
1

The identifier "inf" (information) which was earlier used to name the set of
all finite sequences from RPT, is now being used for a different role. The
constraint "Inf contained in Orig" states that Inf is some part of the total
system information. This attempt to capture the concept of a view was soon
improved to a rewrite of the INFO module:

1) 200 Y USSR
Orig : NID =-> seq RPT
View : NID =-> ( NID =|-> seq RPT ),

View(n)(n) = Orig(n), and

n in dom{ View(n)).

I
|
[
I
I
:
: View(n)(m) contained in pre( Orig(m)), where n /= m,
!
|
[
!
|
|
: range( Orig) = (<>}

The operator "pre" on sequences is the set of all initial parts (prefixes)
. of its sequence argument. The first constraint ahove states that "the view
that n has of m is always some initial part of the sequence of reports
issued by m". The "view" that a node has, "view(n)", is specified to be a
set of some of initial prefixes of the histories of some the nodes of the
system. A node can always view all of its own information. A node can always
view its own latest information, but the latest information generated by

gsome of the nodes may not be locally available vyet.
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Refining The System.
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... A period of consolidation and redefinition resulted in the specification
‘i which follows. Such consolidation and redefinition seems to be a vital part

of the formal specification process. It is here that most of ‘“progress"”
seems to be made.

i~ The specification, whose exposition makes up the main body of the paper, is
composed of four main parts. The first is the specification of the
functional aspects of the system, the second describes the distributional
l! aspects of systems, the third combines these to form a distributed

. information system and the fourth extends this to address the issue of
robustness.

n
)
- The Formal Specification.
b

Both the formal text (conceptual modules and semantic operators) and the
q prose which follows each module and operator are considered to be parts of
g

the specification, with the prose being commentary and interpretation of the
formal text.

System Functions.

The first facet of the system to be specified was the functionality, which
is specified independent of the idea of distribution which is added later.

Concept Sl: System made up of Parts.

S1[NAME]

Part : FF(NAME)

"

Part

I
l
!
I
| {1
I

A conceptual module S1 defines the Parts of the system in terms of a
"generic" set NAME. (By a "generic set" we mean that no properties of the
set are specified other that the fact that the set contains a supply of
elements, and that it can be determined whether or not two arbitrary
elements of such a set are equal.) A set "Part" (the collection of parts of
" the system) is meant to be an abstraction of the users or uning programs of
the system and is specified with "signature" FF(NAME) which means that Part
will always be a finite subset of the set NAME. (The use of the term "nodes"
for "the system users” was not a good choice, and was changed to separate
the two concepts it embodied, the logical parts, users or user programs and
data, and the physical parts, or nodes, as will be seen below.) The set Part




is initially empty. (The empty set = [ }).

Sl.NewPart{ =-> p )

p : NAME

p not in Part

p in Part'

l
I
!
!
!
!
!
!

New parts can be added to the system. Parts are always to be named by an
element from NAME. (The symbol "->" indicates that "p" is an explicit result
of this operation, ie. an out parameter.)

Sl.DelPart( p )

p : NAME

p not in Part'

Parts can be deleted from the system.

Concept S2: Describing Information in the System.

S2[DATA]

|

| s1

|

|

: Info : Part -|-> seq DATA
{ Comp : FF(Part)

|

{ Comp = dom(Info)

|

This module extends the first module Sl. In this way new modules can build
directly on previously defined modules. Info and Comp are implicitly empty

" initially since Part is initially empty.

The vague terms "Part" and "Comp" (the components which have information)
were used in an attempt to keep the development as general as possible. The
plan was that we would give the identifiers finally adopted a great deal of
thought once the system concepts were clearly understood.

R
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ﬁ S2.MakeComp(p)
p : Part

5

p not in Comp

2

f
”

P in Comp'
¥
] Info'(p) = ( }
”
b System "parts" can be made into system "components" which can then issue
. information.
A
3
S2.1ssue(c, 4)
-
N c : Comp
4 : DATA

Info'(c) = Infol(c) * <da>

e .

. Only system "components" can issue information. This source of information
q is the only way information will come into the system. (Notice that the
formal statements are not difficult to read, "Conceptual Modules" containing
definitions, constraints on values(invariants) and (after the double line)

~7 initial conditions, while "semantic operators" contain definitions,
.» conditions of operation(preconditions) and (after the double line)
results(postconditions).
B
-~ Concept S3: Entry of Information.
*~
) ?3
S
o
o
{ Orig : FF(Comp)
¥ !

-, The group of current originators is a subset of "Comp" and is initially

)

A empty (since Comp is).

'ﬂ

--------
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"~ s3.Authoriglc)
ii } c : Comp
|
N
S : ¢ in Orig'

S3.NonOrig(c)

e 3
[

» 27

¢ : Comp

o

c not in Orig'

Ability to origionate information can be given and withdrawn.

=™

S3.Issue(o, 4)

N;‘: «

.
PP

o : Orig

4 : DATA

S2.1ssue(o, 4)

.

Only authorized Originators can issue information. (Note the replacement of
‘! a "semantic operation” by a restricted version.)

o Concept S4: Viewing Information.

4

s3

Vis : Part <-|-> Comp

View : Part -> (Comp -|-> seq DATA)

Id(Comp) contained in Vis

All p, All ¢ : (p, ¢) in Vis <=> View(p)(c) contained in Pre(Info(c))

S
I
|
[
I
I
I
l
!
I
|
l
|
|
I

v
Ly

Two concepts are introduced at this level. Visibhility describes which parts
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can see which components' information. View describes what information a
part sees for each component. The invariants state that components can see
their own information and a part sees a prefix of the information for those
components in its view.

S4.0pen(pp, cc)

pp : FF(Part)

cc : FF(Comp)

cc contained in vis'(pp)

|
|
|
|
|
|
|
|
: All p, All c : (p, ¢) not in Vis => View'(p)(c) = < >

Visibility can be extended. Added views are initially empty.

S4.Close(pp, cc)
!
pp : FF(Part)

ccC

FF(Comp)

cc not contained in Vis'(pp)

Visibility can be removed.

S4 .MakeComp(p)
|

S2.MakeComp(p)

|
I
|
[
: (p, p) in Vis'

When system parts are made components, they are able to see the information
which they 1issue (replacement of operation by extended version, 8o as to
maintain the invariant).




S4.Sync(c, s, 4)

¢ : Comp

s, 4d : Part

¢ in im(vis){s}

#(view(d) (c)) <= #(View(s)(c))

|
|
|
|
|
|
: c in im(vis){a}
|
|
:
{ View' (d)(c) = View(s){c)

It is possible to make the view that a part(destination) has of a
component's{c) information the same as the view another part(source) has of
that component's information ( ie. to synchronize their views), as 1long as
both have views of that component's information and the source's view was
later (ie. had more recent versions).

This concludes the specification of the functionality of the system. As was
stated earlier this is not meant to be a specification for an operational
system but rather a class of systems. As such it includes only those
functional properties that were deemed to be essential to this class of
systems, ie. distributed information systems.

Distribution of a System.

The next set of "Conceptual Modules"” addresses a different aspect of the
distributed information system, those concepts essential to the distribhuted
nature of the system. As this aspect looks at the system from a different
perspective, ie. is orthogonal to the functional view, this specification is
independent of the functional specification. These two specifications will
be combined later to specify both aspects of the system.
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Concept Pl: Physical Distribution of Nodes.

Z
0
o
o

FF(NN)

NN <-{-> NN

0
o]
=}
3

A
a
>

NN <-[-> NN

Conn contained in Node X Node

Conn in symm(NN)

Path Conn*

Node {3}

This conceptual module defines the basis of a distributed system as a
collection of Nodes which are Connected together allowing those Nodes with a
Path between them to interact. (Note that the term Node is used here in a
much more restricted sense than its use in the first attempt at a
specification, here it is an abstraction of a single computer in a network
of computers.) Node will always be a finite subset of names from another
generic set of names (NN). Only existing Nodes can be Connected, with the
existence of a path depending on the closure of the individual Connections.
Conn is a symmetric relation. Node, and therefore Conn and Path, is empty.

Pl .NewNode( => n )

n : NN

n not in Node

n in Node'

Pl.DelNode(n)

n in Node

n not in Node'

— s —— —— ——

~ Nodes can bhe added and deleted.
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$I.Connect(n, m)
|
|
|
|
|
|
|
|

Pl.DisConn{(n, m)

n, m : Node

n, m not in Conn

(n, m) in Conn'

n, m : Node

(n, m) in Conn

(n, m) not in Conn'

|
|
|
|
I
I
[
I

Individual Connections, and therefore Paths, can be added to and removed
from the network of Nodes.

Concept P2: Activation/Deactivation of Nodes.

Conceptual module P2 builds on the network of Connected Nodes provided by Pl
to add the concept of parts of this system, either nodes or Connections, not
being available for use at times during the life of the system.

2
Pl
Up : FF(Node)
: FF(Conn)
Acc : FF(Path)

Avl contained in Up X Up

Acc = Avl*

P
|
|
|
|
|
|
} Avl
|
|
|
|
I
|
|
|

The Nodes that are working are a finite subset of the existing Nodes. The
Available Connections are that finite subset of the Connections whose Nodes
are Up. The Accessible Paths are, likewise, the closure of the available
Connections.
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P2.NodeUp(n)

n : Node

n not in Up

n in Up'

T2.NodeDn(n)

n : Up

n not in Up'

Nodes can come Up and go down, implicitly causing Connections to become
Available or not resulting in making accessible/inaccessible other Nodes.

Pl and P2 contain the concepts we have chosen as essential in the modeling
of the distributional aspects of systems. Note that we have, for instance,
chosen not to explicitly consider that connections could go down independent
of Nodes, on the basis that to a user of a connection, either the connection
or the node going down appears the same.

Distributed Information System: Combining Concepts.

The functional conceptual modules which provided for the Issuing and Viewing
of information are combined with the distributional conceptual modules to
form the concept of a distributed information system. This allows us to
consider those aspects of an information system which either follow from its
distributed nature (modules D1 through D3), or can use this distributed
nature to advantage {module Rl).

Concept Dl: Distributing Parts.

Now that the system is distributed, Parts (users or programs) are considered
to exist at a Node. Note that this cholice precludes explicit duplication of
Parts, as will be seen later (conceptual module Rl) the normal operation of
the system provides enough redundancy so that explicit duplication is not
needed.
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Q; Home : Part -=> Node

The first Distributed System conceptual module combines and directly extends
both the final functional and distributed configuration modules. Every Part
. has a Home Node. (Again since Part and Node are both initially empty, Home
F is also.)

- DSysl.NewPart(n ->p)
|

S1l.NewPart( =->p )

n: Up

Home'(p) = n

[
!
I
[
|
|
!
!

.- When Parts come into existence, they do so at a Home Node. (Promotion of a
‘ semantic operation to include the effects of a new concept.)

5 DSysl .MoveHome(p, n)
o

p : Part ; n : Up

Home(p) /= n

waN

|
|
|
|
: (Home(p), n) in Acc
|
|
|
|

E Home'(p) = n

N The Home of a Part can move.

~

* Concept D2: Activation/Deactivation

r> In addition to the long term existence of Parts on Nodes, there is a shorter
term Activation/Deactivation of these Parts based both on the desires of the
Part and the status of the Node where it is located.
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Site : Part -> Up

Sess FF(Part)

.

Sess dom(Site)

Parts can only be active (in Session) when they are at a Site which is Up. A
Part's Site can be different from its Home.

DSys2.LogIn(P, n)

el
0
[
3
ct
=]

up

Sys2.LogOut{p)

P : Sess

p not in Sess'

—_————u

Parts can Log in or out at a Node which is Up.

DSys2.NodeDown(n)
}

P2.NodeDn(n)

n not in range(Site')

When a Node goes down, there are no Parts at that node in Session, ie.
activity at that Node ceases.

Concept D3: Distributed Entry and Retrieval.

The activity of the Parts and Components in the distributed system must take
into account the effects of the distributed nature of the system on the
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operations. Both the effects on existing operations and the addition of new

operations must be considered.

DSys3

|
DSys2

No concepts are added here, only operations.

DSys3.Issue(s, d4)

S3.Issue(s, 4)

s in Sess

(site(s), Home(s)) in Acc

In order to Issue information, a source must be
to its Home.

DSys3.Sync(c, 8, d)==mmmmmmm el

S4.Sync(c, s, 4)

d in Sess

(Home(s), Site(d)) in Acc

!
I
I
!
I
!
I
!

in session and have access

Synchronization requires that the Home of the source be accessible to the
destination, but not that the Component that they are synchronizing on be

accessible to either.
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DSys3.Query(s, c, =->d)

s :Sess
¢ :Comp

d : DATA

#(View(s)(c)) > @
(Site(s), Home(s)) in Acc

d = last (View(s){(c))

|
|
|
|
|
|
|
{ (s, ¢) in Vis
|
|
I
|
|
|
!

Query 1is not an essentian operation since all of the information is
available and therefore all queries are possible, but it is included here to
indicate and examine restrictions which should be included when queries are
specified. (Note that if this were the only Query, only the last Data item
would have to be kept in any implementation of this system.)

Robust Distributed System.

A robust distributed system extends the distributes information system to
allow for the possibility of reconstructing a Part which happened to be (at
Home ) at a Node which went Down..

Concept Rl: Reconstruction of Information.

RbDSysl

DSys3

Best : Node -> (Comp -|-> seq DATA)

Temp : FF(Part)

Best contained in View o inv (home)

All n, All p(at n), All c : #Best(n)(c)>= #View(p)(c)

l
!
|
l
|
I
|
I
I
!
l
I
I

Best (at each node) contains the latest view of each component that any Part
at that Node has. (The two constraints are a precise but inelegant way of
saying this, elegance requires reformulation in terms of more sophisticated
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relational operators.)

RbDSysl.TempPart{(n, p, =->q)

n: Up; p : Sess; q : Name

q not in Part

q in Part' and q in Temp'
View'(q) = Best(n) restricted to im(Vis){p}

p not in Sess'

TempPart creates a temporary Part whosa View is as good (up to date) as any
that exists on Node n and removes P from being in session.

TbDSysl.ReplPart(q. p)

q, p : Part

q not in Part'

|

|

|

: q in Temp

|

|

: Info'({p) = Infol(q)
= View' (p) = View(q)
} Home' (p) = Home(q)
: Site'(p) = Site(q)
|

|

ReplPart replaces the "value" of p with that of q and deletes q from the
legal Parts.

These two operations can be used together to reconstruct a Part from
operationally available implicit replication thus obviating the need for
explicit replication whose sole purpose is for the reconstruction of Parts.

Conclusions:

In our description of this experiment, we have avoided speaking of the
approach used as being a "methodology”. The entire intent of the approach is
to Adevelop a useful notational framework in which a wide variety of system
concepts can be expressed and in which one can reason about these concepts.
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We envision a small team of highly trained designers, with the close
cooperation of the potential users, reasoning out the system design. A
formal system of notation would be used to express with mathematical
precision the concepts agreed on so far, up for discussion, etc. Having such
precise documentation would focus the design, and its dynamic nature would
make it serve as a growing baseline for the design. The fact that the
notation enables implications of the design to be formulated and proven,
allows the team to experiment with issues that are usually not possible to
consider until the design has been implemented.

Another way of describing "specification" is as a process that a design
team goes through in developing a system specification, not only for the
document that will result. The process itself is of more value than the
resulting specification in the sense that it requires a treatment of the
concepts that must help to ensure their consistency and correctness. More
specifically, as each conceptual module is formulated and developed, the
thought process is anchored and the discussion focuses on the appropriate
issues. The resulting document should not be dismissed. A specification of
the desired system will exist with a degree of precision seldom approached.

Appendix

Syntax of "Conceptual Module" and "Semantic Operation".

CONCEPT[GENERIC_SETJ====m=====m=n ——————— e ———

| { included_concept }
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CONCEPT.Operation( Parameters)=-——-—-- ——————— —————

[ extension ]

|
|
{ { Parameter Signatures }
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Appendix 3: Papers on Z, Programming Research Group, Oxford University

1. Mathematics for System Specification
by Bernard Sufrin

2. Notes for a.Z Handbook
Part 1: The Mathematical Language
by Bernard Sufrin, Carroll Morgan, Ib Sorensen, Ian Hayes

3. The Schema Language
(same authors)

4. An Example of Data Refinement:
Implementing a Two-dimensional Array as
a One-dimensional Vector
by Carroll Morgan

5. Examples of Specification Using Mathematics
by Ian Hayes

6. A Message System
by Ian Hayes

7. CICS Temporary Storage
by Ian Hayes

8. Formal Specification of a Simple Assembler
by Bernard Sufrin

9. Case Studies in Formal System Specification

by Bernard Sufrin

10. Z Reference Card
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Mathematics for System Specification

Bernard Sufrin

Oxford, 1983/84
Preface

This course and its companions "System Specification and Development”, and "Program
Correctness” are intended to show you how to use mathematics (and in this course, more
specifically set ¢heory) in the design and development of computer-based systems. The
principal message of this first course is that by using the notation and reasoning methods
of mathematics it is possible both to present understandable and coherent system
specifications and to discover design flaws long before a system goes into production.
Later we will demonstrate that programs themselves can be viewed as mathematical objects,
N and show how it is possible to prove whether or not programs meset their specifications.
- The empbasis in the (irst course is on learning to use mathematics as a foo/, 50 our inital
- presentation of the basic notation and reasoning methods will be intuitive and informal.
A Whilst this may be unfashionable in some quarters, it is an approach we share with the
. teachers of many forms of applied’ mathematics We introduce the basic notation by an
\g informal characterisation of the meaning of its sentences. We extend the basic notation by
using its definitional power to construct a toolkit which is powerful enough to let us begin
to desctibe and reason about some simple, practical systems. During this part of the course
we are careful to present convincing /~formel/ arguments that what we claim are theorems
are theorems in fact, but we do not introduce the ides of a Forma./ proof until much later.
By this time the need for rigour will have become clear, and we will spend a short time in
"-f outlining the formal basis for the notation and reasoning methods presented earlier.

o 1. Introduction

The use of natural language as a vehicle for the specification (or description) of
computer-based systems has serious limitations. Anybody who has ever been the victim of
' bad or inadequately documented software will confirm that the manuals which purport to
describe the behaviour of a system never tell the whole story. Almost every programmer
who starts to use a new machine, programming language, or operating system sets up a
number of experiments, in which they attempt to discover how it “really” behaves. It is a
commonplace observation that computer systems (be they large or small) accumulate around
themselves a body of folklore — necessary knowledge for anybody who wishes to use them
effectively — and a number of “experts” — people who understand (or claim o) the
hidden secrets of the system because they have read .. the source code

VN

e

But even knowiedge gained this way is transient because systems never remain remain
stable. Consider, for example, an applications program built using a database package
which itself relies on an operating system. Because there is no definitive and unambiguous
record of the precise nature of the facilities which the operating system must provide, the
manufacturer’s system programmers may decide arbitrarily that a certain behaviour is
"accidental”, and may remove it during a rewrite -- perhaps thereby triggering a rewrite
of parts of the database package, and thence (by the same unhappy process) a rewrite of
E the application program. So an enormous amount of time, energy and talent is wasted in

simply running to stand still; an activity which is given the name "maintenance™ -- as if
programs were subject to the action of the weather!
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The fact that natural language permits a variety of interpretations to be made of a given
specification is partly responsible for this confusion. Agreements made in good faith
between system designers and their clients, turn out to be based on mutual mystification
(or exhaustion) rather than a common understanding of the nature of a requirement; the
same situation obtains for agreements between designers and implementers, between groups
of implementers working on different layers of a system, and between systems- and
applications-programmers.

As well as wasting hours in perplexing discussions caused by differing interpretations of
terminology, a design team which records its decisions in natural language is often unable
to foresee serious negative consequences of bad decisions taken carly in the life of a system.
Thess often emerge only after a great deal of work has been done on system
implementation — by which time it has become too costly to remedy them fully.

The end result is what it has become fashiomable to call the Software crisis the paying
customers rarely get what they thought they were going to get, the price is usually higher
than they thought they were going to pay, and the end users suffer more misery than they
had dreamed was possible

It has long been conjectured that formalisation can and should play a role in the process
of system design and construction, the expectation being that its employment would
mitigate at least some of the problems outlined above But except in certain rather
specialised areas (for example compiler construction, numerical algorithms) the problems of
putting this precept into practise have come to be regarded as almost insurmountable by
the majority of practising programmers and designers.

In this course we present a Fformal /ansusge — the language of set theory — and show
how to use its notations to record decisions about the intended behaviour of
computer-based systems, and its reasoning methods to clucidate the consequences of such
decisions. In order to illustrate this, we will apply the notation to the description of a
number of systems, some of which are more than just academic examples. Finally we will
consider formal criteria by which the correctness of a program relative to its specification
may be judged.




2. The Language of Set Theory

“"Every mathematician agrees that every mathematician must know some
s@t theory, the disagreement be9ins in trying to decide how much 1s
some. ... The student’s task in learning set i‘heary 1s to steep himself
in unfamiliar but essaentially shallow seneralities until they become
so familiar that they can be used with almost no conscious effort. In
other words, seneral set theory is pretty trivial stuff really, but +f
you want to be a mathematician you need some, and lere it is,; read it,
absorb 1t, and forget /t.”

From che introduction to "Nane Set Theory” by Paul R. Halmos

“For the logicran, @ main virtue of a thaory /s that it be concise, so as
to be easier to study and characterise,; notation /s typically devoid of
all intusitnve content, so that a sentence will not be confused with its
meaning. [t /s common that intuitively evident sentences sre quite
difficult to prove in such theories.

For the computer scientist, it /s maore impartant that a theory be easy
to use. Proofs of evident sentances within the theory should be easy
to discover, and poss:bly to automate, and should reflect the intuition
behind tham”

From “The logical Basis for Computer Programming” by Zohar Manna
and Richard Waldinger.

2.1 Introduction

The study of logic (and later of set theory) arose out of the desire of mathematicians to
produce rules which enabled them to say which arguments were valid and which were not
In view of its importance to mathematicians, it may come as rather a shock to a
Computer Scientist to discover that despite the fact that it has been studied as a topic in
its own right for at least a century, mathematicians have not yet agreed upon a concrete
syntax for the language of set theory! If you understand that concrete syntax isn’t really
very important you may be more surprised to learn that they haven’t agreed on an
abstract syntax or a semantics (more precisely an axiomatisation) either.

If we want to use the language of set theory as a means of communicating ideas, then
we’re obliged to choose an existing variant or to invent one of our own. It turns out --
though it might not have — that it doesn’t really matter which variant we choose; the
differences between the rival axiomatisations will not drastically affect the way we work
or the style of reasoning we are able to use. This is because the differences between
axiomatisations only become apparent in the curious realms of the transfinite, and
computation is done in the realm of the finite (or at worst the countably infinite).

Apart from a little syntactic sugaring, the language presented in the first part of the
course follows that presented in the first part of /Abr/a// -- to whom those concerned
with 2 more formal approach may turn. It will later become apparent to cognoscenti that
there are differences with that language which are not merely cosmetic. For the moment,
though, those differences may not be perceived, and in any case can safely be ignored.
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- Other informal presentations will be found in (~Ya/mas/, and /Gries/.
'- If we were programmers studying a programming language with the intention of
' programming in it we might examine it in terms of expressions, declarations and
commands and their respective meanings, and try to discover what it had in common with
the languages we already knew. We'd also try to discover the purpose of any glaring
' unorthodoxies. As programmers and mathematicians studying one dialect of the languag:
of set theory with the intention of writing specifications in it, we will find it useful to
begin by examining its four interrelated sublanguages, namely the language of ce~ms. the
> language of creg/cates, the language of oef/nit/ons, and the language of threorem: . In
subsequent sections we will show how the languages are extencec.
E Assuming some familiarity with the ideas, vocabulary and symbolism of logic and set
i theory, we will try to give a general idea of the flavour of these component languages by
- means of a few simple examples After reading these you should be able to point out the
- main differences between our notation and the “standard™ notations. Understanding our
- reasons for introducing the differences will certainly take longer.
-
T 2.2 Term language
i A term is a phrase of the language which corresponds intuitively to a se¢ or to an
_ element of a set. Examples of sets are a pack of wolves, a bunch of grapes, a flock of
'..”f: pigeons or a collection of books An eclement of a set may be a wolf, a grape or a
d pigeon, a book, a number, or a function. A set may have elements which are other sets —
. for example in classical geometry a line is a set of points so the set of lines in a plane is
E-? an example of a set of sets.
The simplest kind of term is a name, for example
H “
Bernard
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The language of definitions (which we discuss later) is used for introducing new terms into
a document written in the language of set theory, and giving them meaning. In order to
simplify what follows, we will assume that N has aiready been defined in such a way that
it denotes the set of Natural Numbers (nonnegative integers).

One way to specify a (finite) set of Numbers is to write down its elements one by one -
this is often called an extens/ona/ definition or specification. For example

(1, 2, 3, 5, 7}

It is obviously out of the question to give extensional specifications for sets (even finite
sets) above a certain size. We cannot, for example, write down all the elements of the set
of prime numbers. Ancther kind of term is used to denote such large sets, and an example
of this kind of term is

( n:N | (divisors n) = (i, n} )}
which reads “the set of natural numbers n whose divisors are | and n”. This style of set
description is called comorerensne, it is used to specify subsets of a certain set by

giving the characteristic properties of their elements.

The first part of such a term is a s/9nature, in the case of our example:
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n:N

which /nt¢rocuces a new varable n which may take values from the set of natural
numbers (N) and whose scope is the second part of the term, namely the predicate

(divisors n) = (1, n}

In fact it doesn’t matter what the name of the variable i a number is in the set denoted
by this term exactly when the divisors of that number are | and the number itself; indeed
the same set can be denoted by:

{ a:N | (divisors ») = (1, a} )
or by:
{ cabbage:N | (divisors cabbage) = {1, cabbage} }

Yet another way to read this term is “the set, cach of whose eclements is a Number whose
divisors are | and itseif™.

2.3 Predicate language

A predicate is a phrase of the language which corresponds to a statement (about sets
and/or eclements) whichk may be true or false For example “x is smailler than 4”, "There is
no number which is larger than all the prime numbers®, “All prime numbers are of the
form n*sm3+i for some numbers n and m®, “The inverse of the successor function is a
function®.

A predicate is cither a or/mitive predicate or is constructed from simpler predicates by
means of propositional connectives which are denoted by the signs

>

. and ...
R Y S
not ...
. -, o ... then ...
- ce. @xactly when ...

<

s

Supposing that P stands for a predicate which corresponds to “There is no number which
is larger than all the prime numbers”, and that Q stands for a predicate which corresponds
to "All prime numbers are of the form _*, then the predicate -

PAaQ ..... (P1)

corresponds to the statement “There is no number which is larger than all the prime
numbers ano all prime numbers are of the form _". The predicate

Pva ..... (P

corresponds to the statement "There is no number which is larger than all the prime
numbers, o~ all prime numbers are of the form .~
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By definition in order to orove the truth of the first of these predicates (P1), of course,
we would have to prove the truth of both its constituents, that is P and Q. (If jou think
you can prove Q then come and see me). By definition, in order to prove the truth of the
second predicate (P2), all that is needed is to prove one of its constituents; in other words
the symbol which we pronounce “or” corresponds to the idea “either - or .. or both”™.

It turns out that the propositional connectives can all be defined in terms of not and ang
by syntactic equivalence, thus if P and Q are predicates we have

PvQ@ 3 « (P A »Q)
Pe=Q a «pva

The “exactly when™ relationship between two predicates, P and Q (sometimes read *P if and
only if Q") is written

P = Q

it is the conjunction (and) of the predicates which correspond to “if P then Q™ and “if Q
then P”, that is

PesQ a P=mQ A Quep

Evidently one strategy for proving an “exactly when” predicate would be to prove both its
"if - then .” components.

It is very important to understand that the truth of the statement "if P then Q" does not
guarantee the truth of the statement “if not P then not Q®. You might be able to
convince yourself of this by considering, for example, the "real life™ fact "/ i¢ is raning
then the roof is wet™ if “it /s not raining® is the only fact we know, then we s&///
can’t conclude anything about the wetness of the roof (it may just have stopped raining, or
3 flock of herons with bladder trouble may have just flown over). Perhaps it would be
easier to convince oneself of this if instead of saying “if P then Q" we said "Q must hold
whenever P holds”.

The first porimitne predicate we will introduce is the one which corresponds to the
concept of of membership ot belonging. U the element x belongs to the set S then the
predicate
X €S
is true; otherwise the predicate is false For example,
3 € primes
is true, but
2345678 € primes
is false
Next we introduce the predicate which corresponds to the egqua//ty relationship between

sets: two sets are said to be equal if they have exactly the same elements. If S and T
denote subsets of a set which have exactly the same elements then we write S=T.
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The third predicate to be introduced is the “is s subset of™ predicate: if every element of a
set S is also an element of the set T then we say that S is a subset of T and write

o= ST

If S is a subset of T which does not have exactly the same elements as T then we say it is
a croper subset of T and write

. SecT

Later in this section we will formalise the connection between these three kinds of
predicate

'y
jul

The predicate which corresponds to the notion “all . have the property .” is written with
- a symbol which frightens some people For example, the statement “all numbers when
o~ added to themselves produce a prime number™ is expressed as the predicate

¥

- Y n:N . (nen)€prines
[y o
' Of course this predicate — and the statement to which it corresponds — is false, but that
" doesn’t mean we can’t write it down
Here are some more examples
-
Iy (a+l = b+l)
"

divisors n = (L, 5, 7}

n € prines

"‘ { n:N | (divisors n) = (1, n} } # ()
3 n:N . (divisors n) = (1, n}
Y a:N;: b:N . (asl = b-1)

. The last predicate — which formalises the statement that for all natural numbers a and b,
a+l is equal to b~1 = is fa/se, whereas the first three may be true or false depending on
the vajues of n, a, and b — we need to know more about these values in order to discover

B whether or not the predicates are true. There are many situations in which it may not be
possibie to demonstrate the truth or [alsity of a predicate.
1 :\;: The alert reader will have noticed that the predicates above aren’t independent of each
\ other. The penultimate predicate — which is also written with a symbol which some
- people claim to be frightened of — may be read “there is a natural number, n, which has
RY divisors 1 and n”. It is true exactly when the fourth predicate
(n, { n:N | (divisors n) = (1, n} ) & (}
P
)“&
E which may be read “the set, each of whose elements is a Number whose divisors are . is
not the empty set” is true (and false exactly when the fourth predicate is false).
- We can use “exactly when” to encapsulate the connection between the subset relationship
and a “for all ." predicate more formally. The following predicate is always true for any
- sets S and T:
e
(S CT) e» (Vv %x:5 . x€T)
o~
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'& We can do the same for equality of sets; the following predicate is always true for any
sets S and T:

b ((¥ x:S . x€T) A (¥ x:T . x€S)) e (S=T)

v, Since "exactly when™ is a transitive relationship (that is for any predicates P, Q and R, if

' P holds "exactly when” Q holds, and if Q holds “exactly when™ R holds, then P boids
“exactly when™ R holds) the following connection between the subset relation and the

S equality relation follows from the two connections just outlined:

e

((SET) A(Tg S)) e (S=T)

! Finally, we can express a general relationship between statements of the form “there is a _

'y for which the property . holds” and “all . bave the property .”, namely that for all sets
S and predicates, P

N

§2 (Y x:S . P) o= «( 3 x:S . «P )

ﬂ In other words P holds for all elements of S exactly when there is no element of S for

M which the negation of P holds.

2.4 Definition language -- Syntactic Equivalences

A s/mple syntactic equnalenca is a phrase of the language which associates a name
with a term. For example, the following definition associates the name primes with a
term denoting the set of all prime numbers.

primes @ ( n:N | divisors n = (1, n} }

[ {4

It signifies that primes is a shorthand for the term on the right hand side of the a sign.
For example, if we are asked to prove that

3 € primes

then the first thing we do is to substitute the definition of primes for primes itself, and
try to prove that

L 3 € {n:N | ...}

which we will probably do by trying to prove that the predicate .. holds when 3 is
substituted systematically for n in it

Another form of the same definition is:

rimes
{ n:N | divisors n = (1, n} }

!t:_, It means exactly the same as the "a” form.

’

] More complicated forms of syntactic equivalence will be introduced as the need arises.
b2
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2.5 Theorem language

Stripped of its prose any text in the language of set theory consists at the “top level™ of
several definitions, followed by several theorems. A theorem is a statement sbout the
definitions; it asserts that a certain predicate can be (has been) proved to be true from the
definitions themselves and the ~v/es of reason/ng of the language of set theory.

P

L ]
afn

o

The simplest form of theorem is written as a turnstile sign followed by a predicate

s

- Predicate

The following theorem, for example, is tantamount to an assertion that we have croveo
that 3 is an clement of the set denoted by the name prines.

-
[ &

= 3 € primes

3

e

< Of course have not yet introduced the ~v/es of reasoning so it is not strictly possible for
our readers to prove this theorem. What is possible is to argue /nFformal/y from an

_’ intuitive knowiedge of the properties of sets and of the divisors function but this

s

informal argument should not be mistaken for Fformal/ proof. Indeed there is another
problem: we have yet to write down a definition for “divisors®, any informal reasoning
) must at present be based on the fact that the name “divisors™ suggests that the function in
question maps a number into the complete set of its divisors — which may not be so!

fa;

We will say more about the rules of reasoning later. For the moment it is sufficient to
understand that 2 ¢heorem /s not a predicate, nor may a theorem be written within a
predicate; for example the following pseudo-set-theoretical text is not part of the
- language of set theory.

i

»

‘ WRONG 4 € (divisors n) == ( = n ¢ prines ) WRONG

-
e

1 2.6 Definition language -- Signatures
ﬂ 2.6.1 =-- Variables
In order to introduce a new var/ab/e we must {irst indicate the set of values over which
- the variable is permitted to range; we do so by means of a s/gnature. For example, the

following signatures associate respectively n with the set N (natvra/ number) and a and b
with the set seqguences of N

g

P

- n: N
a, b: seq N;
t:: The phrases within which signatures introduce variables include the predicates
N
Y Signature . Predicate
. 3 Signature . Predicate
and the terms
o
[

( Signature | Predicate )

A Signature | Predicate . Term

LY
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are called "quantifiers” in classical logic. When we use this word we also include the signs:

. We will say more about X later.

The scooe of the association between name and type (that is those parts of the text from
which the association is visible) for variables introduced this way is the text of the
. Predicate, (or in the case of the A-term the text of the Predicate and the Term) except

~ . - . .
= where the association is temporarily made invisible by an intervening signature for the
) same name
2
LN For example in the following predicate
v a:LECT .

o 3 n:CAR . pred, A {(a:N | pred,} = (}
' the association m:LECT is “visible® in predl, the association n:CAR is visible in predl and
o pred2, and the association a:N is visible in pred2.
26.2 -- Constants
‘}{ In order to introduce a new constant into a piece of mathematical discourse, we also give

a signature for it; this time at the “top level”. The signature may be associated a predicate
o which constrains its value in some way. Predicates which constrain constants introduced in
i this way are sometimes called ax/oms.
cy For example this is how to introduce a constant (of type) Number, whose value we require
i‘\ to be between seven and nineteen, but about which we wish to be no more specific
hY
. !
u processorspernode: N

7¢<processorsperncde<i9

.
-~
o

The double horizontal line has no significance, except that it serves as typographical
[ emphasis that the signature appears at the top level. Likewise the short horizontal line
simply separates the signature from the predicates with which it is associated, and the long
single horizontal line emphasises the end of the predicates.

The following signature and its associated predicate introduce a constant function from
) numbers to numbers, named foo, which maps every number into its square

foo: N — N

<% ¥ n:N. foon=nxn

Of course we haven't explained properly what we mean by the sign — or by the word
function’ We will do so later,
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A constant defined in this way is visible throughout the whole of the remaining
*“mathematical discourse™, except for those places where variables with the same name are
visible.

2.7 Set Comprehension Revisited |
Mathematicians sometimes use another form of comprehensive specification to denote the
set of all things “of a certain kind™, for example

{ n:N . n?)
denotes the set of all things of the form

nz

where n ranges over the natural numbers. Another example is
( m, n:N | n®n?<44 . n-n? )

which denotes the set of all things of the form
3_g3

n"-m

where m and n range over the numbers in such a way that the sum of their squares is less
than 44. .

In fact the general form of a comprehensive set specification is

( Signature | Predicate . Term }
There are 3 number of special cases of this form which can be abbreviated. If the
Predicate doesn’t constrain the variables of the signature (in other words if it is
identically true) then we leave it out and write the comprehension as

( Signature . Tera }

If the Signature introduces a single variable and the Term /s that variable then we leave
out the Term and and write the comprehension as:

( Signature | Predicate }

This form of abbreviation will later be generalised.

If we leave out both Term and Predicate we just get the dezenerite case:
{ Signature )

An example of this is
( x:X )

which is an abbreviation for
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4]
{ x:X | true . x }
L]
b which is the set of elements x of X for which the predicate truc holds. Of course this is
) just the set
0
. X
. itself.
3 Some mathematicians use one or both of the syntactic forms:
{ Term | Signature | Predicate )
{ Term | Signature }
b, to denote set comprehension.
5
2.8 Structured Types: Part |
We have shown how to specify subsets of a given set using extens/onal/ and
comprehensnre specifications, but these (sub)-sets can never have more in them than the
' original set. In this section we introduce two means of constructing “bigger” sets from
given sets; the remaining method (tree-constructions) will be introduced later.
- 2.8.1 Cross-Products -- Sets of Tuples
If T1 and T2 are both sets, then the term
I, x T,
denotes another set, namely the set of two-tuples (ordered pairs) whose first elements are
j driwn from T1 and whose second elements are drawn from T2. This set is sometimes
called the product or cross—~product of Tt and T2.
The ordered pair whose first element is a and whose second element is b is written
(a, b)
If we have somewhere defined
« LECT & ( BS, TH }
. CAR 2 ( RWR360W, PVM4OSW, A420GBH )

then the term
LECTxCAR
denotes the set of ordered pairs

{ (BS, RWR360W), (BS, PVM49SW), (BS, A420GBH),
(TH, RWR360V¥), (TH, PVM48SW), (TH, A420GBH) )

This set has six elements — the arithmetical procduct of the number of elements in LECT
and the number of elements in CAR, hence the name cross—product.

12

SRR N, R A I
Rt L



o

ol Another term denotes the same set, namely
tﬁ. { 1:LECT: m:CAR . (1, m) )
»

It can be read as “the set of all ordered pairs (1,m) where 1 is an element of LECT and n
> is an element of CAR."™ By generalising the abbreviation introduced in section 2.7 we can
' rewrite this term as
- { 1:LECT: m:CAR }

Subsets of the cross product are denoted by terms of the form:

! { 1:LECT: m:CAR | Predicate . (1, m) }
which (again generalising the abbreviation of section 2.7) can be shortened to

- { 1:LECT: m:CAR | Predicate !

3 We can generalise the notation for two-tuples to that for n-tuples by using the following
syntactic equivalences:

T X TyaxTy & T, x (T, x Ty)

~rr
ok}

¥

and
o8
Y (x, y, ... 2) e (x, (y, ... 2))
o For exampie
‘ LECTxCAR%{1983, 1962, 19681}
o .
ot denotes the set of triples
e

{ 1:LECT: m:CAR: y:N | ye(1983, 1982, 1981) . (1, m, y) }

28.2 Power Sets -- Sets of Subsets
The powerset of a given set, S say, denoted by the term

Ps
is the set whose elements are the subsets of S. For example the powerset of LECT is
{ (), (BS), (TH) (Bs, TH} }

Notice that the number of elements of P S is 2 to the oower of the number of clements
of S (hence the name).

The term ()} denotes the empty set, whose properties with respect to any set X can be
summed up by the theorem:

- ¥ x:X . x#¥{)

13
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In other words == no member of any set 1s a member of the empty set.

;:~ What is more, the properties of an empty subset SS of a set X with respect to any
. predicate P can be summed up by:
ﬁ = V¥ SS:P X . SS=() = (V x:S§ . P)

In other words any predicate about 3.// the elements of an empty set is ¢rue. of course
since there are no such elements this fact is not too useful!

Notice that the powerset of the empty set has exactly one element, namely the empty set
itself; that is

L (P (}) = { (})

This should demonstrate that it is important to be very clear about the distinction between
a set with no clements and a set whose single clement is a set with no elements (if you
don’t like this, then reflect on the difference between an empty tea packet, and a cupboard
with only an empty tea packet inside).

The powerset of N is very large (so big that its size isn’t expressible as a Natural number).
Here is one way of specifying a constant whose value is a single clement (/e a set of
numbers) of that huge set.

Even: P N

Y n:N . n€Even & (3 n:N . n=a+n)

We read this “Even is a set of numbers, and every number n is in even exactly when it is
twice some number a* Here’s another example.

Odd: P N

0dd = ( n:Even . n+1 )}

"0dd is the set of numbers of the form n+1 for even numbers n.”

As an exercise try specifying Even in the style we used for specifying Odd and specifying
0dd in the style we used for specifying Even.

2.8.3 Finite Subsets

The idea of a finite set is quite familiar to us, but it’s surprisingly hard to find a s/mo/e
formal definition. Informally, the finite sets are those whose elements we can “count”.

Notation: If X is a set, then we write

F X

to denote the set of finite subsets of X. Evidently if X is itself finite we have
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It can also be proved that

- FX=()U{( x:X; se:F X . (x}Uss }

in other words, the set of finite subsets of X contains the empty set and those made by
“adding a single element of X to a finite subset of X™.

The number of elements in a finite set, S, sometimes called its carg/nel/ty, or s/ze, is
written #S . The important properties of the # operator, which reflect the fact that finite
sets can be built up by adding elements “one by one® to the empty set, are

® () =0
VS:FX.V x:X. x#S = #({x}US)=1+4S

If T does not denote a set, then the term #T has no meaning.

This concludes our introduction to the flavour of the sublanguages of the language of set
theory. By now you should understand the ideas to which terms and predicates correspond,
what a signature is, how to specify a subset of a given set, and how to specify sets of sets
and sets of tuples.
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3: The Language of Relations and Functions

In this section of the course, we show how the basic language of set theory is extended to
include notations which allow us to describe relations and functions.

3.1 Binary Relations

You are already familiar with the concept of a 4/inary relation — for example in
mathematics the relations “is less than®, “is a subset of™ or in law “owns a car whose
registration number is®. In the language of set theory, binary relations are considered to be
sets of pairs.
For example, the “less than™ relation on the natural numbers is the set of pairs

{ i:N; 3:N | (3 k:N . i+k=j A kg0) )
(though we wouldn’t de7/ne it in this way).

Notation: If R is a binary relation between clements of A and of B, and if a:A and b:B
then the predicate

aRb
is syntactically equivalent to the predicate
(a,b) € R

Sometimes we write a maps to b under R or R maps a to b; using this terminology, of
course, we see that <™ maps (for example) 3 to every number bigger than three

Relations can be #/n/te, for example suppose that OWNER is the set of all potential car
owners, that REG is the set of car registrations, and that MAKER is the set of car
manufacturers. Without concerning. ourselves with the /néernas./ structure of these sets let’s
also suppose that we have certain distinguished constants, namely

TH, JS, BS, RB, IS: ‘ OWNER

Ford, Bentley, Renault, Morris, Datsun: MAKER

ad20gbh, rwr360w, pvm495, isd400p, a190: REG
Then we could specify relations owns and aade respectively:

{ (TH, a420gbh), (BS, rwr360w), (BS, pvmd495), (IS, i=400p) )

{ (Renault, a420gbh), (Morris, rwr360w)
(Morris, pvad495), (Datsun, im400p), (Bentley, al90) }

In which case the following predicates would be true

TH owns a420gbh
BS owns rwrliG0w
Morris made rwr360w

whereas these are false
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- BS owns 1s3400p
TH owns pvm4gS
& Bentley made pvm49S
Ford made a420gbh
i It is customary to use the foilowing syntactic sugar for the the pairs which make up a
relation:

o a—~b 2 (a,b)

so owns would be written

'.' ( TH—a420gbh, BSrrwr360w, BS++pvm495, [S—isd00p }
.
. and “<” could be written
&
Ry CitN; N[ (3 ksN ... ) . i )
~ .
E‘ Notation: Given two sets X and Y the set of relations between X and Y -- which is
. denoted XY -- is the powerset of their cross product More formally:
<
L. (X,vYI] XY a P(XxY)
" This is a more complicated form of syntactic equivalence which comes in two parts; the
o first part reads “given two sets X and Y* and the second defines the left hand ¢erm to be

syntactically equivalent to the right hand term. We could also have written it as

H Xey (X, Y] !

P(XxY)

! 3.2 Domain and Range of a Relation

Given a relation
R: Xey

the doman of R — written doa R - is the set of all elements of X which R relates to at
least one element of Y. In other words

dom R = { x:X | (3 y:Y. xRy)}

g;\\ The range of R -- written ran R =— is the set of all elements of Y which are related by R
- to at least one element of X, that is

ran R = ( y:¥Y | (3 x:X. xR y)}

A relation whose domain and range are subsets of the same set is called a Aomogeneous
s relation. The empoty relation @ is just the empty set of pairs. Its domain and range are
k empty; it isn’t too interesting (to be more precise it’s about as interesting as the number 0
or the empty set).
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1™ 3.3 Partial Functions

Functions are amongst the most basic tools of mathematicians and computer programmers.
i As programmers you may be used to thinking of functions as “recipes for computing”
if certain quantities; in the language of set theory (indeed in the whole of mathematics apart
from computation) it is convenient to treat functions more abstractly than this, namely as

W LW LT
.

i special kinds of relation
A relation R is called a part/al function if it maps each elememt of its domain to
. exactly one clement of its range More formally:
) XY [X,Y] .
. D R:XerY | (¥ x:X; y,,72:Y . (xRy, A xRy,} =» y,=y, ) }

The so-called ¢tota/ Functions from a set X are defined by

= X—Y [X,Y] ,
r(fx-»mdo.f:x)

In referring to a function as total it is important to say From wAat¢ set it is total. This is
because in general we can derive many “total” functions from a partial function — one for

;;_. each subset of its domain. More formally:

X

¥ £: XY .

.- vy S:P X .

’.} Sc(doa £) = ( x:X; y:Y | x€S A x £ y }€(S—Y)

. We use the phrase oropcer relat/on to describe a ~elation which is not functional. (For
'i‘ example “<™).

. Notation: if F:xeY is a function, and if x is an element of the domain of F, then the
o term

. Fx
‘ means the unique y in Y such that xFy. If, on the other hand, x is ~o¢ an element of the

domain of F then we cannot conclude anything about that term.

"
g

For example, consider the “unsquare” function

&

unsq = ( x:N . x? = x }

o The term

", unsq 4

N

’ means 2, because 2 is the unique number satisfying 4 unsq x. On the other hand, the
» term unsq 5§ has no meaning (or to be more precise, cannot be reasoned about any
-~ further /.

.~

- Infix Notation: if F:(X x Y)e~ Z is a function, and if x:X and y:Y then the
Jé‘ following syntactic equivalence holds

x Fy a Fix,y)

, 18
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AU first sight this appears to be syntactically ambiguous, since if F is a function it is also
a relation, and we already defined the oreo cate

\:\
N aRb a (abler
The apparent ambiguity may be resolved by inspecting the "shape® of the function and of
. its operands. To be more precise, if x, y, z, and F are introduced by
< x: X
o y:Y

z2:2

F:XxYy -» 2

8
- then the phrase
e (x F y)
is a term of type 2. On the other hand the phrase

by
3 (x,y) F z
:.:- is a pred/cate, as is the phrase

(x,y) F (x F y)
>
j,- For the moment our language doesn’t have to be understood by computers, so there’s no

* need when defining a function F to say whether xFy or F(x,y) is the form we'll use
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3.4 Specification by Predicate

We have hitherto defined relations and functions by giving extensional or comprehensive
specifications of sets of pairs. We now introduce a more convenient style of specification,

namely “by predicate”. For example, here is a specification of the relation “is the square
of”

squares: N & /A7

Y n:N: i: /AT
(n squares i) e (i? = n)

and here is a specification of a fairly uninteresting total function

boring: N — N

v n:N . boringn = n? + 3in + 2

The defining predicate is equivalent to the predicate
boring = { n:N . n=—n2+31n+2 )

If we were being careful we would check that the polynomial term denotes a natural
number for a// n:N for if it did not, then the defining predicate would not be consistent
with the signature; this is because the signature requires that the constant boring take its
value from the set of fo¢a/ functions from N

Finally here is a specification of the function which maps a nonempty set of numbers to
its minimum element (P, means the set of nonempty subsets)

min: (P, N) — N

v S:P, N .
ain S € S A
Y x:S . ain S ¢ x

Notice that in this latter case we give no hint about how to discover the number in
question, we just give its properties. Such property-oriented specifications, particularly of
functions, may seem a little strange to programmers who are used to giving
“computational recipes®; notwithstanding this they are widely used in mathematics.

One slight sbuse of langusse which we permit is to omit the topmost universal
quantification when to do so would cause no confusion. This is usually the case when
specifying relations or (total) functions, for example

-

squares: N — /4T
boring: N — N

n squares i ~s iZzn
boring n = n? + 3in + 2

20
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3.5 »-expressions

In some branches of computer science it is customary to denote functions by (so-called)
lambda-expressions. The following syntactic equivalence defines these terms:

N\ Signature | Predicate . Term =8
{ Signature | Predicate . (variables of Signature) — Term }

For example

Am, n:N| m>n . (men,z-n) @
{a n:N| mpn . (m,n)~(m+n, a-n) }

which denotes a function which maps pairs of numbers into pairs of numbers.

Exercise:
Write down a term which denotes the ~ange of the function denoted by

A Signature | Predicate . Tern

Notation:
If 0 is a binary infix operator with signature _ 0 _: X x Y — 2, then

(_0y)sxx:X. x0Ty and (x0T Daxy:Y. x0y

For example consider _ + _:Nx N — Nand _~- _:Nx N — N
(3 + _) is a function which adds 3 to its argument
{55 -~ _) is a function which subtracts its argument from SS.

3.6 On Unsatisfiable Specifications

The pattern of much of the software architect’s work is to specify what a problem is,
using the mathematical notation, then go on to discover whether or not the specification is
satisfiable. It is important to realise that the language of mathematics is sufficiently
powerful to allow us to specify things which may not exist. For example, consider

-
boring?: N — N

v n:N . boring? n = n? - 31n + 2

In this case the polynomial term doesn’t denote a natural number for all values of n, so
the specification is unsatisfiable In other words, whilst there is a oar?/a/ function on the

matural numbers with the indicated property, there is no svch total functron. Now
consider:

prime?: N

YV n:primes . prime? > n

Unsatisfiable specifications aren’t always so immediately and demonstrably unsatisfiable!

21
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4: The Mathematical Toolkit

We're now in a position to use the definitional notation, introduced earlier, to introduce
the “kit” which we’ll need for subsequent specifications.

4.1 Operations on Sets

If X is a set, then we can specify the difference, union, and intersection operations, and the
inclusion relation(s) on subsets of X as follows:

(X1
-
N _: (PX)Yx(PX) = (PX)
S, - Sa = ( x:X | x€S, A x#S, )
S, USy; = { x:X | x€S, v x€S, }
S, N Sy =2 { x:X | xeS, A xeS, }
—
-5 o
e (PX) & (PX)
S; S Sy = ¥V x:S, . x€S,
S, € S, = (S,#5, A S.cS,)

These operators have a large number of properties, with which every aspiring
mathematician and computer scientist must become familiar. If you have any doubts about
your understanding of them then do the exercises in /Z/oschuizr/.

4.2 Functions and Relations as "Data”

Functions and relations whose domains or ranges are sets of functions or relations are
called “higher order” It is important to understand that higher order functions and

relations are as ecasy to define as the “simple™ functions and relations we have met up to
now,

First we take a practical example let us suppose that we wish to model a database which
records the owners of cars. If we make the simplifying assumption that every registration
number has an owner (perhaps the “ministry of transport®) then the state of this database
at any stage in its evolution can be modelled by a total function of type DB defined by

DB @ REG — OWNER

A family of transactions, each of which records the fact that a person a has bought a car
whose registration is ¢ can be modelled by the function..

buys: (OWNERxXREG) — (DB—DB)

(a huys r) db =db - { r=(db r) } U ( rra }

22
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This is a function of two arguments, whose result is itself a function. For each owner a
and registration r there is a function
~ a buva r
Mo
. which maps our model of the state of the database before the transaction into our model
of its state after the transaction
::: Since the model of the database is itself a function, we evidently have defined a function
whose result is a function from functions to functions. This may be a bit mind-blowing
for people who are used to programming in languages where functions aren’t “first-class”
- objects: remembering that we are writing in a Jescr/ptne language rather than a
o programming language may help to calm you down
N Notice that we used union and set difference to describe the relationships between the
; functions modelling the database before and after the transaction. This is perfectly
' legitimate the sets are (in this case) sets of pairs. This is where the mathematical idea of a
- function (relation) as a set of pairs begins to pay off; we can operate on functions and
o relations using the same operators as we use to operate on sets. In the next section we use
- this freedom in order to specify some very powerful operators indeed
- 43 Operations on Relations and Functions
- An operator which may already be familiar is (forward) composition of relations, defined
by

-3 _t (XeY) x (Ye2) — (Xe2)

(x,2) € (R, 3 R;) o= 3 y:¥ . (x,y)€R; A (y,2)€R,

For example, suppose the relation

madeby =

{ a420gbh—Renault, rwr360w—Norris,

pvm49S—Morris, is400p——Datsun, alS0Bentley !}

Then the relation ownsacarnadeby, defined by

ownsacarmadeby = owns } madeby
is (in ext;nso)

{ BS—MNMorris, TH—Renault, IS—Datsun )}

Notice that it also Aacoens to be a function

Some authors also use the sign ¢ defined by:

1
o _: (YeZ2) x (XeY) — (Xe2)

23
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- 44 A Simple Example: Family Life

! Suppose we are designing a database in which to keep information about families. Let P
’\f. denote the set of all persons; ecach person has but a single biological mother and a single
:'4‘ biological father and we capture this fact by introducing two partial functions

i ma, pa: P - P

The functions are partial because we cannot hope to record this information about
L‘g everybody who has ever lived. We do insist, though that everbody who has a mother has a
o father and vice versa, (thereby ruling out immaculate conception). We also know that

nobody can be both a father and a mother, and record these real-world constraints by
. adding the predicates

dom ma = dom pa
ran ma N ran pa = ()

L)
=
. to our specification. For the moment we shall ignore several other real-world constraints.
We can now define several other family relationships using composition and union. For
-~ example
b
o
1
0, parent,
& grandma,

grandpa: PP

parent = ma U pa
grandma = parent } ma
grandpa = parent } pa

In order to define brother and sister we need a few more tools.

The inverse function

inv: (XeY) — (1X)

(y.x)€(inv R) e (x,y)€R

maps a binary relation into its inverse.
Notation: if R is a relation then

R** 3 (inv R)
For example

madeby = made"'

Note that the inverse of a function is not necessarily a function. For example, consider the
function:

+  NxN—N
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Its inverse is a relation which holds between every number n and any pair of numbers
whose sum is n.

Exercise:
Write a comprehensne specification of the inverse of +.

The identity relation on subsets of a set is defined by

Id: (P X) — (XeX)

Id S = { x:8S . xx )

Exercise:

Summarise in prose the “effect™ on a relation of composing it on the left/right with an
identity on a proocer subset of its domain/range? Suppose that R is a relation, S is a
subset of its domain and T is a subset of its range Write down terms which denote the
set of pairs which comprise the relations.

R3(ld T)
(Id S);R

Resuming, for the moment, our “family life” example, let’s now suppose that we keep a
record of who is male and who is female; nobody is both:

The real-world constraint which requires mothers to be female and fathers to be male is
recorded by.

ran pa ¢ a
ran ma ¢ £

The relations sister and brother are now (almost) respectively definable by

parent 3 parent’' 3 (Id f)
parent ; parent’' 3 (Id m)

All that is left is to prevent males from being their own brothers and females from being
their own sisters:

sister = (parent $ parent™ 3 (Id £)) - (Id f)
brother = (parent j parent™ 3 (Id m)) - (Id m)

Notice that we used right-composition with an identity relation to res¢r/c? the size of a
relation. The following operators restrict relations by specifying a restriction on their
domain and range respectively:

TR O
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b (XY x (P X) = (XemY)
O\ _: (XeY) x (P X) = (XeY)
RPS=2(ids) 3R
R\S =R "I (X-5)
1 (XYY x (P Y) — (XeY)
_/ _: (X)X (P Y) = (XeY)
RIT=R3j3 (ida D
R/T=RI{ (Y-T)

The domain restriction operator may be used with its operands reversed, as if defined by:

-
F_ ot (P X) x (XeY) = (XesY)

S IR =(id S)R

For example,

(NN . 3 P (2,3)={(2—4, 3—9)
(XN %x:N . x 1 (2.3) = ()}

(A x:N . x® {1..8

{ 1=1, 24 )

{2, 3P (Nx:N. x?) = { 24, 3=+9 )

4.5 The Registration Database Revisited

Consider, for a moment, the database example in our original definition of buys we had
to write a rather unweildy term to denote the database after the transaction. The operators

we have just introduced allow us to make this a bit less cumbersome; it is ecasy to show
that

db \ {r}) U { r—a ) = (abuyar) db

In fact the idea of a relation being like another “except " occurs so frequently in
specification that we introduce another operator = the re/st/onal override operator:

o _: (XeY) x (X&=Y) — (XeY)

R, # R, = (R, \ (dom R,)) U R,

Fur example, the function:

26




db ® { r—a }

- “behaves” like db except that it maps r to a. A slightly more interesting example is the
iy following characterisation of a database transaction which allows “simultaneous”
registration of a number of vehicles to a single owner (perhaps a car wholesaler):

bulkbuys: OWNERx(F REG) — (DB—DB)

s
: (a pulkbuys S) db = db ® { r:S . r—a }
' 4.6 Generalised Application: Image
- The /mage of a set S through a relation R (sometimes called the R-image of S) is the set
. of elements of R’s "destination” to which R maps clements of S. The function
Im: (X &= YY) = ((PX) = (PY))
-
RN ImRS =( y:¥ | (3 x:S . xRy) }
\ maps a relation R into a function which maps a set S of clements into its image through
ot R.

For example, consider the relation owns of section 3 here are some examples of /mages
through it

Ia owns (BS) = {rwr360w, pvm495)}
Im owns (BS, RB} = (rwr360w, pvm495}
In owns (TH, BS) = (rwr360w, a420gbh, pvmd49S)

’
.

o

Notation: if R: XY is a relation and S a subset of Y, and y an element of Y then

R({S) alIaRS
Ryl alaR (y

For example

- owns [ (IS) ) = {(is400p)

owns [ IS } = {is400p}
. owns  (RB, IS, TH} ) = (is400p, a420gbh}
- owns [ ()} = ()
= 4.7 Properties:

If R, R1, R,;:XeY are relations, and if S, S, and S, are subsets of X, and if T is a subset

}C: of ¥, then the following predicates (amongst others) always hold:
Ul

( R* )'* = R
dom R = ran R
ran R*' = dom R

B

¥SY,

(R, U Ry)™* = R,™* U R,

5
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- (R, U RIS ) = RES U RES )
o RS, US, ) =RCS, JURLS, )

dom( R, 3 Ry ) = R,”* ( dom R, )
ran{ R, 3 R, ) = Ry{ ran R, }

3
:

dom( RIS ) = SN(dom R)
ran( RI{T ) = TN(ran R)

Ay
e,

Exercises:
(1) Prove the properties outlined above.

(2) We have outlined some properties of union with respect to the image and inverse
operators; what are the properties of /ntersect/on with respect to these operators?

'-’“-

o (3) Siblings are people who share the same parents. Half-siblings share the same father or
the same mother but not both. Specify the relations sibling, half-sibling, .half-sister, cousin,

- great-aunt. What is interesting about the relations cousin and sibling? Can you specify the

. . s »

“~ relation “childless aunt™?
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.- 4.8 Finite Sequences
.- Finite sequences are important because they allow us to capture the essence of entities as
‘ diverse as lists, files, arrays, memories, and histories. Although it is possible to give an

abstract axiomatic characterisation of them, we have chosen to formalise them as partial
functions from the natural numbers. As we shall see below, this augments the applxabxllty
. of the existing toolkit

We (irst define the 7/n/te partial! functions — they are the partial functions whose
N domains are finite

[x, vl
! X% Y & (£ XY | dom£fe€FX)
~ Given a set X, the F/inite sequences of X are the finite partial functions from N to X
l-‘\‘ whose domains are of the form Ln (for some n:N). More formally
-
= eqlX] .
~ [—s( £: N X | dom £ = 1..%#£ )

For example

(3 ]
l‘l‘:

{ 15, 26, 377 } € geqiN]
{ 1~—Ford ) € seq{MAKER]
{ 1—=(}), 2—prines } € seq(P N]

In general the following syntactic sugar is used for extensional specifications of sequences:

i <> s ()

<a> a ( 1—a, }
<ay ... aY> a ( {=a,, ... n~a, )

48.1 Basic Sequence-Building Operators

One way of building a new sequence is to “"push a new clement onto the front of™ an
existing sequence, thus .

g

*s

|

cons: (Xxseq{X]) — seq{X]

g. v x:X; s:8eq(X] . x copgas ={ {=x )} U predis

defines an operator which “pushes™ an clement x onto the front of a sequence s. It is
3 called cons because it constructs a new sequence (it also captures at least some of the
o properties of Lisp’s cons). We usually abbreviate this operator to the infix sign * — thus
if x is an element of X and s is a sequence of Xs

X "8 2 xgcona s

- We are obliged to show that our definition of cans is consistent with its signature, /e that
" for a sequence s and an element x, the term which defines x cons s really denotes a
function with all the characteristic properties of a sequence.

If we recall that the function pred is the inverse of the function suc on the natural

&_ 29
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numbers, ;e that
= pred = ( C—1, 12, ... }°
AL = { ..., 21, 1—0 }
i Then, by virtue of the definition of composition (see earlier),
dom( predss ) = pred ‘(doa s}
o = suc(l..#s)
':‘\ = 2..48+1
and so
! dom( { 1—x ) U (predjs) ) = 1..#8+1
- #( { 1x )} U (predss) ) = i+#s
W) . .
hYe which is exactly what the sequence axioms require
P
- A more concrete example is
T :
b 447<33 22> = ( 144 } U ( 233, 322 )
= <44 33 22>
3
&.: In fact the sign * is aver/oades (just as the sign - means both arithmetic subtraction and
set difference). It also denotes an operator (pronounced “snoc™ if you like) which pushes
o an element onto the end of a sequence, namely:
e

o 1
snoc: (seq(X]xX) — X

-

- Vv x:X; s:seq(X] . s gngg x = s U { suc #s — x }

o

If x is an element of X and s is a sequence of Xs then

s X @ 8 gnog x

? When the sign “ is used, it should always be clear from context (or to be more precise,
) from the types of its operands) whether the “cons™ or the "snoc” operator is meant. In

cases where this is not so, we will use snoc and cons themselves; sometimes in proofs we
e add a little arrowhead to the ° for readability -~ thus
5y

- a consa

I « 3 snoc
>

48.2 Operators on Sequences
Many sequence operators have domains which are the nonempty sequences, defined by:

{x]

(=5

seql 2 seq(X] - (<>}

For example hd and ti which behave rather like the Lisp operators car and cdr.

pLoA
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h 1
hd, last: seql(X] — X

ﬁ‘{ tl, front: seql(X) — seqlX]

N\

L

v x:X; s:seq(X] .

N hdl x a8 ) = x
last( 8 “x ) = x
tll x s ) =38

front{ @8 “x ) = g

AR

ve%

Exercise:

We have specified these operators nonconstructn-ely — that is by giving predicates which

relate them to cons and snoc rather than by giving terms which denote the set of pairs to
which they correspond.

2 B

P Prove that the following constructr & definitions satisfy the specifications for hd, front,
i’

- tl, and lasc.

"’.‘ hd = A s:seq(X] | s#<> . (& 1)

i

front = A g:seq(X] | s#<> . af(1..(pred #s))
tl = A s:seqlX] | s#<> . sucis \ (0}

last = )\ s:seq(X] | s%<> . s(#e)

We will use the same style of specification for the operator which acpends two sequences,
namely

- * _: seqlXlxseq(X] — seqlX]

vV as:seq(X] .

<> » 8 =28 .app.l
Y 3, 3,:5eq{X]; x:X .

(x"g,)ns, = x"(s8,88,) . app.&

What we have done is to soec/y the result of appending any sequence to the empty |
sequence; and then specify the result of appending a sequence s, to a nonempty sequence in !
terms of the result of appending s, to the tail of the nonempty sequence; since all
sequences are cither empty or nonempty we have covered all possible cases, and you might
think that for this very reason that a function which satisfies the above specification muvse
therefore exist. This is indeed the case, but it neeed not be so in general. Later in the
course we shall see that a certain class of “recursive™ specification is always satisfiable, and

that this specification falls into that class For the moment, though, we will demonstrate a
constructive solution to the equations above, namely:

- % _ =\ 8,8,8eq(X]
8, U (shift #s,):s,

X]




Wivﬂmrﬂwvm-wn ~ -

0
ﬁ where
shift: N — N — N
- shift a n = n-a
<
Cd
L Exercise:
. Think about the strategy you would use to crove that this definition satisfies the
specification.
A _
‘ .:« The last standard operator on sequences is the one which ~everses them, specified by:

! 1
x rev: seq(X] — seq{X]
v rev <> = <> . rev.d
:-: rev (x cons s) = (rev 8) snoc x e rev.E
o
o Exercises:
- (1) give a constructive definition which satisfies this specification.
%4
- (2) try to prove that the following theorems hold given that x is an element of X and s,
. S, - S, are all sequences of Xs .
:;: g, # (3, » 8) = (g, # 5;) % 34 29
)\

8 # <x> =8 " X (737
-
- rev( g, * 8, ) = (rev 8;) » (rev a,) (73

(revirev) s = 8 ' ceee (T4

™

Y

<P =z X ° <>

(750

=

483 Reasoning about Sequences

e
i-: The well-known principle of mathematical induction allows us to begin to reason about
i sequences. Summarised in set-theoretical form it states that if a certain set of natural
a numbers is known to contain n+1 whenever it contains n, and if it is also known to
N contain zero, then in fact it contains all the natural numbers. Formaily, we have
.
ﬁ =~ Vv S:P N .
L% ( |
0esS A !
'_{a Y n:S . ne+les :
2 ) = S=N
:.. It is clear that this principle could be extended to the sequences -~ for we could prove
things by induction over their /engehs. The following theorem is easily proven from the
principle of mathematical induction:
2
i"

o ~ v SS:P (geqiX]))
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. <> € 3§ A

. v :5S; x:X . x°s € SS

B ) == SS=seqlX]

-3: This result is called the orinc/ple of Finite sequence induction. It is a special case of a

K much more general resuit which we shall examine later in the course, namely the
principle of structural induction.

_..; In order to show how to use this principle, we shail prove that the set SS of sequences s

which satisfy

(revirev) a = g

contains all the sequences. More formally, if

SS & ( g:seqlX] | (revirev) s = g )
then

- SS = seqiX)

Our proof is structured along the lines of the induction principle -~ we will first prove
what is called the Base Case:

(1) (revirev) <> = revi(rev <)  ..... compaosition definition
(2) (revirev) <> = (rev <>)  ..... l, rav.t

(3) (revsrev) <> 3 <> ..... S, rev.l

(4) <>es L. 3, 55 definition

Next we perform what is known as the Induction Step. To do so we must show,
given 2 sequence s in SS and an clement x in X, that x “ s is in SS. Suppose, then that s
is a sequence in SS; this supposition is called the /nduction Aypothesis and from it we
proceed formally as follows

(%) s€SS ... Induction Hypothes:s

(8) (revjrevl a=e  ..... 5, S5 definition

(7) reveo =<2 L., lemme ( see /ater)

(8) rev( rev(i x~ 8 ) ) = rev( (revs) * x ) rev..

(9) ' =2 rev( (reva) s <00 ) ... 8.7°

(10) !'! = (rev <x>) # (rev (revs)) ... .. 9,73

(11) ' = <x> 08 . 18. 7. §. composition def
(12) 't = (x ~ <) ws L. 11,75

(13) ' =z x (<> @) L. I, app.C
(14) "' = x @ . 13, app.l

(15) ¥ x:X; #:SS . 8€SS =» x"s €SS . ... Generalisation

This completes the second part of the proof; we can now apply the sequence induction
principle and conclude that SS contains all the sequences.

The ? on the left hand side of the equalities on lines 9.14 stands in cach case for the term
on the right hand side of the previous line; it just saves typing.

I
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Fach line in our proof consists of a numbered fact or hypothesis, supported by some
ev.dence. In each case the evidence consists of a reference to a previously-numbered fact,

and/or a predicate from a definition, and/or a theorem (or Lemma -- which is just a
"local™ theorem) which is proven elsewhere

4

The local “lemma”™ was

&3

= ¥ xX:X . revex> = <

s

- Proof (left as an exercise).
g 48.4 Useful Properties
N If s is a sequence of elements of X and if £ is a function whose domain includes the range
- of s, then the composition of s and £ is also a sequence More formally:
ra
—~ V g:seq(X]; £:X-+~Y .
gj (ran s)g(dom £) =+ (g3f)€geq(Y]
- If a sequence s, i3 a prefix of a sequence s, then the set of pairs which constitute s, is a
‘:{' subset of the set of pairs which constitute s,, More formally:
\b,

- ¥ g1,92:9eq(X] .
,;_; Is:seq(X] .

s glra=82 e s3iCs2
o For this reason we usually use the “subset” relation between sequences to mean "is a
‘ prefix of”. This is an example of an /o/om.
o If s is a sequence, then the relation “are adjacent elements in s™ is captured by a relatively
b simple formula, namely:
e
u s 'isucse
- Exercises:
3". (1) prove the following theorem
|- ¥ a:seq{X]; x1,x2:X .
’ (xi, x2) € s '3aucc)s

-
3i:(1..%8-1) . 8 i =x1 A 8(i+l) = x2

(2) use the above fact to give a simple specification of the set of sequences of X which are
“ordered with respect t0o® a homogeneous relation “<™ on X.

4
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5: Disjoint Unions, Recursive Types, Enumerated Types
:j'_: 5.1: Introduction
In previous sections we introduced ways of making new types of set from existing sets, but
- did not say anything about the "primitive™ sets of the language Indeed in order to avoid
i discourse about primitive sets we “parachuted” the natural numbers (N) into our discussion
without really oef/n/ng them. In this section we introduce the on/y notation by which
. new primitr-e types of set are defined We also show how the notation may be used to
‘,:: define abstract forms of the tree-like structures which are common objects of discourse in

Computing Science. This notation is currently used by practitioners of the “Z” style of
specification; there is no corresponding “standard™ notation.

(|

5.2: Strong Typing

Although we have not yet introduced any of the consequences which flow from it, the
language we have introduced so far is strongly ¢tyoecd. What this means is that certain
terms and predicates are defined by us to be well-typed, whereas others are ill-typed; in

05

'J-" general we only provide means of reasoning about well-typed terms and predicates.
b
The role played by type-analysis in mathematics is analogous to that played by dimensional
:,5} analysis in physics and mechanics; it is a safeguard against writing utterly nonsensical
ot mathematical terms and predicates, but is no guarantee that the mathematical model is true
to reality or even consistent.
Y
::} A complete explanation of the type rules is beyond the scope of these notes, but we can

illustrate their spirit by briefly considering the wvn/on operator, which has generic type
specified by the signature:

-
n (x)
- U: (PX) x (PX) — (PX)

This means that every instance of the union operator must have operands which both have

u type P X = for some primitive type of set X — and that its result is also of type P X.
Now suppose that Y and 2 are o/s¢/nct primitive types and that y is of type Y and s and
§ t are of type P 2Z; in other words:
y: Y
a: P2
- . P2
.. Then the term
>
-
h s Ut

a v

is well-typed because the generic parameter X in the type-specification of the union
operator can be instantiated with the primitive type 2. On the other hand, none of the
terms

yvy
yUs
s U Z
s vy
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are well-typed, because in none of these cases can we find a suitable instantiation of the
type variable X.

In the next section we introduce a new category of type-constructor which allows us both
to overcome certain problems introduced by strong-typing, and to describe certain kinds of
“recursively-specified™ sets (sometimes called trees).

5.3: Disjoint Union

Suppose for a moment that we want to specify a function, £ind, which searches a list of
words for a particular word, say foo, and cither returns its index (if it appears once) or
an error code indicating whether it appears more than or less than once Let us suppose
that the set of error codes, call it E, is primitive (generic), and that the set of words, call
it ¥, is also primitive.

How do we write a signature for the function we have in mind? Clearly
find: seq(¥] — (E U N)

will not do, for there is no primitive type of set of which both N and E are subsets and
so the U term on the right of the function arrow is ///—¢ypes. What we need on the
right of the arrow is a type of set which contains “as many” elements as there in N and E
combined, but in which there is no confusion between numberish and errorish things.

One such set is
N x E x {0,1)

where the third component of each
(n, e, wh;i.ch)

triple indicates whether the n or the e part is the ~es./ information contained in the triple
This is unsatisfactory, firstly because it is only one of a number of possible “"codings”, and
secondly, because it is “overkill® in the sense that each number has several possible
representations in the coding, namely

(n, errnone, 0) (n, errmany, 0) (n, erroverflow, 0)

and cach error has an infinity of representations in the coding, namely:

(0, errnone, 1) (1, errnone, 1) ... (567890, errncne, 1)
(0, errmany, 1) (1, errmany, 1)
(0, erroverflow, 1)

Mathematicians abhor clutter, so it is perhaps not surprising that our notation allows us to
describe precisely the set which is needed, namely one which has exactly one element for
each element of E and exactly one element for each element of N. The term

error<<E>> | result<<h>>
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denotes such a set. The identifiers result and error are chosen for their mnemonic value,
not for any technical reason.

If we call this set S (which we can do in the usual way by putting the name S on a box
around it)~

S
(_ error<<E>> | result<<id>

then the following /7, ectre functions are defined “automatically”_

-
error: E S

result: N - §

ran error U ran result = S
ran error N ran result = (}

The axioms for these functions indicate precisely that there’s neither junk (the union of the
ranges of the functions is exactly S) nor confusion (the ranges are disjoint).

Moreover, because the functions are injective{See Apoendix [7], their inverses are also
functions, so that given an element a:S — then if it "stands for™ an error code, /e if

s€(ran error)

then the one in question is
error™ s

Likewise if it stands for a number,
s€(ran result)

then the one in question is
result™" s

We are now in a position (for better or for worse) to specify the function we first
thought o¥f. First we introduce some constants to denote the word being sought and the
error codes:

L4
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Having done so we can specify:

find: seq(¥W] — S

vs:seql VW]

#index=0 = find s = error none
#index>] = £find s error many
#index=1 =+ find s € result{ index }
where

index = 3 '{ ( foo) ]}

5.4: General Characterisation of Disjoint Union
In general if S1 . Sn are terms which denote sets, and if idl . idn are identifiers, then

the term:

id,<<S>> | ... | id.<<Sp>>

denotes a new set. Such set-denoting terms hardly ever appear without bemg named, which
is done in the usual manner, for example

rp id,<<8p>> | ... | id,<<Sp>>

In this case the following constants are defined and remain in scope for as long as the
name D.

idy : S, = D
id, : S = D

< ran id, ... ran id, > partitions D

and — as you might have expected — the ranges of these injective functions partition
(see Appendix I/ the new set
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5.5: Reasoning Methods

The principal method of reasoning about disjoint unions is based on the following
{meta)-theorem.

vs:S, . (id, 8) € P A

vs:S, . (id, s) € P
) = P=D

Which expressed informally reads: if a certain property (the characteristic predicate of P)
holds for all ways of constructing an element of D then it holds for all elements of D.

Special Case: Enumerated Types
The term

id, | ... | id,

denotes a "new” set. If this set is named, (E say) then the following constants are defined
and remain in scope for as long as the_ name E.

id, : E

id, : E

< { id, } ... { id, ) > partitiona E

Moreover they all denote different elements of E.

Technical Note [n Ffact this /s the only corregct way to

introduce a “new” typa consisting of an esumeration of
elements. The definition

E 8 { foo, baz, biah }

(which 15 occasionally used with the incention of defining an
enumerated type.! means nothing at all :n our notation except
/n the scope of foo baz anod blah, and even then 1t may not be
well-typed '’
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5.6: Hybrid Case
ﬁ Terms of the form

id, | idyc<Sp»> | ...id;<<S;>> | id,

(in which some of the identifiers stand alone) are perfectly valid. When such a term is
named (H say) the following constants are defined:

A

id, : H
id, : S, -~ H

~

id, : s, > H
id, : H

X8 PR

<(id, } , ran id,, ... , ran id, , { id, } > partitions H

The pattern should be obvious. The stand-alone identifiers correspond to constant elements

1 E of the new type, the remaining elements correspond to injective functions into the new
I type. The elements of the type are partitioned appropriately.

p -~

{ r:':
i 5.7: Recursive Types

Trees occur sufficiently frequently in the world of specification that it is useful to have a
' small library of conceptual tools with which to manipulate and reason about them. It is
;} rather convenient to be able to specify trees “recursively”, but we have to take some care
'S when doing so

' Let us consider, for the moment, the problem of specifying what is a Lisp(kit)-list.
" Informally,

W A list is e/ther an atom or a pair of lists

b

Clearly it doesn’t matter what the internal structure of the set of atoms is, we will denote
-~ this set by A and try to construct a (strictly) set-theoretic specification of the lists:
- .

L=AYV (L xL)

s What we are trying to convey here is that the set of lists contains ail the atoms and is

) closed under the pca/r/ng operation. Unfortunately this “specification”™ of the set of lists

::.; has no solution because the strong typing prevents it. (Scottophiles please note: we

mean “no salution in our set theory”; the sign = means something different in
Scottery )

i We can be satisfied with a set which is rich enough to contain one representative for every

A and one for every pair of L. It turns out there is a set which bas just the properties we
want; it is defined in our notation by:

B 40

Ty R L R e S A S S R A SR AL oS (G |

S




e, y L% T L% y N T T SR e A S g e \ Q"‘p\-'-\'\-\\v'\\l
- PRS AT RTINS ST AN Rty .
P T AR j_A)._L“.. ..lh\ .Am p

L
[_ atom<<A>> | cons<<LXxL>>

The theory (due to Tarski) behind such recursive specifications is simple and elegant its
details need not concern us here, but as might be expected we have recourse to the
techniques we used in defining disjoint unions. In essence the equation implicit in the above
definition has a solution because given a set, C say, which is big enough to “carry” the
lists, and given injections:

atom: A =~ C
cons: CxC » C

(ran cons) N (ran atom) = ()}

whose ranges are disjoint, it is possible to discover a subset of C
L: Pc -
which has the properties

aton{ A} ¢ L
cons{ L xL])gcL

In other words it contains an element (atom a) for each aéA and an element cons(x,y)
for each pair of lists (x,y)&(L x L). This set is clearly good enough.

It turns out that a lot of interesting new types can be defined in this way, for example

1
| zero | suc<< NUM >>

IN.

nil | node<< NUMXBINXBIN >>

These will easily be recognisable as (a set isomorphic to) the natural numbers and the set
of binary trees which have numbers at the nodes.

Not all such specifications denote “reasonable” sets, though. For example

ILLY
foo<< SILLY >> | baz<< SILLY >>

might have nothing at all in it, but might not.

In general, the set of trees specified by

1
'—J id<<Sp>> | ... | id,<<S>>

41
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N
- is nonempty if there is at least one term S1 . Sn in which T does not appear free (or
if at least one of the ids stands alone).
&' The functional ids . are sometimes called the conséructors of T; those ids which stand
alone are called ground elements of the type. The ground constructors of T are those
. whose Si terms do not contain T free; ¢lements in their ranges are called the ground
| trees (ot structures.! of the type The remaining constructors are called oroper
: constructors : elements in their ranges are called the proper trees (or structures ! of
h D T.
b o
b o
Technical Note /¢t (almost) turns aut that this kind of specification
! works f each term Si iin which T appears free, has a certamn
I N property, ngmely thHhat the function
& £ axT. id[ S, )
<7
15 monotonic under inclusion. That /s, gaen two subsets X and Y of ’
g some hypothetical set, ne can prove that:
)
XSY = £{ X ) c £L Y )
!
1. .
oK Unfortunately there /s 3 snag, sometimes it is just not possible to
find a lJlarge enough “carrier”. A sufficient condition for the
b existence of a large enough carrier is to restrict the S, terms
;.r: which contain T to one of the following finite forms:
9g
.. T x ... (... may contain T}
i FT (finite subsats of T)
T . tfinite mappings from7T )
ce. W T (finite mappings toT)

N
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& 5.8: Reasoning Methods -- Structural Induction
.. The most important reasoning method applicable to recursively specified sets is the
:‘_.:- principle of structural induction. We will illustrate the general principle of this
method by presenting instances of it which are appropriate for reasoning about the sets L,
NUM, and BIN.
: ‘ The list induction principle is:
::.' s: PL
= -
(
Ya:A . (atom a) € § A
b vii, 12: S . cons(11,12) € S
) =» Szl
a
‘»‘: If a property holds for the image of every atom, and if it holds for lists consed from lists
- for which it holds, then it holds for all lists.
° . . .
~ The NUM induction principle is
LA
S: P NUM
Y
}.\ =
p (
zero € S A
§l vYn: S . (suc n)e€s
s } == Sa=NUM

If a property holds for zero, and for the successor of every NUM for which it holds, then
it holds for all numbers.

|

The BIN induction principle is

J 0

oY
- s: P BIN
—_

I (
nil € S A
.. Y bi, b2: S: n: NUM . node(n, bl, b2) € S
< ) =s S=BIN

The general principle is a little tedious to state formally, but you can see the idea, which
: can be summarised as follows To prove that a property holds for all elements of a
=

. recursive type first prove that all the sround elements of a type have the property; then
prove that all grouna ¢rees have that property; finally, under the assumption that all its
subtrees have the property, prove that each prooer ¢tree has the property.

43

==

" AT WL Y AT Y YOS RY! o
k-ma’&t&dmﬁ-_&ﬂtnmw._t-_{g;xg.- N e,



2.

7 O v

O

3 7% W

.

LLd

{

Dy

TR

[ SN

fi
P g
‘n.

NI AT

5.9: Reasoning Methods -- Recursion Principle

Hitherto we have specified certain functions “recursively” without having any assurance

that the specifications were satisfiable For example, the following is a specification of a
function which is intended to list the nodes of a binary tree in ore—order

£lat: BIN — seqlNUMI]

£lat nil = <>
Y n: NUM; bl, b2: BIN .
£lat( node(n, bl, b2) ) = (£flat bl) » <n> # (flat b2)

It turns out that a large class of recursive specifications of total functions on trees
(including the one above) are indeed satisfiable

We will summarise the recursion principle by giving a typical instance of its application,
without going into the theory behind its validity. Suppose T is defined by

-
r-:conlo | consl<<X>> | cons2<<¥xT>> | cons3<<¥XTxT>>

where X and Y and Z are type expressions which don’t contain free occurences of the
identifier T. Suppose we are also given:

go: D
Gi: X — 0D
H2: YXp — D

H3: 2xDxD - D

The following specification of £ is satisfiable

£: T—D

€ cons0 = g0

¥x:X . £(consl x) = G1 x

Vy:Y: ©:T . £(cons2(y,t)) = H2(y, £ t)

vz:2; t1,t2: T . f{cone3(z,t1,t2})) = HI(y, £ t1, £ t2)

That is to say, there really is a total function which behaves as specified.

In general the principle states that in order to specify a total funclion over a
recursively-defined type it is necessary to specify its value at all ground clements of the
type, to specify its value at all ground trees of the type, and to specify its value at all

proper trees of the type. In this latter case it is permissible to mention the value of the
function at subtrees.

In our definition of BINary trees, the single ground element is nil, and the single (proper)
constructor is node. These correspond to cons0 and cons3 of our “typical instance”. The
specification of flat is valid because <> corresponds to g0, and the function

As, n, t. se<n> st
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3
which is of type
.}: seqlNUM] x NUM x seq{NUM] — seq(NUMI]
¢
'

corresponds to H3.

‘ In our notes on adequate representations for finite partial functions we shall apply both
the structural induction principle and the recursion principle extensivel-.

hY
§* Appendix I: Partitions
In this appendix we give formal definitions of disjointness and partitions.

> disjoint: P(seq (P X)) o

}3',: partitions: seq (P X) « (P X)

- v SS: seq (P X) .

-::, SS € disjoint e

~ V i,, ip:dom SS .

e i#i, = (SS i,) N (SS i,) = (}

w

o v SS: seq (P X) ; S: P X .

) SS partitions S e (SS € disjoint) A U(ran SS)=§

2,

o A set of (sub)sets of X is disjoint if it is pairwise disjoint; that is if no two distinct sets
bhave a nonempty intersection

I

. A disjoint set SS of (sub)sets of X partitions a (sub)set S of X if its (generalised) union is
S.

2

=2 Appendix II: Injections
Suppose we picture each relation by drawing an arrow from each domain element to the
range elements to which it corresponds. Then we would see that the Funct/onal relations

a are those in which there are no Jierg/ng arrows -~ cach domain element maps to exactly
one range element. The /njective functions are the functions in which there are also no

A comerging arrows: every element of the range arises from just one element in the domain

! 5_{ If we reverse the arrows of such a function (take its inverse) we will immediately notice

} that the resulting relation is itself a function (no diverging arrows). Thus each injective
function is itself a function. More formally we define

(X,Y]

g
A .
»

i
-<
[ 4

( £:X9Y | £* & Y=X )
X =Y 8 (X+»Y ) 0 ( X—Y)

)

The two signs we introduce denote respectively the cart/a/ injections and the ‘ota/
injections.

o
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Appendix III: Syntax
. The following is a summary of the syntax of those parts of the language we have so far
@, explained.
) Term p:z Id
i { Signature | Predicate . Term }  ..... set comprehension
L 2 ampty set
. { Ternlist ) «.... Set extension
b ( Termlist ) ceee.  tuple
i Tern x Term ee... product constructor
P Tera e suvbset constructor
F Tera ... finite subset constructor
L Tree
% Tern ceaen s/ize
o FnTerm Terma = ... function application
:‘3:’ Term FnTerm Term e infix function application
A Signature | Predicate . Tern eees lambda abstraction
b
'_:_ Tree ::= Branch
Branch | Tree Ceees disjoint union
o
4:; Branch ::= Id e ground element
Id<<Torm»> ... tree canstructor
:f Predicate ::2 3 Signature . Predicate @ = ..... axistent/al quantification
N Y Signature . Predicate veves  wnicersal quantification
- Tera = Term ceeen equality
\ Term & Ternm e membership
Tern # Term e negation of equality
Tera c Tera ceane proper svbset
) Tera ¢ Tera vere. subsat
- Predicate A Predicate eev.. coOnjunction
Predicate Vv Predicate ceee dgrsunction
Predicate == Predicate ceenn implication
n Predicate e» Predicate e logical equivalence
« Predicate e negation
,;: . Tern RelTerma Tera = ..... infix relation membershHip
¥
RelTerm iz Term
- FnTern ::= Term
Iy
o Signature ::= TypeAttr
. TypeAttr: Signature
5
ba TypeAttr ::= [IdList: Term
TermList ::= Term
Tera, Teralist
IdList iz Id
Id, Idlist
-
Defn ::= (IdList] TermaTerm = ..... Syntactic Equnalence
”. (IdList] Signature | Predicate = ..... Constant Spec:fication
« [IdList] Id a Tree
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RS
Bernard Sufrin. Ext 281
' LService
':' 12:15:22 Connected to: . Raskovskg (x294)
T 12:15:22 In service of: 3F00 0000 0208 ¢
12:15:25 Receiving: Sys:Service)3RAB_¢1F1_ADS9_FSE?
12:15:28 Receiving: Sys: Servuce>38ﬂ;_000F_9099-E9032
12:15:30 Receiving: Sys:Service)38AB_0ODF “ADS3 EAD3
N 12:13:33 Receiving: 22 3ervices39AR 5074 ADIT 2C67%
- 12:15:54 Receiving: Sys:Service>39AB 5074 QDSS'ZCS?
- %%:{E:%z Running: qFrunt @Sys:Service)Print.
.. 12:16:33 Print indirect from: Sys:Service)Prin
ey %;:%g:gg Costext from: Sys Servnce>3898 000F _AD99_EAD3
“ 2:16: pOoc:
- 15:18:54 Printing: &5 Eervice>39AB_6074_ADIS_2CE7
12:18:19 Printed 18 pages
12:18:20 qpDoc: Exit
1: 12:18:29 Brtnt- Exit
~. 12:18:29
- 12:18:54 Connecting: To Network via Data Switch
12:19:91 Connecting: T'me Service
. 12:19:91 Time Service: 12 1 97-Sep-84
{; %%:%g:gé Egserved until: é2t49 07-Sep-84
e’ H H ervice: ntr
= 12:13:57 Reserved until: 12:48:58 07-Sep-84
- 12:19:58 Connected to: Bernard Sufrin. Ext 281
- 12:19:58 In service of: 4900 _0000 0200 5766
- 12:29:21 Receiving: Sys:Service>3ARB_0FCF_AD99_8888
12:29:98 Receiving: Sys:S ervuce)F?RR AR9A_ADS96281%
12:20: 15 Receiving: Sys:Service)F ?AA_ARIA_ADI9 6281
e 12:20:20 Receiving: Sys: Servnce>F999 —0870 9099 —88SE%
- 12:21:83 Receiving: Sys:Service>F3AA_0870 A0 88SE
] 12:51:42 Receivina: §ys:Service FCARABFBE AR TEASY
12:22:05 Receiving: Sys:Service)FCAR_BFBA_ADII FEAS
12:22:29 Receiving: Sys:Service?2DAB_B1C6-ADII_90ABX
. 12:22:51 Receiving: Sys.SerVice)ZDﬂ__EICQ_QDSS-BORB
X 12:23:13 Receiving: Sys'Servncc)ZFﬁ;_9F27_ﬁ099:EC192
R 12:23:38 Receiving: Sys:Service)2FAB_OF ZF_ABSIEC1A
12:24:83 Receiving: Sys:Service)31A8_ 8401 _A093_20C1%
12:24:27 Receiving: Sys:Service?31AB"8401 _AD3920C1
" 12:24:58 Receiving: Sys:Service2>33RB_9052_A039-9243%
. 12:25:19 Receivina: Sys:Service33RB-3952_A033 70243
e 12:25:4? Receiving: Sys Service>35 ‘%=_93F3_ﬁ099_ﬁ3592
12:26:96 Receiving: s:Service> R:_93F3_9099 43E9
%%:%g:%; Running: qFrunt 8Sys:Service>Print.fle
;} 12:26:3? Print indirect from: Sys:Service)Prin
- 12:26:42 Context from: Sys: Serv:ce)F?Qﬂ RGSQ _AD39_6B281
. 12:26:46 gpDoc: Entr
15:28:82 Printing: Sps- §erv.ce\r-'9m 0070_ADSS_BESE
12:28:26 Printed 8 ?
:g }%:%g:g% Printing: gys ?egvuce) CARA_BFBB_ADIS_FEAYS
. - [ : rinte
: 15:53:38 Printing: Sys: Serv.cv?ona _81C5_aAD33_30A8
12:30: 30 Brinted
15:30:3% Printing: Sys: Serv.ceﬁraa OF2F _AD38_EC1A
1<:31:3% Printed
[5:31:43 Printing: Sys: Serv.ce>§1ne 84D1_AD99_20C1
12:32: 34 Prlnted
13:35:38 Printing: Sys Servuce>g398 9952_AD99_0243
‘ 12:33:47 Printed
15:33:51 Printing: Sys: Serv.ce>3sae _@3F3_ADI3_43E9
“ 12:34:30 Printed 4 pages
< 12:34:31 QBOOC: Exit
1::34:%0 qPrint: Exit
12:34:40
'.l
(3]
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<, Introduction -

|

- When specifications are written in the Z notation, two complementary formal languages are
v employed: the mathematical language and the schema language The mathematical language is
w5

based on standard set theory, but is “strongly typed” in & way which most Computer Scientists
will find familiar. The schema language supports the systematic presentation of large-scale
system specifications, or families of specifications, which embody material defined in the
mathematical language.

‘-'4'

Z bas evoived a good deal since its introduction in 1979 [Abrial], and this handbook is an
attempt to capture the state of the mathematical language as it stands in mid-1984. For an
introduction to the mathematics which underlies Z the reader may consult any of the material

in Section | of the bibliography. For an introduction to the style and practicc of formal
system specification which Z supports see section 2 of the bibliography, which is a list of case
studies which for the most part use the present dialect.
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al 1
Basic Notation

P

§1.0 Preliminaries
In what follows we use

‘ ii class :::=

def,
-‘. d.fz
ﬁ:( cee
! def,
! to define a new syntactic class class. A definition in this form should be taken to mean that
€ ‘ wherever a phrase of class class is required, it can be supplied in one of the forms def, ..
def,.
=
{2 The principal syntactic classes we shall define are signature, tera, predicate. In specifying
syntactic equivalences we shall assume that the syntactic variables
@.
AN t, t, ty ... T, range over terms
- id, id, id,, ... id, range over symbols, as do
S . V, V,, V3 ... V,
[N
gig, s8ig, sig,, ... sig, range over signatures
Pr Pis P2 ¢+- Pa range over predicates
s, F, F,, Fq range over terms which denote functions
i R, R, R, range over terms which denote relations
T, T¢o Ty ... T, range over terms which denote sets
:;2 The lexical structure of the class of msymbols is left undefined, but includes all sequences of

N alphanumeric characters, and all peculiar shapes which the artistically inclined may care to
think up to represent mathematical objects mnemonically.

! When specifying syntactic equivalences, the symbol Z— between two patterns a and b means “a
and b arc defined to be syntactically equivalent®. To be more precise, if by substituting
appropriate phrases for the syntactic variables in the pattern a we match a phrase of the

f-'_: language, then this phrase may be replaced by the phrase formed f{rom the pattern b by
making the same substitutions for syntactic variables. Likewise if b matches a phrase of the 3
] language, then the phrase may be replaced by a suitably modified a. (See note 3 of §Ll for a |
:-:', simple worked example). 1
|
e Technical Note: As presented here the syntax appears to be ambiguous, for !
- except in two cases we have not mentioned the binding power (precedence) “

of the symbols of the notation. Nevertheless, since the symbols used as !
.. operators are always introduced by signatures which indicate their

:j:- set-theoretic type, the structure of compound phrases can usually be inferred

: from context, and in awkward cases parentheses may be employed to make

the structure explicit.
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§1.1 Signatures

A lype declaration introduces a new variable or a new constant, associates it with a symbolic

identifier, and ascribes to it a type, from which may be deduced tbe values which it is
permitted to take A signature is a sequence of type declarations.

Syntax:
signature ::=
decl

decl ; signature

decl HER
symbol : ternm

Syntactic Equivalence :

id, id, ... id,: T

1)

idy + T: idy s T5 ... id, : T
Examples:
carriagereturn: CHAR

size: Number; weight: Number; contents: P THING

size: Number

weight: Number

contents: P THING o
factor: primes < Number @
carriagereturn, linefeed: CHAR »
_+ : NXN=N @)
adder: N = N — N .

Notes:

"' A declaration may be presented in vertical form, in which case the semicolons between type
attributions mmay be omitted, and each type attribution appears on a new line

‘2 A term which appears to the right of the colon in a type attribution must denote cither a
type, or a set whose carrier type can be determined. (See Appendix 1)

‘@ This signature is syntactically equivalent to carriagereturn: CHAR; linefeed:CHAR the
substitutions being: CHAR for T, carriagereturn for id,, linefeed for id, (and 2 for n).

' When introducing a function symbol whose name is not composed of alphanumerics, it is
customary to indicate its fixity by putting underline symbols in the places where its argument

or arguments will appear. This signature introduces the infix symbol _+_ which maps pairs of
numbers to numbers.

‘*' This signature introduces a function symbol, adder, which maps a number into a function
from numbers to numbers. The function-arrow signs are right associative so the term A—B—C
should be parsed A — (B — C). Function application, denoted by juxtaposition, is left
associative (see §l.2).

.
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§1.2 Terms

A term is a phrase of the mathematical language which corresponds intuitively to a set or
to an element of a set

Syntax:

tera ils

symbol
{ eignature | predicate . tera } set comprehension
{ term, term, ... tera !} finite set extension
( term, term, ... teram ) n-tuple
tera X term X ... X term product set (n-tuples)
P tera power set (subsets)
ters tera function application o
u tera *  arbitrary choice from a set
branch | branch ... | branch disjoint union
branch ::=
syabol
symbol<<tern>>

Note

‘** Function application is denoted by juxtaposition, which associates to the left. The term
add a n therefore denotes the application ((add m) n). Of course nothing forbids the use
of parenthesis around arguments, as for example in delete(foo).

Syntactic Equivalences:

Vil varTei oo viT, I P veiTys vaiTai oo VT, | p . (v . v,)
sig . t aig | true . ¢t
( vi:Tys vasTai .00 viT, )

Tl x r" cae ra

{(t.seig] p) {e8ig |l p. t)}

{t. eig) { Big . t )

t, &ty (t,, t5)

t, F ¢, Fle,, t,)

ANvisToo vrTy .o veT, | p .o t (viTy vasTas ... viTo | p o (v, va)t)

t whece vig | p u{siglp. t)}

IR 1) 11D

Notes:

' In situations where the form signature | predicate . term appears, the term may be
omitted when it is a tuple consisting of the variables of the signature, as may the predicate
if it is identically true

' The sign > is pronounced “to”, or “"maps to”; terms of this form appear in the
construction of relations. (see Relations, §2.2)

2 Infix notation for function application. (see Functions, §23)

1 A function is just identified with the set of domain-range pairs which it maps between. (see
Functions, §2.3)

‘! This permits local definitions 1o be made

ta)
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il Examples

‘ { n:N | divisors n = (53, 73} . n* )} “w
- { n:N | divieors n = (1, n} ) @
(% { i.j: N | i+j € primes . (i,j) ) @
3 { i,3j: N | i+j € primees } o
{53, 73} L4
i (i, 3, % ' w
N x N x N (1 4]
{ i,j. kst N} Y
.}: P (53, 73) L
E‘ () 1100
P () 114)
u{x:N| =64 . x) (a2
g A u{ x,y: N| x=42 A y=45 . x*-y? ) a3
- pair<<N x Ib> | triple<<N x N x o> . (1a)
. blue | white | green s

1y Interpretation:

) The squares of all numbers divisible only by 53 and T
RS

' The numbers which are only divisible by themselves and 1 (the primes).

-

‘3' The set of all pairs of numbers whose sum is a prime

'T“l
-

41

(L)) &me as lﬂl.

'.“\"‘ ®) The set whose two elements are 53 and 73
N
‘** The triplet (3-tuple) i j k
% 3
i 7' The set of ALL triplets of numbers.
. (I 3} same as (14]
< '
-~
- ®) The set of all subsets of {53, 73); that is { (), (53), (73), (53,73) ).
. 0 The empty set.
-
') The set of all subsets of the empty set; that is { (} ).
“»
j’ 120 A number whose cube is 64; cither 4 or -4.
> ‘43 The difference between 42 cubed and 45 squared.
\'._
44) The disjoint union of the pairs of numbers and the triples of numbers. (See Appendix 1).
',: “S) The enumerated type whose elements are blue, white, and green. (See Appendix 1).
-
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§1.3 Predicates

A predicate is a phrase of the mathematical language which corresponds intuitively to a
statement (about sets or elements of sets), which may or may not be provable

L

poe
l
|
} Syntax:
} a predicate ::=
-~ predicate negation
: predicate A predicate conjunction (and)
o tera = tera equality
— tera € tera set membership
b tera ¢ tera subset
tera symbol tera relation holds between terms o

g 3 wignature . predicate existential quantification (for some)

- predicate where definition local definition

;’t.: Note:

) ‘* It is customary to underline a symbol composed only of alphanumeric characters when

it is used as an infix operator.

i Syntactic Equivalences:

3 PV Pa = ~(= p, A -Py disjunction (or)

) P ™ P, = (= p) v P, implication (if-then)

Pi ** Py 2 (py =+ p;) A (p=P,) logical equivalence

o T, # t, -~ ~(t, = ty) inequality

. ==

A t, £ t, o ~(t, € t,) nonmem bership

. t, € t, =_’: (t, € Tty ) A (t, # ty) proper subset

i (Y 8ig . p) e -~ (3eig. (-~ p)) universal quantification (for all)
p
: . 3, 8ig . p [ (3 gig . p) A

:;: (Vv vi,vy:{gig | p} . v,=v,) existence of a unique element

! Yeig | P . P = Y sig . p, = p, "

3wig | p - P2 - 3eig. p,A p -
. Pr » Pa®-Ps = Ps
;:'-; Pa

E Pa (1)
1]

-‘f’
t, R ¢, i) (t,, t;) €R )
t’i t, R, t; R, t, = (t, R, t3) A (t, R, t3)
‘.J'
Notes:
wl ** The left band side of this equivalence is read: “p, holds for all . such that p,”.
5
‘2" The left hand side of this equivalence is read: "p, holds for some - such that p,”.
%‘
. ‘' A long sequence of conjunctions may be written vertically provided that the indentation
' established for the first predicate is inherited by the following predicates.
p J.
: :: ‘“’ The left hand side is sometimes read as "R maps t, to t,". In Z a relation is identified

with the pairs of elements between which it hoids. (See §2.2)

7
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03
Q Exam ples:
~(369 € primes) )
. (aydog € hasfleas) A (age mydog > 14) @
N ((weather here) = raining) v (here = Parie) "'
A ((weather here) € awful) = (here = Oxford) a0
(x divideg y) e (3 2:N . x x 2 = y) Rl
: : EUROPE ¢ STATE -
i (369, 7) € primes ”
3 etate:EUROPE . gtatesUK A (head state) degcendant Victoria ‘e
5 v state:EUROPE . wstate € EEC -
g}‘* 3 state:EUROPE | state#UK . (head state) demcendant Victoria 1o
’ Vv state:STATE | state € EUROPE . state € EEC )
¥ p: PERSON . )
B father p € PERSON
- mother p € PERSON .
children p ¢ PERSON
(S
:'_ Bernard dgascendant Samuel wAese descendant @ child® (3
E: Interpretation:

') 369 is not a member of the set of primes

N
P

‘7' Mydog is s member of hasfleas and its age is greater than 4.

‘> The weather here is raining or here is Paris

Rt s
[P ]

‘) If the weather here is a member of awful then here is Oxford.

‘®) x divides y if and only if there is a number z whose product with x is y.

[ &
3
:
;

‘@) EUROPE is a subset of the set STATE

v
»

v,

‘7> The set whose two eclements are 369 and 7 is a subset of the set of primes

B

‘®) There is a state in EUROPE which is not the UK and whose head is a descendant of

'F Victoria.

‘® All states in EUROPE are members of EEC.

n
E: 10! (Same as 8)
c 11 (s‘mc as 9)

‘*7' The father, mother, and children of all persons are persons

¥ '13) Bernard is in the relation descendant with Samuel, where descendant is defined to be
¥ the transitive closure (see §2.7) of the relation child




§1.4 Definitions

Constants are defined either by syntactic equivalence, or by axiomatic specification Generic (ie
families of type-parameterised) definitions are preceeded by a sequence of type identifiers,

| SFa

~ which indicate the formal type parameters of the definition
Syntax:
definition ::=
. axiomatic
syntactic
N generic

[ S}
L4 »

»

axiomatic ::=

]
& ) signature
predicate
S
%
<
- syntactic ::=
‘ tera & tera
- symnbol ———
o " I tera
\ generic ::= [(eymbol, ...) definition hd
Note:
. ‘®' Generic definitions specify families of constants; see examples ‘*’ and ‘*' below.
v Examples:
S
A
[ "
1
poly: N — N
g Y x:N . poly x = x* + 2x?
p
a [} 1]
1
- processoraspernode: N
."‘
T 7 < processorspernode ¢ 19
oY
) N
1
primes, equareprimes: P N
. primes = ( n:N | divisors n = (1, n} }
'~, squareprimes = { n:primes . n? )

T S D BT B T T T T R BT R e e e
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impossible: N

“fQ Y n:primes . impossible > n

‘. NumberPair & N x N 8
NunberPair —_ 81
[_N x N
Interpretation
5 '*' The symbol poly denotes a function which maps numbers to numbers. Every number maps
under poly to the sum of its square and twice its cube .

‘2! The symbol processorspernode denotes 3 (constant) number between seven and nineteen.

xR

‘' The symbols primes and squareprimes denote constants: primes is the set of all numbers

:3 divisible only by 1 and themselves; squareprimes is the set of numbers generated by squaring
> each prime

B ‘“’ The symbol imposaible denotes a number which is larger than or equal to every prime
ﬁ This is an unsatisfiable specification, of course, since there is no such number.

. '’ The symbol NumberPair is syntactically equivalent to the term N x N

=

)

‘*) Same as ‘%,

Further Examples:

L2

PrimaryColour . e
,_ Red | Blue | Yellow

(xi

=
.

v :PXxPX—=PX

Ve, e: PX.as Us =(x:X|x€m Vx€ag,)

=33

- (x]
. ({ 3]
- 1
flatten: seq (seq X) — seq X flat.0
-
;:_ flatten <> = <> flat.1
Y x:meq X: @:seq (seq X)
s flatten(x - 8) = x # (flatten 8) flat.2
<,
Interpretation
i 7" PrimaryColour is a type which contains exactly three elements, named Red, Blue,
and Yellow. (See Appendix 1).
*n ‘*' This is a family of definitions. For every type X, the infix symbol U,,, denotes union for
A sets of clements from X. This is a function which maps pairs of sets to sets. The result set and

the argument sets are all subsets of X. It is customary to omit the subscript ,,, when using the
operator in a term since it can be inferred from the types of the operands. For example, if we
have

m
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N gold: P FISH
angel: P FISH

::,'} then the U in the term gold U angel denotes the union function for sets of elements of type
e FISH, ie U,r vy For further details see Appendix L
‘*' This specifies a family of functions on sequences of sequences. In order to be able to refer
i (for example within proofs) to the different parts of the specification we have labelled them.
This is an informal practice which can improve the readability of documents when used
- judiciously.
e

y §1.5 Chapters

As yet there is no formal way of meodularising a Z document. Present practise is to divide
the material presented in & specification into named chapters Each chapter consists of some
symbol definitions explained by prose, together with some theorems (see §L6). Although it is
rare for constants defined in different chapters to be given identical names, any confusion
between such constants is resolved by qualifying their names with the name of the chapter in
which they were defined. For example: if in a single Z text we have chapters named SINPLE

oy |

7

E STORAGE and SAFE STORAGE, each of which defines something named STORE, and if we wish in
. a subsequent chapter to refer to both constants, then we use the symbol: SIMPLESTORAGE§STORE
o o denote the former and the symbol SAFESTORAGE§STORE to denote the latter.

o

~ It is also customary for Z documents to be self-contained. Any symbols which are referred to
in a text are to be found explained in a chapter (perbaps an appendix) of the document. In
"_A_' order to simplify matters it is assumed, unless otherwise indicated, that the standard material
T of section 2 of this document (on sets, relations, functions, numbers, sequences iteration and
R transitive closure) is present. Constants defined in these standard chapters may frecly be used
‘ anywhere in a document
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§1.6 Theorems

A theorem is a statement about the definitions which appear in its chapter and the chapters to
which it refers. The statement is an assertion that a certain predicate has been proved from the
definitions themselves together with the rules of reasoning of Z ‘*'. In order to be able 1o

refer to theorems within prose or from proofs which use them, we sometimes label them with
identifiers or numbers.

[ 29

r'r

|
|
Syntax: |

- theorea ::=
o ~ predicate
hypothesis + predicate
~ hypothesis ::=
) signature
» signature | predicate
: hypothesis;: hypothesis
Examples:

~
“~ =~ 3 € prines
- x:N ~ x¢1 € N 2
-\\.
-

x,y:N | x#0#y — (pred x)=(pred y) == (x=y) @
-7
~e
T Notes:
. ‘1) A theorem doesn’t amount to an assertion that we wish we could prove a certain predicate,
i or that we think that we might be able to but haven't quite enough to time to go through the

motions. Such a statement is usually called a conjecture, and may be written with a ?+~ sign in
place of the ~ sign For details of the way in which proofs should be presented, see Appendix

2

‘2' This theorem reads “given a natural number x, we can prove that x+1 € N,

n ' This theorem reads “given natural numbers x and y, which both differ from zero, we can
prove that (pred x)=(pred y) =- (x=y)".

X
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Standard Chapters
=
A
b §2.1 Sets
21! There are no “built~in™ sets in Z. Despite this, it is customary to assume that the
- symbol N denotes the set of natural numbers (nonnegative integers). In fact N, together
with the usual operations on it, can be defined within Z (sec Appendix | for details).
.'::- It is also customary to preface a Z document with a form of words such as:
“let PERSON denote the set of all persons, and let CITY denote the set of
E all cities — we need not go into the internal structure of these sets any
* further®. .
-~ This form of words can be interpreted as meaning “"we could give constructive definitions
:::-_ of PERSON and CITY, but such definitions would simply be a distraction at present™. The
' symbols PERSON and CITY are said to denote “given sets” under these circumstances, and a
Lo document with such a preface characterises a family of specifications, one for each possible
a;p} constructive definition of the “given sets”.
. 212 For any set T, the term P T denotes the set of all sets whose members are drawn
E;' from T, iec the set of all subsets of T. Nothing can be a member both of T and of P T.
T, €(PT,) e T,cT,
o - (T,6Ta) A (T,eT,) o= (T,=T,)
- 213 For any set T, the term F T denotes the set of all finite subsets of T. A set of
. elements is finite if there is a one-one correspondence between its members and an initial
segment of the natural numbers.
I 214 For any sets T, ... T., theterm T, x .., X T, denotes the set of all n-tuples, such as
Y
(tyy coov t,)
g These are characterised by
- (L, ..., tJE(T, X .., xT,) e+ tE€T, A ... A te€T, |
2 |
Nothing can be a member both of one of the sets T, and of T, x ... Xx T,. !
\
?: 215 For any sets T, ... T,, and any distinct symbols id, ... id, the term
id<<T>> | ... | id.<<Tn>>
"
w denotes the “labelled disjoint union” of T, .. T,. Nothing can be 2 member both of one
of the sets T, and of the disjoint union. This is a set which contains exactly one element
:Q for each of the elements in T,, one for cach of the clements of T,, ... and one for each
"4 of the elements of T, but po more The symbols id, ... id, denote injective functions
which map to and from the disjoint union (see section 5 of [Sufrin] for more details).
o
.“ 215 For any distinct symbols id, ... id, the term id, | id, | ... id, denotes the
\ “enumerated type” which contains exactly the elements id, ... id,
.
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& §2.2 Relations

For any sets T, and T,, the set of all binary relations between T, and T, is defined to be
the set of all sets of ordered pairs from T, x T,. When elements t, and t, are related by
he R, we sometimes say that R maps t, to t, The domain of a relation R is the set of all
elements which are mapped to something by R; the range of R is the set of all clements to
. which R maps clements of its domain The inverse of a relation R, written R*, has the
. ordered pairs of R reversed '

w Definition:
w3
(%]
(T,, T,)

! T, &~ T, & P(T, xT,)
- Syntactic Equivalences: :
:::: LT Sandil 2 (r,,t3)

Definitions:
L
- [Ty, T, R (T,0T) S )
- doa R 8 { x:T, | (3y:T, . xRy) )}
:._ : ran R & ( y:T, | (3x:T, . xRy) )

R! ¢ { (y=x) . y:Ty x:T, | xRy )

St t, Rty e (t,,t,)eR
N

Note:

‘'' This is a context-dependent set of definitions; it signifies that for any sets T, and T, the
four syntactic equivalences hoid for all binary relations R between sets T, and T,

.-
A4

o Examples:
:.' L For each set S of clements of T, the identity relation between pairs of elements of S is
) defined by:
i -
N id: (P T) = (TeT)
~:: vyS:PT.
= idS=( (x™ x) . x:T | x€S5)
3 so, for example,
LY
id (3,4,5) = ( 3—3, 4—4, 595 )
bl
) Notice that
e
. S: PT ~ (idS) = (id §)°*
- 2. N « N is the set of all relations between pairs of numbers. An example of such a
relation is _¢_.
-
s -
_ < _ N «~ N
-~
N

Which can be characterised by any of the following, logically equivalent axioms:

N
u &_=1{n,, np:N | (3 d:N . n,+d=ny) . (n, = n,) }
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§ <_=1{n,, ni:N| (3 d:N. n,+d=n,) }
. Y n.ng:N .

.;.‘ Ne € Ny &= 3 d:N . n,+d=n,

o

3 Another binary relation betwen numbers is the finite binary relation:

m‘

{ 01, 192, 23, 33, 0—0 )

Theorems:

»
»

A

R: T,~T, = (R = R
R: T,~T, ~ dom(R**) = ran R
! R: T,-T, = ran(R'') = dom R

O
2

L % 9% {
[}
.

%

2 - 4
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':t: §2.3 Functions

231 Notation for Functions

The set of partial functions from T, to T, is the set of relations between T, and T, which
map elemems of their domain to a single element of their range A partial function is said

1o be total from T, if its domain is all of T,. A function is said to be a finite mapping
from T, if its domain is a finite subset of T,.

b e 5
P A

.,

{7,, T,l
- T, » T, & { R:T, T, |[(V x:T; ¥,,¥2:Ta . xRy, A xRy, == y,=y,) }
- T, # T, 8 { £:T,»T, | dom £ = T, }
: T, » T, 8 { £:T,»T, | domf€FT,)

P
N

An injective function is one whose inverse is also a functionn We use the following
symbols 10 denote the partial, total and finite injections

a

(T,, T,
T, T, @ { £:T,T, | £ €T,#T, )
T, > T, 8 (T, > T,) N (T, = T,)
T W T, 6 (T, T,) 0 (T, w T,

I
g A
fo Yo

‘.A

o A function is said to be (a surjection) onto T, if its range is the whole of T,. The
- arrow-symbols used to denote the surjective functions are derived from the usual function
i~ arrows by adding an extra "head”. The most important are those used to denote the
oY partial surjections, the total surjections, and the one-one functions, namely:

” (1,, T,

-

I, » T, &8 ({ £:T,T, | ranf =17,
T, * T, @ (T, » T,) N (T, = T,)
T, ™ T, & (T, » T) N (T, =T,

| o\

232 Notation for Function Applications

If Fis a function from T, to T,, and if x is a member of the domain of F, then the term
- F x denotes the unique element y of T, which stands in the relation F to x, in other
words the value of F at x. The simplest way to formalise this is

[1,, T,
! F:T,#Ty x:T, | x€dom F +~ (x ~— F x) € F
3 In fact we may not deduce anything interesting about the term F x if F doesn't denote a
-,,‘. function or if x is not in the domain of F. (see Appendix 2 for further details)
. §2.4 Simple Operators
. 2.4.] Difference, union, and intersection functions.
(1)
— 1
! o

N (PT) X (PT) = (PT)

: T
S, - S, = { x:T | x€S, A x¢#S, )
. S, US,={ x:T | x€S, v x€5, )
;‘f— S, NSy = { x:T | x€S, A x€S, )
>
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2.4.2 Subset and proper subset relations.

(T)

c + (PT) & (PT)

¥ S, S;: PT.
S; €& Sy * (V¥ x:T ., x€5, =+ x€S,)
S, € S; = (5,#5, A 5,65,)

2.43 Natural Numbers

The natural numbers have an element, 0. There is an injective total function, succ, on the

natural numbers, whose range does not contain 0. .

0: N
succ: N = N

0 £ ran succ

Notation:

N, ¢ N- {0}
pred & succ™'

Theorems:
Recursion Principle
{(T)
x:T: g:T—T +~ 3, £:N—T . £ 0 = x A guccif = £ig “

Induction Principle

S:P N+~ Q€S A (Y n:S . succ n € §) - S=N

Note
*’ This theorem 1is the justification for our using the “recursion equation”
specification for the iterative composition function jter defined in §2.7.

244 Numerals
The Arabic digits denote numbers defined by

1 8 guc0, 206 gucti, ... 98 sucs

form of

The usual conventions concerning the numbers denoted by multi-digit sequences apply.
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;’: 245 Arithmetic Operators and Relations 1
-‘. : - N X N — N " ‘
|
i‘ -t NXxN-=+N ) ‘
- < _t NN "
':' _+ _ = l
Am, n:N. succ" m @
! - x =
] - Aa, :N. (_+m)"nm . 21081472
=3
o add: N— N — N
\i Il
add n n = a+n
"
_~_. =xn, n:N . pred"n 4)(8)
':; - € . = mucc® o
:f." Notes:
"' The operator symbols x and - are given additional meanings here. In any context the
particular meaning of one of these symbols can be determined from the types of its operands.
i ‘?' Addition is defined as the repeated taking of auccessors
‘3 Multiplication is defined by repeated addition
) ‘“’ Notice that the subtraction operator is partial, since no Natural number precedes 0.
! ‘®’ Repetition is denoted by R" and explained in §2.7.

. ‘** R®* is a relation formed by taking the union of all repetitions of the relation R, as

.. explained in §2.7.

- ‘™" The term (_ + =m) denotes a function which adds » to its argument. More generally, the
following conditional syntactic equivalences hold:

£f: T, x Ty = T,: aT,; t: 1T, 3 (a £ ) &6 X t:T, . £f(8, t)

£: T, xTy » T, 8:T,; t: T, 3 (_ft) e Ne@:T, . £f(s, t)

.
:', 2.4.6 Segments of the natural numbers
N

-
;}’ .. _: NxXN—=K
(M

ve n:N. a..n={ 1:N| mgign )

2.4.7 Finite Sets and their Cardinality
< A finite set of clements of T is a subset of T which can be pul into a one-onec correspondence
with some initial segment of the natural numbers.

18 : e e e
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(T]
FTe (S:PT| 3 n:N; £:T=N . £ € S»(1,..n) )

In fact it turns out that there is only one such segment; its length is called the cardinality (or
size) of the finite set. The size operator # is therefore defined by:

] : FT—N

vs: FT.
#S = u ( n:N | (3 £:T»N . £ € S»»(1..n)) )

Theorem:
The size of the union of two disjoint finite sets is the sum of -the sizes of the sets

(T)
SuSa: FT | §nS=() +~  #(S, U S,;) = 45, + &S,
- # (=0

245 Generalised Union and Intersection

The generalised union of a set SS of sets of T is the set which contains those members of T
which are in at least one of the sets in SS. The generalised intersection of SS is the set which
contains those members of T which are in all the sets of SS.

U_l
nN_:PPT) = (PT)

vy SS:P(P T) .
USS = { x:T | (3 S:8S5 . x€S) }
NSS=( x:T | (v S:88 . x€S) }

Theorems:

SS:P(P T) »r SS=() =+ USS = ()}
SS:P(PT) + SS=() =» NSS = T




mmmm

.
-~
§2.5 Operators on Relations
. In this section we define relational composition, relational restrictions, relational overriding and
.‘:: relational image Since functions are simply specialised kinds of relation, the relational
S operators defined below may also be applied to them.
i [T..T,. T,)
2351 Composition
ha
!“'. ]
- _ bt (T,T,y) X (T,0T,) — (T,T,)
! , ¥ Ri:T, STy Ry:TyoTy x:Tyi z:T, .
I (x,z) € (R, J Ry) & 3 y:T, . (x,y)€R, A (y, Z)€R,
XN
> Some authors also use the sign » defined by: R, * R, 8 R, J R,
” 2352 Domain and Range Restriction
s
|

' _F _: (TT) x (PT,) = (T,7,)
:—: -\t (TOT) x (P T) — (T,0T,)
. ad 1 (T,T) X (P Ty) = (T,e7T,)

- / - (T|HT’) x (P T’) - (T|"'T,)
s
\l
- ¥ R:T, T, S.:P T, S:P T, .

RIS, =1(ids,) 3 R
. R\S, =R (T,-5,))
i RIS,=R 7 (id sy

R / s: = R J (T,-S,)

It is often convenient, particularly when performing algebraic manipulations, to place domain
restrictions to the left of the relation; we therefore define the following variants of the domain
g‘ restriction operators:

. P (PT) X (T,=T,) — (T,07,)
N (PT) X (T,=T,) = (T,0T,)
.

\) R:T“"’Tg; S‘:P T‘
t R=(id S) 3 R
\R=(T, -S) IR

N
W

7
v

e

',-.'; 253 Relational Overriding

£ n
; ~® _: (T,T) x (1,7 — (T,~7,)

" Y R,, RpT,~T, .

ﬁ R, ® R, = (R, \ (dom R,)) VU R,

o
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254 Generalised Application: Relational Image

The image of a set S through a relation R (sometimes called the R-image of S) is the set of

elements of the range of R to which R maps elements of S.

-C_)

(T, = T,) x (P T,)

¥ R:T,~T, S:PT, .
R(S)={ y:T, | (3 x:S .

- (P T

xRy) }

Syntactic Equivalence
R:T, T, t: T, 9 Rl t ) o RL (%} )}

Ry Ry: T, =Ty Ry:T,40T,
R,y Ry T, Ty F:TpoT,

Ry Ky: T, 9Ty Ry: T,
Ri: T, 3Ty Ry Ry:T,e0T,

R:T,&T;; Ry, Ry: T,—T,
Ry :T+*Ty: Ry, Ry: Ty T,
F:T,+T,; Ry, Ry;: T T,

R, Ry: T, T,
R, . R;: T,«T,
R,.Ry: T, =T,
R,.Ry: T,T,

R, Ry Ry: T, T,
R:T T,

R,.R;: T, T,

R, Rp:T,+T,

E&m&x‘vxﬂr A M Pt o o e TN S L

Theorems:

(T.T,:T3, T3, Tdl
R:T,T,; Si:P T,; S;: P T, -
R:T, 7T, S,:P T,: S;: P T, -
R:T,&T,y §,,83: T, -
R:T,Ty: S,,83: 7T, -
F:ToPTy S,,82: 7T, -
R:T,Ty S,,8::T, -
R:T T, -
R:T,—T, -
R:T, T, -
F:T,»T, -
Rt T, Ty Ry Te1, -
Ry:T,#T, Ry:T,0T, -
Ry: T Ty Ry:TyeT, -
R;:T, Ty Re:TaTy: Ry:T,—T,. -
R:T, T, -
Ry Ry T,9T, Ry:T,T, -

T

T7

T T YT

T 1 V7

\. 'u LS R LRt a® )

et

R { domR) =ranR
R*{ranR ) = dor R
R( S, V S, ] = R(S,]) V R(S,)
Rl S, n S; ) ¢ R[S,) N R[S,)
F[L S, N S; ) = F(S,] n F(S,)
S, €S, = R[S,) ¢ RI[S,)

id(dom R) ¢ R 7 R*?
id{ran R) s R 3 R

R* € T, + T, = id(dom R) = R § R
id(ran F) = F* 3 F

(R, 3 R;}"' = Ry' 3 R,
dom(R, 3 Ry) = R,”'( dom R; ]}
ran(R, 3 Ry) = R,{ ran R, ]

R, 3 (Rg 3 Ry) = (R, 3 Ry) 3 Ry
R (idT,) = R = (id T,) 3 R

(Ry U Ry) 3 R, = (R;3Ry) VU (RyIRy)
(Ry N Ry) 3 R, & (R,IR,) N (RyIR,)
(R, N Ry) 3 F = (R{IF) N (RyF)

R, € R, = (R,JRy) & (R,IR,)
R; & R, = (R,SRy) € (R,IR,)

R, 3 (R, U Ry) = (R,IR;) U (R{IR,)
R, 3 (Ry N Ry € (Ry3R,) N (RIR,)
F 3 (Ry N Ry = (FIRy) N (FIR,)

(R, VR = R, U R,
(R, N Ry = R,”* N R,
(R, - Ry)"* = R,”" - R,"
R, € Ry, e R, ¢ R

R, ® (R, ® R,) = (R, ® R,) ® R,

(R® (})) =R = ({() ® R}

dom(R, ® R;) = dom R, U dom R,

ran(R, ® R,) = R, (T, - dom R,) U ran R,

21
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- §2.6 Finite Sequences

261 Given a set T, the finite sequences of T are the finite partial functions from N to T whose
domains are initial segments of the natural numbers.

[T}

— seq T —_
{ £: Nw» T | dom £ = {..4f )

f__-oq.T —
seq T - { (} )

For example

{ 15, 26, 3—77 ) € peq N
{ 1—{}, 2—primes ) € geq (P N)

In general the following syntactic sugar is used for extensional specifications of sequences

<> s ()
<ag e { 1—a, )
<a; ... a> & { 1=a, ... n—a,}

Theorem:
s:geq T,; £:T,—T, ~ m3f € seq T,
2.62 Sequence Construction Operators

One way of building a new sequence is to push a new eclement onto the front of an existing
sequence, thus

cona: (T x (seq T)) — seq T

v t:T; s:seq T .
tcona ® = { 1=t ) U (gucc'';s)

Another way is to push the new element onto the end of the sequence, thus

snoc: ((seq T) x T} — geqlT)

vy t:T; s:seq T .
t gnoc 8 =8 U { sgucec %8 = x )

Syntactic Equivalence:

t, Tty 8 t, gong ¢
t, Tty 8 t, snoc t,
22
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k¢ Theorems:’
L Primitive Recursion for Sequences

| (T, T,
, - x: Ty ¢:T, x T, = T,
1 [ d
, i 3, £:(seq T,)>T, .
! £f <> = x
! Y t:T,; e:@eq T, . £(t cona ®) = glt, £ @)
E ,::f 2. Sequence Induction
(T)

! S:Pleseq T) - (<>€S) A (v@:S; ¢:T ., (t copng B)€S) = S=(geq T)
} < .
]
b \ 2.63 Sequence Selection Operators
b .}
N

¢

hd, firest, last: seq, T — T
tl, back, front: eeq, T — seq T

';'.

k)
'

first = )\ o:8eq T | 8#<> . (8 1)

front = A s:seq T | 8#<> . af(1.,(pred de))

back = X s:seq T | s#<> . succss \ (0}

lawt = X\ @:meq T | spt<> ., slts)
=
[ ]

4
.

%

hd firet
tl back

P
1
[

o !

2.6.4 Sequence Operators — Append, Reverse

w.

.|
% _: (geq T) X (geq T) — (meq T)

rev : (seq T) — (peq T)
. N ®,,0,:88q T . g, U (_ - #8,)l8, "

rev =
R A s:seq T . (revseg #s)jeuccirs
- where

reveeg: N — (seq N)
L

- | r
N v n:N . reveeg n = { i—(n-i) . i:N | i€l..n}

Notes:

““' The term (_ - #s,) denotes an N — N function which maps a number n into the
- number n-#e, See note 7' of §2.4.5.

Synmtactic Equivalence

.
-t — -
8,, 8, @eq X = 8, B, & 8, % B,
-
. Theorems:
e
- s:seq T - <> 8§ =5 % <> = 8§
8,.8,,8,:8eq T — 8, » (8, » 8,) = (5, » By) » 8,
'i'. 8,.8,:8eq T: t:T - {t cons e,) #» 8, = t gcons (e, * 8,)
3 - T VN VL W S T T ~ N . _\_‘-_._-";.\f
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8,,8,:8eq T — revi g, » 8, ) = (rev 8;) # (rev a,)
- m:seq T: t:T ~ rev( t cong 8 ) = (rev e) gnec t
.": = rev <> = <>
2 t:T ~ rev <t> = <t>

~ rev } rev = id(seq T)

i 2.65 Subsequences
- -
o after, .

for: (seq T) X T — (seq T)

Y s:seq T;: n:N .
s after n = succ" 3 8 .
s for n =8l (1..n)

.
»

S
s

Theorems:

e: seq T; n:N ~ (s for n) » (s after n) = s

8

s: seq T ~ (s for %8) = @

s: seq T = (8 after 0) = o
_‘: 2.6.6 Sequences of Relations
e Distributed composition and override of sequences of homogeneous functions are defined by

primitive recursion over sequences.
t-v' [T]
1
.. ' -l
'-' ¢ _: geq (THT) — (TT)
.- ® <> = id T
_._ $ <> = id T
i Y 8:0eq(THT); R:TT .
u ®(R cons s) = R ® (eS)
J(R cona ) = R 3 (eS)

Theorems:

8,, 8;: 9eq(T—T) ~ j(a, #» 8,) = (38,) 3 (38,)
8,, 8;: 8eq(T—T) +— @(s, » 8,) = (0a,) ® (0g,)

s

“

.

el

eat
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§2.7 Iteration and Transitive Closure
The nth iterate of a homogeneous relation is its n-fold composition with itself. This definition
is justified by the Recursion Principle for natural numbers (see §2.4.3)

(X

)
iter: N x (TOT) — (T<T)
i Y R:TeT; n:N .
0 iter R = id T
~e (suc n) iter R = R 3 (n iter R)
-
\':'
Syntactic Equivalence:
! R* @& t iter R )
0 The (reflexive) transitive closure of a homogeneous relation is the union of all its iterates, its
:‘)Jb irreflexive transitive closure is the union of all its iterates but the zeroth

. . k

= v (TeT) = (TeT)

@ ¥ R:TeT .
: R®* =U{R". n:N)

R® =U{R". n:N, )

Theorems:

-' R:(TT); a,n:N =~ (R*)" = (R")®* = R"** ™

R: (T&=T); a,n:N = (R®) J (R") = R ™
. R: (TeT); n:N = (R")"* = (R"")*
o R,,Ry: T-T; n:N ~ (RyJR;) = (RyR,) == (R, 3 R)" = R," 3 R,
-, R: (Te>T) ~R*JR = R

R: (TeT) = R*3J R = R = R )R

R: (TeT) ~ (R*)* = R*
! R: (TeT) = (R*)" = (R'Y)*

R: (TeT) ~ (R®)** = (R™M)®
K Ry, Ry: T+ T = (RySRy) = (Ry3R,) == (R, 3 Ry)* = R," 3 R,*
~ R, Ry: TT = R*V R, ¢ (R, URY*®
- ~ suce’ = _c_

~ succ® = _¢_

| AT AR LS k
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Appendix 1
The Z Type System
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Rules of Reasoning for Z
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Abstract

One of the more prominent features of the Z specification technique is its use of
schesas. This document gives a compact description of what schemas are and

. how they are manipulated Some of the notations introduced are still considered
preliminary.
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given triangle’s three sides. Then
l az - b3 = C’ ‘

In this specification, it is the English text which associates the names a, b, and ¢ with the sides

.; |
The Schema Language -3- 1
|
A l. Introduction

. Schemas are a device for organising the presentation of the mathematical text of Z |

specifications. Specifications in Z are generally given as predicates relating observations of the

object specified; for example, the following specification is satisfied by any right-angled triangle:
o Let the positive real numbers a, b, and ¢ be the lengths of the }
1

': of triangles In Z, the mathematical text would in addition introduce the variable’s types
(suppose R* is the set of positive real numbers):
! a, b, e: R*
This pattern of declaration and predicate occurs so frequently in Z specifications -

-
n in sets {a,b,c: R* | a? +» b? = %

in functions Ma,b,c: R°| a? + b¥ 3 2. ,ab

in predicates va,b,c: R° | a? + b? 2 c?. ca A~ ob

3a,b,c: RP 1 a2+ b¥=¢?., a=zb

[ that it has taken on a life of its owrn; it has become the schema: |

Pythagorean .

a, b, ¢: R*

' a? « b? 2 * .
\ .. The above is a mamed schema (Pythagorean) expressing the relationship holding among the sides
- of a right-angled triangle.
The advantage of recognising and naming schemas is that it simplifies the presentation of large
- but shallow mathematical text (which is typical of specification).




T T TR A abaradibTadA s Buv dre Sab Aod dak Aas gad Bt hgi Bab dok bl 00 B0t Ak BB Aok Had ik Aad b A4 Sl A SR A TS b i fad Al Tk AR A

- The Schema Language -4~
= 2. Definition, notation, and naming of schemas

N 2.l. Definition of a schema

:4 A schema comprises a signature part and a predicate part, cither of whick may be empty. The
-l signature part is a list of variable declarations, and each declaration consists of the variable’s

name and its type For example, the following signature declares two variables:

-
. chief: PERSON
indians: P PERSON

chief is of type PERSON (that is, it may take values from that set), and indians is of type

P PERSON (the powerset of the set PERSON). The set PERSON itself is assumed to be defined
elsewhere

. The predicate part of a schema consists of a single predicate - for example

~. chief # indians

The type constructors (P etc) and the predicate syntax are given in Part | of the Z handbook.

2.2. How schemas are written
- Schemas may be written in either a horizontal or vertical form:
Horizontal
chief: PERSON: indians: P PERSON | chief # indians

ﬁ Verzical

1
S chief: PERSON; indians: P PERSON

chief ¢ indians

i The above schema describes the relationship between the chief of an indian tribe and his indians.

. In the horizontal form, the signature and predicate are separated by a vertical bar (pronounced
“such that”). In the vertical form, the signature and predicate are separated by a horizontal line
(again “such that”), and the schema itself is enclosed in a box. As a convenience, declarations
may be broken at semicolons, and long predicates may be broken at conjunctions (A), and

by written on several lines with the ;: or A elided - for example,
1

- chief: PERSON

"_; indiana: P INDILAN

chief ¥ indians
indiana = (O
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The Schema Language

2.3. How schemas are named

Naming a schema introduces a syntactic equivalence between the name and the schema itself.

In

the horizontal form, a schema is named by introducing the name and the schema together,

separated by a ("is syntactically equivalent to™):
Tribe 3 chief: PERSON: indiang: P PERSON | chief # indians
In the vertical form, the schema is named by labelling its surrounding box:

Tribe

chief: PERSON
indians: P PERSON

chief # indians

e m A m s M e maeas e
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The Schema Language -6~

3. Schemas within mathematical text

Section | above noted that many of the mathematical notations of set theory have a schema-like
syntax. Set comprehension is one example; here is the set of all tribes:

{chief: PERSON; indians: P PERSON !
chief ¢ indians . (chief, indians)}.

Using the syntactic equivalence defined in section 2.3 above, one could write this as just
(Tribe . (chief, indians)},

or, using the convention introduced in section L2 of the handbook, as simply (Tribe!}. This

. macro-like use of schemas was in fact their original application, and the "raw” mathematics

could always be recovered by substituting a schema’s body wherever its name occurred

3.1. Rules of syntactic equivalence
Given below are the contexts in which schemas may appear directly in mathematical text

Set comprehension

A schema enclosed in set-braces ()" is syntactically equivalent to the corresponding set
com prehension.

{Iribe}
is equivalent to

{chief: PERSON: indians: P PERSON | chief # indians}
In some circumstances, the brackets can be omitted; see 32 below. When we use this
form to denote a set, we choose not to know the ordering of components in elements
of the set. Hence we follow the practics of using this form only where the ordering

does not matter. We disallow sentences like

(Tribe} ¢ PERSON x (P PERSON),
(c, ) € (Tribe) where c: PERSON; w: P PERSON.

We allow sentences like
(Tribe | #indians < 120} ¢ (Tribe).

(Here, # is the cardinality operator on sets]
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e Lambda abstraction
83

A schema preceded by “\" and followed by "~." is syntactically equivalent to the
i corresponding lambda abstraction.

AIribe. #indians

j::: is equivalent to
! Achief: PERSON: indians: P PERSON | chief € indians. sindians.

The projection function which for a given tribe gives the set of its indians is
N Aribe. indians..
-

If er: Tribe, then the application of this projection function to tr,
-
~ (NTribe. indians)(tr),
- is often written indians(tr) or tr.indians for convenience
PN

Quantification

-~
-~ A schema preceded by "v™ or “3°, and followed by “.” is syntactically equivalent to the
o™

corresponding quantification.

3Tribe.indians = (}

w7

is equivalent to

A

»

3chief: PERSON; indians: P PERSON | chief # indians. indians = ()}

R
L]

Tuple

.. A schema preceded by the symbol “tuple” is syntactically equivalent to the ordered l

.:,: tuple of its variable names in some undetermined order. For example, !

- i
tuple Tribe '

o is an ordered pair containing the names chief and indianas, i.e it might be i

. (chief, indians) ,

In some circumstances, the tuple can be omitted; see 32 below. As we choose not to |

know the ordering of components, we follow the practice of using this form only !

: where the ordering does not matter. Hence we disallow !

. tuple Tribe € PERSON x (P PERSON),

'ﬁ while we allow

,.: tuple Tribe € (Tribe).

r

-~

4

A S S

oo N RN
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Furthermore, we use tuple only where the context agrees with the signature of the
schema.

Pred

A schema preceded by the symbol “pred” is syntactically equivalent to its predicate
part.

pred Tribe
is equivalent to
chief # indians
In some circumstances, the pred can be omitted; see 32 below. To avoid ambiguity,

pred should be used only where the context agrees with the schema’s signature.

3.2. Omission of (), tuple, and pred

The set braces "(}” can be omitted when the schema appears as part of a type; set comprehension
is assumed. For example,

size: (Iribe} — N
may be abbreviated
size: Tribe — N

“tuple” can be omitted where syntax requires a term, and “pred” where syntax requires a
predicate. For example,

chief ¢ indians =» (chief, indiane) € (Tribe!
is equivalent to

pred Tribe == tuple Tribe € (Tribe)
which can be abbreviated (but inadvisedly)

Tribe = Tribe € (Tribe)

Note, however, that here, the braces () cannot be dropped.

. .
-
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o . .

__: - 4. Basic schema aperations

5 The basic operations of renaming, decoration, inclusion, and extension allow schemas to be

' constructed directly from other schemas. (Some of these operations are special cases of more
general operations introduced in section 6.)

= , :

- 4.1l. Renaming variables

! Renaming a schema variable changes its name in the signature and in the predicate part (where

- it may be necessary to further rename bound variables in order to avoid clashes). The notation
is

I

~ scheza (newname/oldnane)

F For example,
l“'
-~ Tribe (PM/chief] [cabinet/indians] @
o)
+. 1
> PM: PERSON
4 cabinet: P PERSON
“ PM 4 cabinet
;.
| As usual,
re. (new,/01d,] (newy,/old,] ...
: may be written
u (new,/old,, new,/old, ...]
3 4.2. Schema decoration
e
Schema decoration is a special case of variable renaming: decorating a schema is equivalent to

! so decorating each of its variables Typical decorations are superscripts and subscripts; for
" example

.
-d —
s Tribe’' 8 chief': PERSON

' indians’': P PERSON

::: chief’' # indians’

-:: For a decorated schema, it is guaranteed that the ordering of components obtained with tuplie
&

and set comprehension agrees with that obtained for the original schema This allows us to write
for example,

tuple Tribe’ = tuple Tribe.
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4.3. Schema inclusion

i A (super-)schema can be built from other (sub-)schemas by including the sub-schemas in the

signature of the super-schema. Each sub-schema adds its variables to the super-signature, and the

~.:: sub-predicates are conjoined with the super-predicate. Duplication of variable names is allowed
e (and in fact is common) as long as the duplicated variables agree in type. For example, let
' Squaws 2 indians, squaws: P PERSON | squaws ¢ indians
) Then the following four schemas are equivalent:
<
L
Tribe a
-'. Squaws
'
4 1
Tribe a
~ squaws: P PERSON
s
" squaws § indians
Y
- L]
o chief: PERSON 9
".‘; Squaws
n‘ chief ¢ indians
=
o 1
- chief: PERSON
indians,

squaws: P PERSON

chief ¢ indianse

- squaws ¢ indians
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" 4.4. Schema extension
i A new declaration can be added to the signature part of a schema by the notation
schenma: newdeclaration
LAY
; For example,
! Tribeadults 8 Tribe: squaws: P PERSON
- is equivalent to
"" Tribeadults .
"y chief: PERSON
indians: P PERSON
"" squaws: P PERSON
<
chief £ indians
3
+ -
A new predicate can be conjoined to the predicate part of a schema by the notation
E-;: schesa | newpredicate
For example,
i SsallTribe & Tribe | indians = {)
£ is equivalent to
v
Smalllribe .
. chief: PERSON
n indians: P PERSON
. chief ¢ indians
-'_': indians = (}
~,
g and
i vIribe | indians = (). s#indians = 0
b is equivalent to
. Ychief: PERSON;: indians: P PERSON |
_ chief ¢ indians A indians = (). #indians = 0
e
"
},\
¥




o s pa L e e det St £02 died Ak Sakt e el el Salinidak et Aulk A v"v‘rv'n‘-.-r-v‘vv\.‘.'v'.'v.'val"\:'\:‘v.‘-v‘.v“:"L"T‘T

- The Schema Language -12-

5. Conventions for using the basic operations

The following is a mathematical description of the event of electing a new chief. In it, the

. variables chief and indians represent observations before that event; chief' and indians’
represent observations after it. candidaces is the set of indians from which a new chief will be
drawn.

As a first step, let the schema ATribe describe all events which do not change the membership

of the tribe
! ATribe -
Tribe
;-.; Tribe’
-{.
{chief } VU indians =
- {chief’'} V indians’
.<‘ -
. or, in full,
ATribe
chief, chief’: PERSON
- indians, indians’: P PERSON
: chief ¢ indians
g chief’' & indians’
.
‘ {chief } VU indiang =
.. (chief'} U indians’
u Then the schema NewChief is the definition of the event of electing a new chief:
NewChief )
o ATribe
- candidates: P PERSON
. candidates ¢ indians
chief' € candidates
v
.

s
« v’

-
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b
DYy The above is equivalent to

- NewChief -
i chief, chief': PERSON

indians, indians’,

) candidates: P PERSON

\.-

chief ¢ indians
chief' # indians’

.

(chief } V indians =
{chief'} U indians’

-
o candidates ¢ indians
* chief' € candidates
-
hY)
Although the two forms above are equivalent, the choice in the former of appropriate
v (sub~)schemas, and their names, has allowed a more effective presentation = as a result, it is
;';5 clear that NewChief describes a tribal event (ATribe) which depends on one parameter
(candidataes).
P

L
o
> .

!
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6. Logical schema operations

Section 3.1 above introduced pred, which allows expressions such as

pred A A pred B8

SN

for schemas A and B. And where allowed by section 32, the pred can be omitted, so that the
above predicate can be written (remembering that A and 3 are schemas):

AAB

2z |

This suggests that A, for example, could be defined as a schema operator directly; that is, A A B

‘ .
"- would be a schema, in the appropriate context. But because of the possible confusion between
i ° schemas and predicates, it is essential that such a definition would satisfy (schema ~ on the left):
- pred (A A B) & (pred A) A (pred B)
In fact there is a simple definition which has this property. The logical schema operations of
S A, v, =, ws -~ and quantification, are introduced below.
w
) 6.. Binary operations
) Binary logical operations applied to schemas form their resuit by:
i L merging the operands’ signatures (duplicated variables are identified - but their
types must agree), and
:';: 2  joining the predicate parts with the logical operator itself.
-
For example,
u, Tribe A Squaws 2
|
.:-: \
w2 ’ chief: PERSON
' indians,
Iquaws: P PERSON
T chief ¢ indiana |
. squaws ¢ indians i
i |
. ;
This is of course equivalent also to
1
N, Tribe

& Squaws




T T O T O T R SN T N O AT TR RN R TR T TRV RE T VTSR URCR TR VE TV

The Schema Language -1S-

[ 2

And given the definition

NoChange

i ATribe

chief' = chief

then
. NewChief v NoChange a
R
ATribe .
candidates: P PERSON
- (candidates ¢ indians A
ol chief’' € candidates)

v (chief’' = chief)

LA
o s

Fas

The above schema covers the contingency that the incumbent might remain.

6.2. Unary operations

A umary operator applied to a schema is applied to the predicate part directly; the signature is
unaffected. For example,

]
~Tribe & chief: PERSON
u indians: P PERSON
~{chief ¢ indians)
>
w
h
6.3. Quantifiers
®
o Both universal and existential quantification can be applied to schemas The quantified variable
- must occur in the signature of the schema, and it must agree with its type in the quantification
:, The resuiting schema is formed by removing the quantified component from the signature and
ar so quantifying it in the predicate part. For example,
e Vindians: P PERSON | indians = (). Tribe a
y
N chief: PERSON
<
-
vindians: P PERSON | indians = (}. chief ¢ indians
;"
A
N
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and

3chuef: PERSON. Iribe a

indians: P PERSON

3chief: PERSON. chief # indians

6.4. Predicates as schemas

_Just as a schema can be written where a predicate is required (with pred perhaps implied), a
predicate can be written in the place of a schema. The implied signature is formed by declaring
cach free variable of the predicate, where each variable’s type is in agreement with the current
context. Thus

Biglribe 3 Tribe A indians # (}
is equivalent to

BigTribe 3 Tribe A (indians: P PERSON | indians # (})
(the context is supplied by the schema Tribe), and is finally

BigIribe

chief: PERSON
indiana: P PERSON

chief ¥ indians
indians # ()}

For a further example, see 7.6 below.

6.5. Conventions for using logical schema operations.

A descriptiion of the state of a practical system will often involve a large number of
components, and many of the operations will leave all but a few of the components unchanged

For example, in practice, a tribe will have some non-eligible members

NonEligible
children, squaws: P PERSON

children N squaws = {}

and we know that election of a new chief will not affect these non-eligible members, so the
election event must conform to
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" |
W ; |
-~ aNonEligible ]

ANonEligible
i NonkEligible = NonEligible'
"5
- where
P

4Nonkligible @& NonEligible A NonEligible'

"n The practical tribe is described by
) PTribe
- —_
e Tribe

NonEligible

Py |

disjoint <indians, children, squaws>

[- where
"
{1. X}
- =
disjoint: P (I = P X)
~ S @ disjoint e
h Yi, j: domS. Si NS 3=}
&c
v The event of electing a new chief is described by
v

ElectChief a APTribe A NewChief A sNonEligible. i

! where

4PTribe 2 PTribe A PTribe’.

e
A RSP

Q7 |

Y
.'

-~
4
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7. Special-purpose schema operations
This section describes further schema operations which have been developed from time to time
for use in particular specifications. Some of these operations have become part of the standard
repertoire; some have not It is part of the Z approach to specification that special tools can

and should be developed if necessary; the following list of operations is intended to serve as an
example of how this has been done in the past

7.. Hiding
The notation
schema\variable
is syntactically equivalent to the schema (see 63 above)
3variable: type. schema
where the type of variable is taken from the signature of schema. As a further convenience,
schema\variable,\variable, ..
can be written
schema\ (variable,, variable, ...)

Finally, the list of to-be-hidden variables variable,, variable, ... can be taken directly
from the signature of another schema That is,

schema, \ schenma,
is equivalent to

schema, \ ("all the variables of schema,
which are also in schema,”)

(in which the predicate part of schema, is ignored).
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7.2. Projection

Projection hides all variables except those mentioned. Thus the notation
schema [ (variable,, variable,, ...)

hides all variables of schema except variable,, variable,, .... And similarly to hiding,
schema, [ schenma,

is syntactically equivalent to the schema

schema, \ ("all the variables of schema,
which are not in schema,”)

(Again the predicate part of schema, is ignored). Projection of schema, onto schema, retains
only those variables also in the signature of achema, all others are hidden.

73. Consistency
The notation

schena, ) schema,
or schema, { schena,

is read “schema, consistent with schema,”; it is syntactically equivalent to the schema

(achesa, I scheza,) = (schema, ! achema,)

And the notation
schera, ¢p schena,

is equivalent to the schema

(schema, ¢ schema,) A (schema, ) schena,)

An example of conmistent with is given in section 8 below.

7.4. Forward relational composition
The notation
A3 B
denotes the forward relational composition of the two schemas A and 8. It is used in

specifications where A and 8 describe events, and follow the “undashed before/ dashed after”

convention (NewChief in section $ above is such a schema). The composition A3B describes the
event A followed by 3",

Assuming for illustration the definitions

\;.\;,"..,‘- i
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o]
3~
w
.

s, 8': S s, 8': S

, a! ¢ Alpha b? : Beta
. P(s, 8', a') Q(b, s, s')
RN
?‘:, (in which a' is an output from event A, and b? is an input to event B) the forward relational

composition is formed as follows
o L All after variables of A which match before variables of B are identified by renaming
T both variables of each matching pair to a single fresh variable (variable’ in A matches
variable in B):
\.!
~
1
Al @ A [2%%8'] o s, 8% s
F; a! : Alpha
15
P(s, 8° a')

KX

.
-

y 81 @ B [a%s ] 2 s°, 8': S
b? : Beta

N
s

ST

Q(b, =°, &'}

L ar e o N h
[ 2 oo -:'

2. The renamed schemas are conjoined, and the fresh variable(s) hidder:

F A 3B a (A1 AB1) \g® @
1

.. s, 8': §

E’Q a! : Alpha

« b? : Beta

' 38%: S. P(s, 8% a') A ‘
i a(b, 3° ')
1

i ¢ notation
. C >> D

l,‘

\L'

denotes an operation performed as a two-stage pipeline: an operation satisfying specification C is
performed at the first stage, and an operation satisfying D at the second stage. The output from
the first stage is used as input to the second stage if required. The ‘pipe’ operator >> is used in
specifications where C and D describe events and follow the convention that the names of inputs
and outputs end in ? and ' respectively.

- -
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Assuming for illustration the definitions

c . D .
sl, sl': S1 82, s2': S2
a!: Alpha a?: Alpha
P(sy, g1, at) Q(s2, 82°', a?)

then
C > D a (Clasa!] A Dlas/a?]l) \ a.

7.5. Domain and range

The operations dom and ran are used on schemas following the before/after’ convention as in
7.4 above Taking A and B as before,

dem A 3 A [ (“"undashed variables of A”) a

s: S

3¢': S: a': Alpha. P(a, 8', a')

ran is formed by projecting onto the dashed variables, and then undashing them (a special case
of remaming). Thus

(ran B)' @ B I (“dashed coaponents of B")

ran B o

s: S

3 8% S; b: Beta. G(b, a° sa)

Notice that the variables of ran B are undashed, and that this renaming has forced a change of
bound variable (s to 39).
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7.6. Application
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If schema A foilows the before/after’ convention, and schema S is undashed, then the application

of A to S is written
A {S)
and is syntactically equivalent to the schema

ran (S'3 A)

(It is necessary to decorate S 3o that the composition operator ; properly identifies its now

dashed variables with the undashed variables of A)

This operation is very like forming the image of a set through a relation. For example, given

s, a': N

s' =g + 1

S A
1
g: N
and
s =95
then
B
A(S) o s: N
g8 =6

Following section 6.4 above, this could be written

Af{s =5] a s

7.7. Qverriding

If schemas A and 3 follow the before/after’ convention, then A overridden by B is written

Ae3jd

and is equivalent to the schema

(A A -doa B) v B

This operator is very like the overriding of functions or relations. For example, given
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then

A \ B8
s, 8': N 9, s': N l
and
s' =838 + s =5
* = 7
1
g, s': N
A®B o

(s' =3 +1 A g x85)
(g' =7 A g x85)




a2 ‘
- '
.
1!
t

The Schema Language -24-

8. Schemas and theorems

Having used schemas to present a specification, one can also use schemas to construct hypotheses
and state theorems about it. If a schema describes the static properties of some object, one may
wish to ask if there can be such an object. For example, if the set PERSON is non-empty,
then there exist an individual and a set of people which together form an instance of the
schema Tribe:

PERSON # ()} = 3Tribe
which is syntactically equivalent to

PERSON # (} =~
3chief: PERSON; indians: P PERSON | chief # indians.

Also, we may wish to ask if the objects described by some schema have certain properties. As a
first example, when a new chief -is elected, the new chief is not a child. This can be formulated

=~ YElectChief. chief’ £ children

(ElectChief is defined in section 635). The theorem can also be formulated
ElectChief = chief' ¥ children

which is syntactically equivalent to

APTrite A NewChief A sNonEligible ~
chief’ # children.

The proof is based on the axioms for the three schemas on the left hand side

(1) chief' € candidates from NewChief

(2) candidates ¢ indians from NewChief

(3) chief’' € indians (1), (2)

(4) indians N children = (} from PTribe in APTribe
(s) chief’' # children (3), (4).

This completes the proof.

A second example is the following: given a non-empty tribe, it is always possible to elect a new
chief, that is,

= ¥YIribe | indians # (). 3Tribe’. NewChief.
or alternatively,

Tribe | indiana # () ~ 3Tribe'. NewChief.

PO
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\ An example of data refinement
i Implementing a two-dimensional array
i as a one-dimensional vector -
. Carroll Morgan
44
e
- Programming Research Group
8-11 Keble Road
~ Oxford OXl1 3QD
‘-, " Prepared for the
». Mathematics for Software £ngineering Course
.- Oxford Uniersity
Fe-1F'" September 195¢
Lt
\ :‘:
RS
&
|
- L The abstract state
S 2  The abstract operations
3 The concrete state
~ 4. The abstractions
i S. The concrete operations
6. Proof of refinement
o 1. Conclusion - what was really important
N

- L The abstract state

| The abstract state consists simply of a two-dimensional array:

=
S ABS :
Larray: ROV x COL — VALUE
x
where
n'.' N
& ROV a 0..(Rowe - 1)
. COL e 0..(Cols - 1)
=g
for some positive integers Rows and Cols. ‘
~ T ” |

{ A vt AT - LR ol Tl Tt
".-,:¢:.-*r?w‘f":r.‘r”f“

e
T
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array’ = array ® ((r?,¢c?) — v?)

S
2
n‘.\ ‘
o 2 The abstract operations
s There are two abstract operations - one for reading from the array, and one for writing to it
‘ (ReadA for read abstract, VriteA for write abstract); |
| .
|
_AABS 8 ABS A ABS’ "
-\'
s ]
ReadA . |
! AABS 2
k) r?: ROV
c?: COL ‘
> v!: VALUE \
My !
..,. |
array’ = array
- v! = array (r?,c?) .
> (
. VriteA__
. L |
.l AABS 1
e r?: ROV
c?: COL
v?: VALUE

3. The concrete state

,]'x
»

The concrete state consists of a one-dimensional vector; it is just large enough to accomodate all
of the values in the abstract array:

g CON

vector: CELL — VALUE

~
\-
CELL 8 0..(Cells - 1) where Cells = Rows s Cols

e
\
N

4. The abstraction
::f The abstraction functions lay out the array row-by-row in the vector. IN and OUT are inverses:
- IN 1
o~ ABS
b
CON
- {ve: ROV: c: COL. array (r,c) = vector ((Cols % r) + c)l

7 Sep 34
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ABS*
CON*

(ve: ROW: c: COL. array® {(r,c) = vector' ((Cols # r) + ¢)]

OUT could have been defined as follows, with the same effect:

ouUT e IN°

S. The concrete operations

There are two concrete operations, corresponding to the two abstract operations

ACON & CON A CON’

ReadC
ACON

r?: ROV
¢?: COL
vi: VALUE

vector’' = vector
v! = vector((Cols # r?) + c?)

VriteC
ACON
r?: ROV
c?: COL
v?: VALUE

vector’ = vector ® [{(Cola # r?) + ¢c?) = v?}

6. Proof of refinement

The proof of refinement is in two parts. The first part proves properties of the abstraction
itself, independent of the operations that are being refined (subsections 61 and 62). The second
part proves properties of the abstract and concrete operations, in their corresponding pairs (6.3
for ReadA and ReadC, 6.4 for WriteA and WriteC).

7 Sep 4

P N A S N
- e T e, L R ) -'-'-‘-'.. . . AR A PRSI
I‘ 'f\ " . - \' E " ‘ 1.' c e . \ \ -" ot . < .. - . .“ “~ ." B ,n_ .

l‘ - :
. RS
’3.“'3.1_5.’ "(.‘t!.‘- }\L AL ;."A.."\. PR A_{A._ n..'.;. 1‘\&1. ’a..‘m_ﬂn.. AL A"\&\A JAA;_ Dk L{L LL‘LL\¢ TTEPLPRIY i Al

P Y
.t e T -
e ..-.-"_-

ol tat ek nia

51




N
.
4

- . :

o 6.1 IN is tota

- We must show [VABS. [(3CON. IN1]; that is (we expand the predicate), we must show
‘ [y array: ROV x COL — VALUE.

;‘:' (3 vector: CELL — VALUE.

%

(ve: ROV: c: COL. array (r.c) = vector ((Cols # r) + ¢)!]]

of |

We do this by constructing the required vector ([3 vector ...]) explicitly:

’:'_3 (1) {¥ e: CELL. vector (e) = array (e div Cols, e agd Cols)]
o
But to show that this vector exists, we require
-
= [v e: Cell.
- e div Cols € ROV
ﬁ A o pod Cols € COL}
. We need this because array is defined only for arguments in the appropriate sets - and we must
- show that the arguments are in the appropriate sets. In fact, it follows from from the
- definitions of CELL, ROV, and COL, and the properties of div and pod.
H Now we know there /s a vector with property (1), we must show it’s the right one. For this, we
need i
v [v array: ROV x COL — VALUE.
=
IR
[v e: CELL. vector (e) = array (e div Cols, e mod Cols))
! = ([Yr: RO¥W; c: COL. array (r,c) =z vector ((Cols # r) + c)l]
and this follows from
o]
a* [ve: ROW; ¢: COL.
] 2) (Cola » r) + ¢ € CELL
o
- A ((Cols #» r) +¢c) divCols =r
ﬁ\ A ((Cols # r) + ¢) pod Cols = ¢l
=
o
o)
(_"-
|
v




¥ U
s

£ |

SANN <

xP S

-

P
.
[

E&m A e i

-y L wmg oy s LAk Sols ek kas Lol ol el lauil Lall Shol S i e o e T e T e e 7w -7 7 s

62 QUT is total

We must show [VYCON'. [3ABS°. OUT]]; that is, we must show
[v vector': CELL — VALUE.
{3 array: ROV x COL — VALUE.

[ve: ROW: e: COL. array’ (r,c) = vector®’ ({(Cols # r) + c))]]

But to show this, we need only that
[vr: ROW; c¢: COL. (Colms = r) + ¢ € CELL)

and this has already been shown ((2) above).

63 ReadC is a refinement of ReadA

Showing that a concrete operation is a refinement of an abstract operation is done in two stages.
In one stage, we must show that whenever the abstract operation can be applied, then so can the
concrete one; this is done for ReadA and ReadC in section 63L In the other stage, we must show
that anything the concrete operation does is acceptable in the sense that the abstract operation
could have done it also (section 632).

631 Liveness - If the abstract operation can be applied, then so can the concrete one

We must show that (ReadA A IN) = [3ICON’; v': VALUE. ReadCl; that is, we must show that
for

array, array’': ROV x COL — VALUE

vector : CELL — VALUE
r? : ROW

c? : COL

y! : VALUE

the following holds:

array’ = array
Ay = array (r?,e¢?)
A [¥r: ROV: c: COL. array (r,c) = vector ((Cols # r) + ¢)

(3 vector': Cell — VALUE: v': VALUE.

vector' = vector
v! = vector ((Cols w r?) + c?)]

This implication is easy to prove, because the consequent is a/ways true; the antecedent is
unnecessary in the proof. The consequent is true because ReadC can always be applied, and this
follows from
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(Cols # r?) + c? € CELL

which we have already shown ((2) above, with change of variable).

6.3.2 Safety - The concrete operation does only what the abstract operation allows.
We must show that (IN A ReadC A QUT A [3ABS’; v!: VALUE. ReadA]) == ReadA; that is, we

must show that for

array, array' : ROW x COL — VALUE |
vector, vector': CELL — VALUE

r? : ROW
c? : COL -
v! : VALUE

the following bolds

{¥r: ROW; e: COL. array (r,c) = vector ((Cols # r) + c)]

A vector’
A v!

vector
vector ((Cols » r?) + c?)])

A [Vr: ROV; c: COL. array’ (r.,c) = vector’' ((Cols » r) + ¢)l

A [3 array’: ROV x COL — VALUE; v!: VALUE.

array' = array
v! = array (r?,¢c?))
-—
array’ = array
A V! = array (r?,c?)

This is trivial.

N
&

¥riteC is a refinement of WriteA

4] Liveness - If the abstract operation can be applied, then so can the concrete one.

We must show that (VriteA A IN) =e [3CON*. WriteC]; that is, we must show that for

array, array’: ROW x COL -+ VALUE

vector : CELL — VALUE
r? : ROV

c? : COL

v? : VALUE

the following holds
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array’ = array ® [(r?,c?) — v?]
A (¥yr: ROW: c: COL. array (r,c) = vector ({Cola % r) « ¢)

. {3 vector': Cell — VALUE.

vector' = vector ® [((Cols # r?) + ¢?) — v?])

As usual, this is guaranteed by
(Cols # r?) + ¢c? € (ELL

642 Safety - The ctoncrete operation does only what the abstract operation allows.

We must show that (IN A WriteC A QUT A [3ABS°.

VriteAl) =+ WriteA; that is, we must
show that for

array, array’ : ROV x COL — VALUE
vector, vector': CELL — VALUE

r? : ROW
c? : COL
v? : VALUE

the following holds

(vr: ROV: ¢: COL. array (r,c) = vector ((Cols » r) + ¢)]

A vector’ = vector @ [((Cols # r?) + c?) — 2]

~ {ve: ROVW; c: COL. array’ (r,c) = vector' ((Cols ® r) + ¢)]
A {3 array': ROV x COL — VALUE.

array’ = array ® ((r?,c?) — v?]]

array’ = array ® [(r?,c?) = v?]
We show this by considering two cases
Case |
We show that

(ve: ROW; c: COL.

(r.c) # (r?,c?) = array’ (r,c) = array (r,c))
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8
This is a consequence of
[ve: ROW; c: COL.
. (r,c) # (r?,e?)

—s (Cols nr) ¢« ¢ # (Cols » r?) + c?]
That is, it is a consequence of the non-overlapping of the row-by-row representation.

Case 2

7'/‘

We show that

s
;:\ array (r?,c?) = v?
| This is trivial
e
o
7. Conclusion - what was important
£
:"1 The representation of two-dimensional arrays as one-dimensional vectors is hardly a startling
refinement; the mathematics above is a lot of work for something so trivial! Even so, the exercise
has not been entirely pointless We discovered by doing it that the validity of this particular
o refinement depends on the following facts:

. The mapping function (Cols # r) + c¢ is guaranteed to return a result in the set CELL:

[ve: ROW; c: COL. (Colas # r) + ¢ = CELL]

-
.
a2

it is an injection:

£?: ROW
c?: COL 1

{¥r: ROW; c: COL.

o (r.c) # (r?,c?) = (Cols » r) + ¢ # (Cols » r?) + c?}
W

‘ and it is onto (that is, it has an inverse which is total):

o

e [vr: ROW: c: COL.

- ((Cols # r) + ¢) div Cols =r

F: A ((Cols # r) ¢+« ¢) mod Cols = ci

AN N

In larger examples, it might be harder to “guess™ just what the crucial points of the refinement
h are - that's why it is important to be able to be systematic. And it should be remembered that
o such croor's of refinement are necessary only once for each refinement. Any subsequent
development which uses the refinement does so for free
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Examples of Specification Using Mathematics

Ian Hayes
Programming Research Group,
Oxford University,

8-11 Keble Road,
Oxford,

U. K.
00Xl 3QD

Abstract

A number of specification examples are developed in a notation which is based on typed set
theory.

31 Aug 84

Wt e
..... R R A
e e e e e

EE I A AT VL TR W L W e e
atala e Laas PUPR ALY, R PO S OV .10+ O |

R N
LS g - - ~ h
PN O W oW Y o)

* e - et . ~ » . - - - ] » - ~ » » - » .,
AT S AR AR S

N

... '. l.- .l . ‘.
o -;"_J)“J'.} .J’\..I..-“




»

"y
. q'-

=
A

2l

| S

& &
mp.

Erm

2 Specification Examples
A Symbol Table

The first example specifies a simple symbol table It demonstrates using a mathematical function
to specify an abstract data type We will specify a symbol table with operations to update,
lookup and delete entries in the symbol table We will describe our table by a partial function
from symbols (SYN) to values (VAL):

st : SYM = VAL

The arrow - indicates a function from SYM to VAL that is not necessarily defined for all
clements of SYM (hence “partial”). The subset of SYM for which it is defined is its domain of
definition:

dom(st)
If a symbol s is in the domain of definition of st (s € do;n(st)) then st(s) is the unique
value associated with s (st(s) € VAL), The notation { s = v )> describes a function which is
only defined for that particular s

dom({ s ™= v >») = (s )
and maps that s onto v

{ s> v Xs) = v
More generally we can use the notation:

Coxy ™ yoo Xg ™ yao o, x> ¥, )
where all the x,’'s are distinct to define a function whose domain is { x,, x;, ... . x,» and
whose value for cach x, is the corresponding y.. For example, if we let our symbols be names
and values be ages we have the following mapping:

st = { "Fred® = 23, "Mary"” ~+» {9 )}
which maps “Fred” onto 23 and "Mary" onto 19, then the domain of st is the set

dom(st) = { "Fred”, “Mary” )

and

st("Fred®) = 23
st("Mary”®) = 19

The notation <> is used to denote the empty function whose domain of definition is the empty
set. Initially the symbol table will be empty:

st = (>
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Specification Examples 3

We are describing a symbol table by modeiling it as a partial function. This use of a function
is quite different to the normal use of functions in computing where an algorithm is given to
compute the value of the function for a given argument. Here we use it to describe a data
structure.  There may be many possible models that we can use to describe the same object
Other models of a symbol table could be a list of pairs of symbol and value, or a binary tree
containing a symbol and value in ecach node. These other models are not as abstract because
many different lists (or trees) can represent the same function. We would like two symbol
tables to be equal if they give the same values for the same symbols. However, it is possible to
distinguish between two unordered list representations that as symbol tables are equal; on the
other hand, for the function representation different functions represent different symbol tables.
The list and tree models of a symbol table tend to bias an implementor working from the
specification towards a particular impiementation. In fact, both lists and trees could be used to
implement such a symbol table However, any reasoning we wish to perform involving symbol
tables is far casier using the partial function model than ecither the list or tree model.

A3 some operations can change the symbol table we represent the effect of an operation by the
relationship between the symbol table before the operation and the symbol table after the
operation We usg

st. st’ : SYM -=» VAL
where by convention we uss the undecorated symbol table (st) to represent the state before the

operation and the dashed symbol table (st’) the state after. The operation to update an entry
in the table is described by the following schema:

Update

st, st' : SYM = VAL
s? : SYM
v? : VAL

st' = st @ { g7 — 2 )

A schema consists of two parts the declarations (above the centre line) in which variables to be
used in the schema are declared, and a predicate (below the centre line) containing predicates
giving properties of and relating those variables. In the schema Update the second line declares
a variable with name “s?° which is the symbol to be updated. The third line declares a
variable with name °"v?" to be the value to be associated with s? in the symbol table By
convention names in the declarations ending in "?" are inputs and names ending in "'™ will be
outputs; the “?° and "!'" are otherwise just part of the name

The predicate part of the schema states that it updates the symbol table (st) 10 give a new
symbol table (st') in which the symbol s? is associated with the value v?. Any previous value
associated with s? (if there was one) is lost.
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4 Specification Examples

The operator @ (function overriding) combines two functions of the same type to give a new
functionn The new function f ® g is defined at x if either f or g are defined at x, and will
have value g9(x) if g is defined at x, otherwise it will have value f(x):

dom(f ® g) = dom(f) v dom(g)

x € dom(g) = (f ® gl(x) = glx)

x £ dom(g) A x € dom(f) = (f @® g)(x) = f(x)

For example

{ "Mary*® ~— 13, “Fred” = 23 > @ { "Fred” * 25. "George” — 62 }
= { "Mary” =+ 19, "Fred” = 25. "Georse” — 62 >
For the operation Updata above the value of st'{x) is v? if x = s?, otherwise it is st(x)
provided x is in the domain of st. In our example we are only using ® to override one value
in our symbol table function; the operator @ is, however, more general: its arguments may both
be any functions of the same type

The following schema describes the operation to look up an identifier in the symbol table

LookUp

st. st' : SYM - VAL
s? : SYR
v! : VAL

s? € dom(st) A
vi =z gt(8?) A

st’ = gt

The second line of the signature declares a variable with name “s?* which is the symbol to be
looked up. The third line -of the signature declares a variable with name "v!" which is the
value that is associated with s? in the symbol table

The first line of the predicate states that the identifier being looked up should be in the symbol
table before the operation is pe. rmed; the above schema does not define the effect of looking
up an identifier which is not in (he table The second line states that the output value is the
value associated with s? in the symbol table st. The final line states that the contents of the
symbol table is not changed by a LookUp operation.

N Aug 34
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The operation to delete an entry in the symbol table is given by:

' Delate )

st. st' : SYR - VAL

s? : SYA
! s? € dom(st) A
* st' =st \ { g7 >
=
{s
g To delete the entry for s? from the symbol table it must be in the table to start with
AT A (s? € dam(st)). The resultant symbol table st' is the symbol tabla st with s? deleted from
its domain. We uss tha domain subtraction operater \ where:
\S-' dom(f\s) = dom(f) - s
P
x € dom(f\s) = (f\s)(x) = f(x)
N
I where f is a function and s is a set of eclements of the same type as the domain of f. For

example

{ "Nary® = 19, "Fred” — 2S5, "George” * 62 ¥ \ { "Mary”, "fFred” »
= { “George” = 62 >

Exercise L Specify an operation to find all (the set of) identifiers that have a given value, v?, in
! the symbol table (J
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o 6 Specification Examples
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o File Update

ﬁ The second example is a specification of a simple file update It uses sets and functions to

model the file update operation

. Each record in the file is indexed by a particular key. We will model the file as a partial
~- function {rom keys to records:
[g f : Xey = Record

w.r

A transaction may ecither delete an existing record or provide a new record which either replaces

R an existing record or is added to the file The transactions for an update of a file will be
;(r specified as a set of keys d? which are to be deleted from the file, and a partial function u?

) giving the keys to be updated and their corresponding new records We add the further
. restriction that we cannot both delete a record with a given key and provide a new record for
:,,-' that key. For example, if:

. foa Ly ro kg™ a3 ky™ ry ko= r )

&

o 47 = { kyo ko)

l'.-_' u? 3 (ky e ry kgt g )

g

then the resultant file f* will be

i ' = {ky ™ r,, ky = rqg, kg ™= rg?

) Our specification is

ho

hY

\1

File Update —_
! f. f' : Kay = Record
d? : P Key

~ y? : Xey =+ Record

~3

t\tl

’ d? ¢ dom(f) A

d? 0 dom(u?) = (3> A

f* = (F\d?) @ Ju?

c':'

-

:_‘\

_‘-: The original file ¥ and the updated file f' are modelled by partial functions from keys to
” records. The keys to be deleted (d?) are a subset of Key. Hence d? is an element of the
.. powerset of Key (the set of all subsets of Key); the notation IP Key is used to denote the
ﬁ powerset of Key. The updates u? are specified as a partial function from Key to Record.

%
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Specification Examples 7

We can only delete records already in the file f. Hence the set of keys to be deleted d? must
be a subset of the domain of the original file (d? < dom(f}). We are precluded from trying to
both delete a key and add a new record for the same key as the intersection of the deletions
with the domain of the updates must be empty (d? n dom(u?) = (2). The resultant file f’ is
the original file f with all records corresponding to keys in d? deleted (f\d?), overridden by
the new records u”.

The last line of File Update could have equivalently been written:
f* = (f @ y?) \ d7?

Although it is not always the case that these two lines are equivalent, the extra condition that
the intersection of d? and dom(u?) is empty ensures their equivalence in this case

Lemma: Given d? n dom(u?) = (> the following identity holds

(f @ u?) \ d? = (f \ d7) @ u?

Proof: Firstly we show the domains of the two sides are equal:
dom((feu?)\d?) = dom(feu?) - d?
= (dom(f) U dom(y?)) - d7
= (dom(f) - d4?) u (dom(u?) - d47?)
(dom(f) d?) u dam(u?)
as d? n dom(u?) = (O
= dom(f\d?) U dom(uy?)
=2 dom((f\d?)ey?)

Secondly, for any key k in the domain, the two sides are equal. We prove this for the two cases:
k € dom(u?) and k € dom(u?):

(a) If k € dom(u?) then

k ¢ d? as dom(u?) n d? = (>
((fou?)\d?) (k) = y?(k) as k € dom(u?) A k ¢ d?
and ((f\d?)eu?)(k) = y?(k) as k € dom{u?)
(b) If k # dom(u?) then
((fou?2)\d?) (k) = (fey?) (k) as we assumed k € donm((fey?)\d?)
= f(k) as k ¢ dom(u?)
.and ((FA\d?)ey?) (k) = (F\d?)(k) as k £ dom(u?)
= f(k) as k € dom((feu?)\d?) [J

In the specification of File Update if we were not given the extra restriction then, as specified
in the last line, updated records would have precedence over deletions. If the alternative
specification were used then deletions would have precedence over updates. It is sensible to
include the extra restriction in the specification as it allows the most {reedom in implementation
without any real loss of generality.

Exercise 2: In the version of File Update given above each key has (at most) a single record
associated with it Define a new data type for a file that allows multiple records for a single
key, and a new file update operation; the inputs to the operation will have to take a different
form from those given above. (Hint Use relations.) O
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Specification Examples

. Virtual Memory

~
-

Virtual memory can provide 3 much larger apparent memory to the user than the physical main
memory available A virtual memory (VR) is implemented by a combination of main memory
(1) which stores part of the current virtual memory, a memory map (MMap) which maps those
virtual addresses currently resident in the main memory into the corresponding main memory

address, and secondary memory (SM1) which stores that part of the virtual memory that cannot
- fit into main memory.

If we let Virtual_Addr be the set of virtual memory addresses, Main_Addr be the set of main
. memory addresses, and MU be the set of values that can be stored in a unit of memory, then we
can model a virtual memory system by:

e
(AN

Virtual fNemory

0=t )
A

vt : Virtual _Addr — MU
" _nn : Main_Addr — M
g S : Virtual _Addr ~ MU
MMap : Virtual_Addr > Main_Addr

ran{(fMap) = Main_Addr A
'i‘ Vi = SN e (MM « MMap)

Both VM and MM are total functions: they are defined for all values in their respective sources,
Virtual _Addr and Main_Addr. SN is not necessarily defined for all values in its source and

u hence is a partial function. The uncrossed arrow (—) is used to indicate a total function and
the crossed arrow (-+) to indicate a partial function.

e fRap is a partial function that is also a one-to-one correspondence: for each element in its range
» there is a unique corresponding element in its domain:
n Yy : ran(fMfag) . .

Y x,» x5 : dom(MMap)
(MMapix,}] = y A MMap(x,) = y) = (x, = x,)

We use the notation " for a total one-to-one correspondence and the notation "»»" for a

partial one-to-one correspondence. The term “injection” is commonly used in mathematics for a
one-to-one correspondence

N

s The first predicate in the schema Virtual _Memory states that the range of MMap is the whole of
Main_Addr. This means that for every main memory address there is a corresponding virtual

-.ﬁ memory address; such corresponding virtual memory addresses are unique because MMap is

H one-to-one. The memory map is only defined for those virtual addresses currently corresponding

a
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ﬁ. Specification Examples 9
U~‘
“:~ 1o main memory addresses. In mathematics a function
o F: X Y
‘ whose range is equal to the whole of its destination (Y) is called a “surjection™. We say f maps
X onto Y.
o
)
o In order to understand the second predicate in Virtual _fMemory we need the definition of
relational (and hence functional) composition “°”. If we have two relations:
! f X &Y
- 9 : Y e 2
o
A then we can compose these two relations to give a relation
” gef : X e 2
&
defined by
0
-‘: x (gef) y 3 3Jy:Y . x fyAayguz
- The domain of gef is given by
~
dom(gef) = € x : dom(f) | 3y : dom(g) . x F y >
ﬁ' which is not necessarily the whole of dom(f).
Properties: ran(f) ¢ dom(g) == dom(gef) = dom(f) (a)
h'.‘.
- ran(h) ¢ dom(g) =» (f @9) e h=agoh (b)
Another way of writing composition is to use the forward relational compasition operator "3°
l where
f 19 = geof
A
‘. The second predicate of Virtual _Memory is
F v = SH e (MM ° MMap)
o
' The virtual memory is equal to the secondary memory except where virtual addresses are in the \
- domain of the memory map, in which case the contents of the virtual memory locations are
s

v given by the contents of the corresponding (according to MMap) main memory locations. For an
v address addr the contents of the virtual memory is given by:

Vii(addr) = SNladdr) +f addr £ dom(MfeMNap)

= MIN(MNap(addr)) 1f addr € dom(MNefiNap)
‘_.:- Note that the specification does not require that dom(SM) and dom(MMefifap) are disjoint. If an
™ address is in both domains then when the virtual memory is used the contents of SN are ignored.
;': 31 Aug 84
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10 Specification Examples
Lemma dom(MMefNap) = dom(MNap)
Proof:

dom(MM) = Main_Rddr = ran(ffap)
as MM is total and MMap is onto.
dom(!MMefiMap) = dom(fflap)
by property (a) above g
In order to state a simp!e theorem about Virtual_flemory we need to introduce the concepts of
the inverse of a relation (or function) and the identity function on a set. The inverse of a
relation R is the relation R** defined by:
y R x 1f and only f xRy
For a function f (a function is a relation with the additional constraint that for any x in its
domain there is a unique y related to it by f) its inverse £°' is not necessarily a function For
example, if
f = {(ar 1, b=—1)
then
£t = {IHaolh’b)
which is not a function as 1 does not map to a unique value
The identity function on a set S is given by:
1d(S) @ (s :S5S . s s

It maps every clement of S onto itself.

Properties We have the following useful properties of inverses and identity functions. If

(that is, R is a relation and f is a one-to-one correspondence) then:

(r-*)-* 2 r (g)
fre f = ,dldom(f)} (d)
r o idldam(r)) = r (e O

Exercise 3. Prove the properties (a) - (e) given above. (]

31 Aug 84




mm—‘ (oo o oa den ana gea fm At B B Aok At el Rab B Aat ohat et hatal it alar gt pb W'J"J"J"JW"T

@ Specification Examples I
u:_‘
2 Theorem:

MM = VR e Mhge™*

b
Proof:
vn = SM e (MM o MMap)
yrt « Mhap™' = (SM @ (MM ° MMap)) ° MHap™*
:'.: = M o Mflap » MMap™*

by property (b)

as ran(MMap™') = dam(MMap) = dom(MM ¢ AMap) by lemma
. = MM o d(dom(MMap*)) .

] as MMap is one to one and property (d)

= M
.- as dom(MMap™*) = ran{fMap) = Main_RAddr = dom(fM)
_'; and property (¢) (O
" Exercise 4 Show that
dom(SM) U dom(MMap) = dom(VM) a

.
.‘._?;.

Exercise S: If the memory units in the descripticn given are pages of 4K bytes give a
definition of MU and operations to read and write single bytes in the virtual memory given a
j byte address. (Ignore MM, SN, and MM for this exercise) [

.l'-¢ '
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12 Specification Examples
Sorting
The third example specifies sorting a sequence into non-decreasing order; it uses bags (multi-sets)

and sequences.

The input and the output to Sort are sequences of items of some base type X. We model a

sequence as a partial function from the positive natural numbers (IN*) to the base type X as
follows:

seq X3 (s : W =X | dom(s) = 1..88 )
where us is the number of entries in the mapping s (which is also the length of the sequence
s). The notation of enclosing a list of items in angle brackets can be used to construct a
sequencs consisting of the list of items For example

t =<a, b, c>

={1—=a, 2—b, 3Immc)

We can select an item in 2 sequence by indexing the sequence with the position of the item:

t(2) = b

s = <s(l1), s(2}, ... , s(msg)>

The empty sequence is denoted by <>,

The output of Sort must be in non-decreasing order. We define

Non-QOecreasing(s : seq X)

Yi.; : dom(s) . 1 < ; = ~(s5(y) < s())

where > is a total ordering on the base type X.

The output of Sort must contain the same values as the input, with the same frequency. We
can state this property using bags. A bag is similar to a set except that multiple occurrences of
in clement in a bag are significant We can model a bag as a partial function from the base

type X of the bag to the positive integers where for each element in the bag the value of the
function is the number of times that element occurs in the bag:

bag X 3 X -+ N°

31 Aug 84
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= Specification Examples 13

S

:-: We use the notation [ ... ] to construct a bag. For example

- {1.2.2,21 = (11— 1.2—=3>

i The following gives some examples of how sets, bags, and sequences (in this case, of natural
numbers) are related:

A €1.2.2.2> = <1.2.2» = €2.1.2> = 1.2 = (2.1)

. {1.2.2.2) # (1.2,2) = (2.1.2}) # (1.2} = (2.,1]) -

<1l2‘212> # <15212> # <Z'1F2> # <1'2> # <2'1>

‘ In specifying Sort wa wauld like to say that the bag formed from all the items in the output

i sequence is the same as the bag of items in the input sequence. We introduce the function
1tems which forms the bag of all the clements in a sequence. For example

k%

- items(<>) = ()

e 1tems(<1>) = (1]

~ tems(<1,2,2>) = items(<2.1.2>) = (1,2.2)

“-: Iteﬂ5(<11213>] = utems(<2:1.3>) = [102:3]

More precisely:

B '
~:~‘
DI items : seq X — bag X
items(s) = { x : ran(s)
. s x = u{ | : dom(s) | s(i) = x>
N ‘ N
! -
) Each element of the base type X is mapped onto its frequency of occurrence in the sequence
The function i tems is more concisely given by the equation:
:}
; items{s) =2 u e g
s::
e
_ 3l Aug 34
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14 Specification Examples

Finally, the specification of sorting is given by:

Sort

n?,
out! : seq X

Nan-Oecreasingl(aut') A
rtems(out!) = 1tems(1n?)

Sort is an example of a non-algorithmic specification. It specifies what Sort should achieve but
not how to go about achieving it. The advantage of a non-algorithmic specification is that its
meaning may be more obvious than one which contains the extra detail necessary to be
algorithmic. The specification is given in terms of the (defining) properties of the problem
without biasing the implementor towards a particular form of algorithm. There are many
possible sorting algorithms. The implementor should be allowed the freedom to choose the most
appropriate

Exercise 6 Rewrite the sort specification for the case of sorting a sequence with no duplicates
into strictly ascending order. J
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I Abstract
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The following message system is based on the message handling in CICS. The specification itself
is an interesting example it combines states (of input and output devices), and gives a number
e of examples of the use of iae ">>" operator on schemas
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A Message System

Message Output

We can represent a set of output devices by a mapping from 2 device name to a sequence of
messages that have been output to that device

NOUT

nog : Name - seq Message

The operations on output that we will discuss here neither create nor destroy devices

ANQUT a NOUT A NOUT' | dom noq' = dom naq

Sending a message 10 a device simply appends the message to the queue for that device

NSend,

ANQUT
n? : Name
m? : Message

naq’ = noq @ { n? = nagq(n?)s<m?> )

2 Sep 34
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|
e Multiple Destinations |
o ‘

[

A message may be sent to a set of destinations:

NSendl, )
‘ ANCUT
! ns? : IP Name
b m? : Message
. ns? ¢ dom nogq A .
noa’ = noqg ® { n : ns? . n = nogl{n)e<m?> >

»
t'}'
_j All the names in ns? must correspond to valid output devices Each device in n? is sent the

message.
.:'-'_ Conjecture

Giverr .
’. TeSet @ n? : Name; ns! : P Name | as! = {n? >
. the following equality holds
I
)

NSend, = ToSet >> NSend,

g -

The schema operator “>>" identifies the outputs (variables ending in "'") of its left operand
with the inputs (variables ending in "?") of its right operand; these variables are hidden in the
result. All other components are combined together as per schema conjunction ().

'y

|

o v,
l.vl‘<
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4 A Message System

Message Input

We can represent a set of input devices by a mapping from a device name to a sequence of
messages yet to be input from that devices

NIN

niq : Name -~ seq llessage

The operations on input described here will neither create nor destroy devices

ANIN 3 NIN A NIN* | dom niq’ = dom niq

Receiving 2 message from a device simply removes it from the head of the input queue for that
device

NRece:ve,

ANIN
n? : Name
m! : Message

m! = hdlniq(n?}) A
niq’ 2 niq ® { n? —~ tllniq(n?)) ¥

Send and Receive

We can define an operation that both sends a message to a device and receives a message from
that device:

NSendRece:ive, a NSend, A NRece:ve,

Conjecture

NSendRece:ve, = NSend, : NRece:ve,
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A Message System S

Combining Input and Output

We will introduce NOEV to describe the combined input and output state for all the devices. If a
device can be used for input then it must be able to be used for output:

NOEV

NIN
NQUT

dom niq ¢ dom noqg

An input operation will preserve the output state and an output operation will preserve the
inpul state

ENIN & ANDEV | NOUT' = NOUT
ENOUT a ANDEV | NIN® = NIN

where ANOEV 3 NOEV a NOEV'

The operations on the combined state are

NSend 3  NSend, A =NIN
NSendn 2 NSendm, A =NIN
NRece:ve 2 NRece!ive, A =NOUT

NSendRecerve 3 NSendReceaive, A ANDEV

Conjecture

NSendReceive = NSend ; NReceive

2 Sep M4
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6 A Message System

Logical Names

Rather than work with actual (physical) device names, as we bave up until this peint, we would
like to work with logical names that are mapped into physical device names. We use the
following mapping from logical names to physical names:

LtoP

1top : LName - Name

None of the operations discussed here modify the mapping from logical names to physical
names hence we will use

SLtoP a LtoP A LtoP" | LtoP* = LtoP

If a logical name actually corresponds to a device we perform the operation on that device,
otherwise we use the device with physical name consale:

MapName .
3. toP
dev : Name -+ seq Message
1n? : LName '
n! : Name

n! = ( ln? € dom(ltopidev) — ltap(ln?).

consale
)
The operations on a single device become
LSend 3 MapName{ragq/dev] >> NSend
LReceve 2 MapName(niq/dev] >> NReceive

LSendReceive a MapName({nia/dev] >> NSendRece:ve

Conjecture

NOEV | dom niq = dom nogq P LSendRece:ve = L.Send ; LReceive

2 Sep 34

S S CE UL SR | TR - v' o
B ._J J‘.J ~':.r~r.:w._.-‘_4_-,\..‘.-'_....,- o ._f_._ \'-(', ..!'l. .. ,., ( ‘p‘ .A .* .w‘ e.. “ ,, .* ") .\‘ -
) e M . . B

- o

LR

"a’ )



A S0

A

ws ¥y RS

BRRSRE

A Message System

R TR — W T W W T W T W TN NE R T WS W ST VT RssaM S sy e T TS = =T T T T

Multiple Logical Destinations

To send a message to a set of logical names we need to map the set of logical names into
physical names. If none of the logical names correspond to a device we send the message to the

device with physical name console:

NapSet —
. toP
lns? : P Name
ng! : P Name
NOUT
ng! = ( (ltop{lns?) N dom noq = {3} — { console >.
ltopflns?) N dam nogqg
)

The operation to send a message to a set of logical devices is

LSendMt & MapSet >> NSendM

Conjecture

Given:
ToSetL & 1n? : LName: lns!

the following equality holds

LSend = ToSetlL >> LSendM

'\4 RANCREA LS N
*;(&ﬂa ' ae T {s

.-
P e AT,
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| lns! = { 1n? >
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8 A Message System
Domains of the Operations

In practice we would like all the operations to be total (defined for all inputs). Unfortunately
the operations as defined are not total If a name (or a set of names) does not correspond to
an actual device then the name will be translated to the special device cansgole; if the cansole
does not exist the operation is not defined. For the output operations ensuring that the
console exists is a sufficient pre-condition for the operation to be defined. (We will also need
this pre-condition for input.)

Pre & NDEV; LtaP: m? : Message | conscle € dom nig

Remember that dom nig < dom nog so console € dom noaq.

Conjectures

Pre; ln? : _Name k  dom LSend

Pre; lns? : IP LNane + dom LSendM

For the input operations we need the additional requirement that the queue of messages yet to
be input on the device is not empty:

Preln &8 Pre:; n? : Name | niq(n?) # <>

Conjectures

MapName(niq/dev] >> Preln Pk dom LRece:ve

MapName(niq/dev] >> Preln Pk dom LSendReceive
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Specification

Temporary storage provides facilities for storage of information in named “queues®. The
operations that can be performed on an individual queue are cither the standard queue-like
operations (append to the end and remove from the beginning), or array-like random access
read and write operations.

A Single Queue

An clement of 2 queue is a se~uence of bytes
TSElem = seq(Bytel

A single queue may be defined by:

TSQ —
ar : seq(TSElem)
p : N
p S mar

The array ar contains the items in the queue. The size of the array is always equal to the
number of append operations that have been performed on the queue since its creation -
independently of the number of other (remove, read, or write) operations. The pointer p keeps
track of the position of the item which was last removed or read from the queue

2 Sep 84




& 2 Temporary Storage
- The initial state of a queue is given by an empty array and a zero pointer:
g TSQ_Initial 8 TSQ | (ar = <>) A (p = 0)
. We will define four operations on a single TSQ. The definitions of these operations will use the
schema
N ATSQ & TSO A TSQ'
RS

ATSC (A for change) defines a before state TSQ, with components ar and p (satisfying p < mar),

and an after state TSQ'. with components ar' and p' (satisfying p° < ®ar’'). The schemas for
the operations follow.

~ 5
.

Append, .

o I ATSQ
oY from? : TSElam

item! : integer
-
A ar' = ar * <from?>
‘ item! = mar'
p’ =p
Py

The new element from? (a "?° at the end of a name indicates an input) is appended to the end

s of ar to give the new value of the array. The position of the new item is returned in rtem: (a -

“'= at the end of a name indicates an output). The pointer position is unchanged.

- Remove, )
*‘ ATSG
into! : TSElem
\..l' p < war
o p' = p+ 1
into! = ar(p’)

. T

e { The pointer must not have already reached the end of the array. The pointer is incremented to
- the next item in the queue and the value of that item is returned in into!. The contents of the
- array is unchanged
: Hrite, )
. ATSQ
rtem? : integer
.. fram? : TSElem
Ky item? € 1..mar
. ar’ = ar ® (i tem? — from?}
¥, o' = p

5

The position tem? must lie within the bounds of the current array. The item at that position
in ar is overridden by the value of from? to give the new value of the array. The pointer
position is unchanged.

==

2 »,
sy
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Temporary Storage 3

Read,
ATSA

rtem? : 1nteger
rnto! : TSElem

1tem? & l..mar
into! = ar(item?)

a' = (tem?

ar' = ar

The value of the item at position item?, which must lie within the bounds of the array, is
returned in nto!. The pointer position is updated to be i1tem?. The array is unchanged.

In the above, all the operations have been specified in terms of the array ar and pointer p.
While this is reasonable for the Read and Urite operations it does not show the queue-like
nature of the Append and Ramove operations. Let us now show that the queue-like operations
are the familiar ones. We can define a standard queue by:

Q
L q : seq(TSElem]

The standard append to the end of a queue operation is given by:

Standard_Rppend
AQ
from? : TSElem

q' = q * <from?>

where AQ 3 Q A Q°'.

The standard remove from the front of the queue operation is given by:

Standard_Remave
aQ
inta! : TSElem

g 3 <intg!> #* q' -

The predicate in the above specification may be unconventional to some readers. It states that
the value of the queue before the operation is equal to the value returned in into! catenated
with the value of the queue after the operation. This form of specification more closely reflects
the symmetry between Standard_Aepend and Standard_Remove than the more conventional:

q' = tail(q)
into! = head(q])
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4 Temporary Storage

To see the relationship between standard queues and temporary storage queues we need to
formulate the correspondence between the respective states:

oL ke
Q
TSQ

qQ = tail”(ar)

A standard q corresponds to the array ar with the first p clements removed Given this
relationship between states we will now show the relationship between Append, and
Standard_Append. What we will show is that if we perform an Append, with initial state TSQ
and final state TSQ' then the corresponding standard queue states Q and Q° (as determined by
OL ke and OL.ke' respectively) are related by Standard_Append. This can be formalised by the
following theorem: :

Append, A QLike A QL ke’ k Standard_Append

Proof
1. a.q’ : seq{TSEleml]:; from? : TSElem from QLike, QLike' and Append,
2. ' = tail® (ar’) from QL ke’
3 = tail®(ar # <from?>) from Append,
4. = (tail®(ar)) » <from?> as p § war from T7SQ
S. =q % <fram?> from QL ke
5. Standard_Rppend from (1), (S) g

We can now do the same for Remove. Again we would like to show:

Remove, A~ QL ke A QL ke' k Standard_Remove

Proof:
1. a.q' : saq{TSElem]: into! : TSElem from QLike, QL ke' and Remove,
2. p < w®ar from Remove,
3. g = tai1l® (ar) from QL ke
4. 2 <ar(p+1)> » (ta:l** (ar)) from (2) and property of tail
S = <intg!> # (tail* (ar')) from Remove,
8. 2 < ntg!> » q' fram QL ke’
7. Standard_Remove fram (1), (B) a
Errors

In allowing for errors we can introduce a report to indicate success or failure of an operation.
If an error occurs we would like the TSQ to remain unchanged. This can be encapsulated by:

ERROR
ATSQ
report' : CONDITION

TSQ' = TSQ

2 Sep 34

P RPN I R I e oW
'-)'- ~ '-\, \-’ Y

SV A




W

W T S T W e e T
o Ba Bog dia hae des e T T TR TR T TR TR T Y O T A TN N T U I W T T W WU T Call

Temporary Storage b

In the operations described above there are three errors that can occur: trying to remove an item

from a TSQ that is empty, trying to read or write at a position outside the array, and running
out of space to store an item.

NoneLeFt!
ERRCOR

p = mar
report! = [temErr

QutofBounds!
ERROR
item? : integer

1tem? £ 1..w®ar
report! = ItemErr

NaoSpace'
ERROR

report! = NoSpace

If the operations work correctly the report will indicate Success:

Successful
report! : CONODITION

report! = Success

The operations given previously can now be combined with the erronecus situations. We will
redefine the operations in terms of their previous definitions.

Append 3a Append, 4 Successful v NoSpace!

Remove 3 Remove, A Successful v NoneLeft!

Hrite 3 Urite, + Successful v QutofBounds! v NoSpace!

Read 4 Read, A Successful v OutafBounds!
Note that NoSpace! does not specify under what conditions it occurs. The specifications of
Append and Urite do not allow us to determine whether or not the operation will be successful
from the initial state and inputs to an operation This is an example of a non-deterministic

specification. It is left to the implementor to determine when a NoSpace'! report will be
returned (we hope it will not be on every call).
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- 5 Temporary Storage
: ::-.
o Named Quecues
b
Yo
. We now want to specify a system with more than one queue. A particular TSQ can be specified
by name and the above aperations performed on it We will use a3 mapping ts from queue
i names (TSQName) to queues. The state of our system of queues is given by:
[ ",:
- TS 1
t [ ts : TSQName -~ TSQ
. The initial state of the system of queues is given by an empty mapping:
L TS_Initial & TS | ts = (¥
p "
Our operations require updating of a particular mamed T7SQ. We can introduce a schema to
- encapsulate the common part of updating for operations on queues that already exist
oo~
Y UpdateQ .
) ATS
- queue? : TSQName
P ATSQ
b sueue? € dom(ts)
b -, 7SQ = ts{queue?)
ts' = ts ® {queue? — TSQ'>

where ATS a 7S A TS'. Note that UpdateQ specifies that the named queue (alone) is updated
but does not specify in what way it is updated. This is achieved by combining it with the
single queue operations to get the operation on named queues

In adding named queues we have added the possibility of a new error: trying to perform
' operations on non-existent queues. This error is given by:

NonExistent!
ATS

\ queue? : TSQName

T report! : CONDITION

re queue? ¢ dom(ts)
T8 = TS
Lrepnrt! = QldErr

Our operations, except AppendQ which is allowed on a non-existent queue, can now be redefined
in terms of our previous definitions

b Removed 3 (UpdateQ A Remove)\ATSQ v NonExistent!

WriteQ 3 (UpdateQ A Urite)\ATSQ Vv Nonexistent'
N Read( 2 (UpdateQ ~ Read)\ATSQ v NonExistant'
Eé

The \ATSQ hides the temporary variables (ar. ». ar’'. p') from the signature of the final
operation. These operations all inherit the errors from the equivaient single queue operations
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Temporary Storage 7

A queue is created by performing an AppendQ operation on a queue that does not yet exist
The following schema describes the creation of a queue

e =

Createl )
ATS
queue? : TSQName
W TSQ_Initial
a TSQ*

queue? £ dom(ts)
ts' = ts U {queue? — TSQ'>

PSS
]

Again the relationship between TSQ_Init:al (ar, p) and TSQ' (ar’. p’') is not defined
within this schema This is supplied by Append in the following definition:

[

Appendd & ((UpdateQ v CreateQ) A Append)\ATSQ

o |

Note that for a non-existent queue, if an error occurs at the Append level (i.e a NoSpace
condition), then an empty queue will be created.

2

In addition to these promoted operations on named queues we have an operation to delete a
named queue

doa

FL DeleteG, .
ATS

queua? : TSQName
e report! : CONDITION

queue? € dom(ts)

o ts' = ts \ {(queue?}

i} report! = Success

. An exception occurs if the queue to be deleted does not exist so the definition of OeletedQ
. becomes

N \ DeleteQ 2 DeleteQ, v NonExistent!

l\-
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8 Temporary Storage

A Network of Systems

Temporary storage queues may be located on more than one system. Let us call the set of all
possible system identifiers Sysld. We can represent temporary storage queues on a network of
systems by:

NTS
| nts : Sysld = TS

where dom(nts) is the set of systems that share temporary storage queues and for a system
with identity sys:d such that sysid € dom(nts), nts(sysid) is the temporary storage state of

that system. The operations on temporary storage queues may be promoted to operat.e for a
network of systems by the following schema:

Network
ANTS
sysid? : Sysld
ATS

sysi1d? € dom(nts)
TS = nts(sysid?)
nts’ = nts ® { sysid? — TS’ >

where ANTS 2 NTS A NTS’. As with promoting the operations to work on named queues the
above schema only specifies which system is updated but not bow it is updated This will be
supplied when this schema is combined with the definitions of the operations on a single system.
Network operation also introduces the possibility of an error if the given system does not exist

NoSystem!
ANTS
sysid? : Sysld
report! : CONDITION

sysid? £ dom(nts)
NTS' = NTS
report! = SysldErr

The operations on 2 multiple system are given by:

AppendUN, a (Append@ A Network}\ATS v NoSystem!

RemovedN, 2 (RemoveQ A Network)\ATZ v NoSystem!

ReadQN, 2 (Read@ A Network)\ATS v NoSystem!

UriteQN, 3 (UriteQ A Network)\ATS v NoSystem!
2 Sep 84
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Temporary Storage 9

The sys:d? and queue? name supplied as inputs are not necessarily the ones on which an
operation takes placee. A queue name on a given system may be marked as actually being
located on another (remote) system, possibly with a different name on that remote system. We
will model this by the following function which takes the input pair of sysid? and queue?
name and gives the corresponding actual sysid' and queue' name on which the operation will
be performed:

remote : (Sysld x TSQName) — (Sysld x TSOName)

In many cases the input sys:d? and queue? name are the actual system and queue name; in
these cases remote will behave as the identity.

We will use the following schema to incorporate remote into the operations

TSRemate
sysid?., sysid! : Sysld
queue?, queue! : TSOName

(sysid!. queue!) = remote(sysid?. queue?)

The outputs, sysid! and queue!, of TSRemote form the inputs to the operations. If a sysid?
parameter is supplied then the operations on temporary storage queues are defined by:

AppendQN, 2 TSRemote >> AppendQN,
RemoveQN, a2 TSRemote >> RemovedN,
ReadQN, & TSRemote >> ReadQN,

UriteQN, 3 TSRemote >> UriteQN,

If no sysid? parameter is given then the operations are given by:

AppendON, 3 AppendQN, (cursysid?/sysid?]
RemoveQN, a RemoveQN,(cursysid?/sysid?]
ReadON, & ReadQN,[cursysid?/sysid?]
HritedN, 3 UriteQN,(cursysid?/sysid?]

That is, the sysid? parameter is replaced by a parameter giving the identity of the current
system (the system on which the operation was initiated).
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10 Temporary Storage

A note on the current implementation

Each system keeps track of the names of queues that are located on other (remote) systems and
for each remote queue the identity of the remote system and the name of the queue on that
system. It is possible that the referred request could be for a queue name that is also remote to
the referred system, in which case the request will be referred on to yet another system. To find
the system on which the queue actually resides we need to follow through a chain of systems
until we get to a system on which the queue name is considered local. We can model the
implementation by the function:
rem : (Sysld x TSQName) + (SysId x TSQName)

which for a sysid and queue name gives the sysid and queue name of the next link in the chain;
if a sysid and queue name pair is not in the domain of rem then the chain is finished. The
correspondence between rem and remote is given by:

remote = rem®
where rem® is the transitive reflexive closure of rem, defined by:

rem® a2 (id \ dom rem)] U (rem® o rem)

That ix

rem®(s, q) = (s, q) if (s, q) £ dom rem
= rem® rem (s, g) 1 f (s. q) € dom rem

As remote is a total function the equality of remote and rem® requires that no chain of rem
contains any loop (so that rem*® is also total).

Given the function rem if we take the corresponding (curried) function with the following
shape

r : Sysld — (TSQOName = (SysId x TSQOName))
so that

r(s)(q) =z rem(sg, q)
dom(r(s)) = { g : TSQName | (s, q) € dom rem >

The mapping that needs to be stored on a system s is given by r(s), which is of type

TSQName -+ (Sysld * TSQName) -
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Abstract
2
i) In the first part of this paper we show how to construct an abstract
specification of requirements for a simple assembler, so as to illustrate a
e typical way of using the language of set theory outlined in{Sufrin84]. Both
i procedural and representatiomal abstraction are employed in order to capture

the essence of the requirements without overwhelming the reader with details
of possible implementations. In the second part of the paper we give the
outline of a high level design for a program and indicate how to prove that
it is a realisation of the requirements formalised in the first part

.
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Introduction

In this paper we first show how to use the language of set theory to conmstruct a simple
formalisation of requirements for an assembler, then we outline the design of a simple “in-core”
assembier, show that this design meets the specification, and indicate how the design might be
further developed towards an implementation. Both specification and design are presented at a
rather abstract level, and are therefore “unreal®. It is this very high level of abstraction which
allows the specification to be simply explained and easily understood, and allows the design to
be easily proven to meet the specification

-
- =

Nk 2k 2%
e

¥

An Assembler is a program which transiates a sequence of “assembly language instructions” into
a sequence of “machine language imstructions® ready to place in the store of the machine In
this paper we shall assume that the machine for which we are going to specify our assembler is
a "one and a half address® computer; in other words cach machine instruction will reside at a
certain location in the store of the machine, and will have an opcode field, a register field, and
an address field We shall also assume an assembly language instruction to be divided into
several “fields® — an optional symbolic label field, a symbolic opcode field, a symbolic register
field, and a symbolic operand field Each assembly language instruction will determine the

4

Ll

F: ( content of the opcode field, the content of the register field and the content of the address field
e - of the corresponding computer instruction. Sometimes the opcode field will contain a “directive”
' = perhaps indicating that the radix in which subsequent numbers are to be interpreted should
;\' c.hznge.
N
- In order to simplify what follows we shall consider the symbolic opcode and register fields as
- one, and consider the machine opcode field to include the register information A typical
::; translation performed by the assembler, might be
: Assembly Language Machine Store
h Label Qpcode Operand Loc'n Qpcode Addreasa(octal)
:& radix 10 |
'y vi: .const 1024 f1: 2000
v2: .const 4085 |22 7777
l radix 9 |
-~ loop: move r2, v2 |3: 22 2
T addi r2, 23 [ 4: 12 23
- L mover r4, vi 1S: 34 1
tﬁ' comp r2, v2 16: 52 2
i Jump exit 17: 70 11
po jumpe r2, loop |8: 72
b exit: return |19: 77
- .end |

Primitive Data Types

Applying the principle of representational abstraction, the first thing that we decide is that in
- order to characterise an assembly language instruction, we do not need to know the exact details
- of its representation as a sequence of characters or bit strings. By the same principle, neither do
we need o know the exact details of the representation of a machine instruction We will
therefore denote the entire set of assembly language instructions by:
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and the entire set of machine language instructions by
M

The essence of an assembler can be characterised by the relationship between its input (a
sequence of assembly language instructions) and its output (a sequence of machine language
instructions). We will find it far easier to investigate this essence if for the time being we
abstain from considering things like error listings, and relocateable binary files. This is not to
say that such things will not be important in a more complete specification of requirements, but
the general rubric under which we sail is “essence first, decorations later”.

Formally, then, we will derive a relation of type

seq A <« seq I
The next step in our formalisation is to further characterise the structure of the assembly
language and of the machine language In doing so we shall denote the set of (symbolic) label
identifiers by

SYM
and the set of opcode symbols by

oPsSYX!

Structure of Instructions

The abstract structure of assembiy language instructions can now be formalised by the

introduction of four functions, corresponding to the fields of the instruction and related by two
axioms

lab: A - SYNM
op: A —=» OPSYNM
ref: A - SYM
num: A = N

dom ref N doa nua = ()
dom ref U dom num = A

Taken together, these formalise the fact that an assembly language instruction may have a label,
and an opcode field, and must have a reference or a number field, but not both. Now in
characterising the abstract structure of the language we do not care whether the Number in the
operand field arose from the interpretation of a string of decimal digits, binary digits, or unary
digits, so that is has been possible here to suppress radix directives Indeed the structure
presented here assumes the suppresssion of all directives.

The abstract structure of machine instructions may be characterised similarly: assuming that the
instruction and address fields of such instructions are represented in our specification by natural
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numbers, we have

2

inst: M4 - N
addr: X — N

A machine language instruction may have an instruction field, and must have an address field;
2 this allows us to use the assembler to preload numeric or symbolic values

We shall assume that we have been given a way of translating symbolic opcodes to numbers,
q that is, a function
Y

\3 anem: OPSYN - N

3

..

5

The set of valid mnemonic opcode symbols is the domain of this function

L S

Part |: Requirements

We require that the assembler traaslate symbolic opcodes to their corresponding numeric
opcodes, translate symbolic addresses, where they appear, to numbers representing the
corresponding address, and translate numeric fields where they appear. In what follows we shail
derive predicates corresponding to ecach of these requirements in turn.

‘-"‘.'

Symbol Definitions
Suppose that the input sequence of assembly instructions is denoted by:

Lo}

in: seq A

Ny
PRI

Exploiting the fact that a sequence is just a special kind of function from the natural numbers,

p we note that the composition:
b4 s
F < in 3 lab

Qe . .

:‘{ is a2 function of type

N = sM

which maps the number of each instruction in which a symbolic label is defined, to the label
which is defined there. In the case of our example we have

ko

in 5 lab = ( 1>V} 22 3I—loop Grexit }

The inverse of this function is in general a relation which maps symbois to all the places in the
- input where they appear as labels For this reason we define

Pl

symbtab 8 (in 3 lab)"*




o b

In order to formalise the idea that there should be no multiply defined symbols, we require that

RE the inverse of symbtab be a function. Remember that in general the inverse of a function may
::L‘ be a one-to-many relation; requiring that it be a function is the same as requiring that it map

cach element of its domain to just one clement of its range Later we will be able to give
additional justification for this rather obvious requirement, which is expressed formally by:

" symbtab € SYM - N
e Symboelic and Numeric References y
. Once more exploiting the definition of sequences, the composition

i

is a function of type

'
e N = sy

- which maps assembler instruction numbers in the input to the symbols which are referenced at
{.} those instructions. In the case of our example we have

r { 3v2 Skvy 6F+v2 7+rexit 8+*loop !}

?‘n

4

o The term

Ld :

g » ran( in 3 ref )

denot~s the finite set of symbols which are referenced in the input, so to formalise the
requi 'ment that all symbols which are referenced by assembly language instructions are defined
in the .nput, we write

ran( in 3 ref ) ¢ dom symbtab

The function
in j num
h of type
NN !
i
likewise maps assembler instruction numbers in the input to the numbers which are referenced
by thoss instructions .
Exercise L show that by virtue of the axioms for ref and nua the two functions we have
::l- just discussed have disjoint domains.
Opcode References
o The function
'
in § op
o
E of type
:E, 10 Jul 84
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N - OPSYM

maps assembler instruction numbers to the opcode symbols which are referenced by them. To
formalise the requirement that all referenced opcode symbols be valid mnemonics, we write

ran{in ;3 op) < dom mnena

Address Fields
Suppose that the output sequence of machine instructions is denoted by

out: seq M
then the function

out } addr of type N+~ N
maps machine addresses to their corresponding address fields We want the address field of the
instruction at location n to have the value of the symbol at

(in 3 ref) n
if assembler instruction n had a symbolic operand. The corresponding value is

(in j ref 3 symbtab) n
and we want it 10 have the valus

(in 5 nua) n
if the corresponding assembler instruction has a numeric operand Since every assemblier
instruction must have either a numeric or a symbolic operand, we can express this formally in a
single line, namely:

(out 1 addr) = (in 3 ref ; symbtab) U (in 3 num)

In order to check that our formalisation is sensible, we should ensure that the right hand side of

this equality denotes a function (since we have already established that the left hand side does.

50), and (because we have stated that each assembler instruction corresponds to a single machine
instruction) that the domain of this function is the same as the domain of in Of course these
needn’t always be true, but the conditions under which they are true will be the preconditions
for a successful assembly.

Let us first examine the conditions under which the RHS of the equality denotes a function
Since (exercise 1) insref and insnuam must by virtue of the structure of the assembly language
be functions with disjoint domains, all that remains necessary for us to articulate explicitly is
that symbtab itself be a function; this condition corresponds to the “no multiply defined
symbols® condition which we discussed in detail earlier.
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Next we examine the conditions under which the function has the same domain as in. Since the

. union of the domains of
o
o (in 3 ref) and (in 3 num)
‘ is the domain of in, all we must articulate explicitly is the condition under which the domain
Y of
G (in 3 ref ; symbtab)

) is no smaller than the domain of (in 3 ref). This is precisely when
) ran(in 3 ref) ¢ dom symbtab
. which corresponds to the "all referenced symbols are defined™ condition discussed earlier.
= .
) Opcode Fields
- All that remains is for us to formalise the relationship we require between the opcode fields of
-.;j ' the input and the instruction fields of the output This is simply:
~ .

out 3 inet = in 3 op J mnea

Ensuring that ecvery assembler instruction with an opcode field gives rise to a machine
instruction with a corresponding field is just a question of ensuring that the domain of the

3::" right hand side is equal to the domain of insop. This is ensured providing that the range of
‘.,. injop is a subset of the domain of mne=m, corresponding to the “all referenced opcodes must be
valid mnemonics” condition discussed above.

-,

5
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Specification Summary
In this section we summarise the discussion so far by defining the relation aggemblegto which
we wish to hold between the inputs and outputs of the assembler.

Context:

—
lab: A = SYH
op: A + QPSYM
ref: A < SYNM
num: A -~ N
dom ref N doa num = {}
dom ref U dom num = A

"
inat: ¥ - N
addr: ¥ — N

—

anem: OPSYM - N

Specificatiorz

assembleeato: seq A < geq !

Y in:seq A: out: seq If .
in amgenhlegtQ out =

ran( in 3 ref ) ¢ dom symbtab A
ran( in 3 op ) ¢ dom anem A
aymbtab € SYN - N A
{out ) addr} = (in 3 ref } symbtab) U (in 3 num) A
(out 3 inst) = (in 3 op J anem)

where
symbtab a (in 3 lab)™!

Discussion

We have illustrated two important techniques, namely procedural abstraction and representational
abstraction, by formalising the essence of the relationship required between the input and output
of a simple assembler. By procedural abstraction we mean statement of input-output
relationships without statement of the computational structures used to achieve them; by
representational abstraction we mean the statement of essential structural or semantic qualities of
data, without statement of the computational structures used to store them.
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In one sense we might be said to have established the basis for outlining a small “theory” of
simple assemblers. Such a theory, however simple and abstract, gives us an intellectual handle by
which we may grasp much more complicated machine and assembly languages, such as those
outlined in the exercises below.

Any program which can be proved to satisfy the relationship defined here is, for us, an
assembler. Now we haven’t given any clues about how to go about constructing such a
program, but that enterprise is the subject of the next section of our paper.

Exercises

2 How would you specify the appearance of a listing on which errors, such as multiply defined
and undefined symbolic references, are noted

3 What should the output sequence of instructions look like for erroneous input? Is it
important?

4. How could we extend the specification to cover radix directives in the input language?
5. How would you extend the specification so as to treat register symbols properly.

6 Specify an assembler for a Vax-like machine, whose machine instructions dom’t all occupy the
same number of addressable units

Part 2: High Level Design of an In-Store Assembler

In this section of the paper we outline the design of a simple in-core assembler and show that
it meets the specification defined above. The assembler will operate in two phasex during the
first phass it will build a symbol table, place numeric operands and opcodes in store, and build
structures which represent the positions of symbolic references; in the second phase it will use
the symbol table and structure reference information to place the correct values in the remaining
unfilled address fieids,

In order to construct a model of a two phase program, we will need to define three things a
set, IS, of intermediate states (to model the state of the assembler between phases), a function,
phasel, to model the first phase, and a (unction, phase2, to model the second phase. In
the language of set theory, the way to model “first this, then that® is to compose the functions
“this” and “"that®. More formally we aim to define

IS

phasel: seq A +~ IS

phase2: IS <+ seq N
In order to prove that the model satisfies the specification, we will have to prove that the
composition of the two functions has at least the same domain as the relation assemblesto,

and, moreover, that it agrees with assenblesto on its domain. More formally

don(phase! ; phase2) = dom assemblesto A
(phasel 3 phase2) ¢ assenblesto

We call this relationship “satisfies”, and write
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phase!l 3 phase2 % asseablesto

The theory of “satisfaction™ is presented in Appendix L Tbe main result allows us to give
specifications specl and spec2 of the two phases, such that

apecl } spec2 % assenblesto
knowing that if we can find phasel and phase2 such that

phasel © apeci A
phase2 S spec2 A
(ran phasel) ¢ (doa phase2)

then

phasel 3} phase2 € asseablesto

The Design

At the end of the (irst phase we shall be left with an intermediate state in which information
about symbolic definitions (st), and information about symbolic references (rt) is available, and
in which there is a sequence of partly-filled machine instructions (anachronistically but

evocatively called core). We model this information as abstractly as possible at this first stage
of development. More formally,

S

st: SYM < N
re: N - SYM
core: seq M

We now define apecl

speci: seq A «* IS

in gpecl (st, rt, core) e

st = (in 3 lab)"* A

rt = (in } ref) A
(core ; addr) \ (doa rt) = (in 3 nua) A
(core 3 inst) = (in ; mnenm) A

st € SYIf » N

The first line of the predicate formalises the statement that the symbol table records all
definitions of each label. The second line formalises the statement that the reference table
records the symbol referenced at cach location whose assembly instruction had a symbolic
operand. The third line formalises the statement that the in-store values of address fields
corresponding to locations whose assembly instruction had numeric operands are in place. The
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fourth line formalises the statement that all opcode fields are in place. The address fields of the
instructions with symbolic operands are allowed, by this specification, to take any values at all.

P

The second phase should leave all opcode fields in place, should leave numeric address fields in
place, and should “fix-up” the values of address fields corresponding to symbolic operands.
' Since the “source text” is no longer accessible, the only way to tell the difference between
symbolic and numeric address fields is by inspecting the domain of the reference table

W Formally, we have

,\'f

N4

—

} apec2: IS ¢ seq N
|

o~ (gt, rt, core) gpac2 out e

N

-

’ st € SYM » N A

. ran rt ¢ dom st A

:.‘ {out 3 inst) = (core ) inmt) A

T 1 (out 3 addr) \ (dom rt) = (core j addr) \ (dom rt) A

(out 3 addr) I (dom rt) = (rt 3 et)
~
-7

Prove that the composition of apecl and apec2 satisfies the specification assermblesto.

i Conclusion

We have constructed specifications for the two phases of an in-store assembler. In cach case we
have captured the essence of the information processed by the phase, but in neither case have we
o specified the order in which the information is processed, nor have we specified the final form

A in which this information will be stored in 3 computer. This leaves a number of possibilities

open to those who will define structurally and algorithmically more explicit realisations of the
E two phases.

v
W

v Appendix l: Satisfaction
o A relation r is said to satisfy a (relational) specification s if its domain is identical to that of
::,',- s and if it agrees “pointwise” with s for each element of their common domain
= 1 )
N, £ (XPY) & (Xesy)
- r e = (dom r)s(dom 8) A (r g @)
~
L0

For example, the successor function on the natural numbers is a relation which satisfies the
specification: “greater than”; indeed any number of iterations of suc satisfies “greater than™.

suc & *>»° Y n:N . ndl == guc”"s ">~

The predecessor function on the natural numbers satisfies the specification "less than®, but may
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not be iterated more than once without failing to satisfy it

prod s "< VY n:N . n>l =» 20 (pr.dn‘ em)

The first two results are rather obvious satisfaction is both reflexive and transitive

v: XeoY - rér
rl, r2, £3: XY = (r18c2) A (r28r3) = (r18e3)

The main result used in this paper concerns the relationship between specifications and
relational composition.

sl, rl: X & ¥; 82, r2: Y « 2

-

ridel A r2¢s2 A (ran rll)ec{doa r2) = (rijr2) % (g1;82)

These results allow us, when searching for a relation which satisfies a certain specification, to
search instead for two relations which satisfy the specification when composed These two
relations can serve in turn as specifications for a pair of relations whose composition will
satisfy the original specification, provided that the second implementation relation is prepared to
“process® everything “output® by the first.
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Abstract Algorithms

Introduction

The correctness criterion for our simple asssembler was a relation between :nput and
output In which we used functions such as /werse which are not part of the repertorre of
averyday (or even functional) programming languages. We used these functions in the
spec/ication because thay ware easy to ~2ason ~ith; as we davelop a erogram from our
specification we will be introducing functions and structures which are gver—-closer to
those provided by our target programming language(s).

In the case of ths assembler. the reocresentat:onal abstract.on which e made was to
model the input and output as sequences of abstract objects rather than characters. and
to model the symbol table as a binary relation between symbols and numbers. The
procedural abstraction we made was to specify the assembly operation by using
compasition on entire sequences and /ners/on. In a later section of the courss we will
show how we can bagin to use mora machine—oriented rsoresentat:ons, in this section we

show how to begin to use maching-orientad control—-structures n the rsalisation of what
we will call Abstract Algorithms.

As our first example we take the problam of constructing the inverse of a function such
as:

in 3 £
where

in: seq(X]

€: X =Y

Thig 1s clearly part of a saolution to the problem of constructing an assembly algorithm.

We shall first give a ocrocecurally abstract, state—oriented specificatian of the problem.
COur abstract algormithm .ill have state which s characterisad by the input which remains

to be read. and by the nverse relation which has sa far been constructed: more formally
«“e have...

T

in: meqlX]
rel: Y « N

For a given ingut and function, in0 and £ say, the abstract algorithm must transform a
state n which the relation s empty and none of the input has yet been read...

INITIAL 8 | sr| rel=(}; in=ing )}

ints one n which there 18 no more input to read and n which the relation 1s the required
inverse, namely:

FINAL @ ( ST | in=<>; rel=(in, J £)7')

Perhaps 1t will come as no surprise that our plan for building a less srocedurally abstract

program will nvolve a loop each iteration of which will be (modelled by)
atep ..

the function
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step: ST — ST

<@ <ant to choose :this so that the function

INVALG 3 (repeat step)

satisfies the specification. [n other words so that

INITIAL < dom INVALG A
INVALG [ INITIAL ] < FINAL

Note: w~e have included a small appendix in which we define the
function tepeat and dJdevelos a small mathemstical analogue of the
theory of iteratrve control structures. Although the rest of this
docymant '8 relatrvely independent of the acpendix, it provides a
more formal justification For some of the imformal arguments we use
below.

Design of Step

e will define step so that it decreases the length of in whilst always resulting n 2
state which s n the set:

INVAR a { ST | relx(gsocfarif)™* whers sofar # in = in, }
aur defimtion I1s...
step =
wS‘rl in#<>
in' = tail in:
first in é dom £ ==
rel’ = rel U ( fefirst in = l+#in,-#in }

first in # dom £ ==
rel’ = rel

which can be proven to satisfy the above requirsments.

Bacause step decreases the length of in, and maintaing the INVARiant, the theory of
iteration now allows us to conclude that:

(repeat step) € (ST — ST)
ran(repeat step) ¢ ( INVAR N (ST ~ dom step) )

Procedurally interpratad this means that the loop terminates in state...

( sT | in=<> } N INVAR

that 1s...

{ ST | in=<>; rel=(sofarjf)”' where sofar=in, )

which by a few manipulations transforms to FINAL.
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Making Step less Abstract

The specificatian af step 's stiil Procedurally apbstract «n the sense that (t involves two
mplications:

£irst in € dom £ = ..
first in ¢ dom £ = ...

We can continueg the process of algorithmic development by splitting step into two
parts. ..

change: ST - ST
nochange: ST -» ST

which are defined so that

step = (change U nochange)

as follows:

change =
nST | in#<>; first in€(dom £)
in' = tail in:
rel’ =rel U { £l.olfirst in = l+#in-#in }

nochange =
ST ] in#<>; first in#(dom £)
in’ = tail in;
rel’ = rel

The domaing of these functions are disjoint, so their union 18 still a function. Wae clam
that this function behaves exactly like step. leaving the proof as an exercisa.

In fact taking the umion of functions with digjoint domains is the clogest mathematical
analogue we have to the a/ternat:on construct of programming languages. (We will not
hers consider nondeterministic alternation of the kind modelled by unions of functions
with nondisjoint domains. although this is of great theorstical and practical interest).

So far we have convinced ourselves that == in a context wharae £ 18 known —— the function

(repeat step)

takes us from an initial stata in which the entire input sequence ramaing to be processed

and the ralation is empty. to one in which there i1s no input left to be processed and the
relation 18 the required inverse.

We can achieve this imitial stats by a function

init: seq(X] — INITIAL

init =
A in,: aeeq(X]
usT .

rel=(};
in=in,

The overall structure of the function which specifies our abstract algorithm 13 now:

DO Sl (0N Ty Vom0 0 DL g . o -',.J p A .’f~f~.4 A N
LA W s 'ﬂ “' .. ORI .'.1 A AL R I PT LA TR N




Twe “zantral canstructs” used

~@ 70w ask a3 Mmetcrical aues

let in:seq(X] = 1in,

rel:Y &« N 2z {} in

simpla, wa will not give a 7/

.

RS

will simply be obvious that

By showing how the control ¢
"algorthmic® combinators aof

are equivalent to the omginal

e A

1ait § ‘repeat {change ' nochange))

2rggram :mplements the acove 3bstract aigorithm?

. do
;.‘: ing<> —
o let x:X = first in
n:N = l+#in -#in in
! if
)i x€(dom £) —
rel, in := rel U ( x—n }, tail in
0
)
x#(dom £) —
A in := tail in
fi
’, od
The answar. as you've probably Suessed. is supposed to be "yes”. What you may not have
guesed is just Ao~ wa are gsaing to do the convincing.
Al
4§
:; What we shall do 1s to give the semantics of the srogramming language n terms of the

mathematical tocis with which we are already familiar.

the language to phrasas of the mathematical toolkit:
language as f it wera a syntact/c susaring of the toolkit.

function axpressad in different notations.

The Abstrac: Algarithmic Language

axpgrass "procedurally” stratagies for computing functions (and ralations) which have been

An gbstract algorithm 18 st a partial homogeneous relation (in this paper we will only
deal with Jetarministic abstract algorithms. which are partial homogenecus functions).

"more

that “specifications® and
S mathematical reasoning math
:(.: procadurally-abstract function
. In this section we define the
1S not implemented anywhare:
-
A" .
“e specified nonprocedurally.
E
e we llustrated earlier. the
b procedurally-abstract spacific
specification nto smallar
oy the "algorithmic® combinators: ©
-
V] altemation
' ’ saquencing
A repeat teration
r gquarding

mave meen empnasisaed: they are all mathematical ‘unctions.

tion: 's it possible to convince ourselves that the following

In order to make the presentation
ormal denotational semantics -- 3 mapeing from phrases of
nstead we will develop the
Once we have dong this it
the program and the algorithm are the same mathematical

onstructs of a programming language can be modelled by the
our specification language we hope to convincs the reader
"programs” ara both mathematical objects., subject to
ods. and that there is no unbridgeable gsulf between a
specification and a program which computes that function.

Abstract Algorithmic Language (RAL). The Fuv// language
it 13 merely a notation which allows the program designer to

As

development of an a6:tract algorithm starts from a
ation; in successive staps wa try to decompose the orginal
computable® specifications. which when assembled using

specification.

: 1 : Q‘W ﬁ::;‘ ,’-,&n ; - s— *:’?« ", -'.‘A:"" ‘. " K,.
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ﬁ Agsignment
Here s one af thae simplast of tha apstract algorithms:
X
Eq ANn:N. ax«xn
]
I+ s the algorithm which sguares 'ts single., numeric. varable. Another way of writing it,
ﬁ which makes its status as an "algomthm” a little clearer :s:
nn:N . n'" s nxn
.
&- Another way of writing the same algorithm s provided n the RAL notation, namely:
E prag n:N . n := n x n
' AAL Programs
In ceneral, programs :n AAL have the form:
%
- prog v :T ... v:T . St
? where St is an AAL Statement in which the vamablaes vi ... v appear. L@ are going to
- axplain the meaning of the AAL by giving the syntax of each kind of statement and then
showing what oart/al/ Yomogeneous function the program
,:w
ul prag v :T ... v:T . St

< stands for. For the moment. however, we will continue ts consider the meanings of

t\ programs of sust one variable and of the forms by which such programs are cobined to

> Produce more complex programs: later we will give the rules by which thesa can be
generalised.

?
h Even simple assignment programs may not always “work™: for example consider (program 1):

%\ prog n:N . n := n-1

In fact thus 18 the function

u w n:N ., n' = n-t

whose domain 1s N-(0}. I[f we give a procedural intarpretation to this (that is ta say f
wa think of 1t as something that 1s going to “run®) then one explanation for this is that
& program | does not terminate for all possible starting states: ar altermative explanatian

1S to say that this program is going to cause an "exception” to occur if started with n=0.

oy

I
(]

Let us consider how we might “totalise” this program, /e make it run for all possible

L starting values of n. The simplest way i1s to see f n is zero and in that case do
nothing at all. The Aybr/d (because expressed in a mixture of the AAL and mathematical

o notation) relation below dascribes just this bebaviour:

o

(prog n:N . n :=n) I { n:N| n=0 ) UV
(prog n:N . n := n-1)

. - -
v
Ve

The domains of 1ts two component functions are disjoint., so 1t 18 in fact a function. It
maocs nonzero n to n-1 and maps zero to zero.

v

We can write the first of the unioned functions n a more compact way in AAL using the
"guarded” faorm aof statement.

~
8 ta A
un
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prog :N . a=20 — n = n

In general., ¥ St .s an AAL statement and P s a (mathematical) predicate.

then the QAL
=regram:

prog x:X . P — St

mneans <he (now hybrd) function:

(prog x:X . St) M ( x:X P}

Even If we usae this new natation for restriction. our function

1s still exprassed n hybrid
form, namely:

(prog n:N . ns0 — n :ta n) U
(prog n:N . n := n-1)

We would like to hava an ARAL form for taking the union of two programs.

In general, :f Stl and St2 are RAL statements. then the AAL program:

prog x:X . St 0 st,

means the same as the hyhrid program:

(prog x:X . St,) U (prog x:X . St,)

Sometimes., tc make i1t clear that thare is more than one possible

"control path” within
the statement St wa will write:

if st fi
This means the same as St.

How do we say “do nothing?”. The AAL program:

prog x:X . skip

means the same as the abstract program

® x:X . x'=x

that s

(id XJ

At last we can write our abstract “exception proof” predecessor program entirely in AAL,
{(program 2):

prog n:N .
i f

n:sz -l

0
n=0 — skip

fi
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Healthiness of Alternations
If ~@ ‘ry :hink or the 3AL notaticn as a senuing programming language then we notice

sgmething rather strange about orogram 2: there s an aitermation clause. one af w~ncse
arms s not “guarced”' Qs mathematicians (at least temporarily) this doesn't bother us:;
artar all., ARL s ,ust a notation for describing mathematical relations. 8But as
‘sotent:ally) 'mpiementers., we might guaka N our boots (or foam at the mouth) at the
srospect of being asked to :mplement a programming language with assignments 0 which
“failure” of a statement causes the system to "backtrack” to the last (0 uvagdomng ail/
355:/9nments an trhe way'’

{n order %o get aroung ihus difficulty we shall mpose a healthinass constraint on

altemation statements. The rule will be that a// statements combined with § must be
guarded ; that s, altematives should take the form:

P, — st,
b

P, = St,
a

P, — St

Maregver., we should prove for gsach of the guarded stataments.

P, = st,

that the guard i3 stronger than the "weakest precandition® of the stataement. /e

{ x:X| P )} ¢ dom( prog x:X . ST, )

Finally, for an altemative stateament to be "determimistic®, the “guard sets” must be
proven to bae disjoint (this s a sufficiant not a necessary condition, but we will
valuntarily burden ourselves with 1t).

Iteration
If St /s an RAL statement. then the ARL program:

prog x:X . da St od

means the same as the hybrid program:

repeat( prog x:X . St )

Cur theory of iteration (in which repeat s defined) tells us that if we are toc prove
anything about such a loog then

prag x:X ., St

hac better denote a (strictly) partial decreasing function.

in general then the Statement of a loop will be an altemation of several suarded
statements. For example:
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prog n:
do

1< 3 ~ n:= nel
J

n>4=—n := n-1
od

{which., no matter what the value of n has ornginally. leaves it either 3 or ¢ on
“termination™).

Sequancing
If Stl and St2 are statements. then the ARL program:

prog x:X . St : St

t 2

means the hybrid program:

( prog x:X . St, ) ; ( prog x:X . st, )

Generalisation to Several Variablas

for the most part the generalisation of tha above definitions to programs of many
vanables s completaly straightforward. The only aexception to this i1s the ass/gnment
statement, which we now consider. The meaning of the RAL program:

prog v:T, ... v:T_ . v, 3= E

-= where £ 1 3 term in which vl ... wvn appear free -- s the function:

v z Vv

[n other words, the function which leaves all varmables unchar.;2d except for the cne on
the left-hand side of the assignment sign.

It 's convenient to have a notation for simultaneocus ass:gnment, exemplified by:

prag v:T ... v:T . v, v, ... v :aE, E

) x 1 2° "'E:

prog v:T ... v:T

vl = El'
v, i= E,
v := E

which both mean the function

Rac e e SiLE
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The *inal preaicate s ntendec ‘0 conwvey that the values af all varables other than vi
v5 vk remain the same.

Notice that the twao programs

prog a,b:N . a := b, b := a

prog a,b:N . a := b; b := a
mean differant functions: the first means:

AN a,b:N . (b, a)

wnlst the second means:
A a,b:N . (b, b)

Assignment ta Mappings

In the same soirit. we introduce a form of assignment to variables of a special type.
namely mappings. «ithin the scope of a vanable

M: X = Y

{a mapping from X to Y) the statement:

. ._ e
Nz =g,

means the same as the statement:

ﬂ::ﬂ.{Elh—oE’)

Naturally the terms El and E2 had better be well-typed!

Declarations

Next wa define an RAL construct which introduces “initialised” varables. [f St s a
statement and E 1s a tarm af type Y then the AARL program:

prog x: X .
let y:Y¥ = E n St

means *‘he function

(M x:X . (x, E)) 1 ( prog x:X: y:Y . St ) 3 (A x:X; y:¥Y . x)

Similarly. the RAL zrogram:

- -r‘r.(

RN I TN ORI NN N




- orog x: ¢
w let v:7 = 2 and z:2 = 2, \n St

—eganrs -e -.rcticn

AxiX Lk, 2, B
- . prog x: X y:7¥: z:2 . St ) 3
' A x: X oy:Yr oz:2 . x)
“mis zancluges Jur definition of the Abstract Algerithmic Language.
&
> Summary
~2 "ave 3iven -~ules which allow ARL “programs” to be transformed into mathematical
-elations (functions). [n principle 1t s enough to refer the person whe wishes to reason
. acout ARL programs ta this (albeit only semi-formal) semantics. and suggest that any
- -easoming se z29ne Jsing only the rules of mathematical language. In practice 1t will prave
.se*ul %o gerive some ocroof rules far AAL constructs and combining forms from their
» matrematical translations. Indeed the canstructs we have described so far were chosen
' srec:sely secause the derived oroof ~ules for them are simple to understand and work
- ~ith.  In the rext section of this document we will present derived proof rules for AAL
~rich will be famdiar to students of Dijkstra's or Hoara's systems of reasoning about
- sregrams.  There s nothing arbitrary or synthetic about the rules we will present. they
are s.mply cansequences of land proved using) the definitions as mathematical fur~‘:ons
- 37 the AAL constructs.
.-b:,
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Z Reference Card

l. Def:nitions.

LHS @ RHS Definition by syntactic equivalence

2. Logical symbols.

PaAQ Conjunction: "P and Q™.
Pva Disjunction: "P or Q”.
P =Q Im plication: "P implies Q" or “if P then Q"
~ P Negation: "not P”.
v Universal quantification: "for all . . "
3 Existential quantification: “there exists . . .”.
3. Sets.
e Set membership
Set inclusion: ST o (¥ x: S, xeT).
< Strict set inclusion: ScT @ SeTAS T,

{si1g | pred . term} The set of term such that pred given sig:
x € ( s1g | pred . term ) e (3 sig | pred . x = term)

v Set union: SUT a8 (x: X| x€SvxerT),
N Set intersection: SNT { x: X | x€ S Ax€T).
- Set difference: S -T { x: X| x€SA-~xe€T
() The empty set

(a, b) Ordered pair.

x Cartesian product X xY @& { x: X:i y: Y ).

P Powerset: P X is the set of all subsets of X

F Set of finite subsets: FX o (8:P X | Sisfinite ).

" Size (number of elements) of a finite set.

U, n Generalised set union and intersection: for SS: P (P X),
USS & { x: X | (3S5:S8. x¢€8) )},
NSS & ( x: X)) (vyS: SS. x€8) ).

disjoint Pairwise disjointness: for SS: P (P X),
disjoint SS & Vv S, T: SS. SN T # (}) == S =T,

4. Relations and Functions.

A — B The set of relations from A toB. A — B & P (A~ B).
A~ B The set of partial functions from A to B:
A~B s (£f: A~ B | (Va: A; b, b’: 8 .
afbArafb ==bz=Db) ).
A — B The set of total functions fram A to 8:
A—8B8 5 (f: A=~ B} (YVa: A. 3Ib:B. a¢fhb

S —_ - S el e e e S [ - . . e N R T
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{a= b, ¢ d. ...}

£ x
dom

ran

id
R-I

f.

()

S. Numbers.

succ
m..Nn

max(m, n)

6. Sequences.

seq A

L2-]

<>

<a, b, c>

The relation ¢ ‘a, b), (¢, d), ... } relatingaand b, cand d . ..
Lambda-abstraction:
A a: A | pred . term &8 ( a: A | pred . (a, term) )

The function £ applied to x
The domain of a relation or function: for R: A — B8,
dom R &8 (a: A | (3 b:B. aRDb ).
The range of a relation or function: for R: A ~— B8,
ran R 3 { b: B[ (3 a: A. a R b) ).
Relational or functional composition: for R: A «— B; S: B « C,
SeR & (a: Ai c: C | (I3 b: B. aRbALES e ).
Forward relational (or functional) composition: R 3 S 3 S e R.
Identity function: 1d A = A a: A. a.
The inverse of relation R: for R: A «~ B,
R* & (b: B; a: A | aRDb}.
The relation (or function) £ composed with itself k times: for £: A « A,
£° = 1d A, £' = £, £2 = £ o £, £ = £ o £ o f,

Image: for R: A +«~B; S: P A,
" R{S) & {(b:BJ (Fa:S.aRb)

Domain restriction: for R: A « B; S: P A,

RIS 8 (a: A; bs B| aRbaAaaes).
Domain co-restriction: R \' S 2 R I (A - S).
Range restriction: for R: A — B; T: P B,

RIT & (a: A; b: B|] aRbAabe€eT).
Range co-restriction: R / T @ R I (B - T).
Relational or functional overriding: for £, g: A « 8,

£fe@g 2 (£ \ domg)Vag.

The set of natural numbers (non-negative integers)
Successor function: suce 8 A n: N . ns+l.
The set of natural numbers between a and n inclusive
m..n & ( k: N|) ag¢kgnl.
The greater of m and n
a>n = max(a, n) = n
R¢<n = max(m, n) = n

The set of sequences whose elements are drawn from A:
seq A 3 ( s: N+ A | (3 n: N. dome =1..n) }
The length of sequence s: dom s = 1..#a.
The empty sequence (}.
The sequence ( | ™ a, 2 = b, 3—c )}, el .
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a3 (a,

neac The first eletnent of a sequence
LuSt The last element of a sequence.
zaLl All but the first element of 3 sequence
frant All but the last element of a sequence
For a: seq A | s 2 <>,
head s & g (1),
last s 8 g (#s),
tail s 8 succ ; (s \ (1}),
front 8 & g \ (#s}.
- Adding new head and tail: for s: seq A: x: A,
x s 98 (| %+ x) VUsucec' ; g,
8 " x &8 gV { succ #g = x }, -
» Concatenation: <> » t = t, (x “8) st =x " (&8 »
rev Reversing: rev <> = <>, rev (x * 8) = (rev s) ~ x.
7. Schema Notation.
[For details see “Schemas in Z™].
Schema definition:
SCH \
a: A
b: B
axioms
Use 1n signatures after v, 3, A, ( ... ), et&:
{ SCH | predicate } 2 ( a: A; b: B | axioms A predicate
v SCH . predicate 2 v a: A; b: B | axioms . predicate.
tuple The tuple formed of a schema's variables: tuple SCH
pred The predicate part of a schema: pred SCH a axioms.
(new/old] Renaming of components.
S'. S, Decoration; systematic renaming.

Use in definition of other schemas: inclusion, extension.

A, v, =, etea Logical operations.

\ Hiding.

r Projection.

» Relative consistency.

; Relational composition.
dom, ran Domain and range.
) Application.

L Overriding.
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